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Abstract 

A four-cylinder, four-stroke, gasoline engIne with direct injection fuel was 

commissioned and used to achieve CAl combustion. CAl combustion was achieved by 

employing short-duration, low-lift camshafts and early exhaust valve closure. Trapping 

sufficient volumes of exhaust residual provided the necessary thermal energy needed to 

initiate auto-ignition. 

The effects of valve opening durations on the CAl operation range were investigated at 

different air/fuel ratios, valve timings and injection timings. Furthermore the effect on 

engIne performance, exhaust emISSIOns, fuel consumption and combustion 

characteristics were also investigated. 

Methods which could be used for CAl combustion regIon enlargement were also 

studied. These included spark-assisted CAl at different EVC timings and valve 

durations, CAl operation at 2000 rpm and CAl combustion at late fuel injection timings. 



Acknowledgements 

If a thousand mile journey starts with a first step then it must end with a last step. I 

would like to thank everyone who helped me with each of my steps through my PhD 

Journey. 

First and foremost I would like to offer my sincere gratitude to Professor Hua Zhao for 

giving me the opportunity to study in his esteemed engines group and allowing me to 

study technology-leading prototype engines and equipment. Furthermore, for allowing 

me to attend international conferences and gaining valuable experience in presenting. 

I would also like to express my gratefulness to Dr Xi Jiang, who has given sound 

academic advice and provided guidance throughout my time at BruneI. 

I would further like to thank the technicians and everyone in the lab, namely: Bob Webb 

for his help in ordering sensors and equipment and generally helping with any queries 

regarding administration matters. Andy Selway for machining various engine 

components, building engine rigs and giving practical trouble shooting advice with 

engine problems. I would like to offer my gratitude to Clive Barrett for helping with 

wiring sensors, making various electrical boxes for the data acquisition system and fault 

finding. I would like to thank John Langdon and Paul from stores for providing tools 

and fixtures. Len for milling the Ford engine cylinder head to a high degree of accuracy. 

I would also like to take this opportunity to thank my colleagues for their support and 

advice during this project, namely Cao Li, Chris Marriner, Changho Yang, Mario 

Martins and Kayiu Mann. I would like to thank Richard Standing for his collaboration 

and detailing of the Ford Engine. 

Last but not least, I would also like to express my gratitude to my parents, who have 

morally supported me throughout my education and built a solid foundation from which 

I can work. 



Nomenclature 

General Abbreviations 

AFR 

AI 

ARC 

ATDC 

ATDC 

BDC 

BMEP 

BSCO 

BSFC 

BSHC 

BSNO 

BTDC 

CA 

CAl 

CARB 

CI 

CIHC 

CPS 

CR 

DI 

DISI 

ECU 

EGR 

EOI 

EV 

EVC 

EVO 

GDI 

Air/Fuel Ratio 

Auto-Ignition 

Active Radical Combustion 

Active Thermo Atmosphere Combustion 

After Top Dead Center 

Bottom Dead Center 

Brake Mean Effective Pressure 

Brake Specific Carbon Monoxide 

Brake Specific Fuel Consumption 

Brake Specific Hydro-Carbons 

Brake Specific Nitrogen Oxides 

Before Top Dead Center 

Crank Angle 

Controlled Auto-Ignition 

Californian Air Resource Board 

Compression Ignition 

Compression Ignition Homogeneous Charge 

Cam Profile Switching 

Compression Ratio 

Direct Injection 

Direct Injection Spark Ignition 

Electronic Control Unit 

Exhaust Gas Re-circulation 

End of Injection 

Electric Vehicle 

Exhaust Valve Closing 

Exhaust Valve Opening 

Gasoline Direct Injection 



GIMEP 

HCCI 

HRR 

HSDI 

IC 

IMEP 

ISCO 

ISFC 

ISHC 

ISNO 

IVC 

IVO 

LEV 

MBT 

MFB 

NIMEP 

NOx 

PC 

PFI 

PM 

PMEP 

ppm 

PRF 

RGF 

RON 

rpm 

SA-CAl 

SI 

SOl 

SULEV 

TDC 

uHC 

VCT 

Gross Indicated Mean Effective Pressure 

Homogeneous Charge Compression Ignition 

Heat Release Rate 

High Speed Direct Injection 

Internal Combustion 

Indicated Mean Effective Pressure 

Indicated Specific Carbon Monoxide 

Indicated Specific Fuel Consumption 

Indicated Specific Hydro-carbons 

Indicated Specific Nitrogen Oxides 

Intake Valve Closing 

Intake Valve Opening 

Low Emission Vehicle 

Minimum Spark Advance for Best Torque 

Mass Fraction Bum 

Net Indicated Mean Effective Pressure 

Nitrogen Oxides 

Personal Computer 

Port Fuel Injection 

Particulate Matter 

Pumping Mean Effective Pressure 

Parts per Million 

Primary Reference Fuel 

Residual Gas Fraction 

Research Octane Number 

Revolutions per Minute 

Spark Assisted Controlled Auto-Ignition 

Spark Ignition 

Start of Injection 

Super Low Emissions Vehicle 

Top Dead Center 

Unburned Hydrocarbons 

Variable Cam Timing 



VVA 

VOC 

WOT 

ZEV 

Variable Valve Actuation 

Volatile Organic Compounds 

Wide Open Throttle 

Zero Emission Vehic1e 



Contents Page Number 

Abstract 

Acknowledgements 

Nomenclature 

Chapter 1 - Introduction 1 

1.1 Introduction 1 

1.2 Objectives 3 

1.3 Outline of Thesis 3 

Chapter 2 - Literature Review 7 

2.1 Introduction 7 

2.2 Emission Standards Worldwide 8 

2.3 Current Gasoline Engine Technologies 11 

2.4 Controlled Auto-IgnitioniHomogeous Charge Compression 13 
Ignition 

2.4.1 Benefits of CAIIHCCI Combustion 13 

2.4.2 Approaches to CAIIHCCI Combustion Gasoline Engines 15 

2.4.3 Challenges concerning CAl Combustion 18 

2.4.4 Transitioning from SI to CAl mode 21 

2.4.5 Feedback Control Systems for CAl combustion 23 

2.4.6 Emerging CAl Technology 23 



2.5 Motivation 

2.6 Summary 

Chapter 3 - Experimental Set-up and Test Facility 

3.1 Introduction 

3.2 Ford 1.6 L Sigma DI Gasoline Engine 

3.3 Engine Control and Operation 

3.3.1 Engine Water Cooling 

3.3.2 Air Intake System 

3.3.3 Engine Lubrication and oil cooling 

3.3.4 Fuel Supply System 

3.3.5 Engine Management 

3.3.6 Variable Valve Timing Mechanism 

3.3.7 Dynamometer 

3.4 Fuel Flowrate, Temperature, Pressure, AFR and fuelling 

measurement 

27 

28 

31 

31 

31 

32 

33 

34 

34 

34 

36 

41 

43 

44 

3.4.1 Fuel Flowrate and Air-mass Flowrate measurement 44 

3.4.2 Temperature Measurement 45 

3.4.3 Shaft Encoder 46 

3.4.4 Pressure Inducer 46 

3.4.5 Lambda Sensor 47 

3.5 Exhaust Measurement 48 

3.5.1 Horiba AIA-72: CO and CO2 measurement 48 

3.5.2 Horiba MPA-720: O2 measurement 49 

3.5.3 Horiba FIA-720: Unburnt Hydrocarbon measurement 50 

3.5.4 Horiba CLA-720A: NO and NOx measurement 51 



3.6 Summary 52 

Chapter 4 - Data Post Processing and Analysis 54 

4.1 Introduction 54 

4.2 Data Acquistion System 54 

4.3 Load Calculations 58 

4.3.1 IMEP 58 

4.3.2 BMEP 60 

4.4 Fuel Consumption 60 

4.4.1 Fuel Flow Rate 61 

4.4.2 BSFC 61 

4.5 Emissions 62 

4.5.1 BSNO, BSHC, BSCO 63 

4.5.2 ISFC, ISNO, ISHC, ISCO 64 

4.5.3 GSIFC, GSINO, GSIHC, GSICO 64 

4.6 Trapped Residual and Heat Release calculations 65 

4.6.1 Trapped Residual 65 

4.6.2 Heat Release Analysis 65 

4.6.3 CA 10% MFB, CA 50% MFB and CA 90% MFB 66 

4.7 Summary 67 

Chapter 5 - CAl Combustion Engine Performance and Emissions 69 

5.1 Introduction 69 

5.2 Negative Valve Overlap Approach for CAl Combustion 69 

5.3 Engine Operating Conditions and Experimental Procedure 73 



5.4 Overview of Engine Operating modes with CAl camshafts 75 

5.4.1 Introduction 75 

5.4.2 Combustion modes with CAl camshafts 76 

5.4.3 CAl Operational region at lambda = 1.0 77 

5.4.4 CAl Operational region at lambda = 1.2 82 

5.5 Effects of Camshaft design and Injection Timing at lambda = 1.0 86 

5.5.1 Introduction 86 

5.5.2 Effects of Camshaft design and Injection Timing on Engine 88 

Performance at lambda = 1.0 

5.5.3 Effects of Camshaft design and Injection Timing on Engine 106 

Emissions at lambda = 1.0 

5.5.4 Effects of Camshaft design and Injection Timing on ISFC 119 

values at lambda = 1.0 

5.5.5 Summary of results at lambda = 1.0 122 

5.6 Effects of Camshaft design and Injection Timing at lambda = 1.2 123 

5.6.1 Introduction 123 

5.6.2 Effects of Camshaft design and Injection Timing on Engine 124 

Performance at lambda = 1.2 

5.6.3 Effects of Camshaft design and Injection Timing on Engine 140 

Emissions at lambda = 1.2 

5.6.4 Effects of Camshaft design and Injection Timing on ISFC 157 

values at lambda = 1.2 

5.7 Summary of results at lambda = 1.2 

Chapter 6 - CAl Combustion Region Enlargement 

6.1 Introduction 

6.2 Spark-Assisted CAl combustion 

160 

162 

162 

163 



6.2.1 Introduction 163 

6.3 Effects of Spark Ignition on CAl combustion at different EVC 168 

Timings (Case A and Case B in Test Group 1) 

6.3.1 Effects of Spark Ignition on NIMEP 168 

6.3.2 Effects of Spark Ignition on Emissions 173 

6.3.3 Effects of Spark Ignition on ISFC 177 

6.4 Effects of Spark Ignition on CAl combustion at different valve 178 

Durations (Case C and Case D in Test Group 2) 

6.4.1 Effects of Spark Ignition on NIMEP 178 

6.4.2 Effects of Spark Ignition on Emissions 183 

6.4.3 Effects of Spark Ignition on ISFC 187 

6.4.4 Summary of Spark-Assisted CAl combustion 188 

6.5 Effects of Engine Speed on Engine Combustion 189 

6.5.1 Introduction 189 

6.5.2 Effects of Speed on Engine Performance at valve timing 190 

EVC 65 CA deg BTDC, IVO 70 CA deg ATDC 

6.5.3 Effects of Speed on Engine Emissions at valve timing 195 

EVC 65 CA deg BTDC, IVO 70 CA deg ATDC 

6.5.4 Effects of Speed on ISFC at valve timing 197 

EVC 65 CA deg BTDC, IVO 70 CA deg ATDC 

6.5.5 Summary of effects of Speed at valve timing EVC 65 CA 198 

deg BTDC, IVO 70 CA deg ATDC 

6.6 Analysis of CAl Combustion at lambda = 1.2 in DI Gasoline 199 
Engine 

with late Injections 

6.6.1 Introduction 199 

6.6.2 Effects of EVC and Valve Duration on NIMEP at late 200 

Injection 

6.6.3 Effects of EVC and Valve Duration on emissions at late 205 



Injection 

6.6.4 Effects of EVC and Valve Duration on ISFC at late 210 

Injection 

6.6.5 Summary of late Injection on Engine Performance and 211 

Emissions 

Chapter 7 - Conclusions and Recommendations for Future Work 213 

7.1 Introduction 213 

7.2 Engine Performance and Emissions whilst utilizing SI and CAl 213 

combustion 

7.2.1 Effects of Valve Duration on Engine Performance whilst 213 

using low-lift, short-duration CAl camshafts 

7.2.2 Effects of Valve Duration on Engine Emissions whilst 215 

using low-lift, short-duration CAl camshafts 

7.2.3 Effects of Valve Duration on Fuel Consumption whilst 217 

using low-lift, short-duration CAl camshafts 

7.3 Effects of Spark-Assistance on CAl combustion 

7.4 Effects of operation at 2000 rpm on CAl combustion 

7.5 Effects of Late Injection on CAl combustion 

7.6 Recommendations for Future Work 

References 

Appendix A 

Appendix B 

217 

218 

219 

219 



Chapter 1 

Introduction 



Chapter 1 Introduction 

1.1 Introduction 

The introduction of Internal Combustion (IC) engines, over a century ago, has provided a 

robust and relatively inexpensive means of transportation. Indeed the operating principal of 

an IC engine has also not changed since their introduction. Gasoline IC engines utilize the 

four-stroke 'Otto' cycle which was developed around 1867 by Nikolaus Agust Otto. 

Initially, research and development on IC engines concentrated on improving performance 

and efficiency. However, after a century of use, it became apparent that IC engine 

emissions contributed towards global warming and other environmental impact. Coupled 

with dwindling oil reserves, it became apparent that IC engine research and development 

had to be shifted towards reducing engine-out emissions and fuel consumption. W orId-wide 

various emission legislation has been put in place, in a concerted effort to motivate vehicle 

manufacturers to produce cleaner and more fuel efficient vehicles. Although other 

technologies exist, such as fuel cells and electric vehicles, which in theory seem to offer a 

viable power-plant alternative to the IC engine; these technologies still have related short 

comings. These namely are high cost, efficiency and power density concerns, well to wheel 

emission issues, hydrogen storage and lack of infrastructure to support these technologies. 

In the absence of any feasible alternatives to the IC engine, the last two decades have seen 

immense steps towards the reduction of emissions and fuel consumption while at the same 

time enhancing power output. These improvements have been realized due to the 

application of new technologies to the IC engine, such as three-way catalysts and improved 

engine management systems. Furthermore, other innovative developments are under 

progress and expected to be introduced in the near future, these include gasoline direct 

injection systems, cylinder de-activation, flexible valve operation and cam profile 

switching. Based on current trends and tightening emission legislation, it can be expected 

that future IC engines will incorporate technologies which will allow them to be 

considerably cleaner and have better fuel economy than current IC engines. 
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Indeed, an alternative combustion technology, known as Controlled Auto-Ignition (CAl) or 

Homogeneous Charge Compression Ignition (HCCI), is being researched which has high 

efficiency yet experiences lower NOx emissions and reduced fuel consumption compared 

with SI engines at a given load. This technology provides a method to meet current and 

future emission legislation, whilst dismissing the need for expensive, complex and 

inefficient three-way exhaust gas after-treatment systems. 

CAl combustion can be achieved by controlling the temperature, pressure and composition 

of the fuel and air mixture so that it spontaneously ignites in the engine. To this end, 

researchers use various methods of achieving CAl combustion, one such method which 

could be incorporated into present production engines and involve minimum modification 

is the use of a variable valve timing system which can trap large amounts of burned gas 

prior to induction. This provides both the thermal energy needed to initiate combustion and 

the high levels of charge dilution required to control the subsequent heat release rate to 

sustainable levels. The use of trapped residuals occupying the combustion chamber results 

in a decreased achievable load. Therefore, in order to provide an engine capable of meeting 

the wide range load expected from current production engines and to capitalize on low 

emissions; it is envisaged that an engine capable of SI-HCCI switching would be needed. 

SI operation would be used at high and low loads and HCCI operation would be utilized at 

mid-range loads. 

Initial research separated SI operation with the use of high-lift, long-duration camshafts and 

CAl operation with the use of low-lift, short-duration camshafts. However, it becomes 

apparent that SI operation can also be achieved with low-lift, short-duration camshafts. 

Therefore providing an enlarged scope for seamless transitioning, i.e. switching from low­

lift, short-duration SI combustion to CAl combustion. 

For CAl combustion, the gas exchange process and hence engIne load, is controlled 

primarily by valve timing, therefore its effect on CAl combustion with regards to engine 

performance, exhaust emissions and operating range were investigated. A GDI injection 
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system and hence injection timing offers further flexibility over ignition phasing and 

therefore was studied as a means of combustion control. 

1.2 Objectives of Project 

The objectives of this project are to: 

1 Demonstrate CAl operation in a production type multi-cylinder engine using short­

duration, low-lift camshafts and trapping exhaust residual. 

2 Investigate CAl, SI and CAIISI regIOns usmg different camshaft profiles and 

examine the effect on exhaust emissions, fuel consumption and combustion 

characteristics. 

3 Develop potential strategy for transitioning between SIICAI operation. 

4 Explore the potential for enlarged CAl operation through the investigation of spark­

assisted CAl combustion at different EVC timings and valve durations, increased 

engine speed and late fuel injections. 

1.3 Outline of Thesis 

Following this introduction, Chapter two is a review of relevant literature relating to the 

project and is split into three main parts. First of all, the current and future emissions 

legislation with regard to vehicles is outlined in order to give context for the motivation for 

research and development of IC engines. Next, the historic and current development of CAl 

technology and various methods available to achieve CAl combustion are discussed briefly. 

Finally, issues involved with transitioning from SI to CAl and back to SI operation are 

discussed. 

3 



The basics and operation of experimental setup and test facilities used to obtain all 

measurements and data are described in Chapter 3. The key mechanisms namely, the direct 

injection system, the ECU and control system, and the variable valve timing mechanism 

used to undertake the research are described. Finally the equipment and sensors used to 

control and monitor the engine are also listed. 

Chapter 4 details the data acquisition system used to obtain pressure data and methods used 

to validate acquired data. Furthermore, load, specific fuel consumption as well as specific 

emission calculations are listed. Finally, the method used to obtain the heat release rate and 

the 10%, 50% and 90% MFB are also given. 

Chapter 5 introduces the research methodology used to undertake testing, thereafter the 

effects of valve duration on CAl combustion are investigated. An initial load-speed map 

and load-valve timing map is provided so that the operating region for the research engine 

can be established. Contour maps are used to represent engine performance and emission 

data for the SI, Spark-assisted and CAl combustion regions for both shorter and longer 

duration CAl camshafts at lambda 1.0. The effects of air/fuel ratio at lambda 1.2 on CAl 

combustion are also investigated in Chapter 5. Testing was carried out for all possible IVO­

EVC valve timing combinations including SI combustion, spark-assisted combustion and 

CAl combustion for both shorter and longer CAl camshafts. Contour maps were plotted 

and performance and emission characteristics were studied. 

Areas which offer potential for CAl combustion reglOn enlargement were studied in 

Chapter 6. It was decided from observational and simulation work that the areas that 

merited further investigation were spark-assisted CAl, high speed CAl combustion and the 

effects of late injection on CAl combustion. 

4 



Chapter 7 presents the general conclusions that can be drawn as a result of the knowledge 

learned during this project. This chapter also contains recommendations for future work 

and avenues worthy of exploration in order to progress CAl engine research further. 
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Chapter 2 Literature Review 

2.1 Introduction 

There is currently an urgent need to reduce world wide fuel consumption, green house gas 

emissions and car exhaust emissions. Transport accounted for about 24 per cent of UK 

greenhouse gas emissions in 2002. Carbon dioxide is the most significant greenhouse gas 

emitted, accounting for about 80 per cent of emissions from the transport sector in 2002 [1]. 

It is predicted that carbon dioxide emissions from road transport is expected to grow by 9 

per cent or so between 2000 and 2010. 

Many technologies and concepts have received attention from the media, as potential 

solutions for reducing fuel consumption and car exhaust emissions. However, there are still 

many issues which have to be resolved before these technologies can reach mass 

production. Technologies such as fuel cells and all-electric vehicles require substantial 

infrastructure re-construction, from fuel supply through to technology maintenance work. 

In comparison the internal combustion engine offers flexibility for further development 

with little alteration to current infrastructure. Alternative and renewable fuels can be used, 

variable valve technologies (VVT, electro-hydraulic valves) can be adopted, a range of 

exhaust after-treatment catalysts utilized. Indeed the IC engine can be developed further to 

incorporate a new combustion technique referred to as Homogeneous Charge Compression 

Ignition (HCCI). This study investigates the benefits of HCCI combustion such as 

improved fuel consumption and lower emissions compared with standard SI combustion. 

As with most technologies there are issues which need to be overcome before production 

status can be reached. This study also examines how these issues can be resolved gradually 

and within the foreseeable future; hence providing the next generation of highly efficient 

and low emission engines. 
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2.2 Emission Standards Worldwide 

The main pollutants arising from burning fossil fuel are carbon monoxide (CO), oxides of 

nitrogen (NOx), unburnt hydrocarbons (uHC) and fine particulates. The effects of these 

pollutants can be divided into local and environmental effects. At a local level, NOx and 

VOCs (emitted at ground level) can react with atmospheric oxygen in the presence of 

sunlight to contribute to the formation of ozone and the formation of acid rain leading to 

water quality problems. Combustion of Hydrocarbons under rich conditions leads to the 

incomplete carbon oxidation (C02) resulting in the formation of carbon monoxide (CO). 

This gas when inhaled causes respiratory problems, reduced flow of oxygen in the 

bloodstream and can impair mental functions and visual perception. On an environmental 

level, emissions of CO2 and unburnt hydrocarbons are blamed for accelerating Global 

Warming through increasing the Earth's Greenhouse effect. 

Emissions, such as NOx, CO and VOC, emitted from hydrocarbon fuelled powerplants, 

have been dramatically reduced over the years through continued improvement of exhaust 

gas after-treatment technologies such as catalytic converters. In the last 30 years, reduction 

has been motivated by a continual tightening of the legislation regulating the emissions of 

these pollutants. This has been enforced in all developed countries and some developing 

countries. 

Car manufacturers worldwide, follow either national emission standards or Euro standards. 

In Japan in 1976, the Central Environment Council came out with the Motor Vehicle 

Exhaust Emission Regulations, which comprehensively set the standards for NOx, HC and 

CO both for gasoline and diesel-fed vehicles. In November 1997, a report was produced 

outlining more stringent regulations and setting the path for stricter emission standards. 

The United States has two sets of standards: Tier 1 and Tier 2 which have been defined for 

light-duty vehicles in the Clean Air Act Amendments (CAAA) of 1990. The Tier 1 

regulations were published in 1991 and fully implemented in 1997. The Tier 2 standards 

were adopted in 1999, phased-in beginning in 2004. Tier II regulations are 50 to 95 percent 

lower than Tier I, depending on the pollutant and vehicle class [2]. In California, the 
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Californian Air Resources Board (CARB) has specified additional standards to Tier I 

regulations. Car manufacturers are required to produce a percentage of vehicles certified to 

increasingly more stringent emission categories, generally based on vehicle fleet emission 

averages. The current California emission standards are expressed through the following 

emission categories: Tier 1, Transitional Low Emission Vehicles (TLEV), Low Emission 

Vehicles (LEV), Ultra Low Emission Vehicles (ULEV), Super Ultra Low Emission 

Vehicles (SULEV) and Zero Emission Vehicles (ZEV). 

In China, Vehicle and engine emission standards are adopted at a national level by the State 

Environmental Protection Administration (SEP A). First emission regulations became 

effective in the 1990's. Chinese standards are based on European regulations, which are 

being adopted with a certain time delay. It is planned that Beijing will implement Euro 4 

standards for light duty vehicles by 2008, the year of the Beijing Olympics. 

Since the year 2000, India started adopting European emission and fuel regulations for 

four-wheeled light-duty and heavy-duty vehicles. In 2003, the National Auto Fuel Policy 

was announced, which envisages a phased program for introducing Euro 2 - 4 emission and 

fuel regulations by 2010. 

Table 2.1 Current and future EU and CARB legislated emISSIOns levels for 

passenger cars [3], [ 4 ]. 

Engine CO HCINMOG NOx HC+NOx PM 
Euro Standard Year 

type (glkm) (glkm) (glkm) (glkm) (glkm) 

SI 2.3 0.2 0.15 - -
Euro III 2001 

CI 0.64 - 0.5 0.56 0.05 

SI 1.00 0.1 0.08 - -
Euro IV 2005 

CI 0.5 - 0.25 0.3 0.025 

SI - 0.05 0.08 - 0.0025 
Euro V 2008 

CI - 0.05 0.08 - 0.0025 

* After 100,000 miles 
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Directive 98/69 specified Euro III emission levels in Europe, effective from 1 st January 

2001 and Euro IV emission levels introduced from 1st January 2005 and fully effective 

from 1st January 2007. Table 2.1 lists the various Euro standards and the permissible 

pollutant output (glkm). It can be seen that Euro IV emissions are approximately one 

quarter of Euro I emissions. The upcoming Euro V emissions coming into force in 2008, 

are even more stringent for both SI and CI engines. Permitted levels of HC, NOx and PM 

are 0.05, 0.08 and 0.0025 glkm consecutively, for HC this is a reduction of 66% and for 

PM a reduction of 90% over Euro IV emissions. Therefore, there is a need to drastically 

modify existing SI and CI engines in order to comply with strict upcoming regulations. To 

this end, there are on-going research projects world wide investigating methods to reduce 

emIssIons. 

Ultimately the objective of emission legislation is to push technology to the point where a 

practical, affordable zero emission vehicle (ZEV) with acceptable performance becomes a 

reality. Technology exists which provides a powerplant for road going vehicles whilst 

producing zero emissions. One such ZEV technology which has been developed at a 

conceptual stage is fuel cell technology. A fuel cell uses an electrochemical reaction to 

create electricity using hydrogen and ambient air, resulting in water vapor as the only 

emission. A fuel cell consists of two electrodes sandwiched around an electrolyte. Oxygen 

passes over one electrode and hydrogen over the other, generating electricity, water and 

heat. Hydrogen fuel is fed into the anode of the fuel cell. Oxygen (or air) enters the fuel cell 

through the cathode, encouraged by a catalyst, the hydrogen atom splits into a proton and 

an electron, which take different paths to the cathode. The electrons create a separate 

current that can be utilized before they return to the cathode, to be reunited with the 

hydrogen and oxygen in a molecule of water. Fundamentally this technology only produces 

water vapor as an emission. However, obstacles that exist with hydrogen fuel cell 

technology which make it a highly unlikely candidate for mass transport purposes at the 

present time are: the onboard storage of hydrogen at high pressure raising safety issues, 

mass production of hydrogen, and fuel supply infrastructure overhaul. 
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Another technology which is being developed to provide a reduction in emissions and a 

path towards ZEV's is the use of battery power. This is in the form of a Hybrid Electric 

Vehicle (HEV) which combines an internal combustion engine with a battery driving an 

electric motor. The battery is kept recharged by an engine-driven generator. The electric 

motor is used for low speed ranges and assisting the combustion engine at high speeds, 

allowing downsizing of both components. Due to the stop-start ability of an electric motor 

the engine can be shut-off when the vehicle comes to a stop and restarted when the 

accelerator is pressed; preventing wasted energy from idling. Fuel economy can be 

increased through regenerative braking; the energy that is recovered during braking is 

stored by the battery and is later used. Toyota Prius, have a 201 volt, 1.3kWh battery pack 

mounted under the rear passenger seat. Speeds of only 42 mph can be realized on pure 

battery power, and that is if the battery is fully charged and the engine is warmed up. 

Although exhaust emissions are reduced for HEV, based on the fact that battery operation 

does not produce exhaust emissions, there are still issues of emissions generated from 

electricity production. Furthermore, the lack of battery technology is one of the limitations 

of the HEV and the all-electric vehicle (EV) preventing mass-production. The types of 

batteries that are being tested and used are high-powered lead acid, nickel-metal hydride, 

lithium ion, and lithium polymer. Each has associated disadvantages including: the amount 

of power, cost, safety, reliability, specific energy, cold temperature performance, high 

temperature performance, calendar life, cycle life, heat generation, self-discharge, and 

abuse tolerance. The extra weight of battery packs and additional electric motor and 

associated high cost would limit HEV to a niche market. 

2.3 Current Gasoline Engine Technologies 

After investigating alternative powerplants, it is apparent that there is no readily available 

technology which offers a simple alternative. Therefore, a great deal of research has been 

dedicated to traditional SI and CI engine technology to improve emissions and fuel 

consumption. Indeed, the adoption of the 3-way catalytic converter has allowed gasoline 

engine-out emissions of CO, uHC and NOx to be reduced by over 90%. However, so that 
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the catalyst can operate efficiently, engine operation has to be maintained within a few 

percent of stoichiometry. This degree of AFR precision is beyond the capabilities of the 

traditional carburetor and so has been replaced by electronically controlled closed loop fuel 

injection systems. This has added significantly to vehicle cost, furthermore continuous 

stoichiometric operation prevents the engine from operating with a lean AFR at part load, 

leading to a small but significant increase in overall fuel consumption. 

