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SYNOPSIS 

Two different research projects were investigated for this 

thesis, which has consequently been presented in two parts. 

PART 1 

An attempt has been made to improve the high temperature 

performance of phenol-formaldehyde thermosets by modification of 

their structure with inorganic phosphate groups. 

Transesterification of tri-phenyl phosphate with resorcinol 

has given a resorcinol phosphate resin, which cured with 

hexamethylenetetramine. A pilot scale batch of this resin has been 

made and used in high temperature stability studies. 
Post-cured resorcinol phosphate resin-chrysotile asbestos 

(30: 70) moulded bars retained 59.5% of their flexural strength 

after ageing at 523K for 1000 hr in air. Similar phenol-formaldehyde 

composite bars aged under identical conditions retained only 5.3% 

of their initial flexural strength. The utility of the resorcinol 

phosphate resin composite as a commercial product is limited, since 

the bars had a much lower initial flexural strength (30.85 MNm 2) 

than the phenol-formaldehyde resin composite bars (108.5 MNm 2). 

Thermogravimetry and isothermal heating studies have indicated 

that the degradation of resorcinol phosphate resin was greatly 

accelerated by chrysotile asbestos, which may catalyse a bond 

re-organisation process that has been tentatively proposed as a 

mechanism for the fragmentation of the resin. 



PART 2 

Recently an ionomer dental cement (ASPA), prepared from aqueous 

poly(acrylic acid) and an ion-leachable aluminosilicate glass, has 

been developed. The system has been extended by studying other aqueous 

polymers. The factors influencing the gelation and the properties of 

the set cements have been examined. Poly(carboxylic acids)with 

hydrophobic, or no pendant substituents were found to be the most 

satisfactory polymers for preparing water stable cements. 

To study the influence of the nature of the cation and polymer 

structure on the gelation and water stability of ionomer cements, 

a wide range of metal oxide-polyacid products have been studied. The 

formation of water stable cements depended markedly on the type of 

oxide and polyacid employed and appeared to involve factors such as 

the co-ordination geometry and radius of the cation and the nature 

of the cation-polyanion bonding in the matrix., A comparison between 

the water stabilities of ASPA cement and poly(acrylic acid)-CaO, A1203, 

or Al(OH)3 cements has shown that the chemistry of ASPA cement is 

more complex than has been hitherto reported. 

Stability constants have been determined for Ca 2+ 
and Cd 2+ 

with poly(acryl ic acid) and ethyl ene-mal ei c acid copolymer by a 

potentiometric titration method developed by Gregor and modified by 

Mandel and Leyte. The stability constants obtained in 1. OM NaNO3 

at 298.2 ± 0.2K were: 
2+ 

for poly(acrylic acid), with Cat+, log bI Ca 
-3.35 

Cd 2+ 

with Cd2+, log Bav PAA =-2.30 

for ethylene-maleic acid 
copolymer, with Cat+ 

with Cd2+ 

The log bl values probably had lit 

Ca 2+ 
log b1 EMA ti -4.05 

Cd2+ 
log B 

av _= -1.95 EMA 
tle precise meaning, although 



to a first approximation, 

Ca2+ Ca2+ 
log bl PAA >log b1 EMA 

The determined stability constants have been used with limited 

success in predicting the water stabilities of the corresponding 

metal oxide-polyacid cements. 
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1 INTRODUCTION 

1.1. General Introduction. 

Advances in technology are often limited by inadequacies in 

the properties of available materials. For example the development 

of modern high speed aircraft and missiles has demanded materials 

which combine high temperature resistance and a high strength to 

weight ratio. This demand has to some extent been met by extensive 

research in polymer science and technology and much has been 

discovered about the chemical structure of polymers in relation to 

high temperature resistance. 

Some applications where high temperature resistant materials 

are required include the following: 

Ablation shields on space craft, where polymers that burn 

to a highly insulating char residue have been developed. 

Missile components, such as rocket motor housings, where 

materials of high strength to weight ratio are advantageous. 

Diamond abrasive wheels, in which the wear of the wheel surface 

is induced by high temperature degradation of the resin binder by the 

heat generated during grinding processes. 

Racing car and motorcycle brake lining binders, which are 

subjected to high temperatures developed from braking at high speed. 

Flame retardant textiles and insulating foams, which do not 

release imflammible volatiles at high temperatures. 

Heat resistant paints and coatings, for example transformer 

wire coatings, in which electrical energy losses may produce much 

heat. 

High temperature resistant polymers are specialised products 

and their cost is usually high. 

Rosato1 has classified various polymer types into an 
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approximate order of increasing high temperature resistance 

(diagram 1.1.1. ). Polymers in zone 5 of Rosato's diagram have 

fairly good high temperature resistance and, with the exception 

of poly(tetrafluoroethylene), are low in price. Above zone 5 

high temperature resistance increases, but the cost of the polymers 

increases markedly. The adoption of polymers from zones 6 and 7 

for a particular application may therefore be restricted by their 

cost. Polymers in zone 8 are not, as yet, commercially important. 

It is therefore evident that in the development of high 

temperature resistant polymers commercially viable products must 

combine, as far as it is possible, a high temperature resistance 

with relatively low cost. 

The cost of a product containing a polymer also depends 

upon its'production cost. For example, aromatic poly(imides) 

require higher processing temperatures and times than conventional 

thermosetting, or thermoplastic polymers and are consequently 

more expensive to fabricate. Ease of processing is a very important 

factor in deciding the commercial usefulness of a polymer. Thus, 

poly(p-phenylene) (I) has exceptionally good high temperature 
*2 

resistance but does not soften below about 1070 K (under zero 

applied load) and is therefore of no commercial interest. Slight 

chemical modification of an intractable polymer may improve its 

processability, but almost invariably to the detriment of its 

thermal or thermo-oxidative stability; for example poly(2,6-dimethyl- 

phenylene oxide) (II) has a lower softening point (495 under zero 
'3 

applied load ) than poly(p-phenylene) but a much lower thermo-oxidative 

resistance. 

All tenperatures in the text are in degrees Kelvin. The letter 
K will therefore be omitted from this point onwards. 



Diagram 1.1.1. 
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1.2. Factors-contributing to the high temperature resistance of polymers. 

Two basically different processes determine the high temperature 

resistance of polymers, both of which are dependent upon structural 

features of the macromolecular chains and the groups of atoms that 

exist in the polymer structure. 

The first process is physical and reversible in nature and 

represents a 'softening' of the polymer with increase in temperature. 

Two fundamental physical property changes of this type are the 

glass transition temperature, Tg and the melting point, Tm of a 

polymer. 

Tg is the temperature at which a polymer changes from a rigid 

glassy state to a flexible elastic state. This change is called a 

second order transition and the value of Tg depends upon the rate 

of heating or cooling of a polymer and upon the load applied to 

the polymer. When a polymer is cooled to its Tg the motion of 

the segments in the polymer macromolecules is 'frozen' and the 

polymer becomes rigid. 

Tm is the temperature at which crystalline regions in a 

polymer disappear. No long chain polymer is wholly crystalline in 

structure so that sharp melting points are not possible. Tm 

represents the upper limit of a melting point range and is 

defined by the relationship. 

Tm = H. It is a first order transition. ' 

AH is the enthalpy of fusion, i. e. the heat absorbed to break down 

a crystalline structure. 

AS is the entropy of fusion and is related to the molecular order, 

structure symmetry and chain flexibility. 

In addition to Tg and Tm values various arbitrary softening 

points are also used to describe the behaviour of polymers on heating. 
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Two examples are the heat distortion temperature and the Vicat 

softening point, which are used as references for estimating the 

temperature limit of structural stability of polymers. 

Korshak4 has used the term 'heat'stability to describe 

the high temperature resistance of polymers in terms of the physical 

changes that take place with rising temperature. This term will 

be used in this thesis. 

The second process, which effects high temperature resistance 

of polymers, is chemical in nature and involves the breaking of 

primary chemical bonds in the macromolecules. These chemical 

alterations of the macromolecules are permanent for organic polymers. 

During chemical breakdown volatile fragments may be released from a 

macromolecule, or alternatively a bond rearrangement may occur 

leading to, for example, cross-linking or cyclisation. Fragmentation 

leads to a lowering of the molecular weight of a polymer and a loss 

of mechanical strength, whilst cross-linking may increase the 

mechanical rigidity. A superimposition of these two processes may 

give the impression that a polymer is undergoing no chemical change 

on heating, although eventually one process will predominate and 

changes in mechanical properties will be observed. 

Chemical breakdown at high temperature can occur by bond 

dissociation, or in air by oxidation. Korshak5 has used the term 

'thermal'stability to describe the resistance to thermal bond 

dissociation and 'thermo-oxidative' stability to describe resistance 

to oxidation at high temperatures. Both of these terms will be used 

in this thesis. 

Thermal and thermo-oxidative stability are temperature and 

time dependant. This is well illustrated by the maximum service 

temperature of epoxide resins, which is 350-400 for 25000 hours' 

exposure, but is markedly increased to 410-520 for only 200 hours' 
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exposure6. 

Thermal and thermo-oxidative stability are often defined in 

terms of the temperature and time at which a defined value in 

weight or mechanical strength property change is reached. 

i 



7 

1.3. Some methods for measuring the high temperature resistance of 

polymers. 

1.3.1. Heat stability. 

Tg and Tm can be determined from differential scanning calorimetry. 

Tg, which is a second order transition and is therefore temperature 

and time dependent, is usually detected by the onset of an endothermic 

deviation representing a rate of increase of enthalpy with temperature. 

If the polymer is crystalline a well defined endothermic peak occurs 

at a temperature higher than Tg and represents the first order 

transition, Tm. 

Arbitrary penetration and deflection methods are also widely 

used to determine the softening properties of polymers. Examples 

are the Vicat and the heat distortion temperatures, 7'8 
where polymers 

are subjected to testing under constant load at a fixed rate of 

heating. 

1.3.2. Thermal and thermo-oxidative stability. 

Thermogravimetry is widely used as a rapid method for comparing 

the thermal and thermo-oxidative stability of polymers. Samples are 

heated at a constant rate of temperature increase and weight losses 

monitored automatically as a function of temperature (diagram 1.3.2.1. ). 

Arbitrary points on the thermogravimetric curves are used to define 

the stability of the polymer, such as To and Tx. To is the temperature 

at which rapid weight loss begins and Tx the temperature at which x% 

of the polymer weight has been lost. Since Tx occurs on a part of 

the curve where degradation has already started, its validity in 

comparing the thermal and thermo-oxidative stabilities of polymers 

must be viewed with caution. Some polymers contain a lower 

percentage of organic material than others, for example poly(dimethyl- 

siloxane) (III) can be completely degraded with only a 20% loss in 
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C113 

n CFL n 

(I) Poly(p-phenylene). 
(II) Poly(2,6-dimethyl 

phenylene oxide) 

O-Si- 

CH- 
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"n 
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x ---------ý ---- sometimes 50% in 

% weight' 
the literature. 
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Temperature 
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A Thermogravimetric Curve. 

I 
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weight. 

Isothermal weight loss determinations are also widely used and 

often give lower values for the degradation temperatures of polymers 

than the dynamic technique. 

Thermal stability can be separated from thermo-oxidative 

stability by heating in inert atmospheres. In air, or oxygen, 

thereto-oxidative degradation very often precedes thermal degradation, 

which usually requires a substantially higher activation energy to 

occur. 

Derivative thermogravimetry is useful in detecting thereto-oxidation, 

since the process is exothermic in nature. 

Measurement of the change in mechanical properties, such as 

flexural strength and modulus, with ageing at high temperature is 

also used to describe the thermal and thermo-oxidative stability 

of polymers, especially thermosetting resins and "ladder" polymers, 

where chemical decomposition often takes place before the polymer 

significantly softens. 

1.3.3. Applicational evaluations. 

Although properties such as Tg and Tm may define the absolute 

limits of usefulness of a polymer, arbitrary softening points and 

information from themogravimetry are of limited value. A polymer 

destined for a "particular application must be evaluated by preparing 

the required components from the polymer and then testing these 

components in the thermal environments they are likely to encounter 

in use. 

Polymers may be subjected to conditions where factors such 

as creep and distortion may limit their useful working life. 

Thermal expansion may also produce problems, especially where two 

different materials are in contact. 

The loss in mechanical properties by chemical degradation is 
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a process which can determine the suitability of a polymer for use 

in components operating at elevated temperatures under stress. 

Electrical properties, such as resistance and dielectric 

constant, may irreversibly deteriorate as a result of use at 

temperatures high enough to produce chemical breakdown of the 

polymer. 
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1.4. The description of high temperature resistance. 

The phrase "thermal stability" is often used in describing 

polymer systems in a loose and general sense that. is of limited 

usefulness. Statements such as, "the-polymer is thermally stable 

at 500", or "the polymer has high thermal stability, " are abundant 

in the literature on high temperature resistant polymers. Nothing 

of any real practical value is conveyed in such statements. For 

a more meaningful description, having first stated the type of high 

temperature resistance i. e. heat, thermal or thermo-oxidative 

stability, the following information should also be stipulated where 

appropriate: 

The property change measured. 

The temperature to which the polymer has been exposed 
or the heating rate applied. 

The time of exposure at the test temperature. 

The temperature at which a measurement, e. g. flexural 
strength, was taken. 

The atmosphere, or surroundings of the sample during 
heating. 

The method and apparatus employed. 

In a general sense high temperature resistant polymers are 

polymers that have a continuous service temperature above at least 

475 in air. Heat, thermal and thermo-oxidative resistance are 

encompassed in this general description. In 1970 much research was 

aimed at producing polymers with long term service temperatures 

between 475 and 675.9 

In engineering applications, the maximum long term service 

temperature is that to which a polymer can be exposed for a 

requisite period of time (often continuously) without any significant 

alteration in mechanical properties, or with an acceptable decline 

in mechanical properties. 
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Modification of a polymer may significantly alter its maximum 

service temperature, for example the heat resistance may be lowered 

by plasticisers or increased by reinforcing fillers. 



13 

1.5. Structural features influencing the heat stability of polymers. 

Tg is a measure of the ability of a polymer chain to rotate 

about the constituent chain bonds, i. e. depends upon the flexibility 

of the chain. 

In linear polymers the rotation about the bonds in the chain 

backbone is hindered by steric interactions of substituent groups. 

The inclusion of unsubstituted atoms into the polymer backbone tends 

to lower the Tg by separating the substituted atoms and thereby 

reducing the energy barrier to rotation. For example, the presence 

of oxygen atoms in a polymer backbone increases the chain flexibility, 

as is illustrated by comparing the Tg of poly(ethylene) with that of 

poly(formaldehyde) (table 1.5.1. ). Introducing rings, such as 

phenylene groups, into a polymer backbone will stiffen the chain by 

hindering rotation, so that more thermal energy is needed to set 

the chain in motion. Thus, poly(phenylene oxide) has a much higher 

Tg than poly(formaldehyde) (table 1.5.1. ) and poly(p-phenylene) (I) 

is completely intractable. 

With asymmetrical polymer chains an additional restriction 

to rotation is imposed by steric effects. The presence of non-polar 

side groups increases Tg and the effect is accentuated with increase 

in the bulkiness of the groups. This effect is illustrated by 

comparing poly(ethylene), poly(propylene) and poly(styrene) (table 1.5.1. ). 

Superimposed on this group size factor are effects of polarity and 

the intrinsic flexibility of the pendant group itself. An increase 

in cohesion between the polymer chains, by ion-dipole interactions 

or hydrogen bonding, increases Tg. Thus polar groups tend to 

increase Tg when compared with non-polar groups of similar size, as 

can be seen by comparing poly(propylene) with poly(vinylchloride) 

and poly(acrylonitrile) (table 1.5.1. ). The effect of side chain 

flexibility on Tg can be seen by comparing poly(methyl acrylate), 
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poly(ethyl acrylate) and poly(butyl acrylate) (table 1.5.1. ). 

Cross-linking also restricts chain rotation and increases 

Tg. Thus, poly(imidazopyrrolone) (1V), which is a "ladder" 

polymer and thermoset polymers, such as phenolics, are intractable. 

Tm is dependent upon structural effects in a polymer that 

tend to enhance the ordering, or crystallisation, of the polymer 

chains. 

Ion-dipole interactions and hydrogen bonding between polar 

groups in a polymer increase inter-chain cohesion and increase 

Tm. Thus, poly(formaldehyde) has a higher Tm (448) than 

poly(ethylene) (Tm = 383), due to the increase in chain cohesion 

conferred by the oxygen atoms in the polymer chainsP The very 

high melting points of aliphatic poly(amides) (V)can`be attributed 

to extensive inter-chain hydrogen bonding which gives the polymer 

high crystallinity. The incorporation of phenylene rings into 

a polymer backbone also increases the tendancy for the polymer to 

crystallise. 

The presence of bulky non-polar side chains tends to hinder 

the ordering of the chains in atactic polymers and tend to lower Tm. 
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Table 1.5.1. 

T values for various polymers11,12,13 

POLYMER REPEAT UNIT T9 

Poly(ethylene) -ECgZ Cg2- 253 

Poly(propylene) CH-CH2 
CU 

257 

3n 

Poly(styrene) 
JF-CHý 

H 65 

T 
353 

n 

--FCHFo 0 
n 

213 

Poly(phenylene oxide) -JC6H4 01 
n 

356 

Poly(vinyl chloride) 
t? HCH2t 

C1 
354 

n 

Poly(acrylonitrile) C"2 
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1.6. Structural features influencing the thermal and thermo-oxidative 

stability of polymers. 

1.6.1 Thermal stability. 

The strength of a chemical bond puts an upper limit on the 

vibrational energy that molecules can possess without bond 

rupture. Atomic vibrations take place by absorption of thermal 

energy and the maximum amount of energy that two bonded atoms can 

absorb before dissociating is defined as the bond dissociation 

energy. Bond dissociation energies are documented, but tend to 

vary from author to author. Table 1.6.1.1. lists some bond 

dissociation energies between various atoms. 

Absolute values of bond energies do not alone determine 

the thermal stability of a polymer. Secondary bonding by 

ion-dipole interaction between polar groups or by hydrogen bonding 

may also contribute to thermal stability, for example hydrogen 

bonding energies can provide up to the equivalent of 10% of the 

bond dissociation energy of the C-C bond. Factors tending to 

lower the thermal stability of bonds include steric over-crowding, 

activated groups (such as activated methylene groups) and chain 

irregularities. Wright and Leel7 have demonstrated the limited 

applicability of bond dissociation energies by comparing 

experimental and calculated degradation temperatures for poly(ethylene). 

The calculated degradation temperature was determined from the 

Arrhenius equation, taking the activation energy as equivalent to 

the bond dissociation energies and using typical values for the 

collision number and probability factor. Taking a rate of degradation 

of 1% min-1 the calculated degradation temperature was found to 

be considerably higher than that found in practice. 

Wolfes18 has studied the dissociation energies of bonds 

between atoms in various polymers and has suggested that for 
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Table 1.6.1.1. 

14,15,16 
Bond dissociation energies 

BOND BOND ENERGY (kJ mole-1) 

C-N 306 

C-C (aliphatic-aromatic) 346 

C-C (aliphatic) 347.5 

-C-C (aromatic) 410 

C-H (aliphatic) 413 

0-H 425 

. C-O (phenolic) 448 

C-H (aromatic) 467 

P-0 342 

Si-0 451 

B-0 473 

Ti-0 670 
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thermally stable polymers the bonds energies in the macromolecular 

chains should not be less than 375 kJ mole-1. For example, aromatic 

C-C links in polymers have a very high thermal stability. 

Bond energies are calculated by assuming that the bonds 

dissociate homolytically. However, many bonds, such as P-0 and 

C-0 are polar and possess some ionic character. Electronegativities 

(table 1.6.1.2. ) can be employed in estimating the degree of ionic 

character in. bonds19, If the difference in electronegativities 

of two atoms forming a bond is less than about 1.7 then the bond 

can be considered to be predominantly covalent and a value higher 

than about 1.7 indicates that the bond is mainly ionic (table 1.6.1.3. ). 

Van Wazer20 has made some important generalisations about the 

nature of inorganic bonds, compared to organic bonds. The breaking 

of bonds in organic polymers is usually associated with degradation 

processes involving charring and the elimination of volatiles at 

high temperatures. In inorganic polymers the fission of primary 

bonds gives rise to different processes. This point is illustrated 

by molten glass in which there is a very rapid exchange of parts 

between and within the molecules, but the system remains at 

equilibrium and does not degrade at high temperature in the presence 

of oxygen. 

Less is known about catenation between inorganic atoms 

than carbon atoms. In inorganic macromolecules the bonding is 

more complex, for example with elements from the third period of 

the periodic table 3d orbitals may be involved to give a (d-p)7c 

contribution to the bonding. 

1.6.2. Thermo-oxidative stability 

Since most high temperature resistant polymers are used 
in air, thereto-oxidative stability is very important technically 

and consideration of this aspect of degradation usually predominates 
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Table 1.6.1.2. 
Pauling electronegativities19 

B 2.0 
Al 1.5 
C 2.5 

Si 1.8 
P 2.1 
0 3.5 
Ti 1.6 

Table 1.6.1.3. 

Ionic character of bondsl5 

BOND ELECTRONEGATIVITY DIFFERENCE 

OF ATOMS. 

% IONIC 

CHARACTER 

B-0 1.5 43 
Al-0 2.0 63 
Si-0 1.7 51 

C-0 1.0 22 
P-0 1.4 39 

Ti-0 1.9 59 

* Amount of ionic character = 1-exp. 11(Xa - Xb) 
2 

4 

Xa and Xb are PauZing eZectronegativities. The 

true ionic character may be much lower in cases 

where dative it bonding ccm occur. 
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over thermal stability. Most organic groups in polymers are 

susceptible to thermo-oxidation. Phenolic hydroxyl groups are 

readily oxidised, even at moderate temperatures, to form 

quinone structures. Aliphatic C-H bonds are also susceptible 

to oxidation, especially at tertiary carbon atoms. Ketones and 

hydroperoxide groupings often form and hydroperoxide groups 

themselves are thermally unstable, dissociating into radicals. 

Thus, poly(propylene) is more readily oxidised than poly(ethylene) 

at high. temperature, with the formation of hydroperoxide groups 
21 

at the tertiary carbon atom (TIT). 

The incorporation of aromatic carbocyclic or heterocyclic 

rings into a polymer main chain considerably enhances 

thermo-oxidative stability. In these systems, which are highly 

resonance stabilised, hydrogen atoms are very firmly bound and 

cannot split off as hydroperoxide radicals. Such polymers resist 

oxidation up to 675-875 
22 

Poly(p-xylylene) (VTf), for_example, 

has a higher thermo-oxidative resistance than poly(ethylene) QLIII), 

whilst poly(benzyl)(IX) is more resistant than either of these 

polymers 
23 

Inorganic atoms may also enhance thermo-oxidative resistance. 

Poly(tetrafluoroethylene) (X) has exceptionally high thermo-oxidative 

stability when compared to poly(ethylene) (VIII). It is important 

that the inorganic atoms in a polymer are in their highest oxidation 

state otherwise thermo-oxidative attack could take place at the 

inorganic atom. 

1 . 6: 3. Network structures. 

Linear organic polymers with a "ladder" structure, such as 

poly(imidazopyrrolone) (TV)are less likely to undergo fragmentation 

by chemical bond scission than polymers with a single -C-C- 

macromolecular backbone. Fragmentation necessitates the scission 
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(Iv) Poly(imidazopyrrolone). 

--1 R- CO- NH- Rý-n 

R-NH-CO-Rý- 

(Y) Hydrogen bonding in aliphatio poly(amides). 

IOH 
cIi2 CH- 02 ---cH--c 

cH3 cH3 
(VI) The oxidation of a chain 

unit of poly(propylene). 
Radicals. 

CH2 O CH2 CH2 CH2 

L- jnn 

(VII) Polyp-xylylene). (VIII) 

Poly(ethylene). 

CF2 CF2 

fcH2-ý (Ix) 
Poly(benzyl). 

(X) Poly(tetrafluoroethylene). 
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of two bonds within the same ring in the polymer main chain, which 

has been shown to be statistically less favoured with respect to 

scission of two bonds in different rings24. Thus, although thermal 

or thermo-oxidative degradation may occur, their effect on the 

mechanical properties of the polymer may be delayed. There is also 

the possibility that chain scission at one point in a ring may 

activate another part of the same ring to thermal or thermo-oxidative 

degradation, in which case fragmentation may occur rapidly. 

Similar arguments apply to polymers with a three dimensional 

network of atoms, i. e. thermosets. The cross-linking of a 

thermosetting polymer also gives rise to another effect. Whilst 

in an uncured state the various groups of atoms in a thermosetting 

polymer are free to vibrate when they absorb thermal energy. Bond 

stretching and group wagging modes of vibration can occur, which 

dissipate the absorbed thermal energy. If a chemical bond absorbs 

too much thermal energy then its restoring force per unit 

displacement (or force constant) will be insufficient to prevent 

the two oscillating atomic nuclei from dissociating. By 

cross-linking the resin the various groups of atoms present will 

be held rigidly and thermal energy dissipation by wagging modes 

will be reduced. The bond stretching modes will then receive 

more thermal energy and the bonds will tend to dissociate at 

earlier stages than if they were a part of a freely vibrating 

discrete molecule. 
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1.7. General features of high temperature resistant polymers. 

Most high temperature resistant organic polymers are composed 

of a high proportion of resonance stabilised aromatic rings and 

often have "ladder" or three dimensional network structures. 

Consequently, these polymers are very rigid and are often insoluble 

in most solvents. 

Table 1.7.1. shows some examples of high temperature 

resistant polymers. 

The linear polymers are usually very difficult to, process, 

since they will only flow under high temperatures and pressures, 

or may not even flow at all. Temperatures in excess of 700 may be 
' 

necessary 
25- 

to fabricate these polymers (e. g. the sintering of 

poly(imides)). The insolubility of many high temperature resistant 

polymers limits their use in coatings, for example poly(phenylene 

sulphide) (table 1.7.1. ) is insoluble in all organic solvents below 

47526. 

Thermosetting polymers, such as Xylok resin (table 1.7.1. ) 

are much easier to process than the linear high temperature 

resistant polymers by virtue of their initial tractability at 

fabricating temperatures and pressures. Disadvantages encountered 

with many thermosetting resins are that volatiles are released 

during the curing reaction and often a long post-cure is required 

to drive off these volatiles and thereby complete the cross-linking 

reaction. 

There is very extensive literature available on high 

temperature resistant polymers and in the main thermosetting polymers 
27,28,29,30,31 

have received less attention than the linear types. 
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1.8. Organophosphorus Polymers. 

1.8.1. General introduction. 

There are two large groups of organophosphorus polymers. 

Group 1, where the phosphorus containing moiety is pendant to 

the main chain of the polymer. 

Group 2., where the phosphorus atoms are a part of the main chain 

of the polymer. 

Group 1 includes addition polymers of ethylenically 

unsaturated phosphorus containing monomers and polymers prepared 

by phosphorylating substituent groups on synthetic or naturally 

occurring organic polymers. The addition polymers are the most 

important member of this group and the first example was prepared 

by Toy et. al., 32 who polymerised diallylaryl phosphonate (T) 

to a hard, glassy, high temperature resistant product. Many 

hundreds of unsaturated organophosphorus monomers have been 

reported to polymerise and much information is available in the 

1i terature. 33-35 

Group 2 are the most important organophosphorus polymers 

from the point of view of high temperature resistance and includes 

poly(amides), poly(esters), poly(urethanes), poly(phosphazenes), 

polymers containing phosphorus and other inorganic elements in the 

main chain and certain co-ordination polymers, all of which are 

described in the literature. 33-35a 

A large number of structurally related poly(esters) have been 

reported (table 1.8.1.1. ) and of these only the poly(phosphates) 

will be discussed in detail. 

1.8.2. Poly(organophosphates). 

Perhaps the most successful of the organophosphorus polymers, 

poly(organophosphates) were extensively researched by I. C. I. Ltd. 
36-40 

in the 1950's. Many patents were published, mostly in the mid-1950's. 

Poly(organophosphates) are prepared from organophosphorodichloridates 
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Table 1,8.1.1. 

Poly(esters) containing phosphorus in the main chain. 

f 

i 

POLYMER STRUCTURAL UNIT 

Poly(phosphates) 

0 

0 -P-O-i 

OR 

Poly(phosphites) 0--P -O-Rý 

OR "n 

Poly(phosphonates) 

0 

0 -P -0 -R 

R 
n 

Poly(phosphonites) 0-P --O-R 

R 
n 

Poly(phosphinates)., 

0 

p -I(- 

OR n 

Po1y(phosphinites) ' --p -R 

OR 
n 

ýý 

1 

t 
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and diols or dihydric phenols (M). 

With aliphatic diols and aliphatic phosphorodichloridates 
41 

the reaction proceeds at high rate, but seven side reactions occur, 

namely, 

a. Phosphorodichloridates act as mild chlorinating agents for 

alcohols, (XIII (i)). 

b. O=P, 7OH groups are formed, (XIII (i)). 

c. These acid groups react with -O-R side groups with cross-linkage 

by anhydride formation, (X I (ii)). 

d. The -O-R side groups are able to react with the phosphorodichloridate 

with anhydride formation, (Xfff (iii)). 

e. Under strongly acid conditions, traces of water which are mostly 

contained in the glycol used, will hydrolyse the P-Cl, P-OR or 

P-OR'bonds to P-OH. 

f. Ethylene glycol (and poly(ethylene glycols)) are condensed to 

1,4-dioxan by the HCl evolved, (XIII (iv)). 

g. In the presence of bases, monomeric cyclic phosphates are 

formed, especially from 1,2-, or 1,3-diols (XIII (v)). 

These side reactions prevent the formation of poly(organophosphates) 

with molecular weights above about 2000. With dihydric phenols side 

reactions a, b, c, f and g do not occur and side reactions d and e 

can be eliminated by using aromatic phosphorodichloridates. 

The polymerisation reaction can be performed in the melt 

phase, 
36 by heating the monomers in an inert solvent with a hydrogen 

chloride acceptor, 
6 

or by an interfacial method using aqueous alkali 

as a hydrogen chloride acceptor 
42 

Poly(esters) have also been prepared by heating bis-phenols, 

phenols and phosphoryl chloride together- 43 
and by reacting dihydric 

phenols with imidazole derivitives of phosphorus' 
44 (XIV), or with 

phosphoric triamide 45 (XV). 
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J(CHCC2 
(XI). Diallylphenyl phosphonate. 

n Cl- P-Cl +"n HO-R- OH -b- R- O- P- 0+ 2n HCl OR. 6R 
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(XII) The preparation of a poly(organophospbate) 

00 
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000 
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00 

(iv). 2 Ho-c CHF off 
acl 

Co 
ý$2 

$2 
C 

)H2 

+ 2H20 

0 

0 
(v). R-0-P- (2 

ýo-c 

(XIII) Side reactions and products in the preparation 

of poly(organophosphates). 
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Another method of preparing poly(organophosphates) is by 

transesterification (XVI) but has received less attention. Up 

to 1966, transesterification of tri-alkyl and tri-aryl phosphates 

with glycols had not been characterised in detail. 41 Aromatic 

phosphate esters are reported to be difficult to transesterify45 

although tri-phenyl, tri-cresyl and tri-xylyl phosphates are 

reported to undergo transesterification with phenols in the 

presence of catalysts (e. g. sodium hydroxide). 46 

Direct reaction between orthophosphoric acid and alcohols 

or phenols only leads to partial ester formation, because of the 

comparatively low reactivity of the P-OH groups. 
47 

Aliphatic poly(organophosphates) are hydrolytically unstable, 

whereas the aromatic poly(esters) resist hydrolysis. 41 I. C. I's 

poly(organophosphates) were aromatic and reached a developmental 

stage in commercial success as "Phoryl" resins LX I ). 

1.8.3. The properties of "Phoryl" resins. 

I. C. I. Ltd. once made a range of "Phoryl" resins with 

different substituents on the phenyl side chains (XPIT). 

Generally, these resins were stable in water and in cold 

dilute acids and alkalis. The resins were soluble in many solvents 

(e. g. benzene) and were attacked by concentrated mineral acids and 

strong aqueous alkalis. 
48 

"Phoryl" resins were thermoplastic, although certain patents 

described methods of hardening the resins. These methods were 

heating with paraformaldehyde, 
38 

or lead monoxide (1.5% added), 
37 

or even simply heating the resin alone to 575 for several minutes. 
38 

None of these reactions was characterised. 

The information on the high temperature resistance of 

"Phoryl" resins is very scanty and vague. They have been reported 

to withstand 373 for two weeks49 and to be stable when heated to 
37 573. 
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I. C. I. Ltd. eventually abandoned ", Phoryl" resins, probably 

because of their low softening points ((39050) and inadequate 

heat hardening properties. 

1.8.4. Thermosetting organophosphate polymers. 

Over about the last twenty years Redfarn and Bedford, 

consultant polymer chemists, have been investigating 

organophosphate and organoborate polymers with a view to preparing 

high temperature resistant plastics with useful mechanical 

properties. Thermosetting organophosphate and organoborate polymers 

have been prepared and some reported. 
51 The resins contained 

phenolic hydroxyl groups and were cured by formaldehyde donors, 

such as paraformaldehyde and hexamethylene tetramine (hexamine). 

The organoborate polyesters gave cured products that were 

hydrolytically unstable and therefore of no commercial value, whilst 

the organophosphate polyesters resisted hydrolysis. 

Generally, the organophosphate polyesters were prepared from 

an inorganic phosphoric acid or polyhalide thereof, or phosphoryl 

chloride, by heating with a polyhydric phenol in the melt phase or 

in solution. The resins contained some free unreacted phenolic 

hydroxyl groups (e. g. ýTTIýIT) to activate the benzenoid rings 

present for subsequent curing with formaldehyde donors. The use 

of dihydric phenols may be expected to minimise the chances of side 

reactions occurring. 

Copious evolution of hydrogen chloride during the preparation 

of the resins and the difficulty in removing all traces of hydrogen 

chloride from the product is a disadvantage with this method of 

preparation. 

Redfarn52 adopted a new approach to the preparation of the 

resins by employing a transesterification reaction (e. g. XIX). 

Phenol is evolved as a by-product and is preferable to hydrogen 
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chloride, since traces of phenol in the product will also react 

with formaldehyde donors. 

A suitable dihydric phenol is resorcinol, which will react 

readily with tri-phenyl phosphate at high temperature in the 

presence of a condensation catalyst. A resorcinol: tri-phenyl 

phosphate ratio of 5: 2 gives an excellent resin, whose idealised 

structure is shown, (MY). Increasing this ratio to 3: 1 would 

theoretically not yield a polymer and decreasing it below 5: 2 

would lower the ratio of hydroxyl: phosphate groups present in 

the resin, which would lower the potential cross-link density in 

the cured resin. Resorcinol is meta hydroxy substituted and 

therefore has a high reactivity towards formaldehyde donors. 

Both. resorcinol and tri-phenyl phosphate are commercially 

available and are relatively inexpensive, which makes them 

attractive as raw materials. 

Until the advent of Redfarn's patent'51no satisfactory 

curing organophosphate polymers had been reported. 
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1.9. Discussion of the predicted high temperature resistance of 

cured resorcinol phosphate resin. 

1.9.1. Introduction. 

The idealised structure of resorcinol phosphate resin 

prepared from tri-phenyl phosphate and resorcinol (mole ratio - 2: 5) 

and cured with hexamine is shown (ZK). 

The presence of -CH2-NH-CH2- cross-links is not considered 

in this discussion, although it is possible they may occur to 

some extent. 

To assess contributions to the high temperature resistance 

of the cured resin each part of its structure will be theoretically 

evaluated separately. The moieties present are: 

Aromatic rings. 

Phenolic hydroxyl groups. 

= P-O-C aromatic. 

= P=0 

-CH2- (methylene bridges). 

1.9.2. Aromatic rings. 

The aromatic rings in resorcinol phosphate resin are a part 

of the backbone of the polymer structure and would be expected to 

have high thermal and thermo-oxidative resistance (see sections 

1.6.1. and 1.6.2. ). 

1.9.3. Phenolic hydroxyl groups. 

The presence of substituents on an aromatic ring may tend 

to lower the thermal and thermo-oxidative stability of the 

structure. Madorsky and Straus 
53 

compared the high temperature 

stabilities of poly(p-phenylene) (I) and a cured phenol-formaldehyde 

resin (Y T) by thermogravimetry and found that poly(p-phenylene), 

which has no substituents on the benzene rings, had a higher 
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resistance to degradation than the cured phenolic resin, which has 

hydroxyl and methylene substituent groups. 

Resorcinol phosphate resin is cured at about 475. In 

conventional two stage phenolic resins curing is effected at about 

430 and at temperatures of 475 some decomposition may also occur 

to form quinone methide structures (XXII). Similar reactions 

cannot be precluded in the curing of resorcinol phosphate resin 

at 475. 

