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Abstract

The problem of asset risk analysis is positioned within the computational intelligence
paradigm. We suggest an algorithm for reformulating asset pricing, which involves
Incorporating imprecise information into the pricing factors through tuzzy variables as
well as a calibration procedure for their possibility distributions. Then fuzzy
mathematics 1s used to process the imprecise factors and obtain an asset evaluation.
This evaluation 1s further automated using neural networks with sign restrictions on
their weights. While such type of networks has been only used for up to two network
inputs and hypothetical data, here we apply thirty-six inputs and empirical data. To
achieve successful training, we modity the Levenberg-Marquart backpropagation
algorithm.

The intermediate result achieved 1s that the fuzzy asset evaluation inherits
features of the factor imprecision and provides the basis for risk analysis. Next, we
formulate a risk measure and a risk robustness measure based on the fuzzy asset
evaluation under different characteristics of the pricing factors as well as different

calibrations. Our database, extracted from DataStream, includes thirty-five companies
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traded on the London Stock Exchange. For each company, the risk and robustness
measures are evaluated and an asset risk analysis is carried out through these values,
indicating the implications they have on company performance. A comparative
company risk analysis is also provided. Then, we employ both risk measures to
formulate a two-step asset ranking method. The assets are initially rated according to
the investors’ risk preference. In addition, an algorithm is suggested to incorporate the
asset robustness information and refine further the ranking benefiting market analysts.

The rationale provided by the ranking technique serves as a point of departure
in designing an asset risk classifier. We 1dentify the fuzzy neural network structure of
the classifier and develop an evolutionary training algorithm. The algorithm starts with
suggesting preliminary heuristics in constructing a sufficient training set of assets with
various characteristics revealed by the values of the pricing factors and the asset risk
values. Then, the training algorithm works at two levels, the inner level targets weight
optimization, while the outer level etficiently guides the exploration of the search space.
The latter 1s achieved by automatically decomposing the training set into subsets of
decreasing complexity and then incrementing backward the corresponding
subpopulations of partially trained networks. The empirical results prove that the
developed algorithm is capable of training the 1dentified fuzzy network structure. This
is a problem of such complexity that prevents single-level evolution from attaining
meaningful results.

The final outcome is an automatic asset classifier, based on the investors’
perceptions of acceptable risk. All the steps described above constitute our approach to
reformulating asset risk analysis within the approximate reasoning framework through

the fusion of various computational intelligence techniques.
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Declaration of Originality

[ hereby declare that this thesis is composed entirely by myself. The notions and
conclusions included herein originate from my work, if not else acknowledged in the
text. The work described in the thesis has not been previously submitted for a degree at

this or any other university.

The thesis is completed in May 2004 under a supervised PhD programme at
Brunel University. Developed measures, techniques and algorithms, as well as
empirical results, have been published as follows:
* Chapter 2 in [P1, P2], Chapter 3 in [P2, P3],
« Chapter 4 in [P3,P 4], Chapter 5 in [P4,P 5],
» Chapter 6 in [P6], Chapter 7 in [P7],

* Chapter 8 in [P8,P 9, P10].

The tollowing are considered original contributions:
» definition of an algorithm for fuzzy asset evaluation,
= definition of an asset risk measure,
= definition of an asset robustness measure,
» developing an asset ranking technique,
» designing a soft asset classifier,
= developing an evolutionary training strategy.

Finally, the suggested approach to knowledge representation in risk analysis is subject

to further research.
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The original contributions results from the adopted view that the problem of
asset risk analysis should be in the centre of the research effort. Therefore, the effort is
focused on revealing the real-world problem in its various aspects, and then suggesting
means to resolve them. This is in contrast with a view that prioritises technical and/or
original developments from the outset. Thus, we define measures, develop algorithms,
techniques and strategies, and design a classifier system, when and how the problem
requires. Intriguingly, this results at the end in original contributions due to the
following major reasons: the intrinsic complexity of the problem; our conviction that it
should be investigated in its entirety rather than concentrating on one feature and

ignoring the other characteristics; the deficiency of methods for tackling problems of

such complexity.

Here, the contributions are revisited again providing details and justification

for each of them.
« definition of an algorithm for fuzzy asset evaluation:

The rationale behind this contribution is as follows. The emerging field of behavioural
finance is receiving increasing recognition as financial theory. This emphasises the role
the perceptions of various market agents have on the development of the market itself.
Shiller [1] tests conventional theories against the impressive evidence- particularly
toward the end of the last century - suggesting that the available economic information
alone does not explain asset price levels. He identifies characteristics of human
behaviour that have major etfects on asset price trends. Apparently, we can conclude
that the asset pricing problem is influenced by both measurement-based (economic)

information and perception-based (behavioural) information, and the solution should
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allow for the fusion of these types of information. Conventional pricing techniques lack
effective means in approaching the task of information fusion. Their answer 1s to
identify information restrictions under which the corresponding technique is valid. The
best that can be achieved with a standard pricing method is to attempt to relax to some
extent some of the restrictions, prove that the initial method is not valid, and introduce
partial modifications so that the revised method is valid under the revised set of
restrictions. This describes the trend in asset pricing over some decades, 1.€. as shown
in the literature on the capital asset pricing model [2-15] and the arbitrage pricing theory
[16-28], summarised in [P3]. On the other hand, the computational theory of
perceptions introduced recently by Zadeh [29-33] provides a powerful approach to
information fusion and processing based on fuzzy logic. Aluha [34] anticipated earlier
that investment knowledge should not start with the estimation of economic and
financial variables in terms of certainty or probability but with the perceptions of
concepts inherent or surrounding the investment process whose character 1s not
principally measurable and therefore can be handled by the nonnumeric mathematics of
fuzzy logic. This gives us the reason to reformulate asset evaluation as a fuzzy
problem, avoid limited attempts to modity crisp techniques, and approach the problem
allowing any relevant information. The above description provides the rationale to
develop an algorithm for fuzzy asset evaluation. We suggest when and how to
introduce fuzzy variables, how to calibrate the membership functions and when to
modify the calibration, and how to relate asset imprecision with factor imprecision. In
comparison with relevant studies, our technique differs in the following way. Fuzzy
modelling of simpler concepts in finance is attempted in [35-38] and not the

reformulation of asset evaluation approached here. Also [35-38] only use made-up data,
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therefore no meaningful calibration procedure is suggested and the results are not
valuable empirically. On the other hand, we have extracted a database of thirty-five
assets traded on the LSE with information on their pricing factors over twenty-five
years. Finally, previous studies have not suggested any algorithm, while here we
describe step by step when and how to introduce imprecise information and when to
extract what measures relevant to the subsequent analysis. Initially, we consider
reformulation of the price-dividend relation, based on the reasoning in Shiller [1] that
dividends and risk-free rates do not explain asset prices in the last decades of the
twentieth century — our database 1s over the same period. Then, we further generalise

the algorithm for any crisp pricing technique.

The next three contributions are interrelated and we will describe them together.

» definition of an asset risk measure,
» definition of an asset robustness measure,

» developing an asset ranking technique:

Some of the crisp asset pricing techniques, including models derived from the arbitrage
pricing theory, consider a vector of pricing factors and a vector of noises. The latter are
considered sources of risks. The attempt 1s to reduce these risks by identifying relevant
factors. We adopt an alternative approach incorporating factor incompleteness as well
as factor imprecision into the factor representation. Then, we consider the noise
components as sources of factor uncertainty rather than asset risks. Our objective is to
allow any sources of uncertainty and to process the relevant information producing the
resultant asset evaluation. Thus, we focus on a single all-inclusive asset risk. This is

relevant to the general interpretation of processing uncertainty presented by Dubois and

-
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Prade in [39]. Next, consider the capital asset pricing model - it is effectively a single-
factor model where the pricing factor is the return on the market portfolio. Though,
some CAPM modifications involve a three-fund separation theorem [9], so there are
two pricing factors. Generally, the CAPM interprets the asset variance as the total risk,
which consists of systematic and unsystematic risk. The systematic risk is that part ot
the total risk that can be explained with the variance of the market porttolio through the
asset beta, which i1s the covariance of the asset and the market portfolio. The
unsystematic risk is the unexplained part of the asset variance, which is the variance of
the noise component. For example. the partial character of the asset beta in the capital
asset pricing model 1s revealed by the existence of further measures of asset
performance, introduced by Jensen, Treynor and Sharpe, correspondingly. They are
used to capture the part of the asset return unexplained by the model [5]. In
comparison, we do not consider the factor variance and the noise variance as risks but
rather as sources of uncertainty on which basis to derive the risk. The fusion of
perception-based uncertainty is further welcome in addition to probabilistically
calculated variances. The intuition behind the risk measure we introduce is as follows.
The risk is measured through the level of membership of the observed asset price to the
evaluated fuzzy asset price, which itself 1s based on processing any involved uncertainty
and reflect those 1n its membership function. Thus the risk measure is a single number,
however all-inclusive of any type of uncertainty, and therefore more informative.
Another reason for the measure being more informative is its focus on the final
objective. For example, if one considers investing in the asset today, our risk measure
will indicate the chance, as measured today, of realising loss on the investment.

