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LIST OF SYMBOLS

The following list defines the principal symbols used in

this thesis.

Other symbols are defined in context.

Rectangular and square matrices are indicated by square brackets

[ ], and column vectors by braces{ }'.-..

X,Y,Z:
Xy Y,2:
X Y 2!

B
v/

ZX

YZ

U, V,W

OyMyk

Right-hand Cartesian coordinate axis

systems,

Ycung's Modulus of elasticity in Z

coordinate direction.

Poisson's ratio. Ratio of strain (passive)
induced in X direction and the stress

induced strain (active) in the Z direction.

Modulus of rigidity in the XY plane.

Normal stress component in X coordinate

direction.

Normal strain cumponent in Y coordinate

direction,

Shear stress component in the XY plane.
Shear strain compunent in the YZ plane.

Nodal displacement components in the
directions of the corresponding Cartesian

coordinate directions,

Generalized coordinate,

Column vector of displacement components,
Matrix of element nodal puint coordinates.

Cclumn vector of element nodal point

displacements,

Interpolation function.

Local element coordinate directionse

xii



{Fﬂ Column vector of element nodal point
forces which are equivalent statically
to the boundary stresses and internal

disvtributed loading acting on the element.,

[x] Element stiffness matrix,

{FE} Column vector of element nodal point
forces required to balance any internal

distributed loading acting on the element.

{Ft} Column vector of element nodal point
forces required tc balance any initial

internal strains in the element.

[B] Matrix relating element nodal point

displacements and the internal element strains,

[ D] Material elasticity matrix.

{R} Column vector of structural nodal point forces.

(K] Structural stiffness matrix.

{d] Column vector of structural nodal point
displacements,

[ MBK ] Modified arrangement of the structural

stiffness matrixe.

[J] , Jacobian transformation matrix.
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1> INTRODUCTION TO VOLUME TWO

DENTAL STRUCTURAL STRESS ANALYSIS

There are many different methods of structyral

stress analysis. The most commonly employed

techniques for general engineering structures have

already been discussed in Chapter Five. However,

as explained in that chapter, some of the techniques
available are either unsuitable for, or are incapable
of handling the complexities which the dental
structures present.

Because it is difficult, if not impossible, to
obtain solutions to many 'real' engineering problems
involving either complex material behaviour or
boundary conditions, engineers have resorted to
various numerical methods of analysis in order to
obtain approvimate but nevertheless 'acceptable’
engineering solutions. Numerical solutions
generally yield only approximate values of the unknown
quantities at a limited or finite number of positions.
The process of selecting the finite number of positions
in the body or structure has been called discretization.

Structures, such as the simple frame shown in
FIG. 13.1, are already discretized in that the structure
consists physically of three separate members. DYy

employing the displacement method of structural analysis

the primary unknowns, i.e. the displacements of the frame
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at the joints or nodes of the structure, can easily be
determined. However, from this finite number of nodal

displacements an estimate of the values of the stresses

and strains in each of the three members can subsequently

be evaluated.

It is not therefore surprising that when solutions
to continua or two and three-dimensional solid bodies
were required that the engineer adopted this familiar

and proven method of attack. Indeed, the forerunner of
the finite element method proper, is known as the
equivalent framework method, Hrennikoff (125) and
Yettram and Robbins (126), In this method, small
portions of two and three-dimensional structures are
simulated by 'cells' which are made up of struts, ties
and beam members. Hence, by prescribing predetermined

properties to each of the various members making up
each cell, (determined on an equivalent stiffness

criterion), the mechanical behaviour of the complete

cell or framework can be determined. Thus, complete

structures can be subdivided into a number of cells

whose individual mechanical characteristics are
determined Eg_initio.
The logical extension of the equivalent framework

method was to divide structures up into cells or elements

which are physically similar to the structure itself.

Thus, in the finite element method, plate structures
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are divided up and simulated by cells that are in fact
small pieces of platé, and three-dimensional bodies by three-

dimensional solid elements. Turner, Clough, Martin and

Topp (127), are generally acknowledged to have been the first

to have adopted this approach.

The development of the finite element method proper, was
only made possible by the advent of the electronic digital
computer. Obviously, the simple three member frame previously
discussed can easily be solved by hand as nnly a small number
of unknowns are involved. However, for structures consisting
0f a large number of members or cells, and with each cell or
finite element having more complex mechanical behaviour
patterns than the simple tension/compression members, numerical
solutions are beyond the scepe of 'hand' calculation.
Consequently, as digital computers have increased in size
(storage capacity), and speed, so the finite elements employed

and the size c¢f the structures investigated have become more

sophisticated and complex. Simultaneously, the finite
element approach which was initially conceived as a purely
physical method of solving structural stress analysis problems,
has been found to be equivalent to the more mathematically
rigorous variational methods. 1In fact, the method has been
developed to handle many other variational type field

problems such as those due to fluid and heat flow phenomena.
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The finite element method is treated in this thesis

exclusively in terms of stress analysis. However,
because the fundamentals of the method are very well

documented, see for instance the works of Desai and

Abel (128) and Zienkiewicz (12C). only an outline of the
important aspects are reiterated here. Nevertheless,

a full and more detailed treatment is given for the
derivation of the stiffness matrices of finite elements

incorporating orthotropic material behaviour, as these,

to the author's knowledge, are not yet available in the

literature. These derivations appear in the later

chapters which deal with the development of the computer

programs employed for carrying out the dental structural

analyses discussed in Volume One. Three types of finite

elements were employed. These were axisymmetric,

two-dimensional and three-dimensional elements.

Hovever, because of the small size of the computer
installation available, each of the element types was
incorporated into a separate analysis progranm.