Quinone structures are also known to occur in the 

thermo-oxidative breakdown of cured phenolic resins (XXIII) after 

ageing in air at 473 and have been detected by infra-red 

spectroscopy. 
55 

From the point of view of the resistance to bond dissociation 

the thermal stability of the phenolic hydroxyl group would be 

expected to be high, since the 0-H and C-0 bond energies are very 

high (table 1.6.1.1. ). In the thermal breakdown of cured phenolic 

resins loss of -OH groups, as detected by the evolution of benzene 

or alkyl benzenes, does not occur below about 7255 

There is a possibility that etherification may occur 

between phenolic hydroxyl groups on the resin at high temperatures, 

although the rigidity of the cross-linked resin structure would 

minimise the likelihood of this happening. Any phenolic ether 

links produced would serve to aid cross-linking and would be 

expected to have good thermal and thermo-oxidative stability 

(c. f. commercial poly(imides), such as Kapton H film, 56 
which contains 

diphenylene ether groups (table 1.7.1. ) and can be used continuously 

in air at 525). 

1.9.4. P-O-C aromatic groups. 

There is little information on the high temperature stability 

of this group. 
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Thermogravimetry has shown that "phoryl 3" resin, which has 

4-octylphenyl groups pendant to the main chain21 (XVIT), does not 

degrade below 550 (see section 3.5.2. ), although in the literature 

"phoryl" resins are reported to be stable up to 575 under 

unspecified conditions. 37. ̀ 

Comparison of the bond energies of the C-0 and P-0 bonds 

(table 1.6.1.1. ) indicates that the P-0 bond is more susceptible 

to thermal rupture than the C-0 bond. 

As the phosphate link is inorganic, bond exchange mechanisms 

may occur at high temperature. Thus, although inorganic 

poly(phosphates) do not degrade at high temperatures, extensive 

bond exchange probably occurs. A similar situation may be true 

for the phosphate links in resorcinol phosphate resin i. e. the 

phosphate groups may be labile, but not sites for thermal or 

thermo-oxidative degradation. 

Although bonded to organic aromatic rings the P-O-C 

bonding may be expected to retain a high resistance to thermal 

degradation. For example, tri-phenyl phosphate may be distilled 

at 683 without decomposition, indicating considerable short term 

stability. 
57 

1.9.5. P=O groups. 

This group is present in inorganic phosphates, which 

withstand extremely high temperatures without decomposition, 

although bond exchange processes will involve this group. The 

phosphorus atom in compounds containing the P=O group is in its 

ultimate oxidation state of +5. No oxidation of the phosphate 

links in resorcinol phosphate resin would be expected, even if 

the resin were pyrolysed to red heat. 

1.9.6. -CH2- (methylene) bridges. 

The presence of methylene cross-links in cured resorcinol 

phosphate resin will impart considerable rigidity to the resin 
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structure i. e. the heat resistance of the cured resin would be 

expected to be very high. 

Methylene bridges form a major part of the structure of 

cured phenol-formaldehyde resins. It is reasonable to assume 

that the high temperature stability of the methylene bridges 

in a cured phenol-formaldehyde resin would be similar to that 

of the methylene bridges in cured resorcinol phosphate resin. 

Mass spectrographic analysis of the high temperature. 

degradation products of phenol formaldehyde resin has shown that 

chemical breakdown occurs primarily at the methylene bridges. 

Three stages of breakdown have been identified5. 

1. Up to 725. Post-hardening and oxidation, leading to 

loss of water and formaldehyde. 

2.725 - 875. Oxidation, leading to the evolution of 

carbon dioxide, carbon monoxide and water. Thermal bond dissociation, 

leading to phenol and homologues of phenol. 

3. Above 875. Coke formation, accompanied by loss of 

carbon dioxide and hydrogen by thermal and thermo-oxidative degradation. 

Mechanisms have been proposed for the therma158and 

thermo-oxidative59 degradation of cured phenol-formaldehyde resins 

(XXIII and )(XIV) and thermo-oxidation is the predominant mode of 
65 breakdown between 495 and 1275. 

Thermo-oxidation may therefore be expected to be a major 

contributor to the degradation of cured resorcinol phosphate resin 

at temperatures above about 475. Oxidation of the methylene 

bridges would be expected to occur initially with subsequent 

breakdown of the resin structure by a mechanism similar to that 

occurring in phenol-formaldehyde resin (ý III ). At temperatures 

above about 725 thermal breakdown of the methylene bridges may 

also be expected. Oxygenated, carboxylated and alkylated low 
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molecular weight aryl phosphates may be among the degradation 

products formed. 

The maximum service temperatures for cured phenol-formaldehyde 

resins are variously reported. Techel'60 has suggested that 

conventional phenol-formaldehyde resins can withstand 475 for 

several years. Many other sources report indefinite service at 

450, several hundred hours' service at 475 and only a few hours 

service above 475. The modified phenolic resin, Xylok 210 resin 

(table 1.7.1. ), which also contains methylene bridges, is reported 

to operate at 525 for at least 1000hr. 61 Possibly the reduced 

number of hydroxyl groups per benzene ring in the cured Xylok 

resin reduces the number of sites in the structure that can be 

oxidised by the mechanism (XRITT) (see section 3.3.9. ). 

By comparison with the performance of these phenolic resins 

it is reasonable to expect cured resorcinol phosphate resin to be 

serviceable for extended periods at up to 525, since in these 

resins a considerable number of phosphate links are present in 

addition to the thermo-oxidatively unstable methylene bridges. 

i. e. cured resorcinol phosphate resin can be considered as a 

cured phenol-formaldehyde resin in which a high proportion of 

methylene links have been replaced by phosphate links. From the 

point of view of thermo-oxidation the phosphate links may be 

expected to be considerably more stable than methylene bridges. 

By comparison with cured phenol-formaldehyde resin the predominant 

and primary cause of degradation in resorcinol phosphate resin 

would probably be thermo-oxidation. 
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1.10. The objectives of the research. 

The objective of this work was to prepare high temperature 

resistant thermosetting organophosphate resins, which could be 

moulded at temperatures ,< 475 using conventional equipment common 

to the processing of phenol-formaldehyde resins. Special emphasis 

was placed on the use of readily available commercial monomers in 

an attempt to keep the cost of the resins at a competitive level. 

From the earlier work of Redfarn, the most suitable method 

for preparing thermosetting organophosphorus resins was considered 

to be that of transesterification between tri-organo phosphate 

esters and polyhydric phenols to produce polymers containing 

phenolic hydroxyl groups. 

After the adoption ofýasuitable resin system and curing 

agent the evaluation of the high temperature resistance of moulded 

composite test pieces was considered necessary to provide the first 

step in assessing the commercial viability of the material. A 

programme was therefore contrived to involve the pilot scale 

synthesis of the resin, the preparation of a large batch of moulding 

powder from the resin compounded with chrysotile asbestos, the 

moulding of the composite into test specimens and finally the 

isothermal ageing of the mouldings in air at 525 with subsequent 

testing for loss in weight and changes in flexural strength. 

A product of high temperature resistance sufficient to place 

it in zone 6 of Rosato's chart (diagram 1.1.1. ) was considered a 

desirable prerequisite for the commercial exploitation of the 

system. 
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2. EXPERIMENTAL DETAILS 

2.1. The preparation of resins by the transesterification 

of polyhydric phenols with tri-phenyl phosphate 

2.1.1. Introduction 

In an attempt to prepare a range of thermosetting organo 

phosphate resins by transesterification certain polyhydric phenols 

have been heated with tri-phenyl phosphate in the presence of a 

catalyst. 

The reactants were heated in a flask, fitted with a still 

head, air condenser and receiver. Transesterification is an 

equilibrium process and in order to aid the completion of the 

reaction slightly reduced pressure was applied to the distillate 

receiver to facilitate the removal of phenolic by-products from 

the reactant melt. The reactants were heated rapidly to the 

reaction temperature and usually there was a short induction 

period before a phenol distilled over. A slight excess of up to 

10% by weight of the polyhydric phenol was employed to allow for 

slight losses carried over in the distillate. 

Induction and reaction times for these preparations were 

taken from the time the melt temperature reached 475. 

2.1.2. The preparation of resorcinol phosphate resin 

Materials: 16.3g Tri-phenyl phosphate (0.05 mole) 

15. lg Resorcinol (0.125 mole +10%) 

0.2g Zinc oxide 

Conditions: Max. melt temperature N 560 

Max. still head temperature - 465 

Induction period N 40 min 

Reaction time (total) N3 hr 
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Product: A soft, clear, brown resin was obtained, which 

cured readily when heated with 10% of added 

hexamine. The resin was soluble in acetone, 

alcohol, aqueous sodium hydroxide, aqueous ammonia 

and other organic solvents, but was insoluble in 

water. 

DistiZZate: Yield 

Resorcinol content 

Expected yield of 
distillate 

12.5 g 

-13.6% ("1.7g) 

14. lg phenol 
1.4g resorcinol 

2.1.3. Attempted preparation of a hydroquinone phosphate resin 

Materials: 16.3g Tri-phenyl phosphate (0.05 mole) 

15. lg Hydroquinone (0.125 mole + 10%) 

0.2g Zinc oxide 

Conditions: Max. melt temperature 555 

15.5g 

Max. still head temperature 480 

Reaction time (total) 3hr 20 min 

Under these conditions the mixture was a homogeneous 

liquid, but hydroquinone was sublimed from the melt. 

Product: A non-resinous, pale brown liquid resulted, 

containing unchanged hydroquinone. 

DistiZZate: Yield 7. Og 

Hydroquinone content 8.9% ( 0.6g) 

Expected yield of 14. lg phenol 15.58 
distillate l. 4g hydroquinone 

A weighed sample of the distillate was extracted 

with benzene to give two fractions. One fraction 

was soluble in benzene and the other was insoluble. 

The insoluble fraction, which was hydroquinone, was 

dried and weighed to determine the proportion of 

hydroquinone in the distillate. 
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2.1.4. Attempted preparation of a di(hydroxyphenyl) sulphone 

phosphate resin 

Materials: 16.3g Tri-phenyl phosphate (0.05 mole) 

33.4g Di(hydroxyphenyl) (0.125 mole + 7%) 
sulphone 

0.2g Zinc oxide 

Conditions: Max. melt temperature 575 

Max. still head 
temperature 440 (generally 

325-340) 

Total reaction time 7.5 hr 

The mixture became homogeneous at about 510 and 

distillation began at about 555. After 7.5 hr 

the melt suddenly frothed up, white vapours 

were evolved and distillation became more rapid. 

Product: A hard, dark, brittle solid was obtained, which 

softened at about 370 and had an odour of phenolic 

ethers. In boiling water the product became 

"spongey" and disintegrated. After standing the 

product in cold water for 12 hours SO2 gas was 

detected. With 10% added hexamine the product did 

not cure when heated at about 435 on a hot plate. 

The solid product was only partially soluble 

in hot 10% caustic soda and in warm acetone, but 

dissolved in 0.880 ammonia solution. 

Disti Uate: Yield 13.9g 

Expected yield of 
distillate 14. lg phenol 

2.2g di(hydroxy- 16.3g 
phenyl) sulphone 

The fresh warm distillate had an odour of SO2 gas. 
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2.1.5. Attempted preparation of a phloroglucinol phosphate resin 

Materials: 16.3g Tri-phenyl phosphate (0.05 mole) 

12.8g Phloroglucinol dihydrate (0.075 mole + 5%) 

O. lg Zinc oxide 

The reactants were ground together before heating. 

Conditions: Max. melt temperature 575 

Max. still head temperature 385 

Reaction time (total) 3hr 40min 

Product: A black solid and a dark, non-resinous liquid 

resulted. 

DistiZZate: Yield 3.2g 

Expected yield of 
distillate 2.3g water 

14.1g phenol 
0.5g phloroglucinol 

The preparation was repeated on a larger scale 

with stirring under nitrogen, keeping the melt 

temperature below 550. A similar two phase, 

non-resinous product was obtained, together with 

a deep yellow two phased distillate (probably a 

phenol/water mixture). 

2.1.6. Attempted preparation of a pyrogallol phosphate resin 

Materials: 16.3g Tri-phenyl phosphate (0.05 mole) 

14.8g Gallic acid monohydrate (0.075 mole + 5%) 

0.2g Zinc oxide 

Conditions: Two runs, a and b, were carried out at different 

temperatures. 
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16.9g 

a b 

Max. melt temperature N 595 --, 515 
Max. still head temperature 436 431 
Induction period (hr) 1.5 - 
Reactfion time (total) (hr) 4.5 2.75 
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Products: Both runs, a and b, gave non-resinous, soft, 

black solid products. The product from run b 

gave a brown solution when washed in hot water 

and the washed material was infusible at about 

455 

DistiZZates: 

Yield(g) 

Expected yield of 
distillate for runs 
a and b. 

ab 

9.8 6.3 

14. lg phenol 
1.3g water 15.9g 0.5g pyrogallol 
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2.2 Resin preparation by transesterification with tri-alkyl phosphates 

2.2.1. Introduction 

The method used in these preparations was similar to that used 

with tri-phenyl phosphate, unless otherwise stated, but the air 

condenser was replaced by a Liebig condenser. 

Reaction times were measured from the commencement of heating 

of the materials, unless otherwise stated. 

2.2.2. The preparation of resorcinol phosphate resin from tri-methyl 

phösphate 

Materials: 35g Tri-methyl phosphate (0.25 mole) 

76g Resorcinol (0.628 mole + 10%) 

l. lg n-butyl titanate 

Conditions: Max. melt temperature 465 Slow 525 
reaction 

Max. still head temperature 335 so 365 

Reaction time up to then 
heated 

the max. melt temperature 
(hr) 3.25 thus 4 

Product: A dark brown resin resulted, which was a brittle 

solid when cool. The resin melted in boiling 

water and was soluble in acetone. With 10% added 

hexamine the resin cured in about 25 seconds at 450 

on a hot plate. 

DistiZZate: A few ml of distillate were collected. The liquid 

had a phenolic and an ethereal odour and tests 

showed phenolic compounds to be present. 

2.2.3. The preparation of resorcinol phosphate resin from tri-n-butyl 

phosphate 

Materials: 13.3g Tri-n-butyl phosphate (0.05 mole) 

13.8g Resorcinol (0.125 mole + 10%) 

O. 
-3g 

n-butyl titanate 
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% 
, Conditions: Max. melt temperature 465 No apparent 485 

Max. still head temperature 325 reaction. 365 
Reaction time up to and at Cooled and 
the max. reaction temperature (hr) 1.33 reheated 

thus: 2.75 

Product: A brown, brittle, fusible resin was obtained, which 

cured readily with 10% added hexamine at about 455 

on a hot plate. 

Distillate: A few ml of a two phased liquid were collected. 

The distillate had a pungent odour not exactly 

similar to that of butanol. 

2.2.4. The preparation of resorcinol phosphate resin from tri-octyl 

phosphate 

Materials: 10.9g Tri-octyl phosphate .. 
(0.025 mole) 

7.6g Resorcinol (0.0625 mole + 10%) 

-0.25 ml n-butyl titanate 

Conditions: Max. melt temperature 465 No apparent 535 
Max. still head temperature 325 reaction, 385 
Reaction time up to the so temperature 
max. reaction temperature (hr) 1.25 raised thus: 0.6 

Product: A dark brown, brittle, fusible resin was obtained, 

which cured in 18 seconds with 10% added hexamine at 

about 445 on a hot plate. 

Distillate: A few ml of a two phased liquid were collected. 

The distillate had an ethereal odour and contained 

at least three distillable fractions. 

2.2.5. Attempted preparation of di(hydroxyphenyl) sulphone phosphate 

resin from tri-methyl phosphate 

Materials: 7. Og Tri-methyl phosphate (0.05 mole) 

34.4g Di(hydroxyphenyl) sulphone (0.125 mole + 10%) 

20 ml 1,4 - dioxan 

0.2g Zinc oxide 

1,4 - dioxan solvent was added to achieve a 

homogeneous solution, since the di(hydroxyphenyl) 
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sulphone was very bulky compared to the tri-methyl 

phosphate. 

Conditions: The solution was heated at a temperature under 373 

for lhr 45min and then refluxed for two hours. 

Half the solvent was distilled off and then the 

mixture heated for one hour up to 450. 

Product: A non-resinous, wet, crystalline material resulted. 

DistiZZate: 10 ml of distillate were collected, which was 

probably entirely 1,4-dioxan. 

2.2.6. Attempted preparation of pyrogallol phosphate resin from 

tri-n-butyl phosphate and gallic acid 

Materiats: 106.4g Tri-n-butyl phosphate (0.4 mole) 

118.4g Gallic acid monohydrate (0.6 mole + 5%) 

1.2g Zinc oxide 

Conditions: The reactants were heated, with stirring, under 

nitrogen. As the temperature was raised water was 

initially evolved and at about 445 frothing began 

as CO2 was produced. The frothing continued 

throughout the reaction. 

Max. melt temperature 505 

Max. still head temperature 397 

Reaction time after the onset of 
frothing 50 min 

Product: A black, brittle solid product resulted. In 

boiling water the product softened and a small 

fraction dissolved to give a brown solution. A 

sample of the product gave a rubbery material 

when heated at about 460 with 10% added hexamine 

for 1 minute, but the product material was not stable 

in boiling water. 
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Uistittate: Yield 33.3g 

Expected yield of 
distillate 11.25g water 

89g butanol 119g 
18.8g pyrogallol 

A two phased distillate was obtained, with 

a clear yellow upper layer and a white, cloudy 

lower portion. The liquid had a pungent "butyl" 

odour. At least three distillable fractions were 

present in the yellow phase, which was also found 

to contain phosphorus compounds. 
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2.3. Attemp ted p reparation of a di(hydroxyphenyl) sulphone phosphate 

resin using phosphoryl chloride 

Materials: 6.25g Di(hydroxyphenyl) sulphone (0.025 mole) 

1.54g Phosphoryl chloride (0.01 mole) 

1,4 - dioxan 

Conditions: A solution of phosphoryl chloride in 1,4-dioxan 

was carefully added over a period of 1 hour to 

a refluxing solution of di(hydrocyphenyl) sulphone 

in 1,4-dioxan. The mixture was further refluxed 

-for 2 hr 40 min. HC1 gas was evolved throughout 

the reaction. At the end of the heating time 

the effluent gases were tested for SO2, which was 

found to be present. 

Product: A dark, almost black', solution resulted, together 

with some black solid. After removal of the 

1,4 - dioxan a black, tacky, non-resinous mass 

was obtained, which melted at about 475-495. The 

product was soluble in hot water and in 10% aqueous 

sodium hydroxide. With 10% added hexamine the 

product thickened slightly, but did not cure, on 

a hot plate at 495. A stiff rubbery product was, 

however, obtained by heating the product at 475 

with a little a a'-dimethoxyxylylene and a trace 

of ZnC12 catalyst. 
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2.4. The effect of catalysts on the reaction between tri-phenyl 

phosphate and resorcinol 

Mixtures of tri-phenyl phosphate (1 mole %) and resorcinol 

(2.5 mole %+ 10%) with various catalysts were heated under 

distillation conditions with slightly reduced pressure applied to 

the apparatus. Reaction times were estimated roughly from the 

time the reactants had reached 475 to the time when 12.5 g of 

distillate had been removed. The reaction temperature employed 

was 555-560. 
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2.5. The study of potential curing agents for resorcinol phosphate 

resin. 

Small samples of resorcinol phosphate resin, prepared from 

tri-phenyl phosphate (1 mole %) and resorcinol (2.5 mole %+ 10%), 

were heated and spatulated with various compounds on a hot plate. 

The hot products were examined for signs of curing, decomposition 

or the evolution of volatiles. 

i 
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2.6. Examination of the hydrolytic and high temperature stability 

of resorcinol phosphate resin cured with iso-propyl titanate 

2.6.1. Hydrolytic stability 

Materials: 2g Resorcinol phosphate resin 

0.9 g Iso-propyl titanate 

0.5 g Chrysotile asbestos 

The resin was prepared from tri-phenyl phosphate 

(1 mole %) and resorcinol (2.5 mole % +10%). 

Method: The materials were thoroughly mixed and then 

cured at about 445 for 30 minutes to give a 

hard, brittle brown pellet. On boiling in 

water for 10 minutes the pellet disintegrated 

to a sticky resin and asbestos. 

2.6.2. High temperature stability 

Materials: 2g Resorcinol phosphate resin 

1.1 g Iso-propyl titanate. 

Method: The iso-propyl titanate was stirred into the 

melted resin and the mixture spread onto glass 

slides. After heating in air at 455-475 for 

116 hours a hard, black, brittle solid was 

obtained. Duplicate samples showed a weight 

loss of 33.75% and 33.95% after heating. 

* The same resin as described in section 2.6. Z. 
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2.7. The examination of the composition and structure of resorcinol 

phosphate resin 

2.7.1. Fractional distillation of the distillate from the resin 

preparations 

Weighed portions of the phenolic distillate were fractionally 

distilled and the vapours evolved at up to 463 collected. The 

residue was then cooled and reheated to collect any further small 

fractions distilling over at up to 463. Assuming the distillate 

to be phenol (b. pt. 454) and the residue resorcinol (b. pt. 549), 

the resorcinol content of the prepared resin was estimated and 

expressed in terms of a tri-phenyl phosphate: resorcinol ratio. 

2.7.2. Solvent extraction of the resin with acetone 

Solvent extraction with acetone was carried out on the prepared 

resins to determine the amount of insoluble material present. Carefully 

prepared resins dissolved completely in acetone, whereas over 

reacted products gave a dark brown residue after extraction. One 

resin, which had been prepared at to high a temperature and was 

a dark, brittle solid with an odour of phenolic ethers, gave about 

20-25% insoluble matter on extraction with acetone. 

Only resins which were completely soluble in acetone were 

used in the experimental work. 

2.7.3. The steam distillation and toluene extraction of the 

resorcinol phosphate resin blend 

2.7.3.1. Steam distillation: 

A weighed amount of the resorcinol phosphate resin blend was 

steam distilled for several hours and the distillate extracted 

with ether. After removal of the ether a trace residue of phenolic 

compounds'was obtained, which weighed less than 0.5% of the total 

resin weight. 
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2.7.3.2. Extraction with toluene: 

A weighed amount of the resorcinol phosphate resin blend was 

refluxed with 25 ml of toluene for 2 hours and the solvent was then 

decanted. After further refluxing with 50 ml. of toluene for 

30 minutes and again decanting the combined extracts were evaporated 

to dryness. A yellow-brown resinous residue resulted, which 

weighed 1.8% of the total resin weight. The residue contained 

phosphorus compounds and cured when heated with hexamine. 

2.7.4. Infra-red spectroscopy 

Samples of the dried resin were ground with KBr. and pressed 

into discs. Spectra were recorded from the discs using a Unicam 

SP200 Infra-Red Spectrophotometer. 

The spectra were interpreted by using published tables62,63: 

and by comparison with infra-red spectra from the literature64,65 

and from model compounds. 

2.7.5. N. M. R. spectroscopy 

A sample of resorcinol phosphate resin was dried in acetone 

solution over anhydrous MgSO4. After evaporating off the acetone 

in a warm oven a small specimen of the dried resin was dissolved 

in deuteroacetone and the N. M. R. spectrum recorded, using a 

Varian T60 N. M. R. spectrophotometer. D20 exchange was carried 

out on the same sample and the N. M. R. spectrum was again recorded. 

2.7.6. Quantitative analysis of resorcinol phosphate resin for 

%P content and molecular weight determination 

The phosphorus content and molecular weight of a sample of 

resorcinol phosphate resin were determined at The Division of 

Chemical Standards at The National Physical Laboratory, Teddington, 

Middlesex. 
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2.8. Thermogravimetr 

Thermosetting resin samples were ground or mixed with curing 

agent and heated on a hot plate to obtain cured specimens. After 

grinding to a coarse powder the specimens were post cured by 

heating in an oven at a suitable temperature to expel residual 

volatiles and ensure complete reaction. 

Before testing, the thermoset resins and other samples were 

ground to pass through a 149-125 um sieve. Approximately 80 mg 

samples of the finely ground powders were placed in a Stanton TR-02 

Thermogravimetric Balance and heated at a rate of increase in 

temperature of 4-4.5 Kmin-1 to obtain thermogravimetric curves. 

Blank runs, using A1203, were also carried out to obtain a 

buoyancy correction curve, which was used to correct the 

thermogravimetric curves of the tested samples. In all cases about 

80 mg of A1203 was used with the reference thermocouple in the 

thermogravimetric balance. 
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2.9. The large scale synthesis of resorcinol phosphate resin 

for high temperature stability studies 

Materials: 1630g Tri-phenyl phosphate (5 mole) 

1512.5g Resorcinol (12.5 mole +10%) 

15g Zinc oxide 

Method: The reactants were heated together in a 51 

flanged reaction vessel, fitted with a short, 

lagged reflux column attached to a long air 

condensor. The mixture and apparatus was 

flushed with 02 free N2 before and throughout 

the reaction. During the transesterification 

process the still head temperature was kept as 

close to 454 (the b. pt. of phenol) as possible 

to minimise resorcinol loss. The still head 

temperature was found to increase with 

1. increase in stirrer speed, 

2. increase in nitrogen flow through the apparatus, 

3. increase in lagging around the reflux column and 

4. decrease in the length of the reflux column. 

After preparing the resins they were washed 

by paddling with six successive 1.5 - 21 volumes 

of boiling water, decanting after each aliquot. The 

resin was then dried by heating at about 400 until 

effervescence had practically ceased. 

Two batches of resin were prepared (a and b) 

and the conditions are shown in table 2.9.1. 

A resin blend was prepared from products 

a and b and a commercially prepared resorcinol 

phosphate resin. 
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Table 2.9.1. 

Preparation of resorcinol phosphate resin. 

Batch ab 

Reaction time (hr) 5 4 
** Induction time (hr) 1.75 1 

Time to reach 475 (hr) 1.5 2 

Still head temp. 455-485 455-460 

Flask temp. 540 540 

Refl ux column used Empty Filled with 
ceramic cylinders 

Distillate yield (kg) 1.32 1.459 

Resorcinol content of distillate (%) 22.6 24.5 

Resin yield (kg) 1.5-1.6 1.2 

Resin cured with hexamine Yes Yes 

Estimated ratio of triphenyl 1: 2.2. 1: 2.1 
phosphate: resorcinol. 

and *'' Time from point when reactants reached 475 to point 

when the reaction was ceased. 

and the distillation began. 
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Thus a mixture of 

1.13 kg of resin a. 

1.20 kg of resin b. 

2.00 kg of commercially prepared resin 

were melted together and thoroughly blended. 

ex. Hilton Davies Chemicals Ltd. Tri-phenyl phosphate: resorcinol 
ratio reported to be Z: 2.5. 
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2.10. The effect of cross-linking on the high temperature stability 

of resorcinol phosphate resin 

Two test samples were prepared in duplicate as follows: 

Two approximately 5g samples of resorcinol phosphate resin 

blend were placed in two Petri dishes, which had been dried to 

constant weight. 

A solution of 3g of resorcinol phosphate resin blend and 0.3 g 

hexamine in 4 ml of absolute alcohol and 1 ml of water was divided 

into two aliquots and placed in Petri dishes, which had been dried 

to constant weight. 

The samples were gently raised to about 330 for a short period, 

followed by longer heating at about 395. 

After this pre-ageing treatment, which cured the resin 

containing hexamine, the samples were subjected to isothermal heating 

in stages at 460,520 and 560 in air. 

At suitable intervals the samples were cooled in a desiccator 

and weighed. 
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2.11. The evaluation of the high temperature stability of resorcinol 

phosphate resin and P-F novolak resin composites. 

2.11.1. The preparation of moulding materials: 

Materials: 120 g Resorcinol phosphate resin blend, or 
P-F novolak resin. 

308 g 5R-21 grade chrysotile asbestos 

12 g Hexamine 

2g Magnesium hydroxide. 

i6 ZZing: Milling was carried out on a two roll mill for 

4-5 min to obtain a hide. The resorcinol phosphate 

resin composite was milled at 343-348 and the P-F 

novolak composite at 338-343. Moulding powder was 

prepared by disintegrating the cooled hides to 

pass through a 1190 um sieve. 

5 batches of the resorcinol phosphate resin 

composite and 4 batches of the P-F novolak resin 

composite were made. 

The flow properties The flow properties of the prepared moulding 
of the composites: 

powders were determined using flow discs. 66 An 

average of 4 measurements of the thickness of the 

centres of each of the resulting composite discs 

was taken. 

The flow properties of the P-F novolak composite 

batches were very similar and the batches were 

blended together. Similarly, the resorcinol phosphate 

resin composite batches were also blended together. 

2.11.2. Moulding of the resin-asbestos composites. 

29.2 g portions of dried moulding powder were cold preformed 

by compression moulding in a test bar mould. The preformed bars were 
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1then compression moulded in the same mould at 46.3 P1Nm 2 
pressure 

to give rectangular bars, measuring 11.43 x 1.27 x approximately 

0.953 cm. 7 The P-F novolak resin composite bars were made by 

moulding at 433 +5 for 6 minutes and the resorcinol phosphate 

resin composite moulded at 473 +5 for 15 minutes. 

2.11.3. Long term testing of the resin-asbestos composites at 525. 

6 P-F novolak resin composite bars and 6 resorcinol phosphate 

resin composite bars were set aside for testing with no prior heat 

treatment. 

36 weighed bars of each type of composite were post cured 

for 48 hours; at 445 for the P-F novolak resin-asbestos bars and 

475 for the resorcinol phosphate resin-asbestos bars. 6 bars of 

each type of composite were then removed for testing. 

The remaining post cured bars were weighed and then heated 

at 525, removing 6 bars of each type of composite after about 

50,100,200,500 and 1000 hours had elapsed. The bars were cooled 

in a desiccator prior to testing. 

Flexural strength measurements, 
7 

were made with a Hounsfield 

Tensometer with jaws of 10.16 cm span at a constant rate of loading. 

An average of 6 values was taken per test. 

2.11.4. Control tests on cured resorcinol phosphate resin alone 

and chrysotile asbestos alone at 525. 

Moulded bars were prepared by heating an intimate mixture 

of resorcinol phosphate resin blend and 10% hexamine in a mould at 

475 for 15 to 30 minutes under light pressure. The brittle 

mouldings were broken into sections measuring approximately 

3x1.3 x 0.95 cm and post cured at 475 for 48 hours, during which 

time they softened and hardened to irregular shapes. After cooling 

the specimens were weighed. 

Weighed samples of chrysotile asbestos, compacted to bars 
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approximately 11.4 x 1.3 x1 cm in size, were heated at 475 for 

48 hours and then one sample was removed, cooled and weighed. 

The cured resorcinol phosphate resin and preheated asbestos 

samples were then heated at 525 and samples were removed for 

weighing at the same intervals as were the moulded resin composite 

bars. 

All samples were cooled to room temperature in a desiccator 

before weighing. 

2.11.5. Pyrolysis of resorcinol phosphate resin - chrysotile 

asbestos composite moulded bars. 

4 weighed moulded bars were heated in a furnace under the 

following conditions: 

16 hr at 475 
+3 hr up to and at 675 
+50 min up to and at 875 
+1 hr 30 min up to and at 1075- 
+overnight slowly cooling 
from * 1075 

At 675 much smoke was evolved from the bars. The bars reached 

dull red heat at 875 and red heat at 1075. After cooling overnight 

in'the furnace the samples were still hot and were cooled finally 

to room temperature in a desiccator before weighing. 

The pyrolysed bars were pale brown with black central cores 

and possessed cracks and surface blisters. 
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2.12. The materials used in the experiments. 

The materials employed in the experimental work were as follows: 

Tri-phenyl phosphate - ex. Geigy (U. K. ) Ltd. - Plasticiser grade >, 98% pure. 

Resorcinol - ex. L. B. Holliday and Co. Ltd. -'Commercial grade, 99% pure. 

Hydroquinone - ex. Dr. Redfarn's Laboratory - Reagent grade. 

Di(hydro)Wphenyl) sulphone - ex. Yorkshire Chemicals Ltd. 70% 4,4'-isomer 
and 30% 2,4'-isomer, 97% pure. 

Phloroglucinol - ex. Whiffen and Sons Ltd. - Technical grade. 

Gallic acid - ex. The British Dyewood Co. Ltd. - Technical grade. 

Zinc oxide - ex. Lewis and Burrows Ltd. - B'. P. grade. 

Tri-methyl phosphate - ex. BDH Ltd. - Technical grade. 

Tri-n-butyl phosphate - ex. Geigy (U. K. ) Ltd. - Technical grade. 

Tri-octyl phosphate - ex. Dr. Redfarn's Laboratory - Technical grade. 

a, a'-dimethoxyxylylene - ex. Albright and Wilson Ltd. Technical grade, 
70% a, a'-isomer and 30% other isomers. 

Xylok 225 resin - ex. Albright and Wilson Ltd. Commercial two stage 
thermosetting resin. 

P-F novolak resin - ex. James Ferguson and Sons Ltd. Nestorite No. 1. 
phenol-formaldehyde resin. 

Hexamine - ex. Griffin and George Ltd. - Reagent grade. 

Chrysotile asbestos - ex. Cape Universal Ltd. 5R-21 grade fibre. 

Phosphoryl chloride - ex. B. D. H. Ltd. Reagent grade >98% pure. 

1,4-dioxan - ex. Griffin & George Ltd. Reagent grade. 

n-butyl titanate - ex. Laport Industries Ltd. - Commercial sample. 

iso-propyl titanate - ex. Titanium Intermediates Ltd. - Commercial 
sample. 

Potassium bromide - ex. B. D. H. Ltd. - Spectroscopic grade. 

Magnesium hydroxide - ex. Brunel University - Reagent grade. 

Phoryl 3 resin - ex. I. C. I. Ltd. No longer commercially available. 

Dicyandiamide - ex. Dr. Redfarn's Laboratory - Reagent grade. 

Thiourea - ex. Dr. Redfarn's Laboratory - Reagent grade. 

Hydroxylamine - ex. Dr. Redfarn's Laboratory - Reagent grade. 
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Oxamide - ex. Griffin and George Ltd. - Reagent grade. 

Melamine - ex. Dr. Redfarn's Laboratory - Commercial grade. 

Guanidine carbonate - ex. Judex (General Chemical and Pharmaceutical 
Co. Ltd. ) A. R. grade. 

Hydrazine - ex. Whiffen & Sons Ltd. - 40% w/w aqu. soln. 

Lead monoxide - ex. Harrington Bros. Ltd. - Reagent grade. 

Lead dioxide - ex. Dr. Redfarn's Laboratory - 96-98% pure. 

Cupric benzoate - prepared at Dr. Redfarn's laboratory. 

Potassium ferricyanide - ex. Griffin and George Ltd. - Reagent grade. 

Aluminium iso-propoxide - ex. Kaylene Chemicals Ltd. - Reagent grade. 

Ferrocene - ex. Koch Light Laboratories Ltd. - >. 95% pure. 

Diphenyl dichlorosilane - ex. Hopkins and Williams Ltd. - Technical grade. 

Activated alumina - ex. Laporte Industries Ltd. - Commercial sample. 

Ferric chloride, cobalt chloride, zinc chloride, aluminium chloride 

- ex. Dr. Redfarn's Laboratory - Reagent grades. 

Stannic chloride - ex. BDH Ltd. - Anhydrous reagent grade. 

Cupric thiocyanate - ex. Hardman and Holden Ltd. - Reagent grade. 

p-toluene sulphonic acid - ex. Griffin and George Ltd. - Reagent grade. 
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3. RESULTS AND DISCUSSION 

3.1. The preparation of organophosphate resins. 

3.1.1. Introduction 

Tri-alkyl and tri-aryl phosphates are commercially available 

materials. Some applications of these esters include plasticisers 

for polymers, for example tri-xylyl phosphate in poly(vinyl chloride) 

and tri-phenyl phosphate in cellulose acetate, and the use of 

tri-butyl phosphate in solvent extraction. Alkylaryl phosphate 

esters, such as tri-tolyl phosphate (M) are considered unsuitable 

for preparing high temperature resistant polymers, since any 

unreacted residual alkylphenyl moieties remaining in the resin 

structure would be potential sites for thermo-oxidation. For 

this reason the only aryl phosphate ester used throughout this 

work is tri-phenyl phosphate, because of the high thermo-oxidative 

stability of the benzenoid nuclei, which are free from easily 

oxidisable organic substituents. - 

Tri-alkyl phosphates are more reactive towards nucleophilic 

attack than tri-aryl phosphates and would be expected to undergo 

transesterification more readily and at lower temperatures than 

their aromatic analogues. Resin preparations at lower temperatures 

may thus be possible with some polyhydric phenols that tend to 

decompose or self condense at high temperatures. A disadvantage 

with tri-alkyl phosphates is that incomplete reaction with 

polyhydric phenols will leave alkyl substituents in a product 

resin's structure and these remaining aliphatic ester groups 

would be potential sites for thermo-oxidation and hydrolysis. 

