PROJECT MANAGEMENT CONTROL UTILISING INNOVATIVE FORECASTING AND COMPUTERISED DATA BASES

by
R. HOWES, Esq.

Doctor of Philosophy Degree

Brunel University

Department of Building Technology
Brunel University
Uxbridge, Middlesex
March, 1983

Best Copy Available

Variable Print Quality

Acknowledgements
The author wishes to thank most sincerely the following persons for their help and assistance with the development and preparation of this thesis:

The late Professor Leslie Zisman for his advice and encouragement in the early stages of the research programme.

Mr. Jan Berny for his help and assistance in developing and 's' curve philosophy used in the system proposals.

Mr. R. Newcombe for his support and advice as my director of studies.

Professor S. Ury for his assistance with registration and supervision arrangements at the commencement of the work in 1967/78.

Special thanks are extended to the folloving organisations who have provided industrial date and facilities in support of the research:

Architects Design Partnership
Building Design Partnership
International Designers and Constructors plc
Lenham Builders Limited
Tarmac International plc
Ove Arup and Partners
Zisman and Bowyer and Partners

Abstract

The prime objective of this thesis is to research and develop a new system of project budgeting, monitoring and forecasting to meet the needs of the Construction Industry. It is intended that this work will facilitate the means for more efficient control of projects from inception to final completion, utilising where possible the latest developments in computer technology.

The initial stage of the vork involves an investigation and appraisal of existing methods of formulating project budgets. In particular attention is paid to previous work in the development of mathematical 's' curve models, together with their limitations in use and application. Potential for future development is also identified.

The thesis then focuses on the evolution of an improved modelling philosophy for project budgets and forecasts which overcomes previously known problems. In parallel with this work is the development of a computerised system intended to enable the testing of the model against live project data.

The model finally selected is then tested against the extensive research work previously undertaken by the DHSS and the data collected from sixteen construction projects.

To facilitate the development of a suitable control system to act as a vehicle for the application of the principles developed, a contextual survey is included. This survey is intended to provide an update of previous survey work undertaken by the author in 1977 and to further investigate factors orientated specifically to the objectives of the thesis.

The research then concentrates on the development of an integrated set of sub-systems which contribute to the budgeting, monitoring and prediction of project expenditure. These systems are developed in accordance with the need to establish the financial status of projects both before, during and after they are completed. The overall system is based on the latest computer technology available and is designed to be flexible in its application. Tests documented in the text prove that the system operates both in principle and in practice. A further extension of the research is the use of the various project data bases to provide information for a corporate control system which has been developed in principle.

This thesis provides a significant step forward in computerised project budgeting and control utilisng 's' curve philosophy and provides a basis for further development. Potential exists for future development of the prediction and corporate control systems, together with software developments to improve general application over a wide range of industries and disciplines where project work is undertaken.

Contents			
Chapter 1	Introduction		8-20
		General	8
		Existing Project Financial Control	8-9
		The Need	10-11
	1.4	Previous Research into Project Budgeting and Forecasting	11-12
	1.5	The Context	12-17
		1.5.1 General	12-13
		1.5.2 The Current Situation of the Construction Industry	13-17
	1.6	Objectives	17-20
		1.6.1 Prime Objectives	17
		1.6.2 Research Programme and Sub Objectives	18-20
Chapter 2	Existing Methods of Project Budgeting and Forecasting		21-43
	2.1	Introduction	21
	2.2	The Allocation of Estimated Cost to the Project Programme	21-24
	2.3	Intuitive Assessment of 'Project Expenditure Budgets	24-26
	2.4	Mathematically Based 's' Curve Forecasting	26-43
		2.4.1 DHSS Expenditure Forecasting Method	26-32
		2.4.2 A Model for Forecasting Construction Cost Flow - Shlomo Peer	32-36
		2.4.3 Measurement and Scheduling of Construction Time and Cost Performance in the Building Industry - F. Bromilow	36-40
		2.4.4 Software Costing and Life Cycle Control - L.H. Putnam	40-43
Chapter 3	The Proposed 's' Curve Model		44-70
	3.1 Development of the Cubic Equation 3.1.1 Reference to Appendices		44-47
			47
	3.2	The Analysis and Evaluation of the Alpha and Beta Constants	47-56
		3.2.2 Properties of the Alpha Constant	48-51
		3.2.3 Properties of the Beta Constant	51-56
	3.3	Practical Determination of Alpha and Beta Values	56-60
	3.4	Other properties relating to the use of 's' curves	60-61
		3.4.1 Redundant Periods	60
		3.4.2 Inflation	60-61
		3.4.3 Sensitivity Analysis	61

Chapter 7 The Project Management Control System 152-167
7.1 Forecasting and Data Preparation 153-154
7.2 Monitoring and Control 154
7.3 Forecasting and Predictions 154-155
7.4 The Forecasting System using Alpha Beta Philosophy 155-158
7.5 Automatic File Handling Procedure 158-159
7.6 Development of the Forecast Curve 159-161
7.7 The Philosophy of Cost Centres 161-167
Chapter 8 Computer Applications 168-196
8.1 General Project Forecasting and Budgeting Software 168-172
8.1.1 Breakdoun into Labour, Plant \& Materials 172-173
8.1.2 Operation 173-176
8.2 The Forecasting Alteration Programme 176
8.2.1 The Amendment Process 176-178
8.2.2 Insertion of Redundant Periods 178-179
8.2.3 Inflation 179-185
8,3 Application 185
8.3.1 Design Management 185-188
8.3.2 Production Management 188-193
8.3.3 Project Management of the Whole 193-195 Construction Process
8.4 Summary 195-196
Chapter 9 Project Monitoring and Control System 197-223
9.1 General 197-198
9.2 Monitoring System Methodology 198-199
9.3 Basic Information 200-204
9.4 Profitability Analysis 204-210
9.5 Predictions 211-215
9.6 Monitoring and Control Applied to the Design 215-222 Environment
9.7 Summary 222-223
Chapter 10 Corporate Control and Multi Project Management 224-235
10.1 General 224
10.2 Corporate Turnover System 224-230
10.2.1 User Procedure 230
10.3 Corporate Control System (Module 2) 230-234
10.4 Application 234-235
Chapter 11 Conclusions 236-241
Appendix 1Definitions
Appendix 2
Mathematical Proof
Appendix 3
Programme listing RAMNI
Curve Fit
Shell Curve fit Results
Appendix 4
Forecasting and Alteration Programmes
FEST2.BAS Design
FEST3.BAS Construction
ALT1.BAS Design
ALT2.BAS Design
RAM.BAS curve fit
Appendix 5
Project Monitoring and Control Programmes
PROJ5.BAS Design monitoring
PROJ7.BAS Construction monitoring
PROJll.BAS Prediction programme
Appendix 6
Corporate Control Programmes
Corp Future Project Turnover
Corp2 Overall Company and Project Status
Appendix 7
Simulation Programmes
SIMI.BAS
PREDI.BAS
Appendix 8
Graphics Programmes
Bibliography

Chapter 1

1. INTRODUCTION

1.1 General

The ability to accurately forecast and budget project expenditure is of paramount importance to the efficiency of management control. Further, the need to accurately monitor project expenditure and to value work completed to date is vital to provide a basis from which the project can be efficiently administered. the total activity of a construction company is represented by an analysis of projects; hence there is a need to accumulate project control data in order to produce corporate control information for the top management of an organisation.

1.2 Existing Project Financial Control

1.2.1 The production of financial information relating to projects often requires considerable effort on the part of the company staff, particularly in cases where a high degree of accuracy is required. Traditionally expenditure budgets have been determined by utilising the project programme to distribute budgeted costs on an activity basis; this has proved to be a time consuming process, the accuracy of which is highly dependent on the translation of "bill of quantities item" costs into "activity costs". The quality and dependability of the project programme schedule plays an important role in the determination of a budget. Another difficulty exists vhere activities cannot be clearly identified or quantified because relevant information is not available.

It can therefore be seen that a comprehensive budgeting system can be expensive and time consuming to produce.
1.2.2 Monitoring systems are highly dependent on accurate information being produced from site in a form which can be equated with the budget. Very often site information is inaccurately allocated to centres of cost, thereby reducing the effectiveness of the control information produced. In order to establish profitability it is necessary to prepare accurate valuations of the work completed to date from which income can be determined. The comparison of total income with expenditure must be equated to a given point in time to ensure that parity exists.
1.2.3 Project forecasting normally takes the form of intuitively projecting known current value of work completed to a final completion time and cost. Little use is made of statistical extrapolation of the performance to date. However it is considered essential that this process is conducted to realise the full benefit of financial control in general.
1.2.4 A major problem associated with producing corporate financial control information is the shear volume of data which needs to be processed. Useful information for top management would include project summary reports and projections in terms of future turnover and profitability. Without doubt this is the most difficult area to produce accurate report information since project inaccuracies are magnified and it is therefore essential that the project systems must produce data in a form which is both accurate and compatible.
1.2.5 The operation of a financial control system involves the expenditure of staff time which will add to the overhead cost of the company. Conversely, without an adequate means of control a company will be less efficient. A balance must be struck between the cost of the system and the amount of extra profit it produces. Obviously, there is no benefit in operating a system at a loss. Some companies have been observed to cut their overhead to a minimum by using the exception principle. For example, if a project appears to be progressing vell it is left alone; only the problem projects are financially analysed in detail. The disadvantage with this philosophy is that there is always the danger of not taking corrective action early enough. In extreme cases the situation might already be irretrievable since the fundamental damage would have already occurred.

1.3 The Need

Ideally a system should be available which produces accurate and comprehensive project control information, both accurately and with the minimum of staff input. To meet these requirements it is considered essential that maximum use is made of the latest developments in computer technology. In particular micro computers which are poverful and relatively inexpensive to purchase should be investigated as potential work horses for such a system.

New methods of formulating project budgets should be evolved which enable the user to model budgets quickly and accurately. These proposals must incorporate provision for reliable monitoring and forecasting systems to be integrated using
compatible interfaces.
The project systems should have the capability to produce a data base uhich can be utilised for overall corporate control of the organisation.
1.4 Previous Research on Project Budgeting and Forecasting
It has been observed that the majority of cumulative
project cost expenditure patterns produce 's' curve profiles
called sigmoids, the extremes of which produce either wholly
convex or concave shapes. Mathematical theory defines that
within set parameters certain cubic polynomial equations
produce 's' curve profiles which can be varied by introducing
appropriate constants and may be used to simulate knovn
expenditure patterns.

In the mid 1970's the Department of Health and Social Security (DHSS) undertook an extensive study to establish typical expenditure curves for hospital projects graded into categories related to project cost. ${ }^{(1)}$ Resulting from this research a cubic equation was developed which could be used to manipulate 's' curves by assigning values to two constants. Work has also progressed in other parts of the world, one notable example being the research of Dr. Shlomo Peer ${ }^{(2)}$ of the Israel Institute of Technology who has utilised a similar philosphy to the DHSS.
(1) DHSS Publication Expenditure Forecasting Method: Surveying Division 1977.
(1) Hudson, K.W. 1978 DHSS Expenditure Forecasting Method Chartered Quantity Surveyor 5(3) p. 42
(2) Shlomo Peer 1976 A model for forecasting construction cash flow. Israel Haifa Institute of Technology

Research conducted by Bromilow in Australia ${ }^{(3)}$ has shown that certain project expenditure patterns can be simulated by using exponential equations. This study was made by collecting a considerable amount of data from actual projects which could then be simulated by a specially formulated simple exponential equations.

Both of these methods suffer from serious shortcomings. Polynomial equations are only practical vithin certain limits and exponential equations suffer from inflexibility particularly when attempting to simulate costs during the middle portion of the project time span.

1.5 The Context

1.5.1 The need to efficiently manage projects of all types has been brought into prominence during recent years due to economic factors and developments in technology. This has been particularly so in the Construction Industry where outdated methods of construction and antiquated administrative procedures have been exposed by rapid changes in other fields, principally electronics and energy conservation. There have also been marked changes in the demands made by clients requiring the services of the Construction Industry. Economic pressures and a more sophisticated attitude towards business investment have caused commercial clients to look very closely into the financial viability of committing funds to the construction
(3) Bromilow, F.J. 1973 A model for forecasting construction cash flow, Melbourne, Australia CSIRO, Division of Building Research.
of new building facilities. This situation has been complicated by increasingly stringent Building Regulations and the requirements of the Toun and Country planning laws which can slow the project design process considerably due to social, democratic and in some cases bureaucratic procedures. The domestic home buyer who represents a large proportion of the Industry's business now expects higher standards relating to the function, performance and design of duellings. In recent years restrictions on personal incomes coupled with high interest rates have restricted the sums people can borrou resulting in mounting pressure on contractors to keep their prices within the limits set by the market.

1.5.2 The Current Situation of the Construction Industry

 Increasing demands on the architect to produce buildings which are aesthetically pleasing, economic to build and appropriate to the functional needs of the client. In addition, buildings must reach higher performance standards and be economic to run and maintain.The construction project process traditionally consists of two prime stages namely, design and construction which in turn can be further subdivided into:
(a) Feasibility
(b) Design
(c) Production
(d) Commissioning and Finalisation

Attempts have been made by certain bodies ${ }^{(1)}$ to categorise the design and construct process into detailed stages which can be easily identified for the purpose of management and control. Although much effort has been expended in this direction it vould appear that little attempt has been made to capitalise on this work by developing management and control systems geared to a logical step by step progression of the project process. Generally the documentation produced seems to have been largely ignored. For example, the RIBA has produced a detailed plan of work together with other publications which are seldom referred to. ${ }^{(1)}$ On inspection these appeared to contain a considerable amount of useful information which has not been developed to a stage where it can be practicably applied.

The structure of the Industry brought about by a socio economic structure which evolved betveen 50 and 100 years ago largely exists unchanged today. The architect in general still operates on the basis of a special gentlemans business relationship with his client which is geared to designing and managing the whole project process. This arrangement vould appear to work for the majority of small and simple projects, but where larger and more complex buildings are required the management of both the design and construction process has been found in many cases to be highly inefficient. ${ }^{(2)}$
(1) NEDO The public client and the construction industries 1975
(1) NEDO The professions in the construction industries 1976
(2) Thompson, N. Alternative method of management. Building 1978 January 27, pp.67, 69-70

The education of an architect is considered by most schools of architecture to be primarily concerned with the principles and practice of design. Fev curriculums pay sufficient attention to management and control. In addition the architects knowledge of structural design, services engineering and contract economic are in the main rudimentary resulting in the need to employ specialists on all but the simplest of projects.

Since a significant proportion of large complex contracts have experienced difficulty when using the architect in his traditional role as designer/manager new methods of project administration have already been evolved. Before proceeding further it must be made quite clear that there is no reason why the architect should not manage the project as vell as undertaking the design provided that the whole process is conducted in an efficient manner. Hovever, according to documentation produced it would seem to indicate that as buildings become larger and more complex there is an increasing case for restricting the architects role to designing the structure and co-ordinating the design team. ${ }^{(1)}$ It has already been demonstrated that the overall management and administration of the project including design, construction and commissioning can be advantageously put under the direct control of a project manager acting on behalf of the client. ${ }^{(2)}$
(1) Chartered Institute of Building. Project Management in Building Occasional Paper No. 201919
(2) Graves, F.C. Managing the National Exhibition Centre compared with health building projects. Hospital Engineering 197731 November, pp.6-8, 11-12

Alternative methods have been tried to improve co-ordination and control of the project including management contracting where a construction company provides a team to administer the construction work on a fee basis with the Client paying direct for project costs. An important advantage claimed for this method is that the construction management team can be involved during the early stages to improve the efficiency of the design.

The growth in design and build contracting has provided an additional dimension to the possibility of solving the problem. However, although tangible advantages can be gained by a client adopting this option, there would appear to be obvious pitfalls in terms of limited aesthetic design potential and a lack of competition resulting in the Client paying too much for the building he requires. Only a very limited number of design and build companies have succeeded in overcoming these difficulties.

Other possiblities and variations to the above, for example, design and build tendering, provide under certain circumstances viable alternatives to the traditional method of appointing an architect to design the building and administer the whole construction process.

Whatever methods of contract administration are adopted the project must be controlled in accordance with good basic management principles. Ample evidence exists which proves decisively that building contractors, in addition to
architects, lack management expertise ${ }^{(1)}$ and have
fallen far behind their counterparts in other industries particularly in the successful adoption of modern management techniques. ${ }^{(2)}$

The above implies that a pre-requisite of using control systems is the education of managerial and supervisory staff in the principles and practice of management based on the latest developments in information technology. This situation is being helped by a steady flow of graduates into the Construction Industry from Polytechnics and Universities and it is anticipated that a steady improvement in appropriate management expertise will occur as time progresses.
1.6.1 Objective

The prime objective of this thesis is to research and develop a new system of project budgeting, monitoring and forecasting to meet the needs of the Construction Industry. It is intended that this work will facilitate the means for more efficient control of projects from their inception to final completion, utilising where possible the latest developments in computer technology.
(1) Moxley, R. Alternative Method of Management. Building Jan. 1978
(1) Bowley, M. The British Construction Industry. Cambridge University Press, 1976
(2) Franks, J. Project llanagement. Building Trades Journal 1977
(2) Chartered Institute of Building. Construction Management in Building: Present and Future 1965
(2) Graves, F.C. Hanagement of a construction project. Paper to RICS Annual Conference 1976

1.6.2 Research Programme and Sub Objectives

The initial stage of the research will be to establish a sound mathematic basis which will facilitate the efficient production of reliable and accurate project budgets. Part of this work will be concerned with the establishment of curve shaping constants which can be related to construction projects. The published curve fit constants produced by the DHSS will be used as in the initial development stage since these figures were evolved from a large sample of actual hospital building schemes. The intention is to produce an entirely new curve fit equation which will have easier practical interpretation and will not suffer from the impractical constraints imposed by the cubic equation.

Once a suitable curve shaping method has been found a series of tests will be carried out to determine the applicability of the equation related to a wide range of construction activity. Since the proposal is to cover design and construction, studies will be made in each area. At least fifteen projects will be covered to give a reliable indication that the equation will be applicable in most circumstances.

Associated with the curve fit development will be an investigation to establish whether or not it is possible to produce a reliable forecasting system utilising the curve shaping method. If successful further work will be undertaken to establish the statistical accuracy of the results achieved based on data collected from the fifteen projects previously mentioned.

Assuming that the research will proceed successfully to this stage, the next step will involve a number of carefully selected case studies to identify clearly the needs of construction practice in terms of project budgeting, monitoring and forecasting. This process is considered to be essential if the curve shaping proposals are to be properly interfaced to the practical situation.

The initial intention is to produce a number of integrated sub-systems which will utilise a common data base to produce a complete project management control system. The structure of this system is shown in Figure l which illustrates the links between budgeting, monitoring, forecasting and corporate control reports. Provision for versatility in the application of the system proposals will be made to widen the potential market and hence increase its use. The whole of the research will be conducted using a computer to test and develop the mathematics, together with the validation of the equations developed. In the later stages the systems proposed will be computerised to facilitate complex file handling and substantial data manipulation actuated by simple commands given interactively through a terminal.

Chapter 2

2. EXISTING METHODS OF PROJECT BUDGETING AND FORECASTING

2.1 Introduction

My research into existing methods of budgeting project expenditure has shoun that three categories exist. The most common method involves the bills of quantities and the project programme. The items in the bill are converted into activity costs which are then allocated to the project programme to produce a project cash flow. Where the final project sum is known, but it is not easy to identify activity costs, then an intuitive judgement might be made of project expenditure. The final method involves the use of mathematically derived 's' curves which can be made to simulate project expenditure given an historic base of project expenditure profiles which ensure statistical accuracy.

2.2 The Allocation of Estimated Cost to the Project Programme

 This method normally involves a large amount of vork to translate the estimate into activity costs. Unfortunately bills of quantities produced using the 6th Edition of the Standard Method of Measurement for Building Works do not use work items which can be directly related to site activities. Hence it is necessary to group, split or apportion bill items in order that they conform to the project activity breakdown. This process is nor:ially time consuming, and by its nature, can create inaccuracies in the allocation of cost. The use of an operational bill of quantities which relates directly to site processes vould considerably help the situation. (1) Once the allocation of budgeted expenditure to activities has taken place, thenext stage is to establish the pattern of expenditure relative to each activity. Considerable experience in both the technical and managerial sense will be required to make accurate and meaningful allocations, particularly where large activities covering a long time period are concerned. This aspect highlights a major problem with network activity budgets since no provision is normally made to spread the expenditure in any other manner except on the basis of even distribution. The use of 'a bar chart format does give the opportunity to vary the expenditure pattern as required. See Figure 2.

CPA Network Application

Figure 2 Programme Budget Applications
The accumulation of budgeted activity expenditure will produce a cumulative project budget to which can be added to the indirect costs in order to give an overall project budget. Inaccuracies in the spread of activity expenditure vill
reflect on the quality of the project budget and its use as a means of assessing performance.

It is relevant to pay attention to the monitoring and control processes to be conducted in conjunction with the budget since the two stages must be compatible for comparison purposes. Attention should be paid to the need for activities to be grouped into cost centres which can be used to permit meaningful decision making and control by management. This method of budget preparation requires considerable understanding of the construction process and experience in the vay estimates are prepared. The process is labour intensive and time consuming on all but the simplest of projects, and the incidence of variations to the project exposes the inflexibility of this means of modelling project expenditure. Where this method is applied to the design process or the overall project programme from inception to completion the disadvantages directly associated with the SMM disappear, hovever the difficulty of relating expenditure in this manner to a timescale remain.

Forecasting the final project cost and time using this method is normally based on an intuitive projection of the cost to date relative to the valuation of work completed and the original budget. One method of achieving this is to project revised budgeted expenditure parallel to the original budget thereby leaving management to assess the potential effect of future variances e.g.

Figure 3

2.3 Intuitive Assessment of Project Expenditure Budgets

 Where the total project cost has been agreed the quickest and simplest way to prepare a budget is to draw a straight line from the origin to the completion. This method is, of course crude, but it does indicate the general direction to the overall objective. Intermediate assesssments of project progress could be relevant where expenditure is fairly even throughout the project time span and degree of accuracy required is not particularly sensitive. A more sophisticated approach would be to distort the straightline according to an assessment of project activity, particularly where it is known that certain significant items of expenditure occur.

$\frac{\text { LARGE INITIAL }}{\text { EXPENDITURE }}$

PERIOD OF HIGH COST

INTERMITTENT PROJECT ACTIVITY

Fiqure 4

This method, athough rough and ready, involves limited time to prepare and is ultimately flexible in the sense that it can be changed with little effort. Importance is attached to the intuitive judgement and the experience of the individual preparing the budget. In general this method can only, in most cases, be used as a guide when assessing project performance.

Attempts to forecasting project cost and completion, can at best, only be equivalent to the method described in 2.2 .

2.4.1 DHSS Expenditure Forecasting Method
Research vas initiated by the introduction in 1967 of an DHSS. ${ }^{(1)}$ Details of a large number of actual schemes vere
(1) Hudson, K.W. FRICS DHSS Expenditure Forecasting Method Chartered Surveyor B and QS Quarterly Volume 5 No. 3 Spring 1978
submitted by the Regional Hospital Boards. From a statistical study of this information, guidance was produced for the likely contract duration of schemes in different cost categories. An analysis of the expenditure patterns of schemes vas also performed. It should be noted at this stage that land costs together with consultant fees and equipment costs vere not included, thereby restricting the data to building and/or engineering costs.

The cumulative monthly values of vork executed, before the deduction of any retention monies or addition of fluctuations, vere expressed as a percentage of the contract sum and plotted against percentage of contract period. In each cost category a line of best fit vas drawn and the resulting s-curve graphs were issued as guidance. It will be appreciated that as the curves produced are lines of best fit, no one job in each cost category will necessarily fit the curve exactly. Hovever, when all jobs in a cost category are taken cumulatively the forecast produces a close approximation to the actual value of work executed for schemes in that category.

Data vas then extended to include projects up to $£ 12 \mathrm{~m}$.

The next stage was to find the equation which closely approximated to the 's' curves, hence the formulation:

$$
y=s\left[x+C x^{2}-C x-\frac{1}{k}\left(6 x^{3}-9 x^{2}+3 x\right)\right]
$$

vhere
$y=$ cumulative monthly value of vork executed before deduction of retention monies or addition of fluctuations.
$x=$ month(m) in which expenditure y occurs
contract period (p)
i.e. proportion of contract completed.
s = Contract sum

C and K parameters derived by utilising simultaneous equations relative to the cordinates of the curve fit.

The formula can be used in two ways, namely:
(a) knowing C, K, contract sum and contract period, the cumulative value of work executed after any number of months can be calculated;
(b) knouing C, K, contract sum and cumulative expenditure in any month, the likely work duration can be calculated.

A table of C and K parameter values has been published by the DHSS which equates to the chosen curve fit of each hospital cost category. See Table 1.

Table 1

Standard C \& K Parameters

Cost Category	Standard Parameters	
	C	K
£10,000 to $£ 30,000$,	- 0.409	7.018
£30,000 to £75,000	- 0.360	5.000
£75,000 to £120,000	- 0.240	4.932
£120,000 to £300,000	- 0.200	4.058
£300,000 to £1,200,000	- 0.074	3.200
£2m	0.010	4.000
£3m	0.110	3.980
£4m	0.159	3.780
£5m	0.056	3.323
£6m	0.192	3.458
£6.5m	0.154	3.401
£7.0m	0.172	3.557
£7.5m	0.131	3.445
£8.0m	0.142	3.538
£8.5m	0.099	3.404
£9.0m	0.104	3.456
£9.5m	0.061	3.317
£10.00m	0.063	3.344
£10.50m	0.019	3.207
£11.00m	0.018	3.218
£11.5m	- 0.025	2.089
£12.0m	- 0.028	3.090

In general it has been found that the gradient of the 's' curve central portion is limited where a polynomial equation is used. When the more pronounced 's' shape curve reaches a frequency which causes the peaks to occur within the proportional project line span negative values will occur at the beginning and end of the curve. In this event the curve looses its ability to perform a viable curve fit. My tests have indicated that some of the DHSS C and K parameters are on the limits of viability.

Figure 5

Another restricting factor is the presence in the equation of numeric constant values which specifically related the interpretation of the curves to hospital projects. Hence, there would appear to be limited scope for applying this equation to other types of construction projects.

Forecasting using the DHSS Curve

When commencing a new scheme the constants C and K shown in Table 1 are used to determine the project budgeted expenditure. After the scheme has been in progress for a few months, it is possible to determine the C and K parameters of that particular scheme, as distinct from the standard parameters of the cost category in which the scheme falls. This is achieved substituting two actual values and cumulative monthly expenditure into the forecasting formula, together with the months in which the expenditures occurred, and solving the pair of simultaneous equations obtained.

The two most recent observations of monthly expenditure are used, but first they are smoothed in conjunction with the previous three or five observations by means of a polynomial regression to iron out individual curve irregularities.

If a project deviates from the original standard forecast then C and K parameters for the scheme can be calculated and a new forecast made on the basis of observed expenditure to date. The new forecast can also make allowance for any revisions of the authorised sum or work duration by substituting new values of S and P in the formula.

When the actual expenditure begins to be consistently above or belou the standard curve it is necessary to revise the estimate of project duration. This can be done by transposing the equation in terms of (P)

Hence $\frac{K y P^{3}}{s}+(C K-K+3) m \cdot P^{2}-(C K+9) m^{2} \cdot P+6 m^{3}=0$

This method of forecasting is subject to the limitations of the polynomial equation, therefore forecasts can only be made with certain C and K limits. Where the project expenditure exceeds these the system is of little value.

2.4.2 A Model for Forecasting Construction Cost Flow Shlomo Peer

In an attempt to develop a cash flow forecasting system a preliminary study was undertaken as a feasibility test for a typical cost model relating to housing projects. Detailed construction schedules vere prepared for four typical projects of different size and variable rate of progress. Construction costs vere compiled and itemised for each cost component. The cumulative curves for one of these projects is shown in Figure 6. The cumulative cost-curves for all projects vere brought to a common denominator by relating cost to time in percentage terms, as shown in Figure 7. The predicted curve fit of the project shoun in Figure 6 was obtained by polynomial regression of the 4th degree. Similar curves vere obtained with the aid of tanh and error functions with three parameters - two representing the slope of the function in x and y, and the third the location of the origin on the graph.

The relevant formulas are as follows:

Figure 6 Erection cost-flow for project of 96 units

Figure 7 Cumulative cost vs construction time (in percentage)

$$
\left.\begin{array}{l}
y=\left[\begin{array}{r}
0.0009+0.2731(W / T)-1.0584(W / T)^{2}+5.4643(W / T)^{3}- \\
\left.3.6778(W / T)^{4}\right] \mathrm{C}
\end{array}\right. \\
y=0.567\{\tanh (3.2495(W / T)-2.038)+0.963\} \mathrm{C} \\
y=0.5487\{\operatorname{erf}(2.8822(W / T)-1.7972)+0.986\} \mathrm{C}
\end{array}\right] \begin{array}{r}
y=\text { cumulative cost } \\
\text { where } \quad \begin{aligned}
y= & \text { total cost } \\
W= & \text { partial time } \\
& (W=0,1,2, \ldots \ldots . T)
\end{aligned}
\end{array}
$$

$T=$ Total contract time
$(W / T)=$ relative fraction of total time
The standard deviations between the predicted and actual cost curves, as obtained by the different curve-fitting methods applied, are listed in the following table.

Project		Standard deviation for curve-fitting functions			
No.	Total cost (in 1000 1L)	Total Constr. Time (mths.)	Polynomial	Tanh function	Error function
1	1349	10.5	0.338	0.382	0.387
2	1400	16.0	0.398	-	-
3	1994	13.0	0.395	0.485	0.483
4	2618	13.0	0.525	0.559	0.501

The polynomial curve yielded a more accurate estimate, while the others were easier for manual calculation, the independent variable being of the first degree and the values of the functions available in the tables.

Peer claimed that knowing the total cost of a project and its construction time, these formulas enabled him to estimate the cumulative cost curve at any time. . The deviations involved vere insignificant in practical use, especially when considering that management is concerned with the overall cash flow of the company rather than that of a single project.

This work can only be described as preliminary research, hovever it does signify important factors for consideration.

The polynomial equation used is unnecessarily complicated and inflexible due to the number of constant values built into the expression. Greater care has been taken to fit a particular set of results, but there is no evidence to suggest that these have general applicability. The use of only four examples gives no basis on which to prove the viability of the equations. Naturally a more extensive programme of research is required. There is also the possibility that the equation will suffer from the same negative results displayed by the polynomial expression used by the DHSS. It can therefore be deduced that this work is of limited value and in many ways duplicates that undertaken by DHSS.
2.4.3 Measurement and Scheduling of Construction Time and Cost Performance in the Building Industry

This work was concerned vith defining quantitative standards of performance actually achieved by the building industry in Australia in relation to the time occupied in planning and construction, cost performance, and the number and
value of variations to contracts. The effectiveness of procedures that were in use, the nature of costs and veaknesses, and the potential for improvement vere measured. Further easily comprehensible decision rules vere devised.

Data was collected from some 370 plus building projects undertaken by large governmental, private client organisations and design firms during the late 1960's.

Analysis revealed that the values of the main performance characteristics were highly significantly related to one single independent variable, viz. the size of the project as measured by its final cost.

```
Thus (PC) \(=f(c)\)
where (PC) denotes the performance characteristic
and (C) denotes the final cost of the project
at constant labour and material prices.
```

That such relationships could be found at all had been doubted by the industry. It was therefore surprising to find that vith only a fev exceptions the interactions with otherwise important variables (such as type of building) vere not significant. In all cases the relationships could most readily be expressed as exponential functions.

