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ABSTRACT. Of concern is the following singularly perturbed semilinear elliptic prob-
lem
eAu —u+uP =0in Q
v > 0in Q and %ZOOH(‘)Q,

where Q is a bounded domain in R with smooth boundary 9, ¢ > 0 is a small
constant and 1 < p < (%)-&- Associated with the above problem is the energy
functional Je defined by

Jelu] ':/ <€2|Vu|2+1u2—F(u)) dz
e o\ 2 2

for u € H(), where F(u) = fou sPds. Ni and Takagi ([28], [29]) proved that for a
single boundary spike solution ue, the following asymptotic expansion holds:

1) Jfud =Y Bl[w} ~creH(P) + O(e)} ,

where I[w] is the energy of the ground state, ¢ > 0 is a generic constant, P. is the
unique local maximum point of ue and H(P.) is the boundary mean curvature function
at P. € 0. Later, Wei and Winter ([42], [43]) improved the result and obtained a
higher-order expansion of Je[ue):

(2) Jeue] =€V El[w] — c1eH(P.) 4 2[ca(H(P:))? + c3R(P.)] + 0(62)} ,

where cp and c3 > 0 are generic constants and R(Pe) is the scalar curvature at Pe.
However, if N = 2, the scalar curvature is always zero. The expansion (2) is no longer
sufficient to distinguish spike locations with same mean curvature. In this paper, we
consider this case and assume that 2 < p < 4o0c0. Without loss of generality, we may
assume that the boundary near P € 99 is represented by the graph {z2 = pp(x1)}.
Then we have the following higher order expansion of Je[ue] :

(3)  Jelu] =€V [%I[w] — c1eH (Pe) + c2®(H(Pe))?] + € [P(H(Pe)) + e3S(Pe)] + o(e?) |

where H(P.) = p;;e(O) is the curvature, P(t) = A1t 4+ Ast? + Ast3 is a polynomial,

4)

c1, c2, cg and Ay, Ag, A3 are generic real constants and S(Pe) = p,

c3 < 0. Some applications of this expansion are given.

(0). In particular

1. INTRODUCTION
We consider the following singularly perturbed semilinear elliptic problem

2Au —bu+ f(u) =0 in Q

1.1
u>OinQand%:00naQ, (1.1)

where 2 is a bounded domain in RY with smooth boundary 9, ¢ > 0 is a small
2 2
constant, A := ;’? + ...+ 8‘97 denotes the Laplace operator in RY, v stands for the
1 N
1
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unit outer normal to 9Q and g for the normal derivative, b > 0 is a positive constant
and f(¢) is a function in Cl""’(R) such that f(0) = f (0) = 0. Typical examples of the
function —bu + f(u) are

—bu+ f(u) = —u+ vl with uy =max(0,u), b=1, (1.2)

—bu+ f(u) = (u—a)(l—u)With0<a<17

5 b=aq, (1.3)

where

N+2 N+2
_ > = =
1<p<<N_2> ( N2 when N > 3; = +00 when N = 12)

(1.4)

Equation (1.1) with (1.2) or (1.3) arises in many branches of the applied sciences.
For example, it can be viewed as a steady-state equation for the shadow system of the
Gierer-Meinhardt system in biological pattern formation ([16], [33], [39]) or of parabolic
equations in chemotaxis, population dynamics and phase transitions ([5], [6],[27], [31]).

Without loss of generality, we may assume that b = 1.

Associated with (1.1) is the energy functional J. defined by

Jeu] := [, (§|Vu|2 + su® — F(u)) dz for u e H'(Q), (1.5)

where F(u fo s)ds. It is well-known that any solution of (1.1) is a critical point of
Je and vice versa. In thls paper, we restrict ourselves to families of solutions {u,fo<e<e,
of (1.1) with finite energy, i.e.

e N Ju] < +oo for 0 < e < €. (1.6)

It can be proved that for € sufficiently small, any family of solutions of (1.1) satisfying
(1.6) can have at most a finite number of local maximum points (see [28]). Let the local
maximum points be {Pf, ..., P%-} C Q. If Pse0Q,j=1,.., K, we call u. a K—boundary
spike solution. If K =1, we call u, a single boundary spike solution.

In the pioneering papers [27], [28] and [29], Lin, Ni and Takagi established the ex-
istence of least-energy solutions and showed that for e sufficiently small the least-energy
solution is a single boundary spike solution and has only one local maximum point P.
with P, € 0Q. Moreover, H(P.) — maxpcoq H(P) as ¢ — 0, where H(P) is the mean
curvature of 9Q2 at P.

Since then many works have been devoted to finding solutions with multiple spikes
for the Neumann problem as well as the Dirichlet problem. See [1], [2], [3], [4], [5], [6], [7],
o], [10], [11], [12], [13], [14], [15], [18], [20], [21], [22], [28], [25], [26], [28], [29], [30], [31],
[32], [35], [36], [40], [41], and the references therein. Recent surveys can be found in [33],
[39].

A common tool for proving the existence of spike solutions is the energy expansion:

n [28] and [29], Ni and Takagi proved, among others, that for a single boundary spike
solution u, the following asymptotic expansion for J[u.] holds

J[ud = eV %I[w} —c1eH(P.) + o(e) |, (1.7)

where ¢; > 0 is a generic constant, P. is the unique local maximum point of u., H(P)
is the mean curvature function at P, € 0f), w is the unique solution of the following
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ground-state problem:

Aw —w+ f(w) =0, w>0in RN

. 1.8)
0) = 1 —0 (
w(0) ;ggg,w(y) ly‘g{;oow(y)
and I[w] is the ground-state energy
1 1
Iw] = */ |Vw|*dy + 7/ w?dy — F(w)dy. (1.9)
2 RN 2 RN RN

(Note that Ni and Takagi proved (1.7) for least-energy solutions. But it is easy to see that
it also holds for any single boundary spike solution.)

Based on (1.7), Ni and Takagi showed that the least energy solution must concentrate
at a maximum point of the mean curvature function. However, if H(P) has more than
one maximum point on 9€2, the asymptotic expansion (1.7) is no longer sufficient to derive
the spike location. In the light of this, Wei and Winter ([42], [43]) obtained a higher-order
expansion of J[u.]:

Je[ue] = €V 1I[w] —c1eH(P,) + ®[ca(H(P?))? 4 c3R(P.)] + o(e?) | ,

2 (1.10)
where cg, c3 are generic constants and R(FP.) is the scalar curvature at P. € 09. In
particular c3 > 0. Based on this expansion, they showed that a least energy solution
concentrates at a minimum point of the scalar curvature function among all maximum
points of the mean curvature.

However, in the two-dimensional case, the scalar curvature is always zero. Thus the
expansion (1.10) is no longer sufficient to locate the spike if there are several maximum
points of the mean curvature and the next order term in (1.10) becomes important. This
is exactly the motivation of this paper.

Before stating our main results, we introduce some notations.

First, we give some conditions on the function f(t):

(f1) f € C*(R), f(0) =0, f/(0) =0 and f(t) =0 for t <O0.

(f2) The problem (1.8) in the whole space has a unique solution w, which is nonde-
generate, i.e.

