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Abstract. We show that there is a close relation between standing-wave solutions for the FitzHugh-Nagumo

system

∆u+ u(u− a)(1− u)− δv = 0, ∆v − δγv + u = 0 in RN ,

u, v → 0 as |x| → +∞

where 0 < a < 1/2 and δγ = β2 ∈ (0, a), and the following combinatorial problem:

(∗) Given K points Q1, ..., QK ∈ RN with minimum distance 1, find out the maximum number of times

that the minimum distance 1 can occur.

More precisely, we show that for any given positive integer K, there exists a δK > 0 such that for 0 < δ < δK ,

there exists a standing-wave solution (uδ, vδ) to the FitzHugh-Nagumo system with the property that uδ has K

spikes Qδ
1
, ..., Qδ

K and ( 1

lδ
Qδ

1
, ..., 1

lδ
Qδ
K) approaches an optimal configuration in (*), where lδ = mini 6=j |Q

δ
i−Qδ

j | =
1√
a−β

log 1

δ
(1 + o(1)).

Subject class: Primary 35B40, 35B45; Secondary 35J55, 92C15, 92C40
Keywords: FitzHugh-Nagumo system, standing waves, optimal configuration, localized energy method.

1. Introduction

In this paper, we study the steady-states for the FitzHugh-Nagumo system in RN [19], [32]. It is a two-

variable reaction-diffusion system derived from the Hodgkin-Huxley model for nerve-impulse propagation [26]. In

a suitably rescaled fashion it can be written as follows:

(FN)

{

ut = ∆u+ f(u)− v in RN ,

vt = ∆v − δγv + δu in RN .

The unknowns u = u(x, t) and v = v(x, t) represent the electric potential and the ion concentration across the

cell membrane at a point x ∈ RN (N = 1, 2, . . .) and at a time t > 0, respectively; δ > 0, and γ > 0 are real

constants; ∆ :=
∑N

j=1
∂2

∂x2
j

is the Laplace operator in RN ; f(u) = u(1− u)(u− a) with a ∈ (0, 1/2).

In this paper, we consider the steady-state problem of (FN), namely the following elliptic system

(1.1)















∆u+ f(u)− v = 0 in RN ,

∆v − δγv + δu = 0 in RN ,

u(x), v(x)→ 0 as |x| → +∞.

From now on, we assume that 0 < δγ = β2 < a = −f ′(0), where β is independent of δ. Setting v = δṽ and

dropping the tilde we get the system

(1.2)















∆u+ f(u)− δv = 0 in RN ,

∆v − β2v + u = 0 in RN ,

u(x), v(x)→ 0 as |x| → +∞.
This is the final form of the system which we will study in the rest of the paper.
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The energy functional to (1.2) is given by

(1.3) Eδ[u] =
1

2

∫

RN
|∇u|2 −

∫

RN
F (u) +

δ

2

∫

RN
uT [u],

where u ∈ H1(RN ), F (t) =
∫ t

0
f(s) ds and T [u] = (−∆+ β2)−1[u]. Namely, (1.2) is the Euler-Lagrange equation

to (1.3).

Let w be the unique solution of

(1.4) ∆w + f(w) = 0, w > 0 in RN , w(0) = max
y∈RN

w(y), w(y)→ 0 as |y| → ∞.

It is well-known that w is radially symmetric: w(y) = w(|y|) and strictly decreasing: w
′
(r) < 0 for r > 0, r = |y|.

Moreover, we have the following asymptotic behaviour of w:

(1.5) w(r) = ANr
−N−1

2 e−
√
ar

(

1 +O

(

1

r

))

, w
′

(r) = −AN
√
ar−

N−1
2 e−

√
ar

(

1 +O

(

1

r

))

,

for r large, where AN > 0 is a generic constant.

For the uniqueness, we refer to [3], [11] and [36]. Furthermore, w is nondegenerate, i.e.,

(1.6) Kernel (∆ + f
′

(w)) = span

{

∂w

∂y1
, ...,

∂w

∂yN

}

.

We denote the energy of w as

(1.7) I[w] =
1

2

∫

RN
|∇w|2 −

∫

RN
F (w).

System (1.1) has been studied among others by DeFigueiredo-Mitidieri [16], Klaasen-Mitidieri [27], Klaasen-

Troy [28], Lazer-McKenna [30], Reinecke and Sweers ([40], [41], [42], [43]).

Note that our regime 0 < β2 = γδ < a is complementary to [43] and the references thererein and so a different

behaviour is expected. Our results show that this is actually the case.

Many of the existence results are analogies of the results for the scalar case δ = 0 in [8]. However, numerical

results in one- and two-dimensional domains of Sweers and Troy [39] suggest that problem (1.1) admits a rich

solution structure. In this regard, the papers [43] and [15] show very interesting behaviour of minimizers of (1.1)

which are completely different from the single equation case [8]. The system (1.1) with Neumann boundary

conditions has been studied in [34], [35], and [37]. Certain spot-like solutions have been constructed in [38].

In this study, we introduce a new type of spot-like solution, namely a standing wave cluster. More precisely,

we rigorously construct a solution of (1.2) in full N -dimensional space which for a given positive integer K is

concentrated in K spots for δ small enough. This is new for the FitzHugh-Nagumo system. It shows that the

set of solutions of (1.2) has a rich structure.

They are derived by the so-called “localized energy method” based on Liapunov-Schmidt reduction and varia-

tional techniques. This poses a restriction on the location of the spots. Namely, we prove the existence of clusters

such that the limiting spot locations satisfy the following optimal configuration condition for any dimension N

and any number K:

(∗) Given K points Q1, ..., QK ∈ RN with shortest distance 1, find the optimal configuration which maximizes

the number of times that the minimum distance 1 can occur.
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We denote the optimal number in (*) by m(N,K). The optimal configurations for N = 2,K = 4, 6, 7 are

depicted as follows:

K = 4 K = 6 K = 7

Figure 1: Optimal Configurations for K= 4, 6, 7

Thus the location of spots is related to the optimal configuration problem in combinatorial geometry. We will

discuss this problem in Section 2.

The following is the main result of this paper.

Theorem 1.1. For any given integer K ≥ 1 there exists a δ0 > 0 such that for all delta with 0 < δ < δ0 problem

(1.2) admits a solution (uδ, vδ) with the following properties

(1) uδ(y) =
∑K

i=1

(

w
(

y −Qδ
i

)

+ o(1)
)

uniformly for y ∈ RN , where w is defined by (1.4).