Focusing on the final objective is also relevant to the general interpretation of
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processing uncertainty and decision-making under uncertainty, presented by Dubois and
Prade in [39]. They suggest that any kind of uncertainty should be incorporated into a
problem and processed though its solution, and finally an indication should be provided
for the total effect on the major problem objective. We further continue with
Introducing a robustness measures. It is based on evaluating the asset and its risk
measure while changing the modelled factor imprecision. As a result, the asset
membership function will change, for some assets more and for others less. So, we
have a reason to call the measure an asset robustness measure. However, the induced
change will further modify the membership value of the observed asset price to the
evaluated price. Therefore, it is easier to measure asset robustness through the change
of the risk value. Thus, this will again be one number but all-inclusive and focused on
the final objective. It is focused on the final objective for the following reason. The
objective is to evaluate reliably the chance of realising loss on the asset. The revised
asset evaluation may change a lot and still affect little the initial risk value. On the other
hand, the asset evaluation may change only a little but producing a significant effect on
the risk value. Therefore, the measure of asset robustness we suggest 1s dictated by the
final objective. Finally, though interrelated the two measures analyse an asset from
different perspectives. Thus, the asset may be low risky but low robust, or highly risky
but highly robust as well, etc. Considering Definition 3.1 and Definition 3.3 in Chapter
3, the intuition 1s that a market agent will prefer less risky and highly robust assets. It is
why we formulate an asset ranking technique based on the two measures, and suggest a
particular procedure and rules of incorporating the measures and refining the final
ranking. As a result of the rationale presented in this paragraph, the ranking technique

is considerably original. For the reasons of comparison, it may be related to techniques
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of ranking fuzzy numbers [40-43]. However they represent approaches to ordering
membership functions, rather than formulating risk and robustness measures and
incorporating their effect. So, the former ranking will not address the final objective
and thus will not be helpful. If considering a ranking based on risk measures from the
crisp asset evaluation methods, they will experience the limitations of those measures,
as described here earlier, and the lack of robustness measures. Therefore, there is no
much ground for comparison. Finally, we investigate here the price-dividend relation,
because 1t 1s the relation Shiller [1] bases its argument on the market behaviour toward
the end of last century. The argument is that perception based information is important,
and we provide a technique to incorporate this. At the end, we compare for that model
the crisp results and the results from our approach involving computational intelligence
techniques. On the other hand, the same approach can be applied starting from the crisp
capital asset pricing model or a crisp arbitrage pricing theory model, and then to
compare for them the crisp results and the soft evaluations. This will require a

corresponding database.

Finally, the last two contributions involves the design and training of an asset

risk classifier:

» designing a soft asset classifier,

« developing an evolutionary training strategy.

The classifier 1s based on the rationale behind the developed measures and ranking
technique above. The 1dentification of the architecture involves investigating the
approximation capabilities of crisp and fuzzy neural networks. We first three-layer

crisp networks with fuzzy restrictions on the weights to approximate fuzzy asset
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evaluation. This type of networks are suggested in Buckley [44], however only
networks of maximum two inputs have been trained and the training set involves made-
up data. In comparison, here we train networks with 36 inputs and use an empirical
database of 36 assets over 25 years. Buckley [45], suggests that backpropagation 1s not
applicable in the training, however we modify the Levenberg-Marquart algorithm to
accommodate for the sign restrictions and successfully train the networks. Still, the
results prove that this type of network is not able to approximate the complex problem
of fuzzy asset classification. In Liu [46], it is theoretically proved that four-layer fuzzy
networks are universal approximator of fuzzy-valued functions, while no experimental
result are considered. We extend the proof provided there to the multivariable case, and
train the fuzzy classifier within the empirical database. Furthermore, we develop an
evolutionary training algorithm. The algorithm works on two levels, out of the three
levels described in Yao [47]. The first level involves optimisation of the crisp and fuzzy
network weights, therefore it 1s concerned with searching the parameters space. The
second level is concerned with exploring the training set itself, or guidance of the
learning process for the parameters from the first level, 1.e. it is optimisation of the
optimisation. Furthermore, the two-level exploratory algorithm is based on the general
concepts of divide-and-conquer evolution and incremental evolution, the same concepts
that are the basis of the bidirectional incremental evolution in Kalganova [48]. Based
on those concepts, the algorithm developed 1n this thesis is entirely new in its design
and in its 1mplementation. As an imtial stage in the algorithm, we identify database
heuristics and use them in constructing the training set, then design a dynamic objective

training function. The empirical results are compared with those of a conventional

evolutionary algorithm and prove the efficiency of the new algorithm. Finally, the

—_— -k
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complexity of the problem and approaches by other authors to relevant problems are
provided in a comparative table. The important contribution is the development of an
evolutionary algorithm able to resolve a problem of high complexity. A significant
aspect of the contribution is the application to a real-world problem. The complexity of
the problem arises from the following reasons. The asset risk takes values within
different qualitative ranges. Assets are also characterised with qualitatively different
risk behaviour in time. The fuzzification of the asset pricing factors and the processing
of imprecise information is performed by the classifier itself. The neural network

structure involves fuzzy weights.

All the contributions, in the sequence explained here, work towards resolving

the real-world problem.

-
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Symbols

D, 1s the dividend per share 1n period ¢

DY, i1s the dividend yield in period ¢

DY, 1s the fuzzy interval substituted for the dividend yield 1n period ¢

DYt 1s the possibilistic variable substituted for the dividend yield in period ¢

dy, is the logarithmic dividend yield in period ¢

c?yt 1s the fuzzy interval substituted for the logarithmic dividend yield in period ¢
dy, 1s the possibilistic variable substituted for

the logarithmic dividend yield 1n period ¢

f(x) 1s a crisp function, which is a mapping from & to &

f (%) is a fuzzy function, which is a mapping from 3(R) to 3(R)

f (x) is a fuzzy-valued function, which is a mapping from R to 3(R)
| 1s an identity transfer function of a neuron in the neural network
I 1s a fuzzy identity transfer function of a neuron in the fuzzy network

1s a population of full-size ¥ to be used over a complete training set task(’()

and generated by recombination of a breeding subpopulation X (%)
/i
evolved over a complete training set at level of decomposition x
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P, ( x (%) ]
/4 4

1S a population of full-size ¥ to be used over

a training subset taskgf) , 1< j<J,,and generated

by recombination of a breeding subpopulation X (%)
VI

evolved on a complete training set task(’{)

P | x\X)
/4 ' {71 1 ]
1s a population of full-size ¥ to be used over

a training subset task(K) , 1< J<J,,and generated

1j
by recombination of a breeding subpopulation X S’j)

I
evolved on the subset taskg f)

IP Y (%m) X (Xm) X (x,,)
y INC ¥, /2 11 END y,/2 IJK’m END v, /2 2 END

is the full-size population to be used at the first incremental level

over the set task(x’" ) , and generated by recombination of

breeding subpopulations of size ¥;/2 evolved separately over

the subsets taskg’" ) , taskgxm ) 1< j<J x, A the tinal decomposition level

/)
x W o Lox e x
INC v, /2 11 END v,/2 1J .. END v, /2 INC

IP
/4

is the full-size population to be used at some incremental level x,, —x+ 1

over the set task('r) , and generated by recombination of
breeding subpopulations of size ¥;/2 evolved separately over

X . ..
the subsets taskg j ) 1< jsJ, atsome level of decomposition

and the breeding subpopulation evolved over task(H])

at the previous incremental level

Antoaneta Serguieva May 2004



Symbols X 1X

mse 1S the minimum mean square error of the crisp neural network

N gen 1s the number of generations in the probing step

used in the evolutionary algorithm

I 1s the asset price in period ¢

P 1S the fuzzy interval substituted for the asset price in period ¢

P, 1s the evaluated fuzzy interval for the current asset price

P 1s the possibilistic variable substituted for the asset price in period ¢

P 1s the logarithmic asset price in period ¢

D; 1s the fuzzy interval substituted for the logarithmic asset price in period ¢
Po 1s the evaluated fuzzy interval for the logarithmic current asset price

D 1s the possibilistic variable substituted for

the logarithmic asset price in period ¢

PO 4w 1s the output of the crisp neural network approximating the a—cuts of py
POy 1s the fuzzy logarithmic asset price approximated by the fuzzy neural network
Poss 1s the possibility operator

Poss[DYt = Xpy, :I
1s the calibrated possibility distribution of the dividend yield in period ¢

Poss [Jy, = Xdy, :I

is the calibrated possibility distribution of
the logarithmic dividend yield in period ¢

Possl:f’, =Xp ]

is the calibrated possibility distribution of the asset price in period ¢
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Symbols | - X

Poss| By = ]
oss| Ky Xp,
1s the evaluated possibility distribution for the current asset price

Poss[pt =Xp :l
1s the transformed possibility distribution of
the logarithmic asset price in period ¢

Possl:ﬁo =Xp, ]
1S the evaluated possibility distribution for the logarithmic current asset price

Posxv|:1:i5 = xR:I

1s the calibrated possibility distribution of the constant return

Poss[i} = Xy, ]
1s the transformed possibility distribution of

the time-varying return in period ¢

0, 1s the current trading price
q 1s the logarithmic current trading price
R 1s the constant asset rate of return
R 1s the fuzzy interval substituted for the constant rate of return
R 1s the possibilistic variable substituted for the constant rate of return
R, is the time-varying rate of return
R, is the fuzzy interval substituted for the time-varying rate of return in period ¢
R, is the possibilistic variable substituted for
the time-varying rate of return in period ¢
r; 1s the logarithmic time-varying rate of return
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Symbols XX1

7 1s the fuzzy interval substituted for
the logarithmic time-varying rate of return in period ¢

Iy 1S the possibilistic variable substituted for
the logarithmic time-varying rate of return in period ¢

task 1s the training set for the fuzzy network
and consists of elements (asset X period, p,)

task(’() 1s the training set for the fuzzy network at level of decomposition &

taskg <) : taskgx)
are the subsets in the initial decomposition

of the overall task task(r) at level x

K : . . .
taskg j) 1S a subset in the consequent decomposition

of taskgx) at level x, where 1< j<J,.;

the subsets, their number J .. and their size
are automatically discovered by the BIE

o 1s a level of membership
a—cut 1s alevel interval in a fuzzy interval

4 1s an individual chromosome encoding a fuzzy network

Xbest 1s the best fitted chromosome in a population

;(%‘gEND 1s the best fitted chromosome at the end of
the two-level exploratory algorithm

X 1s a population of chromosomes

XsuB 1S a breeding subpopulation of chromosomes
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Symbols

1s a breeding subpopulation of size ¥; evolved over

a complete training set task(’() at level of decomposition x

g S’j) 1s a breeding subpopulation of size y; evolved over
a subset task%f) at level of decomposition k', where /1< j< J,.,
taskl(x) = {taskl(f),. ..,taskgzz} and task(K) — {taskgx),taskgx)}
/}’2 (HK\;)C 1s the better half of a breeding subpopulation evolved over
4
a complete set task(’() at some incremental level x,, —x+ 1
07,0, are parameters of linearisation in the logarithmic pricing function