[^0]```
(PC)i}=Ki\mp@subsup{C}{}{Bi
where i = specific performance characteristic
 (e.g. construction time)
 K = a constant characteristic of the general
 level of performance and characteristic
 i in Australia
 B = a constant indicative of the sensitivity
 of performance characteristic i to size
 of Project.
```


## Construction Time Performance

The research conducted found that the times allowed for construction projects overrun on average by $47 \%$ and only $12 \%$ of projects vere completed by the completion dates uritten into contracts. These proportions varied widely according to the type of building and contractual procedure adopted. On investigation the period time T (working days) which actually elapsed during the construction was a well defined function of the building cost C .
$T=3130^{0.30}$
and a plot of the actual construction time against final cost is shoun in Figure 7a, with the trend line Measures of variability are shown by the quartile limits (a quarter of the projects took more than $30 \%$ longer than normal and a quarter took more than $20 \%$ less time than normal); these are marked by $Q-Q$ in Figure 7a. Hence a yardstick for construction time performance in Australia had been established.


Other performance standards vere set by Bromilow in a similar manner in terms of cost.

Experiments conducted by myself and Mr. J. Berny at the Polytechnic of the South Bank indicated that exponential curves similar to those developed and used by Bromilow might be applicable to budgeting and forecasting project costs. A major advantage observed was that the exponential curves did not suffer from the limitations associated with negative values produced by polynomial equations. However because of the relative simplicity of the Bromilow exponential equations they did not possess sufficient flexibility to simulate a vide range of construction project expenditures. This was particularly apparent during the mid portion of the project time span. In order to achieve good fits at the beginning and end of the project it was found, in certain instances, that large curve fit errors occurred during the mid span.

### 2.4.4 Software Costing and Life Cycle Control

In the course of the search to discover other work using exponential equations to simulate project expenditure a number of growth curves vere investigated, ${ }^{(1)}$ the most appropriate was the research into "software costing and life cycle costs" by Laurence H. Putnam. This work involved the development of an effective, time-varying macroscopic model of the Rayleigh diffusion equation.

Putnam maintained that the characteristic (average) behaviour of software development over time is well described by the

Rayleigh equation because it is a good model of a large number of gaussion variables whose phases are random.

The Rayleigh equation parameters yield the management parameters that directly answer management questions. The Rayleigh/Norden overall manpover equation for large systems is
$y=\left(K / t_{d}^{2}\right) \cdot t \cdot \exp \left(-t^{2} / 2 t_{d}^{2}\right)$ people where:
$K$ is the life cycle effort in man years, or man months,
td is elapsed time in years, or months, from the beginning of detailed logic design and coding, and
$\bar{y}$ is manpover in man years/year, or man months/ month or countable people at any instant in time.

Multiplying this equation with the labour rate turns it into a cost function. Integrating over time yields cumulative effort and cost at any time, hence development effort and cost is an easily extractable subset of life cycle numbers. See Figure 8.


1 important Parameters
$K=$ TOTAL MY FOR ENTIRE PROJET

$$
\begin{aligned}
& K=e^{\prime / 2} \cdot Y_{\text {max }}^{\prime} \cdot t^{\prime} y_{\text {max }}^{\prime}=\sqrt{e} \cdot y^{\prime} \text { max } \cdot t^{\prime} y_{\text {max }} \\
& a=1 / 2 t_{y_{\text {max }}}^{\prime}=(1.65) y^{\prime} \text { max } \cdot t^{\prime} y_{\max } .
\end{aligned}
$$

Fig 8

Although this equation was specifically used to budget/ forecast the cost of developing computer software it appeared that there might be scope for applying this to the costs involved in designing buildings. The curves described by the Rayleigh equation might also provide a basis for simulating construction expenditure.

Having established the basis of existing work I considered the next stage was to search for an equation which would overcome the difficulties already described in this chapter. The natural starting point was the DHSS work since this research was supported by a comprehensive study of actual hospital building projects. Hence the initial vork involved finding a possible alternative polynomial equation which could be tested against the DHSS findings.

## Chapter 3

3. THE PROPOSED 's' CURVE MODEL

### 3.1 Development of the Cubic Equation

The initial step was to relate the shape of the curve required to a simple and easily recognisable condition set within the total project cost and time span.

It was therefore necessary to define the following terms of reference:
(a) Every project must start at zero cost and time.
(b) The total project costs and time culminates at unity.
(a) and (b)

N.B. The straight line betveen $y=0, x=0$ and $x=1$, $y=1$ represents the vector where the "proportionate value of $y "=$ "the proportionate value of $x$ "

It vas then established that an 's' shaped curve will have one point when the proportion of the total project cost vill equal the proportion of the expected project duration. In other vords the 's' curve will cross the proportionate line $y=x$

This point was termed as the "equiproportion point" and was given the symbol $\beta$ beta.

It could therefore be said that at the equiproportion point $y=x=\beta$

The next task was to introduce a constant value to enable the profile of the curve to be simulated. This was termed as alpha. $\alpha$

After investigation it was found that the following transformed cubic equation produced a satisfactory simulation:
$y=\mathrm{Cm} / \mathrm{s}=\mathrm{x}(1+\mathrm{a}(1+\mathrm{a}(1-\mathrm{x})(\mathrm{x}-\mathrm{b})$
where $\mathrm{Cm}=$ cumulative Cost (value, budgeted cost or monies spent)
$S=$ Contract sum
$y=C m / s=$ Proportion of the contract sum spent for the first $m$ periods
$P=$ contract duration
$m \quad=$ current period - the period in which latest
expenditure occurred (e.g. in months)
$x=m / p=$ Proportion of contract duration and date i.e. to period m.
b = beta constant (equiproportion constant)
a = alpha constant (determine the shape of the curve)

Graph 1

Conditions in brackets.

-46-

Graph (1) shows the symetrical case of alpha $=2$ and beta $=0.5$. It will be seen that the straight line (proportionality line $y=z$ ) cuts the curve at $y=x=0.5$. In this case half the project is completed at the halfway cost point and the shape is controlled by alpha.

If the simplest polynomial equation is produced to give an 's' shaped curve, one is forced to use a cubic equation and the above conditions generate the alpha-beta cubic equation shown above. The alpha beta equation developed does not suffer from the infexibility created by constants $C$ and $K$ used in the DHSS case, since the values of the constants alpha and beta can be deduced from practical considerations.

### 3.1.1 Reference to Appendices

Before proceeding further reference should be made to Appendix $l$ which contains a definition of the terms and symbols used in this text of the mathematical properties.

A summary of the mathematical properties of the "alphabeta" equation is given in Appendix 2.
3.2 The Analysis and Evaluation of the Alpha and Beta Constants If one uses the cubic equation on its oun to depict the 's' curve then parameter properties are as described belou. The mathematical development of this section is given in Appendix 2.

### 3.2.2 Properties of the Alpha Constant

1. Alpha $=0$

If alpha $=0$ the curve becomes a straight line $y=x$ which is the line proportionality.
2. Alpha

If alpha is less than $O$ the 's' curve would take on a practically unrealistic form having, at best, an initial 'convex' or 'hill' form showing an initial rapid drop in costs from a high cost start. Additionally it does not mathematically allow a peak period cost (e.g. highest monthly project cost) to exist.
3. Alpha

If alpha is greater than zero the project costs increase gradually having a 'concave' ('U' shaped) form initially (see graph (2) curve (1)). As the value of alpha increases for the same value of Beta (see graph (2) and curve (2)) the initial costs rise more slowly. Beyond a given value of alpha which can be deduced by solving the first differential of the alpha-beta cubic equation set to zero slope ( $d y / d x=0$ ) the overrun situation arises. Curve (2) graph (2) also shows an overrun situation before the project ends (from $x=0.75$ to $x=1)$ creating negative period costs after the maximum cost is reached prior to project completion.

## Graph 2



## Graph 2a



The overrun situation can be shown to arise if:
alpha $\min (1 / b, 1 /(1-b))$
and visa versa overrun does not arise if:
alpha $=\min (1 / b, 1 /(1-b)) \quad . . . . .(3)$
Finally curve (3) of graph (2) shows an exaggerated case of the effect of increasing the value of beta for the same alpha as in curve (1). In this instance it will be seen that the expenditure at the start is deccelerated and the peak occurs later, resulting in accelerated expenditure towards the end of the project.

In practice it is possible to frequently avoid the above variations, since symmetric curves are more likely to occur. Such curves ensure the rate of cost increase and decrease at the start and finish are roughly similar. The exponential curve has the useful property that, used in combination with the curves created by the cubic equation, the generated 's' curves retain this symmetric property which neither curve on its own can maintain for more extreme values of the curve parameters.

Graph (3) demonstrates the effect of combined use of the two equations and the similarity of shape at the ends. The curve fit SDY was only $3 \%$ when compared to $9 \%$ using the best fitting cubic equation.

### 3.2.3 Properties of the Beta Constant

The properties of beta are only considered for the case of a positive alpha i.e. under the condition that a peak period cost exists.(alpha>0).

## Graph 3



1. Beta $=0$

If beta $=0$ and alpha greater than 0 the resulting curve is convex 'hill shaped' i.e. non feasible as in the case of alpha< 0 .
2. Beta<0

The same applies as in (l) above.
3. Beta>0

This is the only practical condition for the constant beta but requires further analysis of the alpha-beta cubic equation in order to show the relationship with peak period costs ( $Z$ p) and the peak period cost point in time ( Xp ).
4. Details of beta $>0$ case

The period in time when the peak period cost ( Zp ) occurs may be shoun to be related to beta as follows:

$$
x_{p}=(b+1) / 3 \quad \ldots \ldots(4)
$$

The above equation has several practical implications. a. If $0<b<1$

In this case the "equiproportion" point beta is where the 's' curve crosses the proportionality line $y=x$ during the project. Using equation (4) the above values of $b$ show that $X p$ must lie in the middle third of the project duration, implying the peak period cost Zp occurs in this time span.

This result appears to be well supported in practice and hence enhances the validity of using a cubic equation as a model for management control, in particular for the
centre portion of the project.
b. $0<x p<1$

If the peak period cost exists it must occur during a project which implies that:
$0<X p<1$ and hence $-1<B<2$

This sets practical limits on the values of $b$ which can only be exceeded ( $b\rangle=2$ ) if the period costs do not have a peak. This situation arises in the case of high inflation, but may be corrected by the use of present values (day $l$ costing basis) and it occurs when forecasting at an early stage in a project before the point $X p$ has been reached.
5. Evaluation of Beta

To find the value of $b$ it is easier to evaluate $X p$ first. For practical purposes the value of $x_{p}$ is given by:

$$
x_{p}=\left(P Z_{p} / 2 S\right)\left(1+\left(1-4 S / 3 P Z_{p}\right) \cdot 5\right) \quad \ldots . .(5)
$$

reformulation of equation (4) gives:

$$
\text { Beta }=3 x_{p}-1
$$

Equation (5) implies that for a real solution it is necessary that:

$$
\mathrm{Zp} \quad 4 S / 3 P=1.33 \text { average period cost } \ldots \text {... (6) }
$$

The results above (equations 4 and 5) show the alternative practical premises for determining the value of constant Beta i.e. to preferably find the point at which peak period