The programs were developed so as to suit
Brunel University's I.C.L. 1903A series computer
installation. However, during the course of the

project the installation changed considerably and so

the programs are perhaps not now so compatible with
the machine's capability. Also, the computer staff
were initially more conversant with ALGOL and so the

programs were written in this language.
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14, THE FINITE ELEMENT METHOD

14.1 GENERAL DESCRIPTION OF THE METHOD
The finite element method of structural stress

analysis utilizing the displacement approach, can best

be described by a sequential process which consists of

a serlies of seven basic steps. The pattern of these

steps 1s shown by the flow diagram in FIG. 14.1.
14,2 DISCRETIZATIONR

This step involves the subdivision of the structure
10 be analysed into a grid or meshwork of finite
elements. The type of the elements chosen to represent
the structure obviously depends upon the form of the
structure being analysed. For example, structures
which possess rotational symmetry are usually represented
by axisymmetric finite elements, see FIG., Te.l5. Other
types of finite elements employed include two-dimensional
planestress and planestrain elements, three-dimensional

elements and elements that have been developed for

special 3pplicaticn; such as thick plate and shell
structures. } <

Sometimes it is possible to represent fully
three-dimensional structures by only a planestrain
system of finite elements, see for example Zienkiewicz

(129) page 63. This legitimate simplification is very

desirable purely from the economic viewpoint. However,
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this will become more apparent later on when the cost

of using fully three-dimensional finite element models

is discussed.

The engineer must consider carefully the type,

size and arrangement of the finite elements he is to

enmploy to model the structure,in order that an effective

structural representation is achieved. However, he
must also consider at this juncture step two in the flow

diagram of FIG. 14.1l, and give some thought as to the
type of the displacement models which will be used for

the particular finite elements selected., This will

ultimately affect the fineness of the subdivision and

in particular the representation of the critical areas

in the structure which are of special interest, e.g. areas

of high stress concentration.
Structural discretization demands skill, competence,

experience and judgement on the part of the analyste In

some cases,the extent to which the structure should be
modelled may not be clearly defined, e.g. to what eXtent
should the supporting alveolar bone be included in an
analysis which is to determine the force distribution
around the root of a tooth? Of course, only the

significant portion of the alveolar bone need be considered

and discretized. Indeed, this must be so,again purely

from the aspects of practical limitations and economics.
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It is obvious therefore from the foregoing,that

the initial step of deciding upon the form of the
discretization to be employed is a very important

one. Indeed, it is one which will govern the validity
of the solutions obtained from the ensuing analyses.

14.% SELECTING THE DISPLACEMENT MODELS

As mentioned earlier in Chapter Thirteen, the

numerical methods employed to solve general structural

stress analysis problems provide approximate values

of ithe desired unknown quantities only at a discrete
number of points. TUsing the displacement approach

of the finite element method, it is the displacements
of the structure at these discrete points that are
considered as being the primary unknown quantities.
Although it is not essential, theidiscrete points or
nodes in the structure are generally selected to occur
along the boundaries of the individual elements forming
the structural subdivision. Consequently, it is only
through this system of boundary nodes that the elements
are assumed to be interconnected.,

The number of nodes which each element is prescribed
and the number of degrees of freedom prescribed to each
node, is quite arbitrary. FIG. 14.2 shows two
rectangular plane stress finite elements. Here,element 1

has four nodes, one at each corner, with each node

prescribed two separate degrees of freedom. That 1s,
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one degree of freedom in the X coordinate direction,
represented by a 'u' displacement component, and one in
the Y coordinate direction and represented by a 'v!

displacement component. On the other hand element 2

has been prescribed eight nodes, one at each corner as

before and also one node at the midpoint of each side.
It must be pointed out that for this two-dimensional case,

the elements have a specific thickness and so each node
1s not simply a point but is a line or a line node.

To enable the mechanical behaviour of each element
to be determined, that is, the element's influence or
stiffness coefficients, it is necessary to define the
variation of the displacement components within the

element in terms of the nodal values. The form of the

variations in the displacements throughout each element
are prescribed by what are known as displacement functions
or models., Obviously, this assumed or prescribed
variation represents only approximately the actual
displacement distribution of the actual or real structure.
Consider for example element number 1 in FIG. 14.2. 1In
this case, the variation of fhe u displacement within the

element could be assumed to take the form of the

polynomial
u = al + a2x + a5y + a4xy
Therefore, if the u displacements for nodes 1, 2, 3 and

4 are substituted in turn into the above equation together
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with the appropriate nodal coordinates, the four unknown
quentities a3, ®2s ®3 and a4 can be evaluated.

Consequently, knowing the values of these four quantities
and the four nodal displacements, the u displacement at

any point within the element can be determined. From

this example,it follows that for element 2 in FIG. 14.2

which has eight nodes, a displacement model of the form

2 2
u = al + a2x + asy + 0:4JCY' + c:5x + GGY

+ o 2 3 x?
TXV 8 \'{
can be evaluated.

With the first displacement model, the u displacement
distribution within the element in the X coordinate
direction could take a linearly varying form. This
condition is illustrated along the side joining nodes 1
and 2 in FIG. 14.3a. (Note that the 'variation' of

the u displacement throughout the element can be

U - provided a, = a3 = a4 = O
This constant‘value of u signifies a pure rigid body

movement and results in a no-strain condition.)

However, using the second displacement model the u
displacement distribution throughout the element in.thei
X coordinate direction, can take a quadratic varying
forms FIG. 14.5b 1llustrates this case along the
equivalent element side as before. The quadratic
displacement model is obviously more refined than the

linear model and can therefore represent, for the same
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element mesh, a more rapidly varying displacement field,
see FIG. 14.3c. (Note that with the quadratic
displacement model the condition of a pure rigid body

movenment can again be simulated provided that the as

apart from a, assume zero values. )

The simulation obtained by using the linear
displacement model could be improved for the example

discussed above by reducing the size of the element
mesh, see FIG. 14.,3c., Thus,the engineer has the choice
of either using many of the simple 'linear' elements or
fewer of the more refined ‘quadratic' elements to
simulate the displacement distribution. The choice
depends upon the accuracy required and also upoﬁ

economics, It may be cheaper from the computational

aspect to use the quadratic type of displacement model.
Also, it may be possible to use mixed elements, i.e. both
linear and quadratic models in the same problem.