Side reactions are almost certain to occur when tri-alkyl phosphates 

are heated with polyhydric phenols, since the aliphatic phosphate 

esters are known to act as alkylating reagents for alcohols67 and 
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phenols68. Acidic groups are likely to be present in the structures 

of resins prepared from tri-alkyl phosphates as a result of these 

side reactions (77-VT). 

Several polyhydric phenols, such as resorcinol and 

hydroquinone, are commercially available chemicals. The resins 

produced by transesterification of tri-organo phosphates with 

polyhydric phenols are formulated so as to give structures containing 

benzenoid rings with one or more hydroxy substituents. From the 

point of view of curing these resins with formaldehyde donors the 

structure of the polyhydric phenol is important. Phenolic 

hydroxyl groups activate a benzenoid ring towards electrophilic 

substitution by formaldehyde donors, directing the reaction at 

the ortho-and para-positions. In this sense resorcinol is the 

most preferred dihydric phenol and phloroglucinol the most 

reactive tri-hydric phenol. 

With dihydric phenols the resins are formulated to give 

linear polymers (XXVII). Tri-hydric phenols may give cyclic 

structures with tri-organophosphates with the possibility of 

"step ladder" polymers XXPTIT). Ring formation in this way would 

be desirable from the point of view of preparing high temperature 

resistant polymers (see section 1.6.3. ), although products of 

this kind may be intractable and impossible to process (see 

section 1.5. ). An alternative to cyclisation is the formation of 

1 inear polymers (XXi , which may react further to produce 

cross-linked structures. 

3.1.2. The Preparation of Resorcinol phosphate resins. 

3.1.2.1. Transesterification of resorcinol with tri-phenyl phosphate. 

The reaction between tri-phenyl phosphate and resorcinol 

(mole ratio 2: 5) proceeds smoothly and is the only satisfactory 

reaction as yet found. 



72 

0- 

0- P-0 
CH. -o- Io 

0 clý 

0 C113 
(XXV) Tri-tolyl phosphate. 

OH H 

s 0 
OH + O-P(OR)3 ---ý-- 

0 
OR 

+ On L 

R=alky1 

(XXVI) Ether formation by reaotion of a di-hydrio 

phenol and a tri-alkyl phosphate. 

Base 0 
5 HO-Ar-OH + 20-P(OR)3 ý_. ý. HO-Ar-0-i-0-Ar-0- -O-oll +6 R-OH 

Raalkyl, aryl 

kH kH 

Ar-aryl 

(XXVII). General reaction scheme for the preparation of resins 
from di-hydric phenols and tri-organophosphates. 
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tri-hydric phenols. 



74 

The idealised reaction product (MX is probably not formed, 

since the distillate from the reaction contains more resorcinol 

than the 10% excess allows for losses. 

By-reactions take place at reaction temperatures which are 

above about 560. Over reacted products may be recognised by an 

odour of phenolic ethers, which may be a result of the condensation 

of resorcinol or phenol (or both) (M and by the presence of 

highly coloured acetone insoluble material, which may be due to 

some cross-linking of the polymer molecules by self condensation 

or condensation with resorcinol.. 

3.1.2.2. Transesterification catalysts. 

Table 3.1.2.2.1. shows the efficiencies of some catalysts 

in the reaction between resorcinol and tri-phenyl phosphate. 

Bases are known to catalyse transesterification reactions 

and the results in table 3.1.2.2.1. show that ZnO and Zn (OH)2 

are both effective catalysts. Freshly prepared Zn (OH)2 shows 

no improvement over ZnO as a catalyst, for it is probable that 

the hydroxide is dehydrated to the oxide at the reaction temperature. 

The base catalysed resins are soluble in acetone. 

Alkyl titanates have been reported to be transesterification 

catalysts69, but n-butyl titanate is not as effective as ZnO in 

catalysing the preparation of resorcinol phosphate resin and 

gives rise to a product that is partially soluble in acetone. 

There is a possibility that the n-butyl titanate reacts with 

phenolic compounds during the preparation of the resin to give 

some acetone insoluble material. 

In the absence of catalysts the reaction does not proceed 

to completion, even after heating at 550-560 for 6 hours. 
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Table 3.1.2.2.1. 

Transesterification catalysts for the reaction 

between tri-phenyl phosphate and resorcinol (mole ratio 2: 5) 

Catalyst (approx. % of reactants' Approx. reaction 
I weight) time (hr) 

J% ZnO 3 

1% ZnO 3.75 

J% Zn(OH) 2. (freshly prepared) 3.25 

J% n-butyl titanate 6 

None 6 

Incomplete conversion to resin. 
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3.1.2.3. Transesterification of resorcinol with tri-alkyl phosphates. 

Tri-alkyl phosphates react with resorcinol to form resins. 

It is unlikely that the idealised reaction product (Xf) occurs, 

since side reactions take place. For example, tri-methyl phosphate 

and tri-octyl phosphate react with resorcinol to give distillates 

possessing strong ether-like odours. At least three distinct 

fractions are present in the distillate from the reaction with 

tri-octyl phosphate. Also, the resin prepared from tri-methyl 

phosphate and resorcinol gives acidic extracts with hot water. 

Although detailed analyses of the resins and distillates have not 

been carried out it is evident that transesterification is not 

the only reaction occuring in the preparation of these polymers. 

Whatever the structures are of the resins obtained, they cure 

readily when heated with hexamine. 

The reaction temperatures required to prepare resins from 

tri-alkyl phosphates and resorcinol are lower than the temperature 

employed to prepare a resin from tri-phenyl phosphate and 

resorcinol in the presence of n-butyl titanate as catalyst. 

However, since side reactions occur when the aliphatic phosphates 

are used, the extent of transesterification cannot be estimated 

by weighing the distillate evolved during the reaction and the 

apparent reaction temperatures employed may be determined by the 

production and distilling over of by-products from the side 

reactions. Satisfactory comparisons of the reaction temperatures 

required with tri-alkyl phosphates and tri-phenyl phosphate with 

resorcinol cannot therefore be made. 

3.1.3. The preparation of hydroquinone phosphate resin. 

Hydroquinone is isomeric with resorcinol, yet with a similar 

formulation as the resorcinol phosphate resin a polymer cannot be 

prepared by reaction with tri-phenyl phosphate, even at about 555. 
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A major disadvantage with hydroquinone is that it readily sublimes 

over into the condenser during the heating of the reactant melt 

and so the stoichiometry of the reaction is altered. 

3.1.4. The preparation of di(hydroxyphenyl) sulphone phosphate resin. 

3.1.4.1. Introduction 

Di(hydroxyphenyl) sulphone is a bis-phenol in which the 

phenolic rings are connected by a sulphone group (X. 

Di-phenylene sulphone groups are found in many high temperature 

resistant polymers 70 
. consequently di(hydroxyphenyl) sulphone is 

attractive as a monomer for preparing thermosetting phosphate resins. 

Three methods of preparation of di(hydroxyphenyl) sulphone phosphate 

resin have been attempted, but none was successful. 

3.1.4.2. Transesterification of di(hydroxyphenyl) sulphone with 

tri-phenyl phosphate. 

Phenol is evolved when di(hydroxyphenyl) sulphone is heated 

with tri-phenyl phosphate in the presence of ZnO catalyst. There 

is also a possibility that some di(hydroxyphenyl) sulphone 

(b. pt. = 523) is carried over with the phenol in the distillate. 

The process is difficult to control, since even after maintaining 

at a constant 573 for 40 minutes, a sudden vigorous reaction can 

take place. 

Decomposition of the di(hydroxyphenyl) sulphone appears to 

occur, since the product possesses an odour of phenolic ethers 

and SO2 is evolved during the reaction. Di(hydroxyphenyl) sulphone 

alone decomposes at 525-575 in air with the evolution of phenol 

and the formation of a black resinous product. Consequently, the 

reaction product obtained by heating tri-phenyl phosphate and 

di(hydroXyphenyl) sulphone at up to 573 may be a mixture of 

compounds formed by transesterification and decomposition reactions. 

The fact that the product does not cure with hexamine indicates a 
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loss of phenolic hydroxyl groups during the resin preparation, 

although alternatively it is possible that the electron withdrawing 

effect of the sulphone grouping deactivates the benzenoid rings 

to such an extent that electrophilic attack by formaldehyde donors 

is made difficult. 

3.1.4.3. Transesterification of di(hydroxyphenyl) sulphone with 

trimethyl phosphate. 

In order to lower the reaction temperature and thus to- 

prevent decomposition of the di(hydroxyphenyl) sulphone, 

transesterification with tri-methyl phosphate has been attempted. 

At a temperature of about 450, which is below the boiling 

point of tri-methyl phosphate (470), no reaction takes place. 

3.1.4.4. Condensation of di(hydroxyphenyl) sulphone with phosphoryl 

chloride. 

Following the unsuccessful attempts to prepare a resin from 

di(hydroxyphenyl) sulphone and tri-organo phosphates by 

transesterification a low temperature solution polymerisation 

was attempted, using phosphoryl chloride in place of organophosphate 

esters. 

When di(hydroxyphenyl) sulphone and phosphoryl chloride 

are refluxed in 1,4-dioxan both HC1 and SO2 are evolved. The 

production of SO2 indicates that the di(hydroxyphenyl) sulphone 

is decomposed under the reaction conditions. A non-resinous 

product is obtained, which is not reactive towards hexamine at 

about 495. 

3.1.5. The preparation of phloroglucinol phosphate resin by 

transes terifi cation of phloroglucinol with tri-phenyl phosphate. 

The reaction between phloroglucinol and tri-phenyl phosphate 

(mole ratio 3: 2) is probably complex and does not proceed to 

completion, even at up to about 575. 
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Phloroglucinol is reported to self condense to phloroglucide 

at 603-62771 (X XXII). This reaction may be catalysed by the 

presence of ZnO, which can behave as a condensation catalyst. The 

high hydroxyl functionality of phloroglucide may give rise to 

cross-linking during the resin preparation. Etherification may also 

occur between phenolic hydroxyl groups to produce cross-linked 

products. A control test on phloroglucinol alone showed that when 

heated it melts and then, at about 595, resolidifies. 

The black, non-resinous product produced when phlorogluncinol 

is heated with tri-phenyl phosphate supports the view that some kind 

of cross-linking takes place, or that perhaps self condensation 

products of phloroglucinol result. Even in the absence of oxygen 

a black solid product is obtained. Ring formation would seem unlikely 

to occur since the ring structures (7XVIII) would be strained because 

of the meta-orientation of the hydroxyl groups on the phloroglucinol. 

3.1.6. The preparation of pyrogallol phosphate resin. 

3.1.6.1. The reaction of gallic acid with tri-phenyl phosphate. 

For this reaction gallic acid is used instead of the more 

expensive pyrogallol. Gallic acid loses water of crystallisation 

at 373 and decarboxylates with the evolution of CO2 at its melting 

point of 526-52772 (-XXXII-f. The decarboxylation temperature is 

lowered to 448 in the presence of water and an alkaline oxide 

catalyst72. 

Complex reactions probably occur when tri-phenyl phosphate 

and gallic acid are heated together. Self condensation of the 

pyrogallol formed may occur to give compounds with high hydroxyl 

group functionality, which may give rise to cross-linked resin 

products. Etherification may also take place between hydroxyl 

groups in a resin structure to give cross-linked species. 
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When gallic acid is heated with tri-phenyl phosphate 

(mole ratio 3: 2) a black solid results, which may be cross-linked 

resin material, self condensation products of py rogallol, or a 

mixture of both. Cyclic structures may also be present, since 

the 1,2,3- orientation of phenolic hydroxyl groups may allow the 

formation of stable rings (ýT) . Only two adjacent hydroxyl 

groups per pyrogallol molecule would be expected to take part 

in ring formation with tri-phenyl phosphate but the remaining 

hydroxyl group may tend to inhibit this ring formation by steric 

hinderance. 

3.1.6.2. The reaction of gallic acid with tri-butyl phosphate. 

Gallic acid and tri-butyl phosphate (mole ratio 3: 2) react 

to give a black, partially water soluble product of unknown 

composition. The nature of the distillate evolved during the 

heating indicates that by-reactions occur. Although the product 

obtained cures when heated with hexamine, the cured material is 

not stable in water. 

3.1.7. Summary and conclusions: - 

Of the various polyhydric phenols studied only resorcinol 

is suitable as a monomer for preparing organophosphate thermosetting 

resins. The most satisfactory results are obtained with resorcinol 

and tri-phenyl phosphate, since with tri-alkyl phosphates side 

reactions occur. 

Resorcinol phosphate resin is prepared easily, is convenient 

to handle and cures rapidly when heated with hexamine. For these 

reasons the resin is considered suitable for evaluation as a 

useful high temperature resistant thermosetting polymer. 
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3.2. The effect of cross-linking on the high temperature stability 

of resorcinol phosphate resin. 

Table 3.2.1. shows the weight losses observed after preheating 

uncured and hexamine cured resorcinol phosphate resins and then 

ageing at 460,520 and 560 in air. 

The results clearly demonstrate that the high temperature 

stability of resorcinol phosphate resin is considerably enhanced 

by cross-linking with methylene bridges. At 460 the effect of 

cross-linking is especially pronounced and slowly declines with 

increasing temperature. 

Uncured resorcinol phosphate resin is not a high temperature 

resistant polymer, as can be seen by the extremely high weight 

losses at a temperature as low as 460. At this temperature, over 

92 hours, approximately 40% of the theoretical organic content 

of the resin is lost. 

The high temperature stability of cured resorcinol phosphate 

resin may therefore be mainly governed by the decomposition of 

the polymer backbone. 
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Table 3.2.1. 

The high temperature stability of cured and uncured 

resorcinol phosphate resin in air. 

HEATING CONDITIONS SAMPLE 

Resorcinol Resorcinol phosphate 
Temperature Time (hr) phosphate resin resin + 10% hexamine 

Pre-ageing treatment Weight loss % 

ti 330 ti 2* 1.72,1.56 - 
393 ±3 "55 ) (Mean 1.64) - 

--330 ti3 + - - 
393 ±3 -. 41 ) - - 

Cumulative 
Heat ageing weight losses on preheated 

samples % 

460 92 30.53, **29.66 3.43,5.65 
(Mean 30.10) (Mean 4.5) 

518 ±3 146 49.95,50.23 10.86,12.69 
(Mean 50.09) (Mean 11.78) 

558 ±5 456 57.83,58.93 19.16,19.53 
(Mean 58.38) (Mean 19.35) 

* Still very slowly losing weight. 

+ At constant weight. 
** The resin hardened to a brittle solid under these conditions. 
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3.3. Alternative curing agents for resorcinol phosphate resin; 

3.3.1. Introduction: 

Several compounds have been evaluated as potential curing 

agents for resorcinol phosphate resin, as alternatives to hexamine, 

with a view to improving the thermal stability of the cross-links 

in the cured resin. 

Table 3.3.1.1. shows the results obtained. Reaction temperatures 

and times are only approximate. The tests applied are simple and 

are designed only to ascertain whether a cure can be effected at 

practically useful temperatures and times. 

There are two possible reaction sites on resorcinol phosphate 

resin, namely the aromatic rings and the phenolic hydroxyl groups. 

The benzene rings in the resin are activated towards electrophilic 

substitution at the ortho- and para- positions to the phenolic 

hydroxyl groups. Phenolic hydroxyl groups will undergo condensation 

reactions with acid chlorides and transesterification reactions 

with esters. The acidity of these hydroxyl groups may also give 

rise to salt formation with basic inorganic compounds. Phenols 

also undergo oxidative coupling reactions in the presence of 

suitable oxidants. 

The various types of potential curing agents studied will 

now be discussed, giving reasons for their choice and some 

speculation as to the reactions taking place. 

3.3.2. Curing with hexamine. 

A very rapid cure is obtained with hexamine. The disadvantages 

of methylene cross-links in the structure of phenolic resins and 

resorcinol phosphate resin are discussed in section 1.9.6. 

3.3.3. The self curing of resorcinol phosphate resin: 

On very long heating at about 525 the resin will self cure, 

probably by etherification of the phenolic hydroxyl groups. The 
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Table 3.3.1.1. 

A study of curing agents with resorcinol phosphate resin 

Compounds tested with the Heating conditions Products and 
resin* Temp. Time comments. 

None 525 Prolonged Brittle solid 

5% hexamine 455 60 sec Cures to a brown 
7.5% hexamine 455 26 sec solid. 
10% hexamine 455 19 sec 

10% dicyandiamide 475 5 min No cure ) Copious 
20% dicyandiamide 475 13 k min Rubbery ) Alkaline 

cure vaours 
40% dicyandiamide 475 14 min Rubbery 

) 
evolved 

cure 
Resin alone 475 16 k min No cure 

Thiourea - - No cure 
Hydroxylamine - - No cure 
10% oxamide 445 and - No cure 

525 
10% melamine 445 and - No cure 

525 
Guanidine carbonate 495 Prolonged Rubbery cure. Copious 

heating fuming and 
effervescence. 

Hydrazine 525 - Cured. Copious fuminc 

"10% PbO 445 3 min Rubbery cure ) much 
20% PbO 495 li min Rubbery cure ) fuming 
PbO 2 - - Violent reaction, 

flashes of flame. 

10% cupric benzoate 475 and. 10 min ) 
525 ) No cure 

10% (Mg(OH)2 + K3Fe(CN)6 455 5 min 
1: 1 by volume). 

10% n-butyl titanate 525 3k min Cured to a yellowy 
15% n-butyl titanate 525 l3 min brown rubbery mass, 
20% n-butyl titanate 525 1i min hardening on prolonge 

heating. Copious 
evolution of "butyl" 
vapours. 

30% iso-propyl titanate 445 10 min No cure. 
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Table 3.3.1.1. (continued) 

Compounds tested with the Heating conditions Products and 
resin* Temp. Time comments. 

35% iso-propyl titanate 445 - Fairly rapid cure. 
Soft product. 

40% iso-propyl titanate . 445 - Rapid cure. V. 
rubbery product. 

45% iso-propyl titanate 445 - Rapid cure. V. 
rubbery product. 

50% iso-propyl titanate 445 - Immediate cure. 
Rubbery product. 

50% iso-propyl titanate, 475 - Immediate cure. 
heated at once 

50% iso-propyl titanate, 475 - Slow, incomplete., 
stood 15 min in air before cure. 
heating. 

40% aluminium iso-propoxide 475 and - No cure. 
525 

10% ferrocene 465 1-2 min 
) 

10% ferrocene +a little 465 10 min No cure A1C13 
10% ferrocene +a little 445 5 min ) 
activated A1203. 

a, a'-dimethoxyxylylene 455-465 2 min No cure or partial 
(designated X) cure. 

X+ ZnO, PbO, Na2SO31 455-465 1-2 min No cure. 
NH4-OH, oxalic acid, 
or Mg(OH)2 

X+ p-toluene. sulphonic 455-465 - Rapid cure. Rubbery 
acid product, hardening 

on prolonged heating. 

X+ A1C13, FeC13, CoC12, 455-465 - Rapid cure. 
ZnC121 Cu (SCN)2 or H3PO4. 

Diphenyl dichlorosilane 475 <1 min Rapid cure. Rubbery 
solid, hardening on 
prolonged heating. 
HC1 evolved. 

°6 =% of resin weight. . 
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conditions required are far too extreme to be of practical use. 

3.3.4. Cross-links containing C-N bonds: 

In air the primary cause of breakdown of methylene 

cross-links is thermo-oxidation (section 1.9.6. ). The introduction 

of cross-links containing only inorganic C and N, or C, 0 (or S) 

and N atoms may be expected to lead to an increase in thermo-oxidative 

stability, compared to organic hydrocarbon cross-links. A decrease 

in thermal stability would, however, be expected with C-N bonds 

compared to C-H bonds as is illustrated by their respective 

dissociation energies (table 1.6.1.1. ). 

Several compounds containing -NH2 or =NH groups have been 

heated with resorcinol phosphate resin, but none are useful 

curing agents. Hydrazine, guanidine carbonate and dicyandiamide 

will cure resorcinol phosphate resin, but at the same time acrid, 

copious fumes are evolved, which are very undesirable. With 

thiourea, oxamide, melamine and hydroxylamine no reaction takes 

place. 

The nature of the curing reactions occuring is not known. 

3.3.5. Curing with lead monoxide: 

Lead monoxide, which has been reported as a curing agent 

for "Phoryl" resins37 (section 1.8.3. ), will cure resorcinol 

phosphate resin. Much fuming and probably decomposition occurs 

during the reaction. It is possible that a lead salt is produced 

by neutralisation of the oxide by the acidic phenolic hydroxyl 

groups on the resin. Lead dioxide appears to vigorously oxidise 

the resin. 

3.3.6. Curing by oxidative coupling: 

Cupric benzoate has been reported as an oxidant and catalyst 

for oxidative coupling in fused phenols at 393-49873 and alkaline 

potassium ferricyanide has been used at lower-temperatures in 
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solution as an oxidative coupling reagent74. Compounds containing 

structures of the type ('XXXIV) or (XXRV) can be formed. Oxidative 

coupling between the phenolic groups on the resorcinol phosphate 

resin would be expected to give rise to ether cross-links or 

the direct bonding of aromatic rings between different resin 

molecules. Cross-links of these types should have high thermal 

and thermo-oxidative stability, since these diphenylene and 

diphenylene oxide structural units are found in high temperature 

resistant polymers, such as polyimides75(table 1.7.1. ). 

In spite of the potential of oxidative coupling as a curing 

mechanism, no cross-linking reaction can be effected by heating 

resorcinol phosphate resin with cupric benzoate or alkaline 

potassium ferricyanide. 

3.3.7. Curing with alkyl titanates. 

Alkyl titanates react readily with resorcinol phosphate resin, 

probably by condensation with the phenolic hydroxyl groups (=). 

Large amounts of the alkyl titanates are required to effect a 

complete cure of the resin. A serious disadvantage with alkyl 

titanates is their susceptibility to hydrolysis in moist air. 

Table 3.3.1.1. shows that the effectiveness of iso-propyl titanate 

as a curing agent is considerably reduced after only 15 minutes' 

exposure to air before heating with the resin. 

Although Ti-O-C cross-links offer a high resistance to 

thermo-oxidative attack the Ti-O bonding is predominantly ionic 

(table 1.6.1.3. ) and may be expected to be labile at elevated 

temperatures (see section 1.6.1. ). The ionic character of the 

Ti-O bond renders it susceptible to nucleophilic and electrophilic 

attack as is evidenced by the poor hydrolytic stability of 

resorcinol phosphate resin cured with iso-propyl titanate. A 
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sample of resorcinol phosphate resin cured with 27% by weight 

of iso-propyl titanate shows a weight loss of nearly 34% after 

116 hours at 453-473. The poor high temperature stability of 

the cured resin may be a result of considerable reorganisation 

of bonds within the network structure such as ('RXAVTf) or(AAXVI'I' . 
No reaction occurs when aluminium iso-propoxide is heated 

with resorcinol phosphate resin, which contrasts the behaviour 

of iso-propyl titanate. 

3.3.8. Curing with ferrocene. 

Ferrocene has been reported to condense with "A" stage 

phenolic resins at 423-443 in the melt phase in the presence of 

Friedel Crafts catalysts78. Reactions with carbinols at 393-423 

in the melt phase with added zinc or aluminium chloride have also 

been reported79. 

Ferrocene is a sandwich organo metallic compound with two 

aromatic cyclopentadienyl rings complexed by an iron atom and 

is attractive as a potential curing agent for resorcinol phosphate 

resin. 

Aromatic rings are known to possess good high temperature 

stability and the semi-inorganic nature of the compound may 

enhance its resistance to thermo-oxidation. 

However, in the presence of Friedel Crafts catalysts, 

such as activated A1203 and A1C13, no reaction can be effected 

by heating ferrocene and resorcinol phosphate resin together, 

even ýt up to 465. 

3.3.9. Curing with a, a'-dimethoxyxylylene: 

a, a'-dimethoxyxylylene is known to condense with phenols 

in the presence of Friedel Crafts catalysts to produce resins 

such as Xylok resin (T. Electrophilic attack at positions 

ortho- and para- to the hydroxyl group of the phenolic compound 

would be expected to occur. 
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The potential of ä, a'-dimethoxyxylylene as a curing agent 

lies in the fact that it introduces aromatic rings without 

hydroxyl substituents into the resin structure. Hexamine introduces 

methylene bridges which are linked by two phenolic residues in 

the resin. Jeffreys 59 has suggested that the 'themo-bxi dative 

breakdown of the methylene links in cured phenolic resins involves 

a cyclic transition state involving phenolic hydroxyl groups 

=. When a, a'-dimethoxyxylylene is condensed with phenols 

structures are formed in which methylene groups are linked by 

one phenolic residue and one phenylene group. Consequently, the 

probability of the formation of a cyclic transition state during 

the thermo-oxidation of these methylene links is reduced by a 

half compared to the methylene groups in a hexamine cured phenolic 

resin. This reasoning may explain the enhanced thermal stability 

of Xylok resin compared to conventional phenolic resins (see 

section 1.9.6. ). 

Table 3.3.1.1. shows that resorcinol phosphate resin is 

cured readily by «, a'-dimethoxyxylylene in the presence of certain 

catalysts. Only Friedel Crafts catalysts are successful in 

effecting the reaction. Condensation catalysts such as ZnO, 

Na2SO3, NH4OH, oxalic acid and Mg(OH)2, which can be used in 

phenolic resin preparation, are unsuitable. 

Copious fuming during the curing reaction is a disadvantage 

with a, a' -di methoxyxylyl ene. The fumes are lachrymatory, 

consequently the milling of a resin containing this curing agent 

would therefore be difficult. Also, the cured resin tends to be 

rather rubbery. The curing reaction may also be complicated by 

the fact that in the presence of catalyst a, a'-dimethocycylylene 

self condenses. 
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3.3.10. Curing with diphenyldichlorosilane. 

Chlorosilanes react readily with hydroxylated compounds with 

the evolution of HCl and a rapid cure is obtained when resorcinol 

phosphate resin is heated with diphenyldichlorosilane, presumably 

due to the formation of siloxane bridges (71). 

The siloxane bridge may be predicted to possess a high 

resistance to thermo-oxidation since it is inorganic in nature 
80 

and the pendant phenyl groups are only oxidised above about 675 

Diphenyldichlorosilane is not considered as a'suitable 

curing agent for resorcinol phosphate resin, since HCl is evolved 

during the reaction and the product is hydrolytically unstable. 

3.3.11. Summary and conclusions: 

Of the various potential curing agents studied and found 

to react, only a, a'-dimethoxyxylylene appears to be suitable as 

an alternative to hexamine, but it suffers from disadvantages 

such as excessive fuming during reaction and a rubbery cure. 

For these reasons hexamine has been chosen as the curing agent 

for resorcinol phosphate resin in the evaluation of the high 

temperature resistance of the polymer. 
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3.4. Examination of the composition and structure of the blended 

resorcinol phosphate resin used in the high temperature, 

stability studies. 

3.4.1. Estimation of the composition of the resin by fractional 

distillation of the reaction distillates. 

The resin blend is composed of three resorcinol phosphate 

resins. The resorcinol content of each resin is estimated roughly 

by analysis of the distillates from their preparations. 

An approximate calculation to determine the composition of 

the resin blend 3s given below: { 

Weight of resin Tri-phenyl phosphate: resorcinol % of 
ratio total blend 

1200 g1: 2.1 28 
1130 g1: 2.2 26 
2000 g1: 2.5 46 

Hence, the tri-phenyl phosphate: resorcinol ratio in the 

blend is: 

0.28 x1+0.26 x1+0.46 x1 tri-phenyl phosphate: 

0.28 x 2.1 + 0.26 x 2.2 + 0.46 x 2.5 resorcinol 

i. e. Tri-phenyl phosphate: resorcinol 1: 2.3. 

3.4.2. The steam distillation and toluene extraction of the 

resorcinol phosphate resin blend. 

Steam distillation. removes only a trace of phenolic compounds 

from the resin, which illustrates that the hot water washing process 

employed in purifying resorcinol phosphate resin is very efficient. 

Toluene extraction yields less than 2% of a resinous material, 

which cures with hexamine. It is probable that the residue is 

similar to the main bulk of the resin, since it contains phosphorus 

and does not possess a phenolic odour. Since tri-phenyl phosphate 
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dissolves in toluene it is apparent that virtually all of this 

monomer reacts with resorcinol during the transesterification 

reaction. 

3.4.3. Infra-red spectroscopy. 

The infra-red spectrum of the resorcinol phosphate resin 

blend is shown (spectrum 3.4.3.1. ) and plausible band assignments 

are given in table 3.4.3.1. 

A band at 1080 cml suggests the presence of ether groups 

in the resin, but the possibility of other absorption bands 

(and fingerprint bands) in this region prevents a definite 

assignment to be made. 

3.4.4. N. M. R. Spectroscopy. 

Spectrum 3.4.4.1. is that of the resorcinol phosphate resin 

blend in deuteroacetone. The signal at d= 8.1 arises from the 

presence of phenolic hydroxyl groups and is confirmed by D20 

exchange (spectrum 3.4.4.2. ). The signal corresponding to the 

aromatic protons occurs between ö= 6.7 - 7.4. Small signals at 

s= 2.1 and 1.2 may be due to trace impurities of acetone and 

water. 

From the N. M. R. spectrum of the resin the approximate 

aromatic proton: hydroxyl proton ratio is 7.5: 1. 

3.4.5. The % phosphorus content and molecular weight of the 

resorcinol phosphate resin blend. 

Analysis of the resorcinol phosphate resin blend gave a 

% phosphorus content of 9.17 ± 0.03 and a number average molecular 

weight of 702 ± 7. 

3.4.6. Summary and interpretation of the analysis of the resorcinol 

phosphate resin blend. 

An approximate assessment of the ratio of tri-phenyl 

phosphate: resorcinol in the resin, as determined by analysis of 
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Table 3.4.3.1. 

The infra-red spectrum of resorcinol phosphate resin blend. 

Band Type Plausible assignments 
cm- 

3350 Strong -0-H stretch 

1930,1850 Weak Aromatic C-H overtone & combination bands. 

1600,1490 Strong Aromatic C-C in plane deformations 

1280 Strong P=0 

1240 Shoulder Phenolic C-0 stretch 

1140 Strong P-0-C stretch 

1080 Medium Aromatic C-H, or aromatic 
C-0 (ether) stretch. 

1000 Strong P-0-C stretch. 

690-865 Various Aromatic C-H out of plane deformations. 
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the reaction distillates, indicates that the idealised resin 

structure (RIX) is not strictly valid for the molecules present. 

However, this method of analysis fails to take into account any 

unreacted resorcinol remaining in the resin. Residual resorcinol 

in the resin is removed by washing with water, in which it is 

highly soluble. 

Toluene extraction and steam distillation of the resin 

after scrubbing with hot water show the resin to contain little, 

or no tri-phenyl phosphate and only a trace of free phenols. 

The resin is considered pure enough for quantitative analysis. 

Although the infra-red spectrum of the resin blend shows 

bands consistant with the proposed idealised structure (M , 
N. M. R. spectroscopy strongly suggests that other structures are 

present. The aromatic proton: hydroxyl proton ratio of about 

1: 7.5, obtained from the N. M. R. spectrum of the resin shows that 

the number of hydroxyl substituted benzenoid rings present is 

considerably less than in the idealised structure (), which 

has an aromatic proton: hydroxyl proton ratio of 1: 5. 

The phosphorus content of the resin is 9.17%, which is 

of the same order as expected from the idealised structure (EX), 

i. e. 9.722. The molecular weight, 702, of the resin is about 

10% higher than the idealised structure's (638), which confirms 

the presence of higher polymers probably containing more than 2 

phosphate moieties. 

On the basis of the N. M. R., % phosphorus content and 

molecular weight evidence no single structure can be drawn to 

satisfy all the data obtained, indicating a mixture of several 

species is actually present. A structure can be drawn (, 

which very roughly fits the experimental figures and which may be 

a predominant contributor to the polymer mixture. 
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Table 3.4.6 .1. 
Comparison of experimertal and calculated data for the composition of 

resorcinol phosphate resin. 

PROPERTY EXPERIMENTAL 
RESULTS 

CALCULATED RESULTS 
FOR STRUCTURE (XLI) 

Tri-phenyl phosphate : - 1: 2.3 1: 2.0 
resorcinol ratio. 

Aryl : hydroxyl proton -7.5: 1 7: 1 
ratio . 

% phosphorus content 9.17 9.97 

Molecular weight (Ffn) 702 622 

00 

0-i41-0 0-P-. 0 

00 
HO 

OH' OH 

(XLI) 
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Table 3.4.6.1. shows the approximate correspondence 

between the experimental and the calculated data for the resin 

and the compound (XZT). 

The closeness of structure (XCT) to the idealised structure 

() is sufficient to justify the use of the idealised structure, 

for convenience, in discussing the curing and high temperature 

stability of resorcinol phosphate resin. 
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3.5. The evaluation of the high temperature stability of resorcinol 

phosphate resin. 

3.5.1. Introduction: 

Isothermal heating and thermogravimetric analysis have been 

carried out on samples containing resorcinol phosphate resin in an 

attempt to gain an insight into the mode of high temperature degradation 

of the resin and its potential as a possible commercial product. 

The resin used for all of these studies is the resorcinol 

phosphate resin blend, described in section 3.4. 

3.5.2. Thermogravimetry 

The results from the thermogravimetry of various resin samples 

heated in air are shown in graphs 3.5.2.1. to 3.5.2.8. and table 

3.5.2.1. 

Resorcinol phosphate resin + 10% hexamine shows a continuous 

weight loss, similar to P-F novolak resin + 10% hexamine (graph 

3.5.2.1. ) and from the 10% weight loss temperatures shows only 

marginal improvement in high temperature stability over the cured 

P-F novolak resin. 

Xylok 225 resin + 10% hexamine, a high temperature resistant 

phenolic resin, gives a thermogravimetric curve with a humped plateau 

up to about 575, followed by rapid degradation (graph 3.5.2.1. ). 

The hump in the plateau may be due to the absorption of oxygen at 

high temperatures and appears to preceed the decomposition stage. 

The shape of the curve and the 10% weight loss temperature of 680 

suggest that Xylok 225 resin + 10% hexamine has much better high 

temperature stability than resorcinol phosphate resin + 10% hexamine. 

Graphs 3.5.2.2. to 3.5.2.4. show the effect of changing the 

curing agent from hexamineýto anal-dimethoxyxylylene in P-F novolak, 

Xylok 225 and resorcinol phosphate resins. 
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Table 3.5.2.1. 

10% weight loss temperatures 

Graph 10% Wt. 
No. Samples. loss temp. 

3.5.2.1 Resorcinol phosphate resin + 10% hexamine 655 

3.5.2.1 P-F Novolak resin +1 0% hexamine 620 

3.5.2.4 Resorcinol phosphate resin + 20% X 565 
+ 30% X 5 75 

50% X 575 

3.5.2.2 P-F Novolak resin + 10% X 620 
20% X 660 

3.5.2.1 Xylok 225 resin + 10% hexamine 680 

3.5.2.3 Xylok 225 resin + 10% X 675 
20% X 685 
50% X 690 

3.5.2.8 Self Cured X 590 

3.5.2.1 Phoryl 3 resin 630 

3.5.2.5 (Resorcinol phosphate resin + 10% hexa) +(chrysotile 
asbestos) 3: 7 625 

3.5.2.5 (P-F Novolak resin + 10% hexa) + (chrysotile asbestos) 
3: 7 655 

3.5.2.7 (Resorcinol phosphate resin + 10% hexa) + (chrysotile 
asbestos) 3: 7 530 

adjusted for loss of the organic material present only. 

3.5.2.6 (P-F Novolak resin + 10% hexa) + (chrysotile asbestos) 
3: 7 

adjusted for loss of the organic material present only 595 

3.5.2.8 Chrysotile asbestos % wt. loss at 675 3.2 

X=a, a'-dimethoxyxylylene 
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A hexamine cured P-F resin has a structure based entirely 

on OH 

O 

and -CH2- units. 

An a, a'-dimethoxyxylylene cured P-F novolak resin and a 

hexamine cured Xylok 225 resin have structures based on OH 

0 
units linked by -CH2- and -CH2 

0 
CH2- groups. 

An a, a'-dimethoxyxylylene cured Xylok 225 resin has a structure 
based on OH units linked by -CH2 CH2- groups. 