Enterval 18 the error evaluating the interval approximating capability
of the trained crisp neural network

(D(f)' OFNN ,q)
1s the neuron evaluating the asset risk in the classifier structure

¥ is the number of chromosomes in a full-size population
at each step of the evolutionary algorithm

Y is the size of a breeding subpopulation

A is the number of crossover points applied to
a parent pair of chromosomes to produce an offspring

A is the number of crossover points applied over
the single-number genes of the parent pair of chromosomes

A is the number of crossover points applied over
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Symbols XX111

the triplet genes of the parent pair of chromosomes

U 1s a membership function

u(xpy, |DY,)
is the calibrated membership function of the fuzzy dividend yield in period ¢

i,
1s the transformed membership function of
the tuzzy logarithmic dividend yield in period ¢

M (xdy,

ﬂ(th |15,) is the calibrated membership function of the fuzzy asset price in period ¢

u(xp, |Bo)

1s the evaluated membership function for the current asset price

K (xpt |5 J )
is the transformed membership function of
the fuzzy logarithmic asset price in period ¢

H (xpo |p 0 )
is the evaluated membership function of the current logarithmic asset price

U (x R |I§) is the calibrated membership function of the fuzzy constant return

R,)

p(x
is the calibrated membership function of
the fuzzy time-varying return in period ¢

U (x,.t |r"§) is the transformed membership function of

the fuzzy logarithmic return in period ¢

T is the level of possibility
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Symbols XX1V

0 is the bias term of the sigmoid neuron-transfer function

L2 is a sigmoid transfer function of a neuron in the neural network
T 1s the rate of mutation used in the evolutionary algorithm

v 1s a level of uncertainty in the pricing factors

VR 1s the level of uncertainty in the pricing factors which brings

about the risk value in the evaluated current asset price

E(xi) 1s the cost function evaluating the error of

the regular fuzzy network encoded in chromosome y;

e o) ) ) E)

are parameters used at different steps of the decomposition part
of the two-level exploratory algorithm in its dynamic objective function

fD rEcenp 18 the parameter used at final decomposition steps
in the two-level exploratory algorithm in its dynamic objective function

EINC is the parameter used throughout the incremental part
of the two-level exploratory algorithm in its dynamic objective function

Encenp s the parameter used in the final objective
of the two-level exploratory algorithm

émin ! é:max

are parameters defining a scope of network error
in the fitness function ¢(£) used in the evolutionary algorithm

[x)

is the dynamic objective used throughout the steps of
the two-level exploratory algorithm

e (C-RFNN ’Snagent )
is the neuron introducing the agent preterences into the risk classifier
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Symbols XXV

¢ (€) 1s the fitness function used in both algorithms,
single-level evolution and two-level evolution

A 1s the robustness measure

Ay 1 the robustness measure under a broader range of imprecision
Asz; 1S the robustness measure under time-varying return
Aacceptal:wle

1S a level of robustness that falls within
the preference range of an investment agent

Aggent 1s the level of robustness which delimits the preference range
of an investment agent A, ..oraple 2 Aggent
S(R) 1s the set of all fuzzy intervals defined on the real-number set &
N 1s the set of natural numbers
0 1s a class of fuzzy neural networks

SO{FNNIfFNN (x)}

1s a class of fuzzy neural networks with
fuzzy-valued network-transfer functions

/4 1s the set of all real numbers

i1s the 1nvestment risk measure

N, is the risk measure under initial calibration

R, is the risk measure under a broader range of imprecision
N3 1s the risk measure under time-varying return
SRaccept‘auf;’le

is a level of risk that falls within the preference range of an investment agent
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Symbols )

Ragent 1s the level of risk which delimits the preference range

of an investment agent R ;. .papie < Ragens

R ey is the asset risk evaluated by the fuzzy neural network

(assetx period, p,) )

1s an element in the training set for the fuzzy network;
the element consists of real-valued pricing factors denoted

XX V1

with asset X period and the corresponding fuzzy asset evaluation py

Py (@) P (@)

1s the @ —cut of the fuzzy logarithmic asset price

approximated by the fuzzy neural network encoded in chromosome »

{xDY, |Poss [EY, = Xpy, ] 2 a}

represents all the values tor the dividend yield in period ¢
whose level of possibility is at least 7 =«

Poss[ﬁO =xp, ] 2 a’}

represents all the values 1n the evaluated current asset price
whose level of possibility 1s at least 7 =«

o

Poss[ﬁ, =Xxp ] 2 a’}

&

represents all the values for the asset price in period ¢
whose level of possibility 1s at least 7 =«

{xR lPoss [fé = xR:l > a'}
represents all the values for the constant return
whose level of possibility 1s at least 7 =«
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Abbreviations

ANN

APT

AR

BAA

BBN

BIE

CAPM

CC

CIS CFTC

CMEFV

CTP

CW

DAG

DNA

DSTE

EC

EFNN

ENN

EFRBS

EFS

EP

________——-———'——————————“————_——_———
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Abbreviations

artificial neural network

arbitrage pricing theory

approximate reasoning

British Accounting Association

Bayesian belief network

bidirectional incremental evolution

capital asset pricing model

chaotic computing

CIS Technical Committee on Computational Finance
continuous multivariable fuzzy-valued function
computational theory of perceptions

computing with words

directed acyclic graph

deoxyribonucleic acid

Dempster-Shafer theory of evidence
evolutionary computing

evolutionary fuzzy neural network
evolutionary neural network

evolutionary fuzzy rule-based system
evolutionary fuzzy system

evolutionary programming
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Abbreviations - Nt

FEA fuzzy evolutionary algorithm

ES evolutionary strategy

f-granularity fuzzy granularity

fg-generalisation fuzzification and fuzzy granulation (of concepts or techniques)
FL fuzzy logic

FL/E the epistemic facet of fuzzy logic

FL/L the logical facet of fuzzy logic

FL/R the relational facet of fuzzy logic

FL/S the set-theoretic facet of fuzzy logic

FNN fuzzy neural network

GA genetic algorithm

GP genetic programming

HFNN hybrid fuzzy neural network

ICAEW Institute of Chartered Accountants in England and Wales
IEEE Institute of Electrical and Electronics Engineers
IEEE CIS [EEE Computational Intelligence Society

LSE London Stock Exchange

ML machine learning

NC neurocomputing

NES neuro fuzzy system

NYSE New York Stock Exchange

PR probabilistic reasoning

RFENN regular fuzzy neural network

Antoaneta Serguieva




Figures

Figures

Figure 2.1a
Figure 2.1b
Figure 2.2a
Figure 2.2b
Figure 2.3a
Figure 2.3b
Figure 2.4a
Figure 2.4b
Figure 2.5a
Figure 2.5b
Figure 2.6a
Figure 2.6b
Figure 2.7a
Figure 2.7b
Figure 2.8a
Figure 2.8b
Figure 2.9a
Figure 2.9b
Figure 3.1

Figure 3.2

Figure 3.3

Antoaneta Serguieva

XX1X
BASS -fuzzified data ..., 235
BASS - evaluated fuzzy share price ..........cooiiiiiiiiiiiii 25
BBA GROUP -fuzzified data ... 25
BBA GROUP - evaluated fuzzy share price ...............ccoioinnnee. 25
BENTALS -fuzzitieddata ..........cooiiiiiiiiiiiiiiiiiiieeeeenee, 26
BENTALS - evaluated fuzzy share price ..............coooiiiiviniin.n. 26
BLUE CIRCLE INDUSTRIES - fuzzifieddata ........................ 26

BLUE CIRCLE INDUSTRIES - evaluated fuzzy share price ........26

BOC GROUP - fuzzified data ...........covviiiiiviiiiiiiiiiiinne, 26
BOC GROUP - evaluated fuzzy share price ............cccovvvinnaa.. 26
BOOTS CO. -fuzzifieddata ..........c.cooiiiiiiiiiiiiiiii i, 27
BOOTS CO. - evaluated fuzzy share price  ...........cevviiiiiinnnn, 27
BP AMOCO -fuzzifieddata ..., 27
BP AMOCO - evaluated fuzzy share price ..............ccoovvvinii. 27
BRITISH AMERICAN TOBACCO - fuzzified data .................. 27

BRITISH AMERICAN TOBACCO - evaluated fuzzy share price ...27

BUNZL - fuzzified data .........ccoooveiiiiiiiii i, 28
BUNZL - evaluated fuzzy share price ...........ccoviviiiiiiinnn.... 28
BASS -evaluated risk .......cooiiiiiiiiii e, 32
BBA GROUP -evaluatedrisk ... 32
BENTALS -evaluated r1SK .....ccoovviiiiiiiiiii e, 33

May 2004



Figures

Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11a

Figure 3.11b

Figure 3.12a

Figure 3.12b

Figure 3.13a
Figure 3.13b

Figure 3.14a

Figure 3.14b

Figure 3.15a

Figure 3.15b

Figure 3.16a

Figure 3.16b

Figure 3.17a

Antoaneta Serguieva

XXX
BLUE CIRCLE INDUSTRIES - evaluated risk ......................0. 33
BOC GROUP -evaluated risk .....ccoevviiiiiiiiiiiii i, 33
BOOTS CO. -evaluated risk ........coiiiiiiiiiii e, 33
BP AMOCO -evaluated risk ......coiiiiiiiiiiii i 33
BRITISH AMERICAN TOBACCO - evaluated risk .................. 33
BUNZL - evaluated risk ......oooiiiiiiiii e 34
COATS VIYELLA -evaluatedrisk ..o, 34
BP AMOCO - tuzzified data under initial calibration ................. 39
BP AMOCO - fuzzified data
under a broader range of modelled imprecision ......................... 39
BP AMOCO - evaluated asset price and risk measure
under 1nitial calibration ........ ..o, 39
BP AMOCO - evaluated asset price and risk measure
under a broader range of modelled imprecision ......................... 39
BASS - fuzzified data under a broader range of imprecision .........42
BASS - evaluated robustness ..........oooiiiiiiiiiiiiii e 4?2
BBA GROUP - fuzzified data under
a broader range of IMPIeCISION ......cuvveirerirernrniiieeeeeeeeennnnnnnn 42
BBA GROUP - evaluated robustness .........cccovvviiiiiiiininiiannnn. 42
BENTALLS - fuzzified data under
a broader range of IMpPrecision ...........coiiiiiiiiiiiiiiiiiiiiiiiieen... 43
BENTALLS - evaluated robustness ..........ccooeiiiiviiiiiiiiiinnnn... 43
BLUE CIRCLE INDUSTRIES - fuzzified data
under a broader range of Imprecision ..............cooiiiiiiiiiiiiii., 43
BLUE CIRCLE INDUSTRIES - evaluated robustness ................ 43
BOC GROUP - fuzzified data under
a broader range of IMprecision ...........cooviiiiiiiiiiiiiiiii 43