(2) For exactly m(N,K) pairs i 6= j we have

|Qδ
i −Qδ

j | =
1√
a− β log

1

δ
(1 + o(1)).

For all other i 6= j, there exists some µ > 0 such that

|Qδ
i −Qδ

j | ≥
(

1√
a− β + µ

)

log
1

δ
.

Furthermore, 1
lδ
(Qδ

1, ..., Q
δ
K) approaches an optimal configuration in (*), where lδ = mini6=j |Qδ

i −Qδ
j |.

Remark: The proof of Theorem 1.1 uses a sequence of lemmata. We assume that δ0 is chosen so small that

all of these are true.

Using symmetry, we can also construct other types of solutions. Now the spots are located near the vertices

of a regular polygon or two concentric polygons in a two-dimensional plane.

Theorem 1.2. For all δ with 0 < δ < δ0 problem (1.2) also has a solution (uδ, vδ) with property (1) of Theorem

1.1. Further, for this solution the following cases are all possible: (i) Qδ
i are the vertices of a regular K-polygon
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in a two-dimensional plane; (ii) if K ≥ 6 and K is even, Qδ
i are the vertices of two concentric regular polygons

in a two-dimensional plane.

Remarks: 1. By our method, it is also possible to construct solutions concentrating on multiple rings of regular

polygons.

2. We do not know if our solutions are positive. While the function w > 0 defined in (1.4) is positive, we

expect that the function ŵ which will be defined in (3.5) is negative.

Let us now summarize the proof of Theorem 1.1.

We define a configuration space

(1.8) Γ =

{

(Q1, . . . , QK) ∈ RNK

∣

∣

∣

∣

∣

K
∑

j=1

Qj = 0, (1− µ) 1√
a− β log

1

δ
≤ |Qi −Qj | ≤

(

log
1

δ

)2
}

,

where we choose µ such that

(1.9) 0 < µ < min

{

β

100
,
1

10

(

1− β√
a

)}

.

Since 0 < β2 < a < 1/2, this implies that µ is very small (compared to the other parameters in the problem and

absolutely). Also µ becomes smaller and smaller the closer β approximates
√
a.

Note that we may introduce the condition
∑K

j=1Qj = 0 by the translational invariance. The reason for

introducing it is to have a compact set Γ.

Let Q = (Q1, ..., QK) ∈ Γ.

Theorem 1.1 is proved by the so-called “localized energy method”, a combination of the Liapunov-Schmidt

reduction method and the variational principle. The Liapunov-Schmidt reduction method has been introduced

and used in a lot of papers. See [1], [2], [3], [4], [5], [20], [21], [22], [29], [44], [45] and the references therein. A

combination of the Liapunov-Schmidt reduction method and the variational principle was used in [3], [13], [14],

[21], [22] and [23]. We shall follow the procedure in [21]. This enables us to reduce the energy functional Eδ to

finite dimensions. Then local maxima for the reduced energy are found by maximizing Eδ over Γ and showing

that this maximum actually belongs to the interior of Γ.

Theorem 1.2 is proved by the same approach and by using symmetry reduction.

We describe some related work on clusters. Clusters which are located at the boundary of a bounded domain

have been constructed in [13], [23]. However, the configuration of the cluster is unknown. Multiple clusters in an

interval have been derived in [46] for the Gierer-Meinhardt system. For clusters for the Gierer-Meinhardt system

in R1, see [7] and [12]. For clustered spots located on regular polygons for Gierer-Meinhardt system in R2 see

[17]. We are unaware of any previous results on clusters in the whole RN , N ≥ 3. This paper seems to be the

first.

Let us now give an outline of the paper. In Section 2 we study the geometrical problem (*). In Section 3 we

derive the key energy estimates. In Section 4 we reduce the problem to finite dimensions by the Liapunov-Schmidt

reduction method. In Section 5, we compute the reduced energy and show that a critical point for the reduced

energy gives rise to a solution to (1.2). In Section 6 we solve the reduced problem by energy maximization in the

set Γ defined in (1.8) and derive Theorem 1.1. Finally, in Section 7 we use the same approach plus symmetry

reduction to prove Theorem 1.2.
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Throughout this paper, the constants c1, c2, ... are generic constants depending on N, a and β only.

We write

f(u) = −au+ (a+ 1)u2 − u3 = −au+ g(u), where g(u) = (a+ 1)u2 − u3.

Let G[u] =
∫ u

0
g(s)ds. We also define

(1.10) ε := δ
√
a/(

√
a−β).

Acknowledgments. The research of JW is supported by an Earmarked Grant from RGC of Hong Kong.

MW thanks the Department of Mathematics at CUHK for their kind hospitality. JW and MW thank Professor

Thomas Au and Professor K.M. Yeung for useful discussions.

2. Optimal Configurations For Problem (*)

Since problem (*) plays an important role in the formation of cluster, we study the properties of (*) in this

section.

To begin with, let us fix K points (Q1, ..., QK) ∈ RNK and define

(2.1) R[Q1, ..., QK ] = the number of times that the minimum distance is attained.

Set

(2.2) Σ :=







(Q1, ..., QK) ∈ RNK |
K
∑

j=1

Qj = 0,min
i6=j

|Qi −Qj | = 1







.

Then Problem (*) can be restated as the following maximization problem

(2.3) m(N,K) := sup
(Q1,...,QK)∈Σ

R[Q1, ..., QK ].

The problem is to determine this number m(N,K) and also characterize the configurations for which such an

optimal number is achieved.

We state the following simple lemma.

Lemma 2.1. In problem (2.3) the maximum is always attained by some optimal configuration. The graph of

shortest distances is connected and contains all points Qj. Moreover,

(2.4) m(N,K) >
∑

k1+...+kl=K,ki>0

m(N, ki)

and

(2.5) |Qi −Qj | ≤ K.

Proof:

Let (Q1, ..., QK) ∈ Σ. Without loss of generality, we may assume that |Q1 −Q2| = 1. We will show that there

exists an optimal configuration lying in Σ.

In fact, if there exists a subset whose points have distance strictly greater than 1 from another subset, we can

bring these two subsets so close to each other that there are points Qi 6= Qj on their respective convex hulls

which have unit distance. In this way R[Qn
1 , ..., Q

n
K ] increases. This implies (2.4). Since there are only finitely
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many subsets, after finitely many optimization steps, the graph of minimal distances is connected and each point

Qi is a vertex of it. This implies (2.5).