O 

Comparing the shapes of the curves in graphs 3.5.2.2. and 

3.5.2.3. it can be seen that replacement of hexamine by a, a'-dimethoxy- 

xylylene increases the lengthtof the plateau before rapid weight 

loss occurs; e. g. for P-F novolak and Xylok 225 resins the maximum 

plateau temperatures are: 

P-F novolak + 10% hexamine 410 ) 
P-F novolak + 10% or 20% 575-595 ) Graph 3.5.2.2. 
a, a'-dimethoxyxylylene ) 

Xylok 225 + 10% hexamine 575 ) Graph 3.5.2.3. 
Xylok 225 + 10,20 or 50% 595-625 ) 
a, ä'-dimethoxyxylylene ) 

The degrees of cross-linking between the resins cured with 

hexamineand with a, a'-dimethoxyxylylene, assuming complete reaction 

of all the curing agent used, are not comparable. 1 mole of 
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cross-linking groups can be theoretically obtained from 18.7g of 

hexamine, whereas 166g. of a, a'-dimethoxyxylylene are required to 

produce 1 mole of cross-links. 

Thus, even if 50% of the resin weight of a, a'-dimethoxy- 

xylylene is used as the curing agent, the theoretical cross-link 

density would be less than that obtained by employing 10% of the 

resin weight of hexamine. Despite the lower degrees of cross-linking 

obtained with a, a'-dimethoxyxylylene, the use of this curing agent 

still gives thermosets of much improved high temperature stability 

compared to the hexamine cured products. The possible reason for 

the improvement of the high temperature stability of these resins 

when a, a'-dimethoxyxylylene is used as a curing agent has been 

discussed in section 3.3.9. 

Interestingly, self cured a, a'-dimethoxyxylylene (graph 3.5.2.8. ) 

has lower high temperature resistance than the resins in which it 

is a curing agent. 

Comparing resorcinol phosphate resin cured with hexamine and 

a, a'-dimethoxyxylylene (graph 3.5.2.4. ) it can be seen that both 

thermosets show a gradual initial sloping plateau, followed by a 

rapid weight loss. The onset of this rapid loss in weight occurs 

at about 535 with the hexamine cured resin and 525-545 with the 

a, a'-dimethoxyxylylene cured resins. Thus, the expected increase 

in the temperature of the onset of rapid weight loss, by changing 

the curing agent from hexamine to a, a'-dimethoxyxylylene, does not 

occur with resorcinol phosphate resin. These results indicate that 

the degradation of resorcinol phosphate resin is not dependent 

upon the curing agent and suggest that the commencement of rapid 

weight loss is controlled by the breakdown of other parts of the 

cured resin's structure, probably the -P-O-C bonds. However, the 

thermogravimetric curve of "Phoryl 3" resin ('XVtf)shows the 
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beginning of a rapid loss in weight at 570 (graph 3.5.2.1. ), indicating 

that P-0-C bonds should at least be stable up to this temperature in 

air. 

Comparison of moulded resin + chrysotile asbestos composites 

(finely powdered for this work) shows that the composite containing 

P-F novolak resin + 10% hexamine has a higher 10% weight loss 

temperature than the composite containing resorcinol phosphate resin 

+ 10% hexamine (graph 3.5.2.5., table 3.5.2.1. ). This contrasts 

with the results obtained for the hexamine cured---resins in the 

absence of asbestos. 

For these composites the weight loss due to the asbestos 

component is determined from the thermogravimetric curve of chrysotile 

asbestos (graph 3.5.2.8. ) and an estimate made of the % weight loss 

of the resin components in the composites (graphs 3.5.2.6. and 

3.5.2.7. ). It can be seen that P-F novolak resin + 10% hexamine 

gives a thermogravimetric curve similar to P-F novolak resin + 10% 

hexamine in the presence of chrysotile asbestos 
, 
(graph 3.5.2.6. ); 

the presence of asbestos lowers the 10% weight loss temperature by 

about 25 (table 3.5.2.1. ). 

Graph 3.5.2.7. shows that resorcinol phosphate resin + 10% 

hexamine in the presence of chrysotile asbestos gives a thermogravimetric 

curve showing a much more rapid weight loss than resorcinol phosphate 

resin + 10% hexamine alone. The presence of asbestos lowers the 

10% weight loss temperature by 125 (table 3.5.2.1. ). 

These results indicate strongly that chrysotile asbestos has 

a detrimental effect on the high temperature stability in air of 

P-F novolak and resorcinol phosphate resins cured with 10% hexamine. 

However, with resorcinol phosphate resin + 10% hexamine this effect 

is so great that it appears that the asbestos actually attacks and 

decomposes the resin at elevated temperatures. 
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3.5.3. Isothermal ageing studies at 525. 

3.5.3.1. The preparation of moulding powders. 

The resorcinol phosphate resin - chrysotile asbestos composite 

can be milled to a hide in a similar manner to a commercial phenol 

formaldehyde resin composite. 

Table 3.5.3.1.1. shows the conditions employed in determining 

the flow properties of the moulding powders obtained and table 

3.5.3.1.2. gives the flow disc thicknesses obtained for each 

resin-asbestos composite batch prepared. 

3.5.3.2. The preparation of moulded test bars. 

Resorcinol phosphate resin-chrysotile asbestos composite can 

be moulded in the same way as a conventional phenol-formaldehyde 

resin composite, although a slightly higher mould temperature is 

required'and the moulding time is about three times that of the 

conventional phenol-formaldehyde resin composite. 

3.5.3.3. The evaluation of the high temperature resistance of the 

resorcinol phosphate resin-chrysotile asbestos composite 

moulded bars. 

The results from the isothermal ageing studies are shown in 

graphs 3.5.3.3.1. to 3.5.3.3.4. 

Graph 3.5.3.3.1. shows the weight losses of the post cured 

moulded bars aged at 525. Up to 800 hours' ageing in air. The 

composite containing the resorcinol phosphate resin shows a higher 

weight loss than the P-F novolak resin composite. 

Graph 3.5.3.3.2. shows the flexural strength changes of 

moulded bars after post curing, followed by ageing at 525 in air. 

As expected post curing the P-F novolak resin composite bars gives 

an increase in flexural strength, but surprisingly the resorcinol 

phosphate resin composite bars suffer a significant drop in flexural 
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Table 3.5.3.1.1. 

Flow disc method for determining the flow properties of moulding 

materials. 

Discs' diameter (cm) 15.24 

Discs' temperature (K) 435-445 

Load applied on discs (Mg) 4.064 

Sample weight (g) 16 

Table 3.5.3.1.2. 

Flow disc thickness of batches of resin-asbestos composites. 

P-F novolak composite 
(m) 

Resorcinol phosphate resin composite 
(mm) 

1.91 1.34 

1.78 1.25 

1.70 1.40 

1.78 1.45 
1.42 
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strength on post curing. 

At 525 in air the P-F novolak resin composite bars undergo a 

rapid decline in flexural strength over 1000 hours, retaining only 

5.3 % of their flexural strength after post curing. In comparison 

the resorcinol phosphate resin composite keeps 59.5 % of its 

flexural strength after post curing when aged in air for 1000 hours 

at 525. In--spite of the better retention of flexural strength at 

525 of the resorcinol phosphate resin composite specimens, their 

initial flexural strength after post curing is disappointingly low, 

being only 28.4% of that of the P-F novolak resin composite bars. 

Graph 3.5.3.3.3. shows the weight losses of samples of cured 

resorcinol phosphate + 10% hexamine and chrysotile asbestos. Both 

samples had been preheated at 475 for 48 hours before ageing at 525. 

The weight loss of the cured resin is about 19% after 1000 hours 

at 525 and that of the asbestos negligible at less than 1%. 

Graph 3.5.3.3.4. shows the weight loss of resorcinol phosphate 

resin + 10% hexamine, preheated at 475 for 48 hours, compared with 

the estimated weight loss of the resorcinol phosphate resin + 10% 

hexamine in the post cured moulded bars. It is apparent that the 

presence of chrysotile asbestos greatly accelerates the degradation 

of resorcinol phosphate resin. After 1000 hours at 525 the cured 

resin alone loses only 18.3% of its weight, compared to a weight 

loss of about 60% for the resin in the asbestos composite. This 

behaviour is in line with thermogravimetric evidence. 

3.5.4. Pyrolysis of resorcinol phosphate resin-chrysotile asbestos 

composite moulded bars. 

Resorcinol phosphate resin + 10% hexamine and chrysotile 

asbestos composite moulded bars have been heated in stages up to 

about 1075. The specimens lose 30% of their weight during the pyrolysis. 

Assuming the asbestos contains about 13%81 of water, the theoretical 
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weight loss for water and organic material from the composite is about 
30%. 

Even though apparently all of the organic content of the composite 

is lost during heating to about 1075 the bars remain coherent and have 

a residual flexural strength at room temperature of the order of 

10-11 MNm 2. It is possible that the inorganic phosphate residues 

remaining after removal of the organic material combine with the 

asbestos to form a coherent mass. Chrysotile asbestos undergoes 

structural re-organisation at 1085 to the non-fibrous crystalline 

olivine mineral. 
ß1 A transformation of this type may occur when 

resorcinol phosphate resin and chrysotile asbestos composite is 

pyrolysed and may also account for the coherent nature of the heated bars. 

3.5.5. Summary and conclusions. 

Although moulded composites of resorcinol phosphate resin 

+ 10% hexamine and asbestos show good retention of flexural strength 

at 525, their initial flexural strength is considerably lower than 

that of a comparable conventional P-F novolak resin + 10% hexa and 

asbestos composite. This deficiency in initial mechanical strength 

is too great for the resorcinol phosphate resin composite system to 

be a commercially viable product. 
82 

Chrysotile asbestos is undesirable as a filler in resorcinol 

phosphate resin, since it accelerates the high temperature degradation 

of the resin. It is possible that the alkaline magnesia content of 

the asbestos causes hydrolysis of the P-O-C bonds in the resin at 

525, or alternatively it may catalyse a thermal reorganisation of the 

inorganic phosphate links to degrade the resin structure (XLTI). 
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4. SUGGESTIONS FOR FUTURE WORK. 

These studies have shown that resorcinol phosphate resin is 

easily prepared and processed, but decomposes rapidly at 525. 

Preliminary thermogravimetry has suggested that thermal breakdown 

may occur at the P-O-C-bonds in the resin. 

To ascertain the mode of-thermal or thermo-oxidative degradation 

of the cured resin a fuller understanding of the fragmentation` taking 

place is required. "Some approaches that may be useful in determining 

the products formed-when-the resin is heated are: 

1. Destructive distillation of the resin in air or nitrogen, followed 

by chromatographic, spectroscopic and chemical analysis of the distillatev 

2. Isothermal heating of the cured and uncured resin in air and in 

nitrogen, using a pyrolysis unit connected to a mass spectrometer. 

3. Long term refluxing of model compounds, such as tri-phenyl phosphate, 

with air and with nitrogen passing through the liquid, followed by 

chromatographic and chemical analysis. 

Should the high temperature stability of the P-O-C linkage be 

found to be poor at 475-525 then there would belittle point in 

incorporating such linkages in phenolic resins for use in this temperature 

range. Conventional phenolic resins satisfy most needs below 475. 

Incorporation of P-O-C linkages into a two dimensional network 

structure may reduce fragmentation considerably. Recently some cyclic 

aryl phosphates. have been reported, 
83 for example (XC]ll), which may 

condense with polyhydric phenols to produce "stepladder" polymers, 

for example ( (T). 

By choice of a suitable substituent on the aromatic rings of 

the cyclic phosphate monomers curing may be possible by hexamine or 

a, a'-dimethoxyxylylene. 

The breakdown of resorcinol phosphate resin is accelerated 

appreciably by chrysotile asbestos at 525. Incorporating inert, 
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non-basic fillers s. udh as an alkali free silica fibre mat, may give 

composites with acceptable heat ageing properties at 525. An insight 

into the mechanism of the high temperature breakdown of resorcinol 

phosphate resin in the presence of chrysotile asbestos may be gained 

by applying the methods (1,2 and 3) suggested for the cured resin 

alone. 
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1. INTRODUCTION 

1.1. General Introduction 

Cement materials, such as gypsum and clays, have been known 

for centuries and even the common, modern portland cement dates 

back to the early nineteenth century. Strictly speaking, the word 

cement includes a large range of materials, which can act as 

adhesives, binders, fillers and construction and grouting materials. 

All cements have one property in common, namely that they are 

worked whilst in a fluid, or semi-fluid state and then are left to 

set and harden. Plaster of Paris, portland cement, organic 

adhesives and cold curing thermosets, solders and dental amalgams 

and restoratives may all be classified as cements. 

Recently a new class of cements based on ionomers has been 

developed. Ionomers are metal-polyanion salts, or complexes, 

formed by reacting organic polyacids with basic metal substances. 

The applications of ionomer cements are, at present, confined 

mainly to dentistry and particularly as permanent restorative 

materials, adhesives and cavity liners. Ionomer cements combine 

a-number of useful properties and may have considerable potential 

for uses outside the dental field. 

One particular feature of ionomer cements is their ease of 

preparation. The chemical bonds between the metal ions and 

polyanions in ionomers have a high degree of ionic character and 

the formation of ionic bonds is usually rapid and can take place 

at low temperatures. Consequently, ionomer cements set rapidly 

at ambient temperatures. 

Hardened ionomer cements resemble ceramic materials, in 

that they can have high compressive strengths, a hard finish and 

good resistance to solvents. 



Despite these potentially valuable characteristics ionomer 

cements have not been extensively researched. Much of the existing 

knowledge on the chemistry and physics of these cements has stemmed 

from their use in dentistry. The field is therefore open for 

research and development in other applications, especially those 

involving cement composites. 
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1.2. The development of dental cements. 

The use of chemical, dental cements originated in the 1850's 

with the introduction of zinc oxychloride cements. These cements, 

which had poor cementing properties and were attacked by oral 

fluids, have long since been abandoned. 
I 

Some 20-25 years later zinc phosphate cement was introduced 

and is still used in modern dentistry. This cement shows some 

improvement over zinc oxychloride cements, but still suffers from 

serious shortcomings. The cement has a low compressive strength 

and poor stability to oral fluids. 2 Its low initial pH can cause 

pulpal irritation when applied to a tooth cavity and when it has 

set there is very little adhesion between the cement binder and 

the tooth substance. The opacity of zinc phosphate cement is high 

and does not match tooth enamel. Zinc phosphate cement can be 

used for temporary restorations and as insulating bases for 

permanent restorations. 
3 Some properties of zinc phosphate cement 

and other important dental cements are shown in table 1.2.1. 

Dental silicate cements evolved at about the same time as 

zinc phosphate cement. Their compressive strength and translucency 

are considerably better than zinc phosphate cement, although the 

adhesion to tooth substances, the pulpal irritancy effect and 

resistance to oral fluids show. -., no great improvement. 5 Dental 

silicate cement is the most widely used chemical dental cement 

and finds applications in non-stress bearing anterior restorations 

and for temporary crowns. 
3 The cement cannot, however, be 

described as being permanent in these applications. 

In the late 1880's, shortly after dental silicate cement 

appeared, zinc oxide-eugenol cement was introduced. This cement 

is bland towards tooth pulp, but has a low strength, high opacity, 
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and is hydrolytically unstable. It is widely used in modern 

dentistry and finds application in insulating bases and temporary 

restorations. 
3 

There then came a stagnation in the evolution of dental 

cements, which was revived some 70 years later by the modification 

of zinc oxide-eugenol cement with o-ethoxybenzoic acid and the 

modification of existing inorganic dental cements with polyacids. 

But it was not until another 10 years later that a significant 

contribution was made, namely the introduction of the first 

ionomer cement - zinc poly(carboxylate). 

Zinc poly(carboxylate) cements shows a significant improvement 

in adhesion to tooth substances when compared with the dental 

silicate and zinc phosphate cements. The initial pH of zinc 

poly(carboxylate) cement paste prior to application is higher than 

that of dental silicate and zinc phosphate and hence the cement is 

much less of an irritant. 3 Like zinc phosphate cement the opacity 

of zinc poly(carboxylate) cement is high. 4 The compressive 
6 

strength of zinc poly(carboXylate) cement is about the same, or 

slightly lower7 than zinc phosphate cement and is considerably 

less than dental silicate or ASPA cements. 

In dentistry zinc poly(carbocylate) cements are used mainly 

for insulating bases and luting cements? 

The latest development, closely following zinc poly(carboxylate) 

cement is ASPA cement, 
8 

which is related to dental silicate and 

zinc poly(carboxylate) cements. ASPA cement (Alumina silicate- 

polyacrylate) has a combination of the favourable properties found 

in its predecessors. For example, it has a high-compressive 4 

strength, good resistance to attack by oral fluids, a high initial 

pH and hence shows a very low irritancy to tooth substances, good 



, adhesion to tooth substances and fairly good translucency. ASPA 

cement is very new and although it has reached a commercial stage 

in development it is not widely used as yet. Research and 

development is, underway at the present time to further improve 

the system. 

Diagram 1.2.1. shows the development of dental cements in 

chronological order, culminating with the new ASPA system. Some 

of the important cements in diagram 1.2.1. will be discussed 

briefly in section 1.3. and ASPA cement will be fully discussed 

in section 1.4. 
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Diagram 1.2.1. 
4 

The developement of dental cements. 

1850 
Zinc oxychloride (mid 1850's) 

-20-25years 

1875 
Zinc phosphate and ) 

dental silicate 
) (1870-1880) 

ZnO-eugenol (1887) 

1900 

DATE 

1925 

1950 1 

1975 I 

-80-85 years 

-70 years 

Inorganic cements ZnO- o-ethoxybenzoic acid 

modified with (ca. 1958) 

polyacids (ca. 1957) N 10 years 

12 year Zinc poly(carboxylate) (1969) 
4 years Z ASPA (1972) 
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1.3. The nature of dental cements. 

1.3.1. Metal phosphate cements. 

Metal phosphate cements are prepared by mixing aqueous 

o-phosphoric acid with a powdered metal oxide or mixture of metal 

oxides. Kingery9 has summarised the chemistry and properties of 

metal oxide- o-phosphoric acid cold setting ceramics and has 

reported that only certain metal oxides give setting and coherent 

products. Acidic or chemically inert oxides (e. g. MoO3 and A1203) 

do not react. Highly basic oxides (e. g. CaO and ZnO) react 

violently to give porous, friable cements with little cohesion. 

The reaction rate must be compatible with the organisation of the 

reaction products into a coherent mass. Many weakly basic, or 

amphoteric oxides react, but not all give setting cements. Set 

cements all contain mono- or di-basic phosphates and hydrogen 

bonding in these structures aids cohesion in the cement. 

In dental cements thermally deactivated zinc oxide is used, 

usually with about 10% added magnesium oxide and traces of other 

oxides. The o-phosphoric acid solution contains small amounts of 

dissolved zinc and aluminium phosphates and about 36% w/w water. 
10 

Metal phosphate cements have also found application as 

refractory materi al s. 
9 

1.3.2. Dental silicate cement. 

Dental silicate cements are prepared by mixing an ion-leachable 

aluminosilicate glass with o-phosphoric acid solution containing 

dissolved zinc and aluminium phosphates and about 40% w/w water. 

Ca2+ and A13+ ions are leached from the surface of the glass 

particles by H+ ions from the phosphoric acid. The glass particle 

surfaces are left coated with a siliceous hydrogel and the leached 

metal ions precipitate the phosphoric acid as insoluble (and 



1V 

possibly polymeric) metal phosphates. F ions are also leached 

from the glass. The cementing matrix of the products is believed 

to be a mixture of metal phosphates and fluorides in an amorphous 

condition. 

The literature on dental silicate cements is extensive. 

Between 1967 and 1972, Wilson et. al. characterised the cement 

chemistry in detail. 5 

A modification of dental silicate cement is silicophosphate 

cement, in which the powder phase contains both aluminosilicate 

glass and zinc oxide. 
11 

1.3.3. Zinc oxide-eugenol cement. 

The chemistry of the setting of zinc oxide-eugenol cement 

was characterised by Smith12 well over half a century after its 

introduction as a dental material. 

Briefly, the setting of zinc oxide-eugenol cement is due 

to the concurrent sorption of eugenol by the zinc oxide and the 

formation of zinc eugenate by chemical reaction (I). The method 

of preparation of the oxide governs the balance between the 

physical and chemical aspects of the setting reaction. Zinc 

eugenate formation is catalysed by metal salts and will not form 

in the absence of moisture. 

Brauer, White and Moshonas13 have studied a wide range of 

organic acids with various metal oxides in an attempt to find 

alternatives to zinc oxide-eugenol cement. To obtain hard, 

coherent cements only acidic organic compounds will suffice 

(e. g. carboxylic acids, or acidic enols or phenols) and from the 

compounds tested o-ethoxybenzoic acid was the most successful. 

Only certain metal oxides were found to react and these were 

either basic or amphoteric (e. g. MgO, CaO, ZnO, CdO, HgO, PbO). Other 
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oxides, some basic and some acidic, did not give setting cements 

(e. g. CuO, Ag20, A1203, Ti02, Pb02, Bi203, Mo03, MnO2, Fe203, CoO and Ni0). 

Cements prepared from CaO and MgO were less stable in water and had 

a lower compressive strength than the ZnO cement. With LiOH, 

Ca(OH)2, Sr(OH)2, NaC1, MgCl2, CaC12, PbC12, Zn acetate, ZnSO41 or Zn 

oxalate setting cements were not obtained with o-ethoxybenzoic acid, 

although a setting product was obtained with HgCl2. 

Nielsen14 has investigated the cement forming ability of 

39 organic chelating agents, including 0-diketones, keto-esters, 

2-methoxyphenols, salicylaldehyde and derivatives and 8-hydroxy- 

quinoline, with various metal oxides. CuO, ZnO, CdO and Bi203 gave 

cements with at least one chelating agent, whereas Al203, Zr02, 

Fe203, Mn02, NiO and WO3 did not form cements with any of the organic 

compounds. Only the Bi203-8-hydroxyquinoline product was considered 

suitable as a dental cement. 

1.3.4. Metal poly(carboxylate) cements. 

The most important example of this class of cements was 

patented by Smith in 19696 and is prepared by mixing an approximately 

50% w/w aqueous solution of poly(acrylic acid) (PAA) with thermally 

deactivated zinc oxide powder. Additives, such as MgO, Bi203, 

Ca3(PO4)2 and CaF2, can be used with the zinc oxide. 

During the mixing and setting of the cement an acid-base 

reaction takes place and the pH rises. The PAA is believed to 

dissolve some of the zinc oxide to form a product in which partially 

reacted zinc oxide particles are embedded in a hydrated zinc 

poly(acrylate) ionomer matrix. It is unlikely that all of the 

carboxyl groups react with the metal oxide. 

Some cement products related to zinc poly(acrylate) are 

shown in table 1.3.4.1. and all have been developed specifically 

for dental use. 
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Table 1.3.4.1. 

Cements related to zinc poly(acrylate) cement. 

Polyacid phase Inorganic phase Cement preparation References 

Poly(acrylic acid) Powdered ZnO + MgO Simply mix 15 
(aqueous) 

Poly(acrylic acid) Powdered ZnO + Mix with water 16 
(powder) silica powder 

(Aerosil) 

Acrylic acid- Mixtures containing Simply mix 17 
itaconic acid e. g. ZnO, ZnSO4, 
copolymer 
(aqueous) Zn 3(P04)2, MgO, A1203 

Bi203. 

Poly(acrylic acid) ZnO + MgO-phosphate 16 
or cement and/or a 
poly(methacrylic silicate cement - 
acid) (e. g. dental 

silicate) 

Poly(acrylic acid), Mixtures containing Mix with H3P04 18 
poly(methacrylic 

or other 
e. g. ZnO, ZnSO4, 

solution utýon alone, or 
polyacids. 

Zn3(P04)2, MgO, Al203, with added poly- 
merisable organic 

Bi203 acids + initiators. 

Pol acrylic acid), Y( Mixtures containing 9 Mix with H PO 34 18 
poly(methacrylic 
acid), or other 

e. g. ZnO, ZnSO 4 solution alone, or 
polyacids. 

Zn3(P04)2, MgO, Al203 with added poly- 
Polymerised whilst Bi 0. Z 3* 

merisable organic 
acids + initiators 

mixed with inorganic . 
phase, then powdered. 
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1.4. ASPA cement. 

1.4.1. Introduction: 

ASPA cement is formed by reacting an ion-leachable aluminosilicate glass 

powder with aqueous PAA (ti50% w/w solution). The cement may be broadly 

considered as a hybrid between dental silicate and zinc poly(carboxylate) 

cements and indeed shows many of the favourable characteristics associated with 

these related products. 

Acid erosion tests have shown ASPA to have a greater stability at 

pH=4.0 (a typical value for the limit of the acidity in the, mouth) than dental 

silicate cement. In dental silicate cement the cementing matrix is composed of 

discrete (and possibly polymeric)phosphate units, which are ionically linked 

and are thus very susceptible to degradation. Phosphate polyhedra which are 

probably linked by aluminium ions will be attacked by acids to release 

individual acidic phosphate fragments. In ASPA cement the covalently bonded 

linear polyanion chains are not attacked by acids and will not degrade into 

fragments and thus ASPA is more resistant to acids than dental silicate 

cement. 
4 

The irritancy of fresh ASPA cement when placed in a tooth cavity 

is less than dental silicate cement. Two factors are responsible. Firstly, 

the acid strengths of phosphoric acid and PAA are very different. In 

fresh dental silicate cement a pH=1.3 is developed prior to application, 

compared to pH=2.5 for ASPA. Secondly, the migration of PAA molecules 

through the tooth pulp will be hindered by the size of the molecule, 

chain entanglements and the fact that parts of the molecule may be bound to the 

cementing matrix. With the smaller phosphoric acid molecules migration 

would be less hindered. 4 

1.4.2. The composition of the glass: 

The aluminosilicate glass8 is prepared by heating mixtures 

of inorganic compounds at 1375K for 2 hours, quenching in water, 

AZZ temperatures in this thesis are in degrees K. From here onwards 
the letter K will be omitted. 
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drying and then grinding and sieving to about 40um particle size. 

Melt temperatures above 1475 are to be avoided, otherwise the 

cement working time will be drastically shortened. A typical glass 

formulation is shown in table 1.4.2.1. For dental applications a 

glass designated G200 is used, but its exact composition cannot be 

disclosed for patent reasons. The Al : Si ratio in the glass is 

vital when considering its reactivity with PAA. In fact, G200 

glass was developed to give sufficient reactivity towards PAA, for 

the glasses used in dental silicate cements were developed for 

the much stronger phosphoric acid and were not reactive enough 

with PAA. 

1.4.3. The composition of the poly(acrrylic acid) solution: 

PAA is readily prepared in aqueous solution, although a chain 

transfer agent is required to control the molecular weight. 
8 

Molecular weights of about 1X 104 to 3X 104 are suitable, but 

higher polymers tend to give solutions too viscous for satisfactory 

use. 45-50% w/w solutions are generally employed and are usually 

treated with stabilisers and additives before use. Methanol is a 

possible stabiliser and is reported to prevent the polymer solution 

gelling. Additives, such as tartaric acid, are employed to give 

cement mixes with good workability and sharp setting characteristics. 

Cements will still form in the absence of additives. 

1.4.4. The mix composition: 

The cement mix composition depends mainly upon the-dental 

application, but powder: liquid ratios (P: L) of 1: 2 to 1: 3 g ml-l 

are often employed. The components are spatulated for 1 minute 

on a glass block and then applied. 

1.4.5. The chemistry of ASPA cement: 

ASPA cement is a very recent invention, but despite this 

much work has been carried out to elucidate its chemistry. 



The basic mechanism19 for the reaction of the aluminosilicate 

glass with PAA is shown, U1 ). Protons from the PAA displace 

cations from the glass particles' surfaces to give a product consisting 

of a glass particle aggregate in a metal poly(acrylate) cementing 

matrix. Water present hydrates the matrix and may hydrate the 

siliceous hydrogel surface of the glass particles. The matrix is 

water insoluble and may be hydrogen bonded to the siliceous 

hydrogel surface of the glass particles. 

Extraction experiments on ASPA cements aged for various- 

times have shown that ion leaching is very rapid. Probably most 

of the ions are leached out within 10 minutes at room temperature. 

In addition to Ca 2+ 
and Ala+, Na+, F and P043- ions are leached 

into solution. Ca 2+ 
and A13+ are believed to be partially complexed 

as fluorides and phosphates. Excess Ca2+ and A13+ ions are bound 

by the partially neutralised PAA to form the cementing matrix. 
19 

Infra-red spectroscopy on cements of various ages19 has shown 

that a rapid reaction takes place. In freshly prepared ASPA cements 

this is illustrated by formation of silica gel (band at about 1050 cm-1) 

and the conversion of some carboxyl groups (band at 1700 cm-1) to 

carboxylate groups (bands at 1500 to 1600 cm 
1). Over a period of 

24 hours the carboxyl group band is reduced considerably, whilst 

the carboxylate group bands (at 1540 and 1600 cm 
1) 

are markedly 

enhanced. 

By comparing the infra-red spectra of calcium and aluminium 

poly(acrylate) model compounds with the infra-red spectra of ASPA 

cements Crisp and Wilson found that calcium poly(acrylate) is 

rapidly formed in fresh ASPA cement, whilst aluminium poly(acrylate) 

does not form in appreciable amounts until after about 1 hour from 

mixing. The delayed formation of the aluminium poly(acrylate) has 
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been attributed to the unfavourable entropy associated with the 

orientation of three carboxylate groups around the tri-positive 

aluminium ion. Other factors may be the lower mobility of the 

highly solvated Al3+ ion and the difference in morphology of 

the cation sites in the G200 glass. 

The setting reactions occurring in ASPA cement continue 

for at least 48 hours and are accompanied by an increase in 

compressive strength with time. Wilson20 has suggested that the 

setting reaction may continue very slowly in hardened cements for 

several months, or even indefinitely. 

The rate of reaction between the glass and the PAA not only 

depends upon the composition of the glass, but also (in the case 

of G200) the method of preparation and morphology of the glass. 

1.4.6. The morphology of G200 glass: 

The morphology of G200 glass depends to some extent on the 

temperature employed in its preparation. 

Barry, Miller and Wilson21 have shown that G200 glass, like 

the glass used in dental silicate cements, is phase separated. 

The degree and nature of phase separation depends upon the melting 

history of the glass and has a pronounced effect on the workability 

and setting time of the ASPA cements prepared from the glass. For 

example a G200 glass prepared at 1425 gives a satisfactory mix 

with PAA, whilst a G200 glass fused at 1575 gives a mix which 

rapidly becomes rubbery and unworkable. 

Both G200 (1425) and G200 (1575) are phase separated into 

droplets dispersed in an amorphous matrix. X-ray analysis has 

shown the droplets to be almost entirely composed of calcium 

fluoride, whilst the glass matrix contains aluminium, silicon and 

calcium. At the boundary between the droplets and the matrix 

the aluminium: silicon ratio is higher than in the matrix. Optical 
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and electron transmission microscopy have shown a fundamental 

difference between G200 (1425) and G200 (1575) glasses. In a 

glass prepared at 1425 incomplete melting of calcium fluoride 

occurs and the material contains massive inclusions of fluoride 

droplets (several microns across), which are non-uniformly 

dispersed. A glass prepared at 1575 contains no massive droplets, 

owing to a more complete melting of the mix. 

Both glasses also contain small spherical droplets of 

calcium fluoride, which differ markedly with the melt temperature 

employed. For G200 (1425) the average size of the spherical 

droplets is 1.67 } 0.83i, m. (volume fraction -. 20%), whilst for G200 

(1575) the droplets are slightly smaller at an average of 

1.08± 0.32pm. (volume fraction "19%). The degree of crystallinity 

within the calcium fluoride droplets differs considerably between 

the two glasses. In G200 (1425) most of the droplets are crystalline, 

or partly crystalline, whilst in G200 (1575) glass many of the 

droplets are entirely amorphous. It is the degree of crystallinity 

of the calcium fluoride droplets in the glass that controls its 

reaction rate with PAA. Where the droplets are mostly crystalline 

a slow acid leaching of Ca2+ takes place, but where the droplets 

are mainly amorphous a very rapid acid leaching of Ca2+ occurs and 

the PAA is quickly saturated with these ions. Thus, G200 (1425) 

gives a workable cement with PAA, whilst G200 (1575) glass does 

not. In addition to melt temperature other factors, such as melt 

cooling rate (which will be more rapid for G200 (1575) glass) 

probably affect the crystallinity of the glass. 

1.4.7. The morphology of the cement: 

Barry, Miller and Wilson21 have shown by optical microscopy 

that the microstructures of dental silicate and ASPA cements are 

similar, i. e. polygonal glass particles dispersed in a cementing 
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matrix. Non-dispersive X-ray analysis has been used to study the 

element distribution in an ASPA cement prepared from G200 (1425) 

glass. The cement matrix contains about three times the proportion 

of calcium relative to either aluminium and silicon, in contrast 

to much lower ratios of calcium to aluminium and silicon present 

in the glass particle. Thus, in the cementing matrix bound 

calcium appears to predominate over bound aluminium ions by a 

factor of about three. The abundance of calcium in the cementing 

matrix is probably attributable to a preferential acid leaching 

of the amorphous droplets in the glass. Calcium and aluminium 

in the cementing matrix are believed to be present as salt bridges, 

or cross-links, between poly(acrylate) chains21 (TIT). 
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Table 1.4.2.1. 

Atypical glass composition for ASPA cements 
8 

Si02 1000 p. b. w. 
A1203 618 

Na3AIF6 730 If 

A1PO4 
. 
303 it 

CaF2 470 

AlF3 174 

-c- ý H-CH2- cH2 CH-cH2 

C00- coo- . 
Ca2+ 3+ 

cdo C00- C00- 

-CH2 CH-CH2 -CH-CH2 CH- 

(III) Postulated salt bridges in the cementing matrix of 
ASPA cement. 
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1.5. Other ionomer materials. 

A very important class of ionomer materials are ionomer resins, 

such as Surlyn A (Du Pont). These ionomer resins are prepared by 

neutralising a partially carboxylated poly(alkene) with basic metal 

salts. For example, a typical ionomer resin is prepared by milling 

an ethylene-methacrylic acid copolymer (containing 1-10% acidic 

co-monomer) with 20-80% of the copolymer weight'of water soluble 

oxides, hydroxides or other basic salts of sodium, potassium, 

magnesium or zinc. 
22,23 

The ionic bonds in the ionomer resin are thermally labile, 

so that at ambient temperature the resin is rigid (like a thermoset) 

and at elevated temperatures softens (like a thermoplastic). There 

is much controversy over the morphology of ionomers, but generally 

the metal cations in the resin are thought to be located in domains 

dispersed throughout an aliphatic hydrocarbon matrix. The size of 

these domains is not known with certainty and diameters of 0.5-1.0nm 

to 10-50nm have been suggested. Several morphological models have 

been proposed. 
24-27 

Ionomer resins are transparent and have excellent resistance 

to many solvents and oils. The gas permeability of ionomer resin 

films is very low. Applications for ionomer resins include food 

packaging foils, oil and grease resistant films and mouldings, 

stress-crack and solvent resistant bottles and electrical component 

casings. 

An interesting modification has been reported using portland 

cement as the inorganic phase in ionomer resins. 
28'29 Partially 

carboxylated poly(alkenes) are milled with portland cement to obtain 

a composite, which can be cured at 373-473 in water or steam. The 

cured composite hasahigher stiffness and yield strength than the 

unfilled copolymer and has been suggested as suitable for wire 
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coatings and high temperature resistant products. 

Portland cement is predominantly a mixture of calcium silicates 

(3 CaO. Si02 - 39%; 2 CaO Si02 - 30%) with some tetracalcium alumino 

ferrite (4 Ca. O. Al203. Fe203 - 11%), tricalcium aluminate 

(3 CaO. A1203 - 11%), free lime (1.7%) and other minor components. 
30 

Thus, in these portland cement modified resins the carboxylate 

groups on the polymer chains are probably neutralised by Ca2+ ions 

(which are abundant in portland cement) and possibly by Al3+(and 

Fei+)ions. This composite is therefore probably related to ASPA 

cement in respect of the cross-linking ions present, differing 

in degree of cross-linking and the reaction medium. 

Polyacids have been employed in countless applications with 

inorganic substances capable of providing cross-linking metal ions, 

or providing an adsorbant surface for the polyacid macromolecules. 

Table 1.5.1. shows a few reported products. 
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Table 1.5.1. 

Products between organic polyacids and inorganic substances. 

Polymer Inorganic Products and Example 
phase uses refs. 

. MA -AA copolymer Cement and Cements and mortars 31 
MA-MAA copolymer mortar with improved 

durability 

PAA and PAA salts Plaster of Modified plasters with 32 
Paris reduced water 

absorption properties. 

Various organic Various, Deflocculants, 33,34 

polyacids suspended fluocculants. Glaze 
particles in additives and thickening 
water agents. 