In order to vary engine load in SI engines, air flow and fuel flow must be controlled 

simultaneously. Furthermore, the 3-way catalyst must operate with homogeneous charge 

and at A = 1.0. Intake throttling is used to control airflow intake, leading to an increase in 

pumping losses that reduce engine efficiency by up to 20%. However High Speed Direct 

Injection (HSDI), and stratified charge gasoline direct injection (GDI) engines, permit lean 

combustion by allowing fuel flow rate (and hence load), to be varied independently of 

airflow. Significant reductions in fuel consumption, particularly at part load can be 

achieved. Ultimately, though 3-way catalysts are limited to operation at stoichiometry, 

therefore the fuel savings of using a GDI engine at lean lambda is offset by the fact that 

catalysts are rendered inefficient at reducing NOx emissions away from A = 1. Even though 

the technology to achieve NOx reduction from lean bum engines is available [5], it is 

currently very expensive and can suffer from durability problems. 

A new type of technology which reduces the need for 3-way catalysts and allows operation 

over different Air Fuel Ratio's whilst offering a vast reduction in emissions and improved 

efficiency is Homogeneous Charge Compression Ignition (HCCI) also known as Controlled 

Auto-Ignition (CAl). These engines are not radically different from spark ignition engines 

found in production cars today. It is the actual combustion method which separates CAl 

engines from standard SI engines. Controlled Auto-ignition is achieved by subjecting part 

or the entire cylinder contents to temperatures above those required for auto-ignition of the 

reacting species. 
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2.4 Controlled Auto-Ignition Combustion! Homogeneous Charge 

Compression Ignition (HCCI) 

2.4.1 Benefits of HCCI combustion 

The concept of CAIIHCCI combustion can be traced back to about 20 years ago when 

Onishi et al. (1979) [6] discovered an alternative combustion method within 2-stroke 

engines that allowed a remarkable improvement in emissions and fuel consumption. 

Identifying a new lean combustion process for internal combustion engines, they called it 

'Active Thermo-Atmospheric Combustion' (AT AC). AT AC differs from conventional 

gasoline engine combustion in that combustion reactions occur spontaneously at many 

locations within the combustion chamber sometimes leading to erratic combustion. To 

Onishi et al. it was not clear where combustion commenced due to the gradual change in 

combustion pressure. They found that with this combustion mode, there was no discernible 

flame front propagating through the combustion chamber similar to SI engines. They also 

found that AT AC differs from diesel combustion in that the fuel and air are uniformly 

mixed. Therefore, Onishi et al. considered AT AC as a third combustion process of the 

internal combustion engine. Onishi et al. found that stable combustion could be achieved 

with a lean mixture at part-throttle operation. Indeed production engines were produced 

within the Japanese market [7,8] which utilized CAIIHCCI combustion at light-load 

conditions and reverted to conventional SI combustion systems at high load. 

Despite the advantages of operating two-stroke engines in CAIIHCCI combustion mode, 

there still exists many problems which make it unsuitable for mainstream automotive 

applications. Firstly during the intake process, due to the lack of low pressure, fresh charge 

has to be pumped into the cylinder. In most cases, this is achieved by initially inducting the 

fresh charge into the crankcase as the piston rises and subsequently using crankcase 

pressure generated by the descending piston to push the charge into the cylinder. However, 

this configuration prevents the use of a closed, re-circulating lubrication system, meaning a 

total loss system where lubricating oil is mixed with fuel, causing extremely high levels of 

uHC emissions. A separate pump to drive in the charge must be used to overcome this 
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problem, leading to increased costs, complexity, weight and parasitic losses that increase 

fuel consumption. Furthermore, there are associated drivability issues, since the influence 

of gas flow dynamics on the gas exchange process dictates that torque is strongly related to 

engine speed. Also, during high load operation, there are unacceptable levels of uHC 

emissions, due to fuel 'short circuiting' caused by the simultaneous opening of the intake 

and exhaust ports. 

With CAIIHCCI combustion evidently offering fuel efficiency and emissions improvement 

for two-stroke engines, researchers focused their attention on CAIIHCCI combustion 

within four-stroke engines. Four-stroke engines are more suited for automotive applications 

and the benefits of being able to run these engines in CAIIHCCI combustion mode are 

numerous. The single largest attraction of HCCI combustion is that it can reduce NOx 

emissions by 90-98% [9-13]. The underlying mechanism responsible for this reduction in 

NOx emissions is the absence of high temperature regions with the combustion. HCCI 

combustion reactions occur at the global air-fuel ratio, which is typically quite lean, and at 

a temperature significantly below those encountered within the reaction zone in diesel or 

spark-ignition engines [14]. 

Particulate matter emission levels are also low for HCCI combustion. HCCI combustion 

takes place at near homogeneous conditions throughout the mixture. Since there is no fuel­

rich diffusion burning taking place, the particulate emissions are at near zero levels. In 

principle, homogeneous mixtures of fuel and air do not produce particles of significant size 

(e.g. mass) [15]. 

HCCI combustion benefits from high thermal efficiency. Large amounts of charge dilution 

dramatically reduce the peak burned gas temperature, which in tum reduces the closed­

cycle heat losses and increases the indicated thermal efficiency to levels approaching those 

of a diesel engine [16]. 

Another benefit of HCCI combustion is improved fuel economy, Fuerhapter et al. [17] 

states that the fuel consumption benefit of such a combustion process comes from more or 
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less unthrottled operation and a high efficiency combustion. The controlled auto-ignition 

combustion is characterized by thermodynamically optimized combustion timing and very 

fast combustion and high heat release rates. So far new technologies for spark-ignition 

engines, including stratified-charge direct-injection spark-ignition (SC-DISI) engines, can 

only improve fuel economy up to 10-12% over European regulatory drive cycles [18]. The 

highest fuel consumption improvement potential is provided by lean stratified combustion 

systems. The relative expensive exhaust gas after-treatment and the sensitivity to the fuel 

quality especially the sulfur content, congests a world wide application of these systems 

[19]. HCCI combustion can achieve fuel savings of upto 20% compared with SI engine 

combustion at the same load [20]. 

2.4.2 Approaches to CAIIHCCI Combustion Gasoline engines 

The many benefits of CAIIHCCI combustion provide motivation for researchers to realize 

this combustion within four-stroke engines; ultimately developing methods to achieve 

CAIIHCCI within production engines. The initial approach of achieving CAIIHCCCI 

combustion utilized intake charge heating, this involved the use of an electrical heater to 

heat the intake air and provide the thermal energy needed for the charge to auto-ignite. Najt 

and Foster [21], used this method to highly dilute charge compositions to control the 

subsequent heat release. Even though initiating CAIIHCCI combustion through intake 

charge heating has been used in many subsequent studies, this method has limited 

automotive applications. The drawback is that energy is needed for intake air heating, 

unless heat can be recovered from engine coolant or exhaust gas, an auxiliary heat system 

most likely powered by extra fuel would be needed. Hence the fuel efficiency benefits of 

CAIIHCCI combustion would be offset against the extra energy required to heat the intake 

air. Also owing to the highly transient nature of automotive applications the large thermal 

inertias associated with heating the intake charge will make control of CAIIHCCI 

combustion with this method very hard to achieve. Nevertheless, Najt and Foster's work 

established the potential of CAIIHCCI combustion to reduce fuel consumption in four­

stroke engines. 
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Variable compression ratio can also be used to initiate CAIIHCCI combustion. Increasing 

the compression ratio allows fuels to ignite more readily. Mariott et al. [22] found that 

higher compression ratio resulted in optimum intake air temperature and higher intake air 

density. The Ricardo E6 single cylinder engine has been used to demonstrate the use of 

variable compression ratio for auto-ignition. However, since changing the engine's 

compression ratio requires overcoming the force of cylinder pressure, a reliable VCR 

device, which can fine tune the engine compression ratio and has fast response, has yet to 

be demonstrated [18]. Furthermore, using a VCR engine to achieve CAIIHCCI would 

substantially increase the cost of the engine. 

CAIIHCCI combustion can also be achieved through the use of different fuels, allowing 

greater flexibility in realizing combustion. Research studies on primary reference fuels 

(PRFs) indicated that the auto-ignition behaviour of a fuel depends largely on its 

composition, molecular size and structure [23] allowing various fuels to be suitable for 

CAIIHCCI combustion. Jun et al. [24] and Yap et al. [25] have shown that natural gas 

could be used in a CAIIHCCI four-stroke engine. Pucker et al. [26] reported that methanol 

appears to offer a wider operating range, smoother combustion and faster heat release than 

gasoline for CAIIHCCI combustion applications. In addition to being able to use different 

fuels for CAIIHCCI combustion instigation, fuel additives can be added to gasoline to alter 

combustion behaviour. Gong et al. [27] used a Di Tertiary Butyl Peroxide (DTBP) additive 

along with gasoline to investigate the effects on CAIIHCCI. They found that DTBP affects 

fuel oxidation by causing higher in-cylinder temperature and hence increased oxidation. 

They also found that increasing the concentration of DTBP retards ignition timing. The use 

of different fuels and fuel additives play an important role in offering flexibility over the 

CAIIHCCI process. However, the introduction of new fuels or additives require 

infrastructure overhaul and is expensive. 

It is apparent that the main challenge for triggering auto-ignition is obtaining sufficient 

thermal energy. Researchers turned their attention to burned exhaust gas which provided a 

ready source of thermal energy which did not incur any energy penalties like intake air 

heating. Initial efforts involved re-circulating exhaust gas from the exhaust manifold 
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through an EGR runner back into the intake manifold. Thring et al. [28] were the pioneer of 

this technique using external EGR on a SWRI Labeco CLR engine and accomplishing 

CAIIHCCI combustion. However, it is apparent that external EGR has inherent problems 

the main being that a dead volume of exhaust gases are present in the EGR runner. This 

causes cycle to cycle variations and heat losses as the exhaust gas is passed through the 

EGR runner. Furthermore, regulating the amount of EGR gas is difficult and involves 

difficult bypass valves. A method which offers more flexibility is the use of internal EGR 

through the use of negative valve overlap. With this method, the exhaust valve is closed 

early and a volume of exhaust gas is trapped, the intake valve is opened late preventing 

blow-back in the intake manifold [29]. The more advanced EVC, the greater the volume of 

trapped residual. 

Investigators involved in the 4-SP ACE [30] project realized CAIIHCCI combustion of 

gasoline at the part load, low speed range of the engine using fixed camshafts, but with 

shorter than normal valve opening duration and lower than normal valve lift. They coined 

the term Controlled Auto-Ignition (CAl) which has become synonyms for HCCI 

combustion generated by trapping residuals. Due to this reason the author will refer to 

HCCI combustion as CAl combustion within the results and discussions chapter. 

Furthermore, HCCI combustion implies that the charge is homogeneously mixed, however 

with GDI engines, at late injection the charge can be stratified. Therefore, the author 

believes that CAl is a more accurate term to describe the combustion process. 

With the advent of variable valve timing systems, the scope for CAl combustion increased 

drastically. A second residual trapping method was proposed, namely the re-breathing 

method, which allows the exhaust valve to open during the intake stroke and thus induct 

previously emitted exhaust gas. 

Over the last few years, the IEGR method of initiating and controlling CAl combustion has 

been agreed as the most feasible method which offers the best chance of CAl combustion 

being realised for automotive applications. Furthermore, this method offers the easiest 

route in terms of implementation in current production engines. Apart from the addition of 
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a new valve train and control system, there is no need for any changes to the vehicle or 

engine architecture. 

2.4.3 Challenges concerning HCCI combustion 

There exist many methods to initiate CAl combustion and the emission and fuel economy 

improvements remain a motivational factor for adopting this concept in production engines. 

However, CAl combustion presents several hurdles and challenges which must be 

overcome if CAl combustion is to be considered for application to commercial engines. 

CAIIHCCI combustion is governed by chemical kinetics and has no flame propagation, the 

principle of SI combustion. CAIIHCCI combustion is achieved by controlling the 

temperature, pressure and composition of the air and fuel mixture so that it spontaneously 

ignites in the engine [31]. Therefore determining the phasing and rate of combustion 

presents many difficulties. Several potential methods exist which can be used to control 

CAl combustion ignition timing. Christensen et a1. [32] lists the following parameters as 

controlling factors: 

• Compression Ratio 

• Inlet Mixture Temperature 

• Inlet Manifold Pressure 

• Fuel type/blend 

• Air/Fuel Ratio 

• EGRrate 

• Engine Speed 

• Coolant Temperature 

The method with the most practical basis of achieving CAl is using variable valve timing 

(VVT) , this allows limited control of combustion phasing by changing the effective 

compression ratio and/or the amount of hot exhaust gases retained in the cylinder [33-34]. 

Therefore additional methods are needed to control combustion phasing and bum rate. 

Various methods have been implemented which involve practical and conceivable changes 
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to the current production IC engines. One such method is injecting fuel directly into the 

cylinder, this provides the potential to control combustion by altering the local fuel 

concentration via varying the injection timing. The gas temperature may also be altered 

through charge cooling from fuel evaporation. Early fuel injection provides adequate time 

for fuel to vaporize and mix with the air to achieve a homogeneous charge. Late pilot fuel 

injection into the combustion chamber during the compression stroke can control the HCCI 

combustion by increasing the local fuel concentration in some regions of the combustion 

chamber. Urushihara et al. [35] directly injected fuel into the residual in-cylinder gas 

during the negative valve overlap interval for the purpose of reforming it by using the high 

temperature resulting from exhaust gas recompression. They found that with this strategy, 

the HCCI combustion region was expanded drastically without any increase in NOx 

emISSIOns. 

Another challenge with CAIIHCCI combustion is that CO and uHC emission levels of CAl 

combustion can reach or even surpass those of SI engines. The source of these emissions 

has generally been considered to be incomplete combustion in crevices and/or near walls 

where the mixture is cooler [36]. Through the investigation of single and multi zone models 

Martinez-Frias et al. [37] reason that uHC and CO emissions result from cold mass in 

crevices and boundary layers, which are too cold to bum to completion. The use of a 

relatively cheap 3-way catalyst can curb CO and uHC emissions. 

One of the major hurdles blocking progression to commercial production of CAIIHCCI 

engines is the limited operating boundary compared with traditional SI operation. Due to 

the trapping of exhaust gas residual, there arises a CAIIHCCI combustion region with a 

subsequent boundary where EGR percentage and equivalence ratio define and ultimately 

limit this boundary. CAIIHCCI combustion is limited by three regions of unsatisfactory 

operation identified primarily by Thring et al. [28]. These are the 'misfire region,' 'power­

limited region,' and the 'knock region.' In the misfire region, either the mixture is too rich 

or the EGR percentage is excessive for consistent combustion resulting in engine misfire. 

In the power-limited region either the mixture is too lean, or the EGR percentage is 

excessive for the indicated power to exceed the friction power. In the knock region, under 
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rich conditions and low EGR percentage combustion is so rapid that the engine is very 

noisy and knock is occurring. 

Figure 2.1 Typical HCCI Operation Map indicating boundary regions [28] 

The CAIIHCCI combustion region can also be appreciated further by describing the effects 

of EGR percentage on load and speed. Minimum load is limited by misfire, at these 

conditions there is a lot of residual gas but the exhaust gas temperature is too low to initiate 

auto-ignition. Maximum load is restricted by airflow, at these conditions the airflow is the 

maximum that the engine can breathe due to reduced valve lifts used for a negative valve 

overlap configuration to achieve CAIIHCCI combustion. 

At low equivalence ratios and low EGR percentage i.e. high loads, HCCI engines are 

extremely loud and measured in-cylinder pressure traces show strong oscillations 

resembling those for a knocking spark ignited engine [38]. Yelvington et al. developed 

numerical simulations used to predict the viable operating range of HCCI combustion and 

the reason for knock being a limiting factor. They reasoned that CAIIHCCI knock 

originates because of local inter-pressures due to very fast chemical heat-release. Indeed, 
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the potential method of using boosting to increase the CAIIHCCI combustion boundary 

also suffers from high cylinder inter-pressures (around 250 bar for 2 bar boost pressure), 

which can cause premature engine failure. Furthermore, a drawback to encroaching the 

high load boundary using boosting is the gas exchange process limited by EGR percentage. 

Olsson et al. [39] have demonstrated that high load CAIIHCCI combustion is viable by 

applying boost. However, they found in most cases that gas exchange efficiencies was load 

limiting. 

It is apparent that to increase the boundary of the CAIIHCCI combustion region whilst also 

obtaining control over the auto-ignition process, a combination of technologies is required. 

2.4.4 Transitioning from SI to HCCI mode 

Various technologies can be used to enlarge the CAIIHCCI combustion regIOn, as 

described, but ultimately due to the limited operating region of HCCI combustion, a SIICAI 

hybrid engine would need to be used. SI combustion could be used for cold start and high 

loads and CAIIHCCI combustion can be used for operation at low to mid-range loads. This 

would allow the emission and fuel consumption improvements with CAIIHCCI combustion 

at low-mid loads while maintaining the full load operating range of the IC engine at high 

load using SI combustion. 

Researchers have investigated the effects and feasibility of transitioning from S I 

combustion to CAIIHCCI combustion and back to SI combustion [40]. Comprehensive 

work involving SI-HCCI-SI mode change was carried out by Koopmans et al [41]. They 

identified three transition modes: 

1. Transition from HCCI part load to SI high load conditions and vice versa. 

2. Transition from HCCI low to middle speed range to SI high speed range and vice 

versa. 

3. Transition from SI operation to HCCI operation. 
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Transition mode 3 proved the most difficult to achieve. Koopmans et al. states that the gain 

in fuel conversion efficiency has to be known or predicted in order to adjust the fuel flow 

and avoid a torque jump. The authors found that with the proper setting of the control 

parameters, no problems with mode change were encountered. 

Sun et al. [42] undertook transitioning a HCCI engine along a given power curve of 3.5 kW 

to 30 kW. In order to set smooth transition from one point to the next, the fuelling rate, 

boost level, EGR intake charge and coolant temperature were varied accordingly. They 

achieved ramping up time of 5 seconds and ramping down time of 1 second. The work 

carried out paved the way for using CAIIHCCI engines as a potential power plant for a 

hybrid vehicle. 

A method which has been viewed as a potential way in which SI-HCCI-SI transition can be 

made is through the use of a cam profile switching (CPS) system. On both the intake and 

exhaust camshafts there are two lobes on each camshaft with two different valve profiles. 

There is a low-lift, short-duration lobe for CAIIHCCI operation and a high-lift, long­

duration lobe for SI operation. Milovanovic et al. [43] used an engine with such capabilities, 

there was a fully variable valve timing system with cam profile switching (CPS) 

capabilities to transition from SI-HCCI-SI modes. The authors investigated the influence of 

engine torque, power, combustion stability and maximum rate of pressure rise (MRPR) 

controlling parameters regarding transition smoothness. For cold start and mode transition, 

the research engine is started in SI mode and when the coolant temperature reaches 90°C, 

there is a mode transition from SI to HCCI achieved by first reducing the valve lift and then 

advancing exhaust valve timing and trapping exhaust residual; realizing HCCI combustion 

within one engine cycle. Changing from HCCI to SI was not so smooth and the authors 

reported a considerable change in the engine torque and uHC. This was due to the 

unsynchronised valve profile changes, throttle response and unadjusted fuelling rate that in 

turn caused a very weak combustion or misfire or both. It was found that throttle response 

was more influential on the SI-HCCI-SI transition process than valve profile switching. 

Furthermore, Milovanovic et al. found that during transitioning from HCCI back to SI, the 

uHC values experienced a sharp rise during the first few cycles in SI mode before reaching 
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a stable value. When transitioning from SI to HCCI mode, there was not an immediate drop 

in NOx values when HCCI mode was realised. Instead, there was a few cycles lapse before 

NOx values dropped to the level of those expected for HCCI. 

The SI-HCCI-SI transition methodology provides a feasible method in which the benefits 

of HCCI combustion can be utilized while high loads can still be achieved with SI 

combustion. 

2.4.5 Feedback Control Systems for HCCI combustion 

It becomes apparent if HCCI combustion is to see use in automotive applications that a 

system has to be implemented that could take into account transient operation and select the 

right operational mode, i.e. SI or HCCI combustion mode without any interaction by the 

driver. Furthermore this system would also have to have capabilities which can select the 

right values for optimum ignition time; it is obvious that a system with a feedback control 

system is required. Researchers have begun to develop feedback systems, however, these 

systems are still at a primitive stage in comparison to how intricate these systems need to 

be. Nevertheless, work has been carried out which can give an insight into the requirements 

and sophistication of a feedback controller. 

Haraldsson et al. [44] applied a state feedback based closed-loop combustion control 

(CLCC) using Fast Thermal Management (FTM). Using this control method the European 

EC2000 drive cycle was mimicked. The CLCC was designed to keep a desired CA50 at all 

times and compare this to the set point for the cylinder in question. The result was sent to 

the PID controller where a duty cycle for a PWM signal is calculated. The hot air throttle 

receives the PWM with the calculated duty cycle, while the cold air throttle works with an 

inverse duty cycle i.e. if the hot throttle is wide open the cold one is shut. Ultimately, the 

load controller handled load steps and speed ramps satisfactorily and has a time constant of 

5 to 6 engine cycles or 0.30 to 0.36 seconds at 2000 rpm. In their research, a combination 

of CAUHCCI and SI operation is shown to be superior to scaled CAIIHCCI approach, 

which suffers from low mechanical efficiency at low load. It was demonstrated that both 
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CO and NOx emissions are well below the Euro IV limits. HC emissions were slightly 

above the limit when calculated without cold start. The authors concluded that for 

improvements in fuel consumption the current PID and state feedback controllers were 

sufficient. However, emissions could be decreased further using an improved controller. 

Mathews et al. [45] have also developed a controller to simulate drive-by-wire conditions 

where the driver commands the engine torque output according to the perceived vehicle 

speed. Ultimately, they developed a load following controller with a table-lookup feed­

forward component and a feed-back component based on the cumulative difference 

between the targeted and measured output. Matthews et al. were able to follow the 

commanded values of NIMEP not fuel equivalence ratio (cf» dynamically under timing 

varying operating conditions. The temperature was modulated between 1 OO°C and 120°C. 

The speed was modulated from 1350 to 1650 rpm. The cf> target was at stoichiometric. A 

transition time of 0.25 seconds was used to vary NlMEP with a 3 second lapse between 

each transition. 

Fuerhapter et al. [17], studied whether a closed loop combustion control is necessary and if 

it has to be cylinder individual. A possible solution is provided in the way of a cylinder 

pressure signal which gives the possibility of a real combustion control. However, there are 

still cost issues involved with mass production of these sensors. Fuerhapter et al. also 

designed a block diagram which represented a transition algorithm. In this they took into 

account EVC position for stationary CAIIHCCI operation and EVC position for the first 

CAIIHCCI cycle. They included a correction for first cycle value by actual load 

temperature history. They included a parameter for transition function which was cycle 

based. 

A feedback control system is a method in which CAIIHCCI combustion can be controlled 

in order for it to be used within production engines. Other technologies are emerging as a 

possibility for enlarging the CAIIHCCI combustion region. 
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2.4.6 Emerging HCCI Technology 

Various authors are using novel methods of investigating CAIJHCCI combustion, which 

may be considered unconventional. These methods involve techniques utilizing spark to aid 

HCCI combustion, using two fuel injectors for each cylinder and using 2-stroke/4-stroke 

engines. These techniques veer off the conventional CAIJHCCI combustion path yet still 

cover interesting concepts which could be used to expand the CAIJHCCI combustion 

reglOn. 

Hyvonen et al. [46] studied operating conditions usmg spark assisted CAIJHCCI 

combustion. They state that spark assistance has a clear effect on CAIJHCCI combustion 

initiation up to lambda values of about 3. Furthermore, slightly lower compression ratio or 

inlet air temperature are needed for the same operating point with spark assistance 

compared to pure auto-ignited CAIJHCCI. The combustion fluctuations are higher with 

spark assistance than without, due to cycle-to-cycle differences in combustion phasing that 

are introduced with the initial SI flame kernel development. With spark assistance NOx 

emissions were 10-20 ppm higher compared with conventional CAIJHCCI. It is reasoned 

that high temperature is reached locally in the spark ignition flame kernel, despite the mean 

cylinder temperature is the same in both cases. Using spark assistance for controlling the 

combustion phasing between mode transfer from HCCI to SI leads to large combustion 

fluctuations in the intermediate combustion region. These intermediate combustion cycles 

have to be minimised during combustion mode transfer. Ultimately Hyvonen et al. say that 

closed loop controls of several parameters are needed to make a smooth and fast 

combustion mode transfer possible. 

Another technique which has been used to increase both the lower and upper limits of 

CAIJHCCI combustion is through regulating coolant water temperature. This method is 

practical and can be implemented within production IC engines based on the cooling water 

system already used within production engines. Milovanovic et al. [47] controlled coolant 

temperature to extend the operating range of CAIJHCCI combustion, varying cooling water 

temperature from 65°C to 90°C in order to investigate whether the boundary region of 

25 



CAIIHCCI could be enlarged. They found that cooling water temperature had a significant 

effect on ISFC, ISNOx and ISHC. Decreasing cooling water temperature increased ISHC 

and ISNOx due to enhanced heat transfer and thus reduced temperature near the cylinder 

walls and hence the existence of colder boundary layers that suppress the fuel oxidation 

process. Lower coolant temperature reduced fuel consumption. This was reasoned due to 

improved combustion and thermal efficiencies (due to improved combustion stability). The 

results obtained indicated that with reducing coolant temperature, the upper limit can be 

extended up to 14% while with increasing the coolant temperature the lower limit can be 

extended up to 28%. Although it is envisaged that controlling cooling water temperature in 

a production HCCI engine where load and speed is changing constantly is difficult to 

implement. The authors have reported that it could be possible for a BMW ECU to control 

a thermostat and electric water pump using a control algorithm to manage coolant flow in 

response to engine speed, load and outside temperature. 

There are several methods in which the CAIIHCCI region can be expanded. Aroonsrisopon 

et al. [48] states that the stratified charge shows potential as a viable enhancement for 

CAIIHCCI combustion at the lean low-load limit. Two Mitsubishi GDI injectors were 

installed in their test engine; one injector was assembled in the combustion chamber in the 

existing spark plug hole and provides charge stratification via Direct Injection. A second 

injector used for homogeneous charge was installed upstream before the intake tank and 

was called the premixed injector (PI). They reported that stratified charge shows potential 

as a viable enhancement for CAIIHCCI combustion at the lean limit. The combustion 

becomes more stable with more stratified charge. They found that at the rich limit, the 

stratification was limited by the high-pressure rise rate and high CO and NOx emissions. 

Urushihara et al. [49] also used two injectors to implement a novel method in which, there 

was a direct injector coupled with a port fuel injector. The direct injector injected near the 

spark plug causing a stratified mixture. The port fuel injector injected a homogeneous 

mixture. The stratified charge, near the spark plug, instigated CAIIHCCI combustion within 

the combustion chamber due to higher pressure and temperature. SI-CI combustion (the 

name dubbed by the authors) reduced the mixture temperature needed at the onset of 
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compreSSIOn for obtaining stable and moderate combustion. As a result the maximum 

lMEP obtained with CI combustion improved. However the authors found that NOx 

emissions are produced by SI flame propagated combustion and the NOx emissions level is 

higher than that of the HCCI combustion. 

Another novel method discussed by Osbourne et al. [50] is the prospect of two-stroke/four­

stroke switching engines. Using a poppet valve combustion system with capability for both 

2-stroke and 4-stroke combustion, it is envisaged that the CAIIHCCI boundary region can 

be increased. It is thought that two-stroke operation will prove useful for highest specific 

load for CAIIHCCI engines in passenger cars. Two-stroke operation also offers exceptional 

torque at low engine speeds, making it attractive for downsized engine concepts. Four­

stroke operation has proved to be useful for low/mid load ranges and low/medium speeds. 

Therefore it appears that a two-stroke/four-stroke concept would drastically increase the 

CAIIHCCI boundary region. In their research Osbourne et al. reported that engine speeds 

of 3250 rpm were achieved and higher speeds were limited only by valve train 

considerations. 

It is important that researchers study methods which veer of the normal accepted path for 

CAIIHCCI combustion. This helps bring about techniques which can enlarge the standard 

operational region of CAIIHCCI combustion. The purpose of CAIIHCCI combustion is to 

reduce emissions and improve fuel economy, the method in which this is achieved and 

whether or not it is conventional CAIIHCCI combustion is less important. 

2.5 Motivation 

One of the most feasible methods of achieving CAIIHCCI combustion, as discussed in the 

literature survey, is the use of trapping exhaust gas within the combustion chamber by 

closing exhaust valves early. Percentage of trapped residual, based on EVC time, valve lift 

and valve duration, limits the operating region. Usually a shorter than normal valve 

opening duration and lower than normal valve lift strategy is used. In this study modified 

valve profiles for both intake and exhaust camshafts will be used to investigate their effect 
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on CAl operation. Other methods have been identified as possible solutions to increasing 

the operating region, among which spark assistance has the potential to expand the 

CAIIHCCI region near the misfire limit and will be investigated. Direct injection has also 

been demonstrated to be a very useful means to control CAl combustion and hence a 

systematic investigation of injection will be included in the current study. Split injection 

has the potential benefits of charge reforming/cooling and stratified charge to be realised. 