So, we consider those configurations only whose graph of minimal distances is connected and contains each

point Qi as a vertex. Because of R[Q1, ..., QK ] ≤ K(K − 1)/2 the function R[Q1, ..., QK ] is bounded from above.

Since it only has finitely many values, the supremum is attained and there exists an optimal configuration lying

in Σ.

¥

In general, it is difficult to find the number m(N,K) and this problem has a long history. See [6] and [18] for

surveys on this subject. That m(2,K) < 3K follows from the observation that six equal circular discs may be

placed around another disc of the same size so that the central one is touched by all others and that neighboring

discs touch each other. Erdös showed that

3K − c1K1/2 < m(2,K) < 3K − c2K1/3

and conjectured that

m(2, 3K2 + 3K + 1) = 9K2 + 6K

by considering a large array of a hexagonal packing of circles. Then Harborth [25] proved this conjecture and

further showed the following striking result

m(2,K) =
[

3K − (12K − 3)1/2
]

for all K,

where [x] = n is the largest integer n with n ≤ x.

In an analogous three-dimensional situation it is possible to place 12 balls of equal size around another one of

the same size, all touching the first but not overlapping with it or with each other. The question if it is possible

to place a 13th ball was the subject of a long-standing argument between Sir Isaac Newton and David Gregory.

Newton believed 12 to be correct, but this was not proved until 180 years later. It was R. Hoppe who eventually

proved that Newton had been right (see Bender [6]). There have been several simpler proofs since then, for

example [31].

Hoppe’s results imply that m(3,K) < 6K, and in fact for K large

m(3,K) = 6K +O
(

K2/3
)

because of effects coming from the surface. For N > 3 results on the maximum number of exterior spheres

touching a central one are known only in a few cases, for example it is 240 for N = 8 and 196560 for N = 24.

For further information, we refer to [9], [10], [24].

In some cases, however, the answer is easy to determine. For example, m(2, 3) = 3 corresponds to the regular

triangle. Further, m(2, 4) = 5 and this is achieved by putting two regular triangles together such that they have

one common side. The case m(2, 7) = 12 corresponds to a hexagon with a center. See Figure 1. The result

m(3, 4) = 6 corresponds to the regular tetrahedron. Note that in general m(N,K) ≤ K(K − 1)/2.

We remark that condition (*) is forced on us since we want to find cluster which maximize the energy. It

therefore is not merely a technical condition but characterizes certain multi-spot solutions with the property that

it is not possible for one spot (or several spots) to move away from the rest.
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3. Key Energy Estimate

Let w be the ground state solution of (1.4).

Let Kβ be the fundamental solution of ∆Kβ − β2Kβ + δ0 = 0 in RN \ {0}, where δ0 is the Dirac delta

distribution at zero. It is easy to see that

(3.1) Kβ(|y|) = CN |y|−
N−1

2

(

1 +O

(

1

|y|

))

e−β|y| for |y| > 1.

Let Ψ(y) be the unique solution of

(3.2) ∆Ψ− β2Ψ+ w(y) = 0 in RN .

Recall that by the previous equation we can define Ψ = T [w]. Since β <
√
a, we have for |y| > 1,

(3.3) Ψ(y) = BN

(

1 +O

(

1

|y|

))

Kβ(|y|),

for some BN > 0.

We begin with the following theorem, which is the special case K = 1 of Theorem 1.1.

Theorem 3.1. For 0 < δ < δ0 the problem

(3.4)

{

∆u− au+ g(u)− δv = 0, ∆v − β2v + u = 0 in RN ,
u = u(|y|), v = v(|y|), u, v → 0 as |y| → +∞

has a unique (radially symmetric) solution (uδ, vδ), where uδ = wδ(|y|) such that

(3.5) wδ(|y|) = w(|y|) + δŵ(|y|) +O(δ3/2e−µ|y|),

and ŵ(|y|) is the unique radially symmetric solution to the following problem

(3.6) ∆ŵ − aŵ + g
′

(w)ŵ −Ψ = 0 in RN , ŵ ∈ H1(RN )

and Ψ is defined in (3.2).

Note: The second equatino in problem (3.4) can be rewritten as vδ = T [uδ], using the notation introduced

after (3.2). Therefore problem (3.4) can be rephrased as a nonlocal equation for u. In other words, knowing u

means that the system has been solved. That is why it is only necessary to give an expansion for uδ (see (3.5)).

Proof: Let us denote

L0[φ] := ∆φ− aφ+ g
′

(w)φ.

For p > N , we define

W 2,p
µ,r (R

N ) = {u = u(|y|) | eµ|y|u(|y|) ∈W 2,p(RN )}.

Since L0 is nondegenerate, it is easy to see that the operator L0 is an invertible operator from W 2,p
µ,r (R

N ) to

Lpµ,r(R
N ). We write (3.4) in operator form:

Sδ[u] := ∆u− au+ g(u)− δT [u] = 0.

Note that by our construction

(3.7) |Sδ[w + δŵ]| =
∣

∣

∣

∣

∣

g(w + δŵ)− g(w)− δg′(w)ŵ − δ2T [ŵ]
∣

∣

∣

∣

∣

≤ Cδ2e−µ|y|.
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We put

u = w(r) + δŵ(r) + δ1+γφ,

where 0 < γ < 1. Without loss of generality, we choose µ = 1/2. Then we see that

δ−3/2Sδ[u] = ∆φ− aφ+ g
′

(w + δŵ)φ− δT [φ] +N [φ] +O(δ1/2e−µ|y|),

where |N [φ]| ≤ Cφ2 is a higher order term. Because of the invertibility of the operator L0 a standard perturbation

argument shows that the new linear operator ∆φ− aφ+ g
′
(w + δŵ)φ− δT [φ] is also an invertible operator from

W 2,p
µ,r to Lpµ,r. Now the result follows from the contraction mapping theorem. (The details are as in the proof of

Lemma 4.3 below, where the more difficult situation of a non-invertible operator is considered. Therefore we skip

them here).

¥

Let wδ(|y|) be the unique solution to (3.4).

Let (Q1, ..., QK) ∈ Γ. We define

(3.8) wi = w(y −Qi),Ψi = Ψ(y −Qi), wδ,i(y) = wδ(y −Qi), i = 1, ...,K, wδ,Q =
K
∑

i=1

wδ,i.

Note that for Q := (Q1, ..., QK) ∈ Γ, we have

(3.9) w(|Qi −Qj |) ≤ Ce
−(1−µ)

√
a√

a−β
log 1

δ ≤ Cε1−µ

where ε is defined at (1.10). Similarly,

(3.10) δ|Ψ(|Qi −Qj |)| ≤ Cδe
−(1−µ) β√

a−β
log 1

δ ≤ Cε1−µ

since β <
√
a.