However, as will be discussed later, the displacement
compatibility at the junction of the two types of eleﬁents,

(which mathematically is a necessary requirement), may be

difficult to achieve.
It is worthwhile to emphasize here that engineering

experience and a general 'feel' for the problem is
required as it is uneconomic to 'over mesh! or bver model'
a structure, i.e. to use too many elements to simulate

the structure's displacement pattern. Also, it can be
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seen from FIG. 14.3c that if the displacement variation
across the element is in fact a linearly varying one in

the actual structure, then the use of the higher order

quadratic displacement model could not obviously improve

the simulation.

In selecting the order of the displacement model
for a particular finite element, various criteria have to

be observed. As the displacement model chosen limits

the number of the degrees of freedom of the element,

the derived stiffness of the element is consequently over
estimated. Thus,it follows that for any given loading
regime, the simulated structure will deform less than

the actual structure. However, if the subdivision of
the structure is made finer, then the approximate
displacement distribution obtained should CONVERGE to

the actual displacement condition of the real structure.

Nevertheless, in order that the finite element solution

converges to the actual solution, the displacement models
employed must be such that the displacements are

continuous within each element. Also, the displacements
along the edges or faces of the elements must be compatible
with those of their neighbours. . In addition, the
displacement models should incorporate both rigid body

(or zero strain) and constant strain states, see Desai and

Abel (128) pages 80-81, and also the condition that the

strains at the element interfaces are indeed finite valﬁBS,

Zienkiewicz (129) pages 35-36.
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As well as satisfying the above conditions for
convergence, other factors must be considered when

selecting the displacement models, One of the more

important aspects is that the model should not be

dependent upon the orientation of the finite element.
That is to say;the displacement model should be

geometrically isotropic. One way of ensuring this

is to select the variable terms of the polynomial on
the basis of the Pascal triangle. FIG. 14.4 illustrates

the Pascal triangle for variables in two, i.e. X and ¥,
dimensions. Using this figure,it can be seen that for
an eight degree polynomial, either the x: and yj,

(or alternatively the x?y'and the yzx), are the two

additional cubic terms which should be selected to

maintain geometric isotropy.

In formulating the individual element stiffness
coefficients,it is necessary to express the displacements
anywhere within the element in terms of the element's
nodal displacements., However, there are primarily
two methods of doing this, either by employing
generallised coordinates or by using interpolation
functions. Consider the four-noded plane stress .
element shown in FIG. 1l4.2a. Here we have two
displacement variables, u corresponding to the X
coordinate direction, and v corresponding to the Y

coordinate direction. The displacement models selected
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must have the same number of components as the element has

degrees of freedon,

Consequently, as the element has four

each of both the u and v degrees of freedom,the displacement

models must be of the form

and

The as are known as the generalized coordinates.

Expressed in matrix form equation 14.la becomes
(£} = u(x¥) | L 1o 1{e)
V(xt?)

Now by substituting the nodal coordinates into matrix

0y + 0X + 0¥ + &)XY

a5 + a6x + a7y + CIBJW

‘_14013

14.1b

[C] we can evaluate the 6orfesponding nodal displacements

or

1

0

Iy

O

X191

0
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where [q] is a column vector of the element's nodal
displacements. Therefore,solving equation 14.2b we
get

e} - 1 {a) 14.3
and therefore by substituting this result into equation

14.1b we are able to obtain the displacements anywhere

within the element in terms of the element!s nodal values.

i.e4
(¢} = [c1[a1™ {a} 14.4
{f] = [¥]{q] 14.5a
where

[v] - [c] [a]™
The main drawback with this generalized coordinate
approach is that sometimes the inverse of the matrix [A]
may not exist, that is to say [A] may be a singular
matrix, Desai and Abel (128) page 85, 1In addition,

considerable difficulty may be experienced in obtaining
an inverse of [A] in general algebraic terms suitable for

any element geometry. However, the interpolation function

approach avoids these difficulties.

To express the displacement variation within an

element in terms of its nodal values using interpolation

functions, it is more convenient if element or local

coordinates are employed. Consequently, the isoparametric

element concept, pioneered by Zienkiewicz and his team at
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Swansea has been introduced, Ergatoudis (130).
Isdparametric elements are elements whose displacement
models not only express the displacement variation
within the element in terms of its nodal wvalues, but
also, the coordinates of any point within the element in
terms of the element's nodal coordinates. Using this
approach, the four-noded plane stress quadrilateral
element shown in FIG. 14.2a is described by a system of
local or natural coordinates such that any point within
the element can be specified by a set of dimensionless
nunmbers whose magnitudes never exceed the value of unity,
see FIG, 14.5. Thus, suitable interpolation functions *
are selected such that equation 14.5a can be written as

u(é,n) N, O N, O N3 0O N

(¢} - : “

v(8,71) 0 N, 0 N, O N

0 u

N
o
=
>
l\)dl\fl-ﬁl—'

14.5b

=
\N

4
.-Fh-l:fu

An interpolation function is basicaily‘a function which

has the value of unity at a particular n-~dgl point and
& zero value at all the other*nodalbpoints.
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where Nl, N2, N3 and N g &re the interpolation functions,

For this case theose are

N, = 1(2-8)Q-n) N, = 1 (1-8)(1+n)
4 4

Ny = 1 (1+5)(1+0) N, = 1 (1+8)(1-n)
4 4

Note however, that the displacement components u and v
are now functions of the local element coordinates 6 and
n and not the structural or global coordinates X and Y.
Also, because the element is isoparametric the X and Y
coordinates at any point within the element can be

expressed in terms of the element's nodal coordinates
using the same interpolation functions. Hence,

x(6,n) = Nyx, +Wpx, + Npx; + N,x,

+ N

14.6

and y(6,n) = N + N + N

373 4%4
Because of the simplicity and generality of this

171 * Fa¥2
method of defining the element's displacement variations,
the interpolation function approach is more commonly

employed than the generalized coordinate approach,

14,4 DERIVATION OF THE ELEMENT STIFFNESS MATRIX AND
THE NODAL FORCE VECTORS

A system of nodal forces can be derived for a finite
element sﬁbh that they are equivalent statically to the
boundary stresses and internal distributed loading acting
on the element. Assuming therefore that the element

behaves linearly elastically, it s characteristic relation-

ship will be of the form,
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{F} = [k] {q] + fE‘d] + {Ft] 14.7

where {F] is the column vector of element nodal forces

which are equivalent statically to the

boundary stresses and internal distributed
loading acting on the element.