Due to the hardware limitation, individual effect of early injection and late injection, as 

they would be used in a split injection strategy will be studied. 

2.6 Summary 

This literature survey has highlighted the need for a gasoline engme which has low 

emission output and can adhere to tightening legislation, while delivering reduced fuel 

consumption over an acceptable load and speed range. There are many prevailing 

technologies, i.e. hydrogen fuel cells and HEV's, which offer the potential of low 

emissions, however, as reported in the literature survey, they have associated hurdles which 

need to be overcome before they are considered for automotive applications. 

The ongoing research with SI and CI production engines has highlighted that developments 

can be made to reduce emissions and fuel consumption within these engines, without the 

need for expensive infrastructure overhaul. The literature review has shown that the 

greatest emissions and fuel consumption reductions can be sought with CAIIHCCI 

combustion technology. This technology does not involve the need for expensive exhaust 

after-treatment systems nor does it require major alterations to existing production engines. 

However, CAIIHCCI technology still has several issues that must be addressed if this 

technology is to see service within automotive applications. Combustion phasing and 

limited operating range are the main challenges associated with CAIIHCCI combustion. It 

has been demonstrated that a VVT mechanism can be used to achieve CAIIHCCI 

combustion whilst gasoline direct injection technology offers control over combustion 

phasing. Spark assistance, split and late injection help expand the operating region. 

Therefore, investigation of a GDI engine with a VVT mechanism would be useful, with 
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importance being given to studying combustion phasing control and combustion region 

expansIOn. 
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Chapter 3 Experimental Set-up and Test Facility 

3.1 Introduction 

This chapter describes the basics and operation of experimental setup and test facilities 

used to obtain all measurements and data. The key mechanisms namely, the direct injection 

system, the ECU and control system, and the variable valve timing mechanism used to 

undertake the research are described. Finally the equipment and sensors used to control and 

monitor the engine are also listed. 

3.2 Ford 1.6 L Sigma DI Gasoline Engine 

A 1.6L Ford pre-production prototype Direct Injection Gasoline engine, supplied by Ford 

Motor Company was used to obtain all the results presented in this thesis (Table 3.1). The 

cylinder block was based on a standard Ford 1.6L Zetec-SE engine found in production 

models like the Puma™ and Focus™. Compared with its production type counterpart, the 

cylinder head had two main modifications to allow control for CAl combustion and to 

undertake the specific direct injection and valve timing research intended to be carried out 

at BruneI. 

The first modification of the cylinder head, commissioned by Ford Motor Comapany, was a 

Variable Cam Timing (VCT) system, consisting of a solenoid valve actuator regulating a 

spline type VVT sprocket, which was installed on both the intake and exhaust sides. 

Corresponding oil passageways bored from a lubrication supply passageway was used to 

supply oil to the VVT mechanism. 

The other cylinder head modification was the installation of a direct injection fuel supply, 

commissioned by Bosch GmbH. An injector was installed in each cylinder with a 70° spray 

cone angle. Fuel was supplied via a low pressure (4 bar) fuel pump, powered from a 12V 

supply, to a cam driven pump, where fuel is pressurized at 100 bar along a common rail. 
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An Injector Driver Unit was used to compute the desired fuel injection time and amount 

and send this signal to the injector. 

The engine was installed in a dedicated test cell within BruneI's engine research lab. The 

test cell provides the engine with an industrial extraction fan facility, fuelling from an 80 

gallon underground gasoline tank and cooling water from an independent water circuit. 

Adjustable engine mounting was used to seat the engine and couple it to a dynamometer on 

independent mounting. 

Table 3.1: Ford test Engine Specifications 

Engine Type Inline 4-cylinder 

Bore (nun) 79 

Stroke (nun) 81.4 

Displacement (cm3
) 1596 

Compression ratio 11.5 

Fuel Supply Direct Injection 

Fuel Injector Swirl Injector 
(Spray cone angle) (70°) 

Fuel Rail Pressure 10MPa 

Fuel Gasoline 95 RON 

3.3 Engine Control and Operation 

This section details the different systems used to control and operate the engme. The 

systems used to operate the engine and ensure safe running were: cooling water supply, air 

intake system, engine lubrication and fuel supply. The actual control systems which are 

used to control engine parameters specifically for testing purposes are also discussed in the 

chapter; these are the Engine management system, VVT mechanism, direct injection 

system and the dynamometer. 
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3.3.1 Engine Water Cooling 

Engine 
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Figure 3.1 Cooling water circuit schematic 

Attention was first gIven to a cooling water circuit which prevented the engIne from 

overheating. In terms of experimentation this also allows a steady operating temperature of 

90°C, replicating standard engine temperatures. Engine water cooling was achieved through 

a heat exchanger, a schematic representation is displayed in Figure 3.1. A three-way 

thermostatically controlled valve was used to introduce cool water to the engine and 

maintain stable operating temperatures. The cold water flowrate through the heat exchanger 

could be controlled via a valve allowing control over engine cooling water temperature. 

The higher the cold water flowrate through the heat exchanger, the cooler the engine 

cooling water. The thermostat opened when the engine water temperature reached 95°C 

pulling in cool water and reaching a stable temperature. A separate water supply was fed to 

cool the dynamometer. 
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3.3.2 Air Intake System 

The system that was devised next and used for operation purposes to provide the necessary 

pollutant-free air is the air intake system. The system used replicated the intake system 

used on a road-going car, apart from the airflow meter. A paper-element type air filter 

made of resin impregnated paper was used for air filtering. A standard intake tube led into 

the air filter housing, the clean air then flowed through the airflow meter before flowing 

into the intake manifold. The air filter housing, intake tube and air filter were the same as 

the intake system used for a standard Ford Fiesta with a 1.4L Zetec engine. Since the 

engine was naturally aspirated there was no need for auxiliary air supply. 

3.3.3 Engine lubrication and oil cooling 

Attention also had to be given to engine lubrication in order to avoid premature engine 

failure, this was achieved using 10W/40 Grade engine motor oil. This was provided via an 

oil pump which pumped oil to all moving parts. The oil passages in the cylinder block were 

based on a production type Ford 1.6L Zetec engine. However, because of the modified 

cylinder head with variable valve timing mechanism, a special oil passage way was bored 

to allow oil to reach here. 

3.3.4 Fuel Supply System 

For purposes of investigating the effects of direct injection on CAl combustion, a direct 

injection fuel system was used. This section discusses the fuelling system used to inject 

directly into the cylinder and the injectors used for DI purposes. 

A low pressure pump powered from a 12V supply is used to supply fuel from the tank to 

the high-pressure pump, Figure 3.2. The high-pressure pump is driven by the camshaft and 

delivers an engine speed-dependent fuel quantity. 
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Figure 3.2 Diagram of the fuel rail and also a schematic of the fuel system [51] 

The high-pressure pump then distributes the fuel along the common rail to the high­

pressure inj ectors. It is important that the rail guides a defmed fuel pressure to the high­

pressure injectors and provides adequate volume to compensate for pressure pulsations. 

The injectors were installed in the cylinder head, with care taken for positioning purposes. The 

injector, Figure 3.3, consists of housing, a valve seat, a nozzle needle, a spring and a coil to 

create the magnetic field. If the coil is energized, the nozzle needle is raised against the spring 

pressure by the valve seat so that the fuel flows into the combustion chamber. When the 

electrical current is switched off, the nozzle needle is pressed by the spring pressure into the 

valve seat and interrupts the fuel flow. 
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Figure 3.3 Cut-away diagram of injector [51] 

Injection timing is defmed as the duration and angular position of the injection pulse in 

relation to top dead center. In the results presented, the convention used to present injection 
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timing is referencing injection to intake TDC. Injection before TDC is denoted with a 
. . 

mInus SIgn. 

3.3.5 Engine Management 

After the correct operating systems had been setup, a method to control the engine had to 

be implemented; to this end an engine management system was devised. This allowed 

complete control over the engine via a DOS based computer interface and an ECU. 

Communication with the engine was achieved through the ECU, this involved receiving 

data from the engine and sending commands to the engine. A standard PC was used to 

relay data to and from the ECU which then communicated with the engine. The injection 

was the only parameter which was controlled by a secondary system, the Injector driver 

Unit (IDU). The ECU could be connected to the parallel port on the computer via a MAC 

module, the MAC required a permanent 12V power supply. It was envisaged that a break­

out box was needed for systems diagnostics. A break-out box could monitor signals sent 

from the engine to the ECU and vice versa. The box proved an invaluable source for 

identifying and repairing faulty sensors. Furthermore, the box could also be used to 

interrupt signals sent from the ECU to the engine through the use of a switch. This was 

useful for the controlling of spark and establishing whether pure CAl combustion was 

occurring. Figure 3.4 provides a schematic diagram of the engine management system. 

In order to communicate with the ECU and relay commands the Bosch ETAS tools VS-l 00 

engine management system was installed on the computer. The system could be used to 

control: the air-fuel ratio, the fuel injection time, spark ignition timing and the charge 

motion valve opening position. The ECU was used to monitor the speed, airflow, camshaft 

position and throttle position. There was the facility to control and monitor various other 

parameters, however, these did not have to be altered after initial set-up. 

The VS-I00 program was binary coded and every value had to be inputted in binary form 

(Table 3.2a and 3.2b). A value could be used to switch on desired and selected functions. 
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Each switch activated a function; for example if the binary number 57 was inputted, this 

would activate switch 1, 4, 5 and 6 and corresponding functions, leaving the others 

inactivated. 
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Figure 3.4: Schematic representation of engine management system 

Table 3.2a Binary Value and 

corresponding switch 

Binary Value S wi tchiFunction 

I 1 

2 2 

4 3 

8 4 

Table 3.2b Binary Value and 

corresponding switch 

Binary Value Switch/Function 

16 5 

32 6 

64 7 

128 8 
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Camshaft position sensor 

So that the engine management system can monitor camshaft position, a Hall sensor was 

used (Figure 3.5). Two Hall sensors were installed, one on the intake camshaft side and one 

on the exhaust camshaft side. This consists of a Hall element with a semiconductor wafer 

through which current flows. This ferromagnetic Hall element responds to activation by a 

trigger wheel rotating in unison with the camshaft by generating voltage at right angles to 

the direction of the current passing through it. 

The basic procedure for determining the camshaft position is for the microprocessor to 

respond to trigger-wheel gaps by checking for Hall voltage and determining whether 

cylinder no. 1 is in the compression or the power stroke. 

Special trigger-wheel designs allow the camshaft signal to be used as an emergency back­

up in the event of crankshaft sensor failure. However, the resolution provided by the 

camshaft signal is much too low to allow its use as a permanent replacement for the 

crankshaft rpm sensor. 

81 .. 

8 tt c 
I II 

Figure 3.5 Differential Hall-effect sensor [52] 
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Figure 3.6 Crankshaft Position sensor 

The engine's rotational speed and crankshaft position were determined via a crankshaft 

position sensor and relayed to the engine management system. The sensor is mounted 

directly opposite one of the 360 flywheel teeth. The sensor contains a ferromagnetic ring 

gear, which is installed on the flywheel of the engine. The flywheel has a deliberate tooth 

missing from its periphery. An inductive speed sensor registers the equally-spaced tooth 

sequence. This sensor consists of a permanent magnet and a soft-iron core with copper 

winding (Figure 3.6). 

The magnetic flux field at the sensor responds as the teeth on the sensor gear pass by, 

generating AC voltage. This continues until it reaches the missing tooth and the ECU 

registers a response. The ECU synchronizes the crankshaft position according to this point 

in time. 
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Throttle 
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Figure 3.7 Throttle-valve potentiometer [52] 
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The throttle signal is sent by the engine management system to determine throttle opening. 

A value can be inputted in the Bosch VS 1 00 program to alter the angle, with Wide Open 

Throttle being the default position. Throttle angle could also be changed manually through 

a purpose built slider. It was necessary to use throttling for initial start-up purposes. 

The throttle consisted of a potentiometer wiper arm, Figure 3.7, fastened to the throttle­

valve shaft. The potentiometer wiper arm has resistance tracks connected to an electric 

motor. A 5 V supply was distributed between the resistance tracks; the ratio of distributed 

voltage determined the throttle angle. 

Charge Motion Valve 

The charge motion valve can be used by the engine management system to control the 

intensity of the charge movement. The valve is operated by a motor which can vary the 

angle of a plate and influence the motion of the charge. The intake manifold consisted of 

two ports near the intake valve, one port can be partially blocked creating high charge 

movement. In stratified mode, this inducted air motion assures the mixture transportation to 

the spark plug and supports mixture preparation. For regions of low engine-speed and 
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torque the charge motion valve is partially closed, whereas in homogeneous operating 

mode the charge motion valve was fully opened and there was no introduction of swirl 

motion. 

Manifold Absolute Pressure sensor 

A MAP sensor was pre-installed directly on the intake manifold and provided an absolute 

pressure measurement during various engine operating loads. This corresponding signal 

was sent to the engine management system which could be used along with other 

measurements by the control system to calculate fuel injection timings and ignition timings. 

The sensor element is made up of a silicon chip, into which a pressure diaphragm has been 

etched. Pressure changes can be registered as changes in resistance. The evaluation and 

calibration circuitry are integrated on the chip. 

3.3.6 Variable Valve Timing Mechanism 

In order to undertake CAl combustion, control of valve timing was necessary. Advancing 

or retarding both intake and exhaust position was undertaken through the use of a variable 

valve timing sprocket mechanism (Figure 3.8). A custom made intake and exhaust sprocket 

mechanism was developed by INA Germany which was slotted onto the respective 

camshaft (Figure 3.9). A mount was designed to house the camshaft angle actuator which 

supplied oil to the sprocket and the camshaft. A change in the position of the sprocket 

pulley relative to the camshaft was achieved due to a change in the oil pressure supplied by 

the camshaft angle actuator. The camshaft angle actuator consisted of a solenoid valve 

operated by a square wave signal. The valve could be controlled to open by very small 

increments controlling the flow off oil to the variable valve timing mechanism. Oil also 

acted as a lubricant but its main purpose was to supply a set volume of oil to the VVT 

mechanism and control the camshaft shift angle. The greater the flow of oil, the greater the 

camshaft shift. The camshaft was controlled by the VS 100 Bosch control program; 
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however an additional box was developed to control the square-wave signal to the actuator 

in case of malfunction by the program. 

Figure 3.8 Diagram of VVT mechanism Sprocket fitting on camshaft [52] 

1. Bearing Bush 
2. Stopping Ring 
3. Piston Plate 
4. Tube 
5. Spline bush 
6. Damping ring 
7. Housing 
8. Bell Gear 
9. Spring 
10. Screw 
11. O-ring seal 
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Figure 3.9 Sectioned Drawing of VVT Mechanism Sprocket and oil passageways [52] 
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3.3.7 Dynamometer 

1. Rotor 
2. Rotor Shaft 
3. Coupling Flange 
4. Water Outlet with 

thermostat 
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12. Water Inlet 
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14. Water outlet pipe 

Figure 3.10 Typical Eddy Current dynamometer layout [51] 

The final control method applied to the engine involved measuring power output and 

running constant speed tests. A Heenan & Froude eddy-current engine dynamometer type 

Mark 1 was used to perform all experimental work. The eddy current steady state 

dynamometer operates on the principle of electro-magnetic induction to develop torque and 

dissipate power, Figure 3.10. A toothed rotor of high permeability steel rotates with a fine 

clearance between water-cooled steel loss plates. A magnetic field parallel to the machine 

axis is generated by two annular coils and motion of the rotor gives rise to changes in the 

distribution of magnetic flux in the loss plates. 

This in tum gives rise to circulating eddy currents and the dissipation of power in the form 

of electrical resistive losses. Energy is transferred in the form of heat to cooling water 

circulating through passages in the loss plates, while some cooling is achieved by the radial 
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flow of air in the gaps between rotor and plates. Power is controlled by varying the current 

supplied to the annular exciting coils, and very rapid load changes are possible. 

3.4 Fuel Flowrate, Temperature, Pressure, AFR and fuelling 

measurement 

This section discusses the devices used for measurement purposes, namely: fuel and air 

flowrate, temperature, engine speed, pressure and AFR. In addition to these measurements, 

a data acquisition system was also implemented; this is discussed in chapter 4. 

3.4.1 Fuel Flowrate and Air-mass Flowrate measurement 

Figure 3.11 Mains Safety Power Supply switch 

(left), 100cc Plint and Partners Burette (right) 

air 
flow 

collector 
electrodes 

~ 
to 

engine 

Figure 3.12 Air-mass 

flowmeter [53] 

Fuel readings were taken using a 100 cc Plint and Partners burette. Figure 3.11 shows the 

apparatus used to rig the burette. A mains safety power supply switch was used to open a 

valve to allow standard gasoline fuel to flow to the engine bay. Secondly a manual valve 

was used to allow the fuel to flow through the burette on-route to the engine. The burette 

itself had two valves, which basically allowed the burette to be filled to the 100 cc mark, 
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then the supply valve to the burette would be closed and the delivery valve would be left 

open. The time taken for 100 cc of fuel to be used by the engine would be measured using a 

standard stop watch. 

A Lucas Dawe Corona Discharge meter, type 1642A was used to measure the 

instantaneous airflow rate, Figure 3.12. The meter was installed between the air filter and 

the throttle valve and registered the air-mass flow (kg/h) drawn in by the engine. A corona 

wire sits within the meter and is maintained at a high voltage of around 10 kV, this causes 

ionization of the air within the meter and a corona discharge. As a result, an ion flow is 

established between the wire and the two tubular collector electrodes [53]. As air flows 

through the meter, the ion streams flowing to the two electrodes are deflected causing an 

imbalance between the ion currents flowing to the two electrodes. The difference in the two 

current flows is proportional to the air mass flow rate through the meter. 

3.4.2 Temperature Measurements 

Standard RS K type thermocouples were used to measure temperature. Thermocouples 

consist of two wires of dissimilar metals joined near the measurement point. The output is a 

small voltage measured between the two wires (Figure 3.13). This voltage can be converted 

to a calibrated temperature and displayed on a digital display. 

Four thermocouples were mounted in each runner of the exhaust manifold. Two 

thermocouples were installed in the runners of the intake manifold. Since there was little 

variation in inlet temperature throughout the intake manifold it was deemed adequate to use 

two thermocouples. Another thermocouple was used to measure the cooling water 

temperature. This thermocouple was used to monitor the engine temperature and rule when 

CAl combustion was possible. The thermocouples were linked into a digital display unit 

where the various temperatures could be noted. 
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Figure 3.13 Schematic diagram of a standard bimetal thermocouple 

3.4.3 Shaft Encoder 

A shaft encoder supplied by Encoder Technology, type EC 58 was used to measure 

rotational speed, and indicate TDC. The encoder was driven directly by the crank shaft and 

had a resolution of 720, and produced two pluses per degree of crankshaft rotation giving a 

clock speed. The optoelectronic type shaft encoder consists of a plastic disc driven by the 

crankshaft with a photographically produced pattern of transparent and opaque areas, 

through which light is directed to photo sensors [54]. The encoder produces two main 

signals: the first is a train of clock pulses and the second is a single pulse per revolution of 

the crankshaft. The single pulse was aligned with the intake stroke top dead centre and used 

as the cycle reference for the Data Acquisition System. 

3.4.4 Pressure Inducer 

The Kistler 6061B piezoelectric transducer (Figure 3.14) was installed in cylinder 1 to 

measure in-cylinder pressure. In a piezoelectric pressure transducer, a pressure-sensing 

diaphragm transduces the force to a stack of disks made of piezoelectric ceramics or 

crystalline quartz. The electrical charges, picked up from the faces of the stack, are 

proportional to the pressure. 
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Figure 3.14 Schematic of Kistler 6061B piezoelectric transducer (left), photo of Kistler 

6061B (right) [54] 

The transducer is of the high impedance type and requires a charge amplifier (Kistler Type 

501) for charge-to-voltage conversion. The measurement range was 0-100 bar gauge, a 

sensitivity of -6 pC/bar and a operating temperature range of -50 to 350°C. 

3.4.5 Lambda Sensor 
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Figure 3.15 Lambda Oxygen Sensor: Position in exhaust pipe [55] 

A Horiba MEXA-II0A AFR Analyzer unit was used to display the lambda reading. A 

VEGO wide-band sensor (Figure 3.15) was installed in the exhaust pipe and had a 

capability of measuring excess air ratio (lambda) from 0.00-9.99 and oxygen concentration 
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(02) from 0-25 vol%. The wide-band sensor incorporates a sensmg cell and an 

electrochemical cell referred to as the pump cell. It is through a small slot in the pump cell 

that the exhaust gas enters the actual sensing cell. Application of pumping voltage to the 

pump cell results in oxygen discharge when the exhaust gas is lean and oxygen induction if 

it is rich. The resulting pumping current is an index of the excess-air factor in the exhaust 

gas. For experimentation purposes lambda was varied between A=1.0 and A 1.2. 

3.5 Exhaust Measurement 

Exhaust measurement was undertaken with the Horiba Mexa 7000 series analysers. The 

analysers could display CO, CO2, O2, uHC and NOx emissions onscreen. This section 

discusses the different set-up of each analyser and the principle behind collecting emission 

data. 

3.5.1 Horiba AIA-72: CO and CO2 measurement 

The AIA-72 unit consists of a NDIR (non-dispersive infrared) analyser used to measure the 

concentration of CO and C02. NDIR analysers absorb infrared energy at specific 

wavelengths with the degree of absorption being proportional to the concentration of gases 

at constant pressure. 

A typical NDIR analyser configuration is shown in Figure 3.16, consisting of a light 

source, sample cell, detector and electrical system. The infrared beam from the light source 

passes through both the sample and comparison cells. The detector consists of two cells, 

either side of a moveable membrane, in which the gas to be measured is sealed. The gas 

enclosed in each cell absorbs infrared radiation as heat and expands. The infrared radiation 

is transmitted intermittently by a light chopper, so the change of gas concentration in the 

sample cell can be detected as electrical output by the displacement of the moveable 

membrane. 
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Figure 3.16 Schematic Configuration of NDIR configuration used for CO and CO2 

measurement [55] 

3.5.2 Horiba MPA-720: O2 measurement 

The MP A-720 is used to measure the concentration of oxygen (02) in the sample gas using 

magneto-pneumatic detection (MPD). Magneto-pneumatic detection relies on the fact that 

oxygen has a much greater response to a magnetic field than other gases. 

The principle of a magneto-pneumatic oxygen analyzer is shown in Figure 3.17. AC 

current flows in the electromagnet so an alternating field appears between the poles of the 

electromagnet. When the sample gas flows in the magnetic field, the pressure around the 

magnetic poles changes according to the concentration of oxygen. This is because oxygen 

whose susceptibility is high is attracted by the magnetic poles. This pressure change is 

detected by a condenser microphone as an alternating signal as electric capacity changes. 
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Fig 3.17 Schematic Configuration of magneto-pneumatic oxygen analyser 

3.5.3 Horiba FIA-720: Unburnt Hydrocarbon measurement 

The FIA- 720 is designed to measure the concentration of total hydrocarbon (uHe) using 

hydrogen flame ionisation detection (FID). Hydrogen flame ionisation uses the 

phenomenon in which ions, generated by the heat energy when hydrocarbons are 

introduced into a hydrogen flame, are proportional to the number of carbon atoms in the 

sample. It is widely used for the measurement of exhaust gases from engines because it is 

sensitive to almost all He compounds. 

The configuration of the FID is shown in Figure 3.18. H2 and air are supplied to the burner 

nozzle and a hydrogen flame is formed. Two electrodes are fitted on either side of the 

flame, and a De voltage is applied. The sample gas is mixed with the fuel H2 and 

introduced to the hydrogen flame. It is thermally dissociated and generates ions in the high­

temperature area. The ions generated migrate to the electrodes and are detected as current. 

The characteristic of this method is that the detector output is nearly in proportion to the 

number of carbon atoms and so is used for measurement of total hydrocarbons (uHe). 
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Figure 3.18 Schematic configuration of Flame Ionisation Detector (FID) used for uHC 

measurement 

3.5.4 Horiba CLA-720A: NO and NOx measurement 

CLA-720A is designed to measure the concentration of NO and NOx usmg 

chemiluminescence (detector: CLD). It is widely used as the measurement method of NO 

and NOx in exhaust gases from engines because it is highly sensitive to NO and is not 

interfered by other components easily. 

When sample gas with NO and ozone gas (03) gas is mixed in a reactor, NO is oxidized and 

is transformed to N02. 

A part of N02 that is generated here is in excited state, which means its energy is higher 

than normal. Excited N02 molecules release excited energy as light when returning to the 

ground state. 

N02 *: N02 molecules in excited state 

N02 * ~ N02 + light photon 
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This phenomenon is called chemiluminescence, and the degree of light is directly 

proportional to the quantity of NO molecules before the reaction. Thus, NO concentration 

in the sample can be acquired by measuring the amount of light emission. 

Some of the excited NO molecules lose excited energy by collision with other molecules 

before returning to the ground state without emitting light. In this case, NO re-turns to the 

ground state, but chemiluminescence does not occur. 

NO*+M~ NO+M 

M : Other molecules 

The probability of energy loss depends on the kind of the collision partner, and sometimes 

CLD's sensitivity to NO differs depending on the kind and concentration of the co-existing 

gas components. It is known that the probability of energy loss by CO2 and H20 is larger 

than that by N2 and O2 in the components of engine exhaust gas normally, and that the 

change of CO2 and H20 concentration in the sample tends to cause the change of NO 

sensitivity. 

3.6 Summary 

This chapter details the equipment used for measurement and control purposes, this 

includes the sensors used to control and monitor the engine Furthermore, the advanced 

systems used for the specific research, presented in this thesis, are also listed, namely the 

direct injection system, the engine management system, and the variable valve timing 

mechanism. 
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Chapter 4 Data Post Processing and Analysis 

4.1 Introduction 

Data was collected from the equipment and instruments detailed in Chapter 3, with 

attention given to ensuring that data was accumulated in a consistent manner with no bias. 

To ensure consistent data post processing rigid methods were used for analysis purposes 

and any theoretical material used is supported academically. This chapter describes the 

method used to analyse all collected data. Obtaining data included two methods; the first 

was noting values at a certain steady-state point and the second involved using a data 

acquisition system to obtain pressure data from the pressure transducer, described III 

Chapter 3, synchronising the data with piston geometry and processing it further. 

Pressure data was collected, displayed and analyzed through the data acquisition software 

package LabVIEWTM Version 6.0 (Figure 4.1). LabVIEWTM was used to process the 

gathered data further using its built-in mathematical functions. Pressure data was processed 

and the values for: load (NIMEP), percentage of trapped residuals and 10%, 50% and 90% 

MFB were calculated within LabVIEWTM. In the subsequent sections the theoretical basis 

used to calculate load, trapped residual and MFB is outlined, along with calculations for 

brake emissions, brake specific fuel consumption and heat release. 

4.2 Data Acquisition System 

Since the pressure data formed the framework for the data acquisition system, it was 

important to establish the correct criteria for obtaining pressure data. Pressure versus crank 

angle can be obtained to a certain degree of accuracy according to Heywood [56], as long 

as the following steps are carried out: 
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Figure 4.1 Front panel of the LabVIEW DAQTM Program displaying IMEP, 10%, 
50% and 90% MFB 

(1) the correct reference pressure is used to convert the measured pressure signals to the 

absolute pressures; (2) the pressure versus crank angle ( or volume) phasing is accurate to 

within about 0.20; (3) the clearance volume is estimated with sufficient accuracy; (4) 

transducer temperature variations due to variation in wall heat flux during the engine cycle 

are held to a minimum. 

The criterion listed by Heywood was followed, and through the use of an oscilloscope the 

pressure data was validated. Furthermore, the front screen of the Labview™ program used 

to obtain pressure data (figure 4.1) had a toggle button on the pressure volume diagram to 

view Log P versus Log V plots which ensured the quality of pressure data. 
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Figure 4.2 DAQ set-up incorporating NJfM card and Lab VIEWTM 

In order to use the software LabVIEWTM for data acquisition purposes, a National 

Instruments™ PCIMI016-1 card was used which to communicated with a Pentium IITM 400 

MHz specification Personal Computer (PC). 

The LabVIEWTM program used was labelled "runme.vi" and was written by John Williams 

formerly of BruneI University and was used for obtaining all pressure data. The main data 

collected was for pressure which was obtained from the Kistler pressure transducer (section 

3.2.5). In order to reference the data, a shaft encoder supplied a clock and trigger signal for 

purposes of identifying TDC and supplying a signal every 0.5 CA deg. A separate trigger 

unit was built to provide the trigger on the correct revolution, the shaft encoder provides a 

signal every 360°, but an engine cycle consists of two revolutions. Therefore the trigger 

unit identified a TDC every engine cycle, ideally this should be intake TDC, however if the 

signal provided was compression TDC then the trigger phasing could be adjusted through 

the front panel of the Lab VIEWTM program; values of either 252 or 612 were entered in the 

"trigger position before compression TDC" box on the front panel and provided the correct 

phasing. The trigger unit signal, a clock signal and the pressure transducer data were 

provided through co-axial cable, these were converted through a specially built box and 
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allowed interfacing with the National Instruments™ AID board. The AID card was a PCI 

'plugNplay' card and was slotted in the PC, obtained data could be communicated to the 

PC through the card where the data could be fully processed using LabVIEWTM. Figure 4.2 

shows the schematic diagram for the complete data acquisition system. 