Various organic Soils Soil stabilisers and 35 

polyacids strengtheners 

AA-2-ethylhexyl ZnO alone, or Compression moulded 36,37 

acrylate co- with steel high strength 

polymer powder rovings. CaO composites. Moulded 

and PbO. at high temp. and 
pressure. 

Various organic Metal salts Cast films or 38 

polyacids compression mouldings 
for medical uses and 
for photographical 
filters, fibres and 
catalysts. 

Various organic Polybases Ionenes 39 

polyacids 

PAA CaCl2 Anti-scaling agent for 40 
oil wells 

PAA phenyl tin Cross-linked products 41 
(and silicon) produced by a base 
chlorides. catalysed interfacial 

method. 
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Table 1.5.1. (continued) 

Polymer Inorganic Products and Example 
phase uses refs. 

PAA salts Al 
3+ 

Mn 
2+ 

, Polymerisation 42 

Cot+, Pb2+ catalysts. Levelling 
agents for laquers. 

AA-AA esters Cd2+, Zn2+, Aqueous resinous 43 

copolymers Cut+, Ni2+ coatings 

Various organic Various cations Ion exchange resins 44 
polyacids, 
partially 
cross-linked 

Partially Al, Zn, Ni salts Additives to poly- 45 
hydrolysed (propylene) fibres 
acrylate polymers 

AA or MAA ester- Oxides, Coatings for soft 46 
AA or MAA or ICA hydroxides or asbestos-cement 
copolymer basic salts of products. 
emulsions. polyvalent 

metals. 

VE-MA copolymer Ca(OH) 
2 Surgical splinting 47 

bandages. 

AA-acrylic acid; MA = maZeic acid; MAA = methacryZic acid. 

ICA-itaeonie acid; VE - vinylmethyl ether. 
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1.6. General survey of polyacid - metal ion interactions. 

1.6.1. Introduction to polyacids: 

Polyacids are macromolecules having many ionisable acidic 

groups. Table 1.6.1.1. shows some common polyacids. 

Polyacids are often water soluble, dissociating into 

aquated protons and aquated macromolecular anionic species. They 

are neutralised by alkalis and bases to form salts, which may be 

water soluble. In aqueous solution the anionic macromolecular 

chains tend to attract the counterions (aquated cations) by 

virtue of the high localised electron density on the pendant 

ionised acid groups. Oosawa48 identifies four regions in which 

the counterions may exist: 

1. Site bound counterions, localised at specific anionic groups 

on the macromolecule. 

2. Counterions bound in the cylindrical region occupied by the 

macroanion chain. These counterions are mobile. 

3. Counterions bound in the spherical volume occupied by the 

random macroanion coil as a whole. These counterions are also 

mobile. 

4. Counterions lying outside the sphere of coulombic attraction 

of the macroanion chain. These counterions exist freely in 

solution. 

Addition of neutral salts to polyacids, or polyacid salt 

solutions screens the electrostatic effect of the macroanions and 

increases the activity coefficient of the free counterions in 

solution. Thus, addition of a neutral salt to a polyacid solution 

results in an apparent marked increase in strength of the polyacid. 

This principle can be exploited in titrating polyacids, since in 

the presence of neutral salts sharper end points are obtained. The 

titration behaviour of a polyacid depends upon the nature of the 



Table 1.6.1.1. 

Some common polZacids 

Name 

Weal 

Poly(acrylic acid) 

Poly (methacryl ic acid) 

Ethylene-maleic acid 
copolymer 

Vinylalkyl ether- 
maleic acid copolymer 

Styrene-maleic acid 
copolymer 

Structure 

: '. synthetic polyacids: 

C -; H H2 

COOH n 

C112 Cl (CH 
3) 

COON n 

+2E21H? 

HOOC COON n 
fCH-CH2-CH-Cl; 

- 
O HOOC: COON 

n 
CH-CH -CH-CH 21 

HOOC COON 

Strong synthetic polvacids 

Poly(ethylene sulphonic 
_cH acid) 

H2 

so311 
n, 

Poly(vinyl phosphonic CH2-OH 
acid) PO3H2 

n 

Partially sulphated 
fCH2-CH 

poly vinyl alcohol) 0SOn 

0 
Poly(phosphoric acid) a, 

p 

OH n 

R-cx3, c2x5. 

I 

lip 
I 
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titrant salt and added neutral salt, since cations provided by 

these salts will also be attracted by the macroanion. 
49 Bulky 

cations, such as tert-alkonium ions are only slightly bound by 

macroanions and tert-alkonium bases are often used in titrating 

polyacids. 

With increasing neutralisation of a polyacid the coulombic 

charge on the macroions increases. Repulsion between the charged 

groups on the macroanion coil tends to unwind the coil to form an 

extended rod like configuration. Thus, neutralisation of polyacids 

is usually accompanied by an increase in the solution viscosity as 

the extending macroanion chains become increasingly disentangled 

(e. g. PAA and poly(methacrylic acid) (PMAA)). 

Polyacids bind metal ions to a greater extent than their 

monomeric analogues. For example, Gregor et. al. 
49 have found that 

PAA forms very strong complexes with Cut+, whereas glutaric acid 

only very weakly binds these ions, stability constant values differing 

by four orders of magnitude. 

The strong counterion binding (especially polyvalent ions) 

by polyacids has been exploited in many applications, such as 

ion-exchange resins (e. g. cross-linked sulphonated polystyrene 
44 

and chromatography gels (. e. g. naturally occurring polymers50). 

Over the last twenty years there has been much investigation 

of polyacid-metal ion systems. Most of the work has been carried 

out in dilute aqueous media, usually less than 0.1.14. Although 

much has been learnt about polyacid-metal ion interactions the 

subject is not fully understood. 

A brief review of the literature on polyacid-metal ion 

interactions will be given, describing some of the features of 

the chemistry involved. 
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1.6.2. The solubility of polyacid-metal ion complexes: 

Solubility studies have been carried out by precipitation 

titrations by many authors. 

Costantino et. al. 
51 have shown that the order of solubility 

for metal poly(methacrylates) increases in the order Mg2+ < Cu 2+ 
< 

Ni 2+ 
< Co2+, when metal chloride solutions are added to 95% 

neutralised PMAA solutions. 

Ikegami and Imai52 have studied the precipitation of metal 

poly(acrylates) by a turbidiometric technique, supplemented by 

viscosity, conductivity and refractive index studies. Two types 

of precipitation can occur, depending upon the metal ions added 

and the degree of neutralisation of the PAA prior to adding metal 

salt solutions. 

The first type of precipitation is where a high concentration 

of metal salt is required to induce precipitation of the PAA) 

("H-type" precipitation). "H-type" precipitation occurs with metal 

ions that are not strongly- bound to PAA (e. g. Na+), or with metal 

ions that may be strongly bound but which do not render the polymer 

hydrophobic (e. g. Mg 2+ 
with 25% neutralised PAA). "H-type" 

precipitation also occurs when metal salt solutions are added to 

undissociated PAA in, for example, dilute HCl solution, which 

supresses the dissociation of the polyacid. Under these conditions 

high concentration of salts of Na+, K+, Mgt+, Ca2+ and Ba2+ are 

required to induce precipitation. The mechanism of "H-type" 

precipitation is a "salting out" effect i. e. the hydration spheres 

of the polymer macromolecules are disrupted, or dehydrated by the 

approach of a large number of charged metal ions and the polymer 

precipitates. 

The second type of precipitation occurs with low metal salt 

concentrations and high degrees of neutralisation of PAA. Thus, 
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Cat+, Bat+, Mgt+, Ag+ and La 3+ 
cause "L-type" precipitation with 

100% neutralised PAA. The mechanism of "L-type" precipitation 

involves the disruption of the hydration spheres stabilising the 

poly(acrylate) macromolecules in solution by the binding of metal 

ions. Ions which are strongly bound cause considerable dehydration 

of the carboxylate groups on the polymer, consequently only low 

concentrations of these ions will induce precipitation. 

With 25% neutralised PAA Mg2+ gives "H-type" precipitation, 

whereas Ca2+ and Ba2+ give "L-type" precipitation. Here- Ca2+ and 

Ba 2+ 
are believed to be bound mainly as, -COO-M-OOC-, whereas Mg 2+ 

is bound as, -COO-M+ 00C-. The latter form is more hydrophilic 

and hence the precipitation of Mg 2+ 
with PAA at intermediate degrees 

of neutralisation is "H-type". 
t+ 

similarly to Mg. 

A13+ may be expected to behave 

Wall and Drenan53 have studied the gelation of PAA with 

added Cat+, Sr2+ and Ba2+ salts, using a turbidiometric technique. 

Dilute solutions of PAA require proportionally less metal hydroxide 

to induce precipitation than stronger solutions, presumably due to 

the decreased likelihood of inter-chain interactions in dilute 

solution. Precipitation occurs much more readily with metal 

hydroxides than with metal chlorides, indicating that the production 

of carbocylate groups is important for ion-binding. Ba2+ is more 

efficient than Ca 2+ 
or Sr 2+ 

at precipitating PAA and Wall and 

Drenan consider this to indicate that the metal ion-polyacid bonding 

is not wholly ionic. However, since the ionic products 
[cooj2 

x 
[M2+] 

at the gel points for a series of Ba2+ concentrations gives 

a roughly constant value, the bonding is probably mainly ionic. 

Millich and Calvin54 have studied ion binding to the 

poly(ethylene sulphonate) ion by observing coacervate formation with 

the addition of metal salts to potassium poly ethylene sulphonate) 
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solution. Alkali metal salts induce coacervation at low temperature, 

whilst heavy metal salts give coacervates at room temperature. 

Staining techniques have shown the heavy metal ions to be localised 

within the coacervate phase. From experimentally determined phase 

diagrams the order of phase separating ability increases in the 

order Fe3+ > Cu2+ > Ag+. 

Ito and Suzuki55 have shown the relative effectiveness of 

carboxylic and sulphonic acids as cation precipitating agents by 

studying a range of acrylic acid-ethylene sulphonic acid copolymers. 

With increase in the sulphonic acid content the viscosities of 

the aqueous copolymer solutions decrease and the amount of salts of 

Cat+, or Ba2+ required to induce precipitation increases. 

1.6.3. Stability constants of metal ion- Polyanion complexes: 

The stability of a metal complex in solution is quantitatively 

described by an equilibrium or stability constant, which measures 

the tendency for the complex to remain in solution without dissociating 

into its constituent ions. Two types of stability constant are in 

common use. 

1. Stepwise stability constants (k), which are used to express 

equilibria of the type: 

M+A MA 

M+A- MA2 

kl= 
[M] [A] 

k2= CMA21 

". 
[MA] [A] 

0 

MAN 
_i+A '" MAN ý1V' = [MA 

NI 
[t1AN] [ A] 

There will be N such equilibria, where N represents the 

maximum co-ordination number of the metal ion, M, for the ligand 

L. 
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2. Overall stability constants, (K) which describe equilibria 

of the type: 

M+A -ý- MA KI = MA 
FM] [A] 

ýMA2] 
M+ 2A ý- MA2 K2= 

[M] [Aý 

[MAN] 
M+ NA ý- MAN KN= -AT [M] [A'' 

Stepwise and overall stability constants are related by the 

following general equation: 
j =i 

Ki = k. l. k2. k3 --- . ki =7 kj 
j =l 

Stability constant determinations have been carried out with 

a limited number of polyacids and metal ions. Potentiometric methods 

have featured predominantly in these stability constant determinations, 

but the conditions and theory applied differs from author to 

author. A direct comparison of results from different sources is 

impossible, although useful trends can be obtained. 

Morawetz, Kotliar and Mark56 have determined stability constants 

for styrene-maleic acid (SMA) and vinylethyl ether-maleic acid (VEEMA) 

copolymers with Mgt+, Cat+, Sr 2+ 
and Ba2+ ions. Table 1.6.3.1. shows 

the results obtained. The stability constants are taken at an 

arbitrary point, where the average charge per carboxylate pair (Z) 

= 1.3, because the values of stability constants vary with the 

degree of charging of the polyacid chains. The stability constant 

values apply to complexes in 1M KNO3 at 298.15± 0.1. 

As can be seen from table 1.6.3.1. the polyacids bind alkaline 

earth ions more strongly than their monomeric analogue, succinic acid. 

Monobe57 has illustrated the effect of the variation of a 

stability constant with degree of charging of a polymer chain. 
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Stability constants for SMA (Ksma ) and vinylacetate-maleic acid 

copolymer (Kvama ) vary markedly with Z. Thus, for Ca2+ , or Ba2+ 

at low Z Ksma < Kvama , whilst at high Z Kvama < Ksma' 

Felber, Hodnett and Purdie58 have recently determined stability 

constants for metal ions with ethylene-maleic acid copolymer (EMA) 

in very dilute solution free from added neutral salts. Table 1.6.3.2. 

shows the stability constants reported, which have been calculated 

with activity coefficient corrections. The values are mean stability 

constants (since no allowance has been made for the effect of the 

degree of charging of the polymer chains) and apply to complexes at 

298.15± 0.05 under N2. 

Gregor, Luttinger and Loeb, 49 have developed a method for 

calculating stability constants from pH titration data, which does 

not depend upon the degree of charging of a polyanion. Average 

constants, Bav, are determined by a method based on that of Bjerrum 

(see section 3.4.2. ), where Bav = B2 = the second overall stability 

constant. Table 1.6.3.3. shows some stability constants determined 

with PAA in IM KC1 solution at 298.15± 1 under N2. 

Mandel and Leyte60 have modified Gregor's method and obtained 

values of stability constants with PMAA in salt free solutions. 

Their results are shown in table 1.6.3.3. 

pH measurements have also been applied to ion-binding studies 

with carboxylic ion exchange resins61,62 and with certain naturally 

occurring polymers, such as alginic acid and carboxymethyl cellulose. 
63 

1.6.4. Volume changes with ion-binding to polyacids. 

Strauss et. al. 
64,65 have reported a dilatometric method of 

studying the degree of site binding of metal ions to polyacids. 

The method involves the measurement of volume changes occurring 

when metal ions are site bound to polyanions in aqueous solution. 

Volume changes occur because during site binding there is a 
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Table 1.6.3.1. 

Stability constants56 for the reaction, 

X2+ K 
COÖ coo + 

-. ý o c_o OýC-0 M 

Acid Log K 

Ca2+ rg2+, ßa2+ Sr2+ 

VEEMA 2.45 2.30 2.00 1.96 

SMA 2.11 1.74 1.36 1.46 

Succinic acid 1.16 1.02 0.97 0.75 

Table 1.6.3.2. 

Stability constants58 for the reaction 
cH c&-cH 2+ x 

2-C]12- coocoö + 
-ý- 

n 

4 

Ion Mean K value 

Mn 2+ 6.41 0.2 X108 

Co 2+ 4.29 ± 0.3 X108 

Ni 2+ 3.76 ± 0.2 X10 

Cu 2+ 4.45 ±-0.42 X1010 

Zn 2+ 4.97 ± 0.3 X108 

Cd2} 2.13 ± 0.14 X109 

4 
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r 

Table 1.6.3.3. 
Stability constants for the reaction, 

W+ B2 
+ 2x+ coox COOH +- o_q F=o "'- 0\M 0 

Ion -Log Bav(2 -# log BJ 

PAA49,59 PMAA60 

Mg 2+ - 3.8 3.1 

Ca2+ 3.7 - 

Co2+. 3.4 2.85 

Ni 2+ 
- 2.8 

Mn 2+ 3.0 - 

Zn2+ 3.0 2.6 

Cu 2+ 1.82 1.8 

Cd 2+ .- 2.2 

Table 1.6.4.1. 

Ot values (ml per equiv. total metal ion)64 

Polyanion Lip Na+ K+ Mg 2+ Ca 2+ 

Poly(styrene sulphonate) 0.9 1.2 1.5 2.1 2.9 
Poly(vinyl sulphonate) 3.4 4.7 5.6 7.2 10.6 
Poly(acrylate) 4.5 4.1 3.9 11.7 17.3 
Poly(methacrylate) 2.9 3.1 3.0 9.2 13.7 
Poly vinyl phosphonate) . 

9.6 9.4 7.7 19.6 24.7 
Poly vinyl hydrogen phosphonate) 6.8 53 5.3 15.8 22.2 
Poly(phosphate)' 11.3 11.0 9.6 24.4 25.5 
Poly styrene sulphonate) 5.4 - - - 13.0 
cross-linked. 

+_ 
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Table 1.6.4.2. 

oVt values (ml per equivo total metal ion 65 

Polyanion Mg2+ Ba2+ Ag=' Li+ K+ 

Poly(acrylate) 26.6 33.2 20.8 4.35 2.75 

Ethylene-maleate 23.8 28.2 18.4 3.10 2.63 
copolymer 

Vinylmethyl ether 40.8 44.6 18.6 9.87 5.44 
-maleate copolymer 
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disruption of the hydration layers of the interacting species and 

the densities of water in bulk and hydration water are slightly 

different. The volume change with site binding (oVt) has been 

reported to be a sensitive indicator of the degree of site binding 

among both different polyanions and different metal ions. The 

higher the AVt value the higher the degree of ion site binding in 

solution. Tables 1.6.4.1. and 1.6.4.2. show AVt values obtained 

with tetramethylammonium salts of various polyacids in 

to tramethylammonium chloride solution, containing various metal 

chlorides (or nitrates) at 303.15± 0.001. 

A detailed study of the binding of Mg2+ has shown that with 

poly(acrylate) and ethylene-maleate copolymer polyanions incomplete 

dehydration of the reacting species occurs, because the binding is 

electrostatic. For comparison, the covalent binding of H+ ions 

leads to complete dehydration of the H ion and. polyanion. With 

vinylmethylether- maleate copolymer considerable dehydration of 

the polyanion and Mg2+ ion occurs at low degrees of neutralisation 

of the polyacid. This is believed to be a consequence of 

co-operative interaction of the ether groups on the polymer with 

the formation of a chelate ring (i! ). At higher degrees of 

neutralisation the dehydration effect diminishes to a value close 

to that of ethylene-maleate copolymer and poly(acrylate) with 

Mg2+, indicating a breakdown of the cheate rings (jr) Tto structures 

similar to those obtained with Mg 2+ 
and ethylene-maleate copolymer 

(). 

No chelates of type (TP) are believed to occur with Ag+ and 

vinylmethylether-maleate copolymer, because of the linear co-ordination 

geometry of this ion. This is reflected in the AVt values in table 

1.6.4.2., which are roughly equal for all three polyanions. 
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1.6.5. The effect of additives on ion-binding to polyacids. 

The binding of A13+ to polyacids has been found to be 

significantly enhanced by the addition of salts of organic acids, 

such as tartaric, citric, lactic and oxalic. The effect has 66 

been demonstrated with SMA, PAA and carboxymethyl cellulose. 

Commercial ASPA cements utilise a PAA solution modified 

with tartaric acid to improve the working and setting characteristics 

of the cement. It is likely that the setting characteristics of 

these cements are related to an enhancement of the binding of Al 3+ to 

the PAA. 

1.6.6. The effect of polyacid tacticity on ion-binding. 

The literature on the effects of tacticity on ion-binding is 

limited. 

Costantino et. al. 
51 have examined PMAA and found that tacticity 

is important in determining complex solubility. Mg 2+ 
shows a slight 

preference for the syndiotactic polymer. Cu2+ showed a strong 

preference for the syndiotactic polymer, whilst Co2+ a strong 

preference for the isotactic polymer. 

Monjol67 has reported that chelation of Cu2+ with PAA is 

independent of polymer stereoregularity and is greater than the 

chelation with PMAA where stereoregularity is important. 

From spectroscopic kinetics studies Geuskin et. al. 
68 have 

shown that the rate. 
_ 

of formation of Cu 2+ 
chelates with PAA is 

independent of tacticity. The isotactic polymer undergoes a 

conformational change during complexing. 

1.6.7. The effect of polymer molecular weight on ion-binding. 

Mc. Laren, Watts and Gilbert69 have studied the effect of 

molecular weight on ion-binding to PAA. With PAA of molecular 

weight (Rw )-106, prepared by u. v. polymerisation, ion-binding 

of Cu2+ and Ni2+ depends upon the PAA concentration. At low 
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concentration (1.5 X 10-4M) the stability constants for the complexing 

of Cu2+ and Ni 2+ 
are slightly higher and the degree of co-ordination 

higher than values obtained at higher concentration (2.5 X 10-3M). 

It is suggested that with high molecular weight PAA the polymer 

chains interact markedly in the higher concentration solution and 

that these interactions may be further enhanced by chain branching 

resulting from the method of preparation of the polymer. These 

strong chain interactions may hinder the binding of metal ions. 

1.6.8. The nature of metal ion-polyacid binding: 

Information on the nature of metal ion-polyacid binding is 

scanty and sometimes conflicting. 

Alkali and alkaline earth metal ions are generally believed 

to be bound by essentially ionic bonding64,53 Wall and Gill have 

inferred from spectroscopic studies that Cu2+ binds to PAA in 

solution by a different kind of bonding to that of alkaline earth 

metal ions70. Nielsen37 considers the bonding in metal oxide - PAA 

hot pressed solid composites to be ionic in character with 

CaO, ZnO or PbO. Whatever the exact nature of the bonding the 

alkaline earth metal ions are more weakly bound than other divalent 

ions, such as Zn2+, Cu2+ and Cd2+ 

Very little is known about the co-ordination numbers of metal 

ions with polyanion ligands. Often the number of carboxylate groups 

bound is equated to the valency of the metal ion. Higher 

co-ordination numbers have been indicated in stability constant 

studies with divalent ions (e. g. Cu2+), although here theory limits 

the meaningful calculation of co-ordination numbers greater than 2. 

The co-ordination geometry appears to be important in the stability 

of the complexes formed. For example, Cu2+ and Zn2+ are more 

c+rnnnly bound to EMA than Ni2+. Co2+ or Mn2+ ions and thermodynamic 

data indicates that Zn2+ and probably Cu 2+ have a4 co-ordinate 



41 

tetrahedral bonding geometry? 
' 

The structure of metal ion-polyacid complexes is not known 

with certainty. Inter-chain cross-linking has been suggested for 

alkaline earth metal ions and A13+ with concentrated PAA solution21,53 

and with Cat+, Zn 2+ 
and Pb2+ in solid poly(acrylates)37 However, 

most stability constant determinations assume chelate formation 

i. e. intra-chain binding. Cu2+ is usually assumed to form chelate 

structures with polyacids. With alginic acid and carboxymethyl 

cellulose both simple salt formation and inter-chain cross-linking 

have been postulated. 
72 Conformational changes of a polyacid upon 

binding with metal ions tend to indicate the presence of intra-chain 

chelate formation with some metal ions. 

Macromolecules of PAA are coiled in solution. Wojtczak73 

showed from viscosity measurements that at low degrees of neutralisation 

with Cat+, Ba 2+ 
and Sr 2+ hydroxides the PAA tends to uncoil slightly, 

but at higher degrees of neutralisation the macromolecules recoil until 

eventually they become even smaller than pure PAA macromolecule coils. 

These results' indicate a constriction of the PAA macromolecules by 

intra-chain binding of the alkaline earth metal ions. However, 

Jacobson74 considers PAA macromolecules to uncoil up to complete 

neutralisation, due to increasing electrostatic repulsion between 

charged carboxylate groups, even in the presence of bound Mg2+ ions. 

PAA macromolecules have been reported to be constricted by 

bound Cu 2+ 70,75 
and Ag+ 76 ions, indicating chelation. Wall and 

Gill70 have shown that the equilibrium constant for complex formation 

is proportional to 1 
and not 

1/c2 (where c= conch of carboxyl groups), 

indicating that two carboxylate groups on the same macromolecule 

bind each Cu 2+ ion. 

It is possible that both inter- and intra- chain complexing 

occurs between metal ions and polyacids in solution. Intra-chain 
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complexing may be expected to be the most likely situation for 

entropic reasons, especially in dilute solution. 

In concentrated solutions of polyacids, e. g. 20-50% w/w, 

the likelihood of inter-chain binding would be increased. Thus, the 

inter-chain cross-linking presumed to be present in ASPA cements 

would appear to be a reasonable hypothesis. Also, higher co-ordination 

numbers may be possible in highly concentrated polyacid solutions 

by virtue of the higher localised- carboxyl group concentrations 

possible. 

Thus information on ion-binding in dilute solution may be of 

limited applicability in predicting behaviour in highly concentrated 

solution. There is no literature discussing in depth the ion-binding 

in highly concentrated polyacid solutions. 
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1.7. The objectives of the research. 

Three main aspects have been investigated in this thesis. 

1. Experiments have been performed to establish some fundamental 

concepts for the reaction of polyacid solutions with ion-leachable 

aluminosilicate glass (G200 glass). Special emphasis has been directed 

towards establishing relationships between the polyacid structure and 

its reactivity with G200 glass, together with the water stability of 

the products obtained. 

2. To avoid co-operative effects with the different ions leached 

from G200 glass, polyacid-metal oxide mixes have been studied and the 

results compared to G200 glass-polyacid products. Relationships have 

also been sought between the polyacid structure and its reactivity 

with metal oxides, together with the water stabilities of the products 

formed. 

3. Ion-binding studies in dilute solution have been carried 

out to determine the usefulness of stability constant values in 

predicting the water stabilities of polyacid-metal oxide cement products. 

The literature on ionomer cement products is very limited. This 

work is aimed at laying a broad foundation for future research and 

development of -ionomer cements by covering preliminary ground work 

hitherto unreported in the literature. The work was considered 

necessary as ionomer cements, especially ASPA cement, have considerable 

promise in many applications. 
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2. EXPERIMENTAL DETAILS 

2.1. The preparation of polyacids and their solutions. 

2.1.1. The preparation of poly(acrylic acid) in water. 
6 

Materials: 

Solution A. 2500 ml acrylic acid, distilled in vacuo from 

stabilised reagent grade monomer. Purity (by titration 

against sodium hydroxide with phenolphthalein indicator) 

ä 98%. 

2500 ml distilled water. 

500 ml iso-propanol (A. R. grade). 

Solution B. 62.5g ammonium persulphate (A. R. grade). 

1500 ml distilled water. 

Solution C. 62.5g ammonium persulphate (A. R. grade). 

5000 ml distilled water. 

The reagents were obtained from Hopkins and Williams Ltd. 

Method: 

Solution C was placed in a 201 reaction vessel fitted with a 

reflux condenser, a mechanical stirrer, a thermometer and a gas inlet 

tube. After flushing overnight with 02 free N2 the solution was 

heated to 353. 

With constant stirring and flushing with 02 free N2 a mixture 

of 275 ml of solution A and 75 ml of solution B was slowly added 

over 5 minutes at 5 minute intervals. During the addition of the 

monomer the reaction temperature of 353-358 was maintained by the 

heat of the reaction. 

When all of the monomer had been added the solution was 

maintained at 353-358 for a further 2 hours and was then cooled. 

The resulting solution was concentrated by distillation under 
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, reduced pressure for 18 hours, keeping the solution well stirred 

and the temperature of the distilling vapours below 323.6.35 kg 

of distillate were collected. 

Product: 

The product was a water white, very viscous, colourless 

liquid. Analysis of the solution by titration against sodium 

hydroxide, using phenolphthalein indicator, yielded the following 

results: 

Conversion of monomer to polymer " 100%. 

PAA content of the solution = 47.3% w/w. 

The relative viscosity of the PAA (see section 2.103. ) was 

found to be 1.37. -. 

2.1.2. The preparation of poly(acrylic acid) in benzene. 

Two batches of PAA were prepared by similar methods, but in 

one iso-propanol was added as a chain transfer agent. 

Materials: 

Table 2.1.2.1. shows the reagents employed i. n the two preparations. 

The acrylic acid and iso-propanol were supplied by Hopkins and 

Williams Ltd. and the benzoyl peroxide by May and Baker Ltd. 

Method: 

Solution A was heated at 353, with stirring, until a polymer 

haze developed. Solution B was then slowly added, keeping the 

reaction temperature at about 353 and the reactants thoroughly stirred. 

The heating and stirring was continued for a period after all the 

solution B had been added. 

Table 2.1.2.2. shows the conditions employed for the two 

preparations. 

The resulting white PAA slurry was filtered off, washed with 

benzene and dichloromethane, and dried at 323-343 for 3-5 hours at 
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Table 2.1.2.1. 

Materials for the preparation of PAA in benzene. 

Reagent Batch 5, table 3.1.1.1. Batch . 
6, table 3.1.1.1 

Solution Solution Solution Solution 
A B A B 

Acrylic acid, distilled 
in vacuofrom stabilised 
reagent grade monomer (g) 15.0 75.0 10.0 50.0 
(Purity - as in section 
2.1.1. ). 

Benzene (solvent grade) 
(ml) 250 210 200 150 

Iso-propanol (A. R. grade) 
(ml) 0 0 2 10 

Benzoyl peroxide (reagent 

grade) (g) 0.15 0.625 0.10 0.417 

Table 2.1.2.2. 

Heating times employed in the preparation of PAA in benzene 

Conditions Batch 5, table 3.1.1.1. Batch 6, table 3.1.1.1. 

Addition time for 3 3.5 
solution B (hr) 

Heating time after 17 3 
the complete 
addition of solution 
B (hr) 
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Table 2.1.2.3. 

Analysis results for the PAA 

batches prepared in benzene. 

Property Batch 5, table 
3.1.1.1. 

Batch 6, table 
3.1.1.1. 

Analysis method. 

% conversion 
of monomer ". 97 11-97 Titration against sodium 
to polymer. hydroxide with 

phenolphthalein 
indicator. 

% PAA content 91.9 93.4 
of product. 

% water 
content in 

product, 8,1 6.6 
assuming no 
other 
impurities. 

Relative 2.27 1.72 
viscosity. See section 2.1.3. 

Molecular - 9.1 x 105 

. weight, 
R 

v 
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8.5- 9x 104 Nm. 2 

Products: 

Both preparations gave white, free flowing, very fine powders, 

which were very soluble in water. 

Analysis of the products gave the results shown in table 2.1.2.3. 

2.1.3. The determination of the relative viscosities and molecular 

weights of the prepared poly(acrylic acid). samples. 

The relative viscosities 11 rel., of the PAA samples were 

determined with a constant level viscometer at 298.2, using solutions 

containing 1% w/v of PAA in 2. OM sodium hydroxide. 

Viscosity average molecular weights, TTv, were determined by 

the method of Sakamoto. 77 

2.1.4. The preparation of 2-hydroxyethyl methacrylate (HEMA)-acrylic 

acid copolymers in water. 

Two copolymers, one containing 5 mole % and the other 10 mole % 

of HEMA, with acrylic acid were prepared. 

MateriaZa: 

The materials used in the preparation of the copolymers are 

shown in table 2.1.4.1. 

The reagents, except the HEMA, were supplied by Hopkins and 

Williams Ltd. The HEMA was supplied by Rohm and Haas Co. Ltd. Slight 

adjustments were made with the copolymer formulations to allow for 

the HEMA purity. 

Method: 

The copolymers were prepared by an analogous method to that 

used for the preparation of aqueous PAA (see section 2.1.1. ). The 

solutions were concentrated by distillation under reduced pressure 

to about 44% w/w before use. 
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Table 2.1.4.1. 

Reagents used in the preparation of HEMA-acrylic acid copolymers 

Reagent Batch 15, table 3.1.1.1. Batch 14, table 3.1.1.1. 

5 mole % HEMA 10 mole % HEMA 

Solution A 

Acrylic acid, distilled 
from reagent grade 
monomer. (Purity-as in 33.3 31.5 
section 2.1.1. ) (g) 

HEMA (95% pure) (g) 3.0 6.0 

Distilled water (ml) 33.3 33.3 

Iso-propanol (ml) 6.7 6.7 

Solution B 

Ammonium persulphate 
(A. R. grade) (g) 0.83 0.83 

Distilled water (ml) 20.0 20.0 

Solution C 

Ammonium persulphate 
(A. R. grade) (g) 0.83 0.83 

Distilled water (ml) 66.7 66.7 
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Products: 

The prepared solutions were water white, clear, viscous liquids; 

the copolymer containing 10% HEMA giving the more viscous solution. 

The solution of copolymer containing 10% HEMA gelled in 14 days 

and that containing 5% HEMA gelled within 2 months. 

The viscosities of HEMA- acrylic acid copolymer solutions were 

found to be very sensitive to the reaction conditions employed. 

2.1.5. The preparation of aqueous poly(ethylenesulphonic acid) 

from sodium ethylenesulphonate. 

2.1.5.1. The determination of the purity and the infra-red spectrum 

of the sodium ethylenesulphonate monomer. 

Analysis of the monomer for purity. 

Sodium ethyl enesul phonate was obtained from Polysciences Inc. 

(U. S. A. ) as an aqueous solution, which upon analysis was found to 

contain 34.33% w/w solids. 

A dried, weighed sample of the sodium ethylenesulphonate was 

converted to ethylenesulphonic acid by dissolving it in water and 

passing the solution through an ion-exchange column containing 

Zeokarb 225 resin (H+ form). After washing the column through with 

water the combined effluents were titrated against sodium hydroxide, 

using bromothymol blue indicator. From duplicate samples a molecular 

weight of 131.8 was obtained for the sodium ethylenesulphonate 

(theoretical value = 130.1). 

The infra-red spectrum of the monomer. 

Table 2.1.5.1. shows the infra-red absorption bands obtained 

for a sample of the sodium ethylenesulphonate dried at 420. 

The spectrum shows bands consistent with the structure of 

sodium ethylenesulphonate and was found to agree with the infra-red 

spectrum of a sample of sodium ethylenesulphonate prepared by 
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Table 2.1.5.1. 

The infra-red absorption bands for sodium ethylene- 

sulphonate in a KBr disc. 

CH2 CH-SO3Na 

Band (cm 1) Shape Plausible assignment Ref. 

3550 Strong, Probably -0-H stretch. 78,79 
wide 

1670 Medium,. -C=C- (Probably overlapped 78,79 
wide by an absorption band due to 

water). 

1408 Weak (-O-H bending). 78 

1210 Strong, -S03. (-S-0 stretch) 80,81 
wide 

1060- Strong, -S03 (-S-0 symm. stretch). 80,81 
sharp 

978 Weak -C-H o. p. deformation 78 

770 Medium, -C-S stretch 80 

sharp 
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jestablished methods. 
83'84 The -0-H absorption bands in the spectrum 

were probably due to the presence of water in the sample, since 

sodium ethylenesulphonate is exceedingly hygroscopic. 

2.1.5.2. The polymerisation of the sodium ethyl enesul phonate. 

Breslow and Kutner84 found that the yield of sodium 

poly(ethylenesulphonate) obtained by the polymerisation of aqueous 

sodium ethylenesulphonate increased with increase in the 

concentration of the monomer solution and reached a maximum at a 

monomer concentration of about 62% w/w. Consequently, to ensure 

a satisfactory yield of polymer the 34.33% w/w sodium ethylenesulphonate 

solution employed here was concentrated before use by careful 

distillation in vacuo. 

The polymerisation of the sodium ethylenesulphonate84 was 

carried out with a redox initiator and also by photochemical 

initiation. Table 2.1.5.2.1. summarises the details of each method. 

The products were purified by precipitation from aqueous 

methanol84 and then dried at 348-358 under 7.5 - 7.8 14I C2 reduced 

pressure to obtain the polymers shown in table 2.1.5.2.2. 

2.1.5.3. The infra-red spectrum of sodium poly(ethylenesulphonate). 

The absorption bands from the infra-red spectrum of the sodium 

poly(ethylenesulphonate) prepared by persulphate-bisulphite initiated 

polymerisation are shown in table 2.1.5.3.1. 

The infra-red spectrum was considered to be consistent with 

the structure of sodium poly(ethylenesulphonate). The -0-H 

absorption bands were probably due to residual water as the polymer 

is exceedingly hygroscopic. 

2.1.5.4. The determination of the specific viscosities and molecular 

weights of the prepared sodium poly(ethylenesulphonate) samples. 

The specific viscosities �L sp.,, of the sodium poly(ethylenesulphonate) 
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Table 2.1.5.2.1. 

The polymerisation of sodium ethylenesulphonate 

in aqueous solution. 

Reactants and Chemical initiation Photochemical 
conditions. initiation 

Initiator 0.30g sodium u. v. lamp 

me tabisulphite 
0.64g ammonium 
persulphate 

Charge weight (g) 150 280 

Monomer concentration ti50 61 
(% w/w) 

Reaction temperature 273.2-273.7 Room temperature. 

Reaction time (hr) 48 24 

Inert gas blanket 02 free N2 02 free N2 

Stirring method Mechanical N2 agitation 

Comments Initiator solution N2 agitation became 
added over 5.33hr. impossible after a 
At the reaction few hours, owing to 
temperature some the increase in 
undissolved monomer solution viscosity. 
was present. No undissolved 

monomer was present 
at the reaction 
temperature. 
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Table 2.1.5.2.2. 

