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We shall consider the the problem of determin-

ing the scattered far wave field produced when

a plane E-polarized wave is incident on an im-

perfectly conducting rectangular cylinder. By us-

ing the the uniform asymptotic solution for the

problem of the diffraction of a plane wave by a

right-angled impedance wedge, in conjunction with

Keller’s method, the a high frequency far field solu-

tion to the problem is given.

1 Introduction

In dealing with mobile phone propagation in cities
the effect of building corners and their surface
cladding is of paramount importance for the sig-
nal strength of the phones, see references in
Nechayev[1]. A building of rectangular cross-
section can be modelled by four of these cor-
ners. With appropriate polarization this build-
ing can be effectively modelled for high frequency
diffraction by a rectangular impedance cylinder
in two dimensions. To obtain quantitative and
qualitative results for the signal strength far from
the building when there are multiple diffraction
from such corners an effective approach is to use
the Keller method of the geometrical theory of
diffraction(GTD). This method requires informa-
tion about the ”diffraction coefficient” which are
obtained from the solution of canonical impedance
wedge problems. These coefficients need to be uni-
formly valid in the angular variables in order that
the method can be used successfully when consid-
ering multiple diffractions at different corners. In a
previous work Rawlins[2] this aspect was addressed
by using a simple exact solution to the specific prob-
lem of the diffraction of a plane wave by a right-
angled impedance wedge obtained by Rawlins[3].
In this work, Rawlins[2], useful asymptotic results
were obtained for the far-field across singular ray di-
rections where the usual diffraction coefficient used
in high frequency methods breaks down. In this
work we shall use these results to apply to the
practical situation of the scattering by an absorb-

ing rectangular building. The determination of the
far field when a high-frequency E-polarized elec-
tromagnetic plane-wave is obliquely incident on an
imperfectly conducting rectangular cylinder is ob-
tained by applying Keller’s method of geometrical
diffraction. Oblique incidence corresponds to the
situation where incident plane wave ray is not run-
ning parallel along any of the faces of the rect-
angular cylinder. To achieve this the uniform re-
sults of Rawlins[2] for the diffraction coefficient for
a right-angled impedance wedge is used in conjunc-
tion with the multiple diffraction that arises from
waves travelling from corner to corner of the rect-
angle.

1.1 Formulation of the boundary value

problem

An Ez-polarized plane wave

ui(P ) = e−i[ωt+krsin(θ+θ0)], (1)

is incident on an imperfectly conducting rectangu-
lar cylinder: |x| ≤ a, and |y| ≤ b,−∞ < z < ∞;
where the polar coordinates (r, θ) are defined by
x = r cos θ, y = r sin θ. The permeability, permit-
tivity, and conductivity of the cylinder are µ, ǫ, and
σ respectively; and the complex refractive index of
the cylinder material is given by

N =

√

µ

µ0

(

ǫ

ǫ0
+

iσ

ωǫ0

)

.

with k2 = ǫ0µ0ω
2. For a unique solution u, must

satisfy edge conditions at the corners and a radia-
tion condition at infinity. The boundary conditions
appropriate to the present problem are given by

∂u

∂y
(b, x) − ik cosϑu(b, x) = 0, (|x| ≤ a),

∂u

∂x
(y,−a) + ik cosϑu(y,−a) = 0, (|y| ≤ b),
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∂u

∂y
(−b, x) + ik cosϑu(−b, x) = 0, (|x| ≤ a),

∂u

∂x
(y, a) − ik cosϑu(y, a) = 0, (|y| ≤ b).

where cosϑ = −µ0

µ
N , and for absorbing surfaces

π ≤ ℜϑ ≤ 3π/2. An exact closed form solution
of such a boundary problem is not so far possible.
However for practical purposes we may make some
realistic practical assumptions that can lead to use-
ful computational results. The sides of the cylinder
are assumed to be large compared to the incident
wavelength (i.e. kb ≫ 1). The problem under con-
sideration is that of finding the field at the point
P (r, θ), 0 ≤ θ ≤ 2π, where r is large compared to
the dimensions of the cylinder, r ≫

√
a2 + b2, i.e.

the diffracted far field. Clearly from the symmetry
of the problem we need only consider an angle of in-
cidence within the range π/2 ≤ θ0 ≤ π. To achieve
this objective we shall use the results for the uni-
form, and nonuniform, asymptotics of the solution
to the problem of the diffraction of an Ez-polarized
plane wave by a right-angled impedance wedge
given in Rawlins[2]; in conjunction with Keller’s
theory of geometrical diffraction (GTD) Keller[4]
and by applying a formula due to Zitron[6], to deal
with mulitiple diffraction at the corners of the rect-
angle.