Within Lab VIEWTM data could be presented in the form of pressure against crank angle 

and furthermore IMEP, 10%, 50% and 90% MFB could be calculated. The pressure data 

was analysed further using Microsoft Excel™ or Microcal Origin 6.0™ where heat release 

rate and in-cylinder temperatures could be calculated. 

A separate Lab VIEWTM program was used to determine when knocking was occurring and 

whether it was at an acceptable level. Audible knocking combustion can arise from the 

auto-ignition and rapid consumption of all or part of the cylinder charge. Spatial charge 

consumption can exceed the velocity of sound during this process, which sets up pressure 

oscillations that are internally reflected within the combustion chamber. Pressure wave 

energy is dissipated at the combustion chamber walls, exciting the structure at its natural 

frequency. The in-cylinder transducer is capable of measuring the pressure oscillations to a 

high accuracy, and the intensity measured does not depend greatly on the specific location 

of the transducer [55]. The technique requires finding the frequency range in which the 

measured knock intensity is highest. For the Ford Zetec 1.6L chamber, this frequency is in 

the region of 13 kHz to 18 kHz. 

An independent program is used for determining knocking, where a pressure sample is 

collected at high frequency, the resulting vector is fed into a digital band-pass filter, which 

removes frequencies below 13 kHz and above 20 kHz. This allows the knock trace to be 

separated from the low-frequency pressure trace and the high-frequency noise. An intensity 

threshold is manually set to separate knocking from non-knocking cycles. If the knock trace 

exceeds this threshold (0.5 bar), then the software indicates that knocking combustion has 

occurred. When sampling a number of engine cycles the software calculates the ratio of 

knocking cycles to the number sampled, and this is termed the Knock Occurrence 

Frequency (KOF). The KOF is a good measure of whether the engine is deemed 'knocking' 
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or not. For the purposes of the test carried out in this study, combustion is reported as 

'knocking' if the KOF exceeds 10% for an intensity threshold of 0.5 bar. 

4.3 Load Calculations 

The following section discusses the calculations used for load consideration namely 

NIMEP and BMEP. The calculation for pumping work is also given. 

4.3.1IMEP 

I 

me 

Com pt""essi on 

ExhilUst 

C)-LiD er Yolume 
BDC 

Figure 4.3 Example of a p-V diagram for a SI four-stroke cycle engine 

The output from the engine can be expressed in tenus of load or as NIMEP, PMEP and 

Gross IMEP. Figure 4.3 shows a representation of a typical PV diagram. Area A and Area 

C represents the gross Indicated Work per cycle; work delivered to the piston over the 

compression and expansion strokes. Area B and Area C represents the Pumping work per 

cycle; work delivered to the piston over the induction and exhaust strokes. The Net work 

per cycle, is the work delivered to the piston over the entire four-stroke cycle, taking into 

consideration gross indicated work and pumping work. 
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Pumping work is the work per cycle done by the piston on the in-cylinder gases during the 

induction and exhaust strokes and can be obtained by integrating around the p-V diagram 

over the exhaust and intake strokes: 

wp = f pdV 
bed 

(4.1) 

The gross indicated work per cycle is calculated from the compression and expansion 

strokes: 

Wi,g= f pdV (4.2) 
deab 

For the four-stroke engine, the net indicated work per cycle is also used, and it is calculated 

from the four strokes: 

Wi,n= f pdV 
dedea (4.3) 

and Wi,n equals (area A - area B). 

NIMEP is calculated by dividing the Net Indicated Work by the displaced volume, Vd 

indicating a value independent of engine size. 

NIMEP= Wi 
Vd 

(4.4) 

Similarly Gross Indicated Mean Effective Pressure is calculated by dividing the Gross 

Indicated Work by the displaced volume, Yd. 
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GIMEP= Wi 
Vd 

Finally pumping work can be calculated from subtracting NlMEP from Gross IMEP: 

gross imep = net imep + pmep 

4.3.2 BMEP 

(4.5) 

(4.6) 

The mean effective pressure (work per cycle divided by the cylinder volume displaced per 

cycle) can also be expressed in terms of torque allowing the Brake Mean Effective Pressure 

to be calculated. 

BMEP (Pa) = P (W) X Th 

Vd(dn13)JV(rev/s) 

where 
nr = 2 crank revolutions for each power stroke per cylinder 
V d = displaced volume = 1596 cc 
P = Power (kW) delivered by the engine and absorbed by the dynamometer 

Substituting for P 

where 

P = 27rlVT 

41lT 
BMEP (bar) = 0.001596x 105 

T = torque exerted by the engine 

4.4 Fuel Consumption 

(4.7) 

(4.8) 

Consideration was next given to fuel consumption, which is converted to kg/s and then 

allowing BSFC to be calculated, this allows like-for-like comparison between different 

geometry engines. 
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4.4.1 Fuel Flow rate 

The fuel flow rate is calculated in kg/s, where a time is recorded for the consumption of 

100 cc of fuel and converted to m3 Is 

0.0001 
(4.9) mf=p x 

time taken 
where 

mf= mass flowrate of fuel (kg/s) 

p = density of gasoline = 760 kg/m3 

Time taken (s) for the consumption of 100 cc fuel measured from burette during testing 

4.4.2 BSFC 

The brake specific fuel consumption is given as the fuel flow rate per unit power output and 

measures how efficiently an engine produces work based on the fuel supplied. 

Substituting for P 

where 
N = 1500 rpm = 25 revsls 
mr is converted to g/hr 
Power (W) 

mf 
bsfc= 

p 

mF 
bsfc=--

2KNT 

Torque (Nm) exerted by the engine 

mf x 3600 x 1000 
bsfc= 

2x25xKXT 

(4.1 0) 

(4.11 ) 
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4.5 Emissions 

Emissions are an obvious indication of the amount of pollutant released from an engine. 

However, these values need to be converted to specific values to provide a basis for 

comparison with different engines. This section lists how emission values either in ppm 

or % are converted to indicted, brake and gross indicated specific values. 

Figure 4.3 Screen Image showing the NOx and uHC (ppm) against time 

The Horiba MEXA 7000 series analyzer was used to collect emissions data (Chapter 3) and 

had the ability to display onscreen the emission data for CO, CO2, O2, uHC and NOx 

against time (Figure 4.3). This allowed an averaged raw emission value to be read 

compared with an instantaneous reading observed solely from the LED display of the 

Signal Analysers. 
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4.5.1 BSNO, BSHC, BSCO 

The collected emission data was processed through the spreadsheet package Microsoft 

Excel™ using a matrix function to analyze the bulk data. A Microsoft Excel™ spreadsheet, 

written by Aaron Oakley formerly of BruneI University, was standardised and titled as 

"specific emissions.xls." Raw data for CO, CO2, O2, uHC and NOx could be entered in 

either PPM or percent within this spreadsheet and BSFC values were entered as g/kW.h. 

The spreadsheet made the instantaneous calculations and Brake Specific Emission values 

were displayed on the "specific emissions" tab within the spreadsheet. 

Raw emissions data observed during engine testing are recorded on a volumetric basis 

(ppm, %); hence the quantity of any species is therefore dependent on the total exhaust 

flow rate. In SI engines, the exhaust flow per cycle, excluding speed considerations, is 

dependent on engine load, ultimately determined by the intake throttle position. Diesel and 

un-throttled CAl engines, however, exhibit roughly constant exhaust flow per cycle 

characteristics, determined only by restrictions imposed by intake design and valve 

configuration. Emissions are expressed on a gravimetric basis, requiring emissions to be 

normalised. The most common practice is to normalise the volumetric emissions to the 

indicated or brake-power values. Raw emission data was converted to brake specific values 

first, then converted to Indicated Specific values. The generic equation used to calculate 

Brake Specific emission values, where x is the emission of interest is given below: 

where 
x 
vol(x) 
Mx 
np 
nR 
a 
b 

BS(x) = [(llp - llR) * vol(x)*Mx * BSFC 
llRa(Mc + bMH + cMo) 

= emission of interest 
= mole fraction quantity of x 
= molar mass of emission concerned 
= number of moles of products 
= number of moles of reactants 
= wet molar fraction of fuel 
= Hydrogen/Carbon ratio 

(4.12) 
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c = Oxygen/Carbon ratio 
Me = molar mass of carbon 
MH = molar mass of hydrogen 
Mo = molar mass of oxygen 

4.5.2 ISFC, ISNO, ISHC, ISCO 

As mentioned in section 4.4.1, it is useful to normalize brake specific values and present 

them as indicated specific values. The method used to achieve this is given below. The 

ISNOx, ISHC and ISCO as delivered over the entire four strokes of the cycle, per unit 

displaced volume is given in 4.13 . 

. ,{; bsfc * bmep . h bshc * bmep. bsnox * bmep. bsco * bmep 
ISJC =. , IS C =. , lsnox =. , ISCO = . 

Imep Imep Imep Imep 
(4.13) 

4.5.3 GSIFC, GSINO, GSIHC, GSICO 

Gross specific indicated values are also useful characteristics and give an indication of the 

specific emission or SFC over the compression and expansion stroke. The GSIFC, GSINO, 

GSIHC and GSICO as delivered over the compression and expansion strokes, per cycle per 

unit displaced volume is given in 4.14 . 

. ,{; bsfc * bmep . h bshc * bmep. bsnox * bmep. bsco * bmep 
glSJC = . , glS C = . , glsnox = . , glSCO = . 

gross Imep gross Imep gross Imep gross Imep 
(4.14) 
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4.6 Trapped residual and Heat Release calculations 

4.6.1 Trapped Residual 

The initiation of CAl combustion in this research is through the use of advancing exhaust 

valve closing and trapping residuals. Therefore knowing the volume of trapped residual is 

vital in analyzing CAl combustion. Equation 4.15 was used to calculate the volume of 

trapped residuals at EVC. The in-cylinder pressure value used for the calculations was 

measured at EVC using a pressure transducer. The cylinder volume was calculated at EVC, 

based on engine geometry and EVC timing. The temperature was assumed to be the burnt 

gas temperature at EVC, measured by the thermocouples installed in the exhaust manifold. 

Therefore, the amount of residuals at EVC was assumed to be the total residual mass for 

the whole cycle. Using fuel flow data and the lambda value, the mass of fresh charge in the 

cylinder could be calculated. The ratio of Trapped Residuals to Total In-Cylinder Charge 

could be calculated from the known masses of residual and fresh charge. 

where, P = in-cylinder pressure 
V = cylinder volume 
mr = mass of trapped residuals 
R = specific gas constant 
T = burnt gas temperature 

4.6.2 Heat Release Analysis 

PV = mrRT (4.15) 

In order to characterize combustion events within both SI and CI engines, heat release 

analysis is used; heat release analysis can also be used for characterizing combustion events 

for CAl combustion. The amount of heat that would have to be added to the cylinder to 

produce the observed pressure variation is calculated. It is assumed that there is a single 

zone combustion chamber and hence reactants and products are fully mixed, and no 
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temperature gradient exists. It is also assumed that there is no difference in the properties of 

the reactants and products. The first law of thermodynamics is applied to the cylinder 

contents, which represents a closed system during the combustion. 

where 

aw= pdV 

dU =mcvdT 

mdT = [pdV + Vdp] 
R 

( 4.16) 

(4.17) 

(4.18) 

(4.19) 

Combining equations 4.18 and 4.19 in terms of dU, substituting terms into equation 4.16 

and writing on an angle incremental basis gives: 

dQn = dQhr _ dQbt = _y_ p dV + _y_ V dp 

dB dB dB y - 1 dB y - 1 dB 
(4.20) 

Where 'Y is the ratio of specific heats and is equal to cplcv, 'Y is almost always assumed to be 

constant and in the range of 1.3 to 1.35. dQn/d8 is the net heat release rate and obtained 

from the measured pressure array, the calculated volume array, an estimation of average 

ratio of specific heat values during compression and expansion, and arrays that define the 

rate of change of pressure and volume with respect to crank angle [57]. 

4.6.3 CA 100/0 MFB, CA 50% MFB and CA 900/0 MFB 

The integration of Equation 4.16 with respect to crank angle will yield a cumulative heat 

release function, from which the normalized mass fraction burned (MFB) curve can be 

obtained. Based on the mass fraction burnt curves, the CA at 10% MFB, 50% MFB and 
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90% MFB can be calculated. Burned mass fraction (MFB) curves can be used to quantify 

ignition timing and combustion duration. In the case of SI operation, the 'flame 

development angle', and the 'rapid bum angle', are defined as the 0-10% MFB CA and the 

10-90% MFB CA respectively. 

4.7 Summary 

This chapter details the analysis used for the various data presented in this thesis. It is 

important that all data presented is quantified for CAl combustion, although certain 

equations may be true for SI combustion, this may not be the case for CAl combustion. 

This chapter therefore attempts to clarify the reasoning for using these equations and their 

relevance to CAl combustion data presented in chapter 5. 
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Chapter 5 

CAl Combustion Engine Performance and Emissions 



Chapter 5 CAl Combustion Engine Performance and Emissions 

5.1 Introduction 

There are various methods available to achieve CAl combustion as mentioned in chapter 2. 

The method chosen to initiate CAl combustion was the trapping of large amounts of 

exhaust residual in the cylinder. This was possible through the early closure of low-lift, 

short-duration exhaust valves. Retention of exhaust residuals provides sufficient thermal 

energy to enable the charge to auto-ignite and the necessary dilution for control of heat 

release rate. This chapter introduces the research methodology used to undertake testing, 

thereafter the effects of valve duration on CAl combustion are investigated, an initial load­

speed map and load-valve timing map is provided, thereafter contour maps are used to 

represent engine performance data. 

5.2 Negative Valve Overlap Approach for CAl Combustion 

Trapping large quantities of exhaust gas residuals in the cylinder to initiate CAl 

combustion, inadvertently controls subsequent heat release rate. Closing exhaust valves 

early ensures that a sufficient quantity of exhaust gas is trapped, as a result intake valve 

opening has to be retarded to reduce back flow into the inlet manifold. The use of standard 

long duration, high lift SI camshaft profiles would result in exhaust valves opening half 

way through the expansion stroke and the intake valves closing half way through the 

compression stroke. It was therefore necessary to use a pair of short duration camshafts 

produced by re-profiling a standard pair of SI camshafts. Figure 5.1 shows a schematic 

diagram highlighting the difference in valve duration and lift between standard CAl 

camshafts and standard SI camshafts. 

Previous work undertaken on this engine [57] involved investigating the effects of direct 

fuel injection on CAl combustion characteristics at lambda 1.0, 1.1, 1.2 and 1.3. The 

characteristics studied were: engine power output, fuel consumption, exhaust emissions and 

69 



operating region, where a pair of low lift camshafts (2mm 110 CA deg for exhaust and 

2mm 120 CA deg for intake) were used. In an attempt to optimize the operating region, 

various exhaust and inlet strategies were employed. 

10 
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--SI valve timings ~ 
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Intake 
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overlap
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Figure 5.1 Indication of typical SI and CAl valve configuration 

It became apparent that the deployment of the very short duration intake camshafts 

restricted the amount of inducted fresh air; the deployment of short duration exhaust 

camshaft restricted the amount of trapped exhaust gas. Therefore, it was envisaged that the 

use of longer duration intake and exhaust camshafts would extend the possible operational 

region of CAl combustion for this experimental engine. 

The initial camshafts used had a duration of 110 CA deg and lift of 2mm for the exhaust 

camshaft and a duration of 120 CA deg and lift of 2mm for the intake. The second pair of 

camshafts used for comparison purposes had a duration of 130 CA deg and lift of 3mm for 

the exhaust and 140 CA deg and lift of 3mm for the intake. The rate of change of lift is 

very small during the first and last few degrees of the camshaft duration. As a consequence 

it is hard to accurately defme the camshaft duration and timing at zero lift. It is estimated 

that approximately 10 CA deg of rotation is required to generate the fust and the last 
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O.1mm of valve lift. The re-profiling of standard SI camshafts resulted in maximum valve 

lift from 9mm to 2mm for the shorter CAl camshafts and 3mm for the longer CAl 

camshafts in order to meet the duration criteria. This was based on re-profiling 

requirements rather a maximum or minimum lift requirement for CAl combustion. 

The default valve positions were based on previous work carried out on a 4-cylinder PFI 

engine at BruneI University. The default positions chosen were exhaust valve closing at 55 

CA deg BTDC and intake valve opening at 60 CA deg A TDC for both the shorter and 

longer CAl camshafts. It is noted that the intake TDC is used as the reference throughout 

the text unless it is otherwise specified. The VCT mechanism allowed increments of 1 CA 

change for advancing exhaust valve closing and retarding intake valve opening. It was 

decided that increments of 10 CA change in valve timing would be sufficient for test 

purposes. Figure 5.2 shows all the possible valve timing combinations possible with the 

initial set of camshafts with the shorter CAl duration. Figure 5.3 shows all the possible 

durations with the longer CAl profile camshafts. The VCT mechanism had the ability to be 

advanced by 60 CA deg for the exhaust closing and retarded 50 CA deg for the intake 

opening. Therefore the maximum EVC value was 115 CA deg BTDC and the maximum 

IVO value was 110 CA deg A TDC for both the shorter and longer CAl camshafts. It was 

possible to set different default values for EVC and IVO by turning the cylinder 1 piston to 

the CA deg desired for either IVO or EVC. For IVO the piston was turned a set number of 

CA deg after intake TDC and for EVC the piston was positioned a set number of CA deg 

before intake TDC. The cambelt was then removed and the camshaft in question rotated to 

the desired position where cylinder 1 lobes were touching cylinder 1 tappets and in a 

position ready to either open the intake valves or close the exhaust valves. For exact 

precision a Verne™ gauge was placed on the tappets and opening and closing movement 

was noted with relation to piston 1 TDC. 
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Figure 5.2 Intake and Exhaust valve profiles for entire range of VVT mechanism for 
shorter CAl camshafts 
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Figure 5.3 Intake and Exhaust valve profiles for entire range of the VVT mechanism 
for the longer CAl camshaft 

72 



5.3 Engine operating conditions and experimental procedure 

The cylinder head incorporated standard spark plugs used for initial SI startup. The engine 

was started in SI mode, with IVO in the least retarded position and EVC in the least 

advanced position. Although this combustion phenomenon is referred to as spark ignition, 

this is not entirely true. The low-lift and short duration camshafts used in the experimental 

engine are in a negative valve overlap configuration compared with positive valve 

configuration for high-lift, long duration SI camshafts. Therefore the gas exchange process 

is different even for the default CAl camshafts position compared with normal SI 

camshafts. 

Table 5.1: Ford test Engine Specifications and operating conditions 

Engine Type Inline 4-cylinder 

Bore (mm) 79 

Stroke (mm) 81.4 

Displacement (cm3
) 1596 

Compression ratio 11.5 

Fuel Supply Direct Injection 

Fuel Injector Swirl Injector 
(Spray cone angle) (70°) 

Fuel Rail Pressure 10MPa 

Fuel Gasoline 95 RON 

Oil Temperature 96°C 

Coolant Temperature 80°C 

Inlet Temperature 22°C 

Operational speed 1500 rpm 

The engine was started with spark at TDC (compression), part-open throttle and cold start 

conditions. The cooling water temperature was allowed to reach 80°C before it was deemed 

that EVC could be advanced to allow pure CAl mode to be realized. The throttle was left at 

the wide open position and the spark was turned off. Table 5.1 lists the operating conditions 

and engine specifications used during testing. 
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Figure 5.4 Schematic Indication of range of Start of Fuel Injection during CAl 
combustion mode for experimental Ford Engine 

Once testing commenced which occurred when an IVO and EVC time had been selected 

and deemed that neither knocking nor misfire was occurring then injection timing was 

varied from -30 to 120 CA deg ATDC in increments of 30 CA deg. The software limited 

any further retarding of SOl in CAl combustion mode. Figure 5.4 shows the range of 

injection possible in CAl combustion mode. During testing, lambda values were monitored 

and if required the fuelling would be slightly altered to keep lambda constant. Results were 

only recorded when the engine was operating in a steady state with no erratic behavior. At 

each injection time, a time was recorded for how long it took to consume 100 cc of fuel and 

the airflow rate was noted. Nitric Oxides were measured using a Horiba CLA-720A 

analyzer and unburned hydrocarbons were measured using a Horiba FIA-720 analyzer. A 

Kistler 6061 B pressure transducer was used to acquire in-cylinder pressure measurements. 

This data was then processed and recorded using LabVIEWTM, a data acquisition software 

system. The program recorded pressure against crank angle, the lMEP and 10%, 50% and 

90% MFB for 100 cycles. 
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5.4 Overview of engine operating modes with CAl camshafts 

5.4.1 Introduction 

This section introduces the starting point of analysis which established CAl combustion 

engine performance outputs for the shorter duration camshafts and the longer duration 

camshafts. The performance characteristics investigated were: engine power output, fuel 

consumption, exhaust emissions and operating region. As mentioned from previous work, 

direct fuel injection and valve strategies can be used to optimize and extend the operating 

region. Therefore maps were produced for the entire spectrum of IVO against EVC timings 

at SOl -30, 30 and 120 CA deg ATDC, with a particular performance characteristic plotted 

for each operational valve timing. This allowed a holistic comparison between the shorter 

and longer valve durations to be reached. 

Conventional engine work dictates that an engine speed-load map is produced in which 

specific emissions and performance contours are plotted. It was envisaged that the engine 

would be run at different speeds with the relevant contour plotted. However, due to the 

reduction in the valve lift brought about because of duration reductions, it was physically 

not possible for the engine to induct enough fresh charge to run at high speeds. For the 

shorter duration CAl camshafts a speed of 1750 RPM was possible, higher speeds could 

only be achieved through SI combustion. For the longer duration CAl camshafts a speed of 

2000 RPM was possible, speeds over this again utilized only SI combustion. Therefore for 

analysis purposes, it was decided that a contour map of EVC versus IVO plotted for a 

specific value would provide a detailed analysis of the operational region of both sets of 

camshafts. 

An initial map of equivalence ratio against trapped residual is provided for both the shorter 

and longer camshafts. A load-speed map is also provided which indicates the operational 

region of both the shorter and longer CAl camshafts. Contour maps are then used as a 

comparative tool for comparing the effects of valve opening duration on CAl combustion. 
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CAl combustion characteristic analysis is also undertaken; where heat release data and 

mass fraction burnt data is examined. 

5.4.2 Combustion modes with CAl Camshafts 

As discussed in Chapter 2, Thring et al. [28] showed that the operating regIOn for 

CAIIHCCI combustion is limited by three limits: the knock limit, misfire limit and the 

power limited region. Thring et al. used a SWRI Labeco CLR engine, achieving CAIIHCCI 

combustion with the use of external EGR. Ultimately the volume of exhaust residual was 

limited by an EGR valve which allows as much or as little EGR to be used for CAIIHCCI 

combustion. The volume of EGR determines the CAl boundary region for the engine, as 

long as no auxiliary system is used i.e. intake air heating. Using the method ofNVO to trap 

residuals, the CAl combustion region is limited by the range of EVC and IVO timings 

permissible by the variable valve timing system. Through the VVT system, the valve 

duration and lift determines the full operating range of the engine, including a SI region and 

a spark assisted region. 

Figure 5.5 and Figure 5.6 show a chart of lambda against percentage of in-cylinder 

residuals for the experimental engine plotted for the shorter and longer CAl camshaft at 

1500 rpm, lambda 1.0 to 1.2 and for SOl -30 to 170 CA deg ATDC. On the chart there is an 

indication of where SI combustion is occurring, here it is considered that combustion is 

initiated by spark alone and continues by flame propagation. There is not enough residual 

to initiate auto-ignition but the charge is fuel rich enough for SI combustion to occur. SI 

combustion is associated with high NOx levels. However, for low-lift, short-duration 

camshafts with NVO configuration there will be proportionally less NOx emissions due to 

some trapped residual than the conventional SI operation with normal valve lifts. Therefore, 

it is apparent that further investigation is needed to study this area. There also exists a 

spark-assisted CAl combustion region where spark is used. However, combustion does not 

occur purely by flame propagation but through a combination of auto-ignition combustion 

and flame propagation. In the spark-assisted region there is not enough thermal energy to 
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allow auto-ignition to occur alone but the charge is too diluted to allow complete flame 

propagation to occur. 
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Figure 5.6 Combustion modes for the longer CAl camshaft at 1500 rpm 

5.4.3 CAl Operational region at lambda = 1.0 

At lambda 1.0, initial tests were undertaken to deem whether different speeds could be 

achieved for the shorter and longer CAl camshafts. It was found that speeds up to 2000 rpm 

were possible with the longer CAl camshafts, where there was a degree of CAl combustion 
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taking place at 2000 rpm. More importantly since the intake valve lift was higher than the 

shorter camshafts, extra charge could be inducted. For the shorter CAl camshaft, speeds up 

to 1750 RPM were only possible where CAl combustion was occurring. Retarded EVC 

allowed only Sl combustion, advancing EVC caused trappings of high levels of residual 

due to low lift and hence there was not enough fresh charge inducted to initiate any 

combustion. Figure 5.7 shows the boundary region of CAl combustion with regards to 

load-speed for both the shorter and longer CAl camshafts. It can be observed that for the 

longer CAl camshafts, the load boundary is lower than the shorter CAl camshafts. 
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Figure 5.7 NIMEP range Vs. Speed for both duration camshafts at lambda = 1.0 for 

CAl operation 

From Figure 5.7, it can be seen that three limits have been identified. These are the knock 

limit the misfire limit and the restricted airflow limit. Speeds below 1500 rpm were not , 

tested at, therefore it is not possible to indicate a boundary. It is speculated that speeds of 

approximately 1000 rpm would be possible for both the longer and shorter CAl camshafts, 

speeds below this would require immense frictional forces to be overcome causing engine 

misfire. 

78 



The limits vary between the shorter and the longer CAl camshafts. Higher speeds are 

possible for the longer CAl camshaft since the higher lift allows the breathing of extra air 

compared with the shorter CAl camshafts. The misfire limit is lower for the longer CAl 

camshaft since extra residual is trapped at a given Exhaust Valve Closing compared with 

the shorter CAl camshafts. This could be caused by the early opening of the exhaust valves 

and hence higher residual gas temperature, leading to more favorable auto-ignition 

conditions at low load operations (e.g. at EVC = 75 CA deg ATDC, the exhaust 

temperature for the longer CAl camshafts is 667K, for the shorter CAl camshafts the 

exhaust temperature is 654K). The knock limit is higher for the shorter CAl camshaft since 

IVC occurs 20 CA deg before IVC for the longer CAl camshafts. This causes the effective 

compression ratio to be higher for the shorter CAl camshafts, leading to a higher knock 

limit compared with the longer CAl camshaft. 

The CAl boundary region for both the shorter and longer camshafts can be investigated 

further by plotting the NlMEP range at different valve timings. Figure 5.8 and 5.9 shows 

each conceivable NlMEP value (bar) at each valve timing at lambda 1.0 for the shorter and 

longer CAl camshaft consecutively. It is noted that for each EVC/IVO combustion, NlMEP 

value varies due to injection timing, which will be discussed later. 

5.4.3.1 Shorter CAl camshaft operational range at Lambda 1.0 

Previous work [57] determined that CAl combustion at lambda 1.0 only occurred for the 

shorter CAl camshafts at EVC 95 and 105 CA deg BTDC. At EVC 105 CA deg BTDC, 

IVa timings of 70, 80, 90 and 100 CA deg A TDC were possible. It is noted that for 

EVC/IVO combination the NIMEP values could be altered by injection timings. At IVa 70 

CA deg A TDC the upper end of operation was limited by knocking combustion (at a fuel 

injection of 130 CA deg ATDC). As IVa is retarded the effective compression ratio 

decreases in accordance, hence at EVC 105 CA deg BTDC, IVa timings of 80, 90 and 100 

CA deg were possible. However, retarding IVa beyond this (110 CA deg) caused misfire. 