The following useful lemma is an easy consequence of Lebesgue’s Dominated Convergence Theorem.

Lemma 3.2. Let f1(|y|) and f2(|y|) be two C2 functions such that for |y| large

(3.11) f1(|y|) ∼ C1|y|−m1e−γ1|y|, f2(|y|) ∼ C2|y|−m2e−γ2|y|

where γ1 ≥ γ2 > 0, C1 > 0, C2 > 0, and m1,m2 are arbitrary constants. Then we have

(3.12) Ce−γ2(1+µ)|Q1−Q2| ≤
∫

RN
f1(y −Q1)f2(y −Q2) ≤ Ce−γ2(1−µ)|Q1−Q2|

and when γ1 > γ2 > 0,

(3.13)
1

f2(|Q1 −Q2|)

∫

RN
f1 (y −Q1) f2 (y −Q2) dx→ γ0 > 0 as |Q1 −Q2| → ∞,

where

(3.14) γ0 =

∫

RN
f1(y)e

−γ2y1dy.

Moreover, when γ1 > γ2 > 0, the function
∫

RN
f1 (y −Q1) f2 (y −Q2) dy

is a C2 function in |Q1 −Q2| and (3.13) holds in C2 sense.
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We also define two functions

(3.15) α(|Qi −Qj |) =
∫

RN
g(w(y −Qi))w(y −Qj) =

∫

RN
g(w(y))w(y +Qi −Qj)dy,

(3.16) γ(|Qi −Qj |) =
∫

RN
w(y −Qi)Ψ(y −Qj) =

∫

RN
w(y)Ψ(y +Qi −Qj)dy.

Note that for Q = (Q1, ..., QK) ∈ Γ Lemma 3.2 gives

(3.17) α(|Qi −Qj |) ∼ w(|Qi −Qj |) ≤ Cε1−µ

using (3.9) and

(3.18) δγ(|Qi −Qj |) ∼ δΨ(|Qi −Qj |) ≤ Cε1−µ.

using (3.10).

With the help of Lemma 3.2, we derive the following key energy estimate:

Lemma 3.3. For any Q = (Q1, . . . , QK) ∈ Γ and 0 < δ < δ0 we have

Eδ[wδ,Q] = KEδ[wδ]−
∑

i<j

α(|Qi −Qj |)

(3.19) +c1δ
∑

i<j

γ(|Qi −Qj |) +O(ε1+4µ),

where c1 is a real positive constant, µ is given by (1.9) and the functions α and γ have been defined in (3.15) and

(3.16), respectively.

Proof. We compute

Eδ[wδ,Q] =
1

2

∫

RN
|∇wδ,Q|2 −

∫

RN
F (wδ,Q)

+
δ

2

∫

RN





K
∑

j=1

wδ(y −Qj)





(

K
∑

i=1

T [wδ(y −Qi)]

)

.

Using (3.4), we can decompose Eδ into two parts:

(3.20) Eδ[wδ,Q] =: I1 + I2,

where

I1 =
K
∑

i=1

Eδ[wδ,i] = KEδ[wδ]

and

I2 = −
∫

RN
[G(

K
∑

i=1

wδ,i)−
K
∑

i=1

G(wδ,i)−
∑

i<j

g(wδ,i)wδ,j ].

Note that

I2 = −
∫

RN
[G(

K
∑

i=1

wδ,i)−
K
∑

i=1

G(wδ,i)−
∑

i6=j
g(wδ,i)wδ,j ]−

∫

RN

∑

i<j

g(wδ,i)wδ,j .

The first term in I2 can be estimated as
∫

RN

∣

∣

∣

∣

∣

G(
K
∑

i=1

wδ,i)−
K
∑

i=1

G(wδ,i)−
∑

i6=j
g(wδ,i)wδ,j

∣

∣

∣

∣

∣
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≤ C
∑

i6=j

∫

RN
|wδ,i|2|wδ,j |2

≤ C
∑

i6=j

∫

RN
|wi + δŵi|2|wj + δŵj |2 ≤ Cε1+4µ.

For the second term in I2, we have
∫

RN
g(wδ,i)wδ,j =

∫

RN
[g(wi) + δg

′

(wi)ŵi][wj + δŵj ] +O(δ2
∑

i6=j
γ(|Qi −Qj |))

(3.21) = α(|Qi −Qj |) + δ

∫

RN
g(wi)ŵj +O(ε1+4µ).

Note that

δ

∫

RN
g(wi)ŵj = −δ

∫

RN
[∆wi − awi]ŵj

= −δ
∫

RN
[∆ŵj − aŵj ]wi

= −δ
∫

RN
Ψjwi + δ

∫

RN
g
′

(wj)ŵjwi by (3.6)

= −δγ(|Qi −Qj |) +O(ε1+4µ) by (3.16)

we get

I2 = α(|Qi −Qj |)− δγ(|Qi −Qj |) +O(ε1+4µ).

Summarizing the results for I1 and I2, the proof is finished.

¥

We are also in need of the following lemma on error estimates.

Lemma 3.4. Suppose (Q1, ..., QK) ∈ Γ and 0 < δ < δ0. Then we have

(3.22)

∣

∣

∣

∣

∣

∆wδ,Q − awδ,Q + g(wδ,Q)− δT [wδ,Q]

∣

∣

∣

∣

∣

≤ Cε1−2µe−µmini=1,...,K |y−Qi|.

Proof: Note

∆wδ,Q − awδ,Q + g(wδ,Q)− δT [wδ,Q] = g(wδ,Q)−
K
∑

j=1

g(wδ,j).

We divide the domain into K + 1 parts: Ωj = {y||y − Qj | ≤ 1
2 mini6=j |Qi − Qj |}, j = 1, ...,K,ΩK+1 =

RN\ ∪Kj=1 Ωj . On each Ωj , j = 1, ...,K we have |wδ,j | ≥ |wδ,i| for all i 6= j. We have on Ωj

(3.23) |g(wδ,j +
∑

i6=j
wδ,i)− g(wδ,j)−

∑

i6=j
g(wδ,i)| ≤ C

∑

i6=j
|g′(wδ,j)wδ,i| ≤ Cε1−2µe−µ|y−Qj |.

On ΩK+1, we have

|wε,j | ≤ Ce
− (1−µ)

2

√
a√

a−β
log 1

δ e−µ/2mini=1,...,K |y−Qi| ≤ Cε(1−µ)/2e−µ/2mini=1,...,K |y−Qi|.