[k] is the matrix of the element's stiffness

coaefficients.

{q] is the column vector of the element's nodal

displacements,

{Fd] is the column vector of element nodal forces

required to balance any internal distributed
loading acting on the element, e.g. body

weight forces.

and {FJ is the column vector of element nodal forces

required to balance any initial internal
strains in the element caused by, for example,

a temperature variation.

Note that the product [k] {q) represents the element
nodal forces which are induced by the displacements of
the nodes.

In order that the system of nodal forces is
equivalent statically to the boundary stresses and any
internel distributed loading acting on the element, it
is necessary that the forces acting at a node have the
same number of components as the element's nodal
displacements. Simlilarly, the internal distributed
loading { p} say, acting on a unit volume of material,
must be defined as having directions corresponding to

those of the displacements {f] at any point.

21T



However, to make the nodal forces acting on the element

equivalent statically to the actual boundary stresses
and internal distributed loading, the principle of

virtual work can be invoked. Basically, the principle

of virtual work is a more generalized statement of the
principle of the conservation of energy. It states

that if a body, in static equilibrium, is given an

arbitrary set of compatible small displacements, the
external virtual work done by the nodal forces moving
through the virtual nodal displacements is equal to the
total internal wirtual work done. The internal
virtual work is equal to the integral of the products
of all the stress components acting throughout the
body and the corresponding system of virtual strains.,

Now if a set of virtual displacements {q] are
applied to the nodes of an element in static equilibrium
then the virtual displacement of any point within the
element can be defined by equation 14.%5a or b as

{} = [¥{3) 14.8
Similarly, the virtual strains produced within the
element can be expressed by means of equation 14.21, see
gection 14.8, as .

(¢) = [B]{q] 1449
Now the external virtual work is the sum of the products
of the equivalent set of element nodal forces and the

corresponding set of element virtual nodal displacementse

T
e W, . = {3} {P] 14,10
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Similarly, the internal virtual work due to the stresses

and the internal distributed forces acting on the

elemental volume dV of the element is

Zi:internal = {E}T {0’] - {f} ; {p] 14.11

Therefore, by substituting from equations 14.8 and 14.9

we get¥

gm___@_@}. - {3] i [B]T {0} - {d} i [N]T {p] 14.12

Thus, the total internal virtual work of the element is

obtained by integrating over the whole volume of the

element and so
T T T i\
Winternal = /{a] [B] {d] dv "/{E.] [N] {p] dV 14,13

Therefore, by equating the total external virtual work

with the total internal virtual work we get.”

T T T /I
.{5} {F) = /{'ci] (8] {o} av -/{3.] (8] {p} av 14,14
Now as this equation is valid for any set of values for

the nodal displacements, remember the values chosen were

selected quite arbitrarily, the multipliers can be equal.

* Note that by the rules of matrix algebra if

(g} - [B]{d}

- then {E]T - {EJT [B]T
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Therefore,

J1s1* {e} av - /[§]" {p} av 14,15

Hence, by subatituting‘for*{d] from equation 14.24, see
section 14.9,

{(¢/} = /[81%[D] {¢] / [3]%[D] {eO] av - [N)7{p)av
14.16
and substituting'for.m{e] from equation 14.21, section

14.8
{ F] = / [B]T[D][B]{q]dv ~ / [B]T[D] {so] av - / [N]T{p]dv 14.17

Therefore, by comparing equation 14.17 with equation
14,7 we see that

(k] = /[31°[p][Blav
fFd = -/I7° {p) av

and

e = -/03000) f} v |

It is important to note that the element stiffness matrix
[k] is a square symmetricmatrix*. The size of the

matrix is equal to the number of nodes in the element

miltiplied by the number of degrees of freedom at each

node. Hence, & j-noded quadrilateral plane stress

element having two degrees of freedom at each node will

" have a stiffness matrix of eight rows by eight columns,

i.es 8ixty four coefficients in all.

If an element on the boundary of the structure is
subjected to a distributed external loading of say {g}

per unit area, a further loading term at the nodes will

* Not only is the elasticity matrix [D] a symmetric matrix

. but any triple matrix product of the form [B]'[D][B] gives

& symmetric matrix. 300



have to be added. This will be equivalent to,

see sub-section 14.6.1,
] = - [§]° {g) aa 14,18

In order to derive the element stiffness matrix

and the element nodal force vectors, various integrals

have to be evaluateds For elements having only linear
displacement models in Cartesian coordinates, i.e. &

constant strain element, the [B] matrix consists only
of constant terms and hence the integrations are simple
end straightforwarde However, for elements having
higher order displacement models, the integrations
necessary to evaluate the stiffness and load matrices
involve polynomiﬁle. Although it is not an easy
matter to integrate these terms explicitly, it is a
relatively straightforward process to carry out the
integrations numerically. Indeed,_the local element
coordinate system adopted for the inierpolation

displacement model afproach lends itself readily to
this method of solution.
14. FORMATION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS

The equilibrium equations for any statically loaded
elastic structure take the form

{r} = [x]{a] 14,19
where

{R] is the vector of the structural nodal forces

[K] 1is the structural stiffness matrix or array of
gstructural influencecoefficients
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and {d] is the vector of the structural nodal
displacements.,

The object of this step is to derive the {R] and
[K] matrices of the entire structure from the {F] and

[k] matrices of the individual finite elements from

which it is comprised. However, because the structural
equilibrium equations can contain an enormous numbexr of

coefficients and unknowns, the sequence in which the
equations are derived and physically stored in the
computer, (that is in core or on backing storage
facilities such as magnetic tapé and disc files),
depends upon the configuration of the computer
installation available. Consequently, the type of
computer installation also governs the type or method
employed to solve the resulting systea of simultaneous

equations, see section 1l4.7.