Figures XX X1

Figure 3.17b BOC GROUP - evaluated robusStness ........covveiieiiiieneiieeneanenenn. 43
Figure 3.18a BOOTS CO. - tuzzified data under

a broader range of IMPIreCISION ....ovvuviveriiieiiniieereeenriereaenaeenns 44
Figure 3.18b BOOTS CO. - evaluated robUStNESS ....vvviiririieieiriiinieaennnnens 44
Figure 4.1 Transformation of data membership functions .......................... 52
Figure 4.2 BP AMOCO - qualitative robustness value .............cccoevvniene 36
Figure 4.3 TATE & LYLE - qualitative robustness value .......................... 56
Figure 4.4 SCOTTISH & NEWCASTLE - qualitative robustness value .........56
Figure 4.5 WOLSELEY - qualitative robustness value .....................c.... .. 56
Figure 4.6 HANSON - qualitative robustness value .............cccoeviiiiiieennnnn. 56
Figure 4.7 BOC GROUP - qualitative robustness value ............................ 56
Figure 5.1 Crisp neural network approximating the fuzzy pricing function ......65
Figure 5.2 Fuzzy neural network structure classifying

assets with attractive risk and robustness values ........................ 76
Figure 6.1 Risk classifier architecture ...........coooiiiiiiiiiiiiiiiiiiiiiiiin e, 30
Figure 6.2 Multipoint CroSSOVEr OPEratOr ........cuunniininiiiiieieieneeeeeennne, 85
Figure 6.3 Two-level exploratory algorithm ..., 101
Figure 7.1a GOODWIN - factor ImpreCiSION ......eevieeeeveenineereeennneeereeennnns 107
Figure 7.1b DIXONS GROUP - factor imprecisSion  ........c.cceeeeeevnieeieennnnnn.. 107
Figure 7.1c MARKS & SPENCER - factor imprecision .........c.c.eovevvieennenne 107
Figure 7.2 Implementation: Training set exploration ............................. 124
Figure 7.3 Performance of single-level and two-level evolution ................ 128
Figure 8.1 Classification of problem-solving knowledge ......................... 134
Figure 8.2 Multiple-constraint multi-perspective domain representation ....... 137

Antoaneta Serguieva May 2004



Figures

Figure 8.3

Figure Al.la
Figure Al1.1b
Figure Al.2a
Figure A1.2b
Figure Al.3a
Figure A1.3b
Figure Al.4a
Figure Al.4b
Figure Al.5a
Figure A1.5b
Figure Al.6a
Figure A1.6b
Figure Al./a
Figure A1.7b
Figure Al.8a

Figure A1.8b

Figure A1.9a
Figure A1.9b
Figure Al.10a
Figure A1.10b
Figure Al.11a

Figure Al.11b

Antoaneta Serguieva

XXX1I
Formulation of the cognitive diagnosisrule .....................eee. 141
BASS -fuzzified data ..., 168
BASS - evaluated fuzzy share price .........ccooviiiiiiiiiiiiiiiiin. 168
BBA GROUP - fuzzifieddata ..., 168
BBA GROUP - evaluated fuzzy share price ........................... 168
BENTALS - fuzzifieddata .............coviiiiiiiiiiiiiiiiiie, 168
BENTALS - evaluated fuzzy share price ................ccooiniill. 168
BLUE CIRCLE INDUSTRIES - fuzzitied data ....................... 169

BLUE CIRCLE INDUSTRIES - evaluated fuzzy share price ......169

BOC GROUP - fuzzifieddata ..........ccooviiiiiiiiiiiiiiininnnnnn.. 169
BOC GROUP - evaluated fuzzy share price ............ccevvvvnnn..... 169
BOOTS CO. -fuzzifieddata ..., 169
BOOTS CO. - evaluated fuzzy share price ...........c.ccovvviiinen... 169
BP AMOCO -fuzzifieddata .............coiiiiiiiiiiiiiiiiii i, 169
BP AMOCO - evaluated fuzzy share price ............covvvnneea.... 169
BRITISH AMERICAN TOBACCO - fuzzified data ................. 170
BRITISH AMERICAN TOBACCO -

evaluated fuzzy share price ..........ocoiiiiiiiiiiiiiiiii L, 170
BUNZL - fuzzified data ........c.coviviiiiiiiiiiii i, 170
BUNZL - evaluated fuzzy share price€ ...........coooiiiiiiiiinnnnnnn.. 170
COATS VIYELLA - fuzzifieddata ............ccooiiiiviiiiiina.... 170
COATS VIYELLA - evaluated fuzzy share price ..................... 170
DIXONS GROUP - fuzzifieddata ..o, 170




Figures

Figure Al1.12a
Figure A1.12b
Figure Al1.13a
Figure A1.13b
Figure Al.14a
Figure Al1.14b
Figure Al.15a
Figure A1.15b
Figure Al.16a
Figure Al.16b
Figure Al.17a
Figure A1.17b
Figure Al.18a
Figure A1.18b
Figure A1.19a
Figure A1.19b
Figure A1.20a
Figure A1.20b
Figure Al.21a
Figure A1.21b
Figure Al.22a
Figure A1.22b
Figure Al.23a

Figure A1.23D

Antoaneta Serguieva

XX X111
GOODWIN -fuzzified data .......ccovviiiiiiii ittt iireenenennne. 171
GOODWIN - evaluated fuzzy share price ................cooeiiiil, 171
GREAT UNIVERSAL STORES - fuzzifieddata ..................... 171

GREAT UNIVERSAL STORES - evaluated tuzzy share price ....171

HANSON -fuzzifieddata ... 171
HANSON - evaluated fuzzy share price ............cooiiiiiiiiiiin... 171
INCHCAPE - fuzzifieddata ..., 171
INCHCAPE - evaluated fuzzy share price ............ccccvnnnnn. .. 171
LEX SERVICE - fuzzified data .............cccooeiiiiiiiiin, 172
LEX SERVICE - evaluated fuzzy share price ..............ccoo..e... 172
MARKS & SPENCER - fuzzifieddata .................cccooiievvnna..l, 172
MARKS & SPENCER - evaluated tfuzzy share price ................ 172
NORTHERN FOODS - fuzzifieddata ..............ccovviviiiaiinin. 172
NORTHERN FOODS - evaluated fuzzy share price ................. 172
PILKINGTON - fuzzifieddata ............cooooiiiiiiiiiiiii s, 172
PILKINGTON - evaluated fuzzy share price ..........cccoevi.n... 172
RANK GROUP - fuzzifieddata ..........ccoviiiiiiiiiii. 173
RANK GROUP - evaluated fuzzy share price ................ooo..... 173
RMC GROUP - fuzzifieddata ......c.ccooeiiiiiiiiiiiiiiiiiie, 173
RMC GROUP - evaluated fuzzy share price .................coene.... 173
SAINSBURY (J) - fuzzifieddata ..............ccoviiiiiiiiiinni.... 173
SAINSBURY (J) - evaluated fuzzy share price ....................... 173
SCOTTISH & NEWCASTLE - fuzzifieddata ........................ 173
SCOTTISH & NEWCASTLE - evaluated fuzzy share price 173



Figures

Figure A1.24a
Figure A1.24b
Figure A1.25a
Figure A1.25b
Figure A1.26a
Figure A1.26b
Figure Al.27a
Figure A1.27b
Figure A1.28a
Figure A1.28b
Figure Al1.29a
Figure A1.29b
Figure A1.30a

Figure A1.30b

Figure Al.31a
Figure A1.31b
Figure Al.32a
Figure A1.32b
Figure Al.33a
Figure A1.33b
Figure Al.34a
Figure A1.34b

Figure Al.35a

Antoaneta Serguieva

XXX1V
SMITH (WH) GROUP - fuzzifieddata ..........ccoovvvvviiiniininnn.... 174
SMITH (WH) GROUP - evaluated fuzzy share price ................ 174
SMITHS INDUSTRIES - fuzzifieddata ......................oooo.... 174
SMITHS INDUSTRIES - evaluated fuzzy share price ............... 174
TARMAC -fuzzified data .........cccovviiiiiiiiiiiiiiiiiii, 174
TARMAUC - evaluated fuzzy share price ...........coovvvvinninnnn.... 174
TATE & LYLE - fuzzifieddata .................coiiiiiiiiinnn. 174
TATE & LYLE - evaluated fuzzy share price ............ccc.evvene... 174
TAYLOR WOODROW - fuzzifieddata ...................cuvennn.n. 175
TAYLOR WOODROW - evaluated fuzzy share price ............... 175
TIGROUP - tuzzitieddata ..., 175
TI GROUP - evaluated fuzzy share price ...........cccoovvvvieinnn..... 175
TRANSPORT DEVELOPMENT GROUP - fuzzified data .........175
TRANSPORT DEVELOPMENT GROUP -
evaluated fuzzy share price ..., 175
UNILEVER - tuzzifieddata ...........ccooiiiiiiiiiiiiiiii i, 175
UNILEVER - evaluated fuzzy share price ...............coovin..L.. 175
UNITED BISCUITS HOLDINGS - fuzzified data ................... 176
UNITED BISCUITS HOLDINGS - evaluated tuzzy share price ...176
WHITBREAD - fuzzifieddata ................cooiiiiiiiii. ., 176
WHITBREAD - evaluated fuzzy share price .......................... 176
WIMPEY (GEORGE) - fuzzifieddata ...................oooiiiii .. 176
WIMPEY (GEORGE) - evaluated fuzzy share price ................. 176
WOLSELEY -fuzzifieddata ...........coovovvevnin 176