So, on ΩK+1,

|g(wδ,Q)−
K
∑

j=1

g(wδ,j)| ≤ C

K
∑

j=1

|wε,j |2 ≤ Cε1−2µe−µmini=1,...,K |y−Qi|.

¥
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4. Liapunov-Schmidt Reduction

Let

(4.1) Sδ[u] := ∆u− au+ g(u)− δT [u].

We now introduce the functional-analytic framework. For u, v ∈ H1(RN ), we define the following scalar product:

(4.2) (u, v) =

∫

RN
[∇u∇v + auv] dy.

Then, using the relation

(4.3) ∆
∂wi
∂Qi,j

− a ∂wi
∂Qi,j

+ g
′

(wi)
∂wi
∂Qi,j

= 0,

we get that the orthogonality to the function ∂wi
∂Qi,j

in H1(RN ) is equivalent to orthogonality to the function

(4.4) Zi,j := g
′

(wi)
∂wi
∂Qi,j

in L2(RN ) with the usual scalar product

(4.5) < u, v >=

∫

RN
uv dy.

This section is devoted to the study of the following system in (φ, β):

(4.6) Sδ[wδ,Q + φ] =
∑

i,j

βijZi,j , < φ, Zi,j >= 0, i = 1, ...,K, j = 1, ..., N.

To this end, we introduce the following weighted norm for a function defined on RN : Let 0 < µ < 1 be given

in (1.9). For (Q1, ..., QK) ∈ Γ we define

(4.7) ‖φ‖∗ := sup
y∈RN

eµmini=1,...,K |y−Qi||φ(y)|.

Introduce the spaces

H2
∗ (R

N ) = {u ∈ H2(RN ) | ‖u‖∗ <∞}

and

L∞
∗ (RN ) = {u ∈ L∞(RN ) | ‖u‖∗ <∞}.

We first consider a linear problem: h ∈ L∞
∗ (RN ) being given, find a function φ satisfying

(4.8)







Lδ[φ] := ∆φ− aφ+ g
′
(wδ,Q)φ− δT [φ] = h+

∑

i,j βijZi,j

φ ∈ H2
∗ (R

N ), < φ, Zi,j >= 0

for some constants βi,j ∈ R.
The following lemma provides an a priori estimate for the solution of (4.8).

Lemma 4.1. Let (φ, β) satisfy (4.8). Then, for δ sufficiently small, we have

(4.9) ‖φ‖∗ ≤ C‖h‖∗.
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Proof: We prove it by contradiction. Suppose not. Then there exists a sequence δk → 0 and a sequence of

functions φk satisfying (4.8) such that the following holds:

(4.10) ‖φk‖∗ = 1, ‖hk‖∗ = o(1), < φk, Zi,j >= 0, i = 1, ...,K, j = 1, ..., N.

To keep notation simple, we drop the dependence on k.

Multiplying (4.8) by ∂wk
∂Qk,l

and integrating over RN , we obtain, using (4.3), that

∑

i,j

βij < Zij ,
∂wk
∂Qk,l

>= − < h,
∂wk
∂Qk,l

> +o(1) = O(‖h‖∗) + o(1).

Hence we obtain that

(4.11) |β| = O(‖h‖∗) + o(1) = o(1),

∥

∥

∥

∥

∥

∥

h+
∑

i,j

βijZij

∥

∥

∥

∥

∥

∥

∗

= o(1).

Therefore we have

(4.12)
∥

∥

∥
∆φ− aφ+ g

′

(wδ,Q)φ
∥

∥

∥

∗
= o(1).

Since

(4.13)

∥

∥

∥

∥

∥

∥

(g
′

(wδ,Q)−
K
∑

j=1

g
′

(wδ,j))φ

∥

∥

∥

∥

∥

∥

∗

= o(1),

(4.12) is equivalent to

(4.14)

∥

∥

∥

∥

∥

∥

∆φ− aφ+

K
∑

j=1

g
′

(wδ,j)φ

∥

∥

∥

∥

∥

∥

∗

= o(1).

Fix an R > 0. We claim that ‖φ‖L∞(∪Kj=1BR(Qj))
= o(1). In fact, suppose not. Then we may assume that

‖φ‖L∞(BR(Q1)) ≥ c0 > 0. Thus as δ → 0, we have φ(y −Q1)→ φ0 in C2loc(R
N ), where φ0 satisfies

(4.15) ∆φ0 − aφ0 + g
′

(w)φ0 = 0, |φ0(y)| ≤ Ce−µ|y|.

By Lemma 6.4 of [33], φ0 =
∑N

j=1 aj
∂w
∂yj

. But
∫

RN
φ0g

′
(w) ∂w∂yj = 0 for j = 1, ..., N . So aj = 0, j = 1, ..., N . A

contradiction.

Since ‖φ‖L∞(∪Kj=1BR(Qj))
= o(1), we obtain

∥

∥

∥

∥

∥

∥

K
∑

j=1

g
′

(wδ,j)φ

∥

∥

∥

∥

∥

∥

∗

= o(1)

and

(4.16) ‖∆φ− aφ‖∗ = o(1).

By standard regularity theory (see Section 6 of [33]), ‖φ‖∗ = o(1). A contradiction.

¥

Next we consider the existence problem for (4.8).
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Lemma 4.2. For 0 < δ < δ0, given any h ∈ L∞
∗ (RN ), there exists a unique pair (φ, c) such that the following

hold:

(4.17) Lδ[φ] = h+
∑

i,j

βi,jZi,j ,

(4.18) φ ∈ H2
∗ (R

N ), < φ, Zi,j >= 0.

Moreover, we have

(4.19) ‖φ‖∗ ≤ C‖h‖∗.

Proof: The existence follows from Fredholm’s alternative. To this end, we set

H = {u ∈ H1
∗ (R

N ) | < u,Zi,j >= 0, i = 1, ...,K, j = 1, ..., N}.

Observe that φ solves (4.17) and (4.18) if and only if φ ∈ H1(RN ) satisfies
∫

RN
(∇φ∇ψ + aφψ)− < (g

′

(wδ,Q)φ+ δT [φ], ψ >

=< h,ψ >, ∀ψ ∈ H1(RN )

This equation can be rewritten in the following form

(4.20) φ+ S(φ) = h̄

where S is a linear compact operator form H to H , h̄ ∈ H and φ ∈ H.