(1.11)

Kernel(A — 1+ f'(w)) = span{ Ow Ow } .

Ay’ dys
By the well-known result of Gidas, Ni and Nirenberg, [17], w is radially symmetric:

w(y) = w(]y|) and strictly decreasing: w’(r) < 0 for > 0, r = |y|. Moreover, we have
the following asymptotic behavior of w:

w(r) = Agr ze" (1+0(i)), (1.12)

w'(r) = —Agr ze" <1 + O(i)) , (1.13)

as r — 0o, where Ay > 0 is generic constant.

The uniqueness of w is proved in [24] for the case f(u) = uP. For a general nonlin-
earity, see [8]. For f(u) defined by (1.3), the uniqueness of the entire solution was proved
by Peletier and Serrin [34].

In what follows, we always assume that f(t) satisfies (f1) and (f2).
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Remark: We have required f(u) to be C2. We believe that this is just a technical
condition. This condition can be further weakened to f € C'*7, where o > %

Next, we introduce boundary deformations.

Let © C R? be a bounded domain with smooth boundary. (We need 9Q € C°.) For
any boundary point P = (Py, P») , we define a diffeomorphism straightening the boundary
in a neighborhood of it. After rotation and translation of the coordinate system, we may
assume the inward normal to 92 at P points in the direction of positive x-axis and that
P is the origin.

We denote that

’

B (6) = (—6,0), B(P,0)={z=(z1,22) € R?: |z — P| <6},
Q, = QN B(P,9), wi = 00N B(P,0). (1.14)
Since 9Q € C5, we can find a positive constant § such that 9Q N B(P,§) can be

represented by the graph of a smooth function pp : (=6,6) — R with pp(0) = p»(0) =0
and

Ql:{(Ihl‘g)GB(P,(S)Il‘Q—P2>pP(l‘1—P1)}. (115)

From now on, we fix a boundary point P and simply denote pp by p if this can be
done without causing confusion. From Taylor expansion, we have

pler = P) = 2" O)(er — P+ 2" O)(r — PO+ 5o P (0)a1 — P1)* 4 O(Ja]?).

6 21" (1.16)
Here, H(P) = p’(0) is the mean curvatures at P. We define
S(P) = p™(0). (1.17)
Throughout this paper, we use the following notation:
y=(y1,y2) € R?, RI ={yeR?:y, >0} (1.18)

Now, we can state the main theorem of this paper.

Theorem 1.1. Let u. be a single boundary spike solution of (1.1) with local mazimum
point P. € 0. Assume that N = 2 and that f satisfies (f1) and (f2). Then, for €
sufficiently small, we have

J[ud = € %I[w] — c1€H(P.) + coe®(H(P.))? + é[P(H(P.)) + c3S(P.)] + o(€®)

1.19)
where

P(H(P.) = AH(P.) + As(H(P.))? + As(H(P.))?,
c1, c2, c3 and Ay, As,As are generic constants to be defined later. Moreover, we have

c1 >0 and c3 < 0.

As in [43], we can also obtain a similar asymptotic expansion for multiple boundary
spike solutions.

Theorem 1.2. Let u. be a K-boundary spike solution of (1.1) with local mazimum point
Pi,...Pg € 0Q. Let P; — PJQ € 0. Suppose that P? # PJQ for i # j. Assume that
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N =2 and that f satisfies (f1) and (f2). Then, for € sufficiently small, we have

K K K
Jeue] = N %I[w] —c1eY H(Pf)+c2e® Y (H(Pf))? + € [PH(PS)) + esS(P)] + o((f”gl)
j=1 j=1 i=1 '

(From Theorem 1.1, we can give a refinement of the results of [28] and [29] in the
case of N = 2. To this end, we assume that f satisfies (f1) and
(f3) For t > 0, f admits the following decomposition in C?(R):

f(t) = f(t) = fa(D), (1.21)
where (i) f1(t) < 0 and fo(t) > 0 with f1(0) = f1(0) = 0, whence it follows that f5(0) =

f5(0) = 0 by (f1); and (i7) there is a ¢ > 1 such that L0 s nondecreasing in ¢t > 0,
2 ta g

f2(t)
t

— is nonincreasing in ¢ > 0, and in case ¢ = 1, we require further that the

above monotonicity condition for fIT(t) is strict.

(f4) f(t) = O(t?) as t — 400, where 2 < p < 0

(f5) There exists a constant 6 € (0, 3) such that F(t) < t6tf(t) for t > 0.

By taking a function e(x) = k for some constant in €, and choosing k large enough,
we have J[e] < 0 for all € € (0,1).Then for each € € (0,1), we can define the so-called

mountain-pass value:

whereas

ce = jnf max J[a(t)], (1.22)

where I' = {h : [0,1] — H'(Q)|h(t) is continuous, h(0) = 0, k(1) = e}.

In [28] and [29], it is proved that there exists a mountain-pass solution u. which is
also a least energy solution. Moreover, as € — 0, u. develops a spike layer behavior near
a maximum point of the mean curvature function. Now we have

Corollary 1.1. Suppose that N = 2 and f(u) satisfies (f1), (f3), (f4) and (f5). Let u. be
a least energy solution of (1.1) and let P, be the unique mazimum point of ue. Then, for
€ sufficiently small, we have

H(P, H(P), S(P. 1.2
( ) - Pr'%%)é ( ) S( ) - QEBQ7H(gl)iXmax H(P)S(Q) ( 3)
PeoQ

The proof of Theorem 1.1 is divided into three steps:
Step 1: We choose a good approximate function, concentrating at a boundary point
P and called w,,p, such that
AW p — e p + flbep) = O(%). (1.24)

This is done in Section 3.

Step 2: Our key observation is that in order to obtain the term of order ¢V 3 in the
asymptotic expansion of J[u.], we need not expand u, up to the order O(e®). In fact, it
is enough to have

Ue = We.p + O(7) (1.25)

for some T > % We do not even need to know the term of order €” in the asymptotic
expansion of u.. From (1.25) we derive that

Je[ue] = Je[“je,P] + 0(€N+3)' (1'26)

This is proved in Section 6.
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Step 3: It then remains to compute the energy of @, p. A higher-order energy ex-
pansion is derived in Section 4 and in Section 5 it is shown that ¢; < 0 and ¢3 < 0.

Finally, the proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.1 are contained in
Section 7.

In three appendices, the technical proofs of Proposition 2.1, Proposition 3.1, and
Lemma 4.1 are provided.

Throughout the paper, we use C to denote various constants independent of € small.
Acknowledgments: This research of the first author is partially supported by an Ear-
marked Grant (CUHK4238/01P) from RGC of Hong Kong. The second author thanks
the Department of Mathematics at CUHK for their kind hospitality.

2. SOME PRELIMINARIES

In this section, we introduce some preliminary analysis.
For x € 09, let v(x) denote the unit outward normal at x and % the normal
derivative. In our coordinate system, for = € wi, we have

1

v(z) = 72(#(%1)’—1)7 (2.1)
1+ p/(z1)

9 1 N ;)

@ - e’ Wan T o)l -p; (2.2)

For z € Qq, we set
eyp =x1 — P1,  eyo =x3 — Py — p(x1 — P1). (2.3)

We denote the corresponding transformation by T, i.e.