Figures XXXV

Figure A1.35b WOLSELEY - evaluated fuzzy share price ..................ccouennen, 176
Figure A2.1 BASS -evaluated risk ....ooiiiii e 177
Figure A2.2 BBA GROUP -evaluated risSk .....covviriiiiiiiiiiiiiii e, 177
Figure A2.3 BENTALS -evaluated risk .....cooviiiiiiiiiiii e, 177
Figure A2.4 BLLUE CIRCLE INDUSTRIES —evaluated risk ................cc...l. 177
Figure A2.5 BOC GROUP -evaluated risk ....c.oviiiiiiiiiiiiiiiiiiie i 177
Figure A2.6 BOOTS CO. -evaluated r1SK .....ovvviiiiiiiiiiiiicii i, 177
Figure A2.7 BP AMOCO -evaluated risk ......covvviiiiiiiiiiiiiieeee, 178
Figure A2.8 BRITISH AMERICAN TOBACCO - evaluated risk ................ 178
Figure A2.9 BUNZL -evaluated risk ......ooiiiiii e, 178
Figure A2.10 COATS VIYELLA -evaluatedrisk .......cccooiiiiiiiiiiiiiian.. 178
Figure A2.11 DIXONS GROUP - evaluated risk ........cociiiiiiiiiiiiiiinnnn... 178
Figure A2.12  GOODWIN - evaluated risk ...........ccooiiiiiiiiiiiiiiiin. 178
Figure A2.13  GREAT UNIVERSAL STORES - evaluated risk ..................... 178
Figure A2.14  HANSON - evaluatedrisk ... 178
Figure A2.15  INCHCAPE - evaluated risk ..., 179
Figure A2.16 @ LEX SERVICE - evaluatedrisk ...............ooiL 179
Figure A2.17  MARKS & SPENCER - evaluated risk .................oo 179
Figure A2.18 NORTHERN FOODS -evaluatedrisk .......oovvvviiiiiiiiiiiini..... 179
Figure A2.19 PILKINGTON -evaluated risK ...oovvniiiiiiiiiiiiiiiieiiiicieannan, 179
Figure A2.20 RANK GROUP -evaluated 118K  ..ovvvriiiiii e 179
Figure A2.21 RMC GROUP -evaluated 118K ..ooviniieeee oo, 179
Figure A2.22 SAINSBURY (J) -evaluated risK .....ooveveieiiiiiiiiiiiiiien, 179
Figure A2.23 SCOTTISH & NEWCASTLE -evaluatedrisk ...............co ool 180

Antoaneta Serguieva May 2004



Hiaes XXX V1

Figure A2.24  SMITH (WH) GROUP - evaluated risk ........oovviviiiiinnniineannns. 180
Figure A2.25 SMITHS INDUSTRIES -evaluated risk ...ccovvviiiiiiiiiiinn.. 180
Figure A2.26 TARMAC -evaluated riSK  ...oovvviiiiiiii i 180
Figure A2.27 TATE & LYLE -evaluatedrisk ......oovviiiiiiiiiiiiiiiiiiee, 180
Figure A2.28 TAYLOR WOODROW -evaluated risk ......ocovieiiiiiiii.... 180
Figure A2.29 TIGROUP -evaluated risk ....oovnviniiiiiiiiiii i 180
Figure A2.30 TRANSPORT DEVELOPMENT GROUP - evaluated risk .........180
Figure A2.31 UNILEVER -evaluated risk ........cooiiiiiiie, 131
Figure A2.32  UNITED BISCUITS HOLDINGS - evaluated risk .................. 181
Figure A2.33 WHITBREAD - evaluated risk ...l 181
Figure A2.34 WIMPEY (GEORGE) - evaluated risk ......ccovviivviiiiiiinnnn.... 181
Figure A2.35 WOLSELEY -evaluated risk .....cooviiiiii e, 181
Figure A3.1a  BASS - fuzzified data under a broader range of imprecision ........182
Figure A3.1b  BASS - evaluated robustness ...........cccoooviiiiiiiiiiiiiiiiiiinn, 182
Figure A3.2a  BBA GROUP - fuzzitied data under

a broader range of IMPIeciSIon ........coovviiiiiiiiiiiiiiiiii e, 182
Figure A3.2b  BBA GROUP - evaluated robustness ...................ooooiiiiin.., 182
Figure A3.3a BENTALLS - fuzzified data under

a broader range of IMPrecisSion .........ccceveiiiiiiiiiiiiiiinrinininne.. 182
Figure A3.3b  BENTALLS - evaluated robustness ......................ooiiiiiiin, 182
Figure A3.4a  BLUE CIRCLE INDUSTRIES - fuzzified data

under a broader range of IMpPrecisIon ............coevviiiiiiiiiiiinnnn.., 183
Figure A3.4b BLUE CIRCLE INDUSTRIES - evaluated robustness ............... 183
Figure A3.5a  BOC GROUP - fuzzified data

under a broader range of IMPreciSIoN ..........ccovviiiiiiiiiiiinnnnn... 183
Figure A3.5b BOC GROUP - evaluated robustness .........oeeeevevrniinnnnnnin, 183

Antoaneta Serguieva




Figures

Figure A3.6a

Figure A3.6b

Figure A3.7a

Figure A3.7b

Figure A3.8a

Figure A3.8b
Figure A3.9a
Figure A3.9b

Figure A3.10a

Figure A3.10b

Figure A3.11a

Figure A3.11b

Figure A3.12a

Figure A3.12b

Figure A3.13a

Figure A3.13b
Figure A3.14a
Figure A3.14b

Figure A3.15a

Figure A3.15b

Antoaneta Serguieva

XXXVII
BOOTS CO. - fuzzified data under
a broader range of IMPreciSIon ........ccovvviiniiiiiiiiiiiiniiiiiniinnn. 183
BOOTS CO. - evaluated robustness .........ccoeveiiiiiiiiiiiiiinnn... 183
BP AMOCO - fuzzified data under
a broader range of IMPrecCISION ......cvvviiiiiiiiiieiiiiieneernaaiernnn. 183
BP AMOCO - evaluated robustness ..........coooviiiiiiiiiiiiennnn.. 183
BRITISH AMERICAN TOBACCO - ftuzzitied data
under a broader range of IMPreciSIoN .........ccceviiiiiiiieeernennnnnne. 184
BRITISH AMERICAN TOBACCO - evaluated robustness .........184
BUNZL - fuzzified data under a broader range of imprecision ...... 184
BUNZL - evaluated robustness ..........ocoviiiiiiiiiiiiiiiiiiinnnnennn 184
COATS VIYELLA - fuzzified data
under a broader range of IMPrecisIon ..........coviiiiiiiiiieeiinienn 184
COATS VIYELLA - evaluated robustness .............coovvvvvnnnnnn. 184
DIXONS GROUP - fuzzitied data
under a broader range of IMprecision ............ccoiiiiiiiiiiieneeenann. 184
DIXONS GROUP - evaluated robustness ...........coovviivievinnnnnn. 184
GOODWIN - fuzzified data under
a broader range of IMPIreCISION .........veuiuniiiiiiiiiiiiiiieiiirienenns 185
GOODWIN - evaluated robustness .........ccoeeeiiiiiieiiieinennnnnnn. 185
GREAT UNIVERSAL STORES - tuzzified data
under a broader range of Imprecision ...........cccceiiiiiiiiiiiiiii. 185
GREAT UNIVERSAL STORES - evaluated robustness .............185

HANSON - fuzzified data under a broader range of imprecision ...185

HANSON - evaluated rODUSINESS ..vvvittiir e nrereneenrenrnnrannn, 185
INCHCAPE - fuzzified data under

a broader range of Imprecision...........oooveiiiiiiiiiiiiiiii e, 185
INCHCAPE - evaluated robUStnesSS ...oovvreeninee i, 185



Figures

Figure A3.16a

Figure A3.16b

Figure A3.17a

Figure A3.17b

Figure A3.18a

Figure A3.18b

Figure A3.19a

Figure A3.19b

Figure A3.20a

Figure A3.20b

Figure A3.21a

Figure A3.21B

Figure A3.22a

Figure A3.22b

Figure A3.23a

Figure A3.23b

Figure A3.24a

Figure A3.24b

Antoaneta Serguieva

XXX Viil
LEX SERVICE - fuzzified data
under a broader range of Imprecision ...............oociiiiiiiiiiinn, 186
LEX SERVICE - evaluated robustness ...........ccoovvviiiiiinnennnnn 186
MARKS & SPENCER - fuzzified data
under a broader range of IMPrecision ...........covvvvvvvvvvnevnnnnennnn, 186
MARKS & SPENCER - evaluated robustness ........................ 186
NORTHERN FOODS - fuzzified data
under a broader range of Imprecision ..............ciiviiiiiiiiiiinnne. 186
NORTHERN FOODS - evaluated robustness ......................... 186
PILKINGTON - fuzzified data
under a broader range of IMpPrecision ...........ccociiiiiiiiiiiiiennnn., 186
PILKINGTON - evaluated robustness ..............cccoivvviiiinnn.... 186
RANK GROUP - fuzzified data
under a broader range of IMPreCiSION ......covvvivviiiiineriiiiieeeeennnns 187
RANK GROUP - evaluated robustness ...........ccoovvviiiiiinnnannn... 187
RMC GROUP - fuzzified data
under a broader range of IMPrecCISIoON .....oovvviiiiiiiiieiiiienniieennn.. 187
RMC GROUP - evaluated robustness ..........ccoevvveiiiiiiininnnnnn. 187
SAINSBURY (J) — fuzzified data
under a broader range of Imprecision ..............c.oeviiiiiiiiiiinn... 187
SAINSBURY (J) - evaluated robustness ..............coovvvvvvnnnnn.. 187
SCOTTISH & NEWCASTLE - fuzzitied data
under a broader range of IMpPrecision ..........oooeiviiiiiiiiiiiiini... 187
SCOTTISH & NEWCASTLE - evaluated robustness ............... 187
SMITH (WH) GROUP - fuzzified data
under a broader range of IMprecision ...............cocoiiiiiiiinnnnn.... 188
SMITH (WH) GROUP - evaluated robustness ........................ 188