2 Keller’s geometrical theory of

diffraction and multiple diffraction

According to Keller’s GTD the diffracted field
ud(P ) at a point P is equal to the sum of the fields
on all rays through P:

ud(P ) =
∑

rays

uj(P ). (2)

Here uj(P ) is the diffracted field on the jth such
ray, and if this is an m-fold diffracted ray then

ud(P ) =
eiksj

k
m
2

∞
∑

n=0

Ajn(P )

(ik)n
, (3)

where k(= 2π/λ) is the propagation constant, sj

the arc length along the ray, and the function
Ajn depends on the geometry and material of the
diffracting object. For a rectangular cylinder all the
diffracted rays are produced by wedges of 900 an-
gle. Hence the inclusion of higher Ajn(n = 1, 2, ...)
in the expansion (3) involves the use of more terms
in the asymptotic solution of the wedge diffraction

problem. The calculation of the diffraction coef-
ficient corresponding to these higher-order terms
necessitates the solution of the wedge diffraction
problem for non-plane-wave incidence. However,
as is shown in the work of Zitron[6], the relevant
non-plane waves are expressible in terms of lin-
ear combinations of plane waves and their deriva-
tives. Thus the diffraction coefficients are easily
found; and therefore it is possible to calculate the
off shadow far fields corresponding to wedge excita-
tions which are not shadow boundary fields. In or-
der to calculate diffraction coefficients correspond-
ing to shadow boundary fields we show that these
fields too are expressible in terms of plane waves
and their derivatives. As far as the solution to the
canonical problem of the diffraction of a plane wave
by an impedance wedge is concerned the complete
solution to this problem has already been derived
in detail by Rawlins[2]. In particular the far field
expression is given by

ud(r, θ, θ0) = D(θ, θ0)
eikr

√
r

+ O((kr)−
3

2 ), (4)

where the ”diffraction coefficient” D(θ, θ0) is given
by Rawlins[2] as

D(θ, θ0) (5)

=
2ei π

4 (cos θ − cosϑ)(sin θ + cosϑ)(cos 4θ0

3 − cos 4(π+ϑ)
3 )

√
6πk(cos θ0 + cosϑ)(sin θ0 − cosϑ)(cos 4(θ−π−ϑ)

3 + 1
2 )

(2 cos 2θ0

3 cos 2θ
3 + 1

2 − cos 4(π+ϑ)
3 ) sin 2θ

3 sin 2θ0

3

(cos 4(θ+π+ϑ)
3 + 1

2 )(cos 2(θ−θ0)
3 + 1

2 )(cos 2(θ+θ0)
3 + 1

2 )
.

An important property of the diffraction coefficient
(5) is that

D(θ, θ0) = D(
3π

2
− θ,

3π

2
− θ0), (6)

which means that the angle of incidence θ0 and the
angle of observation θ can be measured from either
face of the corner wedge provided they are both
measured from the same datum face. Other useful
properties of D(θ, θ0) which we will require later in
an application of the Keller method is the Karp-
Karal lemma:

D(0, θ0) = D(θ, 0) = 0; (7)

and if we use the notation

lim
θ→0

∂D(θ, θ0)

∂θ
= Dθ(0, θ0),
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lim
θ0→0

∂D(θ, θ0)

∂θ0
= Dθ0

(θ, 0),

then

Dθ(0, θ0) =

4ei π
4 (1 − cosϑ)(cos 4θ0

3 − cos 4(π+ϑ)
3 )

3
√

6πk(cos θ0 + cosϑ)(sin θ0 − cosϑ)

(2 cos 2θ0

3 + 1
2 − cos 4(π+ϑ)

3 ) sin 2θ0

3 cosϑ

(cos 4(π+ϑ)
3 + 1

2 )2(cos 2θ0

3 + 1
2 )2

,(8)

Dθ0
(θ, 0) =

−4ei π
4 (cos θ − cosϑ)(sin θ + cosϑ)(1 − cos 4(π+ϑ)

3 )

3
√

6πk(1 + cosϑ) cosϑ(cos 4(θ−π−ϑ)
3 + 1

2 )

(2 cos 2θ
3 + 1

2 − cos 4(π+ϑ)
3 ) sin 2θ

3

(cos 4(θ+π+ϑ)
3 + 1

2 )(cos 2θ
3 + 1

2 )2
.

(9)

By applying a method due to Zitron[6], to the ex-
pression (4) we obtain the field on and near to the
ray determined by the point P1(r, θ). That is, we
obtain the asymptotic expansion of the diffracted
field, ud(P1), in terms of the coordinates of any
point Q1 which is in the near neighbourhood of the
point P1. By using these techniques it can be shown
that the far field in the region around the cylinder
is given by:

For 0 < θ < π
2 , and θ 6= θ0 − π

2 .

ud(P ) =
eikr

√
r

([D(
π

2
− θ, θ0)

×eik[−a(cos θ+sin θ0)+b(cos θ0+sin θ)]

+D(
π

2
+ θ, π − θ0)

×eik[−a(cos θ+sin θ0)−b(cos θ0+sin θ)]]

− 1

2ik
[
Dθ(0, θ0 − π

2 )Dθ0
(π + θ, 0)

(2a)
3

2

×eik[a(2−cos θ+sin θ0)+b(cos θ0+sin θ)]

+
Dθ(0, π − θ0)Dθ0

(π
2 − θ, 0)

(2b)
3

2

×eik[b(2+sin θ−cos θ0)−a(sin θ0+cos θ)]

+
Dθ(0, θ0)Dθ0

(π
2 + θ, 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)−a(sin θ0+cos θ)]

+
Dθ(0, θ0 + π

2 )Dθ0
(θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)−b(cos θ0+sin θ)]

+
Dθ(0, 2π − θ0)Dθ0

(3π
2 − θ, 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)+a(sin θ0+cos θ)]]

+O
[

(kd)−
5

2

]

) + O
[

(kr)−
3

2

]

.