1 [162 — P2 — p(l‘l — Pl)] . (24)

1
Tea(z1,22) = Pl Teo(x1,x2) = -

Then, y = T.(x), where the Jacobian of T, is %. Its inverse is called x = T, *(y). It then
holds that

I :P1+€y1, $2:P2+6y2+p(€y1). (25)

Under the transformation T, \z;P| can be expanded

r—P 1
=Pl = et (e + olen))?) (26
1 1
= |yI* +ep"(0)yiys + €[50 (0)yiy2 + (0" (0))°v1]
1 1
+e[ 750 O)wiye + 50" (000" (0)y7] + O(e*e™ ).
It is easy to see that for z €
02 0? 0

2N, = A (e’ 5= — 20/ —ep"(ey1) =— 2.7
€Dy = Ay +|p'(eyr)]| a2 p(ey1)aylay2 €p (691)8y2 (2.7)

and for z € wy

0 1

T a0y, = 7 () — (L4 (). (23)
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Let
Qep={yeR?:ey+ P} (2.9)
and let w, p be the unique solution of the following problem

{Aywe,p —wep+ f(w(y) =0 inQp,

o
5 =0 on Q. p.

(2.10)

Set he p(z) = w(Z=E) — we p(Z=L). Then h, p(z) satisfies the following equation

2 = i
zm v (zp in €, (2.11)
o = apw(*T-) on 00
Note that by (2.7)
a2h 32/1 oh
A —h= A+ o () 5y — 20 (e (g, —h
. T T T .

We need to analyze the behavior of h p up to O(e?). To this end, we have to introduce
five functions vy,v9,v3,v4 and vs: vy is the unique solution of

Avy — vy = 0 in R2 (2.13)
g — D 1pm(0)y2  on ORZ,
vg is the unique solution of
2 .
By s =2 O g (O3 =0 m B2 211
%’z = p”(O)ylg—Zi on ORZ,
v3 is the unique solution of
Avs — v3 = 0 in Ri (2.15)
o — D 1pm(0)y?  on ORZ,
vy is the unique solution of
1" 2’U " ) 1" 2,U .
Avg —vs =20 Oy 52 —p (0052 + (0 (0)*yF G =0 / in R%
! ” " v w’ 6
B = RGO — B O) + O 5 () 70 o omz,

and vs is the unique solution of
A . . //(0)% . 2 //(0) Avg _ " (0) % + 2 621}1 _ 0 . R2
Up —VUs — p dya 14 Y1 Y1972 P hn Y Y1 By1 02 mn g
avs "

G =" (0)5y7 52 + 0" (0)yr G on IR (2.17)

/

Note that vi,v9 and vy are even functions in y; and v3,vs are odd functions in yq,
(i-e. v1(y1, y2) = vi(=y1, 92))-

Moreover, it is easy to see that |vi], |val, [vs], [val, [vs| < Ce@¥! for some positive
constant a.

Let x(z) be a smooth cut-off function such that y(z) = 1 for z € B (0, g) and
x(z) = 0 for x outside B(0,5). We set

hep(z) = evi(y)x(x—P)+ € [va(y)x(z — P) + vs(y)x(z — P)]
+6 [ua(y)x(x — P) + vs(y)x(z — P)] + €'V, p(a),
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where y = T,(x) is given by (2.5).
Then, we have the following asymptotic expansion

Proposition 2.1. For € sufficiently small,
e? / (VU p|> + |V, p|*)dz < C.
Q
The proof of Proposition 2.1 is technical. We present it in Appendix A.

3. APPROXIMATE FUNCTION . p

In this section, we introduce the important approximate function @, p.
We begin with the study of the properties of the following linear operator

Lo:=A—1+ f'(w): H(R?) — L*(R?)

By our assumption (£2),

ow Ow
Kernel(Lg) =spanq —, — ¢ . 3.1
(£0) = span { 5. 21 (3.1)
If we restrict Lo to
H2(R2) = H*(R2)N {gTu =0 on OR2} (3.2)
then we have
9,09 ow
Kernel(Lg) N H;(R%) = span an | (3.3)
1
Since v1(y) is even in yi, there exists a unique solution to
ADy — Do + f'(w)Py — f'(w)vy =0 in R3, (3.4)
%:Oon ORZ, @ is even in y;. '

We call this solution ®. In [43], Wei and Winter modified @y to a new function @, p
which satisfies the Neumann boundary condition. To this end, they introduced a function
¢e,p which is the solution of

€2A¢5,P — ¢ep =0 in €2, 3.5

Per — A@TEx(E-P) oy O o
and set

Qe.p = o(Te(x))x(x — P) — ¢c P (36)

It is easy to see that @, p satisfies the Neumann boundary condition, ®. p(T ! (y)) =
®o(y) + O(ee= ) and |®. p(T 1 (y))| < Ce~ ¥l for some a > 0. Then they introduced
the approximating function

we,P = We, P + 6(I)e,P

and show that W p solves the problem up to the order O(e!*7).
In our problem, we need to expand ¢, p up to the order O(e?). To this end, we
introduce a new function ®; which is the solution of

{A‘I’l—q)l =0 in Ri,

%i; =—p"(0)y1 222 on OR2

(3.7)

oy1
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and set
e p(x) = €@1(Te(2))x(x — P) + €¢c p(2). (3-8)

It is easy to see that ®; is even in y; and |®1 (T (y))| < Ce~¥l for some constant
a > 0. Then, similar to the proof of Proposition 2.1 in Section 2, we have the following
asymptotic expansion, whose proof will be given in Appendix B.

Proposition 3.1. For e sufficiently small,

De,p() = we,p(2) + e@o(Te(x))x(2 — P) — €®1(T.(2))x(x — P) — €dc.p,

(3.9)
where
e / (E|Vée.pl* + |ep)dz < C (3.10)
Q
e p(T7 M (y)| < Ceml (3.11)

for some constant a > 0.

The following lemma was proved in [43]. For the sake of completeness, we include
the proof here.

Lemma 3.1. Let
S [ie p) == €A, p — e p + f(e p), (3.12)
Then, for e sufficiently small, we have
|Se [, p]| < Ce2ealY! (3.13)
for some positive constant a.
Proof: Recall that

We,p(z) = wep(@)+ePo(Te(x))x(z — P) — e®1(T.(x))x(z — P) — e3q~55’p
= wep(x)+ePp.

We expand S [, p] :

Se[’lbe,P] = Se[we,P] + 6[GQAQ:)E,P - (PE,P + f/(we,P)q)e,P]
+ [f(we,P + 6(I)e,P) - f(we,P) - Efl(we,P)(I)é,P] = Sl + SQ + SS;

where 51,52 and S3 are defined by the last equality.