```
costs occur (Xp) or the peak period cost (Zp) itself
(see graph lc).
```

The implication of the inequality equation (6) is that the peak period cost is usually in excess of $33 \%$ over the average cost period providing the minimum of the curve is at the origin.

The value of the peak period cost may be shown to be vell approximated by:

$$
\begin{aligned}
& Z p=Y p^{\prime} \cdot S / P \\
& \text { where } \quad Y p^{\prime}=d y / d x \text { at } x=X p \quad \text { (see graph } 3 a \text { ) }
\end{aligned}
$$

i.e. $Y p$ ' is the gradient of the ' $s$ ' curve. The maximum gradient has been shown to be critical for the forecast and budget simulations i.e. $\mathrm{Y}^{\prime} \mathrm{p}$ maximum must be found. This is approximated by finding the maximum period cost. e.g. the month in which the maximum expenditure occurs.

After differentiating and appropriate transformation (see appendix 2) it can be shown that:

$$
\begin{equation*}
Y p^{\prime}=P Z_{p} / S=1+a\left(3 x_{p}\left(x_{p}-1\right)+1\right) \tag{7}
\end{equation*}
$$

This expression may be used to determine alpha from $Y_{p}$ ' or $Z p$ and beta (see graph ld), in which $Y p^{\prime}=1+a / 4$ when $x_{p}=0$. The practical validity of the above results is upheld by the analysis of published DHSS data.

The supportive evidence of the methodology resulted from reformulating the constants given by DHSS for their projects (see table (1)) and showed that there was little variation from the calculated average value of $Y_{p \prime}^{\prime}=1.4$ and only one value was 1.32 which was just below the above restricted theoretical requirement of 1.33 .

### 3.3 Practical Determination of Alpha and Beta values

 The basis of the whole analysis in this thesis requires the user to select a value of alpha and beta for a given expenditure curve. The forecast evaluation is improved as the user becomes better acquainted with the constants selected, either for the whole project or on an individual cost centre basis.For the initial guidance of the user I have produced an alpha-beta form of DHSS constants which incorporates amendments in order that overrun does not occur (see Table (2)). It is not until a case history of previously used constants is built up that the user will be able to be more discerning about the constants he should use. In the meantime the DHSS constants form a valuable check.

The first stage, which will enable the user to utilise the freedom achieved by the formulation of the cubic equation, is to estimate the point of time at which the peak period cost is likely to arise ( $\mathrm{x}_{\mathrm{p}}$ ) which will evaluate beta.

## Graph 3a



## Graph 4



In practice the selection of an appropriate method to determine the constants will largely depend upon the circumstances of the application and the users familiarity with the system.

The forecasting system utilises the alpha-beta equation to determine the 's' curve expenditure forecast for each cost centre. In practice it is possible that some anticipated expenditure' will be outside the bounds of the curve described by the alpha-beta equation. This situation has been overcome by the provision of a computer program which overlays cost variations outside those given by the initial 's' curve.

The accumulation of the individual cost centre budgets set to a programmed timescale gives an overall budget for the project. From my research I have found that in the majority of cases it has been impossible to avoid the overrun situation for the accumulated budget. To overcome this problem I have found it necessary to iteratively find the best combination of the alpha-beta and exponential equations, see example graph (3).

Due to the users initial lack of familiarity with these concepts, I consider that the cost centre analysis, as described above, is adequate to determine viable budgets. With more experience it is anticipated that the user will be able to recognise the point of time at which the peak period cost will occur and he should be able to quantify its value. This is a more precise approach which is
supported by my practical experience. However, I have frequently found that this creates overrun and my solution to this problem is to incorporate the exponential equation in the computer program. This has the advantage of reducing curve errors from a maximum of $15 \%$ to below $5 \%$ based on the results of the simulations of industrial data, both at the design and construction stages.

### 3.4 Other properties relating to the use of 's' curves

3.4.2 b. Inflation

The effect of inflation on a budget or forecast vith present value (day one costs) can be accounted for by normal compounding as shown below:

For period m:
$Y$ (actual) $=Y$ (present value) $(1+i)^{m}$
where $\quad i=$ inflation rate/period

When consideration of inflation has been taken into account this leads to an important practical outcome about the constants of alpha and beta which show in response to inflation a decrease in alpha and an increase in beta. See graph 5.

The above results in making the 's' curve in the case of high inflation appear concave (u shaped) only i.e. the top part on the 's' is missing. This type of curve may furthermore have no peak cos't period i.e. beta 2.

### 3.4.3 c. Sensitivity Analysis

This may take several forms, both at the budgeting and work in progress stages. The simplest form is based on a number of computer runs which will simulate the variations in expenditure related to changes in alpha and beta, and/ or changes in the final time and cost.

### 3.5 Comparison of the DHSS and alpha-beta equations

The transformation of the DHSS equation into the alphabeta form shows the constants are related as follows:

$$
\begin{aligned}
& a=6 K \text { and } b=.5+C K / 6 \\
& K=6 / a \text { and } c=a b-a / 2
\end{aligned}
$$

The analysis from basic principles utilising the above has made it possible to transpose the data given in the DHSS

table of typical project expenditure patterns in terms of alpha and beta constants.

The results are given in table (2) which includes minor corrections, shown by an *, of the constants that where found to give overrun.

The primary reason why the previously described analysis was not possible using the DHSS equation is that the constant C contains a product of alpha and beta uhich has an approximate value of 1 (range . 8 to l.2). This fact renders the crucial peak cost properties intractable. It was because of the formulation from basic principles that the full significance of the constituent parts of constant $C$ vas realised and hence the advance that has been made vas facilitated.

Table 2

| Cost Category DHSS Hospital costs based on 1976 | Standard Parameters |  | Equivalent |  |
| :---: | :---: | :---: | :---: | :---: |
|  | C | K |  |  |
| £10,000 - £30,000 | -0.409 | 7.018 | 0.8549 | 0.0216 |
| £30,000 - £75,000 | -0.360 | 5.000 | 1.2 | 0.2 |
| £75,000 - £120,000 | -0.240 | 4.932 | 1.21655 | 0.30272 |
| £120,000 - £300,000 | -0.200 | , 4.058 | 1.47856 | 0.364733 |
| £300,000-£1,200,000 | $\begin{aligned} & -0.073 * \\ & -0.074 \end{aligned}$ | $\begin{aligned} & 3.234^{*} \\ & 3.200 \end{aligned}$ | $\begin{aligned} & 1.854^{*} \\ & 1.875 \end{aligned}$ | 0.460533 |
| £2m | 0.010 | 4.000 | 1.5 | 0.506667 |
| £3m | 0.110 | 3.980 | 1.50754 | 0.572967 |
| £4m | 0.159 | 3.780 | 1.5873 | 0.60017 |
| £5m | 0.056 | 3.323 | 1.8056 | 0.531015 |
| £6m | $\begin{aligned} & 0.181^{*} \\ & 0.192 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.664^{*} \\ & 3.458 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.6376 * \\ & 1.73511 \\ & \hline \end{aligned}$ | 0.610656 |
| £6.5m | $\begin{aligned} & 0.149 * \\ & 0.154 \end{aligned}$ | $\begin{aligned} & 3.524^{*} \\ & 3.401 \end{aligned}$ | $\begin{aligned} & 1,70273^{*} \\ & 1.76419 \\ & \hline \end{aligned}$ | 0.587292 |
| £7.0m | $\begin{aligned} & 0.169 * \\ & 0.172 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.612^{*} \\ & 3.557 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,66121^{*} \\ & 1.68681 \\ & \hline \end{aligned}$ | 0.601967 |
| £7.5m | 0.131 | 3.445 | 1.74165 | 0.575216 |
| £8.0m | 0.142 | 3.538 | 1.69587 | 0.583733 |
| £8.5m | 0.099 | 3.404 | 1.76263 | 0.556196 |
| £9.0m | 0.104 | 3.456 | 1.73611 | 0.559904 |
| £9.5m | 0.061 | 3.317 | 1.80886 | 0.533723 |
| $£ 10.0 \mathrm{~m}$ | 0.063 | 3.344 | 1.79426 | 0.535112 |
| £10.5m | 0.019 | 3.207 | 1.87091 | 0.510165 |
| £11.0m | 0.018 | 3.218 | 1.86451 | 0.509654 |
| £l1.5m | -0.025 | 3.089 | 1.94238 | 0.487129 |
| £12.0m | -0.028 | 3.090 | 1.94175 | 0.48558 |

* Asterisk refers to corrected values in order to avoid overrun


## Graph 6



### 3.6 Overrun situation

3.6.1 a. Limitation of cubic equation

The values of beta govern the values that the constant alpha may have in order that overrun does not occur. Analysis of equation (3) shows that three major cases of overrun arise, this data is depicted in graph (6) and summarised in the table below.

Given equation (3):

$$
\text { alpha }\langle=\min (1 / b, 1 /(1-b)) \quad \ldots . .(3)
$$

the overrun cases are:

| curves in graph 6 | curve (1) | curve (2) <br> symmetri- <br> cal case | curve (3) |
| :--- | :---: | :---: | :---: |
| $x_{p}$ and b values | $0\left\langle b\left\langle x_{p}\langle .5\right.\right.$ | $b=x=0.5$ | $\left.1\rangle b x_{p}\right\rangle .5$ |
| a inequality equi. | $a\langle=1 /(1-b)$ | $a=2$ | $a\langle=1 / b$ |
| limiting cases: <br> minimum period | $x<0$ | $x=0$ | $x=0$ |
| maximum period | $x=1$ | $x=1$ | $x\rangle 1$ |

The above table sets the practical limits on alpha and beta for the use of the cubic equation as the sole budget model.

In the forecasting situation the value of beta can be well in excess of unity. In such a case I have found that it is initially necessary to ensure the minimum passes through the origin. This can be shown to give a maximum for the cubic curve at $2 X$ i.e. peak period cost occurs halfway through the project. Hovever, it is important to note that this does not generally coincide with the project end, but it does allow
for a more flexible limit to the cubic equation forecasting model.

### 3.6.2 b. Overrun Solution

Further analysis shows that two overruns may occur if: alpha $>\max (1 / b, 1 /(1-b))$

If the value of alpha lies between $1 / b$ and $l /(l-b)$ then only one overrun occurs. This situation is ensured by the condition that the peak period cost exists, implying that $0<x_{p}<1$.

As mentioned earlier providing present values are taken the cubic equation may, in all cases envisaged, be constrained to uphold the latter condition. It is for the above reason that one need only employ one exponential type curve to overcome the overrun dravback of the cubic equation. A test data example is shoun in graph (3).

### 3.7 Solving the Overrun Problem

The main alternative to using the cubic equation is the utilisation of an exponential equation which also simulates an 's' curve. By its nature the exponential does not develop overrun, hovever it does not possess the cubic equation's flexibility in the middle range of the time span. It was therefore concluded that potential exists for the use of both curves to simulate project expenditure.

Data was collected from a number of construction projects relating to both design and construction with the object of developing a suitable combination of equations. It was
noted from a number of data sets that costs tended to deccelerate at a decreasing rate of increase towards the end of the project time span which ideally suited the application of the exponential curve.

After investigating a number of exponential expressions it seemed that one based on the Rayleigh diffusion in normalised formhad the potential to simulate the cost of construction projects. (See appendix for mathematical development)
namely: $\quad y=\frac{\left(1-e^{-\gamma x^{2}}\right)}{\left(1-e^{-\gamma}\right)}$
where $x=$ current time period
total time

The value of gamma $\gamma=\frac{4.5}{(1+\beta)^{2}}$

In order to test the curve fit ability of both the polynomial and exponential equations a computer programme was written which facilitated a curve fit test based on the root mean squared deviates of the actual and predicted (fitted) proportional cumulative costs abbreviated as SDY

$$
S D Y=\left(\frac{1}{P} \xi(Y a-Y p)^{2}\right)^{0.5}
$$

where Ya is actual cumulative cost proportion ( y )
$Y_{p}$ is predicted cumulative cost proportion

A comparison is made between the SDY of both equations and the equation with the lowest percentage error for each respective time period is selected. A switch is made uhere one set of results consistently produced smaller deviations
than the other. The whole process entirely avoids the overrun situation at the beginning and end of the project Subsequent tests have proved that expenditure curves can be fitted in most cases to within an accuracy of $3 \%$ total project cost.

In one of the test examples extreme curve irregularities were apparent because of periods during the time span when little or no work was carried out. This situation has been overcome by eliminating the redundant or near redundant periods from the curve fit procedure.

After a curve fit has been achieved the redundant periods can be reintroduced to give the actual profile, i.e.


re-introduce
redundort period

At this stage of the development it appears that a basis has been established for simulating project expenditure. By utilising a combination of polynomial and exponential equations, the overrun problem has been solved and the indications are that accurate curve fits can be made. This process has been further sophisticated by the afore described procedure to cope with redundant or near redundant periods during the project time span. To validate the findings a test programme of live data must be established, both for design and production situations.

## Chapter 4

4. DATA ANALYSIS AND CURVE FITTING

### 4.1 Introduction

It has already been demonstrated that the alpha-beta polynomial equation can successfully simulate $C$ and $K$ produced by the DHSS based on the analysis of over 700 hospital projects. Hence the alpha-beta equation can be used as an alternative to the DHSS polynomial equation. However, to overcome the difficulties created by overrun (negative results) and to improve curve fit potential the previously described combined use of the polynomial and exponential equations has been developed. This chapter is concerned with the testing of this philosophy against known actual project expenditure.

The two principal components of project cost are design expenditure and production costs. I therefore decided that these tvo areas should comprise the main areas of investigation and testing.

With regard to design expenditure simulation, this could be approached at the simplest level by collecting data from a single profession practice, or alternatively at a more comprehensive level by the analysis of project information from a multi-disciplinary practice. In order to test the methodology under the most rigorous conditions the co-operation of a multi-disciplinary design practice vas sought. Subsequently facilities vere kindly provided by a leading multi-disciplinary design partnership which enabled
professional cost data to be collected in respect of seven major building projects which had been previously
constructed in the United Kingdom. The projects were selected to represent a wide range of projects in terms of size, type and duration. Further expenditure patterns were chosen which displayed irregularities, thereby placing great demands on the curve fitting system.

Comprehensive data regarding construction projects were collected from eight construction projects involving schemes ranging from a small development of residential flats, contract value $£ 750,000$, to a power station scheme in the Middle East contract value $£ 37,000,000$. Seven of the projects were constructed in the United Kingdom and a profile of work was selected to be representative of construction work in general. The range of work between $£ 750,000$ and $£ 3,000,000$ accords with 50 percent of total building work carried out in the United Kingdom in 1980. (1) The projects consisted of five commercial schemes and two residential developments, one involving refurbishment. The types of construction involved ranged from steelframe buildings to reinforced concrete and masonry structures. Project times in general varied between ten and twenty-six months. ${ }^{(1)}$ Data has been provided by an international contractor relating to a major pover station scheme being constructed in Dubai over a period of teventy-four months. This scheme

[^1]provides a completely different aspect to the United Kingdom contracts and the design projects previously mentioned, thereby contributing to the variety of work tested and the general applicability of the philosaphy proposed.

Overall the fifteen curve fit tests will give reasonable grounds to establish the ability to accurately curve fit a wide range of projects and together with simulation tests on synthetic project data the results will be reinforced.

### 4.2.1 Study of Project Design Expenditure

The data was collected from the seven projects listed below by referring to records of expenditure relating to the hours spent by the various professions involved at the design stage.

1. Shell: Oil Refinery Works
2. British Gas: General Building Works
3. Leeds
4. Midland Bank
5. Bank of England
6. Southend
7. Middlesbrough

Fortunately the partnership providing the information had operated a comprehensive computerised costing system based on professional cost centres. Hence, it was a relatively straightforward task to identify these costs from computer printouts provided. Figure 9 illustrates a typical analysis sheet which was used to summarise the cost data ready for

keying into computer disc files set within the main frame computer at the Polytechnic of the South Bank.

### 4.2 Computer Analysis of Data

To enable the curve fitting process to take place utilising both the cubic and exponential equations with appropriate switching parameters previously described, the computer programme entitled RAMNI.BAS was written. The programme was designed to cumulate the data collected prior to projecting curve fits for both the overall project expenditure and the expenditure of the individual professions. Appendix 3 contains the output of results and the programme listing.

A summary of the results obtained in respect of all the projects mentioned above is given in Figure 10.

| Project | Duration <br> months | Total project <br> error \% | Cubic equation <br> used bet <br> periods | $\alpha$ <br> alpha | $\beta$ <br> beta | $\gamma$ <br> gamma | Project Cost <br> $(f)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shell | 58 | 2.5 | 2 and 16 | 4.8 | 0.2349 | 7.62 | 173,465 |
| British Gas | 31 | 1.5 | 7 and 30 | 2.44 | 0.715 | 1.386 | 154,193 |
| Leeds | 26 | 2.5 | 3 and 9 | 0.7235 | 1.258 | 3.374 | 17,799 |
| Bank of England | 11 | 3.5 | 2 and 10 | 0.632 | 0.472 | 2.7 | 52,171 |
| Southend | 39 | 2.4 | 2 and 37 | -1.635 | -0.115 | -0.1 | 82,197 |
| Middlesbrough | 48 | 4.2 | 2 and 36 | -1.538 | 0.2322 | 1.398 | 376,169 |
| Midland Bank | 20 | 2.6 | 3 and 10 | 1.082 | 0.436 | 3.512 | 24,328 |

Figure 10

It will be noted that the projects varied in value and duration, hence giving variety to the analysis. The results obtained were most encouraging particularly as the worst total projection error did not exceed $4.2 \%$ and the average was only 2.74\%. The most significant factor vas the fact that both the cubic and exponential equations vere used in every case to improve the curve fitting process. In all cases the switch was made to the exponential equation at both the beginning and end of the project to improve the curve fit.

The alpha, beta and gamma constants determined by the curve fit procedure indicated that the diversity of project expenditure patterns contained within the test data. Only Midland Bank and Bank of England had similar expenditure curves.
if further ten tests were conducted on synthetically derived project data designed to disprove the validity of the curve fit theory and in every case similar results vere obtained compared with the above. It was therefore concluded that reasonable grounds for optimisum had been established regarding the practical viability of the theory proposed.

It is vorth noting that an analysis of the design project data indicated that the prime design profession, i.e. the profession leading the design team from start to finish, normally the architect, tended to influence the shape of the other professional design inputs where they occurred over the whole of the project time span.
Figure $10(a)$
Shell Data

| Start Work | Finish Work | Category | $\alpha$ | $\beta$ | $G$ | $\beta$ <br> Peak | Maximum <br> Duration | Gamma <br> Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 58 | $0 / A$ | 4.76449 | 0.2349 | 7.62 | 24 | 48 | 19 |
| 1 | 54 | Mech | 4.66568 | 0.24819 | 5.826 | 25 | 47 | 19 |
| 1 | 58 | Arch | 2.96581 | 0.280185 | 4.17 | 25 | 51 | 24 |
| 1 | 42 | C\&S | 3.61177 | 0.311782 | 4.084 | 26 | 50 | 22 |
| 1 | 32 | Elect | 4.02955 | 0.269512 | 4.766 | 25 | 48 | 21 |
| 1 | 56 | Pro | 3.47939 | 0.3029 | 3.674 | 26 | 49 | 22 |
| 1 |  | QS | -0.642981 | 1.35004 | 4.374 | 46 | 80 | 52 |

Figure 11
Midddlesbrough Daia

| Start Work | Finish Work | Category | $\alpha$ | $\beta$ | $G$ | $\beta$ <br> Peak | Gamma <br> Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 48 | $0 / A$ | -1.538 | 0.232 | 1.398 | 20 | 29 |
| 1 | 48 | Arch | -0.866 | 0.679 | 2.802 | 27 | 21 |
| 1 | 48 | Mech. | -0.7314 | $3.178 \mathrm{E}-2$ | 1.546 | 17 | 28 |
| 1 | 48 | Q.S. | -1.507 | $-7.640 \mathrm{E}-2$ | 0.678 | 15 | 42 |

Figure 12
British Gas

| Start Work | Finish Work | Category | $\alpha$ | $B$ | $G$ | $\beta$ <br> Peak | Maximum <br> Duration | Gamma <br> Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 31 | $0 / A$ | 0.156 | 6.35 | 1.386 | 76 | 38 | 19 |
| 1 | 31 | Mech | -0.373 | -2.47 | 1.866 | -15 | -3 | 36 |
| 1 | 31 | Arch | 0.164 | 5.819 | 0.684 | 71 | 142 | 35 |
| 1 | 31 | C\&S | -0.32 | -2.455 | 1.81 | -15 | -11 | 39 |
| 10 | 23 | Plect | 2.195 | 0.5177 | 3.344 | 16 | 30 | 15 |
| 2 | 31 | Qro | 2.066 | 0.4168 | 4.41 | 15 | 29 | 16 |
| 9 | 0.532 | 1.7735 | 1.418 | 29 | 58 | 31 |  |  |

This situation can be seen by reference to the curve fit results of Shell and Middlesbrough shown in Figures 10(a) and 11.

These results tend to support the conclusions mentioned in the post grade research undertaken by $N$. Kotani at University College in 1976. ${ }^{(1)}$

Those professional design inputs which only occurred over part of the total project time span did not necessarily follow the lead of the prime professions. This situation is clearly shoun by the profession curve expenditure of the British Gas project shown in Figure 12.
(1) Kotani, N.B.

Consultants Fees related to variance of Project Design Costs. Paper School of Environmental Studies, University College London, 1974.

### 4.3.1 The Method of Data Collection

To enable direct comparisons to be made betveen construction projects and to facilitate the identification of actual cost it was decided to break the project doun into seven cost centres which represent the major areas of expenditure. Costs were collected from project records and allocated to the cost centres. To simplify the figures used, the established total costs of each centre vere rounded to the nearest $£ 500$.

By the examination of cost records it was possible to determine the start and completion times of each cost centre. A cumulative expenditure curve was then established for each cost centre and a best curve fit was made using the alpha beta equation. It was anticipated that actual cost centre expenditure vould in some cases be outside the range of the alpha beta curve fit, in which case these vould have been made using an alteration programme written specially for this purpose. In the cases studied this facility proved to be unnecessary and was therefore not used.

A further breakdown was then made for five of the cost centres relating to labour, plant and materials.

Figure 13 summarises the data collected for seven of the projects studied.

Fig. 13 Construction Piject Costs Data Input Breakdown.


Fig 13 Construction Project Costs
Data heat Breakdown.

Figure 14
Tabulation of Curve Fit Results from Construction Projects

| Project | Duration months | Total project error \% | Cubic <br> Equations used bet periods | $\alpha$ | $\beta$ | $\gamma$ | Project Cost ( $£$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (varehouse) | 10 | 1.2 | 0 and 4 | 0.90 | 0.498 | 2.432 | 1,050,000 |
| $\underset{\text { ment) }}{2 \text { (refurbish- }} \begin{gathered} \text { ment } \end{gathered}$ | 15 | 1.0 | 3 and 14 | 2.66 | 0.568 | 2.164 | 1,876,000 |
| 3 (office 1) | 18 | 1.7 | 0 and 15 | 0.151 | -0.134 | 2.826 | 2,452,000 |
| 4 (factory) | 17 | 1.6 | 0 and 16 | 1.047 | 0.3574 | 2.874 | 3,270,000 |
| 5 (flats) | 9 | 1.9 | 0 and 3 | 0.926 | 0.73 | 1.368 | 750,000 |
| 6 (office 2) | 18 | 1.4 | 0 and 17 | 1.05 | 0.324 | 2.958 | 3,050,000 |
| 7 (Rye) | 26 | 1.6 | 0 and 24 | 0.601 | 0.727 | 2.058 | 3,090,000 |
| $\begin{aligned} & 8 \text { (Power } \\ & \text { Station) } \end{aligned}$ | 24 | 2.1 | 0 and 16 | 0.77 | 0.92 | 1.976 | 37,043,000 |

The overall project expenditure was then accumulated by the computer and an overall curve fit was then made in the same manner as that described for the design projects.

The results from the computer runs are tabulated in Figure 14.

It is significant that a combination of both equations again produces the best curve fit. However, the construction results show themselves to be far more applicable to the cubic equation, since the span of best fit is far greater and all but one project uses the cubic from the start. It appears that the exponential has general application at the end of the project. It is worth noting that one of the projects switches to the exponential from month 3.

It would appear that the construction project curves are far more consistent than those tested at the design stage, which would seem to indicate that prediction is easier when the basis for the project has been determined. For example, the design is extremely intangible, whereas the construction of the project will be undertaken within a previously determined design. Hence, it therefore follows that under normal circumstances the construction should be easier to predict utilising the curve fit parameters. A number of simulated project tests vere undertaken with similar results to the above.

Utilising the alteration programme "ALTI" it vas decided to test the effect of inflation on one of the construction projects investigated. The total value of the uninflated project amounted to $£ 3,090,000$ expended over tventy-six months. The profile of the curve required the following constants:

$$
\begin{aligned}
& \alpha=2.05446 \\
& \beta=0.511701 \\
& \gamma=2.498
\end{aligned}
$$

Figure 15 illustrates the effect on the curve by increasing the inflation rate initially in stages of $5 \%$ per annum and later by larger increments up to $100 \%$ per annum.

It will be seen that the $\alpha$ shaping constant remains virtually unchanged, however the beta constant becomes proportionately closer to unity as the inflation rate increases. The gamma constant progressively reduces in value from 2.498 to 1.676. This clearly indicates that the peak period expenditure is delayed thereby clearly demonstrating that inflation causes accelerated expenditure, particularly in the later stages of the project.

It therefore follows that projects which include the effects of inflation will have faster expenditure than those unaffected by inflation. Further the higher
the inflation rate the faster the rate of expenditure towards the end of the project.

Other tests on data have substantiated these claims and it certainly explains high increases in costs of projects spanning over long periods of time.
Figure 15

| Inflation | Total Project <br> Value | Duration | $\alpha$ | $\beta$ | Gamma <br> $\gamma$ | Cubic Period |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $3,090,000$ | 26 | 2.05446 | 0.511701 | 2.498 | $2-25$ |
| 5 | $3,264,080$ | 26 | 1.99272 | 0.528826 | 2.408 | $2-25$ |
| 10 | $3,438,150$ | 26 | 1.97585 | 0.541156 | 2.33 | $3-25$ |
| 15 | $3,612,240$ | 26 | 2.0614 | 0.542275 | 2.26 | $5-25$ |
| 20 | $3,960,390$ | 26 | 1.9814 | 0.565765 | 2.196 |  |
| 35 | $4,308,550$ | 26 | 1.98 | 0.594556 | 2.042 |  |
| 50 | $6,830,790$ | 26 | 2.1189 | 0.624 | 1.924 |  |
| 100 | 26 | 2.112 | 0.6705 | 1.676 |  |  |

The conclusion drawn from the above results is that even in cases where the cubic is applicable, the combination of cubic and exponential equations produces a better overall curve fit. In most of the studies undertaken the actual expenditure can be shown to be outside the parameter limits of the cubic, hence negative results will occur causing the curve to be impractical as a forecasting device.

In the light of the above results a means has been established to determine the nature of expenditure curves which permits almost any curve to be modelled with a reasonable degree of curve fit accuracy.

Appendix 3 contains the software programme written to produce these results (namely RAMFI.BAS). Examples of the computer runs used to compile the results in this section are also included.

This development creates a number of important advantages which make the proposed model ideal for universal application not only in the Construction Industry, but across other industries as well. Further possibilities open up with regard to curve determination and the subsequent understanding of the nature of the curve in terms of the constants already described.

### 4.5.2 Future Applications

A basis has now been established for the determination of project expenditure curves to within 5\% of the total project cost, which in turn has increased the potential applicability of this theory. By understanding the precise nature of the project expenditure curve in terms of alpha, beta and gamma constants, together with the switch points, it is possible to measure the effect of management policies and decisions relative to the project. It is also possible to observe the difference in expenditure patterns betveen groups or categories of project.

As more experience is gathered by utilising this philosophy it will be possible to measure the effect of management decision making more precisely. Alternatively, management policies, decisions and plans can be expressed in the form of a cost centre based expenditure model related directly to the construction programme. Hence, a reciprocal relationship has been established which permits the validation of the decision making hypothesis from two points of view.

Three computer programmes have been uritten to accommodate these procedures. The programme entitled "SIMI.BAS" (contained in Appendix 7) simulates project expenditure curves by requesting the manager to input non-cumulative period values which are then fitted in accordance with the procedure previously described. The reciprocal programme is "GRF3.ALG"
(see Appendix 8) which permits the manager to observe the effect of changes made in the alpha, beta and gamma constants relative to his notion of anticipated project expenditure. At the tendering stage the full implications of project decision making in terms of method determination, resource allocation, risk and profit distribution can be more fully appreciated utilising these programmes. The computer programme "ALT2.BAS" allows the project to be modelled using the theory of cost centres as previously described. Another function of this programme is to permit the project budget to be updated at any time during the actual project duration. This facility has two prime advantages, namely, the ability to amend the budget in order to accommodate changing circumstances, and secondly, the provision of an updated curve fit analysis which establishes the changes relating to the curve fit constants. With experience these constants can be interpreted in terms of cause and effect resulting from management decisions. Reference should be made to Chapter 8 for a detailed explanation of this programme.

It is possible that the curve fit software could be interfaced with the light pen video terminal where the manager can physically draw the curve of project expenditure according to his concept of the project expenditure pattern. The computer programme will then fit the curve and present the user with the relevant constant values and the switch points selected between the polynomial and exponential equations. This
process can be repeated in order to iterate a suitable solution.

Another development would be to interface the softuare with a network based project management package. It is normal practice for these packages to provide activity costs which can be grouped into costs centres according to the requirements of the user. The cost centre expenditure related to a timescale will give an overall project expenditure which can be subject to the curve fit process previously described. Further potential exists at the monitoring stage relating to profitability reports and curve predictions.

## Chapter 5

## $5.1 \quad$ Forecasting

The term forecasting used in this thesis related to:
a. Budgeting project expenditure prior to commencement.
b. Forecasting predicated completion costs and durations, based on value of vork completed to date without or with the addition of user determined final project completion time or cost. The latter form is that used by DHSS and is much easier to handle.
5.2 DHSS and Allied Methods

Forecasting is an important and natural development of 's' curve analysis. The DHSS have used their cubic equation as a model for prediction purposes. The stated method was to make estimates of the $C$ and $K$ constants based on the most recently available data in a project (they recommend the last 5 to 7 periods). In order to obtain these constants they smoothed the most recent data by polynomial regression and obtained values of $C$ and $K$ using the last two smoothed data points. DHSS do not quote the accuracy of their forecasts, nor indicate the period from which forecasting may commence, however I regard these points of information as an essential part of forecasting.

In the first attempt at forecasting, the DHSS routine was followed and tests vere conducted on the industrial data. The findings vere that prediction by this procedure gave unacceptable variable results. The next step was to try other smoothing routines; in particular variants of
exponential smoothing. Tests were also carried out incorporating a variety of veighting factors for the data. All these methods failed to give reliable results.

The major reasons for the lack of success of the above approaches was primarily found to be due to two properties of the data, particularly near the commencement of the project.

Inspection showed that the cumulative costs could increase in a nearly linear manner over several periods. The linearity effect was particularly prevalent near the start of a project. Graph (7) typically illustrates this point for the cumulative costs of the first eight veeks of one of our industrial projects. It is important to overcome the linearity problem near the start of a project as it affects the possibility of early forecasts. It is furthermore clear from this condition why the selection of an appropriate smoothed curve is not possible under these circumstances and hence forecasting routines relying on the use of such a curve generated over a few periods cannot give a reliable basis for extrapolation into the future.

The linearity problem lead to the investigation of the possibility of finding constants by variously veighted polynomial regression routines. As these approaches vere equally unsuccessful the curve fitting errors (SDY) vere investigated over the data points used in the earlier tests for a range of alpha and beta values typically for alpha values between -0.5 and 0.5 and beta values between -7 and 11 .


Graph 7


A table of these results was formed in which high value errors vere suppressed shown in the form of an error map (see a typical case Figure 16) as can be seen from the error map large "islands" of low errors occur which explained the high variablility in forecasting accuracy.

The forecasting procedure aims to minimise the effects of 'linearity' and restrict the region of the 'error map' in which a search is made for appropriate forecasting constants.

### 5.3 Alpha-Beta Cubic Equation Forecasting

Research into the underlying problem of obtaining viable values for the constants alpha and beta and determining the earliest period from which forecasts can be made is still in progress. However, tests on the most recent routines are proving successful. Present indications are that it should be possible to forecast from about the end of the first quarter of the project with an initial forecasting error of $+15 \%$ which is vell within the corresponding statistical estimations of $+25 \%$ for $90 \%$ confidence limits. This error has been found to drop rapidly as the project progresses, which would be expected on statistical grounds. Typically the errors may drop below 10\% in the first half of the project providing no extreme changes occur such as policy alterations causing extreme cost fluctuations. Such vagaries would, it should be stressed, totally invalidate predications until sufficient new data is available.

The major feature of the forecasting procedure is to initially find the peak period cost ( Zp ) as this can be shown
to be the least sensitive datum which may be extracted from the known cost information. The earliest point during the project at which the peak period valuation may be determined is the period from which forecasting may commence. Using the peak period valuation, initial values of the constants may be found, these in turn are used to set search limits based on the curve fitting errors they create. The values of alpha and beta which have a minimum SDY error are determined inside the above limits.

The above methodology overcomes the earlier stated objections in that this procedure does allow determination of a period for forecasting commencement, avoids the problem of linearity and reduces the region of the error map in which a search is made for the best values of the alpha-beta equation parameters.

### 5.4 Predictions Utilising the Exponential Equation

In addition it has been found that extremely good results can be achieved in a number of cases by projecting the predicted expenditure curve from the current known valuation point. This has been achieved by transposing the exponential equation.

See Appendix 2.

To demonstrate the actual performance of the predicted forecast utilising the exponential projection it was decided to utilise the known expenditure patterns of the design and construction projects used to validate the curve fit process.

Since the results obtained early in the project are less significant and produce highly variable results the first analysis was set at third the way through the project time span or alternatively at the fifth month position. The prediction programme "PREDI" was feed with the appropriate valuations corresponding to the original curve together with the expected final valuation on completion. The exponential curve was then projected and the point in time at which the final valuation was achieved denoted the predicted project completion time.

The table shown in Figure 17 shows the relevant data and results together with the variance between the actual and predicated completions.

The construction projects on average vere predicted more accurately than the design projects, the two worst cases being - $20 \%$ of the actual completion. Three of the seven design projects had highly variable results ranging from $-41 \%$ to +64 , whilst the remaining four results ranged from -4. $16 \%$ to $+10 \%$.

A comparison of the percentage of elapsed time to the percentage of total project valuation achieved to date clearly indicated that where these figures were similar the project completion time was accurately predicted. However, large discrepancies resulted in high over or under estimates of the project time.

| PRQJECT | Known <br> Final <br> Valuation f | Prediction Data |  | Predicted Complekion (Months) | Actual Duration (Months) | variance as \% of actical Duration | 70 <br> time <br> elapsed <br> to date | 0 of Total Curreat Valuation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current Valuation | Current Month |  |  |  |  |  |
| OFFI | 2,452,000 | 867,399 | 6 | 17 | 18 | $-5.55$ | 33 | 35.37 |
| Factory | 3,270,000 | 1,127,240 | 6 | 17 | 17 | 0 | 35 | 34.47 |
| FLATS | 750,000 | 328,111 | 5 | 9 | 9 | 0 | 55 | 43.70 |
| OFF2 | 3,050,000 | 1,008,819 | 6 | 18 | 18 | 0 | 33 | 33.00 |
| WAREHOUSE | 1,050,000 | 495,198 | 5 | 12 | 10 | $+20$ | 50 | 47.00 |
| POWER STAT. | 37,043,000 | 9,177,000 | 8 | 27 | 24 | $+12.5$ | 33 | 25.00 |
| REFURBISH | 1,876,000 | 365,332 | 5 | 20 | 15 | $+25$ | 33 | 19.5 |
| RYE | $3,090,000$ | 889,589 | 9 | 28 | 26 | $+7.7$ | 35 | 28.8 |
| DESIGN PRQUCT |  |  |  |  |  |  |  |  |
| SHEL | 173,465 | 124,048 | 20 | 33 | 58 | $-43$ | 34 | 7.5 |
| $B$ of $E$ | 152,171 | 27,679 | 5 | 11 | 11 | 0 | 45 | 53 |
| SOUTH | 82,197 | 13,596 | 13 | 55 | 39 | +41 | 33 | 16.5 |
| MIDB | 376,169 | 123,521 | 16 | 46 | 48 | $-4.16$ | 33 | 33.8 |
| BRIGAS | 154,193 | 18,496 | 10 | 51 | 31 | $+64$ | 32 | 12 |
| LEEDS | 76298 | 22,296 | 9 | 28 | 26 | $+7.7$ | 35 | 29 |
| MIDEANK | 24,328 | 7,187 | 7 | 22 | 20 | $+10$ | 35 | 29.5 |

[^2]| PROLECT | Known <br> Final <br> Valuation $f$ | Prediction Data |  | Predicted Completion (Months) | Actual Duration (Months) | VARIANCE as 70 of acheal Duration | 70 <br> time elapsed. to date | $\%$ of Total Current Valuation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cuirent Valuation | Current Month |  |  |  |  |  |
| OFFI | 2,452,000 | 1,735,595 | 12 | 20 | 18 | $+11$ | 66 | 70.8 |
| FActory | 3,270,000 | 2,584,691 | 12 | 18 | 17 | $+5.8$ | 70 | 79 |
| FLATS | 750,000 | 443,310 | 6 | 10 | 9 | $+11$ | 66 | 50 |
| OFF2 | 3,050,000 | $2,262,861$ | 12 | 19 | 18 | $+5.5$ | 66 | 74 |
| WAREHOUSE | 1,050,000 | 658,203 | 6 | 11 | 10 | $+10$ | 60 | 62.7 |
| POWER STAT. | 37,043,000 | 24,948000 | 16 | 27 | 24 | $+12.5$ | 66 | 67.3 |
| REFURBISH | 1,876,000 | 1,360,221 | 10 | 17 | 15 | $+6$ | 63 | 72.5 |
| RYE | $3,090,000$ | $2,136,491$ | 18 | 28 | 26 | $+7.7$ | 69 | 69 |
| DESIGN PRQJECT |  |  |  |  |  |  |  |  |
| SHEL | 173,465 | 166,485 | 40 | 45 | 58 | - 22 | 69 | 96* |
| $B$ of $E$ | 152,171 | 35,273 | 7 | 12 | 11 | +9 | 64 | 67.6 |
| SOUTH | 82,197 | 31,455 | 26 | 68 | 39 | $+74$ | 66 | 38.3* |
| MIDB | 376,169 | 173,376 | 32 | 74 | 48 | $+54$ | 66 | 46* |
| BRIGAS | 154,193 |  | 20 | 38 | 31 | $+22$ | 65 | 51.8* |
| LEEDS | 76298 | 61,255 | 17 | 25 | 26 | $+4$ | 55 | 80.2 |
| MIDEANK | 24,328 | 21,526 | 14 | 18 | 20 | $-10$ | 70 | 88 |

Figure 18 Prediction of Project Duration at $66 \%$ Completion

The next step was to test the project duration prediction at two-thirds of the project time span and the results obtained are shoun in Figure 18.

It can be seen that the construction project results are now considerably better than the design projects having a duration prediction accuracy of between +5.5 and $16 \%$.

Conversely four of the design projects still showed large variations ranging from -22 to $+74 \%$ which in some cases were worse than previously obtained earlier in the project.

Since eleven out of the fifteen projects under investigation had produced good results at this stage it was decided to analyse in more detail the remaining four projects. Figure 19 summaries the results of the individual design and project analysis.

The Shell project has a protracted completion where small amounts of cash are expended from month thirty-five. onvards. The exponential curve is incapable of predicting such a small tale-off of expenditure and hence the predicted project time is belou actual project completion, even at 99\% completion.

The South project expenditure vas slow at the beginning and in the mid span consequently the predictions made during these periods indicated completion times well in excess of the actual completion time. Expenditure was high during the last five months of the project and the last
Figure 19
Predicted Completions of Projects at Months Indicated

| Project | Final <br> Valuation | Current |  | Predicted Completion | Actual Completion |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Valuation | Month |  |  |
| British Gas | 154,193 | $\begin{array}{r} 18,496 \\ 95,319 \\ 132,344 \end{array}$ | $\begin{aligned} & 10 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 51 \\ & 38 \\ & 34 \end{aligned}$ | 31 |
| Shell | 173,465 | $\begin{aligned} & 124,048 \\ & 166,485 \\ & 169,571 \\ & 172,022 \end{aligned}$ | $\begin{aligned} & 20 \\ & 40 \\ & 45 \\ & 50 \end{aligned}$ | $\begin{aligned} & 33 \\ & 45 \\ & 48 \\ & 52 \end{aligned}$ | 58 |
| Middlesbrough | 376,169 | $\begin{aligned} & 123,521 \\ & 173,376 \\ & 324,206 \end{aligned}$ | $\begin{aligned} & 16 \\ & 32 \\ & 40 \end{aligned}$ | $\begin{aligned} & 46 \\ & 74 \\ & 54 \end{aligned}$ | 48 |
| South | 82,197 | $\begin{aligned} & 13,596 \\ & 31,455 \\ & 50,712 \\ & 77,384 \end{aligned}$ | $\begin{aligned} & 13 \\ & 26 \\ & 33 \\ & 38 \end{aligned}$ | $\begin{aligned} & 55 \\ & 74 \\ & 62 \\ & 45 \end{aligned}$ | 39 |

months expenditure was particularly high. Hence, the predictions up until the very last month vere indicating project completion much later than the actual completion.

Both British Gas and Middlesbrough had slow expenditure at the beginning followed by rapid spending near to the completion. Further, the general trend of expenditure was interspersed with limited periods of slow and rapid spending. The duration predictions during the early stages indicated much longer periods to completion than actually occurred. This assessment was considered to be quite reasonable, since if the expenditure rate did not increase, then the completion would be protracted. The rapid expenditure at the very end of the projects had precisely the converse effect to that observed in respect of the Shell project. In other words, the predicted completions became more accurate with the imminent completion of the projects, but the degree of accuracy did not improve to minimal proportions until the very last month.

The mathematical development of the prediction system is shown on page 4 of Appendix 2.

## Summary

It is concluded that the exponential projection of existing project expenditure from the current date can produce reliable predictions given the following circumstances. The predicted completion time for the construction projects at 66\% of elapsed project time, as depicted by Figure 18, showed a mean error of $8.69 \%$ when compared with the eventually known completions. The projections have been made on the basis of the known peak period cost to date, which enables the transposed equation shown below to calculate the curve projection, period by period, until the final anticipated expenditure is reached:

$$
C m=S k\left(1-e^{-m^{2} / 2 M^{2 p}}\right)
$$

When the final expenditure is reached the predicted project completion date is established. The percentage error achieved represents a significant development, since the projection is made solely on the analysis of the actual valuation of work completed to date and does not rely on intuitive judgements normally made by management staff.

The predicted completion error associated with the design projects was considerably worse than the construction projects. After further investigation this situation was explained by a number of relevant factors, the most significant being the value of $k$ used in the Rayleigh Diffusion equation.

The value used in both the construction and the design cases was l.05. This was derived from the data produced by the DHSS during their survey of 700 plus hospital projects. Indications are that a lower value of $k$ will improve the design project predictions. Further, the design projects by their nature displayed larger expenditure curve irregularities which naturally increased the variability of the results.

It is intended to use this vork to form the basis of a prediction sub-system which will use the stored cost data base. This information combined with a management input of end costs and durations, will give the user alternative project predictions. This sub-system feature will permit the manager to select the minimum amount of necessary information to enable him to model viable future project time and cost to within known statistical accuracy. There is also scope for predicting tender sums, particularly where projections can be made knowing the nature of the project curves in terms of the constants described. By anticipating the duration, the cost of the project can be predicted within known limits of accuracy. Visa versa, knowing the project cost, the completion date can be determined. Other applications relate to risk analysis and bidding strategy.

It is concluded that a viable means has been achieved in order to produce curves which can be applied to a wide range of project expenditure patterns far in excess of those possible by the utilisation of a transposed cubic equation. It is foreseen that the application of the curve fit and prediction philosophy proposed can be relevant to both the tendering and construction stages. Further potential exists in terms of the design and the total project process. The proof and means of successfully utilising these principles will be dealt with in the following chapters.
6. CASE STUDIES
6.1. Introduction

Before considering the development of the applications systems necessary to implement the research previously described, I considered it essential to undertake a fact finding study of the Construction Industry in order to appreciate more fully the problems and needs of designers and contractors in general terms. More specifically, the study was also intended to indicate the design and constructors attitude towards financial matters and their awareness of the importance of financial control procedures.

Any investigation related to the Construction Industry must contend with its diverse nature, both in terms of professional structure and type of work; a further difficulty relates to ideal circumstances observed in one situation which was likely to be completely inappropriate in another. The first step vas to identify the contracting methods and their various main characteristics in order that a valid selection of in depth case studies could be made. After a careful analysis involving statistics and publications produced by the government and professional institutions the matrix shown in Figure 20 was produced. Traditional procedures involving total contract tenders and nominations represented $90 \%$ of the total with specialist procedures, i.e. joint ventures, package deals being in the minority. However, two significant aspects became apparent during the study which related to the grouth of the less
conventional methods of contracting. The first was the apparent realisation by some clients that the traditional system did not, in many cases, offer the most efficient way of designing and constructing buildings, and secondly, the improving professional status of the contractor which appeared to support the contractors role as developer and producer.

Number and Range of Studies
It was decided that a limited number of in depth case studies of construction design and production vould be undertaken to establish current modes of operation and to determine the needs in each instance relative to the objectives of the research. The selection of studies was intended to give a reasonable cross section of all the main alteratives and methods existing in the contracting sphere. The two categories under scrutiny (traditional and non-traditional) appeared to breakdown into types of organisations relative to the size and nature of the built structures involved and the design/build procedures utilised.


Figure 20
Project Procedure/Size Complexity of Project

A total of ten projects vere considered necessary to update my knowledge and experience in order to give a broad spectrum of needs. Unfortunately one project was withdrawn due to managerial difficulties unrelated to the investigation which occurred prior to the termination of the study. The remaining nine projects were selected to fit as near as possible to the cross section line shown in Figure 20 in order to give as representative a spread as possible. Since a true statistical representation of the industry would have involved a whole major research programme in itself, it was decided to base the survey on a qualitative nature moderated by the experience of the author and his advisors. The reasoning in this case being that broad areas of need could be established beyond any reasonable doubt and that support vould be given to the viability of the research and development to be implemented in the area selected. Further, the main energy of the research could be devoted to the development of an appropriate system of project monitoring and forecasting.

In addition to the sites studied due regard was given to the organisations involved with the design and construction of the projects. It vas generally deduced that the larger and more complex the project, the more likely that non traditional methods would be used to manage and adminster the project. The smaller projects vere almost entirely run on a completely traditional basis using private architectural practices and small building contractors.

In order to report the findings of the case studies the projects and organisations have been grouped under the following headings:
(1) Large Complex Projects
(2) Medium
(3) Small Simple Projects
(4) Organisations
6.4 (1) Large Complex Schemes

Three studies vere made in this area and the projects selected vere intended to contrast in building type and style of management. The table belou sets out the main characteristics of each case:

| Case | Type | Construction | Organisation | Size <br> values 1979 <br> prices | | |
|---|---|---|---|---|---|---|
| A | Public Health Lab. | traditional | Project Manager <br> based | $£ 10 \mathrm{~m}+$ |
| B | Scientific Lab. <br> Oxford Univ. | traditional | traditional <br> private practice <br> professions <br> Tendering <br> Contractors | $£ 3.2 \mathrm{~m}$ |
| C | Commercial <br> Warehouse <br> Factory and <br> Offices | traditional/ | Design and <br> System | $£ 7.5 \mathrm{~m}$ |
| Buld |  |  |  |  |$\quad$| Contractor |
| :--- |

The basic system of design and build vas evident in each case and it can therefore be stated that no evidence vas found to suggest that the procedure of work as laid down by the RIBA plan of work is theoretically incorrect although
it is recognised that a single plan cannot represent precisely all types and sizes of project.

### 6.4.1 Case A

By far the largest project was the new public health laboratory and this building by virtue of its complexity required a high standard 'of management and control to achieve acceptable efficiency. The study was conducted at the design stage and it was very evident that the co-ordination of the design team and the user groups were of paramount importance. A.project manager had been appointed well after the design had commenced, due primarily to failure of the previous management control system. A new control system had been devised and was implemented approximately one third the way through the design process. An equally important aspect was that of financial control of the design process and the design itself. Detailed analysis of design costing was left almost entirely to the professional quantity surveyor, although the project manager retained executive control of the decision making process. There was a noticeable lack of scientific management control and most of the policy making and co-ordination took place through ad hoc meetings between all concerned.

The DHSS had produced an extremely comprehensive management procedure known as the "CAPRI CODE" which was referred to in essence, but was not used in detail due to inflexibility of some procedures stated. A project programme had been
produced but this was of poor quality and did not reflect the true nature of the work. An attempt was being made to budget design cost on the part of the project manager using cash constraint imposed by the client and to some degree this was proving successful; two major savings had been made by altering the design to eliminate unnecessary and costly architectural features. The afore aspect clearly illustrated the advantage of having a project manager capable of catering for the client's interests without being involved aesthetically with the design and its detailed problems.

The new organisation structure shown in Figure 21 was logical and appeared to have a clear constitution and strong lines of communication. The prime disadvantage with the structure seemed to be the number of meetings which vere necessary to make the system vork effectively. In essence, this problem was unavoidable due to the number of separate bodies, practices and individuals involved.

The latter stages of the design vere much better organised and greater efficiency was apparent in almost every respect. Although much depends on the individual, the importance of a central co-ordinating executive is of paramount importance to a project of this nature. It was genuinely felt that a greater employment of scientific forecasting and management procedures could have significantly contributed to the efficiency of the processes used.


Figure 21 Project Structure Case A


## Figure 22a



The obvious conclusion to be drawn vas that the design of this project had been very professionally undertaken, but difficulties of a geographic nature had slowed the work considerably. The alternative would have been to progress the work at a faster rate, but this vould inevitably have forced the design team into errors. There was no evidence of procedures to budget the costs involved in producing the design and apart from an outline bar chart no formal planning and monitoring processes were evident.

The tendering process was completed efficiently and the successful builder was selected from a total of nine contractors. It is worth noting that there was a very close spread of tender prices which could be attributed to the fullness of information provided, thereby reducing the number of contractor risk items to be priced.

The subcontractor works vere completed during the period of study and it was significant that the works progressed relatively smoothly without problems occurring through design anomolies. The contractor appointed conducted his work on a national basis and was vell known to all in the industry.

Control of the project was taking place through regular production meetings and the progress of the project was being marked up on a bar chart. There was no other method of planning in existance which indicated how much reliance was being placed on the experience and personal ability of the site manager to fill in the gaps and make the correct
decisions. On detailed inspection of the contract programme it revealed that the rate of production envisaged was relatively slow and there vere many instances where services subcontractors could have been programmed to start earlier. For example, carcussing vork could have began in the basement once the formuork to the ground floor slab had been cured and struck.

There was no evidence that the contractor had produced a budget for the construction work and apart from the normal monthly reconciliations there appeared to be no other financial data to assist management control. Work on site vas being executed through a vork force consisting of mainly labour only subcontractors uho were dependent on the main contractor for instructions, co-ordinating and the supply of materials.

At the termination of the study the project had only suffered minor delays and in general vork was progressing satisfactorily. No information vas available regarding the profitability of the construction vork.

This case study indicated that given a capable architectural practice a professional approach to the design process vas possible but the speed with which it could take place was severely restricted unless special arrangements vere made. Another factor vas that correct and full design documentation contributed to the smooth running of the construction process.

## 6.4 .3 <br> Case C

The third project in this category was an office factory and varehouse complex for a major book publishing company in Cambridge. The contract was worth $£ 7.5 \mathrm{~m}$ and the project was scheduled for completion in $2 \frac{1}{2}$ years. The period of investigation covered three months during the middle of the construction time span.

Unlike the previous case studies this project vas based on a design and build contract where the contractor undertook full responsibility for all matters from inception including the complete design of the building and its ancillary services.

An investigation of past records indicated that the design had progressed smoothly and to programme. This was achieved by utilising a design group employed directly by the contractor. The group consisted of architects, engineers and surveyors who worked under the same roof to produce a fully integrated design.

The most impressive aspect of this study vas the speed with which the design was carried out. By eliminating the time consuming tendering process the client gained approximately $2 \frac{1}{2}$ months on the overall project time. However, it must be stated that this building vas less complex than the buildings in the two previous studies and it would have been significant tostudy a laboratory utilising design and build contractural procedures. Unfortunately no projects of this nature could be found which must be considered as


Figure 22c
highly significant regarding viability and the particular expertise necessary.

The management structure adopted for this project was specifically geared to take advantage of the design and build situation and a high degree of importance vas attached to co-ordination and liaison between the construction management team and the design group back at head office. See Figure 22c. Particular importance was attached to the co-ordination of services design and subcontractors. The general administration and control of the site was achieved through monthly production meetings interspersed with ad hoc meetings to solve particular problems and situations as necessary. There vas clear evidence that planning vas being used as a central theme for management control. The overall bar chart for the contract was produced from a netvork programme which had been processed manually. The more detailed stage programmes used for project control covered a period of $2 \frac{1}{2}$ months and vere updated monthly. Both the senior agent and the consultant services supervisor kept a detailed update of weekly progress.

Strict financial control vas kept manually utilising a valuation system based on the project estimate, together vith information from the project costing system. Normally a reconciliation was carried out once per month on a manual basis. Cost centre breakdown was available but the manual process required considerably more effort. It was surprising that no effort had been made to introduce
computerised control procedures. This project vas by far the most efficiently run of all those observed, hovever scope for improvement of financial and management control was very evident.
6.5 (2) Medium Sized Schemes

Three case studies vere undertaken in this category in order that a dual comparison can be made between similar and differing sized projects. The table below sets out the main characteristics of each study:

| Case | Type | Construction | Organisation | Size <br> values 1979 <br> prices |
| :--- | :--- | :--- | :--- | :--- |
| D | Office and Commercial <br> Centre. Multi-story <br> car park | traditional | traditional <br> private practice <br> professions <br> Tendering <br> contractors <br> Non-executive <br> co-ordinating <br> Project Manager | $£ 2.45 \mathrm{~m}$ |
| E | New Inspection and <br> Testing Building <br> and Varehouse | traditional/ <br> system <br> framevork | Design and <br> Build | $£ 2 \mathrm{~m}$ |
| F | Rehabilitation <br> of Existing <br> Offices | traditional | Design and <br> Build | $£ 1.88 \mathrm{~m}$ |

[^3]traditional tendering procedure was not instituted until $2 \frac{1}{2}$ years after the inception of the project and construction work did not commence for a further nine months. - The design was based on cost targets set by the quantity surveyor incorporating an allovance for inflation. Throughout the design period month by month meetings vere held between the members of the design team in an attempt to ensure adequate co-ordination and communication.

No formal project programme was produced to monitor and control the design process and there appeared to have been a general lack in establishing firm target milestone achievement dates. A verbal agreement to establish tentative target dates took place at the monthly planning meetings. It appeared from records inspected that co-ordination and communication between the design professions deteriorated as the project design progressed. Weak control by the architect only added to this problem.

Control on site by the main contractor was observed to be very poor. Virtually no planning was evident on site apart. from an outline bar chart which defined the main activities within the constraints of the start and completion dates. The project progress became extremely slou and this situation vas aggreviated by numerous design problems uhich had not been properly thought out, or alternatively, insufficient co-ordination had taken place. There appeared to be no costing or financial control outside of the normal monthly valuations.

Approximately six months after the commencement of the project a member of the professional quantity surveyor's staff realised that a co-ordination problem existed concerning the project and volunteered his services as a project co-ordinator. His prime function vas said to be that of integrating the design team and developing proper liaison and co-operation from the contracting side. A principal objective vas to avoid disparity caused by lack of communication. After just one month the project co-ordinator was given the title of project manager even though he was to have no executive responsibility. Numerous changes vere made by the client resulting in the issue of variation orders.

The main contractors inability to cope with design problems and changes, together with the failure of the site staff to cope with the management and administration of the project caused even further disruption and delay. There vas clear evidence that the design professions involved were not actinc as a team and it was apparent in a number of instances that attempts were being made to apportion blame for mistakes froone to the other. In certain instances "trench varfare" was the order of the day.

Unfortunately this project, in the author's experience, had the symptoms displayed by so many projects in the United Kingdom that go seriously wrong. The amalgamation of events which took place vere caused by numerous problems and simply bad luck. However, there can be little doubt that the project lacked strong professional leadership which could have overcome many of the problems encountered. There appeared
to be a stage where the project had reeled and staggered for so long that the way had been lost and to all intends and purposes it was beyond recovery.

No evidence was apparent of a serious attempt to programme and control the design progress and cost at both the design and construction stages. This vas further aggravated by the contractors inability to manage the project efficiently in the light of the circumstances encountered.

### 6.5.2 Cases E and F

The new train inspection and testing building at Birmingham and the rehabilitation project in London, although completely different in construction, vere managed in a very similar manner by the same company, and therefore these will be dealt vith together.

In both instances, the client had approached the contractor direct regarding the design and construction of the buildings on a package deal basis. In the United Kingdom the client normally turns to the architect first and it is significant that the goodwill and reputation of the contractor to provide a complete service had broken this tradition. It is worth noting that the two sites under consideration were of a completely different nature, requiring an entirely different design and site management situation. The rehabilitation project involved the complete refurbishment of a three storey masonry building including restructing of openings, insertion of nev division walls and installation of new services. In contrast, the inspection and testing building was traditionally

## PAGE

## NUMBERING

AS ORIGINAL

The contrast apparent between this section and the previous sections relates to the degree of sophistication both in design and construction management.

Details of the design vere contained on relatively few dravings and in the case of the supermarket and the oast house no bills of quantity vere produced by the client. The tendering contractors vere required to take off their own quantities for estimating purposes, using the specification and drawings provided. In all three projects design details were provided,but these did not cover every part of the project and a great deal of reliance was placed on the resolution of these on site with the contractor once the work had reached that stage.

In a significant number of cases changes in the detailed design resulted in variation orders being issued by the architect, thereby incurring extra costs. No evidence was apparent of any formal planning of the design effort apart from the determination of tentative completion dates for the various sections.

In all cases the management on site consisted of a general foreman/agent being supported by a contract manager and surveyor based at head office who visited the site on average twice a veek.

All the labour on site vas subcontracted. The traditional building trades vere sublet to labour only gangs known to provide a satisfactory service and more specialist subcontractors provided a complete service. In general the
services and roofing contractors vere nominated by the architect.

No formal planning took place on any of the projects and apart from contracted completion dates no other time targets vere set. The progress of the projects vere largely determined by the availability of resources and the construction sequence. Ample evidence was observed of delays caused by the late or incorrect ordering of materials, and a lack of co-ordination with subcontractors vas also evident. Mistakes requiring work to be pulled down was seen on all the projects and these could almost entirely be attributed to poor site management.

Monthly valuations were carried out, but no attempt was made in any of the projects to establish budgets against which costs could be measured. The profitability of the projects could only be checked by historical accounting procedures after the contract completion dates. Hence no financial control existed on these sites whatsoever apart from informal assessments made by the surveyor and general foreman.

The site supervision by the architect vas spasmodic and generally occurred on an ad hoc basis as the situation of the contracts demanded problems or queries to be solved. All these projects vere behind programme ranging from tuo to three months, primarily due to avoidable mistakes and errors.

In conclusion it can be stated that these projects represent an area of the construction industry where vast gains in efficiency could be achieved through improved design and management control. It is surprising that this scale of building work has not been priced out of the market, since it is clear that with more efficient methods and procedures vast improvements could be made in productivity. There seemed to be a general lack of management ability on the part of all contractors observed to implement anything more complicated than basic day to day administration. This state of affairs had resulted in a lack of forward planning which anticipated future pitfalls and problems.

### 6.7 Organisations

The studies so far have identified the traditional method of designing buildings using independent practices uho collaborate with each other to achieve individual project designs. In contrast it vas considered beneficial to cover the structure and operation of a large multi-disciplinary design partnership to establish current procedures and the potential for the application of the research proposals. In addition it was decided to investigate the operational characteristics of a company offering a complete design and build service which could be compared vith the traditional contracting companies contained in the survey.

The "design partnership" investigated was one of the largest organisations of its type in the United Kingdom employing a total of 650 professional, technical and clerical staff. The "partnership's" operations vere conducted through six regional offices both at national and international level. Overall management of the enterprise was achieved through thirty-four partners who met regularly every three months to discuss the overall policy and strategy of the business. The more detailed running and control was achieved through Management Groups whose prime areas of concern vere strategic planning in terms of:

Development
Communication
Professional and Technical Activities
Welfare
Central Services, i.e. legal, property, personal cost

The six offices were divided into two resource groups formed to achieve the best utilisation of professional and technical staff. The management of the organisation at this level vas achieved by a committee of senior staff who reported back to the Management Group. Each project had appointed a team leader based at one of the regional offices, whose prime responsibility vas the control and co-ordination of professional and technical staff, together with the management of the contractor and liaison with the client. A sub partner vas also appointed to oversee the whole operation including links with the contractor and client at
a higher level.

Under each team leader vas a multi-disciplinary design team consisting of architect civil/structural engineers, HVAC engineers and quantity surveyors.

It could be seen that line relationships existed through to the management group in respect of each discipline, but at the same time relationships also existed within the project design teams, thus establishing a matrix organisation structure.

## Comment

Clearly the advantages of co-ordination and communication created by multi-disciplinary design group work vere highly significant in terms of the quality and efficiency of the design. A further advantage appeared to be the fact that everybody worked for the same organisation and was therefore influenced by the overall policy and objectives set by the enterprise. Although the "partnership" totalled 650 staff, all specialisms were not covered and in some cases it was necessary to seek outside assistance from consultants. This factor clearly illustrated the prime disadvantage of design partnerships which lies in the span of expertise available. Because of its size, the "partnership" was able to cover a considerable range of design expertise. It vas recognised that the smaller design partnership could find it prudent to call on outside expert assistance, alternatively it would make do with the internal design staff available. The prime danger with this latter course of action was the
possibility of poor or inefficient design in all aspects. A senior member of the "partnership" considered in this study, suggested that thirty professional design staff from the various disciplines should be considered as an absolute minimum.

## Contractual Aspects

The "design partnership" operated precisely the same contractual arrangements between the client and contractors as those used for traditional design groups. The use of nominations, or alternatively, the award of the whole project to a main contractor vere quite normal. Where required the partnership might consider it in the clients' interest that a management contractor be appointed to supervise the whole execution of the work.

In accordance with modern trends in construction management the "partnership" had completed a limited number of large projects using a project manager to co-ordinate the design and construction aspects.

The Co-ordination and Integration of $M \& E$ Services in the Building Design Process

The "partnership" clearly defined the fact that the responsibility for ensuring that services vere properly related to each other and to the fabric and structure of a building lay firmly with the architect and with no one else. (This statement clearly demonstrates that the role of the "project manager" is that of a co-ordinator without any executive responsibility).


#### Abstract

The "design partnership" further maintained that under normal circumstances the architect alone was paid to perform the co-ordination role and he should therefore discharge this responsibility to the full. It was felt that engineers in individual disciplines, no matter how brilliant, could not achieve this on their own and it is in their interest, economically and technically, that the architect should fully discharge the co-ordination role and no part should be usurped by choice or default.


Notwithstanding the previous comments it was possible that uhere heavily serviced and complex projects vere commenced it was conceivable that the architect could be overwhelmed by the scale of the problem.

Complex arrangements of ducts, piping and trunking represented an engineers world into which the average architect will not venture, and the average engineer would only be concerned with his oun part of the services. The partnership did not change its ground because of the above situation and maintained that the architect should not pass on the responsibility because the problem had become bigger.

The recommendations of the "partnership" vere categorised as follows:

1. On all large projects, an architect should be nominated as being responsible for all matters concerning the co-ordination of services in the building. He vould chair regular meetings of the job engineers and be a liaison for all engineers and other members of the
architectural team. In a small job this role vould inevitably be performed by the job architect but in the large complex projects, it must be someone else because for certain periods of time it required a fulltime commitment. It also requires continuity of thinking as embodied in a systematic checking procedure. On the large complex project, the job architect could never give the matter adequate attention.
2. On really complex projects, a co-ordination engineer should be appointed in addition to assist the 'services co-ordination architect' in arbitrating on the rival claims of the individual engineers and on the technical issues arising from the relationship between services and questions of sequence of installation. An engineer in such a role was helping the architect to do his job more professionally and in the partnership this should be paid for out. of the architect's fee.

The "partnership" emphasised that irrespective of the engineering nature of a component, the nature, appearance and positioning of any services terminal point was a part of the total architecture of a room and therefore should be recognised as being in the domain of the architect.

## Co-ordination Drawings

It appeared that the "partnership" did not generally use services co-ordination dravings, and some doubt vas expressed regarding the inability of their future use. Hovever, it
was recommended that co-ordination drawings should only be used where the situation varranted their utilisation. Conceivably this might have only occurred at one location in a whole project. Where critical situations such as this occurred they should be highlighted, investigated and recorded by a sketch detail.

In accordance with the afore philosophy the architect vas responsible for the tasks performed by the engineers assisting in these investigations. The consulting engineers laid the specific responsibility for ensuring that subcontractors with design responsibility vere made avare of critical co-ordination situations and of the assumptions made by the architect and engineer at earlier design stages.

The final stage in the design process was to ensure, in checking the nominated subcontractors drawings, that these critical situations had been properly taken care of and that nothing had changed elsewhere which could alter these circumstances.

Figure 23
650 staff $\quad 34$ partners
No Head Office
Each branch office has federal autonomy
Elected management group and partners responsible for the running of the practice.


Minimum 30 designers practical for design partnership

## Figure 24



Partners meet once every three months (34 partners)

Prod. Job margin summary<br>History Future<br>Professional Hours Summary

Forecast monthly to check target variations and trend programmes.

Costs
Totalled

## Financial Control

The "partnership" had developed a comprehensive design costing system based on hours utilised by each profession. The data collected from time sheets was keyed into a computer terminal and monthly costs were given relative to each project and profession. This system enabled the management of the partnership to assess expenditure in relation to anticipated fee income. Unfortunately no means existed whereby a reasonably accurate budget was produced against which could be measured progress to date and the associated cost involved. This facility was recognised as important but at that time no means had been developed whereby a reliable budget assessment could be made.

No evidence was seen relating to advanced project control. This was particularly surprising since the partnership owned and operated a computer which was capable of running a computerised networking system. One can only assume that the necessary expertise required to operate such a system did not exist.

In conclusion it can be stated that the degree of co-ordination and integration between the design professions was first class and that some of the shortfalls identified earlier in the document had been overcome. Hovever, the gap between design and construction still existed and little or no attempt was made to bring the contractor in at the design stage to improve the buildability of the design. Another important factor related to the inability of the partnership to forecast its oun costs relative to the projects which it undertook.

The Company was formed in the United Kingdom over twenty years ago. It was a unique organisation when it was formed due to the service provided to clients which fully integrated the disciplines of design and construction and accepted total contractual and financial responsibility at every stage. Over the years the process had been constantly updated to keep pace with modern day technology and meet the continually changing needs of industry and commerce. At the time of the study the company consisted of a combination of a highly professional consultancy group and an effective contracting organisation, providing from its oun resources all the skills necessary to produce efficient engineering and building products. The Company was based in central England which provided an ideal headquarters for undertaking contracts all over the country. The Group turnover in 1978 amounted to $£ 35.5$ million.

Work on every new project was divided into six main stages of activity requiring a great deal of co-ordination and integration to achieve full efficiency, e.g.

1. Advanced Studies
2. Plant and Process Design
3. Building Design
4. Services Design
5. Construction
6. Commissioning

## 1. Advances Studies

Following the briefing by the client advanced studies were undertaken by the Company to define the project and its objectives, dictate the overall design criteria, assess costs and determine its commercial; social or other viability. Where viability vas already established, design studies might have been necessary to compare alternatives and define the most effective design. Further detailed studies may have been deemed necessary into specific aspects of the development including manufacturing processes, resource availability, site evaluation, project expenditure limits and construction feasibility.

The results of these investigations vere carefully appraised and a study team vas usually formed to match the client's needs and resources. Members of the study team formed the core of the design team when work progressed through to detailed design and construction. This involvement ensured that consultants vere engaged to deal vith the problem as a whole. In addition the client vas at liberty to involve his own independent consultants to keep a watching brief on the process.
2. Plant and Process Design

The staff of the Company included a team of mechanical engineers tho specialised in a whole range of areas, e.g. varehousing, production process, instrumentation and control, etc. Every project was handled by a team throughout all stages from inception to final
commissioning.

This specialist service was not limited to new developments but was available when clients wished to refurbish or develop existing plants and other facilities.
3. Building Design

This stage was executed by fully integrated multidiscipline groups. Each group contained designers qualified in architecture and in civil, structural, environmental mechanical and electrical engineering. The groups vere supported by building economists, construction and planning engineers and vould call on the resources of the plant and process and interior design groups when required.

Every project was controlled by a design team under the supervision of a leader qualified in the discipline appropriate to the particular undertaking. The prime function of the design leader was to co-ordinate the work of the team and dictate policy to ensure that the overall design met the criteria established at the advanced studies stage. During the construction stage members of the design team visited the site regularly to ensure quality control and liaise, as necessary, with the Project Manager and Site Manager.

## 4. Services Design

To achieve full integration, mechanical and electrical engineers formed part of the plant and process and the building design groups. The staff contributed to the overall activities of the groups at the advanced study and design stages, and also provided technical supervision during the installation and commissioning stages. Their involvement in the early stages vas intended to ensure that the plant and buildings were designed to provide the best solution for environmental and process needs with optimum energy and management control. Mechanical engineers vere responsible for all environmental engineering, together with vater services, public health engineering, steam, gas, compressed air and vacuum systems, etc.

Electrical engineers undertook the analysis of power supply and distribution, control and instrumentation, electrical protection systems, emergency installations, illumination engineering and communication systems.
5. Conservation

The Company had its oun regionalised construction organisation with the necessary management expertise, labour and other resources capable of implementing major construction projects. Site managers, uho answered on technical matters directly to a regional construction director, were appointed for each contract to manage and
control every aspect of the construction including the work of subcontractors. They had their oun team of key personnel supplemented as necessary by local labour.

Qualified electrical and mechanical supervisors oversaw all installations.

In addition, when process plants or warehouse projects vere being developed, specialists from the appropriate engineering disciplines were located on the site. Resident site teams were further reinforced by quantity surveyors, planning engineers and steel erection supervisors.

The Company's experience of construction management, planning and procurement and of the integration of the design and construction functions was aimed at ensuring efficient completion of the project within the agreed time and cost schedules.
6. Commissioning

Once the construction vas completed and the various essential items of plant and equipment had been installed, the project had to be made to work as a complete and efficient entity to ensure that it fully met the Client's requirements and the engineering and environmental evaluations laid doun at the advance study stage. The Company's engineers vere claimed to be expert in commissioning procedures of all types of engineering and
manufacturing installations. In all cases, they ensured that the correct commissioning procedures vere established and carried out, also that operation and maintenance manuals for the complete installation vere provided.

The Company also offered the Client its expertise concerning the occupation of a new project, or the transfer of an industrial or other process from one building to another.

In addition to the above described integrated design and construct service the Company provided a consultancy only service to any client incorporating one or more of the specialisms previously mentioned.

## Planning and Project Management

The Company recognised the importance of efficient management and forvard planning of the design and construction to ensure that every development vas successfully completed on time and within the required cost levels. Initially the planning engineers and the project managers determined a management strategy and prepared a strategic programme to suit each individual project. Normally the strategic programme was in precedence diagram form indicating the relationships and sequence of activities. Further programmes vere developed progressively in line with the formulation of the design, procurement construction and plant installation stages of a project.

The outline project programme covered the whole project process from feasibility to commissioning. Clear relationships were shown betveen the various aspects of the design process and the construction. Further this programme provided the basis for the development of a procurement schedule to ensure that materials, components and equipment vere ordered/acquired to meet the resource requirements of the project.

The outline project programme vas further developed into stage and subcontractors programmes, which are periodically updated and used for management control purposes. Normally each trade vas progressed in terms of work completed and labour on site to achieve a production rate in accordance with the parameters laid down by the original outline programme.

The project programme provided a basis for contract management utilising the concepts of co-ordination, commurication, budgetary control and progress targets.

## Organisation

Great significance vas attached to the formal structure which the Company utilised to conduct its affairs. In this case the enterprise consisted of two separate limited liability companies as shoun in Figure 25.

The commercial company could not identify as undertaking four functions which are specifically defined as follows:
Managing Director
(Company)

Steel Erect.
Conciete""
Senves
Suponision

1. Marketing
2. Buying
3. Quantity Surveying
4. Estimating

Clearly these functions had strong financial ties which tended to bind them together into an integrated unit with functional responsibility to the construction company. The construction company had two main divisions with a director in charge of each. Namely, these vere consultancy and construction. The consultancy division subdivided into three design groups comprising of the following:

| Group Manager | Architects |
| :--- | :--- |
| Planners | Civil and Structural Engineers |
| Project Managers | Mechanical and Electrical |
| Quantity Surveyors | Engineers |
| Project Economists |  |
| Although the line management responsibility vas through |  |
| the group manager there vas also functional responsibility |  |
| to the professional heads. |  |

Other design departments included steelwork, operational engineering and research and development.

The construction company upper and middle management consisted or regional/area construction managers, together with managers of steel erection, concrete erection and service supervision. The next level of management
was represented by senior site staff. Within the organisation structure the company operated a number of inter-related systems and procedures which contributed to the overall efficiency of the business.

## Area of Operation

Principally the Company vorked on a nationvise basis although much of the smaller work occurred in the Midlands area. This placed a great deal of dependence on the willingness of key staff to move periodically to where work had been obtained. Generally labour vas subcontracted to local firms or specialists able to operate in current areas of work.

Due to the fact that by far the majority of construction vork was still obtained by the traditional competitive tender, the Company naturally diversified its operations over a wide area in order to attain the desired turnover. This in turn placed a greater demand on efficient communication and co-ordination to achieve the desired operating conditions.

Because of the past shortage of work in the United Kingdom the Company had looked abroad to expand its interests. At that time the two principal overseas expansion areas are the Netherlands and the Middle East.

## General

In many ways this company was remarkable in the sense that over the past twenty years it had broken across all
traditional modes of operation in the British Construction Industry, and yet, it had not only managed to survive, but had groun from strength to strength. Much of this success appeared to be directly attributable to the enthusiasm and capability of top management, hovever, this should not detract from the efforts and expertise of the permanent company staff. The Company was unique in the United Kingdom because if its ability to provide a comprehensive and wide ranging truly professional service to the client, who could rest assured that he was obtaining security and good value for capital invested. The afore described operations did not stop the company from operating in a traditional manner, but this activity had alvays been in the minority.

Summary
The information gathered from the case studies indicates that it is practical to design and construct buildings utilising a number of different methods. The degree of success achieved depends mainly on the systems and organisations utilised, together with the motivation of the people involved. The size and complexity of the project plays a major part in selecting appropriate methods of management and control from inception to final completion. Therefore it is appropriate that each of the case study categories are summarised as follows:

### 6.10.1 Large Complex Schemes

To cope with the management of large complex projects, plans of work have been devised to introduce logical guidelines for the developing of project programmes. Unfortunately universal plans of work cannot precisely represent all individual project requirements and consequently they can only be used as a guide. The large public health laboratory studied at the design stage clearly needed a high degree of management control, including the use of financial control systems to assist the decision making process. In each of the laboratory schemes insufficient attention was paid to financial considerations, particularly at the design stage. In contrast, the Factory and Offices described in Case $C$ vere controlled financially utilising both the accountancy and control facilities within the design and build organisation. However, little attempt had been made to computerise the project financial control process to give useful and up-to-date reports.

All the projects clearly illustrated the need for good positive project management which emphased the need for adequate communication, co-ordination, control and forward planning.
6.10.2 Medium Sized Schemes

Case D (Commercial Development) displayed organisation and managerial veakness throughout the design and build period. Poor management by the architect, together with a client who could not make up his mind and an incompetent contractor combined to make this project an example of how a project
should not be administered. A half hearted attempt to introduce better management control by the appointment of a non executive project manager was a complete failure. No evidence was observed of management decisions being taken with regard to the financial state of the project. The project appeared to stumble from one crisis to another requiring ad hoc decisions to be taken.

Both Cases E and F were generally managed well with good co-ordination and control, both at the design and construction stages. The involvement of the design team at the production stage was an obvious advantage. Although the budgeting and control systems vere adequate and the sites vere vell managed, there appeared to be scope for improved efficiency. In general this related to the availability of up-to-date information in terms of progress and cost.

It is worth noting that Case $D$ was based on a traditional competitive tender contract and Cases E and F vere design and build schemes.
6.10.3 Small Simple Schemes (Schemes G, H and K)

Although these projects required less management sophistication it vas highly significant that little or no attempt was made to budget and financially control these schemes. Inefficiencies in terms of resource utilisation, design and construction method vere observed which could have been avoided by better management of design and construction. More awareness of project expenditure,
together with adequate budgeting and forecasting would have provided useful tools to the management of these projects to improve their control and effectiveness. The information gained from these sites was completely in line with my experience of this type of project and I therefore conclude that this is a general problem which must be solved.

### 6.10.4 Nontraditional Organisation Structures

The multi-disciplinary design partnership displayed tangible advantages in design management and co-ordination which clearly indicated its suitability to take on large complex schemes on a nationvide basis. In general management control was well structured and effective, hovever, budgeting and forecasting of project expenditure in terms of resources utilised was virtually non existent. Discussions with the financial director revealed that such developments would be highly beneficial to the organisation in an appropriate form.

The Design and Build Organisation investigated displayed a greater degree of co-ordination and efficiency than vould normally be expected where a project vas undertaken on a traditional basis. In general management was good, but improvements could be forthcoming if managers vere provided with up-to-date financial information in an appropriate form, thereby contributing towards the decision making process.
6.10.5 Conclusion

This investigation has clearly indicated a need to improve the efficiency of management in the construction industry at all levels of involvement. A major veakness vould seem to be a general lack of control information, together with poor co-ordination and communication. The need for adequate procedures to budget, monitor and control the construction process has been firmly reinforced. By its nature the construction process can be broken down into cost centres, both at the design and construction stages; this was clearly seen during the studies. It was also apparent that managers required reports containing the information they need to make decisions relevant to current project problems. Little evidence was found of network analysis being used to manage projects and it was therefore concluded that the cost centre approach could provide a viable alternative on which to base project budgeting. A major reason for not preparing project budgets was the time taken to initially produce them and subsequently incorporate revisions as variations occur.

Considering the results of the study, together with the references quoted, I am convinced that there is a need for an easy to use computerised budgeting, monitoring and forecasting system which can have general application to the construction industry. The following chapters will therefore concentrate on producing a model which could be applied in practice utilising the principles previously described.

## Chapter 7

7. Project Management Control System

Having established a sound basis for simulating project expenditure the next stage involves the development of means to enable the theory to be effectively utilised in the practical environment. This work has the additional advantage of providing a test bed for evaluating project data and applicability of the system. It is intended to build a project management control system which will demonstrate the full potential of the theory previously described and will provide a basis for future development.

Organisations concerned with project management will each have their oun particular requirements and it is therefore anticipated that the model proposed will not meet the needs of individual firms without revision. However, the basic concepts of management budgeting, monitoring, control and predictions will be built into the model and will be applicable to the majority of applications.

The three distinct stages in the project management process are shown in Figure 26 which further reinforces the vital need for strong inter-relationships between the stages and the importance of a reliable feedback system.

Figure 26


### 7.1 Forecasting and Data Preparation

A comprehensive sub-system will be developed which is both easy and economic to use, as well as being quick and reliable. The forecasting system will pass data direct to the monitoring and control sub-system. Because of the volume of data preparation involved, it is considered essential that the system proposals should be based on the latest computer technology currently available. The principal task of the forecasting sub-system will be the modelling of project expenditure based on interactive software programmes written in high level computer language. The object is to create a project forecast data base which can be used at the monitoring and control stages. Further the precise nature of the expenditure curves modelled can be identified in terms of the afore mentioned alpha, beta, gamma philosophy, thereby enabling knowledge to be accumulated on project expenditure which can be used to determine other project forecasts at
some future date. The forecasting system will be designed as free standing in order that it can be used in its oun right without the control and prediction sub-systems; hence it can be utilised to observe changes to the project expenditure given variations to the nature or extent of the vork.

### 7.2 Monitoring and Control

This sub-system will be developed to give the manager a basis on which to make decisions regarding the project. It is intended that adverse trends in expenditure will be quickly identified thereby giving early varning of likely losses if corrective action is not taken.

The sub-system will also assess actual progress relative to the budget proposals previously determined, hence gains or shortfalls in performance vill be periodically brought to the manager's attention.

The resultant information will give management clear indications relating to cost, valuation, progress, profitability and past trend patterns.

### 7.3 Forecasting and Predictions

Given past performance the sub-system will be designed to enable predictions relating to future project expenditure and project completion. In essence a revised project cost and duration will be determined using the theory already described in Chapters 4 and 5. Observations will also be possible of the future curve prediction in terms of alpha,
beta and gamma.

The system to be proposed will form the basis for adaption to individual commercial applications and will provide scope for further development. It is also intended to act as an aid for future experimentation and research.
7.4 The Forecasting System using Alpha Beta Philosophy The object of this section is to facilitate the marriage of the alpha-beta philosophy to a practical means of creating project forecasts in a quick and efficient manner which, where necessary, permits an iteractive solution. Obviously this type of exercise requires a large amount of data handling and therefore the use of a computer is imperative to achieve the aims envisaged.

Ideally the sub-systems should be applicable to a micro computer which would bring the use of the system within the range of a vast number of small/medium sized firms. However, it was judged that considerable advantages existed in undertaking the development work on a main frame, particularly with the convenience of an advanced operating system and graphics facilities. In order to enable the subsequent transfer of programmes from the main frame to a suitable range of micro computers, it was decided to adopt basic language programming for software development. An important factor already identified relates to data transmission between the forecasting, monitoring and prediction sub-systems. It is therefore essential that the computer programmes are designed to provide suitable interfaces for the transfer of mutually
useful data.

Provision must also be made for utilising the forecasting module on a free standing basis where project budgets only are required. As a matter of general development policy.it is vital that the systems proposed are easy to use requiring little initial computer knowledge. It is envisaged that the file handling requirement will be extensive since each project will need a number of data files both permanent and temporary. A system is to be developed whereby file handling will be fully automated to facilitate the amendment, updating and processing of the data input.

The essential data required by the forecasting system needs to be precisely formulated in the following terms:

1. Total estimate of project cost.
2. Envisaged project duration.
3. Peak expenditure: the time at which it occurs.
4. The curve profile which is obtained by the shaping constants in alpha and beta previously described.

The curve profile which is defined by the shaping constants alpha, beta and gamma, which relate to the combination of cubic and exponential equations utilised to solve the overrun problem.

The philosophy stated earlier in the thesis clearly identified the alpha-beta cubic equation constants, together with an exponential equation constant, whict provide the terms of reference for points (iii), (iv) and (v) above.