Using Fredholm’s alternative, to show equation that (4.20) has a unique solution for each h̄, it is enough to

show that the equation has a unique solution for h̄ = 0. To this end, we assume the contrary. That is, there

exists (φ, β) ∈ H2
∗ (R

N ) such that

(4.21) Lδ[φ] =
∑

i,j

βijZi,j ,

(4.22) < φ,Zi,j >= 0, i = 1, ...,K, j = 1, ..., N.

From (4.21), it is easy to see that ‖φ‖∗ < +∞. So without loss of generality, we may assume that ‖φ‖∗ = 1. But

then this contradicts (4.9).

¥

Finally, we solve (4.6) for (φ, β). The following is the main result of this section.

Lemma 4.3. For Q = (Q1, ..., QK) ∈ Γ̄ and 0 < δ < delta0, there exists a unique pair (φδ,Q, βδ(Q)) solving

(4.6). Furthermore, (φδ,Q, βδ(Q)) is continuous in Q and we have the following estimate

(4.23) ‖φδ,Q‖∗ ≤ ε1−3µ.

Proof: We write (4.6) in the following form:

(4.24) Lδ[φ] = −Sδ[wδ,Q]−Nδ[φ] +
∑

i,j

βijZi,j
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and use the contraction mapping theorem. Here Nδ[φ] is given by

(4.25) Nδ[φ] = g(wδ,Q + φ)− g(wδ,Q)− g′(wδ,Q)φ.

It is easy to see that

(4.26) ‖Nδ[φ]‖∗ ≤ C‖φ‖2∗.

Set B = {‖φ‖∗ < ε1−3µ} ⊂ L∞
∗ (RN ). We fix φ ∈ B and consider the map Aδ to be the unique solution given

by Lemma 4.2 with h = −Sδ[wδ,Q]−Nδ[φ]. Then by Lemma 3.4 and by Lemma 4.2, we have

(4.27) ‖Aδ[φ]‖∗ ≤ C ‖−Sδ[wδ,Q]−Nδ[φ]‖∗ ≤ Cε1−2µ

and hence Aδ[φ] ∈ B. Moreover, we also have that

(4.28) ‖Aδ[φ1]−Aδ[φ2]‖∗ ≤ C ‖Nδ[φ1]−Nδ[φ2]‖∗ ≤ ε1−3µ‖φ1 − φ2‖∗.

(4.27) and (4.28) show that the map Aδ is a contraction map from B to B. By the contraction mapping theorem,

(4.24) has a unique solution φ ∈ B, called φδ,Q.

The continuity of (φδ,Q, βδ(Q)) now follows from the continuity of wδ,Q and the uniqueness of (φδ,Q, βδ(Q)).

¥

The last lemma shows the C1-smoothness of φδ,Q.

Lemma 4.4. For 0 < δ < δ0, the map Q : Γ̄→ φδ,Q is actually C
1.

Proof:

Consider the map H : Γ̄×H1
∗ (R

N )×RNK → H1
∗ (R

N )×RNK defined by

(4.29) H(Q, φ, β) =

(

(∆− a)−1(Sδ[wδ,Q + φ]) +
∑

i,j βij
∂wi
∂Qi,j

(φ, ∂wi
∂Qi,j

)

)

,

which is of class C1.

Equations (4.6) are equivalent to H(Q, φ, β) = 0. We know that, given Q ∈ Γ̄, there is a unique local solution

(φδ,Q, βδ(Q)) given by Lemma 4.3. We prove that the linear operator

∂H(Q, φ, β)

∂(φ, β)

∣

∣

∣

∣

(Q,φδ,Q,βδ(Q))

: H1
∗ (R

N )×RNK → H1
∗ (R

K)×RNK

is invertible for all Q ∈ Γ̄ and δ small. Then the C1-regularity of Q 7→ φδ,Q follows from the Implicit Function

Theorem. Indeed, we have

∂H(Q, φ, β)

∂(φ, β)

∣

∣

∣

∣

(Q,φδ,Q,βδ(Q))

[φ̂, β̂] =

(

(∆− a)−1(S′δ[wδ,Q + φδ,Q](φ̂)) +
∑

i,j β̂ij
∂wi
∂Qi,j

(φ̂, ∂wi
∂Qi,j

)

)

.

Since ‖φδ,Q‖∗ is small, the same proof as for Lemma 4.1 shows that ∂H(Q,φ,β)
∂(φ,β)

∣

∣

∣

(Q,φδ,Q,βδ(Q))
is invertible for δ

small.

This concludes the proof of Lemma 4.4.

¥
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5. Reduced energy functional

In this section we expand the quantity

(5.1) Mδ(Q) := Eδ[wδ,Q + φδ,Q]−KE[wδ] : Γ̄→ R

in δ and Q, where φδ,Q is given by Lemma 4.3.

We recall the condition (1.9) on the smallness of µ which will be used in the proof of Lemma 5.1.

We prove the following result by using Lemma 3.3 and estimating the error caused by adding φδ,Q.

Lemma 5.1. Let φδ,Q be defined by Lemma 4.3. Then for any Q = (Q1, . . . , QK) ∈ Γ and 0 < δ < δ0 we have

(5.2) Mδ(Q) = δc1
∑

i<j

γ(|Qi −Qj |)−
∑

i<j

α(Qi −Qj) +O(ε1+4µ),

where c1 > 0 is a positive constant and the functions α, γ are defined in (3.15), (3.16).

Proof. In fact, for any Q ∈ Γ, we have

(5.3) Eδ(wδ,Q + φδ,Q) = Eδ(wδ,Q) + Jδ(φδ,Q) +O(‖φδ,Q‖2∗),

where

Jδ(φδ,Q) =

∫

RN
Sδ(wQ)φδ,Q dy.

We compute

|Jδ(φδ,Q)| =
∣

∣

∣

∣

∣

∫

RN

(

g(

K
∑

i=1

wδ,i)−
K
∑

i=1

g(wδ,i)

)

φδ,Q dx

∣

∣

∣

∣

∣

≤ Cε1−2µε1−3µ ≤ Cε1+4µ

by Lemma 3.2 and Lemma 4.3.

The proof of Lemma 5.1 is completed.

¥

The second and the last lemma in this section concerns the relation between the critical points of Mδ(Q) and

those of the energy function Eδ[u].

Lemma 5.2. Suppose Qδ ∈ int (Γ) is a critical point of Mδ(Q) and 0 < δ < δ0. Then the corresponding

function uδ = wδ,Qδ + φδ,Qδ is also a critical point of Eδ[u] : H
1(RN )→ R and hence a solution of (1.2).