The properties of the prepared batches of 

sodium poly(ethylenesulphonate). 

Method of Chemical initiation Photochemical 
preparation initiation 

Nature of product. Brittle, pale yellow Brittle, pale yellow 
hygroscopic solid. hygroscopic solid, 

containing '2.5Z 
residual water. 

Yield (') 25 80.7 

Estimated residual 
monomer (by u. v. "1.5 Fv3 
analysis). (7) 

Specific viscosity 0.46 0.89 
(see section 
2.1.5.4. ). 

Molecular weight, M 1.3 x 104 2.6 x 104 
l (see section 

2.1.5.4. ). 
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Table 2.1.5.3.1. 

The infra-red absorption bands for sodium 

poly(ethylenesulphonate) in a KBr disc. 

CH2-CH 

SO3Na 

Band (cm 1) 
Shape Plausible 

assignment 
Ref. 

3550 Strong, -O-H stretch 78,79 
wide. 

2990 Weak, -C-H stretch (alkane) 78,80 
sharp. 

1660 Med. - strong, Probably due to water. 79 
wide. 

1460 Medium -C-H deformation (alkane) 78,80 

til200 Very strong, -SO 7 (-S-O stretch) and 78,80, 
very wide* possibly -O-H bending. 81 

1050 Very strong, -503 (-S-O stretch) 80,81 
wide. 

720 Strong, wide -C-H rocking (alkane) 78,80 

Possibly more than one band overlapping. 
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, samples were determined with a constant level viscometer at 298.2, 

using solutions containing 1% w/v of the polymer in distilled water. 

Number average molecular weights, Mn, were estimated from 

the data of Breslow and Kutner. 84 

2.1.5.5. The conversion of the sodium poly(ethylenesulphonate) to 

poly(ethylenesulphonic acid). 
85 

Aqueous solutions containing 28% w/w of sodium poly(ethylene- 

sulphonate) were cooled in an ice bath and saturated with hydrogen 

chloride gas. Sodium chloride precipitated and was filtered off 

at the pump. After washing the precipitate with cold concentrated 

hydrochloric acid the combined filtrate and washings were carefully 

heated to drive off hydrogen chloride and water. The resulting 

concentrated solution was diluted with water and distilled under 

slightly reduced pressure to concentrate again. After several 

similar treatments with water a viscous, dark brown, odourless, 

chloride free solution was obtained. The test for the presence 

of chloride was by treatment with aqueous AgNO3 and HNO3, which 

galre no precipitate with the poly(ethylenesulphonic acid) (PESA) 

solution. A control test using sodium poly(ethylenesulphonate), 

alone and with added KC1, showed that the macroanion did not mask 

the test. 

2.1.5.6. The analysis of the prepared poly(ethylenesulphonic acid) 

solutions. 

The solids content of the prepared PESA solutions were 

estimated by drying at 413-418, allowing for slight decomposition 

of the polymer. 

The % PESA content of the solutions were determined by 

titration against sodium hydroxide, using bromothymol blue indicator. 

From the results of these two methods of analysis a value 



57 

for the proportion of residual sodium ethylenesulphonate chain 

units in the polymer was estimated, allowing for the purity of 

the original monomer. 

Table 2.1.5.6.1. shows the analysis results obtained. 

The molecular weights of the prepared PESA samples were 

assumed to be identical to the samples of sodium poly(ethylenesulphonate) 

from which they were prepared (see table 2.1.5.2.2. ). 

2.1.5.7. The infra-red spectrum of poly(ethylenesulphonic acid). 

A sample of the PESA solution, obtained from the sodium 

poly (ethyl enes ul phonate) made by pers ulphate-bjsul phi te initiated 

polymerisation, was dried at 405 for 1.75 hours. The infra-red 

spectrum of this sample is described in table 2.1.5.7.1. 

The absorption band at 3500 cm 
l 

was probably due to -S-OH 

groups, although since PESA is highly hygroscopic an absorption 

band in this region due to water may also have been present. 

2.1.6. The preparation of aqueous solutions of polyacids from their 

anhydrides. 

2.1.6.1. The preparation of aqueous ethylene-maleic acid copolymer 

solution. 

Materials: 

33.4 g EMA-21 ethylene-maleic anhydride copolymer(ex. Monsanto Ltd. ). 

100g distilled water. 

Method: 

The EMA-21 copolymer powder was mixed with hot water to obtain 

a viscous, white paste. After heating the paste atupto about 365 

with vigorous stirring, the viscosity decreased and a water white, 

clear solution containing 28% w/w of the polyacid was obtained. The 

solution was cooled before use. 
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Table 2.1.5.6.1. 

The analysis of the prepared PESA solutions. 

Method of initiation of 
the polymerisation 
reaction. 

Chemical initiation Photochemical 
initiation 

Approximate solids content 40.7 45.5 
(% w/w) 

PESA content (% w/w) 36.9 43.3 

Approximate content of 6.8 2.8 

residual sodium 
ethylenesulphonate chain 
units (mole %) 

Table 2.1.5.7.1. 

The. infra-red absorption bands for PESA in a KBr disc. 

CH2-f H 

SO3H 

ti 

Band (cm 1) Shape Plausible assignment Ref. 

3500 Strong, wide -0-H stretch (-S-OH or water) 78,79,86. 

2690 Weak-med., -C-H stretch (alkane) 78,80 
sharp 
shoulder 

'L1650-1800 Medium, Possibly due to water 79 
diffuse 

1460 Weak, sharp -C-H deformation (alkane) 78,80 

'v1200 Very strong, -S03 (-S-O stretch) 80,81 

very wide 

1030 Very strong, -503, '(-S-O symm, stretch) 80,81 
wide 

ti820-840 Weak, doublet Inconclusive - 

730 Weak, wide -C-H rocking (alkane) 78,80 
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The composition of the EMA-211 copolymer: 

A sample of the EMA-21 copolymer was dried for 4 days over 

P205, weighed and then dissolved in distilled water. Potentiometric 

titration of the solution gave an equivalent weight of 67 for the 

copolymer, indicating an ethylene: maleic anhydride ratio of 

approximately 1.25: 1. 

2.1.6.2. The preparation of -styrene-maleic acid copolymer solution 

in aqueous acetone. 

Materials: 

10. Og SMA 1000A styrene-maleic anhydride copolymer (ex. Arco 

Chemical Co., U. S. A.; supplied by Cornelius Chemicals 

Co. Ltd. 

100 ml distilled water. 

100 ml, Acetone (solvent grade). 

Method: 

The materials were refluxed with stirring until a solution 

resulted together with a white syrup. After cooling, the upper 

layer was decanted to leave a viscous, white copolymer syrup. 

The conposition of the copolymer syrup: 

Drying samples of the copolymer syrup to constant weight 

at 420 showed the solution to contain 50.2% w/w of, copolymer (as 

the polyacid). 

2.1.6.3. The preparation of other polyacid solutions in water. 

Where commercial polyacids were not supplied in solution 

powdered samples were dissolved, with stirring, in hot water. The 

solutions were cooled before use. 

2.1.7. The preparation of solutions of polyacids in non-aqueous 

solvents. 

2.1.7.1. The preparation of styrene-maleic acid copolymer solution 
in dimethylformamide. 



60 

Materials: 

10.0g SMA 1000A copolymer (ex. Arco Chemical Co., U. S. A.; 

supplied by Cornelius Chemicals Co. Ltd. ). 

1. Og distilled water. 

10.00ml dimethylformamide 

Method: 

The materials were mixed together and there was a slight 

evolution of heat. With continuous stirring the mixture was heated 

to about 373 until a viscous, clear, brown solution resulted. 

The theoretical quantity of water required to convert the 

anhydride to the acid was calculated to be 0.89g. Assuming complete 

hydrolysis to the polyacid the solution was estimated to contain 

53% w/w of copolymer. The solution stood overnight before use. 

2.1.7.2. The preparation of ethylene-maleic acid copolymer solution 

in dimethylformamide. 

Materials: 

7.44g EMA-21 copolymer (ex. Monsanto Ltd. ) 

l. lg distilled water 

16 ml dimethylformamide. 

Method: 

The preparation of this solution was identical to that of 

SMA copolymer in dimethylformamide (section 2.1.7.1. ). The solution 

was a viscous, clear, yellow-brown liquid. 

The theoretical quantity of water required to hydrolyse the 

anhydride copolymer was calculated to be 1,0g. Assuming complete 

conversion to the polyacid the solution was estimated to contain 

35.6% w/w of copolymer. The solution stood for 5 days before use. 

2.1.7.3. The preparation of poly(acrylic acid) solution in 

dimethyl formami de. 
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Materials: 

10.0g PAA powder (batch 5, table 3.1.1.1. ). 

28.5 ml dimethylformamide. 

Method: 

The materials were stirred and heated until a viscous, clear, 

yellow-brown solution resulted, containing approximately 27% w/w 

PAA. The solution stood for 5 days before use. 

2.1.7.4. The preparation of ethylene-maleic acid copolymer solution 

in 1,4-dioxan. 

Materials: 

10. Og EMA-21 copolymer (ex. Monsanto Ltd. ). 

1.5g distilled water 

33 ml 1,4-dioxan. 

Method : 

The materials were mixed in a3 necked flask, fitted with a 

stirrer and a reflux condenser. After heating and stirring for ihr 

in a boiling water bath a viscous, clear and almost colourless 

solution resulted. 

EMA-21 copolymer is insoluble in 1,4-dioxan;, but the 

hydrolysed copolymer is soluble. Consequently the formation of a 

clear solution indicated that hydrolysis of the copolymer had 

taken place. The quantity of water required to hydrolyse the 

EMA-21 copolymer was calculated to be 1.35g. Assuming complete 

conversion to the polyacid the solution was estimated to contain 

25% w/w of the copolymer. 

The solution stood overnight before use. 
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2.2. The preparation of polyacid-metal oxide, or G200 glass mixes. 

Samples of metal oxides; -or G200 glass powders were spatulated 

on a glass block with aliquots of the various polyacid solutions. 

The metal oxides were either A. R. or reagent grade materials and 

the G200 glass was obtained from The Amalgamated Dental Co. Ltd. 

The mixes were placed on poly(ethylene) film and allowed to 

age at room temperature and relative humidity. 

Where specific P: L ratios have not been quoted in section 3 

the mixes have been formulated to give putty like pastes with as 

much added oxide, or G200 glass powder as possible. 

For studies on the organic solvent and aqueous acid and 

alkali resistance of PAA-G200 glass cement, mixes were prepared at 

a P: L = 3: 1 and hardened for 18 hours at 310 before immersion. 

Compressive strength tests on polyacid-G200 glass cements 

were performed by a method similar to that in BS 3365: part 1, 

1969. Samples were hardened at 310 for 21 hours at room relative 

humidity before testing. 
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2.3. The. infra-red spectroscopic analysis of polymer and cement samples. 

Infra-red spectra were recorded on samples pressed into discs 

with KBr (B. D. H. Ltd., spectroscopic grade), using a Hilger and Watts 

Model H 1200 Infra-Red Spectrophotometer. 

Cement samples were powdered with sand paper before mixing and 

grinding with KBr. 
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2.4. The determination of stability constants of metal ion-polyacid 

complexes by potentiometric titration. 

2.4.1. The preparation of stock solutions: 

All solutions were prepared using boiled out deionised water, 

unless otherwise stated. Solutions, except for buffers, were always 

stored under N2 in poly(ethylene) bottles tightly stoppered with 

rubber bungs. 

The sodium nitrate used was supplied by Hopkins and Williams 

Ltd. (A. R. grade) and was oven dried before use. Calcium and 

cadmium nitrates were obtained as hydrated A. R. grades from B. D. H. 

Ltd. The polyacids employed in this work are described in table 

3.1.1.1. ; for the PAA see batch 1, for the EMA copolymer see batch 

8 and for the PESA see batch 17. 

PAA and EMA samples were dissolved in water and the solutions 

were dialysed for 10-12 days, using Visking dialysis tubing (pore 

size 2.4 nm) immersed in deionised water. The water was changed 

periodically. The dialysed polyacid solutions were diluted to lZ 

with sodium nitrate solution to obtain stock solutions containing 

approximately 0.02M polyacid (i. e. moles of carboxyl groups per 

litre) in 2.0 M sodium nitrate. 

PESA stock solution was prepared by diluting an undialysed 

sample in 17. water. A 3.53M stock solution of sodium nitrate was 

prepared for use with the PESA solution. 

Calcium and cadmium nitrate stock solutions were made by 

dissolving samples of the hydrated salts in water. 0.20M sodium 

hydroxide titrant solutions were prepared from standard ampoules 

supplied by B. D. H. Ltd. 

Buffer solutions were prepared from dried A. R. grade reagents. 
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Two buffer solutions were used: 

0.05M potassium hydrogen phthalate in deionised water. 
pH at 293.2 = 4.00.87 

0.01M borax in boiled out deionis water. 
pH at 293.2 = 9.221 

The potassium hydrogen phthalate was obtained from Hopkins 

and Williams Ltd. and the borax was supplied by B. D. H. Ltd. 

The buffer solutions were stored in stoppered dark glass bottles 

and were replaced every 4-6 weeks. 

2.4.2. The determination of the concentrations of the polyacid and 

metal nitrate stock solutions. 

The stock polyacid solutions were titrated potentiometrically 

and their concentrations were found to be (in moles acid groups per 

litre): 

PAA 1.85 x 10-2M 

EMA 1.79 x 10-2M 

PESA 2.07 x 10-2M 

The stock metal nitrate solutions were analysed by atomic 

absorption spectroscopy and their concentrations were found to be: 

Ca 2+ 6.01 x 10-3M ) used with PAA and 

Cd 2+ 6.07 x lÖ 3M ) EMA solutions. 

Cd 2+ 8.0 x lÖ 3M ) used with PESA solution. 

Sodium hydroxide titrant solutions were checked against standard 

hydrochloric acid, using bromothymol blue indicator. 

2.4.3. The preparation of polyacid solutions for titration in the 

presence and absence of Ca2+ and Cd2+ ions. 

PAA and EMA solutions were prepared by mixing 50 ml of their 

stock polyacid solutions with either 50 ml of water, or a volume of 

stock metal nitrate solution and a volume of water to bring the total 
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volume of the solution to 100 ml. 

PESA solutions were prepared by mixing 50 ml of the stock 

polyacid solution with 25 ml of stock sodium nitrate solution and 

adding either 25 ml of water, or 25 ml of stock cadmium nitrate 

solution. All solutions were mixed in covered poly(propylene) 

vessels, which had been previously flushed through with N2. 

2.4.4. The titration of the prepared polyacid solutions. 

All titrations were carried out in covered poly(propylene) 

vessels under a constantly flowing N2 blanket. Before titrations 

were started the polyacid solutions were equilibrated in an oil 

bath at 298.2± 0.2. 

pH measurements were made using a Pye-Unicam Model 290 

Mark 2 pH meter with Pye-Ingold Model 401 (E07) or Model 405.88 

(E07) combination electrodes. The pH meter was calibrated with 

the stock buffer solutions, making appropriate temperature corrections. 

To determine the equilibrium conditions during the titrations 

the pH meter output was also connected to a Smith's Servoscribe 

RE 511.20 millivolt chart recorder. Stable pH readings were shown 

by stable vertical traces from the chart recorder. About 10-30 

minutes was usually sufficient to attain a stable pH reading. 

The pH electrode was checked twice daily against the stock 

buffers. For the PAA and EMA titrations the maximum drifts 

experienced were about 0.01 pH unit, whilst for PESA titrations it 

was about 0.02 pH unit. 

Titrant solutions were added to the polyacid solutions from 

a microburette, or from a micrometer pipette (a 200-1000ul Finnpipette, 

ex. Jencons Ltd. ). The micrometer pipette delivery was checked 

twice before each addition of titrant and once after each addition. 

After each addition of titrant solution the polyacid solutions 

were stirred for a few minutes. pH readings were taken in stationary 
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solutions. 

During the titration of the PAA and EM with added cadmium 

nitrate a precipitate was formed. No precipitate formed in the 

other titrations. 
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3. RESULTS AND DISCUSSION 

3.1. The reactivity of ion leachable aluminosilicate glass with various 

aqueous polymer solutions. 

3.1.1. Introduction. 

There is very little literature on polyacid-aluminosilicate 

glass cements containing polyacids other than PAA. Copolymers of 

acrylic acid with acrylonitrile, or acrylamide, have been briefly 

reported as being suitable for ASPA type cements8 and an acrylic 

acid-itaconic acid copolymer is at present being evaluated at The 

Laboratory of The Government Chemist. 

To expand the literature on the types of polymer suitable 

for preparing ionomer cements with G200 glass ten previously 

unreported polymers have been studied, with special emphasis on 

commercially available types (table 3.1.1.1. ). 

Further preliminary studies on PAA-G200 glass cement have 

also been carried out. A 'one-pack' powdered PAA and G200 glass 

system has been developed and the solvent resistance of PAA-G200 

glass cement has been examined. 

3.1.2. General summary of the products formed between G200 glass 

and the polymer solutions studied. 

Table 3.1.2.1. summarises the products obtained by mixing 

G200 glass powder with the polymer solutions described in table 

3.1.1.1. The water stabilities of the products have been determined 

in water at room temperature. 

3.1.3. The properties of poly(acrylic acid) - G200 glass cements. 

3.1.3.1. The properties of the polyacid component. 

Aqueous solutions of PAA tend to gel on ageing if their 

concentrations are high, for example at 47.3% w/w (batch 1 table 3.1.1.1. ) 



69 

0 
N 

O 
"p 1 
4J 

O 
0 

0 

b 
r-I U 

MO 

a) 
-w 

Co 

O 

'ty0 

cad 

r4 
to 

. 
-l 

-0 r-4 10 

41 ,ar. ý 93 
ig a) 

äi 
aoi "d ' ", 

4 
'p4 r-i 

ý 

:J Co to 4-b 
y 
H 

v" H r-1 
., 
. -+ 

"O G' 'Ly r.. 

. 4> 

o 
"rI N 
4. ä 
0 r! 

v] 

`n ° 
. i-1 "" 

g g 
", I" o) 

4a 3 ý' 
W r-4 O c ", ý a ia i 41 41 "a i Co P AJ 

v a 10 o'ti 33 aib 
36ý 

a i ( L) P-4 ý r. %, N4 o a) 
p4 w to 

Co o 
p a, ., 1 x. p4 a ", + ao 

Iö 
ri rw a "a %0 

H 
'd 

H " 
ß ýi ý 00 

c ä Co H a a) r-4 u 
r-i 00 0 

p4 vm 00 00 
rn a O 

0 ti0i- IAN 
0O %0 

UOt 
Nt 

ý üä Ißä ä Ißä ý . 

cn 11 00 00 00 
Z ýD -1 00 00 c 3 0N 

M 3 3 3 
1 1 " 1\ x 

CD (D LM N Lri 
nU ( ýt N i-I 

a, ' z N M in ýp 
Pal 

10 1-4 "0 r-1 "0 4 
"r-1 O rI 0 "rl O 

O O ß 
-1 "e4 r " ,l e r -1 ., 4 

N "e 1 e-I (A r-1 (! ) r-1 !A "r-1 a 0 0 
c d 10 q UN ÜN a ) U "rJ " ( Hý A v 

c !] 41 -r4 'd - TJ Lý 0 w 
cd 0a 1 a) al 0) cd (1) 10 r -1 a N 

'^! Gl "-I v-4 'd , -% v-, v . -. . -I 'C7 In lC .ý G 
` i-1 Co r-1 41 Lf e-+ 4J Qrn r-1 4.1 r-1 1.1 0) 

%ll wC0 <4w <aw maw p640 

M - ýp 
o 0 0 N 

p: H 
N 
M " 

%" 1- 
N N 

w t t t N i-1 - p+ P4 00 00 cc 0 
r7 O 11 Co 00 00 II II ä O + i i 
fd r 4 4 4.1 ,. 

I 
r-i 0) 3 3 3 d oe 

17 
", -1 
u 
cd 

O 



70 

a) 

0 
0 
u 

14 
14 
14 
M 

a) 
A. 
E, 

b b 
a) b b b U) 
ý I I 9 
. 

1 a"+ G) 0 b b ° 
"U -dk s a b b 

E+ ax a ax a H 
tr p' 

ä Cl) " 
Co o GJ 

Co 
RJ 

Cl) " 
Cd "N "H 21 

w" aJ m 
'U "U O b 

a) vý 
1010 b 

y 
p_ 
V a) O N ". 1 N U ". 1 N mO 

cd . r4 "r1 Sa N ". a ". 1 Sa Cl "rl cd "r1 j»1 H "Ci i-1 r-I " 1--I U 1-1 r-1 o yl 
v a >% o a "U a >% o a vo a) H P. .U 4+-1 a" H 9 2., a a) H 
uý O ON OU 

9 
Od OO co O 

U) cd o v] cd m cd ,o WW Cl) 

C34 (L) W 
w w yJ 

H to ý- ""4 'U 

" 
Co b H 

"0 
c 

00 "ý U "ý w "r4 

" 
M H 

o o" wa o 0 
pp4 " 

U 
H "rl q rl U O 

Z 
Ü 

O ". i Cn p O O 
ý W (0 N "> r ý o H 

CO w O O O - 1 C 
\. 0 0 17 " 

rý . -I «1 t Cl t ý ýý t U u1 

ä c -> ä Co "> ä >Nä ää 
cn . 

97 

1 ýa v 
Co cm 

-le Zlý 1-4 3 3 x 3 3 
H o No " ý c 

Q' ÖÖ O 00 cl O", H If) 
V] U P4 C tl N ýt it N N 

CO m O H N 

w H 

1 DC o U .ý 

ý U 

id 
'J '4 
"ý-A 0 

ri+ 0- 
"rl (y 1-1 

a) " r-1 
U TJ tC 

ri 0 
0U 

N Cl) 

OU "u Hk LM U 11 UZ 4 

ý3 r-4 "A 
N a 

".. 4 oOs 
urn , a" 

01 Eo H 0, 
o1 "a u a, O ß+ Cd O" 41 O Ud m 3 

cd U0 On N "r1 OO > 
am v 

N 
ßi 
v 

N cd "rl 
H 

NUC, G ) U) 

" cl) NR HHU U) H 'U 3 I 'U C n H"dC') e 
G'b cd 0 CU }+ "c 

Oa 
H 41 H - 0 4i 

i d w r. 0 v uýx.. ýacn ý+a 
v 

ý, ä Co v 

rn 
00 N H H rn 

~ 
E-4 

ý: 
aO 0 O >4 O 0 

. 92 t 3ü 41 "4J t "ý "a,. 4 
) 

p4 00 Co cu -4 P-4 0 . cu 

ö ri ý ý i 
as vc " aý u , a aý aý "f' ý '-1 N . -1 "3 r-1 "3 ý-1 ý--1 ý--I 

" ao o o "o"" o 

ý ' o " ý 0 
co i a i a H T1 o 

) " 
U "U 0 U 

0 2 
0 CU 3 RO k 9 

. 4j 0 P a 
cý ä 

0) 
ü . w 

k 
C) 

äi o 
cn vm , q 0) 0 0 CU O" 0 `-' 93 " 1 - > r � v 

, "U r- p , % . 
cý 0 D 0 

H H ," 
'v 14 

ä D, b 
O U 0 a O 

PL4 Co > Ei u u2 cu ic v dü c nr n 



+4 
0 
C-) 

r+ 
c*i 
w 

cad H 

0 
44 4) Cd 

"d U v., 4 
aý 

" 
vý 

9 
P4 - , 1 z " - i , - c I ý 
9 

V. u cd -r4 -A w 41 W Cd " Ü' 
°d r-4 v W 
a1 r-4 r-l co 

m0 cä mE 

Cd 
"r-I 'ý Ct) ^ . C. 0) N 
V co to 41 r-4 b 0 U 

"ý " 4) w 

w , -4 r+ "d p r+ bq P Cl) " "rq "r4 4 
0) 0 r4 N :3 :5 0 010 'i7 

0 at V 0 0' V U U "r1 "r-4 -4 
rl T-4 "A r--I "r4 to to 0 0 to 

0 0r-4 .a "r4 W v0 U ", d U" -i 
" 

': -A 
r-4 

"rl UN 
V-4 y" 

C ý 0 41 ý > U 
I- O CU, UU : 

Cd Ö + + 22 
° 22 ( co r4 a) rA r4 o c' o0v ag p 

., 4 0) O> ., 4 0) u>0 
1. + "ý 14 . -a U 

o 
cn w P. c7 as , -4 as a as 

A 

z 3 L o cy-I ON ,4 " 
z 

00 
D: 

H 3 3 3 3 30 
,4Z 

E-4 

C ö 0 i -10 W Ö 
i Cý It -It 0 '-4 a) M Nt .t " " .t Lý 0 

co 22 c`'1 .t 22 W 

C) M -I1' ul %D N co 
, -4 , -I , -I ,4 7-4 

c 

C cl) 1v 
C' ö'bO0 

oo 9 41g 
w ", 4 r+ «f cd q 4J o a 

1 
4w 4 1 

$4 i 
r 
0 CO 

14 

r 

0 
r4 4 

., 4 
14 

10 

0) 
.0 r-I 

V) 0 
ý 

0 oi o"ý 0. 
a) 

ha 
10 .. $4 A -' 

a 
" co " 

äý ýN m c'am' j 4, " ý{ 
.. ý 

"d N 0) '--I 
N -4 

'C! 
0 : N 

i-1 
41 
0 0) 

, -a 41 s4 0 10 4) s+ 0" UH 
-4 a+ a W0 14 P4 w 0) C/] %/ 

A v: r4 ,4 r-4 , -4 a) Lf 
A ý° r" °4 °' 

w I Cd co o "m i 
wr 

. 
ý4 R -1 N 

11 
-A U7 

Öu: 0 0" " 22 ". 22 - P4 N 
P4 a 0 0°ý ä a 

22 i v i co ci i w a+ 22 

c 
cý N 

P4 co ca iý 
4 Is a) 

4j 
0u 41 10 

r g 
U r1 + 

0) Cd Cd -A 
U 

C 
i 

dý 
ü 

1 ÖH 
pc 

u ° 0 ý 
WO w A 04 ýý ý, y ý J-- 04 ý 

r4 F-4 V-4 
11'4öä. ' [4ä ýý ° 
a) 0 ,. 0 U i 

P. 
iU C csi 

Eü P 0 j 
, 4v i F cd 

71 



72 

.2 
H 

U, U) rd 

0 0 cV 

"d 
G 
cd 

Co 4J 

U, 
b 
. rl U 
cd 
9I 

O 

b 

to b 
., 4 u 
cd 

9 
O 
14 
cd 

u) 
N 
aý 
u) 

b 
m 

0 
w 
0 

41 
u 
b 
0 
1+ 
al 

o to 4J 
4+ u 

ü w 
a) "0 44 

- L14 o a) - - - 
w 1'a qb 

W wa oar 
ö 

rN P-, 
o "P. + ca 

y ro " I 1,. 1 
Ü 0) 

H 

6 ý+ 

0 0 
. LW A 

(D (A 
,Q ý4 

3 2 

W LI) 'f -4N un 
41 

2 2 
2 2 2 2 

1 
ý 4 ý 

., 4 " " " 0 
U 4) 4J tJ 4,1 a) 41 

N 4) 4) a) N N 
Cl) V) U) Cl) V) V] 

pl, N 
ai 41 

4-4 ýo O 
0 m 

P4 44 0 0) 
0 0 

C/] 
-r-I 4J 4j U 

C JU 
C7 bb U) 
O o $4 w ýd 
o 04 10 x 

x u 
H "rl 
H 41 ', N 

"N N 54 4 W H 1-4 , 4) 41 lbd . 54 .4 
1) 41 Cd ý4 a cd Cd ,4 . -+ 

i, + 
ý w 

a) 3 +-A 4 
: CL) 41 

P N cl 4- & . 
4j 

a) i 1-4 4) 1. / 4) 1 r 4. , 

4 r , 

ný 
co 

ää 
-ý4 -bd 
aý 

-A 4j to 

ää 
4j CA 

ää 
4j U) 

mä ä H . . 

0 
a 41 r 

P 1 N ý--I M 
1 

N e -I 

1a 
ü a) 

-I N M 

oa z 

ß0 
+q " 

3 ýDZ -1 
1 

. - 

41 r ° 3 3 c i", a M 3 
4 r, 41 M 6ýE býE ü $ 

4Y En -i i v 
d 

N N 
ß-1 

Ö 

P4 

b ci 
-I ýý 
0 co ro 

0 
P. 



73 

b 
a) 

1.1 
0 0 

f -I 

M 

4) 
r-1 

In. 
H 

ý -0 4J 
41 

Ü 
N N U 

V0 U. cd 4) G) W .. 1-1 .. ,4 
0) "d w 44 .4 4J w u a) x .ý r4 W0 N H 14 4.4 N is cH ,ý 

1 
cd U o 

tw s4 V. b rd o p "d 00 aý 3 
H wa A aI cn Eo p a) ýn v g1 m 

ö 
P, Cl) Cl) 

10, 

41 r-4 ON . 4M -T 
HÄ p N (fl M N 

f I- 
Ea 

öö 
44 -A 

Cl) iý $4 ý4 
W En .0 

4 H 
P "d 

co 0 
tY1 H N 

b0 

1- 
N 

4 00 "4 

4-J r4 2 "2 x b 41 
ä ý 1 al ý p N 

. .. i " . .C 4_I 4) lid 
4-1 4-1 41 41 14 p N 

O a) N 0) r4 1.1 co 
Cl) Cl) U) Ha co P-, v 

C14 0) 
G Ä 14 G 

o 0 41 0 14 14 

44 
Cd 

0 
P 

0) 
.0 

CA 0 
Ü ý U 

0 

" 

V. ä ß 14 14 OH ýV co CU o OQ w 
N 
C9 

u vi 

H +1 

3 
E-4 IW 
U H H 

tad 9+N 
Y+ 41 4J 4J 4j 

w yý ýU 
Cd 0 

41 V) 
Cd ü as as 

o 
. r4 41 ý7 I 1 I 1 2 

.ýN 
41 00 Oý 0 
Cd v-4 r-4 

aýz 

° 
"A 

q 
q I 3 

Z H0 3 0ü 
"r4 - " -% 

r+ A 0 14 
0 W ý !, e 
CA 

ü 03 a) +ý H 0 
N N "20: Cd D: 2 

o $4 P4 t) NI 
.0 

Ü Q) V 

, 
-I 

".. 4 14 4-I U 14 4-j 

"tj C! A U 
'd 

". 1 qý 
) + 

cd 
' A u >1 4 r4 

a a . - d 
ý' d 

Is 1 0 co fi 
4 r4 Q) P4 Ia Cd 
0 d ü ý 

4) 
vü 4 1' 

P-1 c aaii - 4 

0 y ä / 0 w co l )CU toCd P. 



-- ---- -------- 74 

0 
rl 

0 
N 

, -4 

M 

G) 
r-4 
0 
H 

0 4.1 

'C 41 >% a) "d oo 60 
4-1 ci r-4 4. J 10 40) 41 -r4 4 
u0 'U c+ a) 41 c-) 0 u N" 

Id -A "A 4j q Cd a) a) U U0 
4-1 O a Cl1 co a) 4-4 41 '+-+ to a) 
41 14 N -A P P 44 4-I 4-1 4 

wa a1d on W ri No ý 00 

P4 ° 
" G 

0) 
1-4 0 41 0 10 

HA 
ý 

H V N 

4 P 
N r. Ö rij 

Ö 
4'4 "'-1 

0) , b _ c 
I 

00 N 

"ý 
sr 

$4 "ý "ý 
cn 
f O 

04 
U) 41 ob A 

2 2 
41 60 p" --T a) 

N r i H a) r4 ý 
N" wa )+ " "A " 

(D n 0) 41 S 
I d4 4J 4-'-J 

o 
ao a 41 14 41 aJ 41 aJ 

0 Cd O 4-4 C) .4 $4wC ,a y N a) a) 

" 
94 

N 
1J 11 

ý wN E 
U N 

. O 0 N 
4 0 Cli 

Ö ca p ö O 
N 

. r4 41 4-J 
1 

U U 
41 ü 

e) J :J 
llý 10 ri) 

w 
110 

w 
I'd 

O s-+ co R1 cd 
O 
N 
C9 w 

j "ri C) 
H 41 41 
: 3: 

" 
to. 

G) 2 C) >+ G) a) 
i-1 x a W .w +1 -14 U r4 ä ma 

Cd , 
- i 

1 as W 41 ap 41 
. p, 

ý4 
k tv 41 

y 41 
41 

y 
. -4 LA 41 U) 

U :j ca 0 ä týý ä co ä ä +ä 

0 
41 1 

-0.1 $-i en N ' C'1 N 

ÜO 
N C") Lt 

ad r4 e--1 r-I 
1 

1-1 
c 

PýIZ 

0 41 

-r4 ö Z 1 3 3 
(L) C) -, 4 
0 C 

0 9 It 
- 

tn U i+ N 

0 
is+ 

C1 
ai 

1.1 
N 

4.1 41 'I 1 
I> > 

10 
° a rü 41 ü 0° u 

ca 
. -i 14 a ) p, 

V-4 `d 
, 1R Q ) UI u 

0 co 4. j 41 
I -4C)C aWi 

4 
r F " s-iU . a' 

14 -A 
ö 

.C .C ý 
>1 

ý, >1 
4 

aý 
ö ö i ºu+ U aýi a 

ö 
U 'I W 

cn U) u E cd cd a q .. Cj 



b a) 

41 

17 
N 

1 
0 

C 

4) 

H 

G b 0 i a) D, aJ a. 3 
+1u P-4 Ai v u uO -d r. al y ö a " "ä w d ic 

ä 
= 

4 
p *14 w a) 

Eý 
wä 

0 
cn 
p, 0 
o "rl N 

. ýq 
' i w cv " HÜ 
+1 c 

0 

HÄ ' 
00 

v 
CD 

p 
u 
ý+ q 

44 y 
c) cd cýö 

W 10 10 10 

"rl U1 
r-4 

0 to 'C 

41 N 44 N 
a R! v) H 

41 Q) 
4. J 4) $. 1 b 4 tJ 
0 Ai W 44 

Cd Z = L1 PQ cd 

ý3", 

pýý N al 
w ,N " ß4 41 x 

N f3 d N 
°w 0 N o 0 3 
Pi CO w H 

aý 4 h 1 
c i Co ce 

"d'0 m 4) 
gi 0 >% NI 41 

CD Q äb ä v 
o O i 
N 
0 

Ü 
" 

"rl bO 

x D" 
., 4 a) 41 w i x a) 

E.., s-1 x +, H. x a H ä> H .Z 
Q) 

4 
41 41 

ý 
4.3 41 
i 

4 -1 d aJ .... 4 
4 Cd P 

4) H ý+ 
A to -, U 41 W 
:10 41 A a) :J :i cu Z'u s a cnP-+xb wa w > Co 

0 

p., }a ýýl cV M N 

u 
., g ýC Iý 00 

W :i 
aý z 

ö iº 
0 3 0 

0.3 3 ý q "ý `" 
r i Le) ` U) 
O0 cö Co " 1 
ca u ý+ ö 

M ýW 

0 

b ä) 
" N . d 
u u ý j 
cd H "rl r-1 u 

U 
w a) C 

p4 
p, 

%-�- H Ri r-1 e-1 e-1 
4 to Z )4 P. 

P. 4 r. 0u 

0 

a 
cd 

a) 
0 
44 
ai u 

2 

I 

m 

75 



76 

the solution slowly thickens, but remains workable, over 9-12 months. 

The gelling is, however, reversible and the solution is restored by 

warming. 

The polymerisation of acrylic acid in benzene gives a bulky, 

extremely fine powdered form of PAA, which by virtue of the high 

surface area afforded by the small polymer particles rapidly dissolves 

in water. 

The tacticities of the PAA batches prepared in water (table 3.1.1.1., 

batch 1) and benzene (table 3.1.1.1., batches 5 and 6) are probably 

100% atactic. Monomer concentrations are kept low in their 

preparations by the slow continuous monomer addition processes used. 

At concentrations of monomer below 20-25% atactic polymers are 

reported formed in water and in aromatic hydrocarbon media. 
96 No 

information is available on the tacticities of the commercial PAA 

samples used. 

3.1.3.2. The properties of the poly(acrylic acid)-G200 glass mixes 

and set cements. 

The reaction of PAA with G200 glass proceeds through four 

overlapping phases for all molecular weights and solution concentrations 

studied. 

1. A viscous, sticky phase. 

2. A "stringy" soft rubbery phase. 

3. A coherent rubbery gel phase. 

4. A coherent, hard inflexible state. 

During phase 1 Ca 
2+ 

and Al 3+ ions are leached into solution 

by acid attack on the G200 glass. Partial cross-linking of the 

polymer chains by Ca 2+ 
and A13+ ions probably occurs in phase 2 and 

in stages 3 and 4 this cross-linking develops to form an extensive 

network structure. It is only during the first stage that the cement 
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nay be worked and further mixing of the paste during stages 2 or 3 

can lead to a product, which although hard is structurally weak. 