Using (2.10), we get

z—P

Si4+ 8 = flwep) — flw(

) +€[EAD p — D p + ['(we,p) e p)

Py b eonn s w(®= P>>}

€

€
xr —

- [ﬂwe,p) — Fw(

r— P
+e |:€2A(I)5,P — @ p+ f'(we,p)Pep — vixf (w( c ))] .
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Note that
2 / / z—P
€ A(I)e,P - (I)e,P + f (we,P)(I)e,P - Ule (w(

e

= 62A(I)0 — (I)O + f’(w(

H (we,p) = f'(w(

]
))}(I)OX - f/(we,P)¢e,P + EG(X)

82(I)O — ¢ //(6 )M:|
ooy, T Yy, | X

P ) — ()80 e p)ber + B

Thus, by Proposition 2.1, we get that S; + S5 = O(e2e~*¥!). On the other hand, it follows
by the mean-value theorem that

|[f(a+b) — f(a) = f'(a)b] < Clal[b]? (3.14)
for any a, b such that |b] < 2|a| < C. Thus,
S5 = O(e|we,p||®e,p|*) = O(e2e™ ).

This proves the lemma. O

z—P

I o
= Ip’(ey1)l2ﬁf — 20/ (ey1)

4. THE COMPUTATION OF J, [, p]

In this section, we compute the energy of the approximating function @, p. In Section
6, we will show that @, p contributes the energy expansion up to the order o(e™V+3).
Note that

We,p = We,p+ ePox — Dy — e?’(ﬁgp
= Wep+ 650 — 62q~31 - 6357
where 50, &)1 and 5 are defined by the last equality. Hence
Jliep] = Jlwep+e®y— 0 — 9] = J.[we p]

—|—6/ [62V’w57pv$o + ’LUE,P(T)O - (E)Of(we,P)]dx
Q
62 = x =
TS / [€2[V®o|* + |@0]? — D] f' (we,p)]dx
Q
—€2 / [EQVUIE’PV;il + we,Pi’l - élf(we,P)]dx
Q
e / 2V BV, + Doy — Doy f(w,,p)]de
Q
- / [EQVUIE,PV(;‘F we,P(/lA; - af(we,p)]dx
Q
€3 ~
_f/ B2 (wep)da
6 Ja

N

_ ~ ~ ~ 1 o~ ~ o~ 1 o~
F(tep) — F(wep) — (e0g — 201 — 30) f(we.p) — 5(8@3 — 26300 ®) f (we.p) — 663<I>§f”(w€7p) dx

= Jewep|+ I+ J2—Js— Ty — J5 — Jg — J7,
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where Ji, ..., J7 are defined at the last equality.
We estimate J; first. Since

F(iep) = Flwep)+ (e®g— Py —€¢)f(we.p)
+%(e<f>0 — 6251 — 63(’2\5)2]“(11)6’13) + %(6‘50 — 62(51 — 63$)3f//(w6,p) + 0(64),

the last integral J; is of the order O(e™V14).
Next we estimate Jy. Since w,, p satisfies the equation (2.10), we get that

/ [eQngpV(T)o + we,P‘fo - &)Of(w€7p)]d$
Q

- Aumwx‘P»—fwﬂmiwx

:(/mem<
Q
+O(€N+3)

-l

2
+/ v f! (w)Pody — 6—/ V2" (w)Pody
R 2 Jr

2 2
s +

T z— P

2Py L 2+ o (=L

)~ 5o (T ) dode

/! 0 1! w w/
p10) Swywt Y2y ®ody
2 Yl

evlf’(w)CI)oder/ vy
3 R

+ O(€N+3)

[f' (w)vg — %f”(w)vf + 2 2(0) vlfﬁz)wy%yg]%dy +O(N3),

= N f’(w)vl@ody—i—eNH/

2 2
R R

where we have used the following facts: we p = w(2=E) — vy x — €*(v2 +v3)x + O(€®) and
vz is odd in y;.
Similarly for Js, Jy and J5, we can get

/ [GQVw67PV51 + w67p<f>1 — &)1f(w57p)]dx = N+ f(w)v ®rdy + O(eN T21.1)
o R?

O(eNth), (4.2)

1}8Vuhpv$+uap$—&vu%fn¢n

€3 / [GQVE)OVEH + 50&)1 — (5()$1f/(we’p)}d.%' =&V f’(w)vl@ldy + O(6N+1).
@ RY (4.3)

For J5, we have
~ ~ 2 ~ 2
[V + ol” = B0l £ ()
Q

z— P r— P

L1980 + Bl = 1B (w2 o~ [ [£wer) = ("))l do
Q Q

N ﬂmm%@+w“/ F(w)or | @0 dy
R2 R?

0Py 0D eNF1 M (w)w’
erN“/ "(0)y; =—2 =2y — “0/ L2y | Do 2dy + O (N T2).
e’ ( )ylay1 o 2P (0) I Y1y2|Pol“dy + O(e™ )

2
+

(Here, we have used the fact that % =0on JdR?.)
Y2
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Combining the estimates for Ji, ..., J7 together, we conclude
~ & 25 37
Je[We p] = JeJwe,p +€Pg — Py — €79

1
= JJwep] + §€N+2/ f(w)vy ®ody
R?

453 [ [ wpato = 3w + 5 w)erd ~ B (w)ldy
2
"0) " (w)w! 0Dy 0Dy p"(0) " (w)w!
+N+3/ P(v 20 o — 0" (0 20 1PBal2ld
e e O, Sy T Ty el
+O(eN 1), (4.4)

It remains to compute Je[w, p] up to the order o(e¥+3).
The computation of Je[w, p] is quite long. We begin with

Je[we,P]

2 1
= Ef/ \Vw€p|2da:+f/wfpdxf/F(pr)dx
2 Ja ’ 2Ja © Q ’
1
= f/f(w)wepd:cf/F(we p)dz
2 Ja ’ Q ’

= 1/f(w)(w—ele—ez(vg—|—v3,)x—63(114—1—1)5)X)d;10

/F W — evyY — € (v2+v3)x—e (vg + vs)x)dz + (N+3)

= / ~ fw)yw — F(w dx—f/f ledx——/f UQXdI**/f Jvaxdz

/ [F(w) — F(w — evyx — 62(1)2 +u3)x — 63(’04 + v5)x)]dx + ofe N+3)
Q
We see that

F(w — evyx — €%(vg 4+ v3)x — € (vg + v5)X)
= F(w) — f(w)(evix + €(v2 + v3)x + € (va + v5)x)

+5 f'(w)(ev1x + €*(v2 + v3)x + € (vs + v5)x)°

1
AL
1
gf "(w)(evix + € (va + v3)x + € (04 + v5)X)” + 0(€).
Therefore,

/ F(w) — F(w — ev1x — 62(’1)2 +v3)x — 63(04 + vs)x)dx
Q

/Qf(w)(evl + % (vg 4+ v3) + €3 (vy + vs)) xdx

1
—/ ifl( 2v? + 263 (v1v2 + v103))X 2d:v—|—/ — " (w)Ev3x3da + o(eNT3)
Q

e/Qf(w)ledx—l—g/Qf(w)vgx—%f’(w)v%xgdx

+€3/ fw)vax — f'(w)vivex® + éf”(w)vi’x‘n’dw + o(eNT3).
Q
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Here we have used the facts that vs and vs are odd in y; and hence fR2 fw)vsdy =
+
fRz w)vzdy = 0. Thus,

dwerl = [ SHww =P+ 5 [ fw ledm—/f whvax — f'(w)vids
& [ 3Hn = Flwoeay® + 5 (wodxde +ole™H9)
Q
;From now on, we omit the factor y in the integrals for simplicity.
Let
1
v = [ pfww - Fuds
a2

Ly = E/f(w)vldyc

Ly = /( w)vs — (>vf>dx

ha = ¢ (;f(w)m—f'(wwwwréf”(w)v‘i’>dw

~

iy

il
I

We compute these terms up to the order o(eV+3). We state the following useful
lemma, whose proof is delayed to Appendix C.