Proof:

By Lemma 4.3 and Lemma 4.4, there exists a δ0 > 0 such that for 0 < δ < δ0 we have a C
1 map which, to any

Q ∈ Γ, associates φδ,Q such that

(5.4) Sδ(wδ,Q + φδ,Q) =
∑

i,j

βijZi,j

for some constants βij ∈ RNK .

Let Qδ ∈ Γ be a critical point of Mδ(Q). Let uδ = wδ,Qδ + φδ,Qδ . Then we have

∂

∂Qi,j

∣

∣

∣

∣

∣

Q=Qδ

Mδ(Q
δ) = 0, i = 1, ...,K, j = 1, ..., N.
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Hence we have
∫

RN
[∇uδ∇

∂(wδ,Q + φδ,Q)

∂Qi,j

∣

∣

∣

∣

∣

Q=Qδ

+(−auδ + g(uδ)− δT [uδ])
∂(wδ,Q + φδ,Q)

∂Qk,l

∣

∣

∣

∣

∣

Q=Qδ

] = 0

which is equivalent to
∫

RN
Sδ(uδ)

∂(wδ,Q + φδ,Q)

∂Qk,l

∣

∣

∣

∣

∣

Q=Qδ

= 0.

Thus we have from (5.4)

(5.5)
∑

i,j

βij

∫

RN
Zi,j

(

∂(wδ,Q + φδ,Q)

∂Qk,l

)

|Q=Qδ = 0.

Since < Zi,j , φδ,Q >= 0, we have for Q = Qδ that
∫

RN
Zi,j

∂φδ,Q
∂Qk,l

= −
∫

RN
φδ,Q

∂Zi,j
∂Qk,l

= O(ε1−3µ)

as ‖φδ,Q‖∗ = O(ε1−3µ).

Note that
∫

RN
Zi,j

∂wδ,Q
∂Qk,l

= δikδjlA0 (1 + o(1)),

where

(5.6) A0 =

∫

RN
g
′

(w)

(

∂w

∂y1

)2

=

∫

RN

[

∣

∣

∣

∣

∇
(

∂w

∂y1

)∣

∣

∣

∣

2

+ a(
∂w

∂y1
)2

]

> 0.

Thus (5.5) becomes a system of homogeneous equations for βij and the matrix of the system is nonsingular

since it is dominated by its diagonal. So βij = 0, i = 1, ...,K, j = 1, ...N .

Hence uδ = wδ,Qδ + φδ,Qδ is a solution of (1.2).

¥

6. The Reduced Problem: Proof of Theorem 1.1

In this section, we study a maximization problem.

Fix Q ∈ Γ. Let Φδ,Q be the solution given by Lemma 4.3. We shall prove

Proposition 6.1. For 0 < δ < δ0, the following maximization problem

(6.1) max{Mδ(Q) |Q ∈ Γ}

has a solution Qδ which belongs to the interior of Γ. Furthermore we have

(6.2) lim
δ→0

lδ

log 1δ
=

1√
a− β , where lδ = min

i6=j
|Qδ

i −Qδ
j |

and, possibly after renumbering indices, for some subsequence we have Qδ

lδ
→ Q0 with

(6.3) R[Q01, ..., Q
0
K ] = m(N,K),

where the number m(N,K) is defined in (2.3).
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Before we prove the above proposition, we present one lemma on a finite dimensional problem.

Lemma 6.2. Consider the function

(6.4) h(ρ) := c1δγ(ρ)− α(ρ), ρ ≥ 1− µ√
a− β log

1

δ
,

where c1 is a positive constant introduced in Lemma 3.3.

Then, for 0 < δ < δ0, h(ρ) has a unique maximum point ρmax. Moreover we have

(6.5) ρmax =
1√
a− β log

1

δ
+O(log log

1

δ
)

and

(6.6) h(ρmax) = c3δ
√
a√

a−β

(

log
1

δ

)−(N−1)/2
(1 + o(1)) = c3ε

(

log
1

ε

)−(N−1)/2
(1 + o(1))

for some positive constant c3 > 0.

Proof: This is a calculus problem since for ρ large, since by Lemma 3.2,

α(ρ) ∼ w(ρ) = ANρ
−N−1

2 e−
√
aρ

(

1 +O

(

1

ρ

))

,

γ(ρ) ∼ Ψ(ρ) = BNρ
−N−1

2 e−βρ
(

1 +O

(

1

ρ

))

.

Moreover these estimates hold in the C2 sense.

Differentiation of the function h(ρ) gives an equation for the critical point of h(ρ):

−βBN
(

1 +O

(

1

ρ

))

ρ−
N−1

2 c2δe
−βρ +AN

(

1 +O

(

1

ρ

))√
aρ−

N−1
2 e−

√
aρ = 0.

Taking the logarithm, (6.5) and (6.6) follow by an elementary computation.

¥

Proof of Proposition 6.1:

Since the set Γ is compact, the function Mδ(Q) has a maximum point Qδ ∈ Γ̄. We first show that Qδ must

lie in the interior of Γ.

We first obtain a lower bound forMδ(Q
δ). Let Q0 = (Q01, ..., Q

0
K) be an optimal configuration given by Lemma

2.1. We choose Q = ρmaxQ
0, where ρmax is given by Lemma 6.2. It is easy to see that this choice of Q belongs

to Γ. Then we have

Mδ(Q
δ) ≥

∑

i6=j
h(ρmax|Q0i −Q0j |) +O(ε1+4µ)

(6.7) ≥ m(N,K)h(ρmax)(1 + o(1)) ≥ c3m(N,K)ε

(

log
1

ε

)−(N−1)/2
(1 + o(1))

by Lemma 6.2.

Let lδ = mini6=j |Qδ
i − Qδ

j |. Then lδ > (1 − µ) 1√
a−β log 1δ . Without loss of generality, we may assume that

lδ = |Qδ
1 −Qδ

2|.
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In fact, suppose not. Then we have

(6.8) Mδ(Q
δ) ≤





∑

i6=j,(i,j)6=(1,2)
[h(ρmax)]



+ h(lδ) +O(ε1+4µ) ≤ −δ(1−
µ
2 )

√
a√

a−β (1 + o(1)) ≤ −ε1−µ
2 (1 + o(1))

which contradicts (6.7).

Consider the rescaled vertex Q̂δ
i = 1

lδ
Qδ
i . Let us assume that limδ→0{Q̂δ

i , i = 1, ...,K} = {Q̂0il , l = 1, ..., k}.
Note that k ≥ 2.