```
FROJECTT CASH FLOW ANALYSIS ANI FORECAST
```

```
INFUT PFOJECT NAME(MAX FIUE CHAFACTEFIS)
 PRYE1
INFUTT EUNGET FOFE E:ACH COST CENTRE:
SURSTFUCTURE P500000
SUFEFSTRUCTUFE ?1050000
FINISHINGS ?700000
EXT WORKS ?150000
MFAINAGE ?100000
NOMINATEI S/C'S ?400000
SITE O/H'S ?190000
INFUT IUKATION OF FFOJECT IN WEEKS
 ?26
STATE THE START WEEK FOF EACH COST CENTFE I.E.
GUBSTF,SUFEFSTF,FIN,EXT WKS,DFAINS,NOM S/C,SITE O/H
 ?1,6,15,22,2,15,1
STATE FINISH WEEK FOR EACH COST CENTRE I.E.
SURSTR,SUFEFSTR,FIN,EXT WKS,DRAINS,NOM S/C,SITE O/H
 ?6,18,26,26
 ?6
 ?26
 26
INFUT % ALL_OCATION OF LABOUR,FLANT,MATERIAL
GUBGTFUCTUFE
 ?12,46,42
INFUT % AL.LOCATION OF LAEOUR,FLANT,MATEFIAL
SUFEFSTRUCTURE
 735,25,40
INFUT % ALLOCATION OF LABOUF,FLANT,MATEFIAL
FINISHES
 ?40,10,50
 INFUT % ALLOCATION OF LABOUF,FLANT,MATEFIAL.
EXT WKS
 ?12,39,49
 INFUT % ALLOCATION OF LABOUR,FLLANT,MATERIAL
 MFAINAGE
 ?15,45,40
 INFUT AL.FHA, BETA SUBSTRUCTURE
 ?1.8, .5
 INFUT A,B SUFERGTRUCTUFE
 ?2.,5
 INFUT A,B FINISHES
 ?2.1,.43
 INFUT A,B EXT WKS
 ?1.3..7
 INFUT A,B MRAINAGE F2,.5 Figure 26a Conversational
 INFUT A,B S/C'S
 ?1 .45%.3
 INFUT A,B SITEE O/H'S
 ?2.5

An important aspect of the forecasting system design is the potential to produce concise and reliable project budgets quickly and easily. In addition, the user should be able to operate the system procedure without a high degree of computer expertise, and the handling of project data should be fully automated to support this ideal. With these requirements in mind it was decided to develop an appropriate method of conversational mode input, to guide an individual step by step through the data input process. An example of this procedure is shown in Figure 26a.