May 2004



Figures

Figure A3.252a

Figure A3.25b
Figure A3.26a
Figure A3.26b

Figure A3.27a

Figure A3.27b

Figure A3.28a

Figure A3.28b

Figure A3.29a

Figure A3.29b

Figure A3.30a

Figure A3.30b

Figure A3.31a

Figure A3.31b

Figure A3.32a

Figure A3.32b

Figure A3.33a

Figure A3.33b

Antoaneta Serguieva

XX X1X
SMITHS INDUSTRIES - fuzzified data
under a broader range of IMpPrecision ...........evvviiiiiiiiiiiiiiiin, 188
SMITHS INDUSTRIES - evaluated robustness ...........coeevnenn... 188

TARMAC - tuzzified data under a broader range of uncertainty ...188

TARMAC - evaluated imprecision ..........ccooevviivviieiinnninnnn... 188
TATE & LYLE - fuzzified data

under a broader range of Imprecision ...........ccceiviiiiiiiiiiniennnn. 188
TATE & LYLE - evaluated robustness ..........cccooevvvviiievnnnnnne 188
TAYLOR WOODROW - fuzzified data

under a broader range of IMpPrecision ............cooiiiiiiiiiiiiiininn... 189
TAYLOR WOODROW - evaluated robustness ....................... 189
TI GROUP - fuzzified data under

a broader range of IMPIreCISION ......ovvviviiiieiiiiiieeeeiiieeernnnn, 189
TI GROUP - evaluated robustness ..........ccoeiiiiiiiiiiiiiininnn.... 189
TRANSPORT DEVELOPMENT GROUP - fuzzified data

under a broader range of IMPreciSIoN ........covvviviiiiiiiiriiiienennn. 189
TRANSPORT DEVELOPMENT GROUP —

evaluated robUSINESS ....oriiiiiiiiii i 189
UNILEVER - fuzzified data under

a broader range of IMPrecCiSION ......ccceviiiiiiniiiiieneieinneneennnnnn, 189
UNILEVER - evaluated robustness ..........ccooiiiiiiiiiiiiii... 189
UNITED BISCUITS HOLDINGS - fuzzitied data

under a broader range of IMpPrecision ..........c.coeviiiiiiiiiiiiinninn... 190
UNITED BISCUITS HOLDINGS - evaluated robustness .......... 190
WHITBREAD - tuzzitied data

under a broader range of IMpPrecisIon ............ooiiiiiiiiiii e, 190
WHITBREAD - evaluated robustness ...........oovvenininiininnni 189

May 2004



Figures

Figure A3.34a

Figure A3.34b

Figure A3.35a

Figure A3.35b

Figure A4.1

Figure A4.2

Figure A4.3

Figure A4.4

Figure A4.5

Figure A4.6

Figure A4.7

Figure A4.8

Figure A4.9

Figure A4.10

Figure A4.11

Figure A4.12

—-___’_——__—_.———————-—-—--_——_-

Antoaneta Serguieva

x]
WIMPLEY (GEORGE) - fuzzified data
under a broader range of IMprecision ..........ccoevviiiiiiiiiiiiini. 190
WIMPEY (GEORGE) - evaluated robustness ...........ccovvnee..... 190
WOLSELEY - fuzzified data under
a broader range of IMPrecision .........ccoviiiiiiiiiiiiiiiieeiiiiennnnn.. 190
WOLSELEY - evaluated robustness .........cccoovviiiiiiiiiiininnnnnn, 190
BBA GROUP - evaluated risk and robustness
under tIMe-VaryINg rate  ..........evvneieereeeeeneereneneeeennnnrnoneennn 191
BILLUE CIRCLE INDUSTRIES - evaluated risk and robustness
under timMe-VaryING Tal€ ........vveevevrrerrnrnureennnerererereeeeeeenenn. 191
BOC GROUP - evaluated risk and robustness
under time-varylng@ Tl .......ceviireunreeeunrererenerernneeennneeeennnn 191
BP AMOCO - evaluated risk and robustness
Under tIMe-VaryINg FaE ....vvvueerieriirerieeriieeennrennereneresnneesnnn 191
COATS VIYELLA - evaluated risk and robustness
under timMe-vVarylNE TALE .....uvieeeriiereeenneeieennneeereneeresennensnns 191
GOODWIN - evaluated risk and robustness
under time-varyln@ rate ......c..oiieiiiiierernnrreernerereneernennnasenenns 191
HANSON - evaluated risk and robustness
under tIMe-Varying Tate ........ceeereniieeeeriurennniieereninereeeeeennns 192
LEX SERVICE - evaluated risk and robustness
under time-Varying Tt .......ueeeeeeeereneeerrieereeeeeneneennnnnennnnnns 192
NORTHERN FOODS - evaluated risk and robustness
under time-Varying Tate .......cceeeveeieeeeeteiierererirnmnneaeeaeeeennnn 192
PILKINGTON - evaluated risk and robustness
under tiMe-varyin@ rate ..........cceeeeireirerureeetnnniniarieeeseneennnn, 192
RMC GROUP - evaluated risk and robustness
under timMe-Varying Fate .......ueeeeeeerereeeeemietereniirteerereerennenn.. 192
SCOTTISH & NEWCASTLE - evaluated risk and robustness
under time-vVarying Tate ......ooeviuiiniiiee ittt eeeeeeeerennnnns 192




Figures

Figure A4.13

Figure A4.14

Figure A4.15

Figure A4.16

Figure A4.17

Figure A4.18

Figure A4.19

x 11
SMITHS INDUSTRIES - evaluated risk and robustness
under tIMe-VaryiNZ rat€ ..........cvvvvvrvvnrinniinneoneeeereeesencenennns 193
TARMAC - evaluated risk and robustness
UNAder tIMEe-VAryINgG TAtE .....ciiieeeiereeerernersnennneroeseeeeeecennonee 193
TATE & LYLE - evaluated risk and robustness
under tiMe-VaryINE TAt€ .........c.cvvvrerrerrerreeeeeeeeeeeeenereeeeeeannne 193
TI GROUP - evaluated risk and robustness
under tImMe-vVarylng rate .........ccceeveiniieeiieeeeenrennnreeeeeneennnnn 193
TRANSPORT DEVELOPMENT GROUP -
evaluated risk and robustness under time-varying rate ................ 193
UNITED BISCUITS HOLDINGS -
evaluated risk and robustness under time-varying rate ............... 193
WOLSELEY - evaluated risk and robustness
under tIMe-VaryIng raf€ .......ovvvvueeirnerernrieenierereeenerennnennnnn 193

i ein——

Antoaneta Serguieva

May 2004



Tables - _ | .

Tables
Table 2.1 LISt Of COMPANIES ..ovviiiiiiiiiii ittt eeeeenaens 23
Table 3.1 Evaluated risk measure by company .............cciiiiiiiiiiiii i, 35
Table 3.2 Evaluated robustness measure by company ............ccccceevviiennn.n. 45
Table 4.1 Evaluated risk and robustness measures by company

under time-varying retUITl  .........cooveeeriiiieenirnnnieeeeeeeereennnnennns 53
Table 4.2 RisSk ranking ..o e S5
Table 4.3 Robustness adjusted ranking ............cooiiiiiiiiiiiiiii, 58
Table 4.4 Crisp asset ranking ....cooovviiiiiiiiii i ee e e e eans 39
Table 5.1 Crisp neural network performance ............ccooviiiiiiiiiiiiiiiiinn.n., 70
Table 7.1 TypPes Of @SSCLS  ouiiiiiiiiiii i e et 107
Table 7.2 Implementation: Algorithm parameters ............ccooiiiini... 109
Table 7.3 Implementation: Objective =; — first attempt ............ccceeeeenen. 110
Table 7.4 Implementation: Objective =, — first attempt ....................e. 111
Table 7.5 Implementation: Objective =, — second attempt .................... 111
Table 7.6 Implementation: Objectives =3 —first attempt .......................112
Table 7.7 Implementation: Objectives =4 and =g — first attempt ............113
Table 7.8 Implementation: Objective =5 —first attempt ....................... 114
Table 7.9 Implementation: Objective =, — third attempt ...................... 115
Table 7.10 Implementation: Objective =5 —second attempt ................... 116

Antoaneta Serguieva



Tables

Table 7.11

Table 7.12

Table 7.13

Table 7.14

Table 7.15

Table 7.16

Table 7.17

Table 7.18

Table 7.19
Table 7.20
Table 7.21

Table AS.1

Antoaneta Serguieva

Implementation:
Implementation:
Implementation:
Implementation:

Implementation:

Implementation:
Implementation:

Simulation: Final objective =,

Validating: Asset evaluation error
Predicting: Risk measure

Problem complexity: Comparison

Objective =g — second attempt ...................
Objective =; —second attempt ..................ee
Objective =, —fourth attempt ....................

Objectives =3 —second attempt ...................

Objectives =5 — third attempt

and =, — first attempt ..........

Objective =;; — first attempt ...