Suppose first that k < K. We will show that this is impossible. We get

(6.9) Mδ(Q
δ) ≤ h(lδ)R[Q̂01..., Q̂

0
K ] + o(h(lδ)) ≤ h(lδ)m(N, k) + o(h(lδ)).

Comparing (6.7) and (6.9), we conclude that

(6.10) h(ρmax)m(N,K) ≤ h(lδ)m(N, k)

which is impossible since h(lδ) ≤ h(ρmax) and by (2.4) we know that m(N,K) > m(N, k).

Because of the connectedness of the graph of shortest distances (see Lemma 2.1), if |Qi −Qj | = (log 1δ )
2 then

k < K. This together with (6.8) shows that Qδ must lie in the interior of Γ.

We now show (6.2) and (6.3). If k = K, then lδ ≤ |Qδ
i − Qδ

j | ≤ C log 1δ and hence Qδ belongs to the interior

of Γ. In this case, we then have

(6.11) Mδ(Q
δ) ≤ h(lδ)m(N,K) + o(h(lδ)).

From (6.7) and (6.11), we deduce that lim supδ→0
lδ

ρmax
≤ 1 and

(6.12) R[Q̂01, ..., Q̂
0
K ] = m(N,K).

Now (6.3) is proved. We also observe that limδ→0
lδ

ρmax
= 1 as otherwise lim infδ→0

lδ

ρmax
< 1 and then a similar

argument as the one leading to (6.8) gives a contradiction. This implies (6.2).

¥

Completion of the Proof of Theorem 1.1:

Theorem 1.1 is proved by combining Proposition 6.1 and Lemma 5.2. ¥

7. Proof of Theorem 1.2

In this section we are going to construct solutions which have certain symmetries. Therefore we proceed in

weighted Sobolev spaces of symmetric functions.

We require symmetry by rotation of 2π/K and by reflection. Therefore, using complex notation z = y1 +√
−1 y2, we introduce the spaces

(7.1) X = {u(y1, y2, ..., yN ) |u(y1, y2, y
′

) = u(z, |y′ |), u(ze2π
√
−1/K , |y′ |) = u(z, |y′ |), u(z̄, |y′ |) = u(z, |y′ |)}

H2
∗,s(R

N ) = H2
∗ (R

N ) ∩X, L∞
∗,s(R

N ) = L∞
∗ (RN ) ∩X.

Now we can construct a solution in these symmetric spaces following the Liapunov-Schmidt reduction in Section

5.
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Then the functionalMδ(Q) = Eδ(wδ,Q+Φδ,Q) defined in (5.1) also has these symmetries. Moreover, we may as-

sume that all the vertices lie in the two-dimensional plane {(y1, y2, y
′
)|y′ = 0}. That is Qi = (Qi,1, Qi,2, 0, ..., 0) =

(Q̃i, 0
′
). To simplify notation, we denote Q̃ = (Qi,1, Qi,2) as Q. Then we have

Mδ(Qe
2π

√
−1/K) =Mδ(Q),

Mδ(Q) =Mδ(Q),

where multiplication and complex conjugation are applied to every component of Q separately.

Let the points (Q(ρ) = Q1(ρ), ..., QK(ρ)) form a regular polygon with side length ρ. It is easy to compute that

(7.2) Mδ(Q(ρ)) = K

K/2
∑

j=2

h(|Q1(ρ)−Qj(ρ)|) +O(ε1+4µ).

Set

Γ1 :=

{

Q(ρ) = (Q1(ρ), ..., QK(ρ)) |Qi(ρ) =
ρ

2 sin(π/K)
e2πi

√
−1/K , i = 1, 2, ...,K,

(7.3) (1− µ) 1√
a− β log

1

δ
≤ ρ ≤

(

log
1

δ

)2
}

.

We then maximize Mδ(Q(ρ)) over Γ1. On ∂Γ1 we have either ρ = (1 − µ) 1√
a−β log 1δ or ρ =

(

log 1δ
)2
.

Computations as in Section 6 show that in the first case Mδ(Q(ρ)) < −ε1−µ
2 and in the second case

Mδ(Q(ρ)) ≤ C
δ

(

log 1δ
)N−1

On the other hand, for the maximum point Q(ρm) we estimate by the same proof as in Proposition 6.1 that

Mδ(Q(ρm)) = Kh(ρmax)(1 + o(1))

since for the polygon with K vertices the minimal distance is attained exactly K times.

Therefore the maximum of Mδ(Q(ρ)) can not be obtained for Q(ρ) ∈ ∂Γ1. Therefore it must be obtained

in the interior. This gives rise to a critical point of Mδ(Q). By Lemma 5.2, we obtain a solution to (1.2) with

K−vertices on a regular polygon.

To construct two concentric polygons we set

Γ2 :=

{

Q(ρ1, ρ2) =
(

Q1(ρ1), ..., QK/2(ρ1), QK/2+1(ρ2), ..., QK(ρ2)
)

|

Qi(ρ) =
ρ1

2 sin(2π/K)
e4πi

√
−1/K , i = 1, ...,K/2,

Qi(ρ) =
ρ2

2 sin(2π/K)
e4πi

√
−1/K , i = K/2 + 1, ...,K,

(1− µ) 1√
a− β log

1

δ
≤ ρ1 ≤ (log

1

δ
)2,

(7.4) (1− µ) 1√
a− β log

1

δ
≤ ρ2 − ρ1

2 sin(2π/K)
≤ (log

1

δ
)2.

}

.
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The reduced energy Mδ(Q) takes the following form

(7.5) Mδ(Q) = K

K/2
∑

j=2

h(|Q1(ρ1)−Qj(ρ1)|)

+K
K
∑

j=K/2+1

h(|Q1(ρ1)−Qj(ρ2)|) +K

K/2
∑

j=1

h(|QK/2+1(ρ2)−Qj(ρ1)|)

+K

K
∑

j=K/2+2

h(|QK/2+1(ρ2)−Qj(ρ2)|) +O(ε1+4µ).

Observe that if ρ2 − ρ1 = (1− µ) 1√
a−β log 1δ , then

(7.6) h(|QK
2 +1

(ρ2)−Qj(ρ1)|) ≤ −ε1−µ/2

The rest of the argument is similar to that for the single polygon.

The proof of Theorem 1.2 is finished.

¥
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Poincaré Anal. Non Linéaire 20 (2003), 53-85.

[18] L. Fejes-Toth, New results in the theory of packing and covering, in: Convexity and its Applications, eds. P.M. Gruber and
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