As an example of how the structural equilibrium
equations are formed, consider the simple two-dimensional

cantilever structure depicted in FIG. 14.6a. The

structure consists of two, 4-noded quadrilateral plane

stress finlte elements with each node possessing two

degrees of freedom, namely a u displacement in the

X coordinate direction az}d a v displacement in the Y

coordinate direction. The nodes of the structure are

numbered 1-6 with the two elements being interconnected
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via nodes 3 and 4. Each element haa the characteristic

relationship expressed by equation 14.7 namely:
{F} = [D{a}+ fF} + )
Assume now that the {Fd] and {Ft] force vectors have

been determined and have been added into the {F]
vector so that for each element:

(F) - [ {a] 14.20
FIG. 14.6b shows the two elements of the structure
separated and with each element possessing it s owmn
local or element node numbering system. The statically
equivalent element nodal forces fF] and the corresponding
nodal displacements are also indicated, those for
element number 2 are underlined so that they are easily
distinguishable, Using equation 14.20 above, the
characteristic relationship for each element can be

written down as shown in FIG. 14.6c. Consider now the

equilibrium and compatability of structural node number
3 in the Y coordinate direction. Obviously, for
equilibrium and compatability to exist, the following

conditions must apply, see FIG. l14.6a and b.
* »*

FB + Eg. - R6
E.nd qe - S-g. - d6

Hence, by expanding the appropriate matrix equations

from FIG. 14.60 and noting that:-
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4@ = 4 g = % = %
q5 = EZ es d7 .[iz' 3 d9
q’6 s Ei e dB E'Q- = dlo

we find that:-

Re = kgpd; +kgod, + k8363 + k84d4 + (k37+.1.:.?}.)d5 +

(k88+_1c_2_%)d6 + (k85+}_c_g_1)d7 + (k86+fc_g_g..)d8 +

kzzdg + Kogdyo t k25‘111 + Kygdy s

FIGs14.6d presents in matrix forin this and the other
gtructural equilibrium equaticns for the two element
cantilever structure shown in FIG. 14.6a,.

It can be seen that the formation of the structural

equilibrium equations, (equation number 14.19),is a

relatively simple operation once the individual element
gtiffness coefficlients and equivalent nodal load vectors
have been determined, Each of the element's stiffness

- coefficients and nodal force components are merely added

or 'dumped' into the appropriate position in the structural
stiffness matrix or nodal force vector. The appropriate

position is easily determined from the global or structural

node numbering arrangement and the local or element node

numbering system.
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Two features of the structural stiffness matrix,

which are shown in FIG. 14.6d, are of vital importance.

First, as each element stiffness matrix [k] is symmetrical,

see section 14-4 i.e. k

21 = K

12 or kel = le’ the

structural stiffness matrix [K] is also symmetric,
Lees Kgg = koo +ky) = Koo = ko + 1,0 Secondly,

although it is not 80 apparent from the small cantilever
example 1llustrated, the array of the structural stiffness
coefficients are confined within a band of[K] and thereby
constitute a banded stiffness matrix. The top right
hand corner of [K] in FIG. 14.6d can be seen to contain
all zero terms. The width of the band of non-zero terms

in [K] can be determined ab initio from the structural

node numbering system. Therefore, &8 it is important

from the equation solution time aspect to keep the width

of the band of coefficients t7 a minimum, see sub-section

1l4eTelycareful and judicious numbering of the structural

nodes can have enormous economic consequences.

A.6  APPLICATION OF THE STRUCTURAL BOUNDARY CONDITIONS

In this step of the finite element analysis procedure,

the boundary conditions of the structure are applied to
the finlite element model. These consist basically of

two types, namely, boundary loading and geometric or

kinematic boundary conditions,
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14,6.1 Boundary loading Conditions

Boundary loading type boundary conditions can be
sub-divided into two groups., These are 1) point loads
and 2) distributed loads. Point load boundary conditions
are the easiest of the boundary conditions to apply.

As an example,yconsider again the 2 element cantilever
structure discussed in the previous section. Suppose

now that a known point load W is applied to the structure

as shown in FIG, 14.7a. In the finite element analysis,

this load is applied to the model simply by adding the

value of W, (taking due account of the sign convention

of the structural coordinate axis system), into the
apﬁrOpriate location of the structﬁrai nedal force

vector {R] .  Thus, for the case at hand R, will become

equal to'F, + (-W). However, if the boundary loading

1s distributed,such as for example due to fluid pressure

or floor loading, the total load has to be apportioned or
'lumped'! between the adjacent nodes. For the case
illustrated in FIG. 14.7b, where the distributed load

is purely vertical, the total load can simply be divided
between nodes 1 and 3 in the Y coordinate direction.
Hence, the two resulting point loads, 'equivalent' to

the total distributed loading would be applied to the

finite element model structure as before, i.e. to

R, and R in {R} .
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If however, the more refined element displacement

models are employed, the distributed loading cannot be
evenly distributed between the adjacent nodes. In these

casesyit 1s necessary to employ equation 14.18 and to

carry out the appropriate integration,

tee B} = - /N1 {g] aA

(Note that if the above integration is carried out for the
linearly varying displacement element and the structure

is loaded as shown in FIG. 14.7b, the two equivalent

nodal forces will,in fact,be equal to one half of the
fotal distributed loading. )

14.,6.2 Geometric Boundary Conditions

As with the boundary lecading boundary conditions, the

geometric boundary conditions can be one of two types.