Where users are completely familiar with the system there is no reason why data input should not be achieved through specially prepared files.

\subsection*{7.5 Automatic File Handling Procedure}

When the user keys the project name three files are created using a facility in DECIO basic which permits an extension to the file name. For example the programme statements are as follows:

550 PRINT "INPUT PROJECT NAME (MAX FIVE CHARACTERS)"
650 INPUT YS
\(750 \times 1 \$=\) LEFT \(S(Y \$, 5)+" G . D A T "\)
\(800 \times 3 \$=\) LEFT \(S(Y \$, 5)+\) "P.DAT"
\(850 \times 4 \$=\) LEFT \(S(Y \$, 5)+\) "A.DAT"

Assuming the project name to be "RYE" the names of the files created will be:
(1) RYEG.DAT
(2) RYE .DAT
(3) RYEA.DAT

The files are used to store the following information:
(1) Non-cumulative values.
(2) Cumulative values.
(3) Percentage cost centre breakdouns in terms of labour, plant and materials.

These files are subsequently used by the project forecasting amendment; monitoring and control systems, together with the proposed corporate control procedures.
7.6 Development of the Forecast Curve

Previous work in this field, particularly that carried out by the DHSS, relied entirely on establishing a statistical basis on the past project performance and this then formed the yardstick for assessing future projects. The problem with this approach alone raises the question as to how relevant past results are in present circumstances and how adaptable to change are the constants thereby produced. The advantage with the alpha-beta approach is that the user can start to use the system for forecasting immediately by adopting the following procedures.
1. In the absence of past experience and data available, the user can intuitively select a curve shape which he feels will represent the project. The software developed
will enable the curve to be represented in terms of alpha, beta and gamma by the curve fitting process already described. This approach has the advantage that the nature of the curve can be quantified and compared with actual performance. Subsequently the results can be stored for future reference when preparing budgets.
2. The forecast can be modelled on a cost centre basis utilising a project time scale to alleviate costs. The cost centre period costs can be determined by allocation. Alternatively the expenditure curve can be established by the application of the constants alpha, beta and gamma to the total expenditure envisaged for the cost centres.

This approach is extremely fast and easy to prepare. For example, a large multi million pound project budget can be produced in less than half an hour. Fine tuning of the forecast can be made by the use of the alteration programme which facilitates changes of a minor nature.

The traditional method of allocating detailed bill of quantities costs over a contract programme is thereby unnecessarily slow and outdated.

The number of cost centres utilised can be selected according to the requirements of the user. For normal construction projects it is not envisaged that these could exceed teventy in number.
3. With increasing familiarity the user will be able to integrate the project cost centre expenditure in terms of alpha, beta and gamma. Consequently by utilising past experience in the form of records kept and his own intuition, he can select an appropriate curve to forecast the expenditure envisaged.

\subsection*{7.7 The Philosophy of Cost Centres}

Over the past few years it has been a matter of accepted principle to break a project down into a number of financial packages in order to more readily identify costs and to exert greater financial control. The number of cost centres selected for a project will range according to size, complexity, value of vork and the requirements of the Client.

An important factor relates to the appropriate level of control necessary compared with the cost of implementation and the likely benefits to be achieved. The actual breakdown into cost centres must of course be consistent with natural breaks in the work representing clearly identifiable boundaries which effectively isolate one package of cost from another.

The potential accuracy of forecasting expenditure budgets is increased with the level of breakdour* and hence the cost centre approach can be particularly useful where little previous known data exists regarding project costs. From experimentation project 's' curves have been produced by taking straight line cost centre expenditure set to a

\footnotetext{
* Brian Fine Fine \& Curtiss \& Cross Computing Mathematical Consultant
}
timescale; looking at the situation from another viewpoint, the reliance on statistically contrived data is considerably reduced and the emphasis is moved to the nature of the project in hand. Hence, the observed physical requirements are taken directly into account and have a direct bearing on the project time span. Another factor which tends to question the entire reliance on a statistically derived 's' curve for a project is the host of individual clients' requirements which can considerably affect the total project. For example, the construction time required and special phasing arrangements necessary to satisfy specific project needs. It will no doubt be fully appreciated that a hospital project of a certain value to be completed in five years will have a completely different expenditure pattern to one to be completed in two and a half years.

By incorporating cost centres set to a timescale a direct relationship can be achieved between the contract programme and the expenditure envisaged.

Before adopting a range of cost centres it will be necessary to prepare a contract programme which clearly and accurately represents the construction operations. The overall construction programme can either be scheduled as a bar chart or a network programme. The construction activities shown on the programme will need to be grouped together under cost centre headings and the expenditure associated with each cost centre must be determined from the estimated cost of the work. The amount of work and difficulty experienced in accurately allocating estimated
costs in this manner will largely depend on the way in which the quantities have been prepared. A bill of quantities produced in accordance with the Standard Method of Measurement of Building Works does present some difficulty in this respect since not all items contained therein can be directly related to the project activities. In general, the more operationally based bill enables the afore said relationship to be directly established in an easier and more accurate manner. The introduction of the 6th edition of the Standard Method of Measurement has helped this situation and it is anticipated that the 7th edition will make still further improvements.

It is vorth noting at this stage that some of the most advanced computer based network programming packages, particulary those evolved in the USA*, have comprehensive facilities for establishing cost centres comprising of activity costs. A natural development would be to interface the alpha beta forecasting and prediction sub-systems with these programmes to increase their versatility.

Once the cost centre has been quantified financially its anticipated cash flow relative to time are determined. The nature of the expenditure may take one of the following forms:
1. Straight line.
2. A regular shallou 's' curve
3. A pronounced regular curve, i.e.
\begin{tabular}{clc}
* PCS & Digital Corporation & PMS, IBM \\
Digital Corpn. & \begin{tabular}{l}
Project Control Systems (PCS)
\end{tabular} & 1979 \\
& IBM & Proiect Mananement Systems (PMS)
\end{tabular}

4. An irregular curve.

5. A non continuous set of expenditure with or without a reçular pattern.

Normally the continuous regular curves can be simulated by alpha, beta and gamma. Hovever, the completely irregular patterrs can be accommodated by the programmes software which allows alterations to be made.

The time limits set for regular cost centre curves are initially specified as start and finish times representing the elapsed veeks or months into the project. This process is carried out interactively by the user as follovs:
\begin{tabular}{|c|c|}
\hline & \(\longrightarrow\) time units \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{COST CENTRE}} \\
\hline & \\
\hline 2 & \(4-13\) \\
\hline 3 & 11 - 18 \\
\hline 4 & 16 \\
\hline 5 & 3-5 \\
\hline
\end{tabular}

The data input is stored in a two dimensional matrix (cost centre \(\times\) time) and the programme procedure shown in Appendix 4 determines the expenditure programme.

It is generally considered that the adoption of cost centres offers the best possible means of modelling project expenditure. This process can be carried out quickly and efficiently in accordance with individual project requirements.

The data input is stored in a two dimensional matrix (cost centre \(\times\) time) and the programme procedure shown in Appendix 4 determines the expenditure programme.

It is generally considered that the adoption of cost centres offers the least possible means of modelling project expenditure. This process can be carried out quickly and efficiently in accordance with individual project requirements.
```

FEST3
16:22
27-SEP-82

```
PROJECT CASH FLOW ANALYSIS AND FORECAST
INPUT PROJECT NAME(MAX FIVE CHARACTERS)
 30FFi
INPUT BUDGET FOR EACH COST CENTRE
SUBSTRUCTURE ?550000
SUPERSTRUCTURE ?887000
FINISHINGS ? 350000
EXT WORKS ? 15000
DRAINAGE ? 10000
NOMINATED S/C'S 3500000
SITE O/H'S ? 140000
INPUT DURATION OF PROJECT IN WEEKS
 ? 18
STATE THE START WEEK FOR EACH COST CENTRE I.E.
SUBSTR, SUPERSTR,FIN, EXT WKS,DRAINS, NOM S/C.SITE O/H
 ? 1, 4, 11,16,3,10.1
STATE FINISH WEEK FOR EACH COST CENTRE I.E.
SUBSTR.SUPERSTR,FIN, EXT WKS.DRAINS, NOM S/C.SITE O/H
 ?4.13.18,18.5.18.18
Input \& allocation of labour, plant, material
SUBSTRUCTURE
 ? 12.42 .46
input \% allocation of labour.plant, material
SUPERSTRUCTURE
 ?25.27.48.1.
INPUT \& ALLOCATION OF LABOUR, PLANT, MATERIAL
FINISHES
 ? 40.10 .50
INPUT: ALLOCATION OF LABOUR, PLANT, MATERIAL
EXT WKS
 ?18.38.44
INPUT: ALLOCATION OF LABOUR, PLANT, MATERIAL
DRAINAGE
 ?22.44.34
INPUT ALPHA, BETA SUBSTRUCTURE
 ?1.85..52
INPUT A,B SUPERSTRUCTURE
 ?1.48.. 3
INPUTA, B FINISHES
 ?2.15,. 475
INPUT A,B EXT WKS
 ? \(1.95 . .53\)
INPUT A, B DRAINAGE
 ?1.92.. 54
INPUTA,B S/C'S
 22.1..43
INPUT A, B SITE O/H'S
22.25..41
Figure 27
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUBS & SUPER STR & FIN & \[
\begin{aligned}
& \text { EXT } \\
& \text { WKS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DRAIN } \\
& \text {-AGE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { NOM } \\
& \text { S/C'S }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SITE } \\
& \text { O/H'S }
\end{aligned}
\] & TOT & WKS \\
\hline 85989.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1919.60 & 87908.66 & 1.00 \\
\hline 183923.44 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 4337.19 & 188260.63 & 2.00 \\
\hline 186467.19 & 0.00 & 0.00 & 0.00 & 2451.56 & 0.00 & 6430.71 & 195349.45 & 3.00 \\
\hline 93620.31 & 65070.32 & 0.00 & 0.00 & 4755.56 & 0.00 & 8200.15 & 171646.34 & 4.00 \\
\hline 0.00 & 91325.52 & 0.00 & 0.00 & 2792.89 & 0.00 & 9645.52 & 103763.93 & 5.00 \\
\hline 0.00 & 109704.16 & 0.00 & 0.00 & 0.00 & 0.00 & 10766.82 & 120470.98 & 6.00 \\
\hline 0.00 & 120206.24 & 0.00 & 0.00 & 0.00 & 0.00 & 11564.04 & 131770.28 & 7.00 \\
\hline 0.00 & 122831.76 & 0.00 & 0.00 & 0.00 & 0.00 & 12037.19 & 134868.95 & 8.00 \\
\hline 0.00 & 117580.72 & 0.00 & 0.00 & 0.00 & 0.00 & 12186.27 & 129766.99 & 9.00 \\
\hline 0.00 & 104453.12 & 0.00 & 0.00 & 0.00 & 22485.60 & 12011.26 & 138949.98 & 10.00 \\
\hline 0.00 & 23448.97 & 14943.36 & 0.00 & 0.00 & 50917.70 & 11512.19 & 160822.22 & 11.00 \\
\hline 0.00 & 54568.23 & 40810.55 & 0.00 & 0.00 & 70707.82 & 10689.04 & 176775.64 & 12.00 \\
\hline 0.00 & 17810.96 & 57859.38 & 0.00 & 0.00 & 81855.97 & 9541.82 & 167068.13 & 13.00 \\
\hline 0.00 & 0.00 & 66089.84 & 0.00 & 0.00 & 84362.14 & 8070.53 & 158522.51 & 14.00 \\
\hline 0.00 & 0.00 & 65501.95 & 0.00 & 0.00 & 78226.34 & 6275.15 & 150003.44 . & 15.00 \\
\hline 0.00 & 0.00 & 56095.70 & 3721.67 & 0.00 & 63448.56 & 4155.71 & 127421.64 & 16.00 \\
\hline 0.00 & 0.00 & 37871.09 & 7166.67 & 0.00 & 40028.81 & 1712.19 & 86778.77 & 17.00 \\
\hline 0.00 & 0.00 & 10828.13 & 4111.67 & 0.00 & 7967.07 & -1055.40 & 21851.46 & 18.00 \\
\hline 550000.01 & 887000.00 & 350000.01 & 15000.00 & 0000.00 & 00000.00 & 40000.00 & \&2452000. & \\
\hline
\end{tabular}

\section*{Chapter 8}

\section*{8. Computer Applications}
8.1 General Project Forecasting and Budgeting Softuare The computer programmes written to process the forecast data are included in Appendix 4.

The flowcharts for the processing of the overall budget and costs centres are shown in Figures 28, 29 and 30 respectively.

Figure 29 illustrates the procedure based on the overall project forecast. This option would be appropriate where the user is completely familiar and experienced with the project in hand and can select the overall curve fitting constants with a reasonable degree of confidence. The selection of this level of forecasting subsequently restricts the user to monitoring and control of the project on an overall basis only. The process depicted in Figure 30 allows the user much more scope to model the project forecast. This is particularly helpful where knowledge of the overall nature of the curve (alpha/beta) is restricted. In addition the cost centre breakdown facilities give considerably more scope for monitoring and control of the project.

The project forecasts are intended to be based on direct costs expended on the project. General overhead costs and profit should not be included since they have no direct relationship to the project. The indication of loss or gain on prime cost will be used to assess the efficiency and productivity of the contract.
Figure 28 Forecasting Sub-System Methodology Flow Chart

Figure 30

Forecasting System Flowchart Input Cost

Variable cost centres.
semen available in
standard form.

Programme of

Times for
work.

Site overheads can be included as a cost centre since they are significant to the overall control and efficiency of the project; this can only be specifically included.

\subsection*{8.1.1 Breakdown into Labour, Plant and Materials}

Having assessed the total forecast expenditure for each cost centre it may be necessary to breakdoun the amount into labour, plant and materials to facilitate detailed control at the monitoring stage. In the software development this is achieved by asking the user for a simple percentage allocation to each category. These percentages are stored in a file in order that budget/forecast allocations can be made during the monitoring process. An alternative procedure would be to input the specific values in terms of labour, plant and materials at the forecasting stage. These values could be accumulated during the forecasting stage to establish cost centre expenditure curves.

The input procedure and the output of results are shoun in Figure 27.

The time scale budgets are stored on file in both cumulative and non-cumulative form and will be utilised by the continuing monitoring process. At this stage the forecast is complete, however, an important final stage remains where the overall curve is made up of individual cost centre assessments. The user at this point in time has little idea of the precise nature of the overall curve in terms of alpha, beta and gamma.

Therefore software has been chained to the main forecasting programme which carries out an analysis of the final curve. From a number of test runs virtually all the curves fitted utilised both the cubic and exponential equations. Examples of switching points from exponential to cubic and visa versa resulting from cost centre based forecasting are shoun by the complete runs in Figure 31.

The underlying implication' is that the combination of the cubic and exponential produces a much improved curve fit, compared with the cubic equation alone. Further, the usefulness of previous attempts of curve fitting are only feasible under strictly controlled circumstances.

\subsection*{8.1.2 Operation}

The programmes developed operate in conversational mode and have been designed to prompt the user. It is foreseen that safeguards would be built into the programme to eliminate the possibility of data errors and to prevent crashing during a run.

Figure 27 illustrates the form of conversational mode utilised.

An important feature of the programme is the declaration of cost centre start and finish dates which are then used to model the cost centre expenditure according to the constants and the time scale.

Figure 31

MONITORING CONSTANTS
\(A L P H A=0.150739 \quad B E T A=-0.130396 \quad G A M M A=2.826\)
```

THESE CONSTANTS REPRESENT:-
(BETA) PEAK PERIOD 6
MAXIMUM DURATION . }3
(GAMMA) PEAK PERIOD 8
(GAMMA) ALPHA EQUIVALENT 0.320063 ERROR 1.91528%
(GAMMA) MAX DURATION ESTIMATE 27
CUBIC BETWEEN PERIODS 0 AND 15
TOTAL PROJECTION ERROR= 1.7%

```
GRAPH OF PROJECT EVALUATION
DURATION 18 WEEKS AT COST \(2.45200 E+6\) 'POUNDS'

\begin{tabular}{lllllll}
0 & \(\%\) & 0 & \(-G-S\) & & & \\
& \(I\) & \(A P\) & & & \\
& \(I\) & & \(A P\) & & \\
& \(I\) & & & & & \\
& \(I\) & & & & & \\
& & & & & & \\
& & & & & &
\end{tabular}

A=ACTUAL \(P=F O R E C A S T \quad S=I D E N T I C A L\) VALUES'
--G-- SWITCH TO GAMMA
 * REPRESENTS 4*NON-CUMULATIVE EXPENDITURE

Figure 31

\section*{COST TABLE}
\begin{tabular}{clccc}
PRD. & COST & CUM.COST & FORECAST & \%ERROR \\
1 & 87908.7 & 87908.7 & 139828 & -2.1 \\
2 & 188260. & 276169. & 281261 & -0.2 \\
3 & 195349. & 471518. & 423916 & 1.9 \\
4 & 171646. & 643164. & 567415 & 3.1 \\
5 & 103764. & 746928. & 711377 & 1.4 \\
6 & 120471. & 867399. & 855422 & 0.5 \\
7 & 131770 & 999169. & 999169 & 0 \\
8 & 134869. & \(1.13404 E+6\) & 1142239 & -0.3 \\
9 & 129767. & \(1.26381 E+6\) & 1284250 & -0.8 \\
10 & 138950. & \(1.40276 E+6\) & 1424823 & -0.9 \\
11 & 160822. & \(1.56358 E+6\) & 1563578 & 0 \\
12 & 176776. & \(1.74035 E+6\) & 1700134 & 1.6 \\
13 & 167068. & \(1.90742 E+6\) & 1834110 & 3 \\
14 & 158522. & \(2.06594 E+6\) & 1965128 & 4.1 \\
15 & 150003. & \(2.21595 E+6\) & 2240208 & -1 \\
16 & 127422. & \(2.34337 E+6\) & 2326972 & 0.7 \\
17 & 86778.8 & \(2.43015 E+6\) & 2396868 & 1.4 \\
18 & 21851.4 & \(2.45200 E+6\) & 2451999 & 0
\end{tabular}
N.B. An experiment involving straight line expenditure on all of the cost centres produced an overall 's' curve, which indicates that the amalgam of project cost centre expenditure is naturally quite different from that of its constituents, thereby vindicating the final curve fit analysis procedure.

\subsection*{8.2 The Forecasting Alteration Programme}

This programme module has been developed to enable the user to modify the forecast according to circumstances which cannot be accommodated by the normal alpha, beta, gamma curve fit process. The programme procedure can be used to fine tune the forecast after the initial computer run. Another use can be during the actual project time when variations, increased costs and other amendments require the original forecast to be amended to enable realistic comparisons to be made.

Figure 32 illustrates the basic methodology of the sub-system.

\subsection*{8.2.1 The Amendment Process}

The computer programme operating in conversational mode asks the user to specify whether he would like to make any changes to the forecast. If the reply is affirmative the user is asked to specify the cost centres and the work number he wishes to alter, after which he will be requested to input the relevant expenditure data. This process is repeated until all the necessary alterations have been made.

The amendments will facilitate the following conditions:
1. Unusual costs which occur outside the scope of the 's' curve patterns utilised.
2. To build in redundant periods appertaining only to the cost centre under consideration.
3. The 's' curve produces one continuous process only. However, it is quite possible that the expenditure is spent intermittently or in quite separate stages in which case it can be modelled accordingly.

Taking this process to its ultimate conclusion the whole forecast could be formulated in this manner from the beginning.

It is foreseen that the majority of projects will only require amendments of a more minor nature, but from experience, a proportion of projects will need to be amended carefully to simulate the project expenditure effectively.

\section*{E.2.2 Insertion of Redundant Periods}

This facility has been built into the programme to allow for the whole project work to be wholly suspended for a period of time. Any number of redundant periods can be inserted and all that is necessary is the specification of the start/stop parameters.

The user vould find this procedure useful to allow for protracted annual holidays, i.e. Christmas or firms annual holidays, together with the suspension of work to meet client's requirements.

The insertion of redundant periods dramatically alters the shape of the 's' curve into a series of plateaus. As mentioned previously the redundant or near redundant periods are eliminated from the curve fitting process and therefore the alpha, beta, gamma determination must be subsequently modified to allow for the actual curve profile.

\subsection*{8.2.3 Inflation}

Assuming that the forecast has been produced on present costs it is possible to build in an allowance for inflation to cover increased costs. This is particularly relevant with projects that have contract clauses which allow for increased costs to be added to the contract sum, or alternatively, projects which span over a considerable period of time and are subject to the influence of inflation.

The computer programme has been uritten to accumulate inflation on a month by month basis given an average annual inflation rate.

The affect of inflation on the 's' curve constants is an important factor in the determination of any format using this method. Reference should be made to Figure 15 which demonstrates the affect of applying a range of inflation allowances.

Figure 33 illustrates a complete run of the alteration programme together with output results.
IIgure 33
FORECAST ALTERATION AND ADJUSTMENT PROGRAM
INPUT PROJECT NAME ?TARMC
ARE THERE ANY REDUNDANT PERIODS TO BE ALLOWED FOR IN TIME SPAN
ANSWER YES OR NO
?NO
TOTAL REUISED PROJECT DURATION IN WEEKS 24
DO YOU WISH TO MAKE ANY ALTERATIONS
INPUT YES OR NO
?NO
NO
DO YOU WISH TO MAKE AN ALLOWANCE FOR INFLATION
ANSWER YES OR NO
?

MONITORING CONSTANTS
```

ALPHA= 0.770263 BETA= 0.920231 GAMMA= 1.976
THESE CONSTANTS REPRESENT:-
(BETA) PEAK PERIOD 16
MAXIMUM DURATION 33
(GAMMA) PEAK PERIOD }1
(GAMMA) ALPHA EQUIVALENT 1.B1272 ERROR 8.GO285E-2 %
(GAMMA) MAX DURATION ESTIMATE }2
CUBIC BETWEEN PERIODS O AND 1G
TOTAL PRDJECTION ERRDR= 2.1 %
GRAPH OF PROJECT EVALUATION

```
DURATION 24 WEEKS AT COST 37043. 'POUNDS'

 \(0 \% 0-G-S\)
 IAP
 I AP
 I \(A P\)
 \(21 \% 5 \quad{ }^{I} \quad P_{P A}\)
 \(\begin{array}{ll}I & * P A \\ I & * P A\end{array}\)
 I * PAPA
 \(42 \% 10\) * 5
 I * AP
 \(\begin{array}{lll}I & * & A P \\ I & *\end{array}\)

\(A=A C T U A L \quad P=F O R E C A S T \quad S=I D E N T I C A L\) 'VALUES'
--G-- SWITCH TO GAMMA
 * REPRESENTS 4*NON-Cumulative Expenditure

Figure 33
\begin{tabular}{cllll}
PRD. & COST & CUM.COST & FORECAST & \%ERROR \\
1 & 245.119 & 245.119 & 542 & -0.8 \\
2 & 657.959 & 903.078 & 1263 & -1 \\
3 & 988.999 & 1892.08 & 2149 & -0.7 \\
4 & 1227.26 & 3119.34 & 3188 & -0.2 \\
5 & 1332.98 & 4452.32 & 4367 & 0.2 \\
6 & 1481.05 & 5933.37 & 5675 & 0.7 \\
7 & 1636.52 & 7569.9 & 7099 & 1.3 \\
8 & 1606.96 & 9176.85 & 8626 & 1.5 \\
9 & 1392.36 & 10569.2 & 10245 & 0.9 \\
10 & 1373.11 & 11942.3 & 11942 & 0 \\
11 & 1607.09 & 13549.4 & 13706 & -0.4 \\
12 & 1782.58 & 15332. & 15524 & -0.5 \\
13 & 2051.33 & 17383.3 & 17383 & 0 \\
14 & 2342.71 & 19726. & 19272 & 1.2 \\
15 & 2553.81 & 22279.9 & 21178 & 3 \\
16 & 2668.65 & 24948.5 & 25135 & -0.5 \\
17 & 2623.21 & 27571.7 & 27048 & 1.4 \\
18 & 2417.5 & 29989.2 & 28853 & 3.1 \\
19 & 2051.51 & 32040.7 & 30540 & 4.1 \\
20 & 1717.68 & 33758.4 & 32101 & 4.5 \\
21 & 1450.97 & 35209.4 & 33532 & 4.5 \\
22 & 1076.47 & 36285.8 & 34831 & 3.9 \\
23 & 594.173 & 36880. & 36000 & 2.4 \\
24 & 162.99 & 37043. & 37043 & 0
\end{tabular}

The use of the alteration programme in conjunction with the forecasting programme gives the system more versatility and greater flexibility, thereby making its application that much more viable in the practical environment. The modelling process is entirely flexible within the constraints set by the number and type of cost centres selected and therefore due attention should be paid to this aspect prior to utilising the programmes.

\subsection*{8.3 Application}

The Forecasting/Alteration sub-system can be utilised to provide an overall budget, alternatively an individual cost centre analysis can be implemented which provides the basis for a more detailed budget if required. The budget is normally expressed in financial terms, however, there is no reason why it should not be represented in man hours or any other units which quantify the project appropriately.

With regard to the Building Industry three major areas of application have been identified, namely:
1. Design management
2. Production management
3. Project Management of the whole construction process.

\subsection*{8.3.1 Design Management}

The contextual survey paid particular attention to the vay in which the design expenditure was managed, since it vas already suspected that the level of management and integration at this stage vas very low. In effect the cases subsequently
investigated tended to confirm this notion, although there were exceptions. Nevertheless, the fact that no evidence was found of serious attempts to budget design costs is considered to be highly significant.

The argument used by designers to support their non action in this respect was based on the concept that every project was different and consequently it was impossible to assess accurately the likely design costs given a particular "client's brief". It appeared at the time of the survey that the real truth of the matter reflected the unwillingness of designers to be put in a straight jacket with regard to budgeted targets. Hence nobody wished to attempt and/or understand forecasting.

In essence the designer is a resource in much the same way as an engineer or a bricklayer since they all cost money to employ. The designer vill argue that he is stepping into the unknown and therefore the time spent is impossible to quantify. With the trend towards more componentisation, simplyfied construction and prefabrication in factories, it vould appear that this argument vill be difficult to sustain as a general rule. It therefore follows that designers should be subject to budgets and with experience it should be possible to forecast design costs.*

There is no reason uhy the cost centre approach should not be used to represent the design professions commonly associated

\footnotetext{
* In the U.S.A. it is now common practice to forecast the cost of producing computer software uhich is at least, if not more, intangible to assess the building design costs.
}
with construction design, i.e.

Architect
Mechanical Engineer
Electrical Engineer
Civil Engineer
Quantity Surveyor
Structural Engineer

The forecasting system proposed would accommodate this application with only minor alterations. The assessment of 's' curve constants could be based on each profession in turn. Alternatively, the prime profession i.e. the profession covering the whole time span and involving the most work could be used as the normal 's' curve to which all the others vould conform.

\section*{Development}

As part of this research programme, design forecasting softvare has been developed to enable the manager of a multi disciplinary design process to relate his budget/ forecast to the level of fee income likely to be earned. This development work has been undertaken to demonstrate hov easy it is to produce budgets using the "alpha/beta" method forecasting.

The programme entitled FESTI.BAS requires the user to input data relating to professional fee incomes, after which the overhead and profit charges are deducted to give the prime cost budget. An additional breakdown of the budget to the users requirements may be made at this stage.

A maximum of seven professions are catered for by the programme, however, more can be provided by simple alterations to the software. Where less than seven cost centres are required zero budgets will need to be inserted.

A programme of work is then formulated based on its relationship with the prime profession, i.e. the architect in the case illustrated. It is considered viable in some cases to relate all professional start and completion times to appropriate specific points in the completion of the architects work. This premise is made based on the research undertaken by N. Kotani* and the data obtained from the projects previously mentioned in this thesis. Hovever, there would appear to be instances where some professions, because of the time span or nature of the work do not conform in this respect and therefore need to be assessed separately.

The peak month cost is then required and the computer will then produce a budget for each individual profession together with an accumulated overall budget which is then further analysed in terms of alpha, beta and gamma using the curve fit procedure already described.

See Figure 34 Complete Design Computer run.

\subsection*{8.3.2 Production Management}

In contrast to the almost total lack of forecasting in the design area, contractors seemed more aware of the need to predict budgeted expenditure and some attempt vas being made to achieve this objective. One of the main problems observed

\footnotetext{
* Kotani, N.B. Consultants Fees related to variance of Project Design Costs. Paper School of Environmental Studies, University College
}
DESIGN FEE ESTIMATION PROGRAM
INPUT PROJECT NAME (MAX FIVE CHARACTERS)
? DES2
INPUT ESTIMATED FEE INCOME FOR THE FOLLOWING:-
ARCHITECTURE ? 25000
STRUCTURAL ENGINEERING ? 12234
mechanical engineer ? 11456
ELECTRICAL ENGINEER ? 9876
QUANTITY SURVEYING ? 6000
EXTERNAL CONSULTANTS ? 1000
allocatable overheads ?670
INPUT \& OF ARCHITECTS FEES ALLOCATED TO SUB/S \& SUP/S
INPUT \% OF STRUCTURAL ENGINEERS FEES ALLOCATED TO SUB/S
INPUT \& to COVER OVERALL 0/h CHARGE AND \& PROFIT EXPECTED
INPUT DURATION OF PROJECT IN MONTHS ? 12
ANALYSIS OF ESTIMATE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \multicolumn{2}{|l|}{ARCHITECT} & \multirow[t]{2}{*}{FIN} & \multicolumn{2}{|l|}{Structural eng} & MECH & ELECT & Q.S. & Ext & DIR \\
\hline & SUB/S & SUP/S & & SUB/S & Sup/s & ENG & ENG & & CT'S & O/H'S \\
\hline PRIME COST & 8437.50 & 10312.50 & 0.00 & 3211.43 & 5964.07 & 8592.00 & 7407.00 & 4500.00 & 750.00 & 502.5 \\
\hline OVERHEAD & 1687.50 & 2062.50 & 0.00 & 542.29 & 1192.82 & 1718.40 & 1481.40 & 900.00 & 150.00 & 100.5 \\
\hline PROFIT & 1125.00 & 1375.00 & 0.00 & 428.19 & 795.21 & 1145.60 & 987.60 & 600.00 & 100.00 & 67.0 \\
\hline TOTAL & 11250.00 & 13750.00 & 0.00 & 4281.90 & 7952.10 & 11456.00 & 9876.00 & 6000.00 & 1000.00 & 670.0 \\
\hline
\end{tabular}
응
00
00
0
0.00
Figure 34
INPUT STANDARD/AVERAGE COST PER MAN HOUR ? 12.50
STANDARD MAN HOURS AVAILABLE TO EACH PROFESSION

ARCHITECTURE 2000
STRUCT ENGINEERING 978.72
MECHANICAL ENG \(\quad 990.08\)
ELECT ENG
QUANTITY SURVEYING

\(?\) INPUT DATA NOT IN CORRECT FORM--PLEASE RETYPE
\(? 30 \backslash 0 \backslash 0.15 .14 .5 .10 . .05\)
LIKELY \% DURATION EXCESS ? 5 INPUT PEAK COST MONTH ? \(\mathrm{ALPHA}=1.595 \mathrm{BETA}=0.528\) PROJECT ESTIMATE AND PROGRAMME OF PRIME COST EXPENDITURE

750.00
\(7406.99 \quad 4500.00\)
66•90カL 10•26S8 LS•SLL6
ARCH
\(\begin{array}{ll}\text { STRU/ MECH/ } \\ \text { ENG } & \text { ENG }\end{array}\)
ELECT
ENG

18749.99
was that the preparation of forecasts was ponderous and time consuming because of the need to relate to expenditure in the bill of quantities to the contract programme.