The surfaces of hardened cements (at stage 4) are still reactive 

and can be firmly bonded together with fresh cement paste. 

Mix workability, setting time and the mechanical strength of 

the hardened cement can depend upon the molecular weight of the 

PAA, the concentration of the PAA solution and the P: L ratio 

employed. Table 3.1.3.1.1. shows some generally applicable rules. 

A disadvantage encountered with aqueous PAA solutions is 

their inherent stickiness and high viscosity, which makes them 

inconvenient to handle. To overcome these difficulties a "one-pack" 

cement system has been developed in which the G200 glass is mixed 

with powdered PAA. Water is added to the powdered components and 

the cement paste prepared by spatulating the mix on a glass block 

i. e. in the same way as a mix is prepared from aqueous PAA. 

The powdered PAA and G200 glass mixture can be stored at 

32% relative humidity for at least 7 days without any visible signs 

of reaction by the absorption of atmospheric moisture. At higher 

relative humidities (e. g. 66-80%) the powdered mix shows signs of 

clumping after a few days. Powdered mixes aged at 66% relative 

humidity over 25 days still form satisfactory cements with water. 

Samples aged at 80% humidity for 25 days, however, give granular 

mixes which do not pass through a "stringy" phase when spatulated 

with water, although hard cements are still obtained. 

The workability of the powdered mix depends upon the molecular 

weight of the PAA. If the molecular weight is too high a low P: L 

ratio is required to give a workable paste. Low P: L ratios can 

have a detrimental effect on the properties of the set cement (see 

table 3.1.3.1.1. ). 



78 

Table 3.1.3.1.1. 

Some parameters in PAA-G200 glass cement mixes. 

Property Changes. Effects. 

Increase P: L ratio Mix viscosity increases. 
(constant polymer Workability becomes more difficult. 
conc. n & MWt). Setting time decreases. 

Compressive strength increases (see also 
ref. 4. ). 
Resistance to cracking and crazing increases. 

Increase polymer Polymer solution viscosity increases. 

concentration Mix viscosity increases (see also ref. 2). 
(constant, P: L ratio Workability becomes more difficult. 
and polymer MWt). Increases compressive strength (see also 

ref. 2. ). 
Resistance to cracking and crazing increases. 

Increase polymer Polymer solution concentration often limited 
MWt. by increase in viscosity. 
(constant P: L ratio Mix viscosity increases. 

and polymer Workability becomes more difficult. 20 
concentration) Little or no effect on compressive strength. 
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3.1.3.3. The stability of poly(acrylic acid)-G200 glass cements 

towards water, aqueous acids and alkalis and organic solvents. 

Table 3.1.3.3.1. shows that PAA-G200 glass cement has excellent 

resistance towards water and many organic solvents. Strong acid and 

alkali rapidly destroy the cement and may attack the glass and also 

dissociate the polyacid=metal complex in the matrix. 

These preliminary results indicate that PAA-G200 glass cement 

has considerable potential in non-dental applications where resistance 

to solvents may be required. The dehydrating effect of hydrophilic 

solvents and the effect of solvents on the compressive strength of 

the cement have not, however, been studied. 

3.1.4. The properties of the products formed between G200 glass 

and polymers other than poly(acrylic acid). 

3.1.4.1. The properties of the polymer solutions. 

The ethyl acrylate - acrylic acid emulsion and the polymer 

solutions, except for the HEMA-acrylic acid copolymer solutions, 

remain stable over a period of at least several months. 

The HEMA-acrylic acid copolymer solutions gel on ageing at 

room temperature. The gel is thermally irreversible (even at-4! /365) 

and swells, but remains coherent, in boiling water. Inter-(and 

perhaps intra-) molecular esterification is probably responsible for 

the gelation of these solutions, since experiments on mixtures of 

the copolymer solutions with PAA solutions have shown that the 

gelling time increases with increase in the hydroxyl: carboxyl group 

ratio present. Similar gels result with mixtures of glycerol and 

PAA solution. 

The tacticities of none of the polymers studied is known. 

Consequently any possible effects- of differences in polymer tacticity 

on the formation of cements with G200 glass cannot be considered 

here. 
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Table 3.1.3.3.1. 

The resistance of PAA-G200 glass cement to aqueous 

acid and alkali and to various solvents. 

Solvent Cement stability 

Water Stable indefinitely 

Ethanol Stable 

Dimethylformamide Stable 

Methylethyl ketone Stable 

Tetrahydrofuran Stable 

Glacial acetic acid Stable 

Chloroform Stable 

Ethyl acetate Stable 

1N aqu. NaOH. Rapidly disintegrates' 

1N aqu. HCl Rapidly disintegrates 

* 
Over at least 9 months. 
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3.1.4.2. The properties of the polymer solution - G200 glass mixes 

and set products. 

Pastes formed by mixing G200 glass with the polymer solutions 

shown in table 3.1.1.1. often have different properties to the mixes 

prepared with PAA. Thus, although PMAA, HEMA-acrylic acid copolymer, 

VEMA and EMA solutions give. mixes that set rapidly in four distinct 

phases (see section 3.1.3.2. ), the other polymer solutions behave 

differently. 

SMA copolymer solution in aqueous acetone gives a workable 

paste, which tends to lose acetone on mixing. The use of the mixed 

acetone-water solvent is necessary as the copolymer is only 

sparingly soluble in pure water. When fully set the cement is weak 

and brittle, possibly because of the very low molecular weight 

(ti1600) of the copolymer. 

Sodium acrylate-acrylic acid copolymer, styrene-monosodium 

maleate copolymer, methyl acrylate-methyl methacrylate- sodium 

acrylate copolymer and PESA solutions give mixes with G200 glass 

that set slowly on standing without showing the rapid formation 

of a "stringy" rubbery phase. With these products the lower 

surface of the mix, which is in contact with poly(ethylene) film, 

usually remains soft after the upper layer has hardened, indicating 

that setting is due to a simple drying our process. 

Ethyl acrylate - acrylic acid copolymer emulsion does not 

form a rapidly setting paste with G200 glass powder. As a 

consequence of the low viscosity of the emulsion the cement pastes 

are thin slurries, even at a P: L ratio as high as 3: 1. When the 

P: L ratio is increased to values much higher than 3: 1 the mix 

becomes an incoherent, crumbly paste, bearing no resemblence to a 

G200. glass - PAA solution mix. 
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Table 3.1.2.1. summarises the stability in water of each of 

the cements in the range studied. Like PAA; EMA, PMAA, SMA and 

ethyl acrylate - acrylic acid copolymer give cements that are 

stable in water. HEMA-acrylic acid copolymer, containing 5 mole 

of HEMA, will also form a water stable cement with G200 glass, 

but only at a high P: L ratio. Three manifestations of instability 

in water are apparent for the remaining cement products. 

1. Surface softening and weakening, as typified by VEMA-G200 

glass cement. 

2. Bulk softening and swelling, as is shown by the acrylic 

acid - sodium acrylate cement. 

3. Total disintegration, which is typified by PESA-G200 

glass cement. 

The mechanical properties of the set cements have not been 

studied in detail. Preliminary experiments on PAA and EMA cements 

with G200 glass have been carried out, since these two polyacids 

are structural isomers. Table 3.1.4.2.1. shows the compressive 

strengths and moduli of cements prepared from PAA and EMA solutions 

and G200 glass under identical conditions. The compressive strength 

of the cement prepared from G200 glass and EMA is nearly twice that 

obtained with the PAA-G200 glass cement. A modulus difference is 

also observed between the two cements. The very slight difference 

between the concentrations of the polyacid solutions ('3%) is 

considered insignificant compared to the strength properties observed. 

The EMA used in these tests is not an exactly 1: 1 copolymer, but has 

a mole ratio of 1 maleic acid: 1.25 ethylene residues. Thus the 

EMA has a slightly higher proportion of unsubstituted -CH2- groups 

in its structure, compared to the PAA, which may possibly explain 

the lower modulus (i. e. greater flexibility) of the EMA-G200 glass 

cement. 
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Table 3.1.4.2.1. 

Mechanical properties of PAA-G200 glass 

and EMA-G200 glass cements (P: L=3: 1) 

Property PAA 0,25% w/w soln., 
batch 3, table 3.1.1.1. 
(Mean of 4 values) 

EMA 0,28% w/w soln., 
batch 8, table 3.1.1.1. ). 
(Mean of 5 values) 

Compressive 
-2 ) strength (MNm 45.0 98.7 

Young's Modulus 
(MNm 2) 

at 1% strain 300 200 

at 1.5% strain 500 300 

at 2% strain 700 500 
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Another important consideration with cements prepared from 

polyacids and G200 glass is the evaporation of water from the 

hardened cements. Water loss from cements prepared from G200 glass 

and PAA has been shown to cause cracking and crazing of the surface 

of the cement, shrinkage and a loss of compressive strength. 
97 

EMA-G200 glass cements also show a tendancy to shrink, crack and 

craze by loss of water, more especially if the samples are large and 

are made at a low P: L ratio. The incorporation of an inert filler, 

such as fine sand, into an EMA-G200 glass (or PAA-G200 glass) cement 

mix can considerably reduce, or even eliminate, shrinkage and 

cracking due to water loss, thus enabling the satisfactory preparation 

of large specimens. Inert fillers also have a pronounced effect on 

the mixing characteristics of the cement paste in that they tend, to 

reduce the stickiness of the mix and improve the handling 

characteristics. 

3.1.5. Chemical features of the products formed between G200 glass 

and aqueous polymer solutions. 

Although a detailed investigation of the chemical composition 

and structure of the cements prepared from G200 glass and aqueous 

polyacid solutions has not been carried out, 'much information can 

be obtained from the mixing and setting characteristics of the 

cement pastes and the stabilities of the hardened products in water. 

From the range of polymers studied (table 3.1.1.1. ) four 

types of polymer structures are identifiable. 

1. Polyacids with hydrophobic side groups or no side groups. 

2. Polyacids with hydrophilic side groups. 

3. Polyacids partially neutralised to their sodium salts. 

4. Polyacids completely neutralised to their sodium salts. 
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3.1.5.1. Cements prepared from G200 glass and polyacids with 

hydrophobic side groups or no side groups. 

This group of cements includes the products made from G200 

glass and PAA, PMAA, EMA, SMA, PESA and ethyl acrylate - acrylic 

acid copolymer. 

With PAA, PMAA and EMA solutions chemical reactions can be 

seen to occur with G200 glass, because the pastes become rubbery 

on mixing and set quickly to cements that are stable in water. 

Wilson et. al. 
21 have postulated the existence of ionic structures 

(M in ASPA cement. Other species may also be possible, for 

example (VT - VIII), in the cement matrix. Similar structures may 

also be present in cements made from G200 glass and aqueous PNIAA 

and EMA. Structures of type (Vi) would not be expected to contribute 

towards the formation of the matrix cross-linked network. 

In the G200 - SMA cement the formation of a network structure 

is not easily seen, because the loss of acetone from the cement 

paste during mixing causes the viscosity of the mix to increase. 

However, the insolubility of the product cement in aqueous acetone, 

even after 6 hours' immersion at 355, indicates that a reaction has 

taken place, possibly to form structures similar to those in PAA- 

G200 glass cement. 

PESA solution behaves very differently with G200 glass,.. When 

the two components are mixed there is an evolution of heat, which 

suggests that the polyacid vigorously attacks the glass. Indeed 

. 
from a consideration of the very low pH (<0) of the PESA solution 

substantial acid attack on the glass would be expected. However, 

despite the presence of Ca 2+ 
and Al 3+ leached into the polyacid 

: solution, the rapid formation of a network structure is not observed 

as is apparent from the long setting time of the mix. The setting 

process appears to be due to a simple drying out of the mix (see 
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section 3.1.4.2. ). These observations suggest that the poly- 

(ethylenesulphonate) complexes in the matrix are readily dissociated 

in water and are thus unable to form a network structure until most 

of the water in the mix has evaporated away. When placed in water 

the hardened cement would be expected to disintegrate by dissociation 

of the matrix into its constituent ions. This view is supported by 

the fact that G200-PESA cement does in fact rapidly disintegrate in 

water. 

The difference in behaviour between PAA-G200 glass mixes and 

PESA-G200 glass mixes may be tentatively explained as follows: although 

both cements probably contain ionic complexes in their matrices, the 

degree of ionic character of the metal-polyanion bonding may differ 

considerably between the two types of polyanion. The PESA-metal ion 

complexes would be expected to have M-0 bonding with a higher degree 

of ionic character than exists in the PAA-metal ion complexes. A 

comparison of the acid strengths of PESA (pK, ti 2.998) and PAA 

(pKa = 6.17 49) in aqueous solution illustrates this point.,. The 

pKa's of aqueous acids tend to increase with increase in the number 

of equivalent oxygen atoms in their anions. 
99 There are three 

equivalent oxygen atoms in the sulphonate group (]Z), but only two 

in the carboxylate group (X) and accordingly PESA is a stronger acid 

than PAA, i. e. in water PESA is dissociated to a greater extent than 

PAA. Thus, although PAA may form Ca 2+ 
and A13+ complexes with 

sufficient covalent character to form a network structure during the 

mixing of the cement paste, the PESA complexes are too highly dissociated 

to give a cross-linked structure until the mix has lost a sufficient 

amount of water to the atmosphere to allow the complex to precipitate. 

Fluoride ions, which are also leached from G200 glass by acids, 

probably have an effect on the water stability of G200 glass-PAA 

cement and these tentative explanations are made with the assumption 
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, that with PESA the intervention of the fluoride ions is retained. 

Ethyl acrylate - acrylic acid copolymer emulsion also forms 

water stable cements with G200 glass, although the slow setting of 

the mixes suggests that setting occurs by a drying out process to 

leave an insoluble mixture of the copolymer and G200 glass. 

Although the pH of the emulsion is'certainly low enough to expect 

an acid leaching reaction with the glass to occur, it is possible 

that the carboxylate groups on the copolymer are not accessible ; for 

a cross-linking reaction to take place, since they are localised 

in the tiny copolymer droplets dispersed in the emulsion. The 

infra-red spectrum of G200 glass - ethyl acrylate - acrylic acid 

copolymer cement aged for 17 hours shows a strong band at about 

1700cm 1 
with a strong shoulder at about 1725cm 1, 

which are 

probably the carbonyl absorption bands for the ester and carboxyl 

groups present. The band at 1700cm l is probably due to the 

carboxyl group, since similar bands have been observed in ASPA cements. 
19 

The spectrum shows the absence of a band in the region of 

1500-1600cm 
1, 

suggesting that very little, or no, Garbo Xylate groups 

are present in the cement, i. e. that the cement does not contain metal 

- poly(acrylate) complexes. 

, 
3.1.5.2. Cements prepared from G200 glass and polyacids with 

`hydrophilic side groups. 

This group of cements includes the products made from G200 

glass with VEMA, or HEMA-acrylic acid copolymer solutions. Both of 

these products set fairly rapidly, indicating that the polyacids are 

capable of forming a cross-linked gel with Ca2+ and A13+ ions, but 

neither cement is stable An water. The cements do not, however, 

disintegrate in water, but instead they show swelling and softening 

of their surfaces. With the HEMA-acrylic acid copolymer cements 
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With G200 glass their stability in water decreases with increase 

in the HEMA content of the copolymer, i. e. with increase in the 

content of hydroxyl groups, which are hydrophilic. These results 

suggest that the presence of hydrophilic side groups (in these 

cases hydroxyl and methoxy groups) on the polyacids have a 

detrimental effect upon the stability of the corresponding G200 

glass-polyacid cements in water. The presence of many hydrophilic 

groups in the polyacid complexes of these cements may render their 

matrices susceptible to the absorption of water, with consequent 

swelling, softening and weakening of the cements' surfaces. 

3.1.5.3. Cements prepared from G200 glass and polyacids partially 

neutralised to their sodium salts. 

This group of cements includes the products made from G200 

glass with acrylic acid-sodium acrylate copolymer and styrene- 

monosodium maleate copolymer solutions. The pH's of these copolymer 

solutions are '4.8 and '5.8, respectively, much higher than the 

pH's of all of the other poly(carboxylic acid) solutions investigated. 

With these copolymer solutions a slower and much less complete attack 

would be expected, compared to the parent polyacids. With styrene- 

monosodium maleate copolymer the reaction with G200 glass must be 

negligible, because the product does not appear to, rapidly form a 

network structure, sets by a drying out process and when hard is 

quickly disintegrated by water. The acrylic acid-sodium acrylate 

copolymer behaves in a similar way as styrene-monosodium maleate 

copolymer with G200 glass, except the hardened product is not 

disintegrated by water. Instead the-. cement is swollen to about 

twice its original size when placed in water, Since acrylic acid- 

sodium acrylate copolymer is completely soluble in water it appears 

that some reaction does take place with G200 glass and a cross-linked 

structure is formed. The probable low degree of cross-linking and 
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the presence of an abundance of hydrophilic sodium acrylate groups 

in the cement matrix are likely to be responsible for the swelling 

effect observed when the cement is immersed in water. 

3.1.5.4. Cements prepared from G200 glass and polyacids completely 

neutralised to their sodium salts. 

This group of cements includes products made from G200 glass 

with methyl acrylate-methyl methacrylate-sodium acrylate copolymer 

and sodium poly(acrylate)97 solutions. 

Since the pH's of these copolymer solutions are close to 7 

they cannot be expected to form cements with G200 glass. Indeed 

mixes made from G200 glass with these copolymers harden very 

slowly and disintegrate in water. Ion exchange of Na+ for Ca2+ 

or A13+ ions in the G200 glass does not appear to occur to any 

significant degree and the cement products obtained are probably 

no more than G200 glass particles bound by partially air dried 

polymer. 

3.1.6. Concluding Comments. 

The results of these preliminary studies on cements prepared 

from G200 glass with aqueous polymer solutions have demonstrated 

clearly the need to consider the structure of the polymer and the 

nature of its solution if coherent water stable cements are to be 

prepared. Cements which set rapidly to a coherent product which is 

stable in water have been shown to be best prepared from poly- 

(carboxylic acids) with hydrophobic groups, or no substituents on. 

their polymer chains. 

3.2. The reactivity of metal oxides with various aqueous polyacid 

solutions. 

3ý2. ý. Introduction. 

Ion leachable aluminosilicate glasses, such as G200 glass, are 
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mixtures of many inorganic components and in aqueous acid media 

release not only Ca2+ and'I A13+ ions, but also ions such as 

Na+, P04 3 
and F. 

In order to gain some understanding of the requirements for 

cement formation and to eliminate the problems of competitive and 

co-operative effects between the ions provided by G200 glass a 

range of metal oxide - polyacid products have been studied. 

The range of oxides which have been chosen for this work is 

wide and includes basic oxides, such as CaO, Y203 and NiO and 

amphoteric oxides, such as PbO and ZnO, which would be expected to 

dissolve in strong aqueous polyacid solutions, and acidic oxides, 

for example MoO3, B203 and Cr03, which give rise to anions in 

solution and would not be expected to form cements with aqueous 

polyacids. Relatively inert oxides, as exemplified by BeO, TiO 2 

and Zr02 have also been studied; such oxides would not be expected 

to dissolve in aqueous polyacids. Some potentially acid soluble 

oxides may exhibit low solubility as a result of morphological 

modification, or dehydration, especially if heated to high temperatures. 

Notable examples are MgO, ZnO and A1203. Complications may also 

arise with oxides that are slightly soluble in water, such as V205 

and CaO, in that the stability in water of the metal oxide-polyacid 

cement products ray be effected by the hydrophilic nature of the 

excess oxide present. 

Pourbaix100 has reported phase diagrams for the solubilities 

of many oxides at various pH values, together with the types and 

relative predominance of the dissolved ions produced in solution. 

Generally, in acid solution the solubility of many oxides decreases 

as the pH rises, reaching a minimum, and then rises as the pH is 

further increased. The type of ion dissolved in solution varies 

with pH, e. g. the regions of relative predominance for ions of 
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bismuth are Bi3+/BiOH2+, pH=2.00 and BiOH2+/BiO; pH=3.37, but 

hydroxo and oxo cations are only really important with M3+ or M4+ 

ions. - 

Bearing in mind these limitations suitable oxides were 

selected and reacted with a carefully chosen range of polyacid 

solutions (table 3.2.1.1. ). 

3.2.2. The cement forming properties of metal oxides with various 

aqueous polyacids. 

The nature of the products formed between the various oxides 

and aqueous polyacids are summarised in tables 3.2.2.1. to 3.2.2.6. 

Also shown in these tables are the water stabilities of the products 

obtained and G200 glass-polyacid products have been included for 

comparison. The oxides in the tables are arranged in the descending 

order of their periodic groups across the periodic table: transition 

metal oxides are placed in similar orders towards the end of each 

table. 

A summary of all of the cements found to be stable in water 

is given in table 3.2.2.7. for comparison purposes. 

The mixing characteristics of the metal oxide-polyacid 

cements vary considerably with the nature of the oxide and to some 

extent on the type of polyacid used. Oxides that react very rapidly 

with the polyacid solutions often form pastes that become "stringy" 

and rubbery on mixing, for example MgO, CaO and ZnO with PAA, PMAA, 

VEMA and EMA. Sometimes an oxide may react so quickly that a crumbly 

mix is produced, which although rather difficult to mould often sets 

to a hard coherent mass. Crumbly mixes of this type are produced by 

PbO and CdO with PESA solution. PMAA and Ag20 give a very reactive 

mix that can absorb relatively large quantities of the polyacid 

solution and remain a coherent gel. The gel expands considerably 

as the aqueous polyacid is absorbed but shrinks to a much smaller 
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Table 3.2.1.1. 

Polyacid solutions in water for polyacid-oxide mixes. 

Batch No. Polymer Concn. 
% w/w 

1 Poly(acrylic acid) 47.3 

7 Poly(methacrylic acid) 20 

8 Ethylene-maleic acid copolymer 28 

9 Vinylmethyl ether-maleic acid 40 
copolymer. 

10 Styrene-maleic acid copolymer. 50.4a 

16 Poly(ethylenesulphonic acid) 36.85 

See table 3.1.1.1. 

a= in cold acetone-water. 
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hard mass on drying out with standing. 

As a general rule, oxides that give slow setting or non-setting 

mixes give very smooth pastes with the polyacid solutions. Most slow 

setting mixes give hardened products that are unstable in water, 

although there are noteable exceptions, such as the cements made from 

CuO and the poly(carbocylic acid) solutions. SMA solution in aqueous 

acetone does not form very smooth easily workable pastes with metal 

oxides, probably because of the high viscosity of the copolymer syrup 

and loss of acetone from the mix during spatulation. CaO dehydrates 

the SMA syrup and prevents the formation of a coherent cement paste. 

The stabilities of the hardened oxide-polyacid cements in 

water are very markedly dependent upon both the type of oxide and 

structure of the polyacid used. The cements either remain hard, 

soften or completely disintegrate when placed in water. MgO and CaO 

give cements with PAA that soften in cold water, but which harden 

again, when the water, is heated. When the water is cooled the 

C, aO-PAA cement returns to a soft coherent state, , whereas the MgO-PAA 

cement. remains hard. Hopkins101 has studied the behaviour of 

divalent metal salts of PAA and has reported that Mg 2+ 
and Ca 2+ 

salts 

of PAA exhibit a reversible, temperature dependent change in tensile 

strength and modulus when placed in water. The rigidity of the 

salts increases as the temperature of the water is increased. Thus, 

although the CaO-PAA cement behaves in a similar way to the Ca2+ salt 

of PAA, the MgO-PAA cement's properties differ from the Mg 2+ 
salt of 

PAA in that the increase in rigidity observed when the cement is 

heated in water is not reversed upon cooling. MgO-EMA cement, which 

softens in cold water, also hardens when the water temperature is 

increased. 

From table 3.2.2.7. it is evident that the poly(carboxylic 

acids) form a greater range of water stable cements than PESA, which 
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only produces water stable cements with oxides of metals that lie 

towards the bottom of the groups in the periodic table. 

3.2.3. The determination of the chemical reactivity of various 

oxides with aqueous pol ay cids. 

Infra-red spectroscopy97 has been employed in determining 

the reactivity of various oxides with PAA solution. Acidic and 

relatively inert oxides do not appear to react with PAA, for no 

carboxylate ion absorption bands at 1510-1660 cm-1 are observable 

in the infra-red spectra of their cements. Many basic or amphoteric 

oxides combine with aqueous PAA to give cements, whose infra-red 

spectra show a carboxylate ion absorption band at 1510-1660 cm 
1, 

alone, or together with a carboxyl group absorption band at 

1700-1725 cm 
1. Table 3.2.3.1. summarises the oxides which react 

with, or are inert towards aqueous PAA. It is reasonable to assume 

that the oxides that react with aqueous PAA will also react with 

the other polyacid solutions. 

Further infra-red studies on cements made from A1203 

(chromatographic grade), or Al(OH)3 and aqueous PAA have been carried 

out. Both products exhibit a carboxylate group infra-red absorption 

band at about 1700 cm 
1 

and a weaker carboxylate ion absorption band 

at about 1550 cm 
1, indicating that PAA reacts to some extent with 

A1203 and Al(OH)3. 

Information on the chemical reactivity of oxides with aqueous 

polyacids can also be obtained from an examination of the setting 

characteristics and water stabilities of the cements formed. Cements 

that set rapidly are obviously formed as a result of chemical reaction 

between the polyacid solution and the oxide. If a fast setting cement 

is found to be unstable in water then the complex formed in the matrix 

network is hydrolytically unstable. With slow setting cements two 
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Table 3.2.3.1. 

The chemical reactivity of various oxides with aqueous PAA as 
97 

determined by infra-red spectroscopy, 

Oxides which react with PAA Oxides which do not react 
with PAA 

MgO, CaO, Sr02, BaO BeO, In203, 

Y203, -ZnO, CdO,, SnO2, Ti02, 

HgO, PbO, Pb304, Zr02, V205, Nb205, 

Bi203, CoO, NiO, MoO3, Fe203. 

CuO, Ag20. 
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possibilities arise, 

(1) a slow chemical reaction takes place, which may be controlled 

by the solubility of the oxide in the aqueous polyacid, or 

(2) no reaction takes place between the oxide and the aqueous 

polyacid, but the mix slowly dries out to a hard mass. 

If a hardened slow setting cement disintegrates in water then 

either the product has formed as in (1) and the matrix is 

hydrolytically unstable, or (2) has occurred and the unchanged polyacid 

dissolves in water to liberate the oxide particles. Thus, simple 

water stability tests cannot distinguish between products formed as 

in (1) with those produced by (2), although infra-red evidence may 

indicate whether a reaction has in fact occurred. For example, --infra- 

red spectra from metal oxide-PAA cements suggest that NiO and Coo 

cements probably fall into case (1) and TiO2 and Fe203 cements are 

formed as in (2). 

3.2.4. The chemistry of the formation of metal oxide-polyacid cements. 

The chemistry of the formation of cements from metal oxides and 

aqueous polyacids is not simple to predict. Many factors may be 

involved in the formation of a complex network in the cementing matrix 

and in determining the hydrolytic stability of the matrix. The 

following paragraphs attempt to relate cement properties to the nature 

of the metal ions and polyacids in the cementing matrix, but the 

interpretations are only offered, as tentative hypotheses. 

Since the formation of a network structure in the complex matrix 

of an ionomer cement must involve the binding of metal ions to definite 

sites (i. e. ligands) on the polymer macromolecules a measure of the 

degree of site binding may be useful in predicting the properties of 

the cement. Strauss64,65 has determined the degree of site binding 

of certain metal ions to various polyanions in dilute solution 

(see section 1.6.4. ). For Mg2+ ion the degree of site binding to the 
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polyanions of PAA, EMA and VEMA increases in the order EMAZPAA< 

VEMA (see table 1.6.4.2. ),, which parallels the order of increasing 

stability in water of the corresponding MgO- polyacid cements, 

i. e. MgO-PAA: MgO-EMA<MgO-VEMA. The binding of Mg 2+ to the anions 

of PAA, PMAA and EMA is probably predominantly ionic and may give 

rise to hydrophilic structures, which may be partly dissociated in 

water. These structures would explain the softening of MgO-PAA, 

MgO-PMAA and MgO-EMA cements in water (see table 3.2.2.7. ). With 

the MgO-VEMA cement there may be an interaction of the -0-CH3 groups 

on the polymer with the Mg2+ ions, since Strauss has observed such 

interactions between Mg 2+ ion and the polyanion of VEMA in dilute 

aqueous media. - Intra-molecular co-ordination afforded by the -0-CH 3 

groups on VEMA may provide protection of the Mg2+ ion from inter- 

molecular co-ordination involving water molecules and may explain the 

observed differences in the water stabilities of MgO-VEMA and 

MgO-EMA, or MgO-PAA cements. 

Mg 2+ ions are less extensively site bound to the polyanion 

of PESA than the polyanions of PAA and PMAA (see table 1.6.4.2. ), a 

fact which may , contribute to the lower water stability of 

MgO-PESA cement compared to MgO-PAA and MgO-PMAA cements. 

With Ca 2+ ion Strauss has reported that the degree of site 

binding to the polyanions of PAA, PMAA and PESA increases in the order 

PESA<PMAA<PAA (table 1.6.4.1. ), which roughly parallels the water 

stabilities of the corresponding CaO-polyacid products (table 3.2.2.7. ). 

When comparing the degrees of ion site binding of Mg2+ and Ca2+ 

to polyanions with MgO and CaO-polyacid cements, satisfactory 

correlations are not possible. For example, the difference between 

the degrees of ion site binding with Mg 2+ 
and the polyanions of PAA 

and PESA is the same as the difference between the degrees of ion site 

binding of Mg 2+ 
and Ca 2+ 

with the polyanion of PMAA (table 1.6.4.1. ); 
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yet the water stability of MgO-PAA cement is greater than the MgO-PESA 

product, whilst the water stability of CaO-PMAA cement is about the 

same as MgO-PMAA cement. Consequently, the ion binding data of 

Strauss is of limited value in predicting the stabilities of polyacid- 

metal oxide products in water. 

No information is available in the literature on the degree of 

site binding of ions to the polyanion of SMA in aqueous solution. 

The observed higher water stabilities of cements prepared from SMA 

and CaO, or MgO, compared to similar cements made from, for example 

CaO, or MgO and PAA may possibly be explained by the presence of the 

pendant hydrophobic phenyl groups on the SMA macromolecules. These 

hydrophobic groups may exert a protecting influence on the polyacid- 

metal ion complex matrix from attack by water molecules. 

The only monovalent metal oxide that has been studied is Ag20, 

which forms water stable cements with aqueous PAA, PMAA and EMA, but 

not with aqueous VEMA and PESA. 

Strauss 65 
considers that the bonding of Ag+ to the polyanions 

of PAA and EMA in dilute aqueous solution occurs by covalent linear 

co-ordination (via two sp hybrid orbitals from Ag+) between carboxylate 

ligands widely spaced along the polymer chain. With the polyanion 

of VEMA in dilute solution chelation of Ag+ between adjacent carboxylate 

and methoxy groups probably does not occur, since the steric strain 

in the ring would be too great (see section 1.6.4. ). 

In Ag20-VEMA cement the high polyacid concentration may favour 

the formation of inter-chain bonding of Ag+ as opposed to the intra- 

chain chelätes postulated by Strauss in dilute solutions. It is 

likely that these inter-chain complexes do not involve the methoxyl 

groups on the polymer, since the cement is unstable in water. The 

only difference between the water stable Ag20-EMA cement and Ag20-VEMA 
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cement is the presence of methoxy groups in the matrix of the latter 

cement. An abundance of uncomplexed hydrophilic methoxy groups in 

Ag2O-VEMA cement may render the matrix susceptible to water absorption, 

swelling and softening, whereas their absence in Ag20-EMA cement: 

gives a matrix that is stable towards water. 

In the case of Ag20-PESA cement, the Ag+ ions may be bound to 

the. polyanion by bonds with a high degree of ionic-character. Such 

bonding would localise the Ag+ ions at individual sulphonate groups 

on the polymer chains, since the metal ion is monovalent. No cross- 

linked network would be expected in the matrix of Ag20-PESA cement 

and this maybe the reason for the lack of cohesion within the 

cement (i. e. disintegration of the cement) when placed in water. This 

situation contrasts the more covalent binding between carboxylate 

ligands on the polyanions of PAA, or EMA, and the Ag+ ion, as suggested 

by Strauss. 

The insolubility in water of the metal ion-polyanion complex 

matrix in metal oxide-polyacid cements may be expected to play a role 

in the setting process and water stability of the cement. Costantino 

et. al. 
51 have reported the following order of increasing solubility 

in water for metal complexes of PMAA: 

Cot+<Ni2+<Cu2+<Mg2+, which is not the order found for the water 

stabilities of the corresponding metal oxide-PMAA cements (see table 

3.2.2.7. ). This suggests that . factors other than the insolubility 

of the matrix complexes are important when considering the water 

stabilities of metal oxide-polyacid cements.. 

The degree of ionic or covalent character in the bonds formed 

between the metal ions and polyanions in a metal oxide-polyacid cement 

may be an important factor in the formation of a water stable network 

structure in the cement matrix. 

Zn2and Cd ions have ionic radii of about the same size as + 2+ 
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those of Mg 2+ 
and Ca 2+ ions, respectively, (table 3.2.4.1. ) and 

hence have similar ionic potentials. However, by virtue of the greater 

polarising powers of Zn2+ and Cd2+ ions, compared to Mg2+ and Ca2+ 

ions, the bonding in zinc and cadmium compounds often has a higher 

degree of covalent character than that in similar compounds of 

magnesium and calcium. The water stabilities of cements prepared 

from MgO (or CaO) and, for example, aqueous PAA or PMAA, are lower 

than the water stabilities of the corresponding cements containing 

ZnO (or CdO). This difference in the stability of these cements in 

water may be a consequence of a higher degree of covalent character 

in the Zn 2+ (or Cd2+)-polyanion matrix network bonding. Similar 

situations may exist in cements prepared with PbO and HgO. 

PESA only forms water stable cements with the oxides of the 

heavier metals, 'such as PbO, HgO and CdO. Again this may reflect a 

higher contribution of covalent character in the bonding between the 

metal ions and polyanions in the matrices of these cements, compared 

to a greater degree of ionic character in the matrix bonding in 

cements made from the oxides of lighter elements, such as CaO, ZnO 

or CuO, and PESA. 

Another possible factor influencing the properties of metal 

/ 

oxide-polyacid cements is the size of the metal ion produced in 

solution. Bi203 forms water stable cements with acrylic polyacids 

and PESA, but not with maleic acid copolymers. Bi 3+ is a large ion 

(table 3.2.4.1. ) and can form BiOH2+ and BiO+ ions at relatively low 

pH's in solution. The size of the BiOH2+, or BiO+, ions may be too 

large to form stable complexes with maleic acid copolymers, where the 

acid groups are adjacent, but not too large to complex with acrylic 

. polyacids and PESA, where the acid groups are separated by methylene 

groups. The Y3+ ion is smaller than the Bi3+ ion (see table 3.2.4.1. ) 

and whilst hydroxo-cations, such as YOH2+, may be formed in solution103 
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Table 3.2.4.1. 

Ionic Radii (nm) 102 

2+ 
Mg 0.065 

Ca 
2+ 

0.099 

Zn 
2+ 

0.074 

Cd 2+ 
0.097 

Bi3+ 0.120 

Y3+ 0.093 
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they may not be too large to complex with maleic acid copolymers. 

All of the polyacids which have been tested with Y203 give water 

stable cements (table 3.2.2.7. ). 

The water stability of a polyacid-metal oxide cement may depend 

upon the water stability of the metal ion-polyanion complexes in the 

cement matrix. Stability constants (see section 1.6.3. ) provide a 

quantitative measure of the tendency of complexes to dissociate in 

water and consequently may provide a useful guide in interpreting 

the stability of polyacid-metal oxide cements in water. The water 

stabilities of metal oxide-PAA cements roughly parallel the order of 

increasing stability constants for the corresponding metal poly(acrylate) 

complexes, i. e. 

for the water stabilities of the cements, CuO=ZnO>CaO=MgO>NiO 
(see table 3.2.2.7. ). 

for the stabilities of the complexes, CuO>ZnO>NiO>CaO>MgO 
(see table 1.6.3.3. ). 

Metal ions giving complexes with the highest stability constants 

(Cu2+ and Zn2+) are also present in the complex matrices of the water 

stable cements (PAA-CuO and PAA-ZnO). Complexes with lower stability 

constants are found in cements that are unstable when placed in water. 