At EVC 95 CA deg BTDC, it was reported that CAl could only be operated at an IVa 

timing of 110 CA deg A TDC when the effective compression ratio was low enough to 
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avoid knocking combustion. Any EVC timings retarded beyond 95 CA deg BTDC did not 

trap sufficient levels of exhaust residual to initiate CAl combustion. However, for purposes 

of presenting a complete operational map, tests for EVC timings of 75 and 85 CA deg 

BTDC were conducted, where Sl combustion was occurring. It was deemed that this would 

provide useful information for the possibility of transitioning from low-lift, short-duration 

Sl combustion to CAl combustion, compared with the conventional method of switching 

from high-lift, long duration Sl combustion to CAl combustion. It was deemed that Sl 

combustion was occurring based on a few factors, firstly combustion only occurred if the 

spark signal was switched on and secondly the resulting combustion produced extremely 

high levels ofNOx. 
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5.4.3.2 Longer CAl camshaft operational range at lambda 1.0 

For the longer CAl camshafts at lambda 1.0, CAl combustion occurred at EVC timings of 

75, 85 and 95 CA deg BTDC. At EVC 95 CA deg BTDC, an IVO timing of 90 CA deg 

ATDC could only be used to achieve CAl combustion. If the IVO timing was retarded 

beyond this point, then IVC would occur further into the compression stroke, hence 

reducing the effective compression ratio. Advancing IVO timing beyond 90 CA deg A TDC 

caused misfire to occur in some cycles, which could be caused by the heat loss of residual 

gas involved in the backflow into the intake port. 

At EVC 85 CA deg BTDC, IVO timings of 60, 70, 80 and 90 CA deg ATDC were 

permissible. Again retarding IVO timing beyond 90 CA deg resulted in a decreased 

effective compression ratio and hence misfire. It was found that advancing IVO timing 

beyond 60 CA deg ATDC resulted in knocking combustion, this was determined using a 

LabVIEWTM program (discussed in Chapter 3). The final EVC timing which allowed the 

trapping of enough residual to permit CAl combustion was 75 CA deg BTDC. The most 

retarded IVO timing permissible was 100 CA deg ATDC and the most advanced IVO 

timing permissible was 60 CA deg ATDC. Retarding IVO timing resulted in misfire and 

advancing IVO timing resulted in knocking combustion. It is perhaps interesting to notice 

that the EVO timings to achieve CAl operation for both long and short CAl camshafts are 

identical, i.e. 235 CA deg BTDC or 55 CA deg BBDC and 225 CA BTDC or 45 CA deg 

BBDC. As the exhaust valve opening has a large effect on the exhaust gas and hence the 

temperature of trapped residual gas, these results indicate the significance of temperature in 

CAl operation. 

EVC timings of 55 and 65 CA deg BTDC experienced SI combustion, here the spark signal 

was switched on and the NOx values were extremely high. The IVO timings selected for SI 

combustion were determined by whether knocking was occurring. At an EVC timing of 55 

CA deg BTDC, IVO timings of 60, 70, 80, 90, 100 and 110 CA deg A TDC were 

permissible. Advancing EVC timing to 65 CA deg BTDC, increased the percentage of 

trapped residual and hence the valve timings at which combustion by pure flame 

81 



propagation was occurring was limited. IVO timings of 80, 90 and 100 CA deg ATDC 

experienced Sl combustion at EVC 65 CA deg ATDC. 
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5.4.4 Operational region lambda = 1.2 

To indicate the operational region for both the shorter and longer CAl camshafts, the 

NlMEP (bar) at different valve timings was plotted (Figure 5.10 and 5.11). 

5.4.4.1 Shorter CAl camshaft operational range at lambda 1.2 

From Figure 5.1 0, it can be seen that three different EVC timings could be tested at which 

CAl combustion occurred; these EVC timings were 85, 95 and 105 CA deg BTDC. It was 

reported that at EVC 85 CA deg BTDC, only two IVO timing could be tested, 80 and 100 
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CA deg A TDC. If the IVa timing was further retarded (e.g. to 110 CA deg ATDC) the 

engine would misfire. This is due to two factors, the reduction in the effective compression 

ratio and the lower levels of Trapped Residuals. If the IVa timing was advanced (e.g. to 90 

CA de A TDC or less) then knocking combustion occurs. 

With an EVC of 95 CA deg ATDC four different IVa timings could be tested (70, 80, 90 

and 100 CA deg ATDC). It was found that further retarding of the IVa (e.g. to 100 CA deg 

ATDC) resulted in misfire and further advancing of the IVa (e.g. to 60 CA deg ATDC) 

caused knocking combustion. 

With an EVC timing of 105 CA deg BTDC three different IVa timings could be tested (70, 

80 and 90 CA deg ATDC). The IVa timing could not be retarded further (to 100 CA deg 

A TDC) because of misfire. 
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5.4.4.2 Longer CAl camshafi operational range at lambda 1.2 

Figure 5.11 shows the NIMEP (bar) range for the longer CAl camshaft at lambda 1.2 for 

various valve timings, at EVC 75, 85, 95 and 105 CA deg ATDC combustion is occurring 

by CAl combustion. At an EVC timing of 105 CA deg BTDC, two IVa timings, 90 and 

100 CA deg ATDC, can be used to initiate combustion. Retarding Iva beyond 100 CA deg 

ATDC reduced the effective compression ratio and hence combustion would experience 

misfire. Advanced IVa timings (e.g. 80 CA deg A TDC) brought about asymmetric valve 

timings and resulted in misfire. 

At EVC 75, 85 and 95 CA deg BTDC, Iva timings of 90, 100 and 110 CA deg ATDC 

were achievable. It was found again that retarding Iva (e.g. 120 CA deg ATDC) caused 

the effective compression ratio to decrease and hence misfire would occur. Advancing IVa 

timing (e.g. 80 CA deg ATDC) resulted in knocking combustion. This is probably caused 

by the heat loss associated with the backflow of residuals into the intake port at the 

beginning of the inlet valve opening results in lower charge temperature. This is probably 

true as the Iva is much more advanced compared with the symmetric timings. In addition, 

the most advanced EVC produces the highest residuals and hence lower load and residual 

temperature, therefore it would be most sensitive to the charge temperature. 

It was found at EVC 75 CA deg BTDC, Iva 90 CA deg ATDC, that knocking was more 

severe than EVC 95 CA deg BTDC, Iva 90 CA deg ATDC. At EVC 75 CA deg BTDC, it 

was found that for an average of a 100 cycles, there was 78 cycles where knock occurred. 

For EVC 95 CA deg BTDC, it was found that for an average of a 100 cycles, there was 61 

cycles where knock occurred. The knock criterion had been set for a 50 cycles out of a 100, 

therefore advanced Iva timings beyond 90 CA deg A TDC could not be tested. 

The above results have shown that the retarded Iva timing always leads to misfire, due to 

lower effective CR ratio but advancing Iva has the opposing effect on the most advanced 

EVC and retarded EVCs. Advancing Iva for the most advanced EVC causes misfire 
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whereas for the retarded EVCs and advanced IVO leads to knock combustion. In this case, 

the engine is operating at higher load, the increase in effective CR may be more important. 

For advanced EVC timings of 55 and 65 CA deg, stable combustion could only be achieved 

using spark ignition. Again, the Lab VIEWTM program was used to determine knocking, 

therefore for EVC 55 CA deg BTDC, IVO timings of 60 and 70 CA deg ATDC could only 

be tested at. For EVC 65 CA deg BTDC, IVO timings of 60, 70, 80, 90, 100 and 110 CA 

deg A TDC could be tested at. 
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5.5 Effects of Camshaft design and Injection Timing at lambda =1.0 

5.5.1 Introduction 

Work undertaken on the Ford research engine, has shown that start of fuel injection can 

control the phasing of CAl combustion. Three different fuel injection timings were chosen: 

injection during the Negative Valve Overlap re-compression period before intake TDC 

(SOl -30 CA deg ATDC), injection during the Negative Valve Overlap re-expansion period 

after intake TDC (SOl 30 CA deg ATDC) and injection after Intake Valve Opening (SOl 

120 CA deg ATDC). Figure 5.12 shows a schematic representation of where these fuel 

injections are in relation to CAl combustion events. 
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Figure 5.12: Indication of fuel injection at -30,30 and 120 CA deg ATDC. 

In previous work, Indicated Specific Values were plotted against Start of Fuel Injection. 

This method is useful for a fundamental study. However, to represent the full operational 
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range and present the data for direct companson purposes, it was envisaged that data 

should be plotted as contour maps. Uniplot™ was used for plotting contour maps, the 

Indicated Specific values at a certain IVO and EVC timing was plotted. Figure 5.13 shows 

an example of such a map, with the SI and CAl combustion regions marked. 
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5.5.2 Effect of Camshaft design and Injection Timings on Engine Performance at 

Lambda =1.0 

For the shorter CAl camshafts, SOl -30 and 30 CA deg ATDC produced the lowest NIMEP 

range of values compared with SOl 120 CA deg ATDC (Figure 5.14 (a-c)). The NIMEP 

range for SOl -30 CA ATDC is 3.02 bar to 3.43, for SOl 30 CA deg ATDC the NIMEP 

range is 3.10 bar to 3.40 bar, whereas SOl 120 CA deg ATDC the N1MEP range is 3.14 bar 

to 3.71 bar. The variation in NIMEP at different injection timings can be largely attributed 

to pumping losses. From Figure 5.15 ( a-c), it is apparent that the highest pumping losses 

occur at SOl -30 and 30 CA deg ATDC compared with SOl 120 CA deg ATDC. 

Similar to the shorter CAl camshaft, the longer CAl camshafts also produce some of the 

lowest NIMEP values (Figure 5.16 (a-c)) at SOl -30 and 30 CA deg ATDC compared with 

SOl 120 CA deg ATDC. Again, the difference in NIMEP values at different injection 

timings is due to higher pumping losses (Figure 5.17 (a-c)). Injection during the negative 

valve overlap re-compression period (SOl -30 CA deg ATDC) results in the charge cooling 

phenomenon, as fuel is injected into the high temperature residual gas, the evaporation of 

fuel droplets results in lower in-cylinder pressure. As the fuel evaporation mainly takes 

place after TDC during the re-expansion process, the re-expansion work becomes lower 

than the re-compression work, hence higher pumping losses. Injecting at 30 CA deg ATDC 

also leads to lower expansion pressure, however, this is later in the cycle and hence the 

duration of higher pumping losses is shorter than at SOl -30 CA deg ATDC. Injecting at 

120 CA deg ATDC, does not have any effect on the pumping loss during the NVO period. 

A comparison of NIMEP values at SOl -30, 30 and 120 CA deg ATDC between shorter 

and longer CAl camshafts shows that for the entire valve timing range, the shorter CAl 

camshafts have a higher NIMEP. This is true at all three injection times and at all 

overlapping valve timing combinations. For example at EVC 95 CA deg BTDC, IVO 90 

CA deg ATDC and SOl 30 CA deg ATDC, the NIMEP for the shorter CAl camshafts is 

3.12 bar, whereas for the longer CAl camshafts the NIMEP is 2.21 bar; almost a 1 bar drop. 

The reason for the lower NIMEP values for the longer CAl camshaft is due to a few 

88 



reasons. Firstly, EVO for the longer CAl camshaft occurs 20 CA deg before EVO for the 

shorter CAl camshaft. Meaning that the exhaust valve opens earlier during the power stroke, 

taking away positive work generated during this stroke. Pumping losses are much higher 

for the longer CAl camshaft over the valve timing range. Furthennore, the effective 

compression ratio is lower for the longer CAl camshaft as NC is retarded by 20 CA deg. 

Another main reason for lower NIMEP values for the longer CAl camshaft at SOl -30, 30 

and 120 CA deg ATDC compared with the shorter CAl camshaft is due to the higher 

percentage of trapped residual at the same valve timings (Figure 5.18 (a-c) and Figure 5.19 

(a-c». For example at EVC 95 CA deg BTDC, IVO 90 CA deg ATDC, the percentage of 

trapped residual for the shorter CAl camshaft is 45.6%, for the longer CAl camshaft the 

percentage is 52.7%. This trend is true for all valve timings, on average the difference is 

approximately 7% higher residual for the longer CAl camshaft compared with the shorter 

CAl camshaft at a given valve timing. The higher percentage of trapped residual results in 

less inducted fresh charge, hence lower NIMEP values. The reason for higher trapped 

residual for the longer CAl camshaft is due to the fact that at EVC, the in-cylinder pressure 

is higher for the longer duration camshaft compared with the shorter duration camshaft, 

therefore at IVO there will be less inducted fresh charge. 

On comparison of NIMEP values during Sl and CAl operation, it is apparent that the 

highest NlMEP value is found for Sl combustion. CAl combustion is dependent on the 

amount of trapped residual and is achieved by advancing EVC timing. Therefore, for SI 

combustion there is a higher volume of inducted fresh charge, which allows for higher 

NIMEP values. For the shorter CAl camshaft, the NIMEP values for Sl operation range 

between 3.02 and 3.73 bar, whereas for CAl operation NIMEP values range between 3.12 

and 3.41 bar, using optimum values over the SOl range. For the longer CAl camshafts, the 

NIMEP values for Sl operation range between 2.66 and 3.14 bar, whereas for CAl 

operation NIMEP values range between 2.30 and 2.98 bar, again using optimum values 

over the SOl range. It can be noticed that for both camshafts, there is an overlap ofNlMEP 

values for SI and CAl combustion. This overlap provides a mechanism for achieving a 

transition from Sl to CAl combustion and back to Sl combustion. For example for the 
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shorter CAl camshaft at EVC 85 CA deg BTDC, IVa 90 CA deg ATDC, sal 120 CA deg 

ATDC using SI operation, the NlMEP value is 3.41 bar, at EVC 100 CA deg BTDC and 

IVa 85 CA deg ATDC using CAl operation the NIMEP value is also 3.41 bar. Therefore a 

seamless transition maintaining a fixed load, can be made from SI combustion to CAl 

combustion allowing the benefits of low NOx values to be realized. 
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SI combustion 
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It was reported that higher NIMEP values were observed for the shorter CAl camshafts 

compared with the longer CAl camshafts due to a smaller percentage of trapped residual at 

a fixed EVC. On investigation of the pressure trace during the expansion and exhaust 

stroke (Figure 5.20 and Figure 5.21), it appears that for the longer CAl camshafts, the in­

cylinder pressure is higher during the exhaust stroke compared with the shorter CAl 

camshafts. There appears to be a reduction of the volume of exhaust gas exhausted leaving 

the engine. A possible explanation is due to the interaction of exhaust gas within the 

exhaust manifold after it has been expelled from each individual cylinder. 

5.5.2.1 Effects ofln;ection Timing on Combustion at Lambda = 1.0 

Tables 5.2-5.7 show MFB data and peak in-cylinder pressure data at SOl -30, 30 and 120 

CA deg ATDC respectively for both the shorter and longer CAl camshafts. It appears that 

as combustion shifts from SI mode to CAl mode that the 10% MFB angle retards towards 

Top Dead Center (compression stroke). This would support the argument that combustion 

is occurring by auto-ignition for the high-lighted CAl combustion range for both the shorter 

and longer CAl camshafts. 

For SI combustion, ignition timing was maintained at 20 CA deg BTDC (compression), the 

10% MFB angle is advanced for SI Combustion compared with CAl combustion; this again 

is observed for the shorter and longer CAl camshafts. However, in some cases it is noted 

that the main combustion period (10 - 90% MFB) is shorter in the presence of spark­

ignition, indicating that spark-assisted CAl is present in these cases, which will be 

discussed in great detail in Chapter 6. 

Tables 5.2-5.7 also show peak in-cylinder pressure and peak heat release rate. It is observed 

that as combustion changes from SI mode to CAl mode, the peak in-cylinder pressure and 

peak heat release rate drop at all injection timings for both the shorter and longer CAl 

camshafts. As EVC timing is advanced, extra exhaust residual is trapped decreasing the 

amount of fresh charge that can be inducted. The decrease in fresh charge limits the 

potential energy released from combustion and hence causes a drop in peak in-cylinder 
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pressure and peak heat release rate as EVC is advanced. Figures 5.22-5.29 shows how heat 

release rate varies at different SOl timings and different EVC timings for both the shorter 

and longer CAl camshafts. From the graphs, it can be seen that as SOl is retarded, the heat 

release rate also follows the general trend of becoming retarded. Furthermore, at SOl -30 

CA deg ATDC, the peak heat release rate value is the highest compared with SOl 30 and 

120 CA deg ATDC. Injection during the re-compression period allows the longest time for 

charge mixing, furthermore the upward piston motion during the exhaust stroke contributes 

to even better mixing. Even more importantly as Cao et al. [58] have shown, the early 

injection allows more time for active intermediates to form, leading to earlier auto-ignition. 
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Table 5.2 100/0, 90% MFB, burn duration and peak in-cylinder pressure for the 
shorter CAl camshaft at SOl -30 CA deg ATDC 

SI combustion - Ignition Timing 20 CA deg BTDC CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 75 85 95 105 105 
IVO (CA deg ATDC) 50 60 70 80 90 100 110 110 80 90 
10 % MFB (CA ATDC) 356 356 356 355 355 362 363 368 360 362 
90 % MFB (CA ATDC) 377 406 381 376 375 373 376 380 365 369 
Bum Duration (CA) 21 50 25 21 20 11 13 12 5 7 
Peak In-cylinder Pressure 44 48 44 44 43 40 31 31 43 41 
Peak heat release rate (J/CA) 51 67 77 70 65 68 35 40 72 62 
COV (%) 2.53 2.96 3.81 3.72 4.56 2.63 0.75 1.2 1.9 1.7 

Table 5.3 100/0, 900/0 MFB, burn duration and peak in-cylinder pressure for the 
shorter CAl camshaft at SOl 30 CA deg ATDC 

SI combustion - Ignition Timing 20 CA deg BTDC CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 75 85 95 105 105 
IVO (CA deg A TDC) 50 60 70 80 90 100 110 110 80 90 
10 % MFB (CA ATDC) 357 357 357 357 356 362 364 369 361 361 
90 % MFB (CA ATDC) 372 398 379 376 380 370 384 383 367 368 
Bum Duration (CA) 15 41 12 19 24 12 22 14 6 7 
Peak In-cylinder Pressure 43 47 44 44 42 39 26 28 41 39 
Peak heat release rate (J/CA) 57 67 76 66 70 64 27 32 60 57 

2.38 2.81 3.33 3.44 3.43 1.90 2.56 1.6 1.73 1.26 

105 
100 
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370 
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40 
53 
1.03 

-
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50 
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Table 5.4 100/0, 90% MFB, burn duration and peak in-cylinder pressure for the 
h rt CAl h ft t SOl 120 CA d ATDC s 0 er cams a a eg 

SI combustion- Ignition Timin~ 20 CA deg BTDC CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 85 95 105 105 105 
IVO (CA deg ATDC) 60 70 80 90 100 110 110 80 90 100 
10 % MFB (CA ATDC) 357 358 356 357 363 360 362 363 365 366 
90 % MFB (CA ATDC) 379 371 373 375 391 384 370 370 373 377 
Bum Duration (CA) 12 13 17 18 28 24 12 7 8 11 
Peak In-cylinder Pressure 36 41 43 42 41 39 40 40 36 35 
Peak heat release rate (J/CA) 24 51 53 62 57 17 58 59 47 37 
COV(%) 3.16 2.67 3.36 3.19 10.6 9.87 1.96 2.17 1.76 1.35 

Table 5.5 100/0, 90% MFB, burn duration and peak in-cylinder pressure for the 
I CAl h ft t SOl 30 CA d ATDC onger cams a a - eg 
SI combustion- Ignition Timinl 20 CA deg BTDC 
EVC (CA deg BTDC) 55 55 55 55 55 65 65 65 
IVO (CA deg ATDC) 70 80 90 100 110 80 90 100 
10 % MFB (CA ATDC) 353 350 351 347 350 353 345 347 
90 % MFB (CA ATDC) 366 371 364 373 371 384 386 386 
Bum Duration (CA) 13 21 13 26 21 31 41 39 
Peak In-cylinder Pressure 44 44 43 40 41 41 41 41 
Peak heat release rate (J/CA) 60 58 58 41 44 47 45 47 
COV (%) 2.35 2.58 2.39 2.71 2.21 2.41 2.34 2.40 
CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 85 85 85 85 95 
IVO (CA deg ATDC) 60 70 80 90 100 60 70 80 90 90 
10 % MFB (CA ATDC) 362 362 360 361 363 358 355 363 358 358 
90 % MFB (CA ATDC) 378 383 382 382 377 369 367 383 377 372 
Bum Duration (CA) 16 21 22 21 14 11 12 20 19 14 
Peak In-cylinder Pressure 34 37 38 37 33 28 33 35 34 31 
Peak heat release rate (J/CA) 48 33 38 37 39 37 35 30 28 28 
COV(%) 0.99 1.25 1.46 1.32 0.81 4.62 1.33 1.23 5.34 1.96 

Table 5.6 100/0, 90% MFB, burn duration and peak in-cylinder pressure for the 
1 CAl h ft t SOl 30 CA d ATDC onger cams a a eg 
SI combustion- Ignition Timing 20 CA deg BTDC 
EVC (CA deg BTDC) 55 55 55 55 55 65 65 65 
IVO (CA deg ATDC) 70 80 90 100 110 80 90 100 
10 % MFB (CA ATDC) 353 352 350 346 346 350 352 346 
90 % MFB (CA ATDC) 371 372 373 379 375 383 383 382 
Bum Duration (CA) 18 20 23 33 29 33 31 36 
Peak In-cylinder Pressure 40 43 43 40 40 39 39 40 
Peak heat release rate (J/CA) 38 54 53 38 39 41 40 46 
COV(%) 2.25 2.40 2.14 2.21 1.94 2.22 2.21 1.87 
CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 85 85 85 95 
IVO (CA deg ATDC) 60 70 80 90 100 60 70 80 90 
10 % MFB (CA ATDC) 356 357 356 357 361 358 363 359 358 
90 %MFB (CAATDC) 381 380 377 378 380 378 381 379 377 
Bum Duration (CA) 25 23 21 21 21 20 18 20 19 
Peak In-cylinder Pressure 31 34 36 35 30 26 32 33 28 

100 



Peak heat release rate OICA) 29 32 34 34 34 24 30 24 23 
COV(%l 1.26 2.12 0.96 1.09 1.26 2.11 1.50 1.14 2.56 

Table 5.7 10%, 90% MFB, burn duration and peak in-cylinder pressure for the 
I CAl h ft t SOl 120 CA d ATDC onger cams a a eg 
SI combustion- Ignition Timin~ 20 CA deg BTDC 
EVC (CA deg BTDC) 55 55 55 55 55 65 65 65 
IVa (CA deg ATDC) 70 80 90 100 110 80 90 100 
10 % MFB (CA ATDC) 350 353 352 348 349 352 355 354 
90 % MFB (CA ATDC) 373 370 370 379 382 382 384 386 
Burn Duration (CA) 23 17 18 31 33 30 29 32 
Peak In-cylinder Pressure 41 42 43 39 39 37 39 38 
Peak heat release rate (J/CA) 41 47 46 35 35 40 38 35 
COV (%) 2.49 2.05 2.04 2.29 1.84 2.24 1.88 1.84 
CAl combustion 
EVC (CA deg BTDC) 75 75 75 75 75 85 
IVa (CA deg ATDC) 60 70 80 90 100 80 
10 % MFB (CA ATDC) 362 356 355 359 364 361 
90 % MFB (CA ATDC) 386 380 379 379 380 384 
Burn Duration (CA) 24 24 24 20 16 23 
Peak In-cylinder Pressure 26 31 34 33 31 30 
Peak heat release rate (J/CA) 23 24 26 26 34 20 
COV (%) 10.42 2.82 2.04 1.57 1.26 2.85 
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5.5.3 Effects of Camshaft design and Injection Timing on Emissions at lambda = 1.0 

5.5.3.1 E[(ects of valve opening duration and injection timing on ISNOx emissions and 

Peak In-cylinder temperature 

Figure 5.30 (a-c) shows the maps of ISNOx at SOl -30,30 and 120 CA deg ATDC for the 

shorter CAl camshafts. The range of ISNOx values at SOl -30 CA deg ATDC, taking into 

account both the Sl and CAl region, has a minimum value of 0.92 g/kW.h for the CAl 

region and a maximum value of 4.53 g/kW.h in the Sl region. At SOl 30 CA deg ATDC, 

the minimum value is 0.57 g/kW.h and the maximum is 3.98 g/kW.h. And finally for SOl 

120 CA deg ATDC, the minimum value is 0.38 g/kW.h and the maximum value is 3.13 

g/kW.h. Therefore, it appears that at fuel injection after Intake Valve Opening, ISNOx 

values are the lowest for both the CAl and Sl range. 

For the longer CAl camshafts, a similar observation is noticed for ISNOx values at 

different fuel injection timings. However, at SOl 120 CA deg ATDC, EVC timings cannot 

be advanced further than 85 CA deg BTDC. At EVC 85 CA deg BTDC and IVO 80 CA 

deg ATDC, for SOl 120 CA deg ATDC the ISNOx value is 0.3 g/kW.h, whereas for SOl -

30 and 30 CA deg ATDC, the ISNOx value is 0.55 g/kW.h and 0.32 g/kW.h respectively. 

Therefore, again it appears that for SOl after Intake Valve Opening, ISNOx values are 

lower compared with earlier injection. 

It is evident that overall the ISNOx values at lambda 1.0, are lower for the longer duration 

CAl camshafts compared with the shorter duration camshafts. The reason for this is that 

bulk in-cylinder temperatures are lower for the longer CAl camshafts (Figure 5.33 (a-c)) 

compared with the shorter CAl camshafts (Figure 5.32 (a-c)). Since, the longer intake 

camshafts is extended by 20 CA deg, IVC is occurring 20 CA deg later in the compression 

stroke at a given valve timing compared with the shorter CAl camshaft. This means that the 

in-cylinder pressure is lower for the longer CAl camshafts and hence the bulk temperature 

will be lower. ISNOx is determined by in-cylinder temperature, the lower the temperature, 

the lower the ISNOx values. 
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The effects of valve timings on the peak cylinder charge temperature are different for the 

short and long CAl camshafts. As shown in Figure 5.32 (a-c), the peak temperature is 

mainly affected by the IVO timing; the more retarded the IVO timing the lower the peak 

temperature due to lower effective compression ratio. In comparison, the EVC timing has a 

small effect; the more advanced the EVC the lower the peak temperature probably due to 

higher percentage of residuals. 

Furthermore, it appears that for the longer CAl camshafts at EVC timings that are not as 

advanced as the shorter CAl camshafts, the ISNOx values are lower. For example at EVC 

75 CA deg BTDC, IVO 80 CA deg ATDC and SOl 30 CA deg ATDC, the ISNOx value 

for the shorter CAl camshaft is 3.98 g/kW.h, whereas for the longer CAl camshaft this 

value is 0.7 g/kW.h. As discussed there is a higher percentage of trapped residual for the 

longer CAl camshaft compared with the shorter CAl camshaft at a given valve timing. The 

higher the percentage of trapped residual, the lower the in-cylinder temperature and hence 

lower the value of ISNOx. 

For both the shorter and longer CAl camshafts at SOl -30, 30 and 120 CA deg ATDC, 

ISNOx values are higher for SI combustion compared with CAl combustion even though 

in-cylinder temperatures are similar for the two modes. This is due to the fact that the 

actual peak gas temperature is much higher for SI combustion compared with CAl 

combustion. The values of in-cylinder temperature are based on the ideal gas law and are 

spatially averaged for the entire combustion chamber. 

5.5.3.2 Effects of valve opening duration and injection timing on ISHC emissions 

ISHC emissions follow the opposite trend when compared with ISNOx emissions (Figure 

5.34 (a-c) and Figure 5.35 (a-c)). The lower in-cylinder temperature, observed for CAl 

combustion leads to high ISHC values. For the shorter CAl camshafts at SOl -30 CA deg 

ATDC, the lowest ISHC value, obtained within SI region is 1.29 g/kW.h, the highest value 

obtained during CAl operation is 2.81 g/kW.h. At SOl 30 CA deg ATDC, the lowest value 

is 1.21 g/kW.h and the highest is 3.71 g/kW.h. And finally at SOl 120 CA deg ATDC, the 
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lowest ISHC value is 1.2 g/kW.h and the highest is 3.5 g/kW.h. Therefore, the overall 

lowest range of ISHC values with the CAl operation at a particular valve timing is 

observed at -30 CA deg A TDC. For the longer CAl camshafts a similar trend is observed, 

at a given valve timing ISHC values of CAl operation are low for SOl -30 CA deg ATDC 

compared with later fuel injection. For example, at EVC 75 CA deg BTDC, IVO 80 CA 

deg ATDC, the ISHC value at -30,30 and 120 CA deg ATDC are 3.1 g/kW.h, 3.4 g/kW.h 

and 3.4 g/kW.h respectively. However, unlike the shorter CAl camshafts, there does not 

seem to be a clear trend that when EVC is advanced, ISHC increases. There appears to be 

certain areas on the EVC-IVO map where ISHC values are affected by IVO timings. 

The shorter CAl camshafts have lower ISHC values compared with the longer CAl 

camshafts. ISHC values range from 1.2 g/kW.h to 3.71 g/kW.h for the shorter CAl 

camshafts, compared with ISHC values of 2.0 g/kW.h to 5.1 g/kW.h for the longer CAl 

camshafts. This range of values takes into account both SI and CAl combustion and also 

SOl at -30,30 and 120 CA deg ATDC. The reason for the higher range of ISHe values for 

the longer duration CAl camshafts is due to the fact that bulk in-cylinder temperatures are 

lower compared with the shorter CAl camshafts. The in-cylinder temperature range for the 

longer CAl camshaft is 1141K to 1684K, for the shorter CAl camshafts the range is 1533K 

to 1903K. The lower temperatures for the longer CAl camshafts are again a result of 

greater volumes of trapped residual at a given valve timing compared with the shorter CAl 

camshafts. 