In cases where forecasts were prepared these vere not updated as the jobs progressed thereby variations to the original budget vere not incorporated. As projects proceeded a greater reliance seemed to be placed on the comparison of work valuations with actual cost to establish profitability. No attempt vas observed to predict final cost and time once the project was undervay.

The application in the production area will be based on cost centres, but significantly different requirements need to be incorporated. The cost centres will be directly related to the contract programme and precise start and completion dates will be required in order to formulate the project budget. Each cost centre will be subdivided as appropriate into constituent costs, e.g. labour, plant and materials, thereby permitting a more detailed assessment to be made for control purposes at the monitoring stage. The cost centre budgets will be allocated to the project time-scale using curve shaping constants to distribute anticipated expenditure.

Alternatively, the overall project budget could be determined vithout the use of cost centres. This application vould only be appropriate where the user possessed a reliable basis for determining an accurate budget and where a detailed breakdoun is not required for project control purposes.

Further developments in the computer software will make it possible to allow the user greater modelling flexibility. This can be achieved by facilitating the selection of an appropriate number of cost centres to suit the project in hand and each cost centre can be given a title to comply with the requirements of every individual project.

Armed with the knowledge of likely cost centre expenditure curve profiles the user will then select the appropriate alpha/beta curves. If this is not possible then the "ALTERATION" programme can be used to cope with all other cases.

Where users require a more detailed breakdown of a project the computer software could be reuritten to provide for project elemental costs which in principle could be treated in the same manner as cost centres.

The complete conversational process for the production application is shown in Figures 27, 31 and 33 uhich utilises both the forecasting and alteration programmes.

\subsection*{8.3.3 Project Management of the Whole Construction Process}

The basic philosophy previously described does provide a means for developing systems which enable projects to be managed and administered from inception to final completion. It is foreseen that this type of application will be extremely valuable to the project manager in his role as the client's executive controller.

The cost centres will be required to represent expenditure on the feasibility, design, construction and commissioning of the project. It therefore follows that budgets must be established for each of the cost centres selected and these must be precisely modelled to represent the anticipated expenditure involved. The number of cost centres required vill be determined by the nature and size of projects in hand, hovever, it is considered at this stage that between twelve and twenty centres of cost will need to be identified for most sizeable projects. The titles selected for the projects will again depend on the type of project and the manner in which the expenditure is to be distributed.

Where the complete design and build process is carried out by one company then the formulation of budgets and the monitoring of the system will be much easier than in the cases where several separate organisations combine to build the project. At this point in time it would appear from the survey already conducted and from other sources that the multi-disciplinary company is more ideally suited to this type of application. Where the project management and administration is undertaken by more than one individual or organisation, problems of communication, integration and co-ordination occur which make it far more difficult for the project manager to implement the system. Of course, this is not an impossible situation but the effectiveness of the control system could suffer, unless a conscious effort is made by all concerned to vork in accordance with the principles of the system laid doun.

The monitoring and control process will be geared to accurate data input relating actual periodic expenditure and the percentage of the work completed to date. Failure to meet the above requirement will seriously reduce the effectiveness of the system as a means for management control and decision making. It is therefore considered essential that the standards of data input are properly determined and that the mode of operation is clearly established. Requirements of this nature must be properly communicated to all concerned.

The proposed output of reports relating to profitability and predictions by the system is considered to be extremely useful and relevant to the project managers role as the project chief executive.

After the revised budget has been finalised it is stored on the project files. Under normal circumstances the original budget will be overuritten and lost. Hovever, large main frame systems have tape back-up facilities which permit the retrieval of old project tapes when required. This provision could be useful during the project itself when budget revisions are necessary.

\subsection*{8.4 Summary}

The research and development into the forecasting system has without doubt provided a means hitherto unequalled in the production of project forecasts. The ability to model projects accurately and to understand the nature of the expenditure in specific terms such as alpha, beta and gamma represents a major step forvard in the ability to
model a wide range of projects with differing expenditure patterns. In addition the speed at which budgets can be produced far exceeds traditional procedures which if required allows the user to iterate a solution to his problem. This in turn will lead to a greater understanding of the forecasting process and its implications. The applications software clearly demonstrates how these proposals can be implemented. Whilst this development is intended to demonstrate how the principles can be applied, the final manner in which the applications programmes are uritten will be to the choice of the eventual user. Hovever, the systems proposed represent a number of novel programming procedures, particularly the file handling sub-system and the approach to cost centres applied to a common timescale. The Alteration Programme provides for a considerable amount of flexibility and permits precise modelling of the project.

The development of the forecast is only a means to an end. Without management utilisation the uhole process is of very little practical value. The forecast must therefore be used as a yardstick for assessing performance which results in decision making and control. Further it is necessary to up-date the forecast regularly with a viev to predicting the eventual outcome of the project.

The following chapter is concerned with the development of a monitoring and control system which fully integrates vith the forecasting proposals already made.

\section*{Chapter 9}
9. Project Monitoring and Control System

\subsection*{9.1 General}

The development of the system must meet the general requirements of the forecasting system described with regard to simplicity and ease of use. It must also provide periodic reports which enables the manager to check the current status of the project and where possible provide him with predictions relating to the eventual project outcome.

The data already stored in the computer by the forecasting system will be utilised to give budgeted information in order to provide the yardstick for control.

It is proposed that the same cost centre philosophy is utilised and that this vill form the basis for more detailed control by the manager. The system illustrated allows for seven cost centres but this can be increased according to the needs of the user. Normally the number of cost centres selected for the forecasting system will be reflected at the monitoring and control stage. Software has also been written for the assessing of project expenditure only.

The conclusions from the contextual survey indicated that manual financial control systems vere in operation on most sizeable projects and that these vere tied in closely to the contract surveyors reconciliations on site. Unfortunately most of these systems vere slow and time consuming. Because of this factor much of the information when finally produced vas of a rather historic nature thereby limiting its use in terms of management decision making. The same principle
applied to the large design partnership studies. Unfortunately the other design practices did not operate any monitoring and control system whatsoever.

\section*{9.2 . Monitoring System Methodology}

The operation of this system is envisaged as being in three distinct stages, namely:
1. Establishment of the actual project cost to date.
2. Determination of project profitability to date.
3. Prediction of eventual project cost and time.

The flow chart showing a more detailed appraisal of the philosophy is shown in Figure'35. A detailed explanation of the system is given under the following headings:

\author{
Basic Information \\ Valuation of Work \\ Profitability Analysis \\ Predictions
}

The user will be required to input the project name together with the current week/month number. This process-will be undertaken interactively with the computer, as will all the inputs from a terminal. In the case of the first monitoring run the project base date will also need to be stated.

The files already stored by the forecasting system will be accessed and read sequentially by the monitoring system programme in order to provide the necessary budgeting information.

A file will also be created to store cumulative project actual cost information.

The user will be required to input the actual costs associated with each particular cost centre for the week under consideration; these are added to the accumulated costs to date and a report is produced. See Figure 36.

\section*{Valuation of Work}

The valuation of work to date must be associated with the cost centres already selected. The form of the valuation may be in financial terms or alternatively as a percentage completion to date. The illustration shown is based on the percentage completion option.

Accurate valuation of the vork completed is, of course, crucial to the whole system and therefore sufficient attention should be paid to this particular aspect.
rigure 36
PROJECT CONTROL PROGRAM MODULE

CONUERSATIONAL MODE DATA INPUT PROCEDURE
INPUT PROJECT NAME (MAX 5 CHARACTERS) ?TARMC
INPUT PROJECT WEEK NUMBER
INPUT LABOUR, PLANT AND MATERIAL COSTS RESPECTIVELY
PO,O,O
COST CEN
INPUT LABOUR, PLANT AND MATERIAL COSTS RESPECTIUELY
?400,435,587
INPUT LABOUR, PLANT AND MATERIAL COSTS RESPECTIUELY
INPUT LABQUR, PLANT AND MATERIAL COSTS RESPECTIUELY
?O,O,O
INPUT LABQUR. PLANT AND MATERIAL COSTS RESPECTIUELY
?13.12.11
CCG NOM/S-C'S
SITE O/H'S
? 60
\begin{tabular}{ll}
- SITE \\
O/H'S & \\
\hline
\end{tabular}

\section*{MONTH SUBSTRUCTURE}

00
00
0
0
0
0
0
0
0
\(21.00 \quad 821.00\) \(35.00 \quad 985.00\) \(\begin{array}{lr}45.00 & 885.00 \\ 30.00 & 1210.00\end{array}\)

 1382.00
1550.00 \(\begin{array}{lll}.00 & 50.00 & 1550.00\end{array}\) \(\begin{array}{lll}00^{\circ} I 82 I & 00^{\circ} 0 S & 00^{\circ} \\ 00^{\circ}-00 E I & 00^{\circ} \mathrm{SS} & 00^{\circ} 0\end{array}\) \(00^{\circ} \mathrm{ZSLI} 00 \cdot 09\) 4E6.00 13576.00 0.00

\section*{COST CENTRES}

Naturally it would be an advantage if the project was originally priced on the basis of the cost centres utilised in the system. The valuation of the work would be undertaken by physical measurement on site and these could be related back to the total amount of work hence achieving a percentage completion figure. Where the project was not originally priced using the monitoring system cost centres then it will be necessary to reform the estimate in appropriate cost centre budgets before the system can be used. Failure to undertake this process properly will result in inaccuracies which could considerably reduce the value of using the monitoring and control process in the manner proposed.

The only measure of assessing percentage cost centres completion is in terms of money. Where several resources are involved in comprising a cost centre these must be converted and accumulated in financial terms. The whole process is a function of the accuracy of the valuation visa vee the time spent on formulating it.

Where the work is tangible and can be measured there would appear to be few problems, however in the case of assessing the percentage completion of the design process then difficulties do exist. One could base the percentage completion on the number of dravings produced to date relative to the total required. The problem with this approach is that a proportion of the work, for example innovative thought, cannot be quantified and hence to some degree an intuitive assessment needs to be made. This situation can to some extent be mitigated by experience gained in adopting this style
of approach.

Other difficulties need to be appreciated and guarded against, particularly where vested interests are concerned thereby causing the figures to be manipulated in order to produce a good impression. In essence there is no general solution to this process. It is a function of the application and determination of the user to come up with realistic valuations of work completed to date.

\subsection*{9.4 Profitability Analysis}

The original forecast to date is accessed by the computer programme and is broken down where appropriate into resource budgets in terms of labour, plant and materials. The equivalent valuations will be displayed against the budgets as shown in Figure 36 thus giving an indication of progress to date. The costs generated to date can be compared with the valuation and hence a measure of profitability can be established for each cost centre and its relevant sub-division as appropriate. A summary of the project status to date is then prepared in order to give the manager a complete picture of the situation.

The analysis produced in this manner is seen as a basis from which the manager will be able to make his decisions. The form and amount of output can be varied according to individual needs and circumstances. By comparing the current and previous reports of this type, past performance trend patterns can be established which will inform the manager about how effective his decision making has been.
Figure 36 Profitability and Progress Analysis
ENTER ESTIMATED \% COMPLETED TO DATE FOR WORK CATEGORIES 1 TO 7 INPUT WORK CATEGORY 1
? 100 WPUT WORK CATEGORY 2
\({ }^{2}\) NPUT WORK
INPUT WORK CATEGORY 3
INPUT WORK CATEGORY 4
INPUT WORK CATEGORY 5
INPUT WORK CATEGORY•G
INPUT WORK CATEGORY 7
Figure 36
PROFITABILITY ANALYSIS REPORT
PROJECT TARMC
II צヨawni y
COST CENTRES
SUBSTRUCTURE \(=======================================\)
\[
3500.00
\]
500.00
3มก1コกมเรยヨdกร \(===\)
\begin{tabular}{|c|c|c|}
\hline budget & 2100.00 & 1400.00 \\
\hline \multicolumn{3}{|l|}{ESTIMATED} \\
\hline \multicolumn{3}{|l|}{value of} \\
\hline WORK TO & 2100.00 & 1400.00 \\
\hline \multicolumn{3}{|l|}{DATE} \\
\hline \multicolumn{3}{|l|}{ACtuAl} \\
\hline COST & 2495.00 & 2450.00 \\
\hline \multicolumn{3}{|l|}{to date} \\
\hline PROFIT／ & －395．00 & －1050．00 \\
\hline LOSS & & \\
\hline
\end{tabular}
－206－
Figure 36
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & EXTERNAL LAB & WORKS PLANT & MAT & \begin{tabular}{l}
DRAIN \\
LAB
\end{tabular} & PLANT & MAT & \begin{tabular}{l}
NOM \\
S/C
\end{tabular} & \begin{tabular}{l}
SITE \\
O/H
\end{tabular} & totals \\
\hline Budget & 0.00 & 0.00 & 0.00 & 300.00 & 200.00 & 500.00 & 0.00 & 437.65 & 13549.42 \\
\hline ESTIMATED value of & & & & & & & & & \\
\hline WORK TO DATE & 0.00 & 0.00 & 0.00 & 300.00 & 200.00 & 500.00 & 0.00 & 470.00 & 13210.00 \\
\hline ACTUAL COST TO DATE & 0.00 & 0.00 & 0.00 & 418.00 & 283.00 & 286.00 & 0.00 & 466.00 & 13576.00 \\
\hline \[
\begin{aligned}
& \text { PROF IT/ } \\
& \text { LOSS }
\end{aligned}
\] & 0.00 & 0.00 & 0.00 & -118.00 & -83.00 & 214.00 & 0.00 & 4.00 & -366.00 \\
\hline
\end{tabular}

Figure 36
```

GENERAL ANALYSIS OF PROJECT STATUS TO DATE
RESQURCES UTILISED TO DATE
POUNDS STERLING 1357G
RESDURCES REMAINING
POUNDS STERLING 23467
DYERALL PERCENTAGE OF WORK COMPLETE TO DATE 35.G613
ESTIMATED FINAL PROJECT PRIME COST \$ 37409
SHORTFALL/GAIN ON ANTICIPATED FORECAST PROFIT/COST -3GG

```
END OF REPORTING PROCEDURE
```

RESCURCES LTI'ISED TO DATE
POUNDS STERLING :357E
RESOURCES REMAININE
POUNDS STERIING 23457
OUEPALL PERCENTAGE OF WORK COMPLETE TD DATE 35.66:3
ESTIMATED FINAL PROJECT PRIME EOST \& 37409
SHORTFALL/GAIN ON ANTICIPATED FORECAST PROFIT/EOST -3GG

```
END OF REPORTING PRDCEDURE
```

INPLT DATA :-
PRESENT DURATION 11 MONTHS AT VALUE :3210
EMPECTED PROJECT COST 374OS
PRESENT EXPECTED COST OCCURS AT PERIOD 3O
MAX PREDICTED COST IS 39278.:

```
\begin{tabular}{|c|c|c|}
\hline PRD & Cum. cost & PREDICTED (CUM. COST) \\
\hline 11 & 13210 & 13210 \\
\hline 12 & \(\times\) & 15160 \\
\hline 13 & K & :7120 \\
\hline 14 & \(\cdots\) & \(\pm 9060\) \\
\hline 15 & x & 20950 \\
\hline : 5 & \(x\) & 22780 \\
\hline 17 & \(\times\) & 24520 \\
\hline 18 & \(x\) & 26170 \\
\hline 19 & \(x\) & 27720 \\
\hline 20 & K & 29150 \\
\hline 21 & \(x\) & 30460 \\
\hline 22 & K & 3:660 \\
\hline 23 & X & 32740 \\
\hline 24 & \(x\) & 33700 \\
\hline 25 & x & 34550 \\
\hline 25 & X & 35300 \\
\hline 27 & K & 35960 \\
\hline 28 & \(x\) & 265こ0 \\
\hline 29 & K & 37010 \\
\hline 30 & \(\because\) & 37420 \\
\hline 3: & K & 37770 \\
\hline 32 & K & 38060 \\
\hline 33 & \(\because\) & 38300 \\
\hline 20 & \(\checkmark\) & \\
\hline
\end{tabular}

Figure 37
```

GRAPH OF PRQJECT EUALUATIDN
DURATION $4 G$ WEEKS AT COST 3E279.4 'POUNDS'

```

```

    \(0 \% 0 \mathrm{~S}\)
                IAP
                I P
    ```

```

    \(82 \%: 0 \quad P \quad \begin{array}{lll}I & P & \\ I & & P\end{array}\)
    \(123 \% 15 \quad P\)
    \(165 \% 20\) P
    ```

```

20
$I$
$I$.
$I$
$I$
ふ
$\begin{array}{r}\text { I } \\ \text { I } \\ I \\ I \\ \hline\end{array}$

```



```

```



```

        \(P\)
            \(P\)
        \(P^{P}\)
            P
            \({ }^{P}{ }_{P}\)
        \(P\)
    $p$
$\cdots$
P

```

```

            \(0^{0}\)
            0.0
    ```

The programme software then facilitates the prediction of total project cost and time. This is achieved as previously described in section Chapter 5 and the results are output in the form shown in Figure 37. Because of the statistical inaccuracy of the predictions made early in the project, the programme will not activate the sub-system until a minimum of five project time periods have elapsed.

\section*{Case Study}

The figures detailed below represent the monthly valuation to date in \(£ 1,000\) units of a pover station being constructed in the Middle East.
\begin{tabular}{cc}
Month & Valuation (£1,000 units) \\
\cline { 1 - 2 } 4 & 1,397 \\
5 & 2,491 \\
6 & 4,797 \\
7 & 7,659 \\
8 & 9,899 \\
9 & 11,915 \\
10 & 14,328 \\
11 & 16,304 \\
12 & 18,293 \\
13 & 20,362
\end{tabular}

The anticipated final value is 37,043 and the project completion time is intended to be tventyfour months.

By running the program software PREDI (see Appendix 7 a prediction of final completion duration can be made utilising the exponential transposition method. -
```

Figure 38 Prediction Case Study
Project TIME PREDICTION INPUT

```

```

    INPUT ELAPSED MONTHS TO DATE
        ?13
    ( INPUT UALUATION TO DATE AND ANTICIPATED FINAL COST
?20362
?37043
(
INPUT DATA :-
( PRESENT DURATION I3 MONTHS AT VALUE 2O3G2
EXPECTED PROJECT COST 37043
PRESENT EXPECTED COST OCCURS AT PERIOD 27
MAX PREDICTED COST IS 38845.9
PITD CUM. COST PREDICTED (CUM..COST)
13 20362 20360
14 x 22430
15 x 24400
16 x 26240
17 x 27950
:5 < 25500
I5 x 30510
20 x 32i70
2i < 35:70
22 x 34240
23 x 35070
22 x Gミ750
25 x 36350
20 % 55550
27 < 37310
2E % 37650
こ\Xi = =7520
30 % 3E140
E x 38320
32 x 38<60
3E < 38570
j< < 36650
Е巨 < 367:0
30 x 35760
37 x 38800
36 x 38830
35 x 38850
40 x 38860
GINAPH OF PRGUECT EUALUATIGN

```

\section*{Figure 38 Prediction Case Study}

DURATION 41 WEEKS AT COST 38855.1 'POUNDS'
 \(0 \% 05\)
\begin{tabular}{ll}
\(I\) & \(P\) \\
\(I\) & \(P\) \\
\(I\) & \(P\)
\end{tabular}
\(j\)

\(P\)

F
\(a^{a}\)
\(F\)

\(P\)
\(P\)

RESPECIFY PROJECT NAME YES OR NO
-214-

The results depicted by Figure 38 show that the expected completion is likely to be month 27 assuming that the final project expenditure remains unchanged. The reason for the delay can be explained by the current valuation to date which is lower than the anticipated budget. An acceleration in the progress of the work will produce a shorter predicted final project deviation.
9.6 . Monitoring and Control Applied to the Design Environment The same principles applicable to the production of a project can be utilised for the monitoring and control of the design process where multi disciplinary terms are concerned. Since the prime resource is manpover the input in the main will be concerned with individual professions, i.e. the architect, engineer, etc. However, it is likely that some projects will require external consultants to be employed where specialist expertise does not exist within the design team. Further consumables, i.e. drawing materials and items which can be directly allocatable to the project will be necessary. Therefore provision has been made for these costs to be accrued by month/week under the cost centres previously described in the forecasting section:

Each member of the design team will be required to keep a timesheet and his hours will be allocated according to profession. A staff data file provides details regarding individual names related to code numbers and the respective monthly salary represented by an hourly rate; hence overtime is paid above the standard weeks work. Two reports are produced; the first provides an analysis of hours undertaken

Figure 39 Design Project Control Input Procedure
FFFOJS \(11: 18 \quad 15-0 C T-82\)

IIESIGN F'ROJECT CONTFOL FROGFAM MORULE

CONUERSATIONAL MOIE IAATA INFUT FRROCEIUFE

INFUT FRROJECT NAME (MAX 5 CHAFACTERS) ?LESI
INFUT FFRJECT EASE IAATE I.E. 4,80 (MONTH 4 1980) ?1,83
INFUT FFOJECT MONTH NUMEEF
? 9
INFUT NUMEEF OF STAFF WORKING ON FF'OJECT
?6
INFUT EMFLLOYEE NUMEEF
? 100
INFUT ACTUAL HOUFS WOFKEI ALLOCATEI 1 TO 5 (I.E. 10,0,20.......ETC) ? 70
? 0
? 0
? 0
- 8

IS EMFLOYEE DATA O.K. ANSWER YES OR NO ?YES
INFUT EMFLOYEE NUMEEF
?200
INFUT ACTUAL HOURS WOFKED ALLOCATED 1 TO 5 (I.E. 10,0,20........ETC)
? 68
? 0
? 0
? 0
? 0
IS EMFLLOYEE IIATA D.K゙. ANSWER YES OF NO PYES
INFUT EMFLOYEE NUAEER •
? 300
INFUT ACTUAL HOURS WORKEI ALLOCATEN 1 TO 5 (I.E. 10,0,20.......ETC)
? 0
? 65
? 0
? 0
PO
IS EMFLOYEE [IATA O.K. ANSWEF YES OF NO
PYES
INFUT EMFLOYEE NUMEEF
? 400
INFUT ACTUAL HOUFS WOFKEI ALLOCATEN I TO 5 (I.E. 10,0,20.......ETC)
? 0
? 0
?75
? 0
? 0
IS EMFLOYEE IIATA O.K゙. ANSWER YES DF NO ?YES
INFUT EMFLLOYEE NUMEER
? 500
INFUT ACTUAL HOUFS WOFKEEI ALLOCATEII 1 TO S (I.E, 10,0,20.......ETC)
? 0
? 0
70
? 74
30
IS EMFLLOYEE IIATA O.K. ANSWER YES OR NO PYES
INFUT EMFLLOYEE NUMEER
P5\5 600
INFUT ACTUAL HOUFS WORKEII ALLOCATEII 1 TO 5 (I.E. 10.0.20........ETC)
? 0
? 0
\(?\)
? 0
? 69
IS EMFLOYEE IIATA O.K. ANSWER YES OF NO ?YES
by each profession and the latter gives the equivalent expenditure breakdoun. Both consultants fees and allocatable overheads must be quantified financially prior to input. Figure 39 illustrates the output from a typical computer run.

Before preceding to the profitability analysis report the computer has been programmed to ask for a valuation to be made of the vork carried out to date which should be input as a percentage. This necessitates the user to interprete progress accordingly, which in some cases may require a good deal of experience to make accurate assessments. It should be borne in mind that inaccurate estimates of percentage completion at this stage will undoubtedly give false results.

The subsequent reporting procedure is very similar to that already described for the production element. Each cost centre is analysed in terms of progress and profitability to date, and a general analysis of the project status is given to date. See Figure 40.

It is intended the manager in charge of the design process will be presented with a complete productivity analysis of the project which will enable him to identify adverse trends in their early stages. Consequently, decision making can be based on an up-to-date direct project assessment and the affect of such decisions can be measured in the terms provided by the monitoring and control process.

Figure 39a Design Project Expenditure Output

\section*{** \(\begin{gathered}* ~\end{gathered}\)} FFOJECT IIESI
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{MONTH NUMEEF 9} \\
\hline \multirow[t]{2}{*}{WK NO NAME} & \multirow[t]{2}{*}{TOTAL} & \multicolumn{5}{|l|}{ANALYSIS OF ACTUAL HOURS} \\
\hline & & ARECH & S.E. & MECH
ENG & ELECT & Q.S. \\
\hline 100 JONES A. & 70.00 & 70.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 200 SMITH E. & 68.00 & 68.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 300 RICHARIIS N. & 65.00 & 0.00 & 65.00 & 0.00 & 0.00 & 0.00 \\
\hline 400 SMALL F. & 75.00 & 0.00 & 0.00 & 75.00 & 0.00 & 0.00 \\
\hline 500 SIMFISON W. & 74.00 & 0.00 & 0.00 & 0.00 & 74.00 & 0.00 \\
\hline 600 SIMMS 1. & 69.00 & 0.00 & 0.00 & 0.00 & 0.00 & 69.00 \\
\hline monthly totals & 421.00 & 138.00 & 65.00 & 75.00 & 74.00 & 69.00 \\
\hline
\end{tabular}

\section*{Fiqure 40 Project Design Progress and Profitability}
```

************************************************************************************
ENTER ESTIMATEI % OF DESIGN COMPLETEI TO IATE, FOR WORK CATEGORIES 1 TO 7
INFUT WORK CATEGDFY 1
?28
INFUT WORK CATEGORY 2
P17 WOR CATEGORY
INFUT WORN CATEGORY 3
?14
INFUT WORK CATEGORY 4
P15
INFUT WORK CATEGORY S
?33
INFUT WORK CATEGORY 6
?.5
INFUT WORK CATEGORY 7
?25

```
FROFITAEILITY ANALYSIS FEPORT
FFOUECT DESI
MONTH NUMRER 9
WORK CATEGORIES

\begin{tabular}{lllllllll}
EUNGET & 12391.50 & 5146.16 & 2959.17 & 2876.98 & 3787.69 & 148.07 & 2639.45 & 29949.02 \\
\begin{tabular}{llllll}
ESTIMATEI
\end{tabular} & & & & & & & & \\
\begin{tabular}{l}
UALUE OF \\
WORK TO
\end{tabular} & 10500.00 & 2550.00 & 1890.00 & 1968.75 & 3960.00 & 18.75 & 1875.00 & 22762.50
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\begin{tabular}{l}
ACTUAL \\
COST \\
TO IIATE
\end{tabular} & 9324.98 & 2452.10 & 2620.10 & 2705.95 & 4546.95 & 200.00 & 1980.00 & 23830.08 \\
FROFIT/ & 1175.03 & 97.90 & -730.10 & -737.20 & -586.95 & -181.25 & -105.00 & -1067.58 \\
LOSS & & & & & & & & \\
\hline
\end{tabular}
```