They are known as boundary or 'known' applied displacements

and kinematic constraints respectively. Supposge that
instead of applying a point or distributed load to the
cantilever structure, a 'known' displacement is applied
to node number 2 in the Y coordinate direction as

illustrated in FIG. 14.7c. Consequently, d4 is now a

known displacement and so the number of unknown displacements

is reduced by one. Clearly,it can be seen by expanding
the first equation of the matrix shown in FIG. 14.64 and

rearranging that

By =Ky 494=kq 187 H 55 He 38 54K 1A otk qd o4y (dy ey odg
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Hence, the structural nodal forces {R} , can be modified

by multiplying the known applied displacement component
with the appropriate structural stiffress terms as shown
above, This obviously reduces the set of equilibrium
equations down to eleven equations with eleven unknown
nodal displacement components,

Once the remaining eleven unknown displacements

have been determined ,it is a simple matter to calculate

the reaction or nodal force R, which was responsible for

4
the applied known displacement d 4° This is obtained by

substituting all the now known ncdal displacements into
equation four of the matrix arrangement of FIG. 14.64d,

and multiplying out,

Although theoretically, a system of twelve equations
containing twelve unknowns can be solved, unless a
minimum number of prescribed displacements or kinematio
constraints are applied to the cantilever structure, the
values of the nodal displacements cannot be uniquely

determined. TPhysically, this is because the structure can

move freely as a rigid body and therefore it possesses an

infinite number of displaced configurations which will
satisfy the equilibrium equations, Mathematically,
this will be manifest by the fact that the structural

stiffness matrix [K], shown in FIG. 14.6d4, will be a

singular matrix, i.e. it possesses no inverse,
Consequently, it is necessary to prescribe a minimum
number of kinematic constraints which will prevent all

possible rigid body movements of the structure.
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For the simple cantilever problem there are three

possible rigid body movements. Horizontal and vertical

movements and also a rigld body rotation in the XY plane.

FIG. 14.7d shows two alternative ways of eliminating
these three rigid body movements, namely constraining

nodes 5 and 6 in both the X and Y coordinate directions

or by constraining node 6 in both the X and Y directions

and node 5 in the X ccordinate direction only. For the

former case, d9, dlo’ dll and d12 will all be ascribed

zero values for the displacements, whereas for the
latter case, zero values will only be ascribed to
d9, dll and 612. Either of these two alternatives will

remove the rigid body displacement modes and will render

the matrix equation of FIG. 14.6d amenable to solution
by making [K] non-singular. Ae before, once the

remaining unknown nodal displacements have been determined,

the vertical and horizontal 'support' reactions can be

calculated at the constrained nndes by back substitution

into the equilibrium equations and multiplying out,

It is worthwhile to point out before leaving this
sub-gection, that the methodology for applying the
kinematic boundary conditions computationally, depends

upon the type of equation solution routine employed,

see following section.
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14 . SOLUTION OF THE STRUCTURAL EQUILIBRIUM EQUATIONS
The solution of the structural equilibrium

equations is a very important step in the finite element

enalysis procedure. For large problems’the total

number of equations to be solved can be several hundred.

Also, and especially for three-dimensicnal structures,
the number of coefficients per equation .can approach

two to three hundred, Consequently, enormous computer

storage capacity is generally required to store all the-
coefficients of the structural stiffness matrix [K] and

considerable amounts of computational time involved for
the subsequent solution of the equilibrium equations,

As an example of the storage capacity required for
& simple two-dimensional problem using the 4-noded
quadrilateral plane stress element, consider again the
cantilev'er atructﬁre shnwn in FIG. 14.6a. suppose that
instead of the i:wo element mesh shown in the figure, the
structure was subdivided into a 10x5 element mesh.
Hence, the finite element model would therefore consist of
fifty elements,would have sixty six structural nodes and
would possess one hundred and thirty two degrees of
freedoms Thus, the overall size of the structural
stiffness matrix [K], including all the zero terms, would
be one hundred and thirty two terms square giving a total
number of 17424 coefficients. However, because these

coefficients are real numbers, each crnefficient requires
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two words of computer storage. Consequently, even for

this very small problem,the cemputer storage required for
[K] is approximately 35000 words.

For all but the smallest engineering problems the
capacity required to store the structural stiffness
coefficients exceeds the 'core! storage capacity of even
today's largest machines, Consequently, external or
peripheral devices have to be employed to store the
coefficients, e.g. magnetic tape or disc files. This in
itself again increases the solution time because of the
ex%ra and necessary transfer and search times involved.
Because of the economic and storage capacity problems
associated with the finite element method, much effort has
been expended in trying to improve the efficiency of the
solution of the equilibrium equations. Indeed, it has

been shown that the type of solution routine adopted should

not only be governed by the size and type of the problem
being anaiysed,but also by the particular computer
installation employed, Brooks and Brotton (131).

There are two basic arproaches to the solution of
large systems of linear simultaneous equations. These
are commonly known as direct and indirect methods respectively.
The direct approach attempts to obtain aﬁ' exact'! solution
of the equations, (within the limits of round-off accuracy) s
and includes the elimination methods of Gauss and Cholesky.

The indirect approach on the other hand,aims only at an
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approximate solution and relies upon successive corrections
being made to an nriginal estimate of the actunl solution.

However, because generally the truec solution is approached

asymptotically, a point has to be selected at which the

correcting or iterative process is terminated.

1471 Direct Approach - Gaussian Elimination

The Gauss eliaination method consists of two
distinct phases, 1In the first phase,the structural
stiffness matrix [K] is reduced to an upper triangular
matrix by eliminating'all the coefficients which fall
below the leading*éiagonal line,  The second phase then
consists of a back-substitution process in which all the
unknown quantities are determined: As an example,

consider the trivial non-singular set of structural

equilibrium equations:-

[P %2 |4

"2 K Koo || 92
The general procedure 1s to make the coeffioients of one
of the unknowns equal, such that by subtracting the two
modified equations a third equation is obtained which only
contains one unknown. Hence, by dividing the first
equation in the set above byﬁnll and then subsequently

miltiplying this equation by K,, and subtracting the

result from the second equation we have:-
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Ry=Kp1 By 0

X1

The second equation in the above,now unly contains one

unknown quantity d2, therefore, d2 can be determined.

Consequentljr, by back-substituting d, in the first of

2
the equations, dl can subsequently be evaluated.