But the parallel is not rigorous, since although C02+ forms a complex 

with a higher stability constant than Mg 2+ 
or Ca 2+ ions with PAA, the 

PAA-CoO cement disintegrates in water, whilst the PAA-MgO and PAA-CaO 

cements remain coherent and become extremely soft. It is possible 

that Co2+ ions show little tendency for inter-chain bonding (i. e. 

network formation) and give mainly intra-chain chelate complexes, 

whilst with Cu2+'2n 2+' Mg2+ and Ca 2+ ions inter-chain bonding 

predominates. This view is supported by an examination of the setting 

characteristics of the metal oxide-polyacid cements. PAA-COO mixes 

set very slowly compared to the MgO, CaO, ZnO and CuO-PAA products, 

which may indicate that the setting of the cement containing Coo is 
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by a drying out process as opposed to the formation of a network 

structure. If this is the case then CoO-PAA cement may be expected 

to disintegrate in water, irrespective of the resistance to dissociation 

of the metal ion-polyanion bonding, due to a lack of inter-chain binding 

in the matrix. The formation of inter- or intra-chain complexes may 

depend upon the ionic radii, the electronegativities and co-ordination 

geometry of the metal ions, but a meaningful exploration of these 

aspects of binding in metal oxide-polyacid cements is made impossible 

by the lack of detailed literature on complex formation in very viscous, 

highly concentrated polyacid solutions. 

Similar arguments- may apply to metal oxide-PMAA cements (see 

tables 1.6.3.3. and 3.2.2.7. ), where both Coo and NiO may form products 

with PMAA by a process similar to that postulated for Coo with PAA. 

3.2.5. Comparison of G200 glass-poly(acrylic acid) cement with 

CaO-poly(acrylic acid) and A1203 (or Al OH 3)-poly(acrylic 

acid) cements. 

G200 glass reacts rapidly with aqueous PAA to form a cement 

containing a mixed Ca 2+ 
and Al 3+ 

poly(acrylate) matrix, in which Ca 2+ 

predominates. 
21 Thus the water stability of G200 glass-PAA cement 

must depend upon the stabilities of the Ca2+ and Ala+-polyanion 

complexes in the matrix. 

A1203-PAA cement is unstable in water. Even the cement made 

from A1(OH)3, which would be expected to be more soluble in acids 

than A1203 and which gives a fairly rapidly setting product with 

aqueous PAA, softens and eventually disintegrates when immersed in 

water. This behaviour is not reflected by G200 glass-PAA cement in 

water. 

CaO-PAA cement softens markedly in water, but remains coherent. 

In G200 glass-PAA cement the Ca2+ poly(acrylate) component of the 

matrix must play a major role in determining the stability of the cement 
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in water, since it is the predominant species present; yet the cement, 

unlike CaO-PAA cement, is very stable in water. 

It is possible that the F- and P043- ions, which are also leached 

from G200 glass by aqueous PAA, have an influence on the water stability 

of the Ca 2+ 
and Al 3+ 

poly(acrylate) species in the complex matrix of 

G200 glass-PAA cement. The F and P043 ions may also complex with 

the Ca 2+ 
and Ala+' ions bound to the PAA in the matrix and thereby 

reduce the susceptibility of the matrix complexes to attack, or 

hydration, by water molecules. This view is supported by the fact 

that a mixture of CaO and CaF2 (fused at 1475) will form a water 

stable cement with PAA, whereas CaO-PAA and CaF2-PAA products alone 

are not stable in water. 
97 

An anomaly arises with CaO-VEMA and G200 glass-VEMA products, 

for whereas CaO-VEMA cement is stable in water, G200 glass-VEMA 

cement is softened by immersion in water. In G200 glass-VEMA cement 

a co-operative metal ion binding effect with the -0-CH3 groups on 

the polymer may not occur, possibly as a result of preferential 

complexing by F- or PO43- ions. The presence of uncomplexed -0-CH3 

groups in the matrix of G200 glass-VERA cement may render the matrix 

susceptible to water absorption, softening and swelling. In the 

CaO-VEMA cement the -0-CH3 groups on the copolymer may be complexed 

to the Ca2+ ions in the matrix to give a water stable cement. 

3.2.6. Concluding comments. 

The study of metal oxide-polyacid cements has shown that cement 

formation and properties are dependent upon the type of oxide and 

polyacid employed in their preparation. Although some indication of 

the chemistry involved in the formation of water stable cements can 

be obtained from these preliminary studies, detailed interpretations 

can only be speculative. Arising from this work, however, is 

evidence that the chemistry of G200 glass-PAA cement-is probably more 
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complex than has been presupposed and probably involves complexation 

of leached F and P043- to the Ca 2+ 
and Al 3+ ions in the matrix of 

the cement. 

3.3. The reactivity of polyacids with metal oxides and G200 glass in 

non-aqueous solvents. 

Setting cements have been prepared by reacting polyacids with 

metal oxides, or G200 glass, -in non-aqueous solvents. Table 3.3.1. 

lists the polyacid solutions studied and table 3.3.2. summarises the 

stability in water and solvents of some of the products obtained. 

Many oxides, such as Ti02, Sn02, Fe203 and Zr02 give non-setting 

mixes with the polyacid solutions in table 3.3.1., even after ageing 

for 9-14 days. Some oxides, such as NiO and Coo give flexible or slow 

setting products that are unstable in both water and the solvents 

employed in the polyacid solutions. A practical point arising from 

this work is that generally the non-aqueous solutions of polyacid 

give smooth mixes, even with the most reactive oxides, which is often 

an advantage over the aqueous polyacid solutions. 

From table, 3.3.2. it is apparent that a wide variety of water or 

solvent stable products can be made from non-aqueous polyacid solutions. 

It is surprising, however, that 1,4-dioxan can behave as a solvent 

for what is essentially an ionic acid-base type of reaction, for 

the dielectric constant of 1,4-dioxan (table 3.3.3. ) is very low. 

However, these non-aqueous systems are likely to contain small amounts 

of water (approximately <3%) and this may be sufficient to allow some 

reaction to occur by an ionic mechanism. Also, in commercial ionomer 

resins, ionic cross-linking is believed to occur in a viscous, 

aliphatic hydrocarbon medium. 

The results obtained with mixes in non-aqueous solvents differ 

slightly from those obtained with aqueous polyacids (c. f. tables 3.3.2 
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Table 3.3.1. 

Polyacid solutions in non-aqueous solvents. 

POLYACID SOLUTION PROPERTIES 

Type Batch No. Solvent Concentration 
(see table 3.1.1-1. ). (% w/w) 

SM, 10 Dimethyl- 53 
formamide 

EMA 8 Dimethyl- 35.6 
formamide 

PAA 5 Dimethyl- 27 
formamide 

EM, 8 1,4-dioxan 25 

Table 3.3.3. 

Dielectric constants of solvents. 
104 

Solvent Dielectric constant 

Water 78.5 

Dimethylformamide 36.7 

1,4-dioxan 2.2 
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Table 3.3.2. 

Solvent stability of cements prepared in 

non-aqueous media. 

Inorganic 
phase 

SMA in 
dimethyl- 
formamide 

PAA in 
dimethyl- 
formamide 

EMA in 
dimethyl- 
formamide 

EMA in 
1,4-dioxan 

MgO 1 3 3 3 

CaO la 1 2 1 

y20 3 
4* 1 4* 1 

ZnO 1 1 1 1 

CdO 1 1 1 1 

HgO 1 1 1 1 

PbO 1 1 1 1 

Pb304 4 1 4 1 

Bi203 
* 4 ** 4 ** 4 - 

CuO 4 1 1 1 

Ag20 1 1 1 1 

G200 glass 4 1 3b 3b 

1. Stable, no disintegration in water or solvent for the polyacid. 

2. Coherent, but softened very slightly in water. Stable in solvent 
for the polyacid. 

3. Coherent but softened markedly in water. Stable in solvent for 
the polyacid. 

4. Unstable, disintegrated. 

*= In dimethylformamide ** - In water, or in dimethylformamide. 

a= Weakened markedly b= Surface effect. 



135 

and 3.2.2.7. ), although this may simply be a result of a difference in 

the solvating effects of the non-aqueous solvents compared with water. 
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3.4. The binding of selected cations to various polyacids in 

aqueous solution. 

3.4.1. Introduction 

The most outstanding feature of cements made from metal oxides 

and aqueous polyacids is their variable stability in water. Even 

oxides that are soluble in aqueous polyacids may give cements that 

are unstable in water and this leads to the assumption that, providing 

the oxides react with aqueous polyacids, the water stability of the 

cements formed must be determined by the stability of the matrix 

salts or complexes towards water. As long as the matrix does not 

contain uncomplexed, hydrophilic polymer substi tuents , the water 

stability of the matrix salts or complexes must be dependent upon 

the effect of water molecules on the M-0 bonds present. The stability 

of M-0 bonds in complexes can be assessed quantitatively in aqueous 

solution by stability constants (see section 1.6.3. ) and some 

interpretations of the water stability of metal oxide-polyacid cements 

in terms of the stability constants of the matrix complexes has been 

briefly mentioned in section 3.2.4. 

The stability constants of metal ion-polyanion complexes for 

a variety of ions with particular polyacids can be found in the 

literature (see section 1.6.3. ), but a precise comparison of the 

stability constants for a given ion with a number of polyacids 

cannot be made as each author chooses different experimental 

conditions to determine them. 

In order to assess the usefulness of stability constant data 

in predicting the water stability of cements made with a metal oxide 

and different polyacids ion binding studies have been carried out 

on two polyacids with two different metal ions, using identical 

experimental conditions. 
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For this study PAA and EMA have been investigated, since 

they are structurally isomeric and possess only carboxyl groups 

and no other potential ligands. The cations which have been 

chosen for reaction with these polyacids are Ca and Cd. They 2+ 2+ 

have been selected for the following reasons: CaO forms cements 

with aqueous PAA and EMA with distinctly different softening 

properties in water (table 3.2.2.7. ) and CdO forms cements with 

these polyacids with greater water stabilities than the CaO based 

cements, even though Ca2+ and Cd2+ have about the same ionic radius 

(table 3.2.4.1. ). 

The binding of Cd 2+ to PESA has also been studied, since the 

CdO-PESA cement is water stable and there are no reported stability 

constants for PESA-Cd 2+ 
complexes in the literature. 

The experimental technique which has been employed in these 

studies is based on a potentiometric method developed by Gregor49 

and modified by Mandel and Leyte6° 

3.4.2. Gregor's method (modified by Mandel and Leyte) for determining 

the stability constants of metal ion-polyanion complexes. 

Gregor's method for determining the stability constants of 

metal ion-polyanion complexes is based on the method of Bjerrum for 

complexes of monomeric ligands. 49 

Consider a series of complexes in solution, 

MAC + MA2 ---- + MAi ---- + MAn 

For the equilibrium M+ MT MAi the following relationship 

can be derived (according to Bjerrum); 05,106 

n 
i Ki FA] 

n 
1+E K. [A] 

1 

where, n= average number of ligands, A, bound to the central metal 
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ion, M. 

n= the maximum value i can take = the co-ordination number of M 

with ligand A. 

Ki = the overall stability constant, defined as in (2) 

Ki = [MAi ----- (2) 

[M] [A] 

n is therefore dependent upon [A]and. a plot of 

n against - log [A] is called the formation curve for the system 

of complexes. 

It can be shown that at half integral values of n, -log 
[A] 

(at n=j- J) =- log kj, where kj is a step wise stability 

constant for the equilibrium, 

MAj-1 +A= MAC 

kJ is defined as, kj = [MA] ---- (3) 

[MAA-1] [A] 

At integral values of n average stability constants are 

obtained. For example at n=1 the value of -log [A] log Kav' 

where Kai = k1k2 = K2. K2 is the overall stability constant for 

the formation of the second complex and is defined by equation (2). 

k1 and k2 are defined by the general equation (3). 

For a polyacid, such as PAA, with a divalent metal ion, such 

as Cu2+, the constant K2 would relate to the equilibrium (4) and 

k1 and k2 would correspond to (5) and (6). 

Cu2+ +2 -COO = (-000)2 Cu ---- (4) 

Cu 2+ 
+ -COO :; = -COO Cu+ ----- (5) 

-COO Cu ++ -COO (-000)2 Cu ---- (6) 
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However, for polyacids, equilibria such as (4), (5) and (6) 

involve a net change of charge on the macromolecular chains. The 

configuration and binding properties-of a polyacid chain depend 

markedly upon its charge. Thus, although equilibria (4), (5) and 

(6) are valid for monomeric acids, they are not valid for polyacids. 

Gregor considers equilibria of the type 

2+ 2 -COOH + Cu 62, 
-(COO)2 Cu + 2H+ ----- (7) 

to be more satisfactory for polyacids, because they involve no 

change of charge on the polymer chains. B2 is an overall stability 

constant, which is defined by equation (8) 

B2 = [MA2] [H+] 2 
-------- (8) 

[M] [HA] 2 

B2 is a valid constant for both monomeric and polymeric acids. 

It is assumed that the binding of metal ions to the carboxylate 

ligands does not influence the dissociation equilibrium of the 

remaining carboxyl groups, i. e. that remaining carboxyl groups attain 

a dissociation equilibrium identical to the uncomplexed polyacid. 

This can only be true if the number of carboxylate groups bound is 

less than or equal to the charge on the participating metal ion. 

Equation (1) can be modified in terms of Bi values to obtain 

equation (9). 

n 
nB ---- (9) 

ýH 

n 
+E B H1 

H+ 

where Bi is the overall stability constant for the formation of the 



140 

i th 
complex, MAi . 

A formation curve can therefore be drawn by plotting n against 

-log 
(IHAI and from the curve obtained, at 
ý[H 

n=J, -log 
(jH+AL' 

l og bJ 

at n=1, -log 
[HA = -log Bay 

CH+J 
and at n= 1j, -log HA = -log b2 

[H+ý 

bl and b2 are stepwise stability constants describing equilibria 

(10) and (11) respectively. 

HA + M2+ MA+ + H+ --- (10) 

HA + MA+ - MA2 + H+ --- (11) 

Bav is an average stability constant and 

2 Bav = b1 b2 = B2. 

B2 is defined by equation (8). 

Gregor calculates stability constants from the results obtained 

by titrating PAA alone and in the presence of varying concentrations 

of added divalent metal salt. Titration plots of pH against log (21 

where a= the degree of neutralisation, have shown that the -" 

curve is depressed by the addition of the divalent metal salt. However, 

neutral salts of non-complexing metals (such as Na+ salts) also depress 

the titration curves, since the presence of neutral salt increases the 

dissociation of the carboxyl groups and thus decreases the apparent 

pKa of the acid (see section 1.6.1. ). But even in the presence of a 

swamping concentration of a neutral sodium salt the titration curves 

are still lowered by the presence of divalent metal ions, such as 

Cut+, indicating that these ions are strongly complexed to the PAA 
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and displace hydrogen ions from the polyacid into solution. 

By comparing the titration behaviour of PAA alone and with 

added divalent metal salts, in the presence of high concentrations 

of neutral Na+ or K+ salts, Gregor has obtained a set of stability 

constants for a number of divalent metal ions (see table 1.6.3.3. ). 

In order to construct the formation curve of metal-polyacid 

complexes, -log 
[A] and -log HA L values must be calculated 

H+ 
from titration results at different stages during the titration of 

the polyacid in the presence of the complexing, ions. Although 

calculation of -log HA values is relatively simple, the 
[Hý] 

determination of -log [A] values isýtedious (see reference 49). 

Mandel and Leyte60 have proposed a more convenient way of 

determining -log 
[A] values. A calibration plot of -log H 

[H] 

against -log 
[Al is constructed. from the titration results obtained 

for the polyacid in the absence of complexing metal ions, where 

calculation of -log 
[A] values is simple. Assuming that the 

chelation of divalent ions does not change the dissociation 

equilibrium of the polyacid, the required values can be obtained 

for the polyacid-divalent ion solutions by calculating -log 
([HA] 

and obtaining the value of -log 
[A] by interpolation from the 

calibration plot. 
[A] 

, n, [HA] and 
[H+] 

can be determined from the titration 

results as follows: 49,107 

[Hf] is calculated from the solution pH at any point in the 

titration, since pH : -log 
CH+1 

The total concentration of li gaud [At] in solution is given by 

[At] = 
[HA +a [At] + [H+] 

I+ L'+1 2 
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where, [H+] 
1= protons displaced by the complexing metal ion 

[H+J 
2= protons dissociated from HA. 

[Hi] 
1+ 

[H+] 
2= the total concentration of protons in solution, 

which is measured by the solution pH. 

... 
[HA] = 1-a [At] - 

[H+] 

[At] is known and can be adjusted for dilution throughout the 

titration. a is known from the amount of titrant solution added. 

-log HA can therefore be calculated and -log 
[A] 

[HJ] 

determined from the calibration plot. 

n can then be calculated, since, 

n= [At] -[Hý - [A1 

[Mtl 

where [MJis the total concentration of metal ions initially present. 
[Mtl can be corrected for volume changes due to dilution of the 

solution during titration. 

For the calibration plot [Al is obtained from a reference 

titration of an equal volume of the polyacid solution alone, from 

which, [A] =a [At] + [H+, 

The formation curve of the metal ion-polyacid complexes can 

then be obtained by plotting n against the corresponding values of 

-109 

3.4.3. The binding of Ca 2+ 
and Cd 2+ ions to poly(acrylic acid) and 

ethylene-maleic acid copolymer in aqueous solution. 

3.4.3.1. The construction of the formation curves from potentiometric 

titration results. 

Tables 3.4.3.1.1. and 3.4.3.1.2. show the results obtained from 

the titration of PAA (9.25 x 10-3 M) and EMA (8.95 x 10_3M) in 

1. OM NaNO3 solution. The -log[A]and -log HA values are 
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calculated from the values of a and pH measured experimentally and 

are plotted in graphs 3.4.3.1.1. and 3.4.3.1.2. to obtain the 

calibration curves for the titration of these polyacids. 

Tables 3.4.3.1.3. to 3.4.3.1.6. show the titration results and 

calculated n and -log HA values for PAA (9.25 x 10 3M) 
and 

[H I- 

EMA (8.95 x 10 3M) in I. OM' NaNO3 solution with various concentrations 

of added Ca(N03)2 and Cd(N03)2. The formation curves, obtained by 

plotting n against -log HA , for the Ca 2+ 
and Cd 2+ 

complexes 
[H+J) 

of PAA and EMA are illustrated in graphs 3.4.3.1.3. and 3.4.3.1.4. 

The calculations employed with the titrations of the polyacids 

alone and with added Ca 2+ 
and Cd 2+ 

salts have been adjusted to allow 

for the dilution of the polyacid solutions by the titrant solution. 
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Table 3.4.3.1.1.. 

The results from the titration of PAA in 1. OM 

Na NO3. 

a pH -log 
[HA] 

-log 
CA] 

-log IA1 ( ) 
[H 

0.00 3.08 2.08 3.08 -1.00 

0.13 3.51 2.11 2.84 -1.40 

0.25 3.95 2.17 2.62 -1.78 

0.38 4.35 2.25 2.46 -2.10 

0.50 4.73 2.35 2.34 -2.38 

0.68 5.13 2.47 2.25 -2.66 

, 0.75 5.61 2.65 2.17 -2.95 

0.88 6.25 2.95 . 2.11 -3.29 

0.90 6.44 3.05 2.10 -3.39 

0.92 6.63 3.15 2.09 -3.48 

0.94 6.88 3.27 2.08 -3.60 

0.96 7.29 3.45 2.07 -3.83 

0.98 'L8.40 3.75 2.06 -6.34 
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Table 3.4.3.1.2. 

The results from the titration of EMA in 

1. OM Na NO3 

a pH -log 
[HA] 

-log 
[A] H -log 

ý 

HI 

0.0 0 2.85 2.12 2.85 -0.72 

0.10 3.08 2.14 2.76 -0.93 

0.20 3.33 2.18 2.65 -1.15 

0.30 3.61 2.23 2.54 -1.38 

0.40 3.95 2.29 2.44 -1.66 

0.50 4.47 2.36 2.36 -2.11 

0.60 5.19 2.46 2.28 -2.73 

0.70 5.79 2.58 2.22 -3.20 

0.80 6.32 2.76 2.16 -3.56 

0.90 6.97 3.07 2.11 -3.90 

0.94 7.43 3.30 2.09 -4.12 

0.96 7.63 3.47 2.08 -4.16 

0.98 8.00 3.77 2.08 -4.23 

1.00 '8.40 - 2.07 -8.40 
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-log [14A] Graph 3.4.3.1.1. 
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Calibration plot of -log 

[114 vs. 
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-log[AA for the titration of 9.25 X 10-3M 

poly(acrylic acid) in 1. OM NaNO3. 
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Calibration plot of -log [1TA] vs. 

-4.0 -log [A ] for the titration of 8.95 X 10-3M 

ethylene-maleic acid copolymer in 1. OM haNO3. 
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Table 3.4.3.1.3. 

The results from the titration of PAA in 1. OM Na NO3 

in the presence of various concentrations of Ca(N03)2" 

pH -log 
[HA] 

-log iA -log 
[A ] 

n 

2+ 
01 104 6 C x . M a 

0.63 5.12 2.47 -2.65 2.26 0.16 

0.75 5.58 2.65 -2.93 2.18 0.17 

0.88 6.19 2.95 -3.24 2.12 0.33 

0.90 6.37 3.05 -3.32 2.11 0.30 

1.50x10 3MCa2+ 

0.75 5.52 2.65 -2.86 2.20 0.23 

0.90 6.22 3.05 -3.17 2.13 0.44 

0.95 6.71 3.36 -3.35 2.10 0.35 

0.97 7.08 3.87 -3.21 2.12 0.73 

3.00 x 107-3 M Ca 2+ 

0.75 5.47 2.65 -2.81 2.21 0.17 

0.90 6.15 3.05 -3.10 2.15 0.29 

0.95 6.62 3.36 -3.26 2.12 0.27 

0.97 7.03 3.87 -3.16 2.13 0.43 

Estimated from the calibration curve (graph 3.4.3.1.1. ). 

4 



148 

Table 3.4.3.1.4. 

The results from the titration of EMA in 1.0 M NaN03 

. in the presence of various concentrations of Ca(N03)2" 

a pH -log 
[HA] HA -log -log[A 

] 
n 

F 

1.50 x 10 3M Ca2+ 

0.75 6.04 2.67 -3.38 2.19 0.03 

0.90 6.93 3.07 -3.87 2.12 0.11 

0.95 7.53 3.37 -4.16 2.08 0.12 

2.40 x 10 3M Ca 
2+ 

0.80 6.21 2.76 -3.45 2.18 0.10 

0.90 6.79 3.07 -3.73 2.14 0.19 

0.94 7.17 3.31 -3.86 2.12 0.20 

0.96 7.36 3.47 -3.89 2.11 0.22 

0.98 7.68 3.77 -3.91 2.11 0.28 

0.99 7.88 4.07 -3.81 2.13 0.43 

3.00x103MCa 
2+ 

0.75 5.91 2.67 -3.25 2.21 0.11 

0.90 6.86 3.07 -3.80 2.13 0.08 

0.95 7.44 3.37 -4.07 2.09 0.01 

0.97 7.70 3.59 -4.11 2.09 0.07 

Estimated from the calibration curve (graph 3.4.3.1.2. ). 
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Table 3.4.3.1.5. 

The results from the titration of PAA in 1. OM NaNO3 

in the presence of various concentrations of Cd(N03)2" 

pH -log 
[HA] 

-log H -log 
[A] 

1.52 x 10-3M Cd 2+ 

0.13 3.46 2.11 -1.35 2.87 0.09 

0.25 3.80 2.17 -1.62 2.71 0.32 

0.38 4.07 2.25 -1.82 2.60 0.66 

0.50 4.38 2.34 -2.03 2.49 0.89 

0.63 4.66 2.48 -2.19 2.42 1.25 

3.04 x 10 3M Cd 
2+ 

0.13 3.42 2.11 -1.31 2.90 0.05 

0.25 3.68 2.18 -1.50 2.78 0.27 

0.38 3.89 2.26 -1.64 2.70 0.51 

0.50 4.14 2.35 -1.79 2.61 0.72 

0.63 4.35 2.48 -1.87 2.57 1.02 

* Estimated from the calibration curve (graph 3.4.3.1.1. ). 
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Table 3.4.3.1.6. 

The results from the titration of EMA in 1. OM NaNO3 in 

- the presence of various concentrations of Cd(N03)2. 

cc pH -log 
[HA] 

-log 
ý 

ýAj -log [A] ri 

1.15 x 10-3M Cd 2+ 

0.30 3.58 2.23 -1.35 2.56 0.08 

0.45 4.12 2.32 -1.80 2.41 0.09 

0.60 4.72 2.46 -2.26 2.34 0.44 

0.70 4.95 2.59 -2.36 2.33 0.92 

0.80 5.41 2.76 -2.65 2.29 1.24 

0.85 5.72 2.89 -2.83 2.27 1.31 

0.90 6.11 3.07 -3.05 2.24 1.36 

3.04 x 10-3M Cd 2+ 

0.15 3.17 2.16 -1.00 2.73 0.05 

0.30 3.56 2.23 -1.33 2.57 0.08 

0.45 4.04 2.33 -1.72 2.43 0.10 

0.60 4.40 2.46 -1.94 2.38 0.38 

0.70 4.54 2.59 -1.95 2.38 0.66 

0.80 4.85 2.77 -2.08 2.36 0.87 

0.85 5.05 2.89 -2.16 2.35 0.98 

0.90 5.42 3.07 -2.35 2.33 1.03 

0.95 6.14 3.37 -2.77 2.28 0.98 

* Estimated from the calibration curve (graph 3.4.3.1.2. ). 

4 
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Graph 3.4.3.1.3. 

Formation curves for poly(acrylic acid) (9.25 X'10 3M) 

with Ca2+ and Cd2+ ions in 1. OM NaNO3. 
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Graph 3.4.3.1.4. 

Formation curves for ethylene-maleic acid copolymer 
(8.95. X 10-3 M) with Ca2+ and Cd2+ ions in 1. OM NaNO3. 
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3.4.3.2. The binding of Ca 2+ ions to poly(acrylic acid) and 

ethyl ene-mal ei c acid copolymer. 

The titration results for PAA and EMA solutions with added 

Ca(N03)2 follow very closely the titration results of the polyacids 

in the absence of Ca(N03)2, until at very high degrees of 

neutralisation (a) a distinct deviation occurs. Consequently, n 

values can only be calculated at very high values of a and only 

a small part of the formation curve can be uncovered. At very high 

values of a, a slight error in the volume of added titrant solution 

can give rise to a large error in the pH of the polyacid solution, 

for the solution pH rises sharply at values of a approaching 1. 

The scatter of the points on the formation curves for Ca2+ complexes 

of PAA, or EMA, is most probably due to slight errors in measuring 

small aliquots of the 0.20M NaOH titrant solution. To avoid large 

changes in the ionic strength of the polyacid solution, only about 

5ml of titrant solution have been used to completely neutralise 

100ml of the polyacid solution. 

Values of log Bav cannot be obtained from the formation curves. 

However, by a short extrapolation, log bl values may be estimated, 

but these values have little precise meaning since it is likely that 

complexation occurs in overlapping steps with these polyacids. 
49 

Log bl values from the formation curves are: 

Ca 2+ 
for PAA log b1 PAA ti 

-3.35 

Ca 2+ 
for EMA log b -4.05 1 EM ti 

The value of log býa2PAA 
+ 

is of the same order as that obtained 

by Gregor, 
59 from whose data with 0.06M PAA in 1M KC1 a value of 
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Ca 2+ 
log bl PM » -3.55 to - 3.60 can be estimated. The small discrepancy 

Ca2+ between the experimentally determined value of log bl PAA and the 

literature value is most probably due to the different neutral salts 

employed in the PAA solutions. From a detailed study of the effects 

of neutral salts on the formation of Cu2+_PAA complexes, Gregor49 has 

shown that a change of neutral salt from Na NO3 to KC1 in the 

polyacid solution can lead to large differences in the observed 

stability constant. 

The log b, values obtained for Ca 2+ 
are so widely separated 

that to a first approximation, 

Ca 2+ 
Ca 2+ 

log bl E <. log bI PM 

From the positions and shapes of the formation curves it is 

-probable that, 

Ca 2+ Ca 2+ 

log Bav EMA < log Bav PAA, 

although the curves cannot be safely extrapolated to n=1 to obtain 

numerical log Bav values. 

3.4.3.3. The binding of Cd 2+ ions to poly(acrylic acid) and 

ethylene-maleic acid copolymer. 

The binding of Cd2f to PAA and EMA is very strong, much stronger 

than for Cat+. Log Bav values are readily obtained from the formation 

curves and are, 
Cd2+ 

for PAA, log Bav PAA 1.95 

Cd2+ 
for EMA, log Bav EMA 2.30 
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With PAA the formation curve of the Cd2+ complexes can be 

drawn up to n=1 from titration results at values of a less than 

0.63. Consequently the scatter of the points on the graph is small. 

The points on the formation curve for EMA-Cd2+ complexes lie close 

to a common curve when calculated from titration results at values 

of a up to 0.90. The point at -log H=2.77 ;n=0.98, 
[H+j 

which has been calculated from a titration result at a=0.95, shows 

the widest deviation from the formation curve, probably as a result 

of small experimental errors in measuring the titrant solution. 

The stability constants obtained show that Cd2+ is more 

strongly bound to PAA than to EMA, which is similar to the trend 

observed for the binding of Ca2+ to these polyacids (see section 

3.4.3.2. ). 

There are no reported log Bav values for Cd2 complexes with 

PAA and EMA in the literature. However, from preliminary ion binding 

studies on Cu2+, which also forms strong complexes with PAA, a value 

of log Bav= -1.2 has been obtained for PAA in I. OM NaNO3. This 

value agrees closely with a value of between -0.99 and -1.17 obtained 

by Gregor, 49 
which attests the experimental technique used in this 

work. The slight discrepancy between the experimental and literature 

values may be due to sample differences or differences in the choice 

of titrant alkali (which Gregor does not disclose). 

3.4.4. The binding of Cd 2+ ions to poly(ethylenesulphonic acid) in 

aqueous solution. 

With PESA (1.04 x 10-2 M) the titration results for the polyacid 

with and without added Cd 2+ ion (2 x lÖ 3M) in 0.88M NaNO3 solution, 

are almost identical (table 3.4.4.1. ), even up to a- 0.99. No formatirn 

curve can therefore be constructed for this system. It is possible 

that Gregor's method is unsuitable for PESA, since PESA is a very 
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strong acid and in neutral salt solution is almost completely 

dissociated. 98 A marked depression in the titration curve of the 

polyacid in the presence of Cd 2+ ions, compared to the polyacid'alone, 

would seem unlikely, since pronounced proton displacement could not 

occur if most of the acid groups are already dissociated, especially 

if the metal ion is not extremely strongly complexed. 
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Table 3.4.4.1. 

The results from the titration of PESA in 

0.88M NaNO3, in the presence and absence of 

2x 10 
3M 

Cd(N03)2. 

PH of solution without 

added Cd 
2+ 

(PH)1 

pH of solution with 

added Cd 
2+ 

(PH) 
2 

(PH) 
1- 

(pH)2 

0.00 1.89 1.87 0.02 

0.10 1.94 1.91 0.03 

0.19 2.00 1.96 0.04 

0.29 2.05 2.02 0.03 

0.39 2.12 2.09 0.03 

0.48 2.20 2.17 0.03 

0.58 2.29 2.26 0.03 

0.68 2.41 2.38 0.03 

0.77 2.57 2.54 0.03 

0.87 2.81 2.79 0.02 

0.96 3.42 3.42 0.00 

0.98 3.82 3.81 0.01 
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3.4.5. Comparison of the experimentally determined stability constants 

with the water stability of metal oxide-polyacid cements. 

The water stabilities of CaO-PAA and CaO-EMA cements(table 

3.2.2.7. ) do not parallel the order of magnitude of the stability 

constants determined for Ca2+-PAA and Ca2+-EMA complexes, i. e. 

for water stability, CaO-PAA < CaO-EMA 

Ca 2+ Ca 2+ 

for stability constants, log bI PM > log b1 EMA 

The water stability: - of CaO-PAA cement is much less than 

CdO-PAA cement and similarly CdO-EMA cement is more stable in water 

than CaO-EMA cement. These trends for the stability of the cements 

in water are paralleled by the stability constant data. 

Ca2+ and Cd2+ ions have approximately the same ionic radius 

(see table 3.2.4.1. ) and form complexes free from the effects of 

ligand field stabilisation energy and Jahn-Teller stabilisation, which 

are often operative in transition metal complexes. The ionic 

potentials for Ca2+ and Cd2+ are roughly equal, consequently Ca2+ and 

Cd2+ may be expected to form ionic complexes with similar stability 
Ca 2+ Cd 2+ 

constants. However, log bl « log bl for PAA and EMA complexes 
2+ 

with Ca 2+ 
and Cd 2+ ions and also it is probable that log Baia << 

2+ 
log Bavä indicating that the bonding in the Cd2+ complexes may have 

some covalent contribution, compared to that in the Ca2+ complexes. 

A higher degree of covalent character in the matrix bonding of the 

polyacid-CdO cements may explain the fact that the polyacid-CdO cements 

are more stable towards water than the polyacid-CaO cements. 

Davies108 has plotted stability constants of hydroxo metal 

complexes against the ionic potential of the metal ions and obtained 

a linear relationship for alkali and alkaline earth ions, where the 
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M-0 bonding would be expected to be ionic. Transition metal ions, such 

as Cot+, Nit+, Cu2+ and Zn 2+ 
and ions such as Hg 2+ 

and Pb2+ deviated 

from this linear relationship. Davies attributed the deviation to 

covalent character in the bonding and from the extent of the deviation 

calculated ionic and covalent contributions to the M-0 bonds. 

Applying a similar method to PAA and PMAA, using the stability 

constants of Gregor49'59 and Mandel and Leyte, 60 the following orders 

of increasing covalent character in M-OOC- bonds can be derived by 

assuming the Mg2+ and Ca2+ complexes are predominantly ionic: 

Mg2+ = Ca 2+ 
<Co 

2+ 
= Ni 2+ 

<Zn 
2+ 

<Cd 
2+ 

<Cu2f. 

However, this order does not parallel precisely the order of the 

stabilities of the corresponding metal oxide-PAA, or PMAA, cements in 

water (see table 3.2.2.7. ). 

Thus, simple interpretation of the water stability of polyacid- 

metal oxide cements in terms of the degree of covalent contribution 

to the bonding between the metal ions and polyanions in their matrices, 

as determined from stability constant data, would appear to be 

insufficient for this series of ions. 
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3.4.6. Objections to the use of stability constants determined by 

Gregor's method. 

There are objections to the use of the stability constants 

determined by Gregor's method for comparison with the properties 

of metal oxide-polyacid cements in water. 

These are: 

1. The optimum co-ordination number of the metal ion cannot 

be found, since complexes with more than two bound ligands cannot 

be considered. 

2. The solutions used are dilute and may not adequately 

reflect the ion-binding behaviour of metal ions in viscous, highly 

concentrated polyacid solutions. 

3. Neutral salt is added to the polyacid solution before 

titration, whereas in polyacid-metal oxide cements no neutral salt 

is added. 

The most important objection is the solution concentration. 

In concentrated polyacid solutions the likelihood of inter-chain 

binding of metal ions is statistically greater than in dilute 

solution, where intra-chain chelates may be extensively formed. 

The extremely high density of ligand groups in highly concentrated 

polyacid solutions may favour higher co-ordination numbers than in 

dilute solutions and the co-ordination number may effect the nature 

and extent of inter-chain binding. 

The failure of stability constant data to predict the water 

stabilities of certain metal oxide-polyacid cements may reflect a 

difference in the complexing of metal ions in dilute and in 

concentrated aqueous polyacid solutions. 
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4. SUGGESTIONS FOR FUTURE WORK. 

Although some attempts have been made to elucidate the chemistry 

involved in the formation of ionomer cements, the subject is still 

largely speculative and requires further and more extensive studies 

to be carried out to gain a fuller understanding of these cements. 

The usual techniques for studying ion binding are carried out 

in dilute solution and have limits as model systems. A better 

model would be the solid complexes of polyacids. The magnetochemistry 

of these solid complexes may give useful information on the 

stereochemistry of the metal ion-ligand bonding present in metal oxide- 

polyacid cements. 

With G200 glass-polyacid cements the chemistry is further 
3- 

complicated by the presence of F and PO4 ions. The influence of F- 

and PO ions on the formation of metal ion-polyanion complexes may 

be revealed by experiments to determine the stability constants of 

metal ions with polyacids in dilute solutions in the absence and 
3- 

presence of varying amounts of F and P04 ions. This study could 

be extended by an examination of the properties of metal oxide- 

polyacid cements containing acid soluble fluorides and phosphates, 

or salts of other complexing anions. 
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