Lemma 4.1. Suppose that A(|y|) is a radially symmetric function such that
A ([ + A"yl + A" ([yD)] + AW (|jy])| < Ce

for some a > 0. Then, for e sufficiently small, we have

AT = a3 0t
s |35t + 00
2 [L A A, o
s gt - 20 o)y
+é |3 Ot + o0 O
s |G L - 20 o)ontng + 50 0)%0h)|
S A A A e o] L otomal
and
x—P 1 1
[ At = [ , Ay = 5O / o A (46)

5 [ O AGE + 5 O A (sl Pl + O+,
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;From Lemma 4.1, we obtain

Iy :eNApQWﬂ> Fu)ldy = 3V 6°0) [ (Gus(w) = Fw)yidy

6N+3

=o00) [ [Gust) - Falyidn - S (00 [ [ @) = fw)u

24

This finishes the computation for I; ;.
For I 3, we need to expand [, f(w)vidz up to the order O(e¥+?). Using Lemma 4.1
again, we have

/Qf(w)vldy = GN/Rz fw)vrdy + eV p"(0) f/(w)w/yfyzmdy

R2 2|y

€N+2 / w w/ €N-',-Q / w ,w/
+——p""(0) f(w) yiyavidy + (p”(O))2/2 f'w) yividy
R

6 Rz Yl 8 |yl
6N+2 //ww/2+/ww// /ww/
+ (p//(o))2 [f ( )( ) - f( ) 7f( l ]yélly%vldy+0(€]\7+3)
8 R [yl [yl
which implies
€
L, = g/f(w)vldy
Q
1 "(w)w'
= eN“/ = fw)vrdy + €V 12p"(0) &yfyzvldy
Rz 2 r2 4yl
6N+3 / w w/
+ e [ ey
16 R2 |y
6N+3 f// w w/ 2 + f/ w w// f/ w w/
sy [ T T4y 4 0.
16 R2 |yl |y

Next we compute [; 3. Observe that

£ @) = £ ) + "0 s + 0,

Hence,
/f wm—/f QM—eA%WMW—ﬂM@@

w)w "(w)w’
+e N“p”(o)/ [Lylyz vy — &yfyzvf]dyﬂLO(eN“)-
rz 2yl 2|y

Thus,

ha = S [ U= fwpiidy

N+3 ! / 1" /
€ w)w w)w

f( ) y%yQ’UQ_f ( ) y1y2U1dy+O
R2 lyl ly|

(V).
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Finally we estimate [y 4:

Ly = N+ /R L fw)os — Fw)vrvs + é £ (w)ol]dy + O(eN+). (@.7)

22
+
Combining the estimates for I; 1, I1 2, [1,3 and I; 4, we conclude that

1 — —
Je[we p] = eNil[w] + B1eN T 4 BoeN T2 4 ByeV TP 4 O(N T,

where

Bo= [, gfinds= g0 [ Gur) - i

B = g [ U= s o) [ R vt

Bi = [ [/ fwpt g idldy
+(p"(0)*{ - mei‘vldﬂﬁ /R . ;[fﬂ(w)(w/?;? fwp” fl?;iw/]yfyivldy}
# 0 [, ot = H ] - 5o070) [ s ) = S0P
055 [ (Gustw) - F)stin.

Recalling (4.4), we conclude that

1
Je[we p] = if[w]eN + B1eV T 4 BoeV T2 4 By TP 4 O(eN T,

where
1 —
BQ = / 7f/(w)’l)1<p0dy + BQ
R2 2
_ ! _1 " 2 1 " 2_1 3 gl
By = [f (w)va2®q 5f (w)U1‘I’0+2f (w)v1 @5 5 %of (w)]dy
R3
p"(0) fw)w' " 0Po 0Py p"(0) f"(w)w' , 2 =
T 20 @0 — o (0)y 2920 T 2 1®o|2)dy + Bs.
o T e = O G = PR ool B

Since we are interested in the contributions of p(*)(0)eN*3  we only consider those

coefficients of eN+3 involving p(4)(0). It turns out that we only have to study the terms
fRi f(w)vy and —i fR(%wf(w) — F(w)yidy;. Note that

d — _
[ Sty /R 1

— w'(\yl) a, L, 1 ” v
- - /{)Riw[ U 2 07 = 5910+ 5 O 21

(Aw — w)vady = 7/ w%
oR2 Y2
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Hence, we conclude that the coefficient of p(*)(0) is
1 ww , 1 1
= - | ——yidy1 — — = - F 1d 4.8
o = g [ gvtdn = g1 [ (Gurt) =Pyt (48)
1 / ww'’ 4
= — 3— —wf(w) + 2F (w)|y;dy: .
55 LB ) + 2P ()}
Furthermore, we can also simplify the coefficient —c; of p”(0)e¥*! in the same way
and we get

1 ww’ 9
or =1 | P = wf(w) + 2Pyt (49)

(From the Lemma 3.2 in [43], we know that Bs can be simplified as follows:
L2 ov 2
By=<(0"(0)? | WS dy, = s (H(P)), (4.10)

where co is defined by the last equality and W is the unique solution of the following
problem:

(4.11)

{A\IJ — U+ f(w)¥ =0 inR2,

ov _ w'(lyl), 2 2
e = Ty Vi on OR?.

N+3

Finally, due to integration by parts, the coefficient of € can be written as

AL(p"(0)) + A2(p"(0))* + A3(p"(0))* + €301 (0),

where A1, A; and A3 are generic constants.
In summary, we have derived the following proposition.

Proposition 4.1. Let P € 0Q and W, p be defined in (3.9). Then, for e sufficiently
small, we have

Je[te,p] = 62{%I[w] = c1eH (Po) + 26 (H(Pe))? + € [P(H(Pe)) + 3S(Pe)] + 0(63()}12)

where
P(H(Pe)) = AIH(PG) + A2(H(Pe))2 + A3(H(Pe))3>
¢y 18 defined by (4.9), co is defined by (4.10), cs is defined by (4.8), and Ay, Ay, A3 are

generic constants.

5. THE SIGNS OF ¢; AND c3

In this section, we are concerned with the signs of ¢; and c3. Even though we can
not compute them explicitly, we can determine their sign.