Examination of ISHC values for SI and CAl combustion reveals that ISHC values are 

higher for CAl combustion compared with SI combustion. This again is due to actual peak 

gas temperature being much higher for SI combustion compared with CAl combustion. The 

higher in-cylinder temperature allows greater quantities of fuel to be burned lowering uHC 

emissions. 
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5.5.3.3 Effects of valve opening duration and injection timing on ISCO emissions 

Unlike ISHC and ISNOx values, ISCO values are not entirely dependent on temperatures 

during the combustion process. CO is a product of incomplete oxidation. 

Injection timing plays a crucial role in detennining CO production, during the CAl 

operation for the shorter CAl camshafts (Figure 5.36 (a-c)) at SOl -30 CA deg ATDC, 

ISCO values range between 1.29 g/kW.h and 2.81 g/kW.h. Retarding SOl to 30 CA deg 

ATDC, causes ISCO values to increase drastically, the lowest ISCO value is 2.18 g/kW.h 

whereas the highest is 16.51 g/kW.h. Retarding SOl even further to 120 CA deg ATDC, 

causes ISCO values to increase even further. The lowest ISCO value is 4 g/kW.h and the 

highest is 37 g/kW.h. There is a similar scenario for the longer CAl camshafts (Figure 5.37 

(a-c)), ISCO values increase as SOl is retarded. At EVC 75 CA deg BTDC, IVO 70 CA 

deg ATDC and SOl -30 CA deg ATDC, the ISCO value is 10.1 g/kW.h. At the same valve 

timing, for SOl 30 and 120 CA deg ATDC, this value increases to 10.2 g/kW.h and 22.6 

g/kW.h respectively. The increase in ISCO values with SOl 120 CA deg ATDC as injection 

timing is retarded can be explained by less time for charge mixing at later injections, 

decreasing homogeneity and locally rich combustion. But it is not clear what is the cause in 

higher CO emissions at SOl 30 CA deg ATDC than that at SOl -30CA deg ATDC. 

ISCO values are higher for the longer CAl camshafts compared with the shorter CAl 

camshafts, due to higher in-cylinder temperatures for the shorter CAl camshafts. The 

higher in-cylinder temperatures result in lower ISCO values due to a more favorable 

environment for CO to be oxidized to CO2• 

ISCO values are generally lower for Sl operation compared with CAl operation for the 

shorter CAl camshafts. The opposite trend is seen with the longer CAl camshafts, i.e. CAl 

operation produces less CO emission than Sl as indicated by the dominant blue region in 

the CAl mode. The opposing trend in ISCO values seen for the two CAl camshafts may be 

explained by referring to Table 5.2 - 5.7. It is noted that the end of Sl combustion is later 

than the end of CAl combustion for the shorter CAl camshafts and vice versa for the long 
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CAl camshafts. The delayed end of combustion leads to higher gas temperature during the 

expansion stroke, and hence better CO to CO2 oxidation. As a result, the CAl operation 

produces less CO than SI operation for the longer CAl camshafts and more CO than SI 

operation for the shorter CAl camshafts. 
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5.5.4 Effects of Camshaft design and Injection Timing on ISFC values at Lambda = 

1.0 

Figure 5.38 (a-c) shows that ISFC values at specific valve timings for the shorter CAl 

camshafts. There appears to be a general trend that as EVC is advanced, ISFC values 

decrease. At SOl -30 CA deg ATDC, ISFC values range from 264 g/kW.h to 330 g/kW.h. 

As injection timing is retarded, it appears that ISFC values decrease for any given valve 

timing case. For SOl 30 CA deg ATDC, ISFC values range from 260 g/kW.h to 310 

g/kW.h. Finally for the SOl 120 CA deg ATDC, ISFC values range from 253 g/kW.h to 

306 g/kW.h. For the longer duration camshafts, Figure 5.39 (a-c), a similar observation is 

made. For EVC 85 CA deg BTDC, IVO 80 CA deg ATDC, the ISFC value is 313 g/kW.h 

at SOl -30 CA deg ATDC. At the same valve timing case at SOl 30 and 120 CA deg 

ATDC, the ISFC values are 310 g/kW.h and 331 g/kW.h respectively. 

ISFC values are greater for the longer CAl camshafts compared with the shorter CAl 

camshafts. The reason for this is that higher pumping losses are associated with longer CAl 

camshafts. As shown, higher percentage of trapped residuals for the longer CAl camshafts 

leads to more work needed to expel the in-cylinder gases. 
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5.5.5 Summary of Results at Lambda = 1.0 

It was found that for the lambda 1.0 operation, the shorter CAl camshafts could lead to CAl 

operation at higher NIMEP values compared with the longer CAl camshafts. There are two 

reasons for the difference in NIMEP values. The first is that the exhaust camshaft with the 

20 CA deg longer opening is experiencing Exhaust Valve Opening 20 CA deg before the 

shorter exhaust camshaft for a given EVC leading to reduced expansion work. The second 

reason for the difference in NlMEP values is due to the fact that at similar EVC timing, 

exhaust residuals are approximately 7% higher for the longer CAl camshaft as compared 

with the shorter CAl camshaft. The extra residual results in less inducted fresh charge and 

lower NlMEP values. Furthermore, the lower effective compression ratio associated with 

the longer CAl camshaft contributed to lower NIMEP values. 

ISNOx values were found to be lower for the longer CAl camshafts compared with the 

shorter CAl camshafts due to lower in-cylinder temperatures. CAl operation produces 

much lower NOx emission than the SI operation. Furthermore due to lower in-cylinder 

temperatures for the longer CAl camshafts, both ISCO and ISHC values were higher as 

compared with the shorter CAl camshaft. In addition CAl operation produces higher uHC 

emissions than SI operation due to low combustion temperature. However, CO emissions 

could be increased or decreased as the engine changed from SI to CAl operation, 

depending on the burned gas temperature for post oxidation during the exhaust stroke. 

ISFC was the final performance characteristic that was studied. Since ISFC is based on 

NIMEP, it stands to reason that higher NIMEP values led to lower ISFC values for the 

shorter CAl camshafts compared with the longer CAl camshafts. 

It was found that there was an overlap of NIMEP values between SI and CAl operation. 

Since SI and CAl operation can be achieved at the same NIMEP values, transition can be 

realized between the two modes of operation with seamless transition. In addition, it has 

been noticed that spark-assisted CAl combustion is sometimes present between SI and CAl 

operation regions, as it will be shown in the subsequent sections. 
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5.6 Effects of Camshaft Design and Injection Timing at Lambda = 1.2 

5.6.1 Introduction 

A benefit of CAl combustion is that operation can be achieved at lean and diluted 

conditions and benefits of improved fuel economy realized. With production SI engines 

operation is restricted to lambda 1.0 since three-way catalysts are only functional at 

stoichiometric conditions; thus limiting any benefits of improved fuel economy at lean 

conditions. CAl combustion produces low levels of NO x emissions and eliminates the need 

for a NOx trap catalyst. A catalyst is needed for reducing exhaust HC emissions; however 

HC catalysts can operate at lean conditions. Testing had previously been carried out at 

lambda 1.2 with the shorter CAl camshafts and the effects on CAl combustion investigated, 

it was of further interest to study the effects of intake and exhaust valve opening duration 

on CAl combustion. Similar to lambda 1.0, testing was carried out for all possible IVO­

EVC valve timing combinations including SI combustion, spark-assisted combustion and 

CAl combustion. Figure 5.40 shows a contour map of NIMEP for IVO versus EVC at 

lambda 1.2 and 1500 rpm for the shorter duration camshafts, on the map the three different 

regions are indicated. For the spark-assisted and spark-ignition region the ignition timing 

was taken as 20 CA deg BTDC (combustion) since it was found that this yielded optimized 

NIMEP and emissions. For the longer CAl camshafts at SOl 120 CA deg ATDC, it was not 

possible to operate the engine at any EVC timings advanced of 75 CA deg BTDC. This was 

due to the fact that at EVC 85 CA deg BTDC, exhaust valve opening occurs at 215 CA deg 

BTDC, causing charge to be forced out early and leading to engine misfire. 
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5.6.2 Effects of Camshaft Design and Injection Timing on Engine Performance at 

Lambda = 1.2 

The initial performance characteristic investigated was NIMEP, it was found that for both 

the shorter and longer CAl camshafts as injection timing is retarded, the NIMEP increases 

(Figures 5.40 (a-c) and Figure 5.41 (a-c)). The maximum NlMEP value observed in the 

CAl region for the shorter CAl camshafts at SOl -30 CA deg ATDC is 2.81 bar; whereas at 

SOl 30 CA deg ATDC, the NIMEP value is 3.38 bar. For the longer CAl camshafts, the 

maximum NIMEP value observed in the CAl region is 2.67 bar; while at SOl 30 CA deg 

ATDC, the maximum NIMEP is 2.70 bar. For both valve durations, there is a general trend 

of NlMEP increasing as start of injection is retarded from the NVO re-compression period 

to the NVO re-expansion period. There are two reasons why NlMEP increases as SOl is 

retarded. This is likely to be caused by the combustion phasing with SOl -30 CA ATDC, 

the start of combustion is advanced and causes NlMEP to drop. The reason why the PMEP 

value is higher at lambda 1.2 as start of injection is retarded can be attributed to a minor 

heat release event. During the NVO period in a GDI engine, the process of charge cooling 

is realized due to the vaporization of fuel when injected directly into the hot exhaust gas 

residual. In the presence of excess oxygen, a minor heat release event is realized. The 

charge cooling effect reduces compression work during the NVO re-compression period, 

but the minor heat release aids work output during the NVO re-expansion period. The 

minor heat release event experienced during the NVO period therefore tends to lower the 

PMEP. Pumping losses are lower with injection during the NVO re-compression period 

compared with injection during the NVO re-expansion period (Figure 5.42 (a-c) and Figure 

5.43 (a-c)); this is true for both the shorter and longer CAl camshafts. This is unlike lambda 

1.0, where PMEP tends to increase with early injection during the negative valve overlap 

period. 

It is apparent that when comparing the NIMEP between the shorter CAl camshafts and 

longer CAl camshafts that NIMEP is higher for the shorter CAl camshafts. This is due to 

the fact that similar to lambda 1.0, the longer duration camshafts experience lower 

expansion work compared with the shorter duration camshafts, as the longer CAl camshafts 
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open the exhaust valves 20 CA deg earlier than the shorter CAl camshafts. Furthermore, 

the exhaust valve lift has an extra 1mm for the longer CAl camshafts compared with the 

shorter CAl camshafts. These two factors cause a higher percentage of charge to exit 

through the exhaust valves at EVO and decrease the available expansion pressure. Hence 

greater work has to be done to overcome this loss of expansion pressure, leading to lower 

NIMEP values for the longer CAl camshafts. 

Similar to lambda 1.0, NIMEP values are higher for SI combustion compared with CAl 

combustion; this is true for both the shorter and longer CAl camshafts. For the shorter CAl 

camshafts, NlMEP values range from 2.6 to 3.82 bar for SI combustion and 2.6 to 3.72 bar 

for CAl combustion. For the longer CAl camshafts, NIMEP values range from 2.67 to 3.06 

bar for SI combustion and 1.94 to 2.7 bar for CAl combustion. Again higher NIMEP values 

for SI combustion are due to the fact that there is less trapped residual and more inducted 

fresh charge. 

It can also be observed, similar to lambda 1.0, that some NlMEP values in the SI region 

overlap with values within the CAl region. This proves an effective method for achieving 

transitioning from SI to CAl combustion and back to SI combustion. For example, at EVC 

55 CA deg BTDC, IVO 80 CA deg ATDC for the shorter CAl camshafts, the NIMEP value 

is 2.6 bar, at EVC 105 CA deg BTDC, IVO 85 CA deg BTDC, the NIMEP value is also 2.6 

bar. Therefore using these two points a transition can be made from SI mode to CAl mode 

without any noticeable load jump. 

Last but not the least, it is noted that a spark-assisted combustion mode is present between 

the SI and CAl operation, where combustion is initially triggered by spark discharge and 

then becomes dominated by the multiple auto-ignition heat release process. A detailed 

analysis of spark-assisted CAl operation will be presented in Chapter 6. 

Figure 5.44 (a-c) and Figure 5.45 (a-c) shows that Trapped Residuals do not vary 

significantly with variation in injection timing, however, as discussed Trapped Residuals 

influence NIMEP. 
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5.6.2.1 E[[ects of Injection Timing on Combustion at lambda = 1.2 

Table 5.8-5.13 indicates the 10% and 90% MFB angle, bum duration, peak in-cylinder 

pressure and the peak heat release rate for each valve timing at 1500 rpm and lambda 1.2, 

for both the shorter and longer CAl camshafts. For the short duration camshafts at EVC 55 

CA deg BTDC, the bum duration (10 - 90% MFB) is 63 CA deg. The 10% MFB angle 

appears at 373 CA deg ATDC, the 90% MFB angle appears at 436 CA deg ATDC. The late 

10% MFB angle indicates that combustion at this point is occurring purely by spark 

ignition; as combustion occurs by flame propagation from the spark plug location, there is a 

delay after TDC (expansion) before the 10% MFB angle occurs. Furthermore, the bum 

angle is very long, 63 CA degrees in this case, this further supports the argument that 

combustion is occurring only by spark ignition. For other valve timings, EVC 65-105 CA 

deg BTDC, the 10% MFB angle appears closer to TDC (expansion), even for combustion 

which has been judged to occur by spark ignition (EVC 65,75 and 85 CA deg BTDC); 

suggesting that to some degree auto-ignition is occurring. 

For the longer CAl camshafts, the 10% MFB angle occurs near 10 CA deg BTDC 

(expansion) for spark ignition and shifts towards TDC (expansion) for CAl combustion. At 

EVC 65 CA deg, IVa 70 CA deg ATDC, sal -30 CA deg ATDC, the 10% MFB angle 

occurs at 347 CA deg suggesting that the spark aids the underdeveloped auto-ignition sites 

and causes combustion to commence immediately. In comparison, the 10% MFB angle for 

the shorter CAl camshaft at EVC 55 CA deg BTDC occurs well after TDC (expansion) 

exemplifying the fact that pure spark ignition combustion is occurring. In addition, the 

spark-assisted combustion seems to occur in the SI mode as highlighted in Tables 5.8 -

5.13, where combustion duration is shorter for flame propagation. 

The heat release rate (J/deg) was plotted against crank angle (degree), Figure 5.46 - 5.53 

for both the shorter and longer CAl camshaft at a particular valve timing. For all valve 

timing graphs, at sal -30 CA deg ATDC, combustion phasing is the most advanced and 

the heat release rate peak is the highest, compared with sal 30 and 120 CA deg ATDC. As 

Cao et al. [58] have shown, through numerical studies, the early injection into the NVO 
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period increases the charge temperature and promotes auto-ignition reactions, hence 

leading to advanced combustion. 

On inspection of peak pressure values from Table 5.8 - 5.13, the lowest peak pressure for 

the shorter duration camshaft appears to occur at EVC 55 CA deg BTDC during spark 

ignition, thereafter the peak pressure values seem to vary between 29 and 40 bar for EVC 

65, 75, 85, 95 and 105 CA deg. The low peak pressure values at EVC 55 CA deg BTDC 

can be explained by the fact that combustion is occurring purely by flame propagation, 

characterized by the long bum duration. Cylinder pressure does not increase rapidly at TDC 

(expansion) but rather follows a steady pressure rise for flame propagation. For EVC 65, 75, 

85, 95 and 105 CA deg BTDC, combustion occurs either by pure CAlor part auto-ignition 

resulting in a high peak pressure value. 

For the longer CAl camshafts, the peak pressure value tends to decrease as EVC is 

advanced. At EVC 55 CA deg BTDC, IVa 70 CA deg ATDC and sal 30 CA deg ATDC, 

the peak pressure is 39 bar, at EVC 105 CA deg BTDC, IVa 100 CA deg and sal 30 CA 

deg ATDC, the peak pressure decreases to 25 bar. The decrease in peak pressure can be 

attributed to the fact that as EVC is advanced, EVa advances into the expansion stroke and 

hence causes peak pressure to decrease. 
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Table 5.8 100/0, 900/0 MFB, burn duration and peak in-cylinder pressure for the 
sh te CAl h ft t SOl 30 CA d ATDC or r cams a a - eg 
SI combustion- Ignition Timing 20 CA de2 BTDC 
EVC (CA deg BTDC) 55 55 55 65 65 65 65 75 75 75 85 85 
IVO-(CA deg ATDC) 70 80 90 80 90 100 110 70 80 90 80 100 
10 % MFB (CA ATDC) 370 377 379 359 360 361 360 353 356 356 356 360 
90 % MFB (CA ATDC) 407 432 432 379 373 383 380 379 384 370 372 369 
Bum Duration (CA) 37 55 53 20 13 22 20 26 28 14 16 9 
Peak In-cylinder Pressure, bar 21 20 20 33 39 30 30 34 43 37 32 36 
Peak heat release rate (J/CA) 14 24 11 24 41 22 22 28 56 38 32 42 
COV(%) 5.12 11.6 13.1 4.5 2.39 4.52 8.7 2.59 3.56 1.98 1.03 0.96 
CAl combustion 
EVC (CA deg BTDC) 95 95 105 105 105 
IVO (CA deg ATDC) 90 100 70 80 90 
10 % MFB (CA ATDC) 356 357 360 359 359 
90 % MFB (CA ATDC) 368 369 371 369 370 
Bum Duration (CA) 12 12 11 10 11 
Peak In-cylinder Pressure, bar 34 33 34 36 34 
Peak heat release rate (J/CA) 32 28 36 34 30 
COV(%) 1.26 1.37 1.68 1.24 1.70 

Table 5.9 100/0, 90% MFB, burn duration and peak in-cylinder pressure for the 
h t CAl h ft t SOl 30 CA d ATDC s or er cams a a eg 

SI combustion- Ignition Timing 20 CA del BTDC 
EVC (CA deg BTDC) 55 55 55 65 65 65 65 65 75 75 75 85 85 
IVO (CA deg ATDC) 70 80 90 70 80 90 100 110 70 80 90 80 100 
10 % MFB (CA ATDC) 372 373 375 359 358 361 361 363 353 357 357 357 360 
90 % MFB (CA ATDC) 419 436 433 390 385 382 381 380 382 370 391 383 369 
Bum Duration (CA) 53 63 58 31 27 21 20 17 29 13 34 26 30 
Peak In-cylinder Pressure, bar 20 20 20 31 31 31 28 28 29 41 30 26 28 
Peak heat release rate (J/CA) 14 13 12 19 19 22 16 16 26 45 20 22 22 
COV(%) 5.0 13 12 6.5 11 5.1 10 11 11 2.4 10 8.3 8.7 
CAl combustion 
EVC (CA deg BTDC) 95 95 95 95 105 105 105 
IVO (CA deg ATDC) 70 80 90 100 70 80 90 
10 % MFB (CA ATDC) 365 364 361 359 364 364 363 
90 %MFB (CAATDC) 384 383 380 385 379 376 379 
Bum Duration (CA) 19 19 19 26 15 12 16 
Peak In-cylinder Pressure, bar 29 29 30 27 30 32 29 
Peak heat release rate (J/CA) 32 21 48 34 23 31 21 
COV(%) 6.51 8.19 5.96 7.52 6.85 2.65 7.12 

Table 5.10 10%, 90% MFB, burn duration and peak in-cylinder pressure for the 
h CAl h ft t SOl 120 CA d ATDC sorter cams a a e2 

SI combustion- Ignition Timin2 20 CA deg BTDC CAl combustion 
EVC (CA deg BTDC) 55 55 65 65 65 65 65 75 95 95 95 
IVO (CA deg ATDC) 80 90 70 80 90 100 110 80 70 80 90 
10 % MFB (CA ATDC) 365 371 353 354 357 358 360 354 365 363 360 
90 % MFB (CA ATDC) 435 434 387 387 377 388 391 376 382 383 385 
Bum Duration (CA) 70 63 34 33 20 30 31 22 17 20 25 

-
Peak In-cylinder Pressure, bar 20 20 30 32 38 29 29 40 29 29 28 
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Peak heat release rate OICA) 21 12 16 18 30 18 18 28 34 26 15 
CaV(%) 8.74 10.7 14.2 8.15 6.53 12.5 14.4 4.65 7.0 8.2 9.01 

Table 5.11100/0, 900/0 MFB, burn duration and peak in-cylinder pressure for the 
I CAl h f SO on2er cams a tat I -30 CA deg ATDC 
SI combustion- Ignition Timing 20 CA deg BTDC 
EVC (CA deg BTDC) 55 55 65 65 65 65 65 65 
IVa (CA deg ATDC) 60 70 60 70 80 90 100 110 
10 % MFB (CA ATDC) 360 358 344 350 352 347 347 346 
90 %MFB (CAATDC) 375 370 371 381 374 384 379 376 
Bum Duration (CA) 15 12 27 31 22 37 32 30 
Peak In-cylinder Pressure (bar) 36 43 27 31 37 39 41 42 
Peak heat release rate (J/CA) 58 64 18 20 31 39 41 46 
CaV(%) 5.97 2.09 6.9 1.7 1.57 1.73 2.20 2.50 
CAl combustion 
EVC (CA deg BTDC) 75 75 75 85 85 85 95 95 95 105 105 
IVa (CA deg ATDC) 90 100 110 90 100 110 90 100 110 90 100 
10 % MFB (CA ATDC) 356 353 360 363 361 359 358 360 357 357 359 
90 % MFB (CA ATDC) 375 371 376 381 383 384 384 383 379 380 382 
Bum Duration (CA) 19 18 16 18 22 25 26 23 22 23 23 
Peak In-cylinder Pressure (bar) 27 32 34 30 31 30 26 29 29 26 27 
Peak heat release rate OICA) 46 35 37 32 23 22 25 22 31 15 18 
cav (%) 11.3 2.84 1.19 3.64 3.66 3.41 12.4 10.3 9.62 9.49 6.84 

Table 5.12 100/0, 900/0 MFB, burn duration and peak in-cylinder pressure for the 
I CAl h ft t SOl 30 CA d ATDC on2er cams a a e2 
SI combustion- Ignition Timing 20 CA deg BTDC 
EVC (CA deg BTDC) 55 55 65 65 65 65 65 65 
IVa (CA deg ATDC) 60 70 60 70 80 90 100 110 
10 %MFB (CAATDC) 360 359 342 347 350 350 352 353 
90 % MFB (CA ATDC) 380 374 378 384 382 378 373 373 
Bum Duration (CA) 20 15 36 37 32 28 21 20 
Peak In-cylinder Pressure (bar) 33 39 24 28 25 35 40 39 
Peak heat release rate OICA) 29 27 23 24 31 26 32 33 
CaV(%) 3.05 3.19 6.29 7.55 3.83 1.41 4.93 1.73 
CAl combustion 
EVC (CA deg BTDC) 75 75 75 85 85 85 95 105 105 
IVa (CA deg ATDC) 90 100 110 90 100 110 100 90 100 
10 % MFB (CA ATDC) 358 362 362 360 359 361 360 360 363 
90 %MFB (CA ATDC) 377 381 385 383 381 381 379 380 379 
Bum Duration (CA) 19 19 23 23 22 20 19 20 16 
Peak In-cylinder Pressure (bar) 26 26 28 26 27 27 25 24 25 

Peak heat release rate (J/CA) 49 43 24 24 26 24 30 22 23 

CaV(%) 11.69 12.58 4.70 7.24 5.64 14.9 9.2 7.11 12.35 

Table 5.13 10%, 90% MFB, burn duration and peak in-cylinder pressure for the 
I CAl h ft t SOl 120 CA d ATDC onger cams a a eg 
SI combustion- Ignition Timin~ 20 CA deg BTDC CAl combustion 
EVC (CA deg BTDC) 55 55 65 65 65 65 75 75 75 

IVa (CA deg ATDC) 60 70 80 90 100 110 90 100 110 

10 % MFB (CA ATDC) 356 357 349 354 354 356 362 358 357 
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5.6.3 Effects of Camshaft Design and Injection Timing on Emissions at Lambda = 1.2 

ISNOx values increased as SOl was retarded for both the shorter and longer CAl camshafts 

(Figure 5.54 (a-c) and Figure 5.55 (a-c)). At lambda 1.0, it was observed that as SOl was 

retarded, ISNOx values decreased in the CAl operational region. This trend is the opposite 

for CAl operation at lambda 1.2, where ISNOx increases as SOl is retarded. This may be 

partly explained by the increase in spatially averaged peak cylinder temperature as the start 

of fuel injection is retarded (Figure 5.58 (a-c) and Figure 5.59 (a-c)) and less homogeneity 

at late SOL 

Comparison of ISNOx values within the SI and CAl region indicate that ISNOx values are 

higher within the SI region compared with the CAl region as expected. For the shorter CAl 

camshafts, at EVC 55 CA deg BTDC, IVO 80 CA deg ATDC and SOl -30 CA deg ATDC, 

the in-cylinder temperature is 2185K and the ISNOx value is 1.67 g/kW.h. At EVC 90 CA 

deg BTDC, IVO 85 CA deg ATDC and SOl -30 CA deg ATDC, the in-cylinder 

temperature drops to 1500K causing the ISNOx value to drop to 0.11 g/kW.h. A similar 

trend is observed for the longer CAl camshafts, the in-cylinder temperatures range from the 

lowest value of 995K within the CAl region, to a maximum value of 1760K within the Sl 

region. Likewise, ISNOx values vary from a maximum value of 4.53 glkW.h, within the Sl 

region, to a minimum value of 0.22 glkW.h, within the CAl region. 

On investigation of the contour maps, it is apparent that for the shorter CAl camshafts, the 

ISNOx values are lower across the EVC-IVO range compared with the longer CAl 

camshafts throughout the SIICAI regions. However, In-cylinder temperatures are lower for 

the longer CAl camshafts, therefore ISNOx values should also be lower. This is due to the 

fact that ISNOx values are normalized with ISFC values, therefore a large ISFC value will 

cause ISNOx values to be relatively high. Figure 5.56 (a-c) and Figure 5.57 (a-c) show a 

contour map of absolute NOx values in ppm for the shorter and longer CAl camshafts. It 

can be observed that raw NOx emission values are lower for the longer CAl camshaft 

compared with the shorter CAl camshaft; this is true for the entire EVC-IVO range. For the 

longer CAl camshafts, at EVC 95 CA deg BTDC, IVO 80 CA deg ATDC and SOl -30 CA 
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deg ATDC the NOx value is 26 ppm. For the shorter CAl camshafts at the same valve 

timing and injection timing the NOx value is 46 ppm. Therefore, the lower in-cylinder 

temperature observed for the longer CAl camshafts cause lower NOx emissions, however 

this is not reflected fully in the ISNOx value since ISNOx values are normalized with lSFC. 

It was observed that ISHC values increased as fuel injection timing was retarded; this was 

true for both the shorter and longer CAl camshafts (Figure 5.60 (a-c) and Figure 5.61 (a-c». 

The reason for this is that there is less mixing time at retarded fuel injection times (SOl 30 

and 120 CA deg ATDC). The lack of mixing time leads to fuel rich zones within the 

combustion chamber and hence an increase in unburned hydrocarbons at late injections. It 

is apparent that ISHC values are higher for the longer CAl camshafts compared with the 

shorter CAl camshafts. This is due to lower peak in-cylinder temperatures and a shorter 

expansion stroke observed for the longer CAl camshafts (Figure 5.59 (a-c». Raw uHC 

emission data was also plotted in Figure 5.62 (a-c) and Figure 5.63 (a-c), raw uHC values 

are also higher for the longer CAl camshafts which collaborates with the trend for ISHC 

values. 

Values of ISHC are higher for the CAl region compared with the SI region for both the 

shorter and longer CAl camshafts due to lower combustion temperatures. 

It was found that ISCO values increased as start of fuel injection was retarded first from -30 

CA deg ATDC to 30 CA deg ATDC and then to 120 CA deg ATDC. This was true for both 

the shorter and longer CAl camshafts (Figure 5.64 (a-c) and Figure 5.65 (a-c». The reason 

for the increase in ISCO values as fuel injection timing is retarded is due to mixing time 

decreasing. With a decrease in mixing time, fuel rich pockets are formed in certain parts of 

the combustion chamber. All the fuel in these fuel rich pockets does not undergo complete 

combustion, leading to incomplete combustion products such as ISCO. ISCO values are 

higher for the longer CAl camshafts compared with the shorter CAl camshafts at any given 

valve timing. The reason for this trend is that for the longer CAl camshafts, EVO is 

occurring 20 CA deg earlier compared with the shorter CAl camshaft. This means that the 

charge is being forced out through the exhaust valve while undergoing oxidation. This 
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leads to incomplete combustion and the production of greater volumes of CO for the longer 

CAl camshafts compared with the shorter CAl camshafts. Again Raw CO emission data 

was also plotted in Figure 5.66 (a-c) and Figure 5.67 (a-c), to confirm that raw CO values 

are in correspondence with ISCO values. 