Objective =;; — second attempt

Support of the evaluated logarithmic

fuzzy asset price by company

lllllllllllllllllllll

llllllllllllllllllllllllllllll

lllllllllllllllllll

lllllllllllllllllllllllll

x 1111

117

118

118

119

May 2004



Definitions and Algorithms 3 xl1v

Definitions and Algorithms

Definition 2.1

Definition 3.1

Definition 3.2

Definition 3.3

Algorithm 4.1

Algorithm 6.1

Algorithm 7.1

Factor and asset ImMPrecCiSIon ........coovvvviiiiiiiieriiiiiiie e, 22
ASSEL TISK MEASUIE  ....oiiiiiiiiiiii i, 32
Asset risk and modelled factor imprecision ...............coiiiel... 40
ASSEt TODUSINESS MEASUIE  ...ouviiiiiiiiii i iii i eeennneenn. 40
Reformulating asset evaluation and analysis ...................ooo.o L. 62
Two-level exploratory algorithm: Design .............................. 88
Two-level exploratory algorithm: Implementation ....................110

e — - _

Antoaneta Serguieva

May 2004



Chapter 1: Introduction i

Chapter 1: Introduction
1.1 Motivation

The area of computational intelligence has emerged recently on the basis of many
computing disciplines introducing their symbiotic use. The principle components
include fuzzy logic, neurocomputing, evolutionary computing and probabilistic
reasoning. However further disciplines and forthcoming problem-solving technologies
are continuously incorporated into the area. These involve chaotic computing, memetic
algorithms, artificial life, swarm intelligence, DNA computing, t0 name a few.
Indicative for the fast development of the area and its recognition is the establishment of
a corresponding IEEE Society in 2002, with formulated interests in

‘the theory, design, application and development of biologically and

linguistically motivated computational paradigms emphasizing neural

networks, genetic algorithms, evolutionary programming, fuzzy systems,

and hybrid intelligent systems in which these paradigms are contained’,
A further step in this direction is the decision to change the name of the Society from
Neural Networks to Computational Intelligence, as from June 2004. The new name 1is
more descriptive and inclusive than the old one, which only covered a fraction of the
Society's scope, and the mission is extended with

‘promoting activities in emerging fields such as data mining, bio-

informatics, computational finance, computational neuroscience,

autonomous mental development, and intelligent systems applications’.

The characteristic quality of the methodologies whose coalition constitutes

computational intelligence - in comparison with traditional hard computing - is their
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1.1 Motivation 2

tolerance towards imprecision, uncertainty and partial truth, when such tolerance
achieves better performance, higher autonomy, greater tractability, lower solution cost
and better rapport with reality. Furthermore, each methodology provides
complementary reasoning and searching methods to solve real-world problems. Fuzzy
logic can represent qualitative knowledge and works with a robust interpolative
reasoning mechanism. Neural networks are computational structures that can be trained
to learn patterns from examples. Evolutionary algorithms perform randomised global
search i1n a solution space. Probabilistic reasoning provides the capability to update
outcome estimates by conditioning them with newly available evidence. Thus,
desirable features lacking in one technology are present in another, and their fusion
attains synergetic results. Incorporating further emerging technologies with
complementary characteristics, 1t becomes apparent how the area accumulates
computational intelligence to perform approximate reasoning — a departure from
classical reasoning and modelling approaches, crisp classification and deterministic
search — in solving real-world problems.

Pursuing progress from perceptions to measurement, science has achieved
remarkable successes. Still, in some areas the progress has been slower and more
difficult to realise. The underlying modes of reasoning in these areas are approximate
rather than exact, and they require methodologies where the objects of computation are
perceptions of attributes of physical and mental objects rather than their measurements.
Such methodologies will enhance the ability to solve real-world problems where
decision-relevant information is a mixture of measurements and perceptions. Relevant
problems include automating driving in heavy traffic, translating in different languages

at the level of a human interpreter, building robots that move with the agility of animals,
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modelling the behaviour of economic and financial systems, etc. Particularly, there is
much to be desired in improving the ability to model financial decisions, and this is the
focus of interest of the Technical Committee on Computational Finance, one of the

eight technical committees in the [EEE Computational Intelligence Society.

Decisions 1n financial markets are effectively taken on the fusion of
measurement-based and perception-based information. The role of perceptions is
emphasised by the emerging field of behavioural finance, which is looking less as a
small subfield and more like a pillar of serious finance theory. It takes into account
details of human behaviour including psychology and sociology, and tests conventional
theories against the impressive evidence suggesting that price levels are more than
merely the sum of the available economic information. Contributing factors include the
sports-style media coverage of market indices, the broadly available internet trading,
and the psychological attributes of the market anchors that limit the feedback trom price
changes to further price changes amplifying market movements. These are some of the
factors partly responsible for the developments in the end of the last century that
influenced Alan Greenspan, Chairman of the Federal Reserve Board, to describe the

behaviour of stock market investors as ‘irrational exuberance’.

The principle difference between measurements and perceptions is that
measurements are crisp and quantitative while perceptions are fuzzy and qualitative.
The area of computational intelligence provides the means to reformulate real-world
problems and incorporate qualitative information. In particular, 1t will be possible to

reformulate asset pricing and account for the perceptions of stock market investors.

- i
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1.2 Objectives

The objective of the thesis is the reformulation of the asset pricing problem
Incorporating imprecise information and the development of a decision-support method

accounting for the perceptions of stock market investors. This is decomposed to the

following aims:

* modelling imprecise factors time-series

and solving imprecise pricing equations:;

» formulating investment-risk and asset-robustness measures

based on the modelled and processed imprecise information;

* developing a qualitative asset ranking technique

based on the formulated risk and robustness measures:

» 1dentifying the structure of an asset classifier
based on the developed ranking technique

and allowing for investors’ perceptions of acceptable risk;

= 1dentifying characteristics of the search space,
formulating heuristics and developing a training strategy

to evolve the parameters 1n that classifier structure.

Working consecutively through the aims, they are achieved by first employing
fuzzy logic, then involving both fuzzy logic and neural networks, and finally the
development of the soft classifier exploits the fusion of fuzzy logic, neural networks and
evolutionary computation. Thus, a synergetic eftect is achieved when integrating

different computational intelligence techniques to provide a decision-support method to

market agents.
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1.3 Computational Intelli pence 2

Finally, the work on the above objective has revealed how the developed
method can be incorporated into a broader problem. The imprecise models and the
evolved classifier are included into a multiple-model knowledge representation of asset
pricing and trading. The representation framework is constructed along several
dimensions, where the perspective of imprecision plays a principal role and modelling
imprecise relations involve various computational intelligence techniques. Finalising

the framework 1s a focus for further research.

1.3 Computational Intelligence

The area of computational intelligence merges four principal components - fuzzy logic
(FL), neurocomputing (NC), evolutionary computing (EC) and probabilistic reasoning
(PR). We discuss them first separately and then in their fusion. Each technology

contributes desirable features to approximate reasoning in solving real-world problems.

Fuzzy logic [39,49-52] is usually interpreted in a wide sense as involving four
major facets —logical (FL/L), set-theoretic (FL/S), relational (FL/R) and epistemic
(FL/E). The first facet is a logical system which is not truth-functional in nature and
underlies inference from imprecisely defined premises [53]. The second aspect is
focused on the theory of sets with unsharp bounds, and mostly related to fuzzy
mathematics [54,55]. FL/R is concerned with representation and analysis of imprecise
dependencies, and exploits the concepts of linguistic variables and fuzzy if-then rules
applied to fuzzy system analysis and control [56]. The epistemic aspect is relevant to

knowledge, meaning and imprecise information, and includes the possibility

S
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1.3 Computational Intelli pence 6

theory [57]. These four facets are overlapping and have unclear boundaries, however
they all share the ability to model and process information at fuzzy granular level.
Therefore, fuzzy logic is a methodology for dealing with fuzzy granularity (f-
granularity). Though, FL was initially introduced as reconciling mathematical
modelling and human knowledge in engineering sciences, the area of application of the
methodology has extended to natural, cognitive and social sciences, involving fg-
generalisation (fuzzification and fuzzy granulation) of concepts and techniques. The
important direction in FL i1s towards computing with words and perceptions [29-33],
which allows retormulation of problems in various domains where imprecision plays a

key role, as 1s the case of decision-making in finance [58-59].

Neurocomputing [60] 1s concerned with processing information, which
involves a learning process within an artificial neural network (ANN) architecture. The
architecture responds to inputs according to a defined learning rule, and theretore has a
mechanism for extracting knowledge from data. NNs are divided into feedforward
networks, used in supervised mode, and recurrent networks, typically employed in
unsupervised learning. Since it was proven that feedforward multilayer NNs are
universal functional approximators [61], they have attracted the focus of attention.
Those networks implement backpropagation training algorithms [62], and most research
has focused on improving the convergence speed of the algorithms [63,64]. Depending
on the scope of network characteristics involved in the training process, the learning is
parametric or structural — the counterparts, respectively, of parametric estimation and

system identification in classical system theory. Once trained, networks can be used to

I —————— e
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perform certain tasks depending on the application — like pattern recognition, event
classification, and nonlinear-system control and identification — and we are most

concerned with neurocomputing applications in finance [65-69].

Evolutionary computing [69-72] is a paradigm for randomised global search
including variations as genetic algorithms (GA), genetic programming (GP),
evolutionary programming (EP) and evolutionary strategies (ES). All approaches share
the same generic concepts: a population of competing candidate solutions, random
combination and alteration of potentially useful structures to generate new solutions,
and a selection mechanism to increase the proportion of better solutions. The variations
are distinguished by the genetic structures — chromosomes - that undergo adaptation and
the genetic operators — crossover and mutation - that generate new candidate solutions.
Implementing GAs requires to address the genetic representation of candidate solutions,
the way to create an initial population, the evaluation function that describes the quality
of each individual, the genetic operators that generate new variants during reproduction,
and the values of parameters like population size, number of generations and
probabilities of applying genetic operators [73]. GP is concerned with the automatic
generation of computer programs and mostly employs a tree structure to encode them,
and then breed over many generations a population of improving programs that solve
particular tasks [74]. ES are distinguished by self-adaptation of additional strategy
parameters, which enables them to adapt the evolutionary optimisation process to the
structure of the fitness landscape [75]. EP shares a number of features with ES,
however differs in generating new variants solely by means of mutation and not

employing any crossover operator [76]. The boundaries between the variations
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of evolutionary computation are not clear, and they continuously borrow or combine
features while new techniques are being developed. Promising directions in EC involve
dynamic, multi-objective, and knowledge-incorporating evolutionary optimisation
[77-79]. EC has been successfully applied to a remarkable variety of different domains,

and we are predominantly interested in the application to problems in finance [80-82].