The sign of ¢; has been shown to be positive (Proposition 3.2 of [28]). So we just
need to determine the sign of cs.
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By (4.8), we have

96c; = 2 /OO[wa/ —wf(w) + 2F(w)]rtdr
0

r

o0 / 1
= 2/ [310;11 + w(w” + ;w' —w) + 2F (w)]ridr
0
= 2/ [ww"r* + dww'r3)dr — / [w? — 2F (w)]r*dr
0o 0
= —2/ [(w)? + w? — 2F (w))rdr
0

= [T 1w e 2rwle costasar
0 _

i
2

- / [Vawl? + w? — 2F(w))[y[*yady.
R2

3
Now we state the following lemma

Lemma 5.1. Let w be the ground state solution of
Aw—w+ f(w) =0 in R2. (5.1)

Then we have

0 ow O
/ [Vl + w? — 2F(w)]lyPyzdy = / 222yl Py + / 22 20 g,
R} Rz Oy Rz OO (5

Let us first assume that Lemma 5.1 holds. We then have

Lemma 5.2. We have c3 < 0.

Proof: From Lemma 5.1, we have

ow ow Ow
— 48¢3 = 2(=——)?2 2d +/ 21 y2 — ——dy. 5.3
0= o 2 el [ 2z (53

Since w is radially symmetric and wl(r) < 0, it is easy to see that both terms on the
right hand side of (5.3) are positive. Hence ¢z < 0. O

We are now ready to prove Lemma 5.1.
Proof: We first multiply both sides of (5.1) by |y|2y§g—y“; and then integrate over R2:

ow ow ow
/ (\ylzygaf)Awdy — / w|y|2y§87dy + / f(w)\y|2y§87dy =0.
R2 Y2 R2 Y2 R? Y2 (5.4)
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We compute the three integrals of the left-hand side of (5.4) separately:

5 0w
/ (P43 ) Ay

/ Vo V(i gy

ow ow
- / (V- v 22y 2yady — / (Vw - Vi)l P2 dy — / (V- Vy )2 2L )y
R2+ 5‘y2 R2 8y2 R2 5'2/2

+

1 0|Vw|? ow ow ow
= —/ 19[vw] IyIQyde—/ 2y y|? ( )dy / [2111 -+ 25 ]yz dy

ow
| Vol luPudy+ [ 19ulybdy— [ 2l (G dy
R2 R2 R2 Y2

5 0w Ow ow 5
— 2 —dy — / 2 dy.
Az ylyQ 8y 8y R2 y2(8y2) Y

On the other hand, we have
ow / 1 Ow?
2 2 2 2
w —dy = — —)d
/Ri ly|"y3 s Y - 5191 yz(ayQ) Y

*/ w2|y|2yzdy*/ w?ysdy,
R2 R2

+ +

OF (w
/ ly*y3 a( )dy
R2 Y2

- / 2F (w)|y|Pyady — / 2F (w)yldy.
R2 R2

+ +

ow
/ J‘”(w)ly\zyﬁfa dy =0
R2 Y2

Combining all together, we obtain

ow 5 0w Jw
2(=—=)2 2d +/ 2 —d
/Ri (ayz) y2|y|*dy - ylyga oY

5 0w Ow ow
= [ PG+ Jop 2 g+ [, 2RG [ RFG) = Dl by
RI Oy2 Y2 Y2 R (5.5)

Lemma 5.2 follows from the following identity:

9 9 B ow
|, 2P = [Vul —ullyidy = 2 [R (oo by (56)

+

The proof of (5.6) is similar to that of (5.5): multiplying both sides of (5.1) by y%%
and integrating over R%, we obtain

4 Ow 4 0w Ow
Awd d +/ 4= dy = 0. 5.7
Az y2 8y2 w y / yQ a w y Ri y? ay2 f('LU) y ( )
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Note that
2
F
LHS of (5.7) = —/ Vuw V(yg—w)dy—/ fygaldy—ﬁ—/ yga (w)dy
R2 0y Rz 277 0ya R2 Oy2
. 0w 1 ,0|Vwl|? ) )
= —/ 4y3( )Qdy—/ U5 | |dy+/ 2w2y3dy—/ AF (w)ysdy
R2 0y rz 277 Oy R2 R2
ow
= —/ 4y§(7)2dy+/ 2\Vw\2y§dy+/ 2w2y§’dy—/ AF(w)y3dy
R2 Y2 R2 R2 R2
¥ ¥ ¥ T
= RHS of (57)=0
yielding (5.6). O

6. THE ASYMPTOTIC BEHAVIOR OF u. AND J,[u(]

Let u. be a single boundary spike solution of (1.1) and P, be its local maximum point.
In this section, we compute the energy of u.. The key observation is that by using w., p,
as our approximating function, we just need to expand wu. up to O(e”) for some 7 > %
Now, we choose % <T <2

The main result in this section is the following theorem.

Theorem 6.1. For e sufficiently small, we have

Ue = w@Pe + €T¢ea (61)
where ¢ satisfies

o+ [ (190 + 0o < C. (6:2)
Let us first assume that Theorem 6.1 holds. We then have
Lemma 6.1. For € sufficiently small, we have
J[ud] = J[twep.] + o(eVT3). (6.3)

Proof: Note that both @, p. and ¢. satisfy the Neumann boundary condition. So we
have

Jfu] = % /ﬂ{eﬂvwe,pe F VG + [ p, + € b Y — /Q Fliep, + € ¢.)da
— Jliep]+€ /Q (EViep, Ve + e, de — [(ep, )b o
5 [PV 416 = 1 (0 )6 o
~ [P (@en + 60 = Plier) = f(600)E 00 = 51 (@) 62} da.
By Theorem 6.1, the last two terms are O(eV*+27). Now, we consider that
€ /Q {€V 0 p. Ve + W p.pe — [(We p)pJdr = € /Q Se[We.p,. ] pedx

< eT/ |Se[de,p.|dz|| e L = O(eNT21T)
Q

which finishes the proof of Lemma 6.1. O
We are now ready to prove Theorem 6.1. The key step is the following lemma.
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Lemma 6.2. For € sufficiently small, we have

1@l oo @y < C- (6.4)
Proof: Recall

Su] = EAu—u+ f(u),
Si[ul(¢) = EA¢—o+ f(u)e.
Substituting u. = W, p, + €” ¢, into the equation
EAu—u+ f(u) =0,
we see that ¢. satisfies
{ Db = b+ f'(We,p)de = — TS [ep] + Nefod in 2,
% =0 on 01,

where

Nel[pe] = €77 [f(We,p. + € ¢c) — f(€, Pe) — GTf/(UNJe,PE)Q%]-
By Lemma 3.1, S¢[we p,] = O(¢?), we have
€ TS [We.p.] = O(E7T).
On the other hand, by mean-value theorem, we get

IN[p]l = € T|f(Wep, + € ¢e) = fliep,) — € f (e p,) |
< COlpell€ el
Thus,
|Ne[de]| = o(1)[e|.

Now, we can prove Lemma 6.2.
Suppose not. That is, there exists a sequence €, — 0 such that ||¢, HLOO@) — +o0.
For simplicity, we still denote € as €. Set

M= ||¢5||Loo(§) — +-o00.