The procedure outlined above is nct restriocted to
single term processing. Indeed, K‘li’ I{12 ......K22

can be submatrices. There are two main advantages

with the direct elimination methods. These areit-

1) The solution time required can be determined
at the outset and provided that the equations
are well conditioned,an accurate solution is
always uvbtained.* Conditioning is not generally
a problem with elastic analyses as with this
class of structure, the main diagonal terms of
[K] are always positive and are usually much
larger than the off-diagonal coefficientsX™*

2) The solution to several different load cases,

¥ Solution time is directly proportioral to the number of

equations and directly proportional to the square of the
bandwidth.

*¥*¥ If the main diagonal terms are not predominant, pivoting
can be carried out which rearranges the equations such
that the larger coefficients then fall on the main
diagonal. However, this procedure is undesirable as it
obviously destroys the banded nature of the [K] matrix.
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il.e. {R] veotnrs, can be obtained simultaneously

with only a very modest increase in the
computational time,

The main disadvantage with this method is that a vast
" amount of storage capacity is required to store all the
coefficients of the structural stiffness matrix [K].

However, various techniques can be employed to reduce the

number of cnefficients requireds Because the [K] matrix
is always symmetrical, nnly those terms which fall on or

above the main diagonal line need be stored. Also,

because of the banded nature of [K] only those terms which
are contained within this band are required. The terms
outside the bandwidth are all Zers-valued and consequently

play no part in the analysis.

14.7.2. Indirect Approach - Conjugate Gradients

The conjugate gradient methnd basically minimizes a
quadratic error function assnciated with the structural
equilibrium equations, if.e. [K] {d} = {R] y Yettram
and Hirst (132). Using an initial estimate {d ] , the

method loocks for the minimum value along the steepest path

towards the true solution. From each new position the
subsequent direction of seérch is taken conjugate to its
predecessor. Theorsetically, the maximum number of
corrections or iterations required to obtain convergence

to the true solution 1s equal to the number of equations

in the systemn. However, for well conditioned matrices the

convergencae should be faster and so far fewer iterations

should be required,
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The flnw diagram of the conjugate gradient method

is shom in FIG. 14.8. It can be seen from this figure

that exit from the iterative process can be achieved by
one of two ‘waya. If convergence is achieved, (i.e. the

residual falls below a prescribed acceptable level), before

the specified number of iterations haas been cowrnleted, the

iterative process is automatically terminated.
The great advantage of the method is that the

structural stiffness matrix [K] is nnt required in its
entirity at any one time. 1In fact, the product [K] {do}

and subsequently the [K] {pj} products can be evaluated on

a plecewlse or sequential element basis. Coinsequently,

although each element's stiffness matrix [k] ig required
during each iteration and therefore should be stored¥ the
method should not require the same storage capacity as

the direct Gauss approach, Iterative methods are attractive
also for non-linear problems, where repeated solutions of =&

similar structural configuration are requireds. 1In such
casessa gmd initial 'gueSs' to the nodal displacements can
be derived from the solutinsn of a previous analysis.

The conjugate gradient method hnwever, has its
disadvantages. The principal one being that it is as yet,
impossible tn predict the number c¢f cycles required for

convergence. It is probably due to this uncertainty and

* This would be particularly attractive for regular type

structures containing many of the same element.
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To Solve {R} = [K]{d}
Take nikiol estimale of {d} to be {do}
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the obvious inability to be able to specify accurately

the computatinnal time required for a specific analysis,
that this and the other indirect methods have not become
more popular. Another disadvantage with the conjugate

gradient method lies in the fact that only one load case

can be considered at a8 time,

14.8 DERIVATION OF THE ELEMENT STRAINS

One important quantity which the engineer sometimes
requires to know, is the strain distribution throughout

the structure he is investigating. In the finite

element method ,the state of strain anywhere within an
element can be evaluated once the nodal displacements of
the element have been determined. Of course, the
strain-displacement relationship depends upon the element's

particular material behaviour. However, for two-dimensional

plane stress elements, and assuming linear elastic material
behaviour ,the strain-displacement relationships are:=

E = ou
XX X

£ - _a_z
JY 3y

and Y = du 4 oV
~ oy ox .

Consequently, irrespective of whether the generalized
coordinate or interpolation approach is adopted, the
element strains {e} sy can be expressed in terms of the

element nodal displacements {Q]-by differentiating either
equation 14.5a or 1l4.5b.
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Thus, the element stralins can be expressed by the matrix

equation:-

{e} = [B]{d} - 14.21
where the [B] matrix is made up from the terms of the [N]

matrix which have been differentiated with respect to the

X and Y structural coordinate systeme Of ocrursey for

the case of equation 14.5b, the displacement variation is

expressed in terms of the local our element coordinates,

O and e Hence, it 1s necessary in this case to
transform the local element ccordinate system into the

global or structural X-Y cnordinate system;
14,9 DERIVATION CF THE ELEMENT STRESSES

Once the element strain components have been
evaluated, 1t is a relatively simple step tc der}ve the
corresponding element stress compnnents. The only

necessary additional requiste being a knowledge of the

material's constitutive relationship.
For the two-dimensional plane stress case and
assuming'lineér elastic isotropic material behaviour, the

strain components are related to the stress components by~

e e - S s
B B
BY.Y sz -l Gn'x $- o}
B B
= T
Yiy gx

(Note that for this particular material behaviour only,two

material properties are independent, i.es G = E )

2(1+p)
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Taesolb =

">

Thus in matrix form:-

€ 1 -1 0 o
XX = B XX
E . b= - 1 O g
yY '% B y
0 0
Vxy < “xy
or

{e} - [u] {o} 14,22

Therefore, by inverting [M] we can express the element's

gtress components in terms of the corresponding gstrain

components. Hence,

() - D0 (o)
oT

{c} = [2{e} 14.23
The matrix [D], which is nbviously equal to [M]';l, is

the elasticity matrix of the material. For the

two-dimensional plane stress isotropic case considered

above
dxx 1 1l O
T 0 0 le
- (1-p)