Probabilistic reasoning [83-85] suggests mechanisms for evaluating the
outcome of systems affected by probabilistic uncertainty. The mechanisms share the
common feature of performing inference while updating probability estimates through
conditioning them on new available evidence. Two main currents within PR involve
Bayesian beliet networks (BBN) and Dempster-Shafer theory of evidence (DSTE).
BBNs are concerned with propagating probability values over a network structure like
trees, poly-trees or directed acyclic graphs (DAG), and considerable efforts have been
directed recently towards improving the computational efficiency of propagation over
general graphs. DSTE defines a mapping from basic probability assignments - masses
assigned to subsets of the frame of discernment - to the computation of the lower bound
(belief) and the upper bound (plausibility) of a proposition — regions defined in the same

frame of discernment. Some interesting applications of probabilistic reasoning to

finance are presented in [86-39].

It has been realised that the above four major technologies provide
complementary characteristics in soft modelling, computing and reasoning, while
attempting real-world problems. Fuzzy logic enables the translation and embedment of

empirical and qualitative knowledge about a problem to be solved into reasoning
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Systems capable of performing approximate pattern matching and interpolation. FL,
however, does not have learning features as it lacks mechanisms to extract knowledge
from data. On the other hand, this is the typical characteristic of neurocomputing. Still,
NC may become mired in local optima, and powerful search and adaptation techniques
Intrinsic to evolutionary computing become desirable. Finally, probability reasoning
contributes to the ability to handle various types of uncertainty and imprecision.
Uncertainty in probabilism is derived from the nondeterministic membership of a point
from the sample space in a well-defined region of that space. The well-defined region
represents the probable event. The characteristic function of the region dichotomises
the sample space. A probability value describes the tendency with which the
probabilistic variable takes values inside the region. Probabilistic inference is
performed through conditioning. On the other hand, uncertainty in fuzziness is derived
from the partial membership of a point from the universe of discourse in an imprecisely
defined region of that space. The region represents a fuzzy set. The characteristic
function of the fuzzy set does not create a dichotomy in the universe of discourse. A
membership value describes the degree to which the particular element of the universe
of discourse satisfies the property that characterises the fuzzy set. Fuzzy reasoning is
based on the extension principle. The complementarity of captured imprecision is
supported by the introduction of probability measures of fuzzy events and the definition
of belief functions in fuzzy events. Considering further the frequentistic and the
subjective interpretations of probability, as well as the interpretation of fuzzy
membership as possibility, similarity, desirability or preterence, enriched is the scope of
handled imprecision. Therefore, the fusion of different computational intelligence

approaches will result in an effective approximate-reasoning methodology that explores
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the don't-know, don't-need, can't-solve, and can't-define rationales. The don't-know
rationale applies when the values of variables or parameters are not known sufficiently
precise to justify using conventional modelling techniques. The don't-need motivation
presents situations where exploiting the inherent tolerance for imprecision achieves
tractability, robustness or low solution cost. The can't-solve reason reveals problems
that cannot be solved through quantitative modelling and computing. The can't-define

principle relates to concepts that are too complex to allow definition through a set of

numerical criteria.

A body of literature 1s growing on the hybrid implementation of computational
intelligence techniques. The interaction between fuzzy logic and neurocomputing
results 1n neuro fuzzy systems (NFS) or fuzzy neural networks (FNN), depending on the
dominant component. The work in the field relates to approximations between fuzzy
systems and neural nets [90,91], building hybrid NNs to equal tuzzy systems [92,93],
FL controlling parameters in NC [94] or NC tuning FL [95-97], using neurocompiting
to solve fuzzy problems [44,46,98], investigating the approximating capabilities of
fuzzy NNs [99-103], and constructing and implementing hybrid fuzzy neural networks
(HFNN) [93,104]. Further, two major approaches in integrating of fuzzy logic and
evolutionary computation include fuzzy evolutionary algorithms (FEA) and
evolutionary fuzzy systems (EFS). An FEA uses FL to improve its performance
through controlling parameters as mutation and crossover rates or population size
[105-107], or taking advantage of the tolerance for imprecision and saving
computational resources through fuzzifying those operators 1108,109]. An EFS is a FS

augmented with an evolutionary tuning process, and the most extended class of EFS
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corresponds to evolutionary fuzzy rule-based systems (EFRBS) [110,111]. Next, the
Integration of EC and NC employs evolution as another form of adaptation in addition
to learning. Evolutionary algorithms perform various tasks, such as training weights,
designing architectures [112,113], adapting learning rules, selecting input features,
initialising weights, etc. A general framework for evolutionary neural networks (ENN)
1s 1ntroduced 1n [47] suggesting three levels of evolution that concern weights, learning
rules and architectures, correspondingly. Each inner level of evolution is included in
the next outer level, if such exist in the problem, then the lower the level, the faster the
time scale of the evolution. Further, merging evolutionary computing and probabilistic
reasoning [114] has been used in evolving the optimal structure of Bayesian networks
[115], as well as in modelling EC with BBNs and producing Bayesian optimisation
algorithms (BOA) [116,117]. The combination of EC, NC and FL typically involves
augmenting regular or hybrid feedforward multilayer FNN with evolutionary learning
capabilities into evolutionary fuzzy neural networks (EFNN). EFNNs include fuzzy
connection weights, or fuzzy operations in the nodes of the network, or fuzzy nodes that
represent membership functions, and the learning process implements evolutionary
techniques to achieve coarse-granularity followed by backpropagation for fine-
granularity search, or to obtain the weights of the network, or to adapt the transfer
functions of the nodes, or to optimise the topology of the net [118-122]. The fusion of

all computational intelligence techniques has created the area of computational

intelligence which is gathering recognition as a driving engine for artificial intelligence

[33,123-129].

As a result, computational intelligence has emerged as a methodological

paradigm for representing, incorporating and processing uncertain, incomplete,
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Imprecise or perception-based information at granular level. The consequence is the
ability to reformulate the representation of real-world problems and the techniques for
their solution, as well as the competence to build in these developments into
autonomous or decision-support intelligent systems. Financial markets constitute one of
the areas that will directly benefit from the methodological advances, and exploit the
rationales of don't-know, don't-need, can't-solve, and can't-define. Relevant problems
involve forecasting market movements, volatility modelling, asset and derivatives
pricing, developing investment strategies for asset and derivatives traders and hedgers,
mastering market timing and switching in and out of various securities classes, portfolio
management, risk analysis and management, trading systems design, and agent-based

modelling and simulation of artificial stock markets [130-134].
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1.4 Thesis OQutline

Relevant computational intelligence techniques, as described in section 1.3, are
employed throughout the thesis in the following sequence. Chapter 2 applies fuzzy
logic 1n 1ts broad sense, and specifically fuzzy mathematics, to evaluate the fuzzy asset
price. The epistemic aspect i1s also concerned while modelling the imprecise pricing
factors. Chapter 3 explores two measures of the information encoded into the fuzzy
asset evaluation. Chapter 4 still works with the results of implementing tuzzy logic to
the problem, and builds an asset ranking techniques on the basis of the measures of risk
and robustness from Chapter 3. Chapter 5 elaborates on putting the rationale behind the
ranking technique into more practical use - building an asset classifier. This involves a
further computational intelligence technique, neural networks, or rather fuzzy neural
networks. Chapter 6 is focused on the risk module of the classifier, therefore the risk
classifier, and a two-level exploratory algorithm 1s developed as its training strategy.
Thus a further element of the computational intelligence paradigm 1s employed, and the
technique builds up as evolutionary fuzzy neural computing. Chapter 7 presents the
empirical results of training, validating, and predicting with the risk classifier. Finally,
Chapter 8 involves the intermediate products of the approach — the fuzzy asset
evaluation procedure, the ranking technique, and the soft risk classitier — into the
knowledge representation module of an intelligent system In asset risk analysis. The
system further applies the computational theory of perceptions — another component in
the computational intelligence paradigm — in user analysis with the objective to improve

the efficiency of decision support or the quality of tutoring in the domain of asset

evaluation and risk analysis.

_—__—_—__—_———_—__—__——_—_————_——_ ——— e e er—————
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Chapter 2: Fuzzy and Possibilistic Asset Pricing

2.1 Introduction

We focus on the price dividend relation, introducing fuzzy intervals or possibilistic
variables to model uncertain asset prices, dividend yields and interest rates. However,
the approach can be applied to any of the pricing techniques, while involving an

alternative modelling of the imprecision in the corresponding pricing factors.

Using fuzzy intervals allows one to take into account a broader range of
imprecision, beyond the probability type of uncertainty. Furthermore, substituting
possibilistic distributions for the fuzzy intervals, and applying multilevel interval
calculus, the asset price is evaluated at various possibility levels. The possibility levels
or the degrees of membership corresponding to the & —cuts of the evaluated asset price
match those related to the & — cuts of the uncertain factors. This feature of the solution
is beneficial as giving an idea of the levels of uncertainty a market agent could
accordingly choose or prefer to work at. Each level involves some of the modelled
imprecision. Thus if we attempt to represent the broader range of imprecision the
market could possibly suffer, then an agent may choose the level of uncertainty within
that range corresponding to his preferences. That level however delimits the degree
with which the evaluated interval of asset prices will belong to the true price. On the

other hand, one may use the possibilistic solution to compare the intervals

corresponding to different levels of uncertainty.

S —— —
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2.2 Modelling Uncertainty with Fuzzy Intervals

The analysis is focused on common shares and the asset rate of return is described with

(DY, ;+1
e For (DViss 1) o1
{

where £, denotes the ex-dividend share price at the end of period ¢ and DY, ; is the

next-period dividend yield. The equation may be solved backward or forward for the

asset price at t. Then, an evaluation of the current price at t =0 will involve weighted

past and future prices,

1 I
Phy=) AP,+) BF , (2.2)
t=1 t=1

where A, and B, are the parameters of the model. Past prices are known, however may

be considered as chance realisation of a highly volatile process. Future prices may be
estimated, however the estimates are only reliable to some degree. Fuzzy intervals may
be used in modelling both past and future prices, and the evaluation of the current price

will be based on the weighted fuzzy values. A fuzzy interval 1s a fuzzy set in the real

line &R, whose level-cuts are intervals.

As an illustration, we will solve the equation (2.1) torward. The intuition is

that a fair value for the current price is the present value of all expected proceeds on the

asset in the future [1335].
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— PDY,
Bp=2,—"—5 (2.3)
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