Let M. = |¢e(x.)|, where

z. € Q. Without loss of generality, we may assume that z. is a maximum point of
¢.. We proceed in two claims.
Claim 1: 2= < ¢

In fact, suppose not. That is lze—P|

€

— +00. Then
=1+ f'(We,p,(x)) < —i for € small.
Since % = 0, by the Hopf boundary Lemma, it is impossible to have z. € 9. Thus,
z¢ € ), which implies that
Ag. <0.
(From (6.5), we deduce that
(L= f'(We,p. () Me + o(1) M + 0(67_1) <0

and hence M, is bounded. This gives a contradiction and the proof of Claim 1 is completed.
Let

bely) = gjﬁf)x(z —Po), y=Tc(). (6.6)
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Claim 2: ¢.(y) — 0 in CL_(R2) as e — 0.
In fact, from the equation for QASE, we see that as e — 0, Zse — (;ASO which satisfies
{ Ao — o + f'(w)do = 0, |do| < 1in R,

ddo _ 2
a—y‘z’—OOHGRJr.

(6.7)

By the nondegeneracy of w, there exists a constant a; such that

~ ow
¢o = a187y1-
On the other hand, we know that
Vi, ue(P) = 0.
Hence, we have
0 = Vo, (Wep, +€ o)

- Pe _ ~
= 0(62) + le(w(x ) —evix — 62(112 +v3)x — (vg + vs)X) + € 1M€Vy1¢6(0)

= 0(&) + MV, 6.(0).
(Note that V,,v1(0) = V,,v2(0) = 0.) Thus, we have Vqul(o) — 0 which shows that
Vy,¢c = 0. This implies that
ow
Vi, (alaTJlNy:O =0
and a; = 0. This proves Claim 2.
Lemma 6.2 now follows from Claim 1 and Claim 2: let y. = ””E%Pﬁ, then by Claim 1,
we have |y.| < C. So we may assume that y. — yo as ¢ — 0. Since gge(ye) =1, we have
¢0(yo) = 1 which contradicts Claim 2. O

Proof of Theorem 6.1: Theorem 6.1 now follows from Lemma 6.2. In fact, multiplying
(6.5) by ¢. and integrating over ), we obtain

62/ |V¢E|2dx—|—/ |pe|?da
Q Q

= / f/(ﬁ]e,P)d)edx - / Ne[(be](bedz +e 7 / ¢ese [ﬁ)e,Pe]dx
Q Q Q
< CeN+ 0(1)/ |pe |2 dx.
Q
This finishes the proof of Theorem 6.1. O

7. THE PrRoOOFS OF THEOREM 1.1 AND COROLLARY 1.1

Theorem 1.1 follows from Lemma 6.1, Lemma 5.2 and Proposition 4.1.
To prove Theorem 1.2, we follow the proof of Theorem 1.1: first we note that

K K
SD tepe] = Seliepe] + O(e™*/) (7.1)
j=1

Jj=1
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for some § > 0, since min;.; |[Pf — Pf[ > 0. Then we decompose

K

E ~ T
Ue = we,P].E + € ¢e

j=1

and show that ||¢c[| = q) < C. The rest of the proof is exactly the same.
It remains to prove Corollary 1.1.
Proof: Let u. be a least energy solution of (1.1). By Theorem 1.1, we have

ce = Je|u,
=V [[w] 4+ c1eH(P.) + 0262(H(PE))2[+]63[P(H(PE)) + c3S(P.)] + o(e%)]. (7.2)
On the other hand, let
B(t) = Jultdepl, t>0 (7.3)
By Lemma 3.1 of [28], we have
ce < max B(1). (7.4)

By assumption (£3) (see(3.16) of [28]), there exists a unique t = ¢, p such that

ﬂ/(te,P) =0 ﬂ(te,P) = MaX¢>o [)’(t)
Note that

gy = /Q (Ve p? + (e p)? — (e p)ive plda

_ / S, [ plisepdz = O(N2).
Q

Similar to (3.16) of [28], one can show that
tep =1+ 0(€). (7.5)
Then
Bltep) = BL)+B1)(tep —1) +O(Nte,p — 1)
= B(1)+O0(N)
which implies that
ce < maxyso B(t) = Je[te ptlc p] = Je[te,p] 4 0(eNT?)
< eN{iIw] — creH(P.) + c2e?(H(P.))? + 3 [P(H(P.)) 4 c3S(Pe)] + o(€?)} (7.6)
for any P € 0f).
Now, we take P = @ such that

H(Qo) = max H(P),  S(Qo) = max{S(Q): Q € 09, H(Q) = mag H(P)}.  (7.7)

Comparing (7.6) with (7.2), we arrive at
—c1H(Qo) — cae(H(Qo))* — €[P(H(Qo)) + ¢35(Qo)] + o(e?)
< —c H(P.) — coe(H(Pe))* — [P(H(P.)) + c3S(P.)] + o(€?).
Since ¢; > 0, ¢35 < 0,(the sign of ¢y and the Als are not important), we conclude that

H(R) = max HP) S(P) = 0 max - S(Q)
Peco
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as e — 0.
This finishes the proof of Corollary 1.1. (]

Appendix A: Proof of Proposition 2.1

To prove Proposition 2.1, we recall a lemma in [40].
Lemma A: (Lemma 2.1 of [40].) Let u be a solution of

EAu—u+f=0 inQ (7.8)
% =0 on 0§} '
Assume that [,)|f]> < CeN and Jo0 lg]> < CeN-1 then
e_N/ (@19 + uf?) de < C. (7.9)
Q

We first compute the equation for ¥, p:

_€2Aw\1’e p+ \Ije P
1
4
1
&3

A, {ele—i—e (vg+v3)x+6 (vg + vs) x} {6U1X+€2(U2+’U3)X+63(’U4+’U5)X}]

™

821}1 821}1 Ovy
A Z 9y It /) 7
yV1 + |p 63/1)| ayg P (eyl)aylayg €p (Eyl)ay2 01} X

o)

2v3

[¢®
2 2
UQ ’ 8 (%) 17 8’()2
—_Z_9 — 2
+e€ { yV2 + |P 6y1)| 8y§ P (Eyl)ﬁylﬁyg €p (€y1)8y2 1}2] X
0
1o}

2
0vg
Ayvs + 1o/ (eyn) e —2p/(eyn)

Y1 0yo
62 82’1}4 81}4
A el ) — e L
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_ i / 2 o 2.2 2 82fUl / N/ o " 2,2 827}1
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where E. denotes all the terms involving derivatives of .
Since |v1l, [va, [vs], [val, |vs| < Ce=¥! for some positive constant a, we have f. €
L*(Qcp) and [, _ f? < C. On the other hand, for z € 89, it holds that

OVep _ 1 [0hep  O(uix) _ 20(v2x)  »0(wsx) _ 59(vax) _ 59(vsx)

€ = - - - - -

Ov e | Ov Ov Ov Ov Ov Ov

Using (2.6), we have for z € wy,

T — € T :
| 6P| _ |y| <1+4(P//(0)> Y1 —I—O(€3)> . (7.10)
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Using (2.2) and (2.8) , we have the following

L+ (p)?