RESOURCES UTILISEII TO IAATE
FOUNIS STEFLING 23830.1
RESOUFICES REMAINING
FOUNIIS STERLING 78544.9
OUERALL FERCENTAGE OF WOFK COMFLETE TO IIATE 22.2344
ESTIMATEII FINAL IIESIGN PRIME COST % 103443.
SHORTFALL/GAIN ON ANTICIFATED FORECAST FFOFIT/COST-1067.58

```
ENI OF REFORTING FROCEDURE
INFUT IIATA:-
FRESENT DUFATION 9 MONTHS AT UALUE 22762.5
EXFECTED PROJECT COST 103443
FRESENT EXFECTEI COST OCCURS AT FERIOD 33
MAX FREIICTEN COST IS 108311.
\begin{tabular}{|c|c|c|}
\hline FR'II & CUM. COST & FREIICTEI (CUM. COST) \\
\hline 9 & 22762.5 & 22760 \\
\hline 10 & X & 27370 \\
\hline 11 & X & 32180 \\
\hline 12 & \(x\) & 37110 \\
\hline 13 & \(x\) & 42120 \\
\hline 14 & X & 47130 \\
\hline 15 & X & 52100 \\
\hline 16 & X & 56960 \\
\hline 17 & X & 61680 \\
\hline 18 & X & 66220 \\
\hline 19 & X & 70540 \\
\hline 20 & X & 74610 \\
\hline 21 & x & 78430 \\
\hline 22 & \(x\) & 81970 \\
\hline 23 & \(x\) & 85230 \\
\hline 24 & X & 88220 \\
\hline 25 & X & 90920 \\
\hline 26 & x & 93360 \\
\hline 27 & X & 95530 \\
\hline 28 & \(x\) & 97460 \\
\hline 29 & \(x\) & 99170 \\
\hline 30 & X & 100650 \\
\hline 31 & X & 101950 \\
\hline 32 & \(x\) & 103060 \\
\hline 33 & \(x\) & 104020 \\
\hline 34 & X & 104830 \\
\hline 35 & \(x\) & 105520 \\
\hline 36 & X & 106090 \\
\hline 37 & \(x\) & 106580 \\
\hline 38 & \(x\) & 106970 \\
\hline 39 & \(x\) & 107300 \\
\hline 40 & \(x\) & 107570 \\
\hline 41 & \(x\) & 107790 \\
\hline 42 & \(x\) & 107970 \\
\hline 43 & \(x\) & 108110 \\
\hline 44 & \(x\) & 108220 \\
\hline 45 & \(x\) & 108310 \\
\hline 46 & \(x\) & 108380 \\
\hline 47 & X & 108440 \\
\hline 48 & X & 108480 \\
\hline 49 & \(x\) & 108510 \\
\hline 50 & X & 108540 \\
\hline 51 & \(x\) & 108560 \\
\hline 52 & \(x\) & 108570 \\
\hline
\end{tabular}
\begin{tabular}{lll}
0 & \(\%\) & 0 \\
& \(I A F\) \\
& \(I\) & \(F\) \\
& \(I\) & \(F\) \\
& \(I\) & \(F\)
\end{tabular}

The final stage in the monitoring system provides a prediction analysis for the project in respect of final project cost and time.

The periodic valuations are stored on file as the project progresses in order to provide data for the prediction procedure previously described. The first five project valuations are ignored since the results produced have been found to be statistically unrealiable. After the fifth period the likely expenditure curve will be projected from the known curve data utilising the best fit procedure previously described.

It is intended that the manager will have a clear impression of the progress to date and the likely result of the completed project. The periodic predictions analysed collectively will give a further indication of project performance and the effectiveness of decisions taken. Figure 41 illustrates the computer output from the prediction phase of the programme.

\subsection*{9.7 Summary}

The softuare developed allows for many projects to be conveniently handled by a single computer facility. The stage by stage handling of project data through both the forecasting and monitoring prediction systems is intended to provide the manager(s) vill sufficient data to make viable decisions concerning the projects in hand. The method of file handling proposed and the conversational mode of programme operation is intended to enable a direct interface
between the user manager and the computer itself. In this manner it is intended that the potential for misunderstanding and confusion is eliminated since no highly skilled computer expertise is required. To achieve this situation a loss of use flexibility is to be expected but since most project situations are specific then this vould seem to be of little consequence. Some degree of flexibility can be provided for by allowing the user to select his oun cost centre headings, in which case, within the constraints of the number of cost centres he can select whatever titles he desires; these would of course vary from project to project.

The fundamental advantage of the system proposed is that fully integrated set of programmes utilising the so called "alpha/beta" philosophy have been developed whereby the manager is given an invaluable tool with which he can forecast, monitor and control one or more projects under his durisdiction. Further the system provides an excellent basis for collecting historic data which can be utilised to improve management decision making still further in the future.

Another step in the development could be the possible incorporation of the payroll and accounting systems to provide an automatic input of actual cost. However, the development of this notion is outside the scope of this thesis.
10. Corporate Control and Multi Project Management
10.1 General

The data created by the project systems previously described can be utilised to facilitate the production of reports which enable the corporate management structure of the company to control the affairs of the enterprise and make decisions based on the best possible information. Where companies are entirely project based as in the case of those in the construction industry, then the amalgam of the project data represents the total activity of the business. Hence, it is a natural step once the project based systems are installed to develop corporate systems utilising the project data already established.

As in the case of the project based systems it is seen to be of paramount importance to establish systems which eliminate the need for computer expertise. Therefore it is considered essential to develop a file handling system capable of coping with the multi project situation.

The initial stage of developing the system involves the determination of the type of information necessary to the corporate managers involved in that function. Figure 42 illustrates the system methodology proposed for this module.
10.2 Corporate Turnover System

A vital factor in the continued success of the construction company relates to the ability to obtain enough work at the * right price. Because the majority of vork is obtained by

\section*{Figure 42}

Corporate Sub-System Methodology

competitive tendering it is vital to relate the need for the work to the competitiveness of the tender itself. In essence the current turnover will continually fall as one looks into the future to the point where no work exists. The corporate managers task will be to ensure that new work is obtained to maintain the annual turnover in accordance with corporate policy previously laid down. The amount of marketing effort required will be determined by how far orders extend into the future and the rate of work fall off envisaged. The major problem involves the relationship of mainly fixed resources to a continually varying work load. To some degree this problem can be resolved by resource scheduling and smoothing techniques. Hovever, it would be of considerable benefit to the manager to have a complete analysis of the workload in terms of the projects in hand. The difference between the average turnover level and the total scheduled profit represents the target for the marketing effort. The project data already produced is ideally suited to this type of application and therefore a corporate turnover sub-system can be developed.

The system proposed is designed on a moving time span which can be selected by the user giving high and low span dates.

See Figure 43 for the system flow chart.
See Appendix 6 for the programme listings.

\section*{Figure 43}

\section*{Corporate Turnover System Methodology}

Figure 43
Corporate Turnover Report
INPUT PERIOD TO BE ANALYSED i.e. MONTH,YEAR;MONTH,YEAR
?NPUT PROJECTS IN FROGRESS NAME(MAX FIUE CHAFACTERS)TERMINATE WITH END
?DES 1

\section*{\(11: 54\)}
CORPO
CORFORATE CONTROL REPORT
BUDGETED EXPENDITURE ON PROJECTS IN HAND
CALENDER TIMESCALE MONTHS/YEARS

\(-\)
?DES3
?END

\footnotetext{
DO YOU WISH TO ANALYSE ANOTHER PERIOD (ANS YES OR NO)
INPUT PERIOD TO RE ANALYSED i.e. MONTH.YEAR;MONTH,YEAR
INPUT PROJECTS IN PROGRESS NAME(MAX FIUE CHARACTERS)TERMINATE WITH END
?DES1
?DES3
?YES
INPUT
aN3i
}
RUDGETED EXPENIITURE ON FROJECTS IN HANII

\section*{CALENDER TIMESCALE MONTHS/YEARS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PROJECT & \(9 / 83\) & 10/83 & 11/83 & 12/83 & 1/84 & 2/84 & 3/84 & 4/84 & 5/84 \\
\hline DES1 & 6810.28 & 7404.30 & 7781.05 & 7940.58 & 7882.87 & 7607.94 & 7115.77 & 6406.34 & 5479.71 \\
\hline DES3 & 5996.16 & 6836.54 & 7474.09 & 7899.45 & 8112.61 & 8113.58 & 7902.36 & 7478.92 & 6843.30 \\
\hline & 12806.45 & 14240.85 & 15255. 14 & 15840.04 & 15995.48 & 15721.52 & 15018.13 & 13885.26 & 12323.01 \\
\hline
\end{tabular}
INPUT PROJECTS IN PROGRESS NAME(MAX FIUE CHARACTERS)TERMINATE WITH END
PDESI
?DES3
?END

\section*{CORPORATE CONTROL REFORT}
BUDGETED EXPENDITURE ON PROJECTS IN HAND
CALENDER TIMESCALE MONTHS/YEARS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PROJECT & 5/84 & 6/84 & 7/84 & 8/84 & 9/84 & 10/84 & 11/84 & 12/84 & 1/85 \\
\hline DES1 & 5479.71 & 4272.36 & 3378.55 & 2192.36 & 1864.22 & 1495.41 & 1085.94 & 518.63 & 0.00 \\
\hline DES3 & 6843.30 & 5995.48 & 4935.46 & 3588.15 & 2368.80 & 2017.44 & 1621.92 & 1182.23 & 579.22 \\
\hline & 2323.01 & 10267.83 & 8314.00 & 5780.51 & 4233.02 & 3512.85 & 2707.85 & 1700.86 & 579.22 \\
\hline
\end{tabular}

\subsection*{10.2.1 User Procedure}

The programme in common with other softvare in the system operates in interactively with the user to produce the report required. The following step by step procedure is necessary:
1. Input parameter dates of time periods to be analysed in order of week/year commencement and week/year completion.
2. Input Project Names in Progress.

The project budget files are then accessed and their base dates are set to an array time scale prior to the preparation of the report in accordance with the parameter dates selected.

See Figure 43 which illustrates the programming procedure together with an example of the output of results.
10.3 Corporate Control System (Module 2)

This module is aimed at providing top management with summary reports which facilitate decision making at the corporate level. It is envisaged that reports will be required on a monthly basis which contain information which enable an assessment to be made of the actual project performance relating to the determined budget. Hence the components selected vere as follows:

\section*{Figure 44}

\section*{Corporate Control System (Module 2)}

\begin{tabular}{|c|c|}
\hline 1. Final Estimated: Cost of the Project & An assessment of the final completion cost considering performance to date and the future budget. \\
\hline 2. Percentage Completion: to Date & Proportion of the total project completed to date based on valuation. \\
\hline 3. Shortfall/gain on Forecast. & An indication of profitability to date based on prime cost. \\
\hline 4. Predicted Completion Time & From the prediction system an estimate will be made relating to the final project. \\
\hline 5. Resources Utilised and remaining & The total expenditure to date will be considered in relation to the predicted final project cost. \\
\hline
\end{tabular}

Figure \(45 \quad\) Corporate Project Analysis
```

CORF2 11:51 15-0CT-82

```
CORFOKATE CONTKOL MOILLLE 2
INFUT CUFFENT MONTH, YEAK(I.E, 3,80)
?9,83
input project name max five characters)terminate with end
? DESI
INFIUT FFRDJECT NAME(MAX FIUE CHARACTERS)TERMINATE WITH ENI
?DES3
infut project name(max five chafacters)terminate with enin
PENI

MONTH 9
YEAR 1983
FFOJECT STATUS SUMMAFY ANI SHDRTFALL/GAIN ANALYSIS TO IIATE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FROJECT & FINAL EST IIESIGN COST & \% CDMFL to nate & SHORTFALL/
GAIN ON F/C & FREDICTEL tOTAL IUKATION & \begin{tabular}{l}
kesources USEL \\
*
\end{tabular} & RESOURCES REMAINING 4 \\
\hline UES1 & 103443.00 & 22.23 & -1067.58 & 33 & 23830.10 & 78544.90 \\
\hline DES3 & 109733.00 & 20.10 & -3608.20 & 31 & 24938.20 & 81186.80 \\
\hline
\end{tabular}
OUERALL GAIN SHORTFALL ON CURFENT PROJECTS \(\$-4675.78\)

PROJECT HES1

FROFITABILITY TRENI ANALYSIS
MH NO MONTHLY +/-
 411.65
 \(-126.50\)
 \(-697.30\)
 \(-1537.85\)
 \(-705.23\)
 2221.20
 2089.97
 \(-164.53\)
 -1067.58
 0.00
0.00
FFOOJECT DESS
*****\#*******
FFOFITAEILITY TEENI ANALYSIS
MH NO MONTHLY \(+1-\)
 \(-162.30\)
 560.50
 668.80
 1808.80
 935.00
 4837.90
 639.05
 \(-3608.20\)
 0.00

The methodology involved in this report is shown in Figure 44.

The means of accessing project files will operate on the same principles as those previously described.

The user procedure simply requires the current date to be input together with the names of the current projects. The programme and file handling procedure is shown in Figure 45.

\subsection*{10.4 Application}

The development of corporate control systems represents a natural step from the procedures already established in the thesis. The essence of this section relates to the development of software and systems capable of handling the data from several projects at once and presenting the relevant control information in a clear and concise manner. It may be stated that the corporate systems represent an important by product of the project control systems which enable more information decisions to be taken at the budget level. The effort and time normally required to manually obtain this type of information could be considerable. However, the system proposed will,within minutes, accumulate project data and produce typed reports at any time based on the most up-to-date information available from the project systems. The use of the corporate models is simple and will be well within the capabilities of secretarial staff to use. There vould appear to be no reason why the Managing Director, for example, should not have a terminal
permanently located in his office to access this information whenever he requires it.

The report information shoun in Figure 45 is intended to indicate the general corporate status of the company in terms of the projects that it currently has in progress. Each project can be assessed with regard to its past and current profitability. A prediction of completion time is also given together with financial resources available to finish the project. The overall company profitability covering all projects in progress will give the corporate manager a basic assessment of the trading position of his organisation.

The object of producing the two corporate packages described in this section is to demonstrate the feasibility and potential of such an application. Naturally individual companies have there oun systems and methods, hence reports of this nature can take many different forms which contain information necessary to meet specific needs.

Without doubt this type of approach could be extremely beneficial and there is little doubt that further development in this area will provide more assistance to an area of management uhich has been hitherto starved of reliable and efficiently produced data.

\section*{Chapter 11}
11. Conclusions

The stated objective of this thesis was to research and develop a new system of project budgeting, monitoring and forecasting to meet the needs of the construction industry. In more specific terms the research was intended to initially concentrate on establishing a reliable means of simulating project expenditure curves utilising mathematical needs. A study was made of previous related work to establish the current state of the art. From this basis a programme of development work was instituted to derive improved methods. This research was successful and resulted in the production of the combined polynomial/exponential curve simulation. The subsequent testing programme proved that it was possible to curve fit samples of project expenditure to within a total curve fit error of \(5 \%\). To increase the versatility of the simulation in order to produce project budgets to fit almost any situation, two forecasting systems where developed based on a computer. The systems enabled the project programme to be considered in the preparation of the budget by the introduction of cost centres. Provision was also incorporated for alterations to expenditure, intermittent
periods and allowance for inflation. The interpretation of project curves could be made in two ways, namely by selecting appropriate curve fit constant, based on previous experience or intuition,alternatively by utilising cost centre modelling.

The next stage vas the institution of a contextual survey to establish the needs of the industry and the current usage of project budgeting, monitoring and control techniques relative to different types of organisation structures in the Construction Industry. The results of the survey indicated strongly the need for control systems which vere easy to use and economic to prepare.

The subsequent development of a monitoring and control system was based on interactive computing procedures incorporating automatic file handling. This sub-system was designed to integrate with the budgeting packages previously described. In essence the system requires data input relating to valuation and cost to date after which a complete project profitability status is given, together with a prediction of final completion and cost.

These systems have been designed with sufficient versatility to be applied to both the areas of design and production.

Further experimentation and development has proved it possible to combine the various project data bases to produce corporate reports indicating company turnover, profitability and production performance.

It is anticipated that the whole system can be amended to suit the individual requirements of firms wishing to use this particular form of budgeting.

The contextual survey gave a clear indication of existing procedures provided a basis on which to develop the applications programmes. It was very apparent from the sites and organisations visited that there was a need for budgeting and monitoring systems which are easy to prepare and gave a meaningful representation of the project. In addition, the monitoring and control of the project should be such that the control information produced can be easily interpreted and used by managers to make decisions. The detailed findings of the survey has influenced the manner in which the reports vere produced.

This research has achieved two significant developments in project forecasting, namely the development of a means whereby project expenditure can be modelled utilising the alpha-beta philosophy and the evolution of an integrated data base system to budget, monitor and predict project costs.

The work has been supported by a major effort in the area of software development involving extensive programme uriting in basic and algol. The packages are currently available on Digital Corporation main frame computers, hovever it is my intention to reurite the programmes for use with a poverful micro computer. I envisage that this development will bring the use of the system within the range of a vast number of potential users.

The viability of the alpha-beta polynomial has been conclusively proved by the fact that the DHSS research involving 800 projects can be simulated by using the alpha beta polynomial equation. Further the research testing programme described in Chapter 4 has demonstrated the versatility of the polynomial when used in conjunction with the exponential equation utilising the gamma constant which is directly related to the constant beta. Since the beta constant has be defined as the equiproportion point in the 's' curve it has real meaning and can be related directly to the curve. Hence a major advance has been made over previous known work in this field.

The applications procedures and programmes vere geared to the findings of the contextual survey and vere designed to be user friendly in the sense that managers and technical staff could use the systems without assistance from computer experts. This was achieved by the development of software programmes which vere integrated by means of the project budget files and the progress files developed by the monitoring systems. The combination of project files formed
individual project data bases which in turn could be used by the corporate control systems.

This research thesis has proved it possible to identify the effect of project management decision making by observing the variation in the curve fit constants and the switch points between the cubic and exponential equations. The use of the cost centre philosophy based on project method and programme has provided a viable means of determining the effect of management decisions using a more pragmatic approach which can be interpreted in the same constant terms mentioned above. It is also possible to apply the reciprocal approach by selecting known constants and switch points which are able to simulate viable project expenditure patterns suitable for budgeting and forecasting purposes.

The ability to make future predictions of project time and cost has been facilitated by the transposition of the Rayleigh Diffusion equation which has been expressed in terms of the peak cost period. Hence, by establishing the peak period cost of the existing expenditure to date, it is possible to project the curve to completion within acceptable limits of accuracy. The results from the construction projects have indicated that projections made at \(66 \%\) of the elapsed project time vere within an accuracy of \(10 \%\).

Scope also exists for predicting tendering costs, particularly where projections can be made knowing the nature of project expenditure in terms of the curve constants and the switch points defined earlier in the thesis. By anticipating project time the cost of the project can be predicted within known limits of accuracy. Conversely, knowing the final project cost, a completion date can be determined. Other applications relate to risk analysis and bidding strategy. Further development relating to the projection of known expenditure curves to date is foreseen, where the limits of accuracy and the confidence limits can be improved. It is expected that this research will continue with the aid of public funds.

There is potential for the development of corporate reports to include further analysis of the project data base relative to the status of the various projects under construction and the companies involved.

This thesis has laid the theoretical basis for practical application and the efforts of the author will be concentrated on developing the system in order that it can be applied in practice.

The tests referred to earlier have indicated a strong possibility that the theories can be applied to any industry where work is undertaken on a project basis. The fact that expenditure could be simulated for such diverse projects as
a small refurbishment contract in the United Kingdom and a large power station in the Middle East indicated that the system could equally vell be applied to oil rig construction or even major advanced technology projects. Further research vould be necessary utilising the principles to establish their applicability in other areas.

To increase the potential for variety of uses, the computerised sub-system should be developed to incorporate facilities to vary the number and types of cost centre. This in turn will increase the usefulness of the system procedures over a wide range of projects having differing control requirements.

In conclusion, this work has created a new approach to the implementation of project management control which has opened up considerable possibliities for future research and development. The momentum must not be lost and I consider that this research has created a milestone and base from which to proceed in the future.

\section*{Appendix 1}

\section*{4. Definition of Terminology and Symbols}

In order to facilitate an unbroken text definitions of symbols and terminology are summarised below:
\begin{tabular}{ll}
Period: & an arbitrary time unit, e.g. month, week \\
Period Cost: & \begin{tabular}{l}
the noncumulative cost incurred during one \\
period, e.g. a given cost for any one month.
\end{tabular} \\
Redundant Period: & \begin{tabular}{l}
a period during which costs are zero or \\
relatively small, e.g. \(10 \%\) of the average \\
period cost.
\end{tabular} \\
Overrun: & \begin{tabular}{l}
This situation occurs when the cubic equation gives \\
a minimum after the project start or a maximum \\
prior to the project end. Both of these are non \\
feasible situations as they render negative period \\
cost before the minimum or after the maximum of the \\
cubic curve.
\end{tabular} \\
Convex, Concave: & \begin{tabular}{l}
'hill' and 'valley or \(U '\) shape curves respectively
\end{tabular}
\end{tabular}

Definition of Symbols:
Graph (1) reference:
\begin{tabular}{|c|c|c|}
\hline la Cm & = & Cumulative Cost (value, budgeted cost or moneys spent) \\
\hline la S & = & Contract Sum \\
\hline \(1 \mathrm{~b} y\) & = & \(\mathrm{Cm} / \mathrm{S}=\) Proportion of the contract sum spent in the first m periods \\
\hline \(1 \mathrm{a} P\) & = & Contract Duration (number of periods) \\
\hline la m & = & Current period i.e. period in which latest expenditure occurred (e.g. in months) \\
\hline \(1 \mathrm{~b} \times\) & = & \(m / P=\) Proportion of contract duration to date i.e. to period m \\
\hline lc Zm & = & Period (non-cumulative) cost i.e. cost incurred during period m \\
\hline lc Zp & = & Maximum or peak period cost (e.g. expenditure during the most costly month) \\
\hline lc Mp & \(=\) & Peak cost period or time at which the maximum period cost occurs (e.g. most costly month) \\
\hline ld \(x_{p}\) & = & \(\mathrm{Mp} / \mathrm{P}=\) Proportion of contract period when the maximum period cost occurs \\
\hline 1d \(Y_{P}{ }^{\prime}\) & & Maximum value of the slope of the alpha-beta cubic equation i.e. \(d y / d x\) at \(x=x_{p}\) and corresponds to Zp \\
\hline C, K & = & DHSS cubic equation constants \\
\hline a & & alpha constant (shaping constant) \\
\hline \(b\) & & beta constant (equiproportion constant) \(=3 x_{p}-1\) \\
\hline Curve f & t & (SDY) \\
\hline
\end{tabular}

In order to monitor the precision of the models it was calculated that the root mean squared deviations of the actual and predicted proportional cumulative costs abbreviated as SDY.
\(\operatorname{SDY}=\left(\frac{1}{\left(P\left(Y a-Y_{p}\right)^{2}\right)}\right)^{.5}\)
where Ya is actual cumulative cost proportion (Y)

Yp is predicted cumulative cost proportion.

Graph 1 a
la told graphs supporting

Graph. 1 b

Graph 1c.

5.

Graph Id
\(\alpha-\beta\) curve slope graph (\(d y / d x\))
\[
\max \operatorname{slope} y_{p}^{\prime} \simeq z_{p} \times p / s
\] \((d y / d x)\) max :.

Graph \(1 e\)

Conditions in brackets

\section*{Appendix 2}

Derivation of quoted results from the ab equation
1. Mathematical properties
transformation of eqn.2. \(y=x(1+a(1-x)(x-b))\)
gives: \(y=-a x^{3}+a(1+b) x^{2}+(1-a b) x\)
differentiating for curve properties one obtains:
\(y^{\prime}=d y / d x=-3 a x^{2}+2 a(1+b) x+1-a b\)
\(y^{\prime \prime}=d^{2} y / d x^{2}=-6 a x+2 a(1+b)\)
2. Turning points
setting \(y^{\prime}=0\), transforming eqn.b. and dividing by \(-3 a\) ve obtain: \(x^{2}-2 x_{p} x+k=0\)
where \(x_{p}=(b+1) / 3\) and \(k=(b-1 / a) / 3\)
solving eqn.d. for turning points gives the results that:
maximum occurs at \(x=X_{\max }=x_{p}+\left(x_{p}{ }^{2}-k\right) \cdot 5\)
minimum occurs at \(x=X_{\text {min }}=x_{p}-\left(x_{p}{ }^{2}-k\right) \cdot 5\)
3. Peak period cost and its 'point'
(a) period cost Zm

From definition of \(y=C \mathrm{~m} / \mathrm{S}\) at \(\mathrm{x}=\mathrm{m} / \mathrm{P}\) it follows for practical purposes that:
\(y^{\prime}=\frac{P d C m}{S d m}\) is approximately \(\frac{P}{S} Z m\)
Hence:
\(Z m \cong \frac{d C_{m}}{d m}=\frac{S d y}{P d x}\) at \(x=m / P=\frac{S}{P} Y_{m}{ }^{\prime}\)
(b) point of inflection \(x_{p}\)

Using the second differential set at zero \(y^{\prime \prime}=0\) eqn.c. shows that providing \(a>0\) then:
(i) the period cost Zm or \(\mathrm{Ym}^{\prime}\) are at their maximum values \(Z p\) and \(Y p^{\prime}\) when \(y^{\prime \prime}=0\)
(ii) the above condition occurs when:
and \(x_{p}=(b+1) / 3\)
\(Y_{p}{ }^{\prime}=1+a\left(3 x_{p}\left(x_{p}-1\right)+1\right)\)
and eqn.g. gives the peak period cost as:
\[
\begin{equation*}
Z p=Y p^{\prime} \cdot S / P \tag{h}
\end{equation*}
\]
where \(S P\) is the average period cost
4. Derivation of peak period cost relation with \(b\)

If we assume that the minimum of the 's' curve will pass through the origin it may be shoun that by solving eqn.(d) with \(x=0\) that \(a=1 / b\) with the proviso that if \(b<.5\) project overrun occurs at the project end.

By substituting in eqn.(b) with \(x=x_{p}\) and \(a=1 / b\) then after,
transformation one obtains:
\[
\begin{equation*}
x_{p}=.5 Y p^{\prime}\left(1 \pm\left(1-4 /\left(3 Y p^{\prime}\right)\right) \wedge .5\right) \tag{i}
\end{equation*}
\]

The condition for real values only gives the. result given by equation (6):
\[
\begin{equation*}
Y p^{\prime}>4 / 3 \text { or } Z p>\frac{4 S}{3 P} \tag{6}
\end{equation*}
\]

This result implies that when the minimum passes through the origin the peak period cost must be in excess of \(33 \%\) over the average period cost (\(S / P\)).

At the peak cost period point one may evaluate \(Y p^{\prime}\) by replacing \(x\) by \(x_{p}\) and \(b\) by \(3 x_{p}-1\) in eqn.(b) deriving equation (7):
\[
\begin{equation*}
Y_{p^{\prime}}=1+a\left(3 x_{p}\left(x_{p}-1\right)+1\right) \tag{7}
\end{equation*}
\]
and transforms into the most direct solution for alpha:
\[
\text { alpha }=\left(Y_{p}^{\prime}-1\right) /\left(1+3 x_{p}\left(x_{p}-1\right)\right)
\]

It is worth noting the extreme values of \(\mathrm{Yp}^{\prime}\) show its major dependence on the shaping constant alpha and are:
\[
\begin{aligned}
& Y_{P^{\prime}}=1+a \text { at } X_{2}=0 \text { or } 1 Y_{p}^{\prime}=1+.25 \text { a at } X_{p}=.5 \\
& \text { to } Y_{P^{\prime}}=1+3 a x_{p} \text { for } x_{p}>0
\end{aligned}
\]

In order to obtain a practical equation for beta we have to furthur assume that \(Y_{p}\) ' is high in value. Under this condition the negative value in eqn. (i) would give an impractically low value for \(x_{p}\) hence using eqn. (\(h\)) we obtain equation (5):
\[
\begin{equation*}
x_{p}=(b+1) / 3 \cong \frac{Z p P}{2 S}\left(1+\frac{(1-4 S)^{\wedge}}{3 Z p P} .5\right) \tag{5}
\end{equation*}
\]
5. Overrun limits

If overrun is not to occur it is necessary that the extreme give \(X_{\min }\left\langle=0\right.\) and \(\left.X_{\max }\right\rangle=1\), the various cases are shoun in graph 8. Setting the limiting condition to \(X_{m i m}=0\) and \(X_{\max }=1\) and operating with equations \(d, e, f\) one obtains equation (3):
\[
\begin{equation*}
a<=\min (1 / b, 1 /(1-b)) \tag{3}
\end{equation*}
\]

By applying the condition \(X_{\max } 1\) and \(X_{m i n} 0\) and transforming equation (d) one obtains the general relationship for a under contingency. The particular case uhen \(X_{\text {max }}=1.05\) and \(X_{\text {min }}=-.05\) is given below by equation (8):
\[
\begin{equation*}
a=\min (1 /(1.21-1.1 b), 1 /(1.1 b+.11)) \tag{8}
\end{equation*}
\]

Relationship between peak period and gamma
\[
\frac{1}{2 \gamma}=x_{p}^{2} \quad x=x_{p}=\frac{\beta+1}{3}
\]

Relationship of gamma, \(X_{p}\) and Beta
\[
\gamma=\frac{1}{2 x_{p}^{2}}=\frac{4.5}{(\beta+1)^{2}}
\]

Assumption that project ends at \(95 \%\)
\[
\begin{aligned}
& \text { let } y=\frac{1-e^{-\gamma P^{2}} / D^{2}}{1-e} \\
& \text { let } y \begin{array}{l}
\text { (normal } \\
\text { completion }
\end{array}=0.95 \quad \text { i.e. } P=D \\
& \text { then } y \quad \frac{(\text { at period) })}{.95}=\frac{1-e^{-\gamma P^{2} / D^{2}}}{1-e^{-\gamma}} \\
& \text { at } P=D \text { if } y=0.95=\frac{1-e^{-\gamma}}{1-e^{-\gamma}}
\end{aligned}
\]

\section*{Appendix 3}

\section*{Contents:}
1. Program Listings: \begin{tabular}{lll}
RAMNI.BAS & \begin{tabular}{l}
Curve fit programs \\
used to collect live
\end{tabular} \\
& RAMFI.BAS & \begin{tabular}{l}
design cost data
\end{tabular}
\end{tabular}
2. Shell Project Curve Fit Results Analysis by professions
1.e. All professions Architect Mechanical
Civil and Structural
Electrical
Other Professional Inputs

\section*{PROGRAM RAMNI.BAS}
```

.TY FAMN1.EAS
OOO5O QO$="FIIA , A , B *
00100 A$="N"\GOT0900
00200 FEEAII N,A\$
00300 IF N=Z GOTO 900
00400 FEEAII S,F
00500 FOF I=1 TO F.
00600 FEEAII X
00700 NEXT I
00800 GOTO 200
00900 Q1$="*** AB CHANGE *** FFID."
01000 R$="*** FII CHANGE *** FRRII.
01100 A$="Y SII= "\B$="Fi SI= "
01200 IIIM Y(100),Y6(100),Y1(100)
01300 P4=0
01400 IIM X5(100),X(20),Y5(100),C(100,4)
01410 FFIINT"FILE NAME" \INFUT X$\ FILE £1,X$
O1412 FFIINT"% COST LEVEL EQUIVALENT TO FEIUNIANT FEFIOIIS*;
01413 INFUT Fi\ Fi=Fi/100
01415 FEAIIf1,F",C\FRINT"FEFIOLIS="F","CLASSES="C
O1417 FFINT\FFINT"FFOFESSION NO. ('O' FOFS ALL)";\INFUT J
01420 IF ENDII GOTO 1470
01430 FOFi I=1 TO C\FEALI £1,X,X(I)\NEXT I
01432 FEALIE1,Y,X(0),Y,Y\Y=0
01440 S=S+X(J)
01445 I 1=I1+1
01450 C(I1,4)=X(J)
01460 GOTO 1420
01470 S$="0"
01600 S5=0
01700 S$="Y"
01800 IF S\$%= "Y" GOTO 2000
01900 FRINT"FFII.","COST","CUM.CST."," X","Y"
02000 FOF I=1 TO F
02210 C=C(I,4)
02215 S6=C(I,2)=S6+C
02220 IF CNF1*C(I,2)/I GOTO 2240
02230 I 4=I4+1
02240 S5=C(I-I4,1)=S5+C
02250 NEXT I
02260 F=F'-I4
02270 FOF I=1 TO F
02280 X5(I)==I/F
02290 Y5(I)=C(I,1)/S
03000 NEXTI
03010 Z1=Z2=F--1
03020 ド9=11
03050 [0TO 4000
03100 FFIINT"EEST FII \& AE TO LIATE BY FIEL SI \& SN OF Y*

```
```

0 3 2 0 0
0 3 3 0 0
03400
03450
03500
03600
03700
03800
03900
04000
04200
04300
04400 F'FIINT
04500 IF I=F GOTO 8300
04600 T8 =500
04700 FOF AS=.1 TO 10 EY .1
04800 GOSUB 27900
04900 NEXT A5
04950 Q=A6-. 2\Q1=A6+. 2
05000 FOFF A5=Q TO Q1 EY .002
05100 GOSUR27900
OS200 NEXT AS
05300 A5=INT(1000*A6+.5)/1000
05350 GOTO8300
OS400 FFFINT"FIIA="AS" FII'E'="SQFi(4,5/AS)-1
055OOFFINT"YMAX AT X=2 "100*FNR(A5,2)"%"
05600S4=T4\55=T5
05700 PFINT"SI OF Y="S4,"FEL SI="SS
05800 GOTD 8300
05900 FFIINT'YMAX AT X=2 IS *FNFI(AG,2)
06000 A0=A6
06100 PRINT"FII A="AG,"FII E="SQF(4.5/AG)-1
06200 PFINT"USING FFRI. "T6
06300 IF TG=T7 THEN TO =1 ELSE TO=0
06400 T7=T6
06500 F.4=I
O6600 PFINT"Y.SIN= "T4,"FB.SII.= "TS
06700 GOTO8300
06800 PRINT
06900 PRINT"SOLUEII FRI A SOLN."