For anisotropic material behaviour,the properties making

up the elasticity matrix must refer to the same relative
coordinate axis system in which the stress and strain

components are considered to act,
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If an element 1s subjected to initial strains {ec} ’

due to,say a temperature change, then the stresses within
the element will be caused by the difference hetween the

actual total strains and these initial strains. Thus

equation 14.23 becomes:~

o} = [ ({e}- {e}) |
14.10 DERIVATION OF THE ELEMENT NODAL FORCES
If the force distribution is required »n any

particular boundary or surface of the structure being

analysed, it is a relatively siraightforward process to

determine this by sirply calculsting and summing the
nodal forces of the elements adjacent to that boundary

or surface, Therefore, by using equation 14.7

e} - e {a} « )+ F -
Of course, [k], ?d} and @‘t will have to be

re-calculated for the appropriate elements, (if they have

not been kept in store), and the appropriate nodal

displacements 'picked' out of the now known structural

nodal displacement vector {d]} .
If this process were to be carried out for all the

elements in the structure, it would in fact provide a
very useful check on the accuracy of the solution.

Consider FIG. 14.9 where two elements, i and j meet at

node number n. Obviously, for equilibrium at this node

(&}, - {7}, - {o}
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The size of the residual of this equation, at this and

all the other nodes, gives an indication of the accuracy
or 'out of equilibrium! of the solution obtained from

the analysis.

14.11 _ PROBLEM ORIENTATED DATA CHECK

It will have become apparent that it 18 necessary
to feed into the finite element analysis program all the

geparate finite elements! nodal coordinate and connectivity
data.s Although ether items such as the elements' materisl
property data and the varlous boundary conditions have

also to be input, thc nodal cnordinates and connectivity
make up at least 95 Jo of the input data required. Of
course, the chances of wrongly determining a coordinate
value or making data preparation punching errors are very
great. Consequently, it is necessary to check the data

which has been punched for each problem as obviously an

incorrect dimension or nodal connection will yield an
incorrect solution. After all, it is possitle for a
computer to continue an gnalysis quitec oblivious to the
fact that a nodal dimensicn may be wildly out.

For all the work reported herein, simple progranms
were written to check the node coordinate data and node
numbering systams. This was achieved by employing the
I, Co L's computer library plot procedures, I.C,L. Manual
(133) end the computer installation's graph plotter facilitye.

The data check process consisted of feeding into the

computer the complete pack of data cards produced for the
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particular problem together with the appropriate plot

programe. Hence, after suitably scaling the coordinate
data,the computer and plotter produced a replica of the
finite element model. The plotter could also be

programmed to number the nodal points. Therefore, by

examining the computer plot and the original meshed
structural configuration, data errors could easily be
detecteds FIGe 14,10 shows part of a computer plot of
the bridge construction analysed in Chapter Ten. The
figure, which is drawn to a scale six times full size,
clearly shows up three coordinate errors, nanely at node
numbers 237, 271 and 451, The plot also shows the
directions assumed for the grain in the cortical bone
elements. However, the node numberirg system has been
onitted frcm the plot for c¢larity. Even so, the

numbering and writing capabilities of the plotter arc
demonstrated by the clearly labelled and dimensioned

Cartesian cnordinate axis system employed.

14.12 FINITE ELEMENT ANALYSIS PROGRAM CHECK

Another aspect which must be considered is how to

check th? actual finite elemant analysis programs
themselves, Clearly, the most logical way is to compare
the finite element results with thoce obtained using some

other proven method. Here, all the finite element

programs developed are checked by solving problems which

have 'known' analytical solutions. However, certain
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facets of the programs cannot be satisfactorily

tested because analytical solutions do not yet exist

for problems involving orthotropic materials.
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CHAPTER FIFTEEN

AXISYMMETRIC FINITE ELEMENT ANALYSIS

PROGRAM
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15 AXISYMMETRIC FINITE ELEMENT ANALYSIS PROGRAM

Struatures which possess rotational symmetry
about an axis and are loaded and constrained
axisymmetrically about this axis can be simulated
using axisymmetric finite elements. For the dental h
analyeié ﬁroblem.investigated in Chapter Seven section

T4, the second mandibular premolar with its class

1l amalgam restoration was assumed to possess this

rotational symmetry, see FIG, T.l2. The flow

diagram of the axisymmetric finite element computer
program is shown in FIG. 15.1;, the notation in the

boxes indicates the equivalent Algol variable

declarations given in the program listing in
Appendix Three.

15,1  STRUCTURE DISCRETIZATION,
To facilitate the grading of the finite element

mesh, 1.6, t0 have a fine element subdivision in areas
of special interest and a coarse meshwork in more remote
areas, the triangular type of finite element is most

suitable, see FIG. 15.10. Therefore,for the axisymmetric
program,the 3-noded triangular finite element was

selecteds A typical element is shown in FIG. 15.2

together with the local node numbering system ijm and
the corresponding global Cartesian nodal coordinates.

Note that the nodes in this case are actually rings and

that the element is in the form of an annulus, Hence,

the volume of material associated with the element is
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o {ovces {ETF} ond. clump o

Declave all progrom subvoulines ov' proceduves.

"Read. in' and ‘output’ oll structuvol data.

Fo% element [R] ond dump into [MBK]

Form element Yhermal stvains g[:iT S} Colculate element theymal
ructuval thermaol {fovces {ST F}

Set up structural nodal displacements and. forces {X} cm.cL [F}
Add. structurol thermal fov@ o stvu;tuyol nodol fovces. {STF}-':-.{F} |
Modify [MBK] for applied boundary conditions.
R —

Output nodal displacements (Now in {F}).

Form element displacements {ELDl S} & caleulate element stvoin {STN}

Re-caleulate {ETS} and subtvact from element total stroin {STN]
Colculate element stress from '{STS} = [D]{sTn1}
' Qulpul element stress and squixp componenié.'

| e %'Do‘ for oll elements
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