1+ (o)

ahe,P

ov

795
v

1+ (p’)zawguep)
W' ; P) 6y1p’(€6|z;1)_Pp(ey1)
wlfy'f” Bp”(o)yf + 50" Oy} + iﬂ“’(o)yﬂ
% _p’(eyl)gz + w/(lﬁm;p”(())yf + (p’(eyl))Zilﬂ(y'TJ);p"(O)yﬂ :
! :p’<ey1>ng - O gL~ ()P Om g,
ot + 3 oyt 4 ey I o
o3t - 50— a5
R A R O RV AU Y o
(o) () o)
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Hence, we get

e, P

ov
I+ (P’(€Z/1))2T

- [w’“y) Lot + 5ot + Sooon] + & (or0) (VLY U L o)

eyl (2 3 8 16 lyl /) 1yl
+X —p’(eyl)% - w|(y| D%p”(o)y? — (¢ (ey) 2L %p”(O)yf
e[ em G O G~ ()P O G
et G+ 5 ot + 50! e 0
l 5000~ 000 0 G g5 (1) () ot a'y')]
[ PO G = 30" O35 + Otee || + £

where again E.(x) denotes all the terms involving derivatives of y. This implies that
ge < Ce= ¥l Therefore,

’ﬁ‘l’ef < Ce—alvl.

ov
Let W, p(2) = U, p(z), where & = P + ez. Then, ¥, p(z) satisfies the following equation:

{ queP_ ~EP+fE:01nQ€,P

V. p
9y = ge O 896 P,

where f. € L?(Qe.p) and g. € L?(9Q. p) and both the corresponding norms are bounded,
independent of €. Proposition then follows from Lemma A. O

Appendix B: Proof of Proposition 3.1

We prove Proposition 3.1 in this appendix.
We first compute the equation for ¢, p :

_EQA;E(ge,P + ée,P

1
= - (€A, (@1x) — P1X]

1 0P, d, 0?®,
= 2 A® -y — e (ey) 2L 2y ()2
€ |:|: y*1 1 €p (eyl) 8y2 P (Eyl) 8y13y2 + |p (6y1)| ay

= e e 22 o) 2 4 (e 22
= e G -2 g e
= feu
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where E. denotes all the terms involving derivatives of x. Since |®1] < Ce~ ¥l for some
constants C, a > 0, we have f. € L*(Q p) and [, - f2dz < C. On the other hand, for

T € wq, it holds that

De 1 [0¢. (P
Ik e 1)
Note that
Ope 1
\/1+(p’(ey1))2% = = [p (6y1)ayf><+Ee(x)}
0P
=[O+ 52| G B + o)
P [ P P
T e 25 = i Gt - @+ () 5 e+ .00

Therefore, we have

3Q~55,P _ 1 17 7" 1 " 9 6(1)0 )
To T JTrpla)le 17Oy + 377 O] 7 mx + O(E)
02 : 0P
[ (en) g (L () 5 EG(X)}
_ ;1 1 1" 2@ oy @ )
- L+ (p'(ey1))2 € [[2’0 (O)eyi oy (ey1) an +O(e)Ix + Ec(x)

= ge)

where again F.(x) denotes all the terms involving derivatives of x. This implies that
ge < Ce~lvl. Therefore,

a¢e P

< Cealyl,
o0 Ce

The rest is exactly the same as in the proof of Proposition 2.1. O

Appendix C: Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1.
By (2.6), equation (4.5) follows by using Taylor expansion:

0% A( — P T —
Z |y| — i) (2
5yzayj € €

5314 (lyl) : — P - 4 —aly|
Z 3y16y]8yk € — i)l B —y;)( p —yr) + O(ee ).
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Observe that

dA(ly) _ Ay
dly|? 2yl
PA(y) 1Ay Ay
2 = 2 3 );
dlyl 4%yl |y
d3A 1 A/// A// A/
(\gl) _ L (I?:l/l)_3 (Ii/l)+3 (Iz;\))_
dlyl 8" |yl lyl |yl
Therefore, we have
x— P
A(——)
LA (lyl) 2 =P 5 2 L A"(y) A'(ly)1,2—P, 242
= A — _— — — — — —
(Iy1) + 3 o (== = IyI") + 5( e PE ) =———F =1y
L A"(yl)  JA"(yD) | Ay 1,2 =P, 23 4
+= -3 +3 = - + O(etealvl
6( ‘y|3 |y|4 ‘y|5 )8(| B ‘ ‘yl ) ( )
1A 1 1
= Al + 5 o Ot + Ly Ot + (O]
1 1
+e (750 O)viva + 5" (000" (0)y1))
1, A" (|ly A(ly 2 1
(o = S 0 + G 0)" 01038 + 567 0)*sbe)
L A"(yh)  A"vD | LA YD N 3, nians. 6.3 4
— -3 +3 € 0))3y0y3 + O(e*e M.

Hence, we obtain (4.5).
Next we prove (4.6):

/A(“P)dx - eN/
Q € R2 R
1TA(y) 1 4,

e [ G Ot + 30PNy

covsn [ LA A
Rz 8 [yl lyl®
1A () 1 1
+ [ 0)te + o 0)" 00y
+

LA™yl Ayl 2 1
+6N+3/ - _ 7//0 ///0 52_"_7 ,,0 3 6 d
Rz '8 [yl iE G O Oniyz + 507 (0)) yiy2)ldy

1A/(|y|) " 2
5 0)y1y2ldy

[

2
+

A(y)dy + N1 /

)(0"(0))*y1y3]dy

1 A/// A// A/
+€N+3/ g (EA) _3 (If\) +3 (\ZSJI)
Rz 48" |yl [yl [l

= L+ DL+Is+ I+ Is+ I+ I + O(eN ),

)(0"(0))*ySy3)dy + O(eN )
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where I1,15,13,14,15,1¢ and I7 are defined by the last equality. Note that

en = g e o S G2y ¢ o G0t

26yl [yl lyl™ 1yl
EN 2 / /
_ +{/ D ropegtay+ [ LDy o) 2tyglay
R’ R

8 2yl 2 [yl"

eN+2 , A’ y o A y

= Serory Sty [ o)
R2 yl R2 JY2 |

eN+2 3}

= T(ﬂ”(o))Q

A(ly
|(y|| Dyi*yz)dy =0,
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r2 Y2
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48 Jrz I y? lyl?

Is =

) (p"(0))y y3dy

M 9 A(yl) _ A'lyl)
— 0 3 - _ 6 2d

A A"(yl) _ A'(lyD)
= — 0 3/ 69 _
48 (p ( )) R2 Y1 y2( |y|2 |y|3

6N 3 " 1

2 3
2 [yl [yl

)dy

Thus,
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N 1 Ay
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Therefore,

z— P N1 Al(ly
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Q € R2 R2 \y|

eN+3 A(ly eN+3 1 Ay
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N+l 0A
[ Ay S0 [ 0Alll) 2,
R 2 R

1 2 O
Nt 9A(lyl) Nt 9 A'(lyl)

(4) 0 4d 1 0 3 6d O N+4
v ()/Ri et O [ (St + o)
N 6N+1 1" 2
€ Aly)dy — ——r"(0) A(lyDyidys

R2 oR2
Nt (4) 4 N 3 / 5 N+4
- p(0) Alyl)yrdyr — (r"(0)) A'(ly)lyr Pdyr + O (™).
24 oR2 48 oR2
finishes the proof of Lemma 4.1. O
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