(10)

The expression for the diffraction coefficients in
(10) are given by (5) to (9). By an analogous
procedure we can obtain ud(P )for the remaining
quadrants.

Forπ
2 < θ < π, and θ 6= 3π

2 − θ0.

ud(P ) =
eikr

√
r

([D(
π

2
+ θ, π − θ0)

×eik[−a(cos θ+sin θ0)−b(cos θ0+sin θ)]

+D(θ − π

2
, 2π − θ0)

×eik[a(cos θ+sin θ0)+b(cos θ0+sin θ)]]

− 1

2ik
[
Dθ(0, θ0)Dθ0

(π
2 + θ, 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)−a(sin θ0+cos θ)]

+
Dθ(0, θ0 + π

2 )Dθ0
(θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)−b(cos θ0+sin θ)]

+
Dθ(0, 2π − θ0)Dθ0

(3π
2 − θ, 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)+a(sin θ0+cos θ)]

+
Dθ(0, 3π

2 − θ0)Dθ0
(2π − θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)+b(cos θ0+sin θ)]]

+O
[

(kd)−
5

2

]

) + O
[

(kr)−
3

2

]

.

(11)

For π < θ < 3π
2 , and θ 6= θ0 + π

2 .

ud(P ) =
eikr

√
r

([D(2π − θ, θ0 −
π

2
)

×eik[a(cos θ+sin θ0)+b(cos θ0+sin θ)]

+D(θ − π,
3π

2
− θ0)

×eik[−a(cos θ+sin θ0)+b(cos θ0+sin θ)]]

− 1

2ik
[
Dθ(0,−θ0 + 3π

2 )Dθ0
(2π − θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)+b(cos θ0+sin θ)]
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+
Dθ(0, θ0 − π

2 )Dθ0
(θ − π, 0)

(2a)
3

2

×eik[a(2−cos θ+sin θ0)+b(cos θ0+sin θ)]

+
Dθ(0, π − θ0)Dθ0

(5π
2 − θ, 0)

(2b)
3

2

×eik[b(2+sin θ−cos θ0)−a(sin θ0+cos θ)]

+
Dθ(0, θ0 + π

2 )Dθ0
(θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)−b(cos θ0+sin θ)]

+
Dθ(0, 2π − θ0)Dθ0

(3π
2 − θ, 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)+a(sin θ0+cos θ)]]

+O
[

(kd)−
5

2

]

) + O
[

(kr)−
3

2

]

.

(12)

For 3π
2 < θ < 2π.

ud(P ) =
eikr

√
r

([D(2π − θ, θ0 −
π

2
)

×eik[a(cos θ+sin θ0)+b(cos θ0+sin θ)]

+D(θ − π,
3π

2
− θ0)

×eik[−a(cos θ+sin θ0)+b(cos θ0+sin θ)]

+D(θ − 3π

2
, π − θ0)

×eik[−a(cos θ+sin θ0)−b(cos θ0+sin θ)]]

− 1

2ik
[
Dθ(0, 3π

2 − θ0)Dθ0
(2π − θ, 0)

(2a)
3

2

×eik[a(2+cos θ−sin θ0)+b(cos θ0+sin θ)]

+
Dθ(0, θ0 − π

2 )Dθ0
(θ − π, 0)

(2a)
3

2

×eik[a(2−cos θ+sin θ0)+b(cos θ0+sin θ)]

+
Dθ(0, π − θ0)Dθ0

(5π
2 − θ, 0)

(2b)
3

2

×eik[b(2+sin θ−cos θ0)−a(sin θ0+cos θ)]

+
Dθ(0, θ0)Dθ0

(θ − 3π
2 , 0)

(2b)
3

2

×eik[b(2−sin θ+cos θ0)−a(sin θ0+cos θ)]]

+O
[

(kd)−
5

2

]

) + O
[

(kr)−
3

2

]

.

(13)

In the situation, for oblique incidence, where
the observation point P is close to the specular or
shadow boundaries these expressions are no longer

valid. The reason being that the first square brack-
ets of the expressions (10) to (13), become infi-
nite on these boundaries. In this case more re-
fined uniform asymptotics have been carried out
to deal with this situation. Combining all these re-
finements graphs can be drawn a typical graph of
the final results is shown below:
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Figure 1: a = 1, b = 2, ϑ = 4.14159 + I, r =
10, k = 2π, θ0 = 3π/4.

Finally we remark that in the limit as |N | → ∞
the above expressions reduces to far field scatter-
ing by a perfectly conducting cylinder which agrees
with the results of [5].
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