The majority of the lowest ISCO values are observed within the SI region compared with 

the CAl region. However, there is not a clear trend observed when transition is made from 

the SI region to the CAl region. 
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Figure 5.67 (a-c) CO values (ppm) at EVC versus IVO timings for the longer CAl 
camshaft at lambda 1.2 
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5.6.4 Effects of Camshaft Design and Injection Timing on ISFC at Lambda = 1.2 

As start of injection timing is retarded, ISFC values increase for both the shorter and longer 

CAl camshafts (Figure 5.68 (a-c) and Figure 5.69 (a-c)). The lower values observed at sal 

-30 CA deg ATDC is due to lower pumping losses. Less work is needed to overcome the 

exhaust gases and therefore fuel consumption also drops at injection during the NVO re­

compression period. The shorter CAl camshafts have lower ISFC values across the EVC­

IVa range compared with the longer CAl camshafts. This is due to higher NIMEP values 

for the shorter CAl camshaft coupled with lower expansion work. 
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5.7 Summary of results at lambda = 1.2 

For all the cases studied, the shorter CAl camshafts could achieve higher load with CAl 

operation, due to less expansion work associated with the longer CAl camshafts. At some 

load points, the shorter CAl camshafts produce more NOx in the cylinder but less uHC and 

CO emissions, due to higher combustion temperature present in the cylinder. 

It is noted that some load points can be operated with Sl or CAl mode, providing a sound 

basis for smooth transition between SIICAI operations. It is also noted that a spark-assisted 

CAl combustion mode is present between the Sl and CAl valve settings, providing another 

useful means for better transition control between CAIISI operations. 

At lambda 1.2, it was found that NIMEP values were higher for Sl combustion compared 

with CAl combustion for both the shorter and longer CAl camshafts. This was due to a 

higher percentage of residual gas being trapped for advanced EVC timing and hence CAl 

combustion; therefore NIMEP values would be lower. 

For emissions at lambda 1.2, it was observed that ISNOx values were higher within the Sl 

region compared with the CAl region. This was due to higher in-cylinder temperatures 

within the Sl region causing higher ISNOx values. Values oflSHC were higher for the CAl 

region compared with the Sl region for both the shorter and longer CAl camshafts due to 

higher in-cylinder temperatures. ISCO values were generally lower for Sl operation 

compared with CAl operation for both the shorter and longer CAl camshafts. For CAl 

combustion, there is less inducted fresh charge and hence a lack of oxygen which restricts 

the oxidation process and results in higher ISCO values within the CAl region compared 

with the Sl region. 
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Chapter 6 CAl Combustion region enlargement 

6.1 Introduction 

In order for CAl combustion to see use within an automotive engine, the operational region 

has to be expanded. As mentioned, a CAIISI hybrid engine is the most likely method which 

can utilize the low ISNOx production and improved fuel economy of CAl combustion. 

Therefore methods which can help the transition from Sl to CAl combustion and increase 

either the low or mid-range loads were investigated. After much consideration and 

observation the chosen areas of research which could be used as a potential method of CAl 

operational region enlargement were: spark-assistance, high speed operation and late 

injection. 

It has been observed that for the boundary region between CAl and Sl combustion, then the 

use of a spark can promote combustion and enlarge the CAl combustion region particularly 

near the misfire limit. Using spark suggests that combustion is occurring through the means 

of flame propagation. However, it is shown in this section that the spark is in fact aiding 

auto-ignition combustion. Results for longer duration intake and exhaust camshafts were 

compared against shorter ones, with a view to see if camshaft duration had any effect on 

spark-assisted CAl operation. 

In the previous Chapter, results at a fixed engine speed of 1500 rpm were analyzed and 

discussed. In this chapter, the effect of engine speed is examined for the longer CAl 

camshafts as the speed range of the shorter CAl camshafts was restricted to 1750 rpm. 

Finally the effects of very late injection on CAl combustion were investigated. The 

motivation for studying late injection was to see if there are any benefits of split injection 

for CAl combustion. It was envisaged that the ultra late injection would replicate the main 

injection of a split injection strategy. The Bosch engine management system offers the 

capability of undertaking split injection, however, time was a limiting factor and therefore 

implementing and undertaking split injection could not be realized. A comparison was 
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made between the effects of very late injection with shorter and longer duration camshafts 

on CAl combustion. 

6.2 Spark Assisted CAl combustion 

6.2.1 Introduction 

As mentioned in Chapter 5 there is an area sandwiched between SI operation and CAl 

operation, where the engine can operate in such a way that the combustion is initiated by a 

spark but the main combustion process is characterized with fast heat release and low NOx 

associated with CAl operation. It is believed that the spark helps the chemical kinetics 

process to facilitate the auto-ignition to take place. Figure 6.1 shows a chart of lambda 

against trapped residuals, the spark-assisted area is typically at lean conditions with a 

moderate amount of residuals. Ultimately, the use of a spark leads to ISNOx values which 

are slightly higher than normal CAl combustion but much lower than normal SI 

combustion values. Figures 6.2, 6.4 and 6.6 show graphs of EVC versus IVO plotted for 

ISNOx, trapped residual and NIMEP respectively, for the shorter CAl camshafts, on the 

graph is an indication of the SI and CAl operating regions. It can be seen that based on 

ISNOx values, any EVC timing retarded beyond 80 CA deg BTDC is undergoing 

combustion by SI since ISNOx values are high and trapped residual is low. Whereas any 

EVC timing advanced further than 80 CA deg BTDC is undergoing combustion by CAl 

since ISNOx values are low and the trapped residual level is moderate. Figures 6.3, 6.5 

and 6.7 show graphs of EVC versus IVO plotted for ISNOx, trapped residual and NlMEP 

respectively, for the longer CAl camshafts. The region retarded beyond EVC 70 CA deg 

BTDC is undergoing SI combustion, the region advanced beyond EVC 70 CA deg BTDC 

is undergoing CAl combustion. 
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Four different spark-assisted cases were studied as specified in Table 6.1 and 6.2. The 

main emphasis was placed on studying the effect of a spark on the CAl process near the 

CAliS I boundary region. The use of a spark here helps to stabilize combustion. The four 

cases were grouped into two test groups, the first test group investigated the effect of EVC 

timing on spark-assisted CAl operation for the shorter CAl camshafts. The second test 

group investigated whether a longer intake and exhaust valve duration had any effect on 

spark-assisted CAl operation. For this test both cases were studied on the respective 

CAIISI boundary for each camshaft. For the shorter CAl camshaft this was EVC 80 CA 

deg BTDC, for the longer CAl camshaft this was 70 CA deg BTDC. For both test groups, 

three different spark timings were chosen: TDC, 20 CA deg BTDC and 40 CA deg BTDC. 

These spark timing were then compared with fully auto-ignition combustion where 

combustion occurred without spark. Lambda was maintained at 1.2 and the start of 

injection was varied from -30 to 120 CA deg ATDC. 
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Table 6.1 Operating conditions for Test Group 1 with different EVC timings 

Intake Valve Duration 120 CA deg 
Exhaust Valve Duration 110 CA deg 
Lambda 1.2 
Speed 1500 rpm 
Case [A] EVC 80 CA deS! BTDC and IVO 85 CA de2 ATDC 
Case [B] EVC 95 CA deg BTDC and IVO 70 CA deg 

ATDC 

Table 6.2 Operating conditions for Test Group 2 with different Camshafts 

Lambda 1.2 
Speed 1500 rpm 
Case [C] EVC 80 CA deg BTDC and IVO 75 CA deg ATDC 

Intake Valve Duration: 120 CA, Exhaust Valve Duration: 110 
CA 

Case [D] EVC 70 CA deg BTDC and IVO 75 CA deg ATDC 
Intake Valve Duration: 140 CA, Exhaust Valve Duration: 130 
CA 

6.3 Effects of Spark Ignition on CAl Combustion at different EVC 
Timings (Case A and Case B in Test Group 1) 

6.3.1 Effects of Spark Ignition on NIMEP 

As can be seen from Figure 6.8 and Figure 6.9, with spark assisted CAl the achievable 

NlMEP is higher than conventional CAl. Furthermore, as ignition timing is advanced the 

achievable NlMEP increases. For all load cases, NlMEP at early injection is lower 

compared with later fuel injection. When fuel injection begins to infringe upon BDC 

(intake) the NIMEP falls again. 

The actual higher NIMEP with spark ignition is attributable to the combustion phasing. 

For the early fuel injection cases (Figure 6.10 and Figure 6.11), as the ignition timing is 

advanced from TDC (compression) to 40 CA deg BTDC, the start of combustion 

consequently advances towards TDC. The maximum NIMEP is reached with a spark 
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timing of20 CA deg BTDC at SOl 30 CA deg ATDC. As the spark ignition is advanced to 

40 CA deg ATDC, the NIMEP drops due to early combustion. 

For EVC 80 CA deg BTDC, the effect of spark is more pronounced with late injection at 

90 CA deg ATDC (Figure 6.12) than the early injection at 30 CA deg ATDC (Figure 

6.10). This is due to two reasons, firstly the later injection creates a more stratified charge 

and hence a more ignitable combustible charge near the spark plug for initial flame 

propagation, secondly due to the shorter time available for fuel/air mixing and auto­

ignition reactions. For EVC 95 CA deg BTDC, the presence of spark improves the 

combustion process as evidenced by the higher heat release rate at SOl 90 CA deg ATDC, 

as well as more advanced combustion. For the late fuel injection, the effect of ignition 

timing on the start of combustion is even more pronounced as shown in Figure 6.12 and 

6.13 

Table 6.3 compares two valve timing cases for SOl 60 CA deg ATDC. Investigation of the 

10%-50% MFB and 50%-90% MFB reveals that spark has a more profound effect on the 

50%-90% MFB rather than the earlier stage. The 50%-90% MFB stage of CAl main 

combustion has the characteristics of typical CAl operation with very fast heat release, as 

the auto-ignition combustion takes place simultaneously across the unburned mixture. 

Furthermore, since the combustion is taking place earlier at higher pressures and 

temperatures the 50%-90% stage of combustion is accelerated as the heat release takes 

place near TDC within a smaller volume. 

For the advanced exhaust valve timing case (EVC 95 CA deg BTDC), the bum duration 

variation between spark-assisted and conventional CAl is only 4 CA deg (Table 6.3), 

smaller than Case A. This is because there is a greater volume of trapped residual and a 

greater threshold of thermal energy with the more advanced EVC. Therefore assisting CAl 

with spark has limited effect as there is enough thermal energy to initiate CAl combustion. 

On inspection of trapped residuals (%) from Table 6.3, it appears that spark timing has 

little effect on the volume of trapped residuals. The trapped residual (%) for both cases are 

within 2% for different spark timings. As expected for the more advanced valve timing 
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case (EVC 95 BTDC), the volume of trapped residuals are greater than the retarded case 

(EVC 80 BTDC). 

It appears that spark-ignition improves the COVIMEP value, from Table 6.3, it can be noted 

that without spark-ignition, the COV IMEP value is lower compared with ignition without 

spark. 
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Figure 6.8 NIMEP against injection timing at different Ignition Timings, EVC 80 CA 
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Table 6.3: Comparison of CAl combustion characteristics at two different valve 
timings. 

EVC 80 CA deg BTDC, IVO 85 EVC 95 deg BTDC, IVO 70 deg 
degATDC ATDC 

sal 60 CA deg ATDC sal 60 CA deg ATDC 

] 0 0 ~ 0 0 
N '<t ~ N '<t 

c.. - 'ciI U -u c.. t;j -u -u 
'" '" !:l0 "'0 '" "'0 "'0 !:l - c §f- c ... c §f- §f-o ~ 0 of- o ~ 0 

'.0 0 '.0 '.0 co '.0 co '.0 0 :€ u '.0 co '.0 co ,- oS 
,_ u 

'~< '~< 
,- oS .~< '~< ~ . - So° So '- ~o - ~ _f- _u _u - ~ -f- -u -u 

10% mass burned (CA) 368.0 366.6 363.7 359.9 366 363.5 365.5 361.5 

50% mass burned (CA) 375.4 376.1 370.7 366.1 371.5 372 371.5 368 

90% mass burned (CA) 394.1 390.3 381.9 378.0 384 384.5 381 377.5 

10%-50% bum duration (CA) 7.4 9.5 7 6.2 5.5 8.5 6 6.5 

50%-90% bum duration (CA) 18.7 14.2 11.2 11.9 12.5 12.5 9.5 9.5 

10%-90% bum duration (CA) 26.1 23.8 18.2 18.1 19 21 15.5 15.5 

Peak pressure (MPa) 26.4 24.8 32.3 37.2 30.3 29.1 30.8 34.5 

Location of peak pressure (CA) 379 378.5 374.5 370 375.5 376 375.5 373 

NET IMEP (MPa) 3.14 3.12 3.38 3.37 3.15 3.15 3.25 3.27 

Texb (K)a 413 425 384 384 384.5 374.7 372.8 370.8 

Trapped Residuals (%) (predicted) 44.91 43.27 45.86 46.42 48.98 47.53 48.48 48.61 

COVimep (%) 9.06 3.518 1.736 1.172 6.513 5.003 3.88 2.138 

ar exh for experimentation refers to the exhaust temperature of exhaust gases measured 
from the exhaust port 
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6.3.2 Effects of Spark Ignition on emissions 

From Figure 6.14 and Figure 6.15 it is apparent that as spark timing is advanced for spark 

assisted CAl, ISNOx values increase as compared with conventional CAl for EVC 80 CA 

deg BTDC, whereas the ISNOx values change little with spark for EVC 95 CA deg 

BTDC. 

The measured exhaust temperatures (Table 6.3) show that compared with conventional 

CAl, spark-assisted CAl temperature is lower. The reason for this is that the combustion 

process is advanced as spark is advanced for spark-assisted CAl as shown in Figures 6.10 

- 6.13. Therefore, the expansion ratio, taken as end of combustion to exhaust valve 

opening increases, causes the exhaust temperature to decrease. 

Figure 6.16 and Figure 6.17 show the variation of calculated peak in-cylinder temperature 

against the start of fuel injection. It is important to stress that this is the calculated in­

cylinder temperature based on the ideal gas law. However in-cylinder gases may not be 

ideal and homogeneous, due to the complicated gas exchange processes and 

inhomogeneous combustion mixture. But it is still viable to analyse the general trend. 

Examining the pressure plots (Figure 6.18 and 6.19), the peak pressure during the 

combustion process increases as spark is advanced for spark assisted CAl and is higher 

than the conventional CAl case. As seen in Figure 6.10 to Figure 6.13, the heat release 

rate peak increases as spark is advanced and again is higher than for conventional CAL 

On inspection of the calculated in-cylinder temperature (K) profiles (Figure 6.16 and 

Figure 6.17), it can clearly be seen that higher ISNOx values with advanced spark timing 

are due to higher in-cylinder temperatures caused by a fast heat release rate as discussed 

previously. 
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Spark-assisted CAl has a favourable effect on ISHC values. From Figure 6.20 and Figure 

6.21, it can be seen that ISHC values are lower for spark-assisted CAl than conventional 

CAL The reason for lowered (HC) emissions for spark assisted CAl is because 

combustion is taking place at higher pressures and temperatures, leading to more 

complete combustion. 

For the same reason, with the introduction of spark ignition, ISCO values decrease 

throughout the fuel injection timing range (Figure 6.22 and Figure 6.23). Moreover, as 

the ignition timing is advanced further, the ISCO values drop even more. 
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Figure 6.20 ISHC against injection timing at different Ignition Timings, EVC 80 CA 
BTDC, IVO 85 CA deg ATDC 
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Figure 6.21 ISHC against injection timing at different Ignition Timings, EVC 95 CA 
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6.3.3 Effects of Spark Ignition on ISFC 

For both valve timing cases as spark is advanced for spark-assisted CAl, ISFC values 

(Figure 6.24 and Figure 6.25) decrease. This can be attributed to higher NIMEP values 

caused by optimized combustion phasing. 

177 



.... ~ ....... -- ..... - ...... --;-:., .. 
~---4-t----~~-~~~~~ .. ~-~.~~~.~.~~--~ 

:2' 1 

l ~-----~r----------------------------------------------~ 
(J 
I"-

~ J----4-t----------------------~ 

·20 o 20 ~ 60 60 100 120 1~ 

Start of Fuel Injection (deg) AlOC 

I--Ignition without spar1\ - Ignition at 20 CA BIDC ~. ' Ignition at 40 CA BIDC I 

Figure 6.24 ISFC against injection timing at different Ignition Timings EVC 80 CA 
BTDC, IVO 85 CA deg ATDC ' 

~-"'~""'.--:" -... ---s: .. .. ~ .. ' JIiii ___ ~ •• ~ 

.040 ·20 

Start of Fuel Injection (deg) AlOC 

-- Ignition without spark ••• Ignition at TOC 
_-I nilion at 20 CA BTOC -x- ' I nition at 40 CA BTOC 

Figure 6.25 ISFC against injection timing at different Ignition Timings, EVC 95 CA 
BTDC, IVO 70 CA deg A TDC 

6.4 Effects of Spark Ignition on CAl Combustion at different valve 

durations (Case C and Case D in Test Group 2) 

6.4.1 Effects of Spark Ignition on NIMEP 

For Test Group 2, it was of interest to see the effects of valve duration on spark-assisted 

CAL An EVC timing of 80 CA deg BTDC was used for the shorter CAl camshafts. For 

the longer CAl camshafts, an EVC timing of 70 CA deg BTDC was chosen. Again the 

three different ignition times of TDC, 20 CA deg BTDC and 40 CA deg BTDC were 
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compared with CAl combustion without spark. The IVO timing was 75 CA deg ATDC 

for both cases. Lambda was maintained at 1.2, engine speed of 1500 rpm and the start of 

injection was varied from -30 to 120 CA deg A TDC. 

On inspection of the variation of NlMEP against the start of fuel injection (CA deg 

A TDC) at different ignition timings (Figure 6.26 and Figure 6.27), it appears that NlMEP 

is higher for spark-assistance compared with CAl combustion; this is the case for both 

case C (shorter CAl camshafts) and case D (longer CAl camshafts). For case C the 

maximum achieved NlMEP for conventional CAl was 2.8 bar at SOl TDC (intake) 

whereas with ignition at 40 CA BTDC, SOl 120 CA deg ATDC, the NlMEP was 3.3 bar. 

For case D the maximum NlMEP with CAl combustion was 2.3 bar at SOl at TDC 

(intake), with the use of spark assistance the maximum NlMEP was 2.47 bar at SOl 60 

CA deg A TDC. Spark assistance also allowed combustion to occur at injection timings 

retarded beyond TDC, for both the shorter and longer CAl camshafts; effectively 

increasing the operating region. At later injection cases there is less time for charge 

mixing resulting in stratified charge, the influence of chemical kinetics is not sufficient to 

allow conventional CAl combustion to occur with stratified charge; with the use of spark­

assistance, CAl combustion can be instigated over a wider and retarded injection range . 
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Figure 6.26 NET IMEP against injection timing at different Ignition Timings, 
EVC 80 CA deg BTDC, IVO 75 CA deg ATDC, shorter CAl camshaft 
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EVC 70 CA deg BTDC, IVO 75 CA deg ATDC, longer CAl camshaft 

Table 6.4 and Table 6.5, list the trapped residual (%) for Case C and D consecutively. 

The effects of ignition timing on the percentage of trapped residual, for both the shorter 

and longer CAl camshafts, are almost negligible. The percentage of trapped residual 

varies between 44.28% to 47.83% for the shorter CAl camshaft, and varies between 

46.18% to 47.33% for the longer CAl camshaft. The effects of spark-assistance are 

obvious at lean conditions (lambda = 1.2) with sufficient exhaust residuals (-45%), there 

is not sufficient thermal energy to allow CAl combustion to occur, yet the amount of 

inducted charge is neither sufficient nor rich enough to allow combustion through flame 

propagation. 

Table 6.4: Trapped Residual against injection timing at different Ignition 
Timings, EVC 80 CA deg BTDC, IVO 75 CA deg ATDC, shorter CAl camshafts 

Injection Trapped Residual (%) 
Timing Conventional Ignition at Ignition at Ignition at 
(deg CAl TDC 20 CA deg 40 CA deg 
ATDC) BTDC BTDC 
-30 46.53 46.10 47.83 
0 44.69 45.33 46.13 46.97 
30 43.80 44.51 45.81 
60 44.92 45.15 
90 44.19 44.34 
120 44.28 45.64 
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Table 6.5: Trapped Residual against injection at different Ignition Timings, 
EVC 70 CA deg BTDC, IVO 75 CA deg ATDC, longer CAl camshafts 

Injection 
Timing 
(deg 
ATDC) 
-30 
0 
30 
60 
90 

Trapped Residual (%) 
Conventional 
CAl 

46.89 
47.33 

45 

40 

35 
c;; 
~30 
:2. 

Ignition 
TDC 

46.59 
46.64 
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Figure 6.28 Heat Release Rate against crank angle (deg) at injection timing 30 CA deg 
BTDC, EVC 80 CA deg BTDC, IVO 75 CA deg ATDC, shorter CAl camshafts 
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Figure 6.29 Heat Release Rate against crank angle (deg) at injection timing 30 CA deg 
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Figure 6.31 Heat Release Rate against crank angle (deg) at injection timing TDC, EVC 
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Table 6.6 Comparison of CAl combustion characteristics between shorter and 
longer CAl camshafts 

EVC 80 CA deg BTDC, IVO 75 EVC 70 deg BTDC, IVO 75 deg 
degATDC ATDC 

SOl at TDC (intake) SOl at TDC (intake) 

~ 0 0 .:.: 0 0 
N V :u N v 

0. .... .... u .... u 0. ~ ~o ric til ..s ..so "'0 'n 

!:l - !:l 8f- Sf-
I:: ... \:l I::f- C o ;:l 0 o ;:l 0 gco c-. .... 0 

:i25 ·c co ·c co .:;: 0 Ev ;:;0:: .<;:::£ 'a< ~< 
-,.s 

'~< ~< 6h ,- ~ , - ~o ...... ~ ...... f- -v -v - ~ _f-

10% mass burned (CA) 361 357 357 356 361 358 359 360 
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50% mass burned (CA) 373 371 372 366 374 373 371 367 

90% mass burned (CA) 380 381 384 377 386 387 385 376 

10%-50% bum duration (CA) 12 14 15 10 13 15 12 7 

50%-90% bum duration (CA) 7 10 12 11 12 14 14 9 

10%-90% bum duration (CA) 19 24 27 21 25 29 26 16 

COVIMEP(%) 2.07 1.84 1.11 1.06 9.77 8.27 6.0164 5.02 

Peak pressure (MPa) 27.18 29.58 27.77 34.31 26.39 26.26 26.92 33.29 

Location of peak pressure (CA) 376.5 370.5 377 370 378 376.5 375 371.5 

NET IMEP (MPa) 2.81 2.94 2.92 2.86 2.30 2.39 2.32 2.42 

Texh(K) 395 393 398 378 403 429 418 399 

Trapped Residuals (%) (Predicted) 44.68 46.13 45.33 46.97 47.32 46.63 46.23 47.27 

As with Case A and Case B, spark-assistance near the misfire boundary can affect 

combustion phasing. As ignition is advanced for case C and D, combustion phasing is 

also advanced (Figures 6.28 - 6.31). Again it appears that the higher NlMEP is due to 

earlier combustion phasing for both the shorter and longer CAl camshafts. Table 6.6 

compares MFB data for both set of camshafts, it can be seen that the 10% MFB angle is 

more advanced for the spark-assisted cases compared with combustion without spark. 

Early combustion phasing indicates that there is more time for combustion to commence 

and hence more energy can be realized from the fuel. However, advancing ignition too 

much leads to very advanced combustion which does not lead to higher NlMEP. From 

Table 6.6, it can be seen that for Case C at ignition 20 CA deg BTDC, the NIMEP value 

is 2.92 bar, this decreases to 2.86 bar when ignition is advanced to 40 CA deg BTDC. 

The COVIMEP value also decreases as ignition timing is advanced and also when spark­

assistance is used, indicating enhanced combustion stability for spark-assistance. 

6.4.2 Effects of Spark Ignition on Emissions 

The same relationship is observed for Cases C and D with regards to emissions as case A 

and B. For both Case C and Case D, spark-assistance CAl yields higher ISNOx values 

compared with conventional CAl (Figure 6.32 and Figure 6.33). This has been attributed 

to higher in-cylinder temperature for the spark-assisted cases as indicated by Figure 6.34 
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and Figure 6.35. However, beneath a certain threshold temperature, the effects of 

oxidation have a detrimental effect on combustion. For Case C at SOl 30 CA deg ATDC, 

it is evident that although the in-cylinder temperature is lower for spark timing at TDC 

and 20 CA BTDC, the ISNOx values are still higher for spark-assisted CAl compared 

with conventional CAL 

For Case C and Case D, ISNOx values are approximately between 0.9 glkW.h to 1.4 

g/kW.h. ISNOx values for CAl combustion at lambda 1.2 are usually below O.4g1kW.h, 

as shown in Chapter 5, however even ISNOx values close to 1 glkW.h are still relatively 

low compared with SI combustion. 
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Figure 6.32 ISNOx against injection timing at different Ignition Timings, EVC 
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Ignition Timings, EVC 70 CA deg BTDC, IVO 75 CA deg ATDC, longer CAl camshafts 

Figure 6.34 and Figure 6.35 supports the general trend of higher in-cylinder 

temperatures for spark-assisted CAl compared with conventional CAL As a result, 

the ISHC values are lower for spark-assisted CAl compared with conventional CAl 

across the fuel injection range as shown in Figure 6.36 and 6.37. ISCQ follows a 

similar trend with higher in-cylinder temperatures from the spark-assisted cases 

leading to lower ISCQ values (Figure 6.38 and Figure 6.39). 
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6.4.3 Effects of Spark Ignition on ISFC 

It appears that SOl 30, 60 and 90 CA deg ATDC delivers the lowest ISFC (g/kW.h) 

for spark timing at 40 CA deg BTDC for both Case C and Case D (Figure 6.40 and 

Figure 6.41). For injection during the NVO re-compression process at SOl -30 deg 

A TDC, ISFC values for Case C are higher for spark timing at 40 CA deg BTDC 

compared with conventional CAL It would appear that the re-compression process 

affects the charge composition and therefore spark-assistance has limited effect. 

During SOl at TDC (intake) for Case D, the ISFC values for conventional CAl are 

higher than spark-assisted CAl at spark timing 40 CA deg BTDC. This is due to 

higher in-cylinder pressures and hence less inducted fresh air and less injected fuel. 
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Figure 6.40 ISFC against injection timing at different Ignition Timings, EVC 80 
CA deg BTDC, IVO 75 CA deg ATDC, shorter CAl camshafts 
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CA deg BTDC, IVO 75 CA deg ATDC, longer CAl camshafts 

6.4.4 Summary of spark-assisted CAl Combustion 

It was observed that for spark-assisted CAl operation, higher NIMEP values were 

obtained. Furthennore as spark timing was advanced NlMEP increased. On inspection of 

the heat release rate, it was noticed that spark-assistance advanced the start of combustion 

and also increased the peak of heat release rate, due to optimized combustion phasing. As 

a result ISFC values decrease and the cyclic variation is reduced. 

On inspection of the 10%-90% MFB, it is noticeable that spark-assistance has a greater 

effect on the 50%-90% MFB stage, as well as being responsible for the early start of 

combustion. 

ISNOx values increased with spark-assistance due to higher in-cylinder temperatures 

caused by advanced combustion. Due to earlier combustion phasing, HC and CO 

emissions are lower compared with spark-assisted CAl. 
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6.5 Effects of Engine speed on Engine combustion 

6.5.1 Introduction 

In order to study CAl combustion further and attempt to increase the boundary region, 

the engine speed during CAl combustion was increased to 2000 rpm. It was only possible 

to increase engine speed to 2000 rpm using the longer CAl camshaft. Since, the longer 

CAl camshaft had higher intake valve lift than the shorter CAl camshaft, it was possible 

to induct more fresh charge needed for operation at higher speeds. 