07000 GOSUE 22300\FRINT Q\$$F4
```

```
07200 I2=1\F'2=F'
07300 A5=0
07400 A=A1\ E=E1.
07500 [11=1\ ח2=F \GOSUB 19000
07600 FRINT\ PRINT A$;Q4,E\$;Q5
07700 IF QS>K゙90F AS=.07 THEN }800
07800 GOSUE 10600
07900 GOSUE 29900
08000 AS=AG
08100) FFIINT"t+t+t+t+t+t+t+t+t+t+t+t+
08300 FFRINT\FFIINT
08400 "TO FINII A,E,FRII
08500 ,
```
$08600 \mathrm{Q8}=\mathrm{Q} 9=200$ FOR G1=2 TO
IF $I=F \quad$ GOTO 9400
FRINTG1" ";
FOR G2=1 TO G1-1 $A=F N A(G 1, G 2) \quad B=F N B(G 1, G 2)$ GOSUB22300
FOR P7=F4 TO F BY $\operatorname{INT}(F / 10)+1$ NEXT FP7
$\mathrm{G2}, \mathrm{G1}$
$\mathrm{~B}=\mathrm{B}(1) \backslash \mathrm{C} 4=\mathrm{Q} 8$
$A=A(1) \backslash B=B(1) \backslash Q 4=\square 8$ FOR I1=1 TO 10\PRINT
GOTO11700
IF S5<TS THEN PRINT"RD BEST"
FRINT"SI OF Y="S8 * REL SI="S4
PRINT"USING PRI"W1" \&"W2 FRINT
$A=A 1 \backslash B=B 1$ THEN $B O=0$ ELSE $B O=1$
GOSUB 22300
IF S\$= ${ }^{\circ} Y^{*}$ GOTO11700
FRINT RII $A=$ \qquad
"W2
$Y(F-L F) \% \cdot{ }^{\prime \prime}$
TAB(16);100*FNI (Y1);

FNY(I1/P) \Y2=FNZ(I1/P)

∞

$(Y-Y: A B) \% ", "$ To
THE

HEN PRINT Q $\$$ FP4 FINTTAB(29);FNJ(Y;Y1);TAB(45);100*FNI(Y2);TAB(56);FNJ(Y;Y2) NEXT I1
 908808
08088
040800
-141 $\begin{array}{r}0 \\ 0 \\ 0 \\ \hline\end{array}$

11700
11800 GOTO 15800
$11900 \quad[11=1 \quad \backslash 12=1$
12000 GOSUE 19000
12100 IF $54 \lll<$ OR $B O=1$ THEN $K 8=1$ ELSE．$K 8=0$
12200 GOTO12700
12300 IF $I=3$ THEN Q6＝Q5
12400 IF I《4 THEN 12700
12500 IF（Q6－Q5）／Q6）＝K゙9／100 THEN K8＝1 ELSE K゙8＝0
12600 IF $\mathrm{K} 8=1$ THEN Q6＝05
12700 FRINT＂FRESENT－TO DATE FRII．＂I
12800 PRINT Q\＄\＆F4

$13800 \quad$ I2 $=1$ F $2=1$
13900 IF I＜4 GOTO14100
14000 IF KB＝1 THEN GOSUB 10600
14100 FRINT A\＄引Q4，E\＄引Q5
14200 IF F4ㅇI THEN FRINT ELSE FRINT Q $\$$ FFP 4 （ FRINT
14300 IF F．4 I THEN $14700 E L S E$ FS＝F4
14400 F4＝F＋1 GOSUB 19000
14500 FRINT＂AB ONLY＂A\＄；Q4，B\＄引QS
$14600 \quad \mathrm{~F} 4=\mathrm{FS}$
14700 ［1＝I $12=\mathrm{F}$
14800 GOSUB 19000
14900 FRINTXFRINT＂FUTURE FROM PRII．＂I

$15100 \quad$ I2＝I $\quad \mathrm{F} 2=\mathrm{F}$
15200 IF $K 8=1$ THEN GOSUB 10600
15300 IF FA\＆I THEN FRINT ELSE FRINT Q $\$$ FF4
15400 IF F4＜I THEN 15800ELSE FS＝F4
15500 P4 $=0$ I GOSUB 19000
15600 PRINT＂FII ONLY＂A\＄；Q4，E\＄；QS
$15700 \quad \mathrm{P} 4=\mathrm{F5}$
$15800 \quad \mathrm{~L} 1=1$ \} 1 / 2 = \mathrm { P }
15900 FRINTXPRINT＂MONITORING CONSTANTS＊

16005 PRINT
$16010 \quad T=(B+1) / 3 \backslash K=(B-1 / A) / 3 \backslash K=(T * T-K)$
16013 IF Kくて GOTO 16400
$16016 \quad K=\operatorname{SQR}(K)$
16020 IF $T-K>0$ THEN IO $=I N T((T-K) * P+.5)$ ELSE IO $=0$
$16030 \quad P 3=I N T((T+K) * F)$
16040 IF F．3＜F4 THEN P4＝INT（P3＊．95）
16045 GOTO 16400

PRINT Q1\$;IO,Q\$;P4

PRINT" $A=" A$ " $B=" B$ " PEAK COST PRD. $\operatorname{CINT}((B+1) / 3 * P+.5) \backslash P R I N T$ PRINT"COMBINED RESULT"\ GOSUE 19000
PRINTUPRINT Q\$; F4; PRINTNOHASっAっR GOTO 29800
PRINT
GAMMA "
SWITCH
$I=I 1$
FRINT Q\$;F4;
GOSUB 19000
FRINT A\$;Q4; B\$9 QS
$P=P+1$
GOSUB 19000

PRINT: FRD ONLY RESULTS * A\$;Q4,B\$今QS \FRINT

PRINTUFRINT"FRD. COST", "CUM.COST", "FORECAST","\%EFFOR"
PRINTARINT
PRINTI;TAB(5);C(I,4),C(I,1),INT(S*YG(I)+.5),FNJ(Y5(I),Y6(I)) NEXT
둔
DEF FNZ (X)
IF EXP $(-A 5)<1$ GOTO 18700
$Z=.01$
GOTO 18800
$Z=1-E X F(-A 5)$
FNZ $=(1-E X F(-A 5 * X * X)) / Z$
FNENI
RD CH

, RD CHANGE TESTS

$\mathbf{Q 4}=\mathbf{Q S}=0$
FOR $I 1=1$ TO P
$Y=Y 5(I 1) \backslash X=I 1 / P$
IF FNY $(X)<=0$ THEN $I 0=I 1+1$

IF P6<F4 THEN P4=P6
-

```
2 0 3 0 0
20400
20410
20420
20425
20430
20435
20440
20500
2 0 6 0 0
20700
2 0 8 0 0
2 0 9 0 0
2 1 0 0 0
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300
22400
22420
22430
22440
22445
22450
22500
22600
22700
22800
22900
23000
23050
23100
23200
23300
23400
23500
23600
23700
23800 IF F.6<F4 THEN P4=F6
23850 FETTUFN
23900
24000
2 4 1 0 0
24200
24300
24400
    U4=FNI(Q4)*100
    QS=FNI (QS)*100
IF Q8%Q4 GOTO 20430 'YSI
Q8=Q4\A(1)=A \E(1)=E
    F'8=F.4\ IB=IO
IF Q9<QS GOTO 20500 'FSLI
    F9=F4\ I9=IO
    Q9=Q5\A(2)=A \B(2)=E
    FETURN
    'FIN CONST
    A4=4.5
        A7=A4*X*X
    IF A7%10 GOTO21300
    IF A7<.1 GOTO 21300
    GOT021500
    A5=.07
    GOTO 22200
    E1=EXF(-A4)
    E2=EXF(-A4*X*X)
        F1=1-E2--Y*(1-E1)
        F2=X*X*E2-Y*E1
        AS=A4-F1/F2
        IF ABS(AS-A4)< 2E-6 GOTO 22200
        A4=AS \GOTO 20900
        FETUFN
        'AE TO FILI CHANGE
        FOR I2=1 TO F
    IF FNY(I2/F)S=1 THEN FGG=I2-1
        IF FNY(I2/F)<<=0 THEN IO=I2+1
        NEXT I2
        IZ=INT(.15*(F'+I4))
    IF I<I3 GOTO 22800
    FOR J=I3 TO F
        IF J&= I GOTO 23000
    F'4=INT(.95*FF)
        GOTO 23800
        YZ=Y4=0
    IF J&2 GOTO 23800
        FOF I2=\-2 TO J
        YZ=YZ+ABS(Y5(I2)-FNZ(I2/P))
        Y4=Y4+AES(Y5(I2)-FNY(I2/P))
        NEXT I2
    IF Y4-Y3% .1*Y5(J) THEN P4=\J-1 ELSE 23700
    GOTO 23800
        NEXT J
        LIEF FNE(G1,G2)
        '
        X1=X5(G1)\X2=X5(G2)
        Y1=Y5(G1)\Y2=Y5(G2)
        K゙=(1-X2)*(Y1/X1-1)/(1-X1)/(Y2/X2-1)
        FNB=(ド*X2-X1)/(ド-1)
```

24500
24600
24700
24800
24900
25000
25100
25200
25300
25320
25340
25400
25500
25600
25700
25800
25900
26000
26100
26200
26300
26400
26500
26600
26700
26750
26800 26900 27000 27050
27100
27200
27300
27400
27500
27600
27700
27800
27900
28000
28100
28200
28300
28400
28500
28600
28700
28800
28900
29000
29100
29200
29300

FNENI
LIEF FNA（G1；G2）
，
$Y_{1}=Y_{5}(G 1) \backslash X 1=X 5(G 1)$
$F N A=(Y 1 / X 1-1) /(X 1-F N E(G 1, G 2)) /(1-X 1)$
FNENII
＇TEST A．B
＇
$A=F N A(G 1, G 2) \backslash E=F N E(G 1, G 2)$
$T=(B+1) / 3 \backslash K=(E-1 / A) / 3$
IF T＊T－K゙＜O THEN 27050
$51=56=0$
FOF $J=1$ TO I
$X=J / F \cdot$
$Y=Y 5(J) \backslash \quad Y 1=(F N Y(X)-Y) / Y$
$Y 3=Y 1 * Y$
$\mathrm{I}=\mathrm{I} 1+(\mathrm{FNY}(X) / Y) * * 2$
$56=56+Y 1 * Y 1$
$51=51+Y 3 * Y 3$
NEXT J
II $1=100 * S Q R(I I / I)$
S3＝100＊SQF（S1／I）
S9＝100＊SQR（S6／I）＇REL SII
$\mathrm{I}=\operatorname{ARS}(1-\operatorname{SQR}(\mathrm{I} / \mathrm{I})) * 100$
$\mathrm{G}=59$
IF G9＝100 THEN $G=53$
IF $G O>G$ THEN $G O=G$ ELSE 27100
$\mathrm{SB}=\mathrm{S} 3 \backslash \mathrm{~A} 1=\mathrm{A} \backslash \mathrm{B} 1=\mathrm{B} \backslash \mathrm{W} 1=\mathrm{G} 1 \backslash \mathrm{~W} 2=\mathrm{G} 2 \quad \backslash \mathrm{S7}=\mathrm{D}$
S4＝S9\S5 $=11$
$\mathrm{T}=$ K゙ $=0$
FETUFN
LIEF $\operatorname{FNY}(X)=X *(1+A *(1-X) *(X-E))$
，
＇TEST R－DF
，
B4＝FNE（G1，G2）
IF B4イ゙－． 5 THEN E4 $=-.5$
$A 5=4.5 /(E 4+1) * * 2$
$52=56=1=0$
IF $A 5=.07$ GOTO29400
FOR $J=1$ TO I
$Y=Y 5(J)$
$Y 1=((1-T 1 / 100) * F N Z(J / F \cdot-Y) / Y$
$\mathrm{D}=\mathrm{I}+\mathrm{Y} * \mathrm{Y} 1$
$52=52+(Y * Y 1)^{\sim 2}$
S6＝S6＋Y1＊Y1＇R SII
NEXT J
SO＝100＊SQR（S6／I）
S2＝100＊SQR（S2／I）＇Y SII
$\mathrm{G4}=\mathrm{s} 2$
IF T8＞G4 THEN T8 $=$ G4 ELSE 29400
$T 4=S 2 \backslash T 5=S O \backslash W 3=G 1 \backslash W 4=G 2 \backslash E S=E 4 \backslash T 6=I$
A6 $=$ AS
RETURN
$\underset{, 1 \mathrm{EFF} \operatorname{FNI}(A)=.001 * \operatorname{INT}(A * 1000+.5) ~}{\text { (}}$
nEF FNJ $(A, B)=1 * \operatorname{INT}((A-B) * 1000+, 5)$
DEF $\operatorname{FNC}(X, Y)=(Y / X-1) /(X-B) /(1-X)$
$A 2=A \backslash B 2=B$
$B=3 / S Q R(2 * A S)-1$
$G O=G 9=100$
$F O R T=2 T O P-1$
$Y=Y 5(I) \backslash X=X 5(I) \backslash A=F N C(X, Y)$
$T=(B+1) / 3 \backslash K=(B-1 / A) / 3$
$I F T * T-K<0 G O T O 29860$
$T 1=T+S Q R(T * T-K)$
$G O S U E 25400$
NFXT T
NEXT I
$A 3=A 1 \backslash B 3=B 1 \backslash A=A 2 \backslash B=B 2$
$T=(B 3+1) / 3 \backslash K=(B 3-1 / A 3) / 3$ T1=T+SQR(T*T-K)
GRAPH
IO=I8\P4=P8\P1=P

PRINT"MAXIMUM DURATION 'INT (F3*P/(P-I4)) +1 \PRINT; (GAMMA) FEAK FERION "INT(F*(2*AS)**-.5+1) ERROR S8

29860
29870
29890
29900
29920
FRINTXPRINTVFRINT"DURATION "P" FERIODS AT COST 'S" 'POUNDS""

PRINT \quad COST
$K=X G=S 5=0$
$K=0$

30300
30400
30500
30600
30700
30800
30900
31000
31100
31150
31200
31340
31345
31350
31360
31420
31440
31460
31500
31600
31650
31700
31800
31900

PRINT GOTO 16404
PRINTXPRINT"NO. OF PERIONS= "P\PRINT
 -
©"I.(S)A甘1 INIBd

- N"
6500

DATA 20000,2E4,32500,32500,41E3,41E3,45750,45750
IIATA 15E3
LATA100000,28E3,12E4,72500,72500,8E4,16E4,5E4,5E4,6E4,14E4,1ES DATA 5E4,4E C' ${ }^{500}$
DATA 16
IATA $28300,56600,84900,114900$
DATA $152700,181500,205300,229100$
DATA $252900,278900,303000,320100$
DATA $337200,348600,360000,371500$
DATA $3, " N^{\prime \prime}$
IATA 323500
DATA 12
DATA $10000,25000,50000,75000$
DATA $10000,12500,15000,20000$
DATA $25000,26500,27000,27500$
DATA $4,{ }^{\circ} N^{\prime \prime}$
DATA 78750
DATA 12
DATA $1 E 4,9500,9000,8500$
DATA $8250,8000,7900,7850$
DATA $5000,2500,1500,750$
END

O888888ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

PROGRAM LISTIRG RAMFI. 3 AS

" C(R)
01030 IF C/FNG(R,T1)>1.04*C9 THEN 1035 ELSE T1=T1+2*R 1030

$=T 1 \backslash T 1=1.5 * n \backslash S 9=1.1 * C 9$

$O=0 \backslash$ FOR $I=R$ TO D
IF C9<C(R)*FNG(I,R) GOTO 1043
 PRINT "GAMA"
FOR $\mathrm{I}=1$ TO $\mathrm{R}-1$ $R 9=Y 9=100$
 FOR PS=2 TO R*10 BY. 3
F=PS $Y=F N G(I, R)$
IF $Y>Y 7$ THEN 1226 ELSE 1228 P=G(I)=PS NO."N1,G(I)
PEXTINT I' NO."N1,G(I),"E\%='S2,"X*X="(I/R)"2,"YA="INT(1E4*Y7+.5)/1E4 PRINT "BETA"

$$
\begin{aligned}
& \text {,INFUT FEAK, A,B"A INFUT F,AO,BO } \\
& \begin{array}{l}
\text { FOR } I=6 \text { TO } R \\
S 8=S 9=C(I) \\
Y Q=R 9=100 \\
R 7=I \\
\text { IF }=R 7 \text { GOTO } 1298 \\
\text { FOR I } 1=-.3 \text { TO } 2 \\
\text { FOR } J=-.5 \text { TO } 6.5
\end{array}
\end{aligned}
$$

```
01356
01357
01360
01375
01379
01400
01500
01600
01700
01800
01900
02000
02200
02220
02260
02300
02400
02403
02406
02408
02410
02415
02450
02500
02550
02600
02625
02650
02700
02800
03100
03200
03210
03215
03220
03250
03260
03300
03350
03360
03370
03400
03420
03460
03465
03470
03475
03476
03477
03478
03479
03490 FiG=INT(Fi*EO+.5)
0349% GOTO 3800
O3E(O) FFINT"EXFECTEII IUFFATION=" INT(F**EO+.5)" MONTHS"
```



```
03700 FFINT"ALTEFNATIUE SOLUTION AT "FOO"%"
03800 FOFi I=Fi TO T1 EY INT(.1*(II-Fi)+.E)
03900 C=C(Fi)/FNG(Fi,I)
04000 IF C%=FO*S9/100 GOTO 4150
```

```
04100 NEXT I
04150 GOTO 4400
O4200 FFRINT"COST="C"LFINTN"I", CUBIC COST=*C(Fi)*FNC(I/FF,AO,BO)\FFINT
04300 FRINT"INFLATED COST="C* (1+F1/100)mI
04400 FOFINT\FRINT
04500 IF FO=99 GOTO 9100
04600 F'O=99
0 4 7 0 0 ~ G Q T O ~ 3 8 0 0 ~
04800 F=F'O\F:=Fi1\GOTO 1000
05000
OSO2O 'FEL SII TEST GAMA
05040 ,
05050 IF I>10*F GOTO 5300
05060 N1=S1=52=0
05100 FOF J=1 TO I
05110 IF I>10*F GOTO 5300
05115 IF J$10*F GOTO 5300
05120 Y=FNG(J.I)
05140 Y1=C(J)/C(I)
05145 IF Y1<.9*(J/I)m2 GOTO 5200
05150 N1=N1+1
05155' Y2,S1 R'SI
05160 Y2=(Y-Y1)/Y1
05170 YZ=(Y-Y1)
05180 S1=S1+(J/I)`2*Y2**2
05190 S2=S2 +(J/I)m2*Y3**2
05200 NEXT J
05202 S2=INT(1000*SQF(S2/(N1))+.5)/10
05203 GOTOS300
05205 IF Y9<<S2 GOTO 5220
05210 YG=52\A=K4
05215 D8=I
05220 S1=INT(1000*SQF(S1/(N1+1))+.5)/10
O5240 IF FQ4S1 GOTO 5300
05260 R9=S1 \19=I
05270 A1=N゙4
05280 'REL SLI EFIFOR Fig(E) IRTN D9(IOO)
05300 RETUFN
06000
06010 , EETA
06050 'FV7EL SII TEST
06100 ,
06150 S1=52=0
06200 FOF J1=F:7-5 TO R7
06250 Y=FNC(J1/R7,A0,BO)*S9
06300 Y1=C(N1)
06350' Y2.S1 R7.SI
06400 Y2=(Y-Y1)/Y1
06450 YZ = (Y-Y1)/59
06500 S1=S1+(J1/R7)m0.*Y2**2
06550 S2=52 +(J1/FR7)m0.*Y3**2
06600 NEXT J1
06620 S2=INT(1000*SQF(S2/(6))+.5)/10
06650 IF Y9.62 GOTO 6750
06700 YG=52\A=F: \A3=AO
06750 S1=INT(1000*SQF(S1/(6))+.5)/10
```

06800 06850 06900 06950 07000 07500 08000 08050 08100
08150 08160 08200 08220 08225
08270

08300
08320
08350
08400
08450
08500
08550
08600
08650
08660
08700
08725
08750
08850
08855
08860
09000
09100
09120
09130
09150
09200
09210
09220
09230
09300
09303
09400
09500
09700
09750

```
08250 IF ABS(K-G(I))<ABS(K-B(I))THEN Y=G(I) ELSE Y=B(I)
    IF R9<S1 GOTO 6950
    F9=51 \119=F
    'REL SI ERROR RG(E) IRTN NO(LIO)
    RETURN
    DEF FNA(I,R,F)=(C(I)*R/C(F)/I-1)/(I/R-3*F/R+1)/(1-I/F)
    IEF FNC(X,A,E)= X*(1+A*(X-B)*(1-X))
    ,
    'COFFLLTN
        ,
        S1=S2=Z=Q1=Q2=0
N=0
    FOR I=2TOR
    IF KO*I>80 GOTO 9000
    K゙=F*(1-EXF(-K゙O*I))
IF 1-Y/F <.01 GOTO 8600
    Y=-LOG(1-Y/F)
N=N+1
    Si=S1+I
    'sum X
    S2=S2+Y
    'Y
    Z=Z+Y*I 'XY
    Q1=Q1+I*I 'X`2
    Q2=Q2+Y*Y YY^2
    NEXT I
    IF INT(.8*(R-1))<N GOTO 8700
N=0 \ GOTO 9000
    K1=(N*Z-S1*S2)/(N*Q1 -S1*S1)'SLOPE
    F1=K1*K1*(N*Q1-S1*S1)/(N*Q2-S2*S2)
    I1=(S2-K゙1*S1)/N \I9=AES(I1)+.0001
    T=(KO/(1-I1)-K1)/(1+K゙O*K゙1/(1-I1))
        F1=SQR(R1)
    F3=(1-ABS(T))*F1
    FETURN
    'TABLE
I=I\ S9=C
T1=.9*T1\ IF [1<T1 THEN [I=T1
    PRINT"FRII CUM. COST PRENICTEN (CUM. COST)*
    FOR I=RTOL
    CO=C(R)*FNG(I,F)
    C1=C(F)*FNG(I+1,R)
    IF C1-CO<10 THEN 9700
    IF I>R THEN C = ='X" ELSE C$=STR$(C(I))
    IF I<=R ANI C(I)>C(F)*(I/R)m2 THEN G$="OK" ELSE G$="!"
    PRINT I;TAB(7);C$,INT(.1*(CO+5))*10
    NEXT I
        'GRAFH
```

$S=C \backslash P 1=I$
09850 FRINTUPRINT
09900 FRINT"GRAFH OF PROJECT EUALUATION"
09950 PRINT"---
10000 FRINTXPRINTXPRINT"DURATION "F1" WEEKS AT COST "S" 'FOUNIS'. 10050 FRINTUFRINT
S $\$=S T R \(C)
FRINT"CoST
$X=X 6=55=0$
$k=0$
$S 1=5$
$=S / C$
$O R$
$J=1$ TO 5

080
.

FOR $\times 6=0$ TO F1 IF $X 6=0$ OR X $6>$ R GOTO 11000
$\quad C 1=(F N G(X 6 ; P 1) / X 6 * F 1-1) * 4$
$Y 2=C(X 6) / S$
$G 0 T 011050$
$Y 2=0$
$Y=F N G(X 6, P 1)$
IF $Y 5(X 6)=Y$ THEN G1 $\$==^{\circ}$ ELSE G1 $\$={ }^{\prime \prime} A^{\prime \prime}$
IF $G O T 11200$
IF X6>R THEN FRINT TAB(FNT(C1)) ${ }^{\circ} *^{* \prime}$
$\begin{array}{ll}\text { IF Y2>Y GOTO } 11350 \\ \text { IF Y2<Y GOTO } & 11400\end{array}$

PRINT TAB(FNT(Y2))G1\$;TAB(FNT(Y));"F"
NEXT $\times 6$

> PRINT TAB(6)"X";

IF X6=P1 THEN GOTO 30362 ELSE 10700
DEF FNT $(A)=\operatorname{INT}(50 * A+.5)+6$

```
11850 GOTO 30362
    'N-FFGN G1=GO-(Y-YO)(1-EN-GO)/GO/(1-YO)
    F=FF/SQR(2*G5)
FFIINT"F,GS"F,G5
    IF F%10*F: THEN 18300
    G6=1-EXF:(-G5)
    YG=FNG(I,Fi)
    G5=G5-(Y7-Y6)*G6/G5/(1-Y6)
    F=F/SQR(2*G5)
    FFIINT "G6,Y6,GS,F"* G6,YG,G5,F"
    FETUFIN
19990
19993'FINIIS IIFTN
19996'
20000 LIEF FNK゙(A,E)
20050 X1=A*(3*F-A)
20100 X2=E*(3*F-E)
20200 Y1 =C(A)/A
20300 Y2 = C(E)/E
20400
20500
20600
20700
30000
30040
30080
30120
30140
30150 IF Y2/X2=1 THENFNE=1 ELSE }3016
30155 GOTO 30361
30160 K==(Y1/X1-1)/(Y2/X2-1)
30200 U1=X1*(1-X1)
30240 U2=X2*(1-X2)
30280 B1=ド*U2-U1
30320 B2=X1.-1-k゙*(X2-1)
30360 FNE=E1/E2
30361 FNEND
30362 FFINT"FIESPECIFY FFOJECT NAME YES OR NO*\INFUT A9$
30363 IF A9$ ="NO" THEN STOF"
30365 FRINT"RESFECIFY PROJECT NAME FOR CORFORATE PROG REFERENCE"
30366 INFUT X$(1)
30370 X1$=LEFT$(X$(1),5)+"S.IIAT"
30375 FILE f4,X1$
30380 SCFATCH £4
30385 WFITE £4,IO
99999 ENI.
```

к basic
READY, For hely type help.
OLd hamnd
READY
KUN
(SHELL RESULTS: ALSL PROFESSIONS

21.

MONITURING CONSTANTS

```
ALPHA= 4.8UOO1 BETA=5.94137E-2 GAMMA= 7.62
```

TaESE CONSTANTS REPKESENT:-
(EETA) PEAK PEFIOD 21
MAXIMUM DURATION 44
(GAMMA) PEAK PERIOD 15
(GAMMA) ALPHA EQUIVALENT -3.50724 ERROR 0.194816 \&
(GAmma) max duration estimate 23
CUBIC BETWEEN PERIODS 2 AND 16
TOTAL PROJECTION ERROR= 2.5%
graph of project evaluation

DURATION 58 PERIODS AT COST 173465 'POUNDS'

$0: 0 \mathrm{~S}$
I-G-AP
$I_{1} A{ }_{A P}$
9.5

TIME: 238.12 SECS.
READY
RUN
KAMN1 15:10 27-MAK-61
dukation so perigus at cost 72230 'puluncos'

| | COSI SABLE | | | |
| :---: | :---: | :---: | :---: | :---: |
| PRD. | cost | CUM.COSI | FORECAST | EERROR |
| 1 | 0 | 0 | 0 | 0 |
| 2 | 518 | 518 | 1266 | -1 |
| 3 | 1264 | 1782 | 2944 | -1.6 |
| 4 | 2777 | 4559 | 4998 | -0.6 |
| 5 | 2796 | 7355 | 7393 | -0.1 |
| 6 | 3676 | 11031 | 10096 | 1.3 |
| 7 | 2040 | 13071 | 13071 | 0 |
| 8 | 3495 | 16566 | 16284 | 0.4 |
| 9 | 3134 | 19700 | 19700 | 0 |
| 10 | 4572 | 24272 | 23284 | 1.4 |
| 11 | 3950 | 28222 | 27001 | 1.7 |
| 12 | 2105 | 30327 | 30817 | -0.7 |
| 13 | 4370 | 34697 | 34697 | 0 |
| 14 | 2709 | 37406 | 38606 | -1.7 |
| 15 | 2488 | 39894 | 40339 | -0.6 |
| 16 | 2145 | 42039 | 44017 | -2.7 |
| 17 | 3007 | 45046 | 47498 | -3.4 |
| 18 | 3275 | 48321 | 50750 | -3.4 |
| 19 | 3742 | 52063 | 53754 | -2.3 |
| 20 | 1652 | 53715 | 56497 | -3.9 |
| 21 | 4387 | 58102 | 58974 | -1.2 |
| 22 | 3543 | 61645 | 61127 | 0.6 |
| 23 | 798 | 62443 | 63143 | -1 |
| 24 | 1326 | 63769 | 64854 | -1.5 |
| 25 | 1093 | 64862 | 66336 | -2 |
| 26 | 1027 | 65889 | 67608 | -2.4 |
| 27 | 1449 | 67338 | 68687 | -1.9 |
| 28 | 719 | 68057 | 69595 | -2.1 |
| 29 | 1104 | 69161 | 70351 | -1.6 |
| 30 | 703 | 69864 | 70975 | -1.5 |
| 31 | 752 | 70616 | 71485 | -1.2 |
| 32 | 223 | 70839 | 71898 | -1.5 |
| 33 | 366 | 71205 | 72230 | -1.4 |
| 34 | 160 | 71365 | 72230 | -1.2 |
| 35 | 190 | 71555 | 72230 | -0.9 |
| 36 | 106 | 71661 | 72230 | -0.8 |
| 37 | 0 | 71661 | 72230 | -0.8 |
| 38 | 34 | 71695 | 72230 | -0.7 |
| 39 | 95 | 71790 | 72230 | -0.6 |
| 40 | 45 | 71835 | 72230 | -0.5 |
| 41 | 130 | 71965 | 72230 | -0.4 |
| 42 | 6 | 71971 | 72230 | -0.4 |
| 43 | 18 | 71989 | 72230 | -0.3 |
| 44 | 84 | 72073 | 72230 | -0.2 |
| 45 | 53 | 72126 | 72230 | -0.1 |
| 46 | 0 | 72126 | 72230 | -0.1 |
| 47 | 0 | 72126 | 72230 | -0.1 |
| 48 | 0 | 72126 | 72230 | -0.1 |
| 49 | 0 | 72126 | 72230 | -0.1 |
| 50 | 19 | 72145 | 72230 | -0.1 |
| 51 | 19 | 72164 | 72230 | -0.1 |
| 52 | 0 | 72164 | 72230 | -0.1 |
| 53 | 0 | 72164 | 72230 | -0.1 |
| 54 | 0 | 72164 | 72230 | -0.1 |
| 55 | 26 | 72190 | 72230 | -0.1 |
| 56 | 0 | 72190 | 72230 | -0.1 |
| 57 | 33 | 72223 | 72230 | 0 |
| 58 | 7 | 72230 | 72230 | 0 |

SHELL-MECHANICAL

RUN

RAMN1 15:27 27-MAR-81

FILE NAME 2SHELL.DAT
CUST LEVEL EQUIVALENT TO REDUNDANT PERIOUS 310
PERIUUS= 58 CLASSES= 7
PROFESSION NO. (${ }^{\circ} 0^{\circ}$ GOR ALL) 21

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | |
| 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | | | | | |

THESE CONSTAN'S REPRESENT:-
(EEJA) PEAK PERIOD 22
MAXIMUM DURATION 47
(GAMMA) PEAK PERIOD 17
(GAMMA) ALPHA EQUIVALENT - 2.75217 ERROR 1.202458
(GAMMA) MAX DUKATION ESTIMATE 22
CUBIC BETWEEN PERIODS 0 AND 18
TCTAL PROJECTION ERROR= 2.9 \&

GRAPH OE PRUJECT EVALUATION

DURATION 58 PERIODS AT COST 30644 'POUNDS'

[^4]- REPRESENTS 4*NON-CUMULAIIVE EXPENDITURE

| PRD. | cost | CUM.COST | FORECASI | \%ERROR |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 4 | 706 | -2.3 |
| 2 | 0 | 4 | 706 | -2.3 |
| 3 | 937 | 941 | 1563 | -2 |
| 4 | 1533 | 2474 | 2560 | -0.3 |
| 5 | 1544 | 4018 | 3682 | 1.1 |
| 6 | 1385 | 5403 | 4917 | 1.6 |
| 7 | 430 | 5833 | 6252 | -1.4 |
| 8 | 1115 | 6948 | 7675 | -2.4 |
| 9 | 1540 | 8488 | 9171 | -2.2 |
| 10 | 2082 | 10570 | 10730 | -0.5 |
| 11 | 1781 | 12351 | 12337 | 0 |
| 12 | 2007 | 14358 | 13979 | 1.2 |
| 13 | 1287 | 15645 | 15645 | 0 |
| 14 | 2086 | 17731 | 17321 | 1.3 |
| 15 | 1356 | 19087 | 18993 | 0.3 |
| 16 | 1563 | 20650 | 20650 | 0 |
| 17 | 1344 | 21994 | 22278 | -0.9 |
| 18 | 1373 | 23367 | 23865 | -1.6 |
| 19 | 704 | 24071 | 24152 | -0.3 |
| 20 | 732 | 24803 | 25214 | -1.3 |
| 21 | 589 | 25392 | 26149 | -2.5 |
| 22 | 536 | 25928 | 26961 | -3.4 |
| 23 | 244 | 26172 | 27659 | -4.9 |
| 24 | 430 | 26602 | 28252 | -5.4 |
| 25 | 172 | 26774 | 28749 | -6.4 |
| 26 | 561 | 27335 | 29162 | -6 |
| 27 | 432 | 27767 | 29501 | -5.7 |
| 28 | 464 | 28231 | 29775 | -5 |
| 29 | 514 | 28745 | 29996 | -4.1 |
| 30 | 211 | 28956 | 30172 | -4 |
| 31 | 240 | 29196 | 30309 | -3.6 |
| 32 | 424 | 29620 | 30416 | -2.6 |
| 33 | 289 | 29909 | 30499 | -1.9 |
| 34 | 17 | 29926 | 30499 | -1.9 |
| 35 | 240 | 30166 | 30562 | -1.3 |
| 36 | 79 | 30245 | 30562 | -1 |
| 37 | 12 | 30257 | 30562 | -1 |
| 38 | 90 | 30347 | 30609 | -0.9 |
| 39 | 71 | 30418 | 30609 | -0.6 |
| 40 | 125 | 30544 | 30644 | -0.3 |
| 41 | 25 | 30569 | 30644 | -0.2 |
| 42 | 15 | 30584 | 30644 | -0.2 |
| 43 | 0 | 30584 | 30644 | -0.2 |
| 44 | 0 | 30584 | 30644 | -0.2 |
| 45 | 15 | 30599 | 30644 | -0.1 |
| 46 | 0 | 30599 | 30644 | -0.1 |
| 47 | 0 | 30599 | 30644 | -0.1 |
| 48 | 0 | 30599 | 30644 | -0.1 |
| 49 | 0 | 30599 | 30644 | -0.2 |
| 50 | 0 | 30599 | 30644 | -0.1 |
| 51 | 0 | 30599 | 30644 | -0.1 |
| 52 | 0 | 30599 | 30644 | -0.1 |
| 53 | 11 