In order to study the effect of engine speed, tests were conducted for a valve timing of 

EVC 65 CA deg BTDC, IVa 70 CA deg ATDC at two engine speeds: 1500 rpm and 

2000 rpm. It was also of interest to investigate if start of fuel injection timing at different 

speeds offered any flexibility of control over load and the consequent effect on emission 

and fuel consumption. Therefore, graphs ofNIMEP, ISFC, ISNOx, ISHC and ISCO were 

plotted against start of injection. Furthermore, in order to investigate CAl combustion 

characteristics at 2000 rpm, the 10%, 50% and 90% MFB, percentage of trapped residual 

and heat release data were analyzed. In order to see if lambda had any effect on CAl 

combustion at high speed, three cases were studied at Sal -40, 40 and 120 CA deg 

ATDC: 

[I] EVC 65 CA deg BTDC, IVa 70 CA deg ATDC, 2000 rpm, Lambda = 1.0 

[II] EVC 65 CA deg BTDC, IVa 70 CA deg ATDC, 2000 rpm, Lambda = 1.1 

[III] EVC 65 CA deg BTDC, IVa 70 CA deg ATDC, 1500 rpm, Lambda = 1.0 
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6.5.2 Effects of speed on engine performance at valve timing EVC 65 CA deg BTDC, 
IVO 70 CA ATDC 

Figure 6.42 and Figure 6.43 show charts of ISNOx and trapped residual values against 

speed respectively. It can be seen that at EVC 65 CA deg BTDC, IVO 70 CA deg A TDC 

at 2000 rpm and SOl 40 CA deg ATDC, CAl combustion is occurring; at 1500 rpm SI 

combustion is taking place. To achieve CAl operation at 1500 rpm, more advanced EVC 

timing has to be used. ISNOx values are low at 2000 rpm and the percentage of trapped 

residual is high; at 1500 rpm, ISNOx values are high and percentage of trapped residuals 

is low. Figure 6.44 shows a chart of NIMEP against speed for the longer duration CAl 

camshaft i.e. intake duration 140 CA, exhaust duration 130 CA. It can be seen that at 

1500 rpm the highest NIMEP can be achieved with SI operation, at 2000 rpm the lowest 

NIMEP is realized. 

From Figure 6.45, it is apparent that as engine speed is increased from 1500 rpm (Case 

III) to 2000 rpm (Case I and Case II), the NlMEP decreases. At high engine speeds, the 

gas exchange process has less time to take place, the higher residual is obtained as shown 

in Figure 6.46, limiting the amount of inducted fresh charge and hence restricting the 

highest attainable NIMEP. Furthermore, increasing the lambda value from 1.0 (case I) to 

1.1 (case II) at high speed, causes a further decrease in the NIMEP (Figure 6.45). 

Start of injection timing does not seem to affect NlMEP very much. At 2000 rpm, the 

NIMEP value is almost constant at 2.68 bar at lambda = 1.0. At lambda = 1.1, the 

NIMEP value varies between 2.64 bar to 2.11 bar and at 1500 rpm, NIMEP varies 

between 2.9 bar to 3.05 bar. 
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Figure 6.46 Trapped Residual against injection timing at different speed and 
lambda, EVC 60 CA deg BTDC, IVO 70 CA deg ATDC 

It can be seen that operations at 2000 rpm have advanced 10% MFB and retarded 90% 

MFB compared with that at 1500 rpm (Figure 6.47). The burn duration increases at high 

speed and at lean conditions (Figure 6.48) and the peak cylinder pressure decreases with 

speed (Figure 6.49 and Figure 6.50). Highest in-cylinder temperature coupled with 

highest peak pressure result in short bum duration at 1500 rpm. As speed is increased the 

volume of trapped residuals increase due to a faster gas exchange process, this leads to 

longer bum duration and eventually misfue. 
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Figure 6.51 shows the heat release rate against crank angle, combustion at 1500 rpm 

occurs near TDC, whereas for Case I and Case II (2000 rpm), combustion occurs after 

TDC. Zhao et al. [59] offer an explanation and state that theoretically, the ignition delay 

of HCCI combustion depends largely on mixture chemistry, and it is relatively 

independent of engine speed. However, the ignition time of HCCI combustion relative to 

the engine crank angle will be retarded when the engine speed increases. When ignition 

occurs before TDC, the temperature rise from compression will compensate the relative 

ignition retardation at high engine speed. If ignition appears after TDC, the relative 

ignition delay caused by high engine speed will be further retarded by expansion which 

slows the temperature rise. Since combustion is occurring after TDC for the high speed 

cases, in-cylinder temperatures are lower leading to drastically retarded ignition 

compared with HCCI combustion at 1500 rpm. 

6.5.3 Effects of speed on engine emissions at valve timing EVC 65 CA deg BTDC, 
IVO 70 CA ATDC 

ISNOx values are lower at 2000 rpm compared with 1500 rpm (Figure 6.52). This 

corresponds with Li et al. [60] who found the same general trend that increasing engine 

speed led to decreased BSNOx values. Li et al. also found that variation for BSNOx at 

high speed between lambda 1.0 and 1.1 is quite miniscule. The reason for the drop in 

ISNOx values at high speed is due to the drop of in-cylinder temperatures as shown in 

Figure 6.48. Furthermore, as SOl is varied from -40 CA deg ATDC to 40 CA deg ATDC, 

ISNOx values drop for all three cases. Injecting during the recompression period (-30 CA 

deg ATDC) causes combustion to start early, leading to slightly higher combustion 

temperatures. However, even this slight change in temperature causes higher ISNOx 

values. 
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From Figure 6.53 it can be seen that the ISHC values are higher for 2000 rpm compared 

with 1500 rpm. Furthermore, lambda 1.1 (Case II) has higher ISHC values compared 

with lambda 1.0 (Case I), due to lower combustion temperatures shown in Figure 6.48. 

The ISHC values remain constant over the injection range. 
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Figure 6.53 ISHC against injection timing at different speed and lambda 

In contrast, ISCO values are higher at 1500 rpm than those at 2000 rpm (Figure 6.54) and 

at a leaner mixture which produces less CO emissions, probably due to extended and 

delayed combustion at 2000 rpm for more complete CO oxidation. 
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Retarding the injection timing, from -40 to 40 CA deg A TDC causes ISCO values to drop 

for all three cases, a possibility is that injection at 40 CA deg ATDC allows better mixing 

due to the piston moving downwards and introducing a swirl motion. At SOl -40 CA deg 

ATDC, the piston is moving upwards, injecting at this time causes fuel to be sprayed onto 

the cylinder wall and piston causing fuel rich pockets. As injection timing is retarded to 

SOl 120 CA deg ATDC, for Case III (1500 rpm), ISCO values decrease further. This is 

due to better mixing, when the piston is near BDC, fuel injection has more cylinder 

volume to disperse within; this better mixing and avoidance of wall and piston wetting 

allows for lower ISCO values. 

6.5.4 Effects of speed on ISFC at valve timing EVC 65 CA deg BTDC, IVO 70 CA 
ATDC 

At 1500 rpm, the ISFC values are lower compared with 2000 rpm (Figure 6.55). This is 

due to inefficient combustion phasing, Figure 6.51 shows that combustion is occurring 

near TDC whereas for higher speed the combustion is retarded. The injection timing has 

little effect on ISFC as it does on NIMEP. 
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6.5.5 Summary of effects of speed at valve timing EVC 65 CA deg 

BTDC, IVO 70 CA deg ATDC 

It has been shown that for a given valve timing, increasing speed allows CAl combustion 

to be realized. At EVC 65 CA deg BTDC, at 1500 rpm, the engine operates in SI 

combustion mode, increasing speed to 2000 rpm allows the engine to trap more residuals 

and achieve CAl combustion. 

The effects of start of injection timing on CAl combustion were investigated at 2000 rpm. 

It was found that varying the SOl from -40 to 40 CA deg ATDC had little effect on 

NIMEP at 2000 rpm. Likewise, ISFC values also did not drastically vary over the 

injection range. 

ISNOx values are lower at a speed of 2000 rpm compared with 1500 rpm at EVC 65 CA 

deg A TDC, due to lower in-cylinder temperatures. At lambda 1.1 ISNOx values are even 

lower due to even lower in-cylinder temperatures. 

ISHC values increases with engine speed as combustion changes from SI at 1500 rpm to 

CAl operation at 2000 rpm, whereas CO emissions decreases. 
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6.6 Analysis of CAl Combustion at lambda 1.2 in DI 

Gasoline Engine with Late Injections 

6.6.1 Introduction 

Results in Chapter 5 have shown that that fuel injection at different periods during the 

engine cycle has various benefits and drawbacks. Early injection during the 

recompression period can promote the auto-ignition process and cause combustion to 

start early. Late injection during the compression stroke can produce stratified charge and 

hence a different combustion process. It becomes apparent that a combination of 

injection timing strategies is needed to optimize fuel economy and emissions i.e. split 

injection strategies. The Bosch VS 1 00 management system has capabilities to undergo 

split injections, where injection volume is split in percentage between the pre and main 

injections. However, due to limited information on the Bosch VS 1 00 system, it was not 

possible to implement and test any split injection cases. It was deemed that investigating 

late injection would provide a useful indication of engine behaviour during the main 

injection phase of a split injection strategy. It has been reported that auto-ignition can be 

accelerated by the presence of stratified charge and commences into fuel-lean zones 

allowing control over ignition timing [58]. Therefore, it was also of interest to see if late 

injection allowed any control over ignition timing. Start of injection was varied from 170 

CA deg ATDC to 290 CA deg ATDC (intake) in increments of 30 CA deg and engine 

performance and emission data was recorded. Again the engine was allowed to warm up 

and reach an operating temperature of 85°C. The throttle was left wide open, the AFR 

was kept at lambda 1.2 and engine speed was maintained at 1500 rpm. 

Two different valve timing combinations were selected, to investigate the effect of intake 

and exhaust valve duration on CAl combustion and whether late SOl influenced any part 

of combustion. For the shorter CAl camshaft an EVC time of 85 CA deg BTDC at 1500 

rpm was chosen, as more retarded EVC could only be operated with SI and advanced 
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EVC led to misfire. For the longer CAl camshaft, an EVC time of75 CA deg BTDC was 

chosen, again retarding the EVC time led to Sl combustion and advancing EVC caused 

misfire. The spark was left on for both cases, however, it was deemed that CAl 

combustion was occurring since ISNOx values were low. For comparison purposes 

engine performance and emissions were plotted against start of fuel injection timing for 

the full range of injection timings permissible with the engine management system. The 

full range was SOl -40 to 290 CA deg ATDC and plotted for the shorter CAl camshafts 

at an EVC timing of 85 CA deg BTDC. It is possible to inject earlier than -40 CA deg 

ATDC and inject later than 290 CA deg ATDC for CAl combustion, however the Bosch 

VSI00 had been coded to only operate within this injection window. The two valve cases 

tested are given in Table 6.7: 

Table 6.7 Operating conditions and valve timings for late injection testing 

Lambda 1.2 
Speed 1500 rpm 
Case 1 with EVC 85 CA deg BTDC and IVO 60 CA deg ATDC 
shorter CAl Intake Valve Duration: 120 CA, Exhaust Valve Duration: 110 
camshafts CA 

Case 2 with EVC 75 CA deg BTDC and IVO 110 CA deg ATDC 
longer CAl Intake Valve Duration: 140 CA, Exhaust Valve Duration: 130 
camshafts CA 

6.6.2 Effects of EVC and Valve duration on NIMEP at late Injection 

As shown in Figure 6.56, late injections have little effect on NIMEP values for both the 

shorter and longer CAl camshafts. Furthermore, there is little effect of fuel injection from 

SOl 170 to 290 CA deg ATDC on the percentage of trapped residual (Figure 6.58). But 

early injection during the intake stroke led to higher NIMEP (Figure 6.57) due to the 

charge cooling effect. The charge cooling effects also result in a lower percentage of 

trapped residuals for early injection (Figure 6.61), as more fresh charge is inducted. 

Figure 6.59 and Figure 6.60 shows that late injection is characterized with advanced start 
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of combustion but longer combustion duration. Whereas the opposite occurs for the early 

injection (Figure 6.62 and Figure 6.63). 

Cao et al. [6] have shown that such a large difference in combustion characteristics 

between the early and later injections is due to charge stratification. As shown in Figure 

6.64 and Figure 6.65, the mixture is homogeneous throughout the combustion chamber 

when injection takes place during the intake stroke. As the injection is retarded, there is a 

significant stratification in mixture distribution. There are more regions of very lean 

mixture as injection is retarded. Such lean mixtures will bum slower resulting in a longer 

combustion duration, while the start of combustion is advanced due to the presence of 

richer mixtures. 
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Figure 6.65 Equivalence ratio-temperature distribution at the end of 
compression stroke for the cases with injection after IVe [58] 

6.6.3 Effects of EVe and Valve duration on emissions at late Injection 

SOl between 170 to 290 CA deg A TDC has a minimal effect on ISNOx values for both 

valve timing cases (Figure 6.66), or in-cylinder peak gas temperature (Figure 6.68). 

Figure 6.67, shows the variation of ISNOx along the complete injection range permissible 

for the engine (-40 CA deg to 290 CA deg ATDC) for valve timing case of EVC 80 

BTDC, IVO 60 ATDC. As can be observed, at early injection cases ISNOx values are 

extremely low and gradually increase for late injection. For late injection ISNOx values 

are higher than early injection, even though in-cylinder temperatures are lower for late 
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injection (Figure 6.69). Higher ISNOx values are due to the lower NIMEP values of late 

injection and localized high temperature regions of fuel rich mixtures. 
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Figure 6.66 ISNOx against injection timing at different valve timings, SOl 170 to 
290 CA deg ATDC (intake) 
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Figure 6.69 Peak In-cylinder temperature against injection timing for the shorter 
CAl camshafts, SOl -40 to 290 CA deg ATDC (intake), EVC = 85 CA deg BTDC, 
IVO = 60 CA deg ATDC 

For the shorter CAl camshafts, the intake air has been fully inducted when SOl takes 

place, reducing potential mixing effects by the motion of the intake air. For the longer 

duration camshafts, SOl occurs during the induction of intake air allowing for more 

homogeneous-like mixing to occur. This mixing results in lower ISHC from the longer 

CAl camshaft engine operation due to absence of fuel rich regions, as seen in Figure 

6.70. 
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ISHC values (Figure 6.71) show a general trend of increasing with retarded injection as 

stratification becomes noticeable as discussed before. The presence of over lean/rich 

mixtures will increase uHC emissions. As expected the peak temperature is lower with 

late injection as the combustion duration was longer (Figure 6.69). 
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Figure 6.70 ISHC against inj ection timing at different valve timings, SOl 170 to 290 
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Figure 6.71 ISHC against injection timing for the shorter CAl camshafts, SOl -40 to 
290 CA deg ATDC (intake), EVC = 85 CA deg BTDC, IVO = 60 CA deg ATDC 

There is an increase in ISCO values as injection is retarded from 170 CA deg ATDC to 

290 CA deg A TDC for both camshafts. As start of injection timing moves towards TDC 

(expansion) there is less time for mixing and incomplete oxidation increases drastically. 
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ISCO values were vastly greater at late injection compared with early injection (Figure 

6.73). At early injection, ISCO values varied between 3 glkWh to 6 glkWh. Whereas at 

late injection ISCO values varied from 38 glkWh to 58 glkWh. ISCO values were 

extremely high due to late injection causing incomplete oxidation. Again this is due to the 

stratification effect as discussed before. 
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6.6.4 Effects of EVC and Valve duration on ISFC at late Injection 

The longer CAl camshafts have higher lSFC values, for SOl 170 to 290 CA deg ATDC, 

compared with the shorter CAl camshafts (Figure 6.74), due to reduced expansion work 

as explained previously. The higher lSFC values of late injection (Figure 6.75) are 

expected as combustion is much slower and incomplete compared with early injections. 
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6.6.5 Summary of Late Injection on Engine Performance and Emissions 

It was found that late injection leads to advanced combustion, but long combustion 

duration or partial burn due to the charge stratification effect. As a consequence of low 

NIMEP values at late injection, ISFC values were higher compared with early injection. 

It was also observed at late injection that emissions increased compared with early 

injection. It was found that fuel rich pockets affected emissions in different ways. For 

ISNOx, it was found that that fuel rich pockets had locally high temperatures that caused 

ISNOx values to increase at late injection. ISHC and ISCO values were also higher at late 

injections due to unburnt fuel within rich regions of the combustion chamber. 

Finally it was found that valve duration did not have any significant effect at late 

injection on NIMEP, emissions or ISFC. 
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Chapter 7 Conclusions and Recommendations for 

Further Work 

7.1 Introduction 

A Ford 1.6 L multi-cylinder Direct Injection Gasoline engIne was commissioned and 

modified to operate with Controlled Auto-Ignition combustion. The prototype engine 

fundamentally only differed from a conventional Sl engine in that it had lower-than-nonnal 

valve lift and shorter-than-nonnal valve duration set in a negative valve overlap 

configuration. The engine was modified to incorporate a variable valve timing system 

which could be used to achieve CAL EVC timing was advanced and hence a high 

percentage of exhaust gas was trapped, this provided the thennal energy to initiate auto­

ignition of the fuel and the dilution of charge to control the subsequent heat release. As a 

consequence of reduced valve lift and duration, there was a limitation on inducted fresh 

charge, it was therefore envisaged that increasing intake and exhaust valve duration and lift 

would have an effect on the operational region. Through this research some interesting 

concepts were uncovered which provided possible solutions for seamless transitioning, 

future research is required to prove the viability of these concepts. 

7.2 Engine Performance and Emissions whilst Utilizing SI and CAl 

combustion 

7.2.1 Effect of Valve Duration on Engine Performance whilst using low-lift, short­

duration CAl camshafts 

It was found that at lambda 1.0, at the most retarded SOl timing that the NIMEP value was 

the highest for both the shorter and longer CAl camshafts. This was due to higher pumping 

losses resulting from heat loss occurring from SOl during the negative valve overlap. The 
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heat loss at early injection results in lower expansion pressure and hence higher pumping 

losses. 

At lambda 1.2, it was also found that as injection timing was retarded, NIMEP increased. 

This was due to two reasons, the first being that combustion phasing was advanced with 

early injection causing NIMEP to drop. The second was due to a minor heat release event 

reducing compression work and increasing expended expansion work during the NVO 

period. 

At both lambda 1.0 and 1.2, it was found that NIMEP values were higher for SI combustion 

compared with CAl combustion for both the shorter and longer CAl camshafts. This was 

due to a higher percentage of residual being trapped for advanced EVC timing and hence 

CAl combustion; therefore NlMEP values would be lower. However, it was found that at 

both lambda 1.0 and 1.2, some NIMEP values in the SI region overlap with values within 

the CAl region. This proves an effective method for achieving transitioning from low-lift 

SI to CAl combustion and back to low-lift SI combustion. 

At lambda 1.0, for the entire SOl range, the shorter CAl camshafts had higher NlMEP 

values compared with the longer CAl camshafts. Firstly EVO for the longer CAl camshaft 

occurs 20 CA deg before EVO for the shorter CAl camshafts. The exhaust valve opened 

earlier during the power stroke resulting in positive work being displaced and causing 

higher pumping losses for the longer CAl camshafts. The second reason for lower NlMEP 

values was due to a higher percentage of trapped residual for the longer CAl camshafts at 

the same valve timing compared with the shorter CAl camshafts. This was due to higher in­

cylinder pressure at EVC for the longer CAl camshafts leading to higher in-cylinder 

pressure at IVO and hence less inducted fresh charge. The other reason for the lower 

NIMEP values at lambda 1.0 for the longer CAl camshafts was due to a lower effective 

compression ratio for the same IVO, as IVC is retarded by 20 CA deg. 

At lambda 1.2, the longer duration camshafts experience higher pumping losses compared 

with the shorter duration camshafts causing NIMEP values to be lower. For the longer CAl 
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camshafts, EVO is occurnng 20 CA deg in advance, at a given valve timing, when 

compared with the shorter CAl camshafts. Furthermore, the valve lift is an extra 1 nun for 

the longer CAl camshafts compared with the shorter CAl camshafts. These two factors 

cause a higher percentage of charge to exit through the exhaust valves and decrease the 

available expansion pressure. Hence greater work has to be done to overcome this loss of 

expanSIOn pressure, leading to lower NIMEP values for the longer CAl camshafts at 

lambda 1.2. 

7.2.2 Effect of Valve Duration on Engine Emissions whilst using low-lift, short­

duration CAl camshafts 

ISNOx emissions 

At lambda 1.0, it was found that for both the shorter and longer CAl camshaft, at the most 

retarded SOl timing ISNOx values were the lowest. At lambda 1.2, the opposite effect was 

observed, for both the shorter and longer CAl camshafts as SOl timing was retarded the 

ISNOx values increased. This could be explained by the increase in spatially averaged peak 

in-cylinder temperature as SOl is retarded. 

For both the shorter and longer CAl camshafts, at lambda 1.0 and 1.2, it was observed that 

ISNOx values were higher within the SI region compared with the CAl region. This was 

due to higher in-cylinder temperatures within the SI region causing higher ISNOx values. 

On comparison of ISNOx values between the shorter and longer CAl camshafts at lambda 

1.0, it was found that lower values of ISNOx existed for the longer CAl camshafts. This 

was due to the 20 CA deg earlier EVO opening for the longer CAl camshafts causing lower 

in-cylinder pressures and hence lower bulk in-cylinder temperatures. This allowed lower 

ISNOx values for the longer CAl camshafts. 
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For lambda 1.2, a similar trend was observed, it was found that the raw NOx emission 

values are lower for the longer CAl camshafts compared with the shorter CAl camshafts. 

This was due to lower in-cylinder temperatures observed for the longer CAl camshafts. 

ISHC emissions 

At lambda 1.0 and 1.2, for both the shorter and longer CAl camshafts, it was found that as 

SOl was retarded lSHC values increased. This was due to less mixing time at retarded fuel 

injection times. The lack of mixing time leads to fuel rich zones within the combustion 

chamber and hence an increase in unburned hydrocarbons at late injections. 

Values of lSHC are higher for the CAl region compared with the Sl region for both the 

shorter and longer CAl camshafts. lSHC values are based on in-cylinder temperatures, a 

higher in-cylinder temperature indicates less unburned fuel and hence a decreased 

production of unburnt hydrocarbons. 

lSHC values are higher for the longer CAl camshafts, at lambda 1.0 and 1.2, compared 

with the shorter CAl camshafts. This is due to lower peak in-cylinder temperatures and a 

shorter expansion stroke observed for the longer CAl camshafts. 

ISCO emissions 

At lambda 1.0 and 1.2, as SOl is retarded lSCO values increase drastically. This can be 

explained by the fact that there is less time for charge mixing at later injections, decreasing 

homogeneity and increasing locally rich combustion. 

lSCO values were generally lower for Sl operation compared with CAl operation for both 

the shorter and longer CAl camshafts. However, it was observed that at lambda 1.0 for the 

longer CAl camshaft, CO values were lower for CAl operation compared with Sl operation. 

lSCO values are not entirely based on in-cylinder temperature but are also based on the 

oxidation process. For CAl combustion, there is less inducted fresh charge and hence a lack 
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of oxygen which restricts the oxidation process and results in higher ISCO values within 

the CAl region compared with the SI region. 

ISCO values are higher for the longer CAl camshafts compared with the shorter CAl 

camshafts, due to higher in-cylinder temperatures for the shorter CAl camshafts. The 

higher in-cylinder temperatures result in lower ISCO values due to a more favorable 

environment for CO to be oxidized to CO2. 

7.2.3 Effect of Valve Duration on Fuel Consumption whilst using low-lift, short­

duration CAl camshafts 

As SOl is retarded for both the shorter and longer CAl camshafts at lambda 1.0, ISFC 

values decrease. This is due to the fact that injection during the re-compression period 

initiates charge cooling which allows injection of more fuel, however, this is expended on 

higher pumping losses during the cycle. Injection during the re-expansion process allows 

less fuel to be injected due to lower expansion pressure and hence ISFC values are lower. 

At lambda 1.2, as SOl is retarded, ISFC values increase for both the shorter and longer CAl 

camshafts. The lower values observed at early SOl timing is due to lower pumping losses. 

Less work is needed to overcome the exhaust gases and therefore fuel consumption also 

drops at injection during NVO re-compression period. 

At both lambda 1.0 and 1.2, ISFC values are greater for the longer CAl camshafts 

compared with the shorter CAl camshafts. The reason for this is that higher pumping losses 

are associated with longer CAl camshafts. 

7.3 Effects of Spark-Assistance on CAl combustion 

It was found that there was an area sandwiched between spark-ignition combustion at low­

lift and CAl combustion. This area, identified as spark-assisted combustion, is initiated by 

spark but has the characteristics of CAl operation. After undertaking testing it was found 
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that spark-assistance exhibited certain universal characteristics; true for both shorter and 

longer CAl camshafts. It was found that for spark-assisted combustion for both shorter and 

longer CAl camshafts that higher NIMEP values were obtained. Furthermore as ignition 

timing was advanced NIMEP increased. Ultimately, spark-assistance advanced the start of 

combustion and increased the heat release rate peak due to optimized combustion phasing. 

As a result of increased NlMEP, the ISFC values decreased for the spark-assisted cases 

again due to optimized combustion phasing. 

For both the shorter and longer CAl camshafts, ISNOx values increased with spark­

assistance due to higher in-cylinder temperatures caused by advanced combustion. 

Likewise due to higher in-cylinder temperatures it was found that ISHC and ISCO values 

decreased compared with conventional CAl combustion; again this trend was found for 

both the shorter and longer CAl camshafts. 

7.4 Effects of operation at 2000 rpm on CAl combustion 

The effects of operation at 2000 rpm on CAl combustion while varying SOl timing were 

investigated. It was found that varying SOl had little effect on NIMEP at 2000 rpm. It 

appears that at higher speed, there is less time for the charge temperature and pressure to be 

altered through fuel injection and so NlMEP does not change significantly over the 

injection range. Furthermore, since NIMEP did not change over the injection range at 2000 

rpm, ISFC values did not drastically vary over the injection range. 

ISNOx values are lower at a speed of 2000 rpm compared with 1500 rpm at EVC 65 CA 

deg ATDC. The reason for lower ISNOx values at 2000 rpm is due to lower in-cylinder 

temperatures. Due to these lower in-cylinder temperatures ISHC values are higher at 2000 

rpm. 

It was found that ISCO values were highest at 1500 rpm due to incomplete oxidation and 

poor charge mixing. Increasing engine speed to 2000 rpm caused ISCO values to decrease. 
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7.5 Effects of late injection on CAl combustion 

It was of interest to investigate if late injection timings, typically 170 CA deg ATDC to 290 

CA deg ATDC (intake), had an effect on CAl combustion. It was found that late injection 

leads to advanced combustion, but long combustion duration or partial bum due to the 

charge stratification effect. As a consequence of low NlMEP values at late injection, ISFC 

values were higher compared with early injection. 

It was also observed at late injection that emissions increased compared with early injection. 

It was found that fuel rich pockets affected emissions in different ways. For ISNOx, it was 

found that fuel rich pockets had locally high temperatures that caused ISNOx values to 

increase at late injection. ISHC and ISCO values were also higher at late injections due to 

unbumt fuel within rich regions of the combustion chamber. 

Finally it was found that valve duration did not have any significant effect at late injection 

on NIMEP, emissions or ISFC. 

7.6 Recommendations for Future Work 

Analysis work of the engine test data presented some interesting discoveries, some of 

which provided a method for seamless transition. Furthermore, research work highlighted 

certain avenues of interest which would be worthwhile exploring in order to push HCCI 

engines closer to production status. The author feels that work in the following areas should 

provide some useful and interesting results: 

i) It was found that similar NIMEP values were found for spark-ignition operation 

at low-lift and CAl operation. Therefore, it is apparent that by controlling 

injection timing, ignition timing, air/fuel ratio and valve timing that transition 

can be made from Sl to CAl operation. Using an advanced engine management 

system, it should be possible to control these four parameters and change 

between SI and CAl operation. Work should be undertaken to implement and 
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evaluate the feasibility of using this method of transitioning and any noticeable 

condition change. 

ii) It was shown that SOl timing has a major effect on CAl combustion engine 

performance and emissions. Various benefits can be achieved by injecting at 

certain times with regard to valve events. However, for all research presented in 

this thesis, injection timing could be varied from -40 CA deg ATDC to 290 CA 

deg ATDC (intake) using only single injections. The effects of different 

injection strategies with numerous injections within the same cycle could prove 

useful and allow the advantages of early and late injection to be simultaneously 

realized. 

iii) Ultimately, for an HCCI engine to be capable of meeting the load demands of 

current production engines, an engine has to be produced which has the ability 

of switching between SI high-lift operation, SI low-lift operation and CAl 

operation. SI high-lift operation would be used for high loads, SI low-lift 

operation would be used for cold start and CAl operation would be used for low 

and mid loads. Therefore, the most realistic solution would be in the form of a 

Cam Profile Switching engine which could switch between the different modes. 

It would be useful to observe the effects on emissions and any discernible 

torque jump during transitioning with such an engine. 
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Appendix A Values for Lab VIEWTM Knock Detection Program 

Parameter Value 
Trigger Position 252.5 or 612.5 
SampleslRev 720 
Calibration Factor 10 bar 
Low Pass Filter 13,000 
High Pass Filter 18,000 
Sampling Rate 40,000 
Crank Radius 4.07 cm 
Cylinder Bore 7.9cm 
Con-Rod Length 13.63 
Compression Ratio 11.5 
Swept Volume 399 cmj 

Clearance Volume 38 cm"' 
IVC 300 
EVO-IVC 132 

Front Panel of Lab VIEWTM Knock Detection Program 



AppendixB Photographs of Head Gasket Refit on the Ford 14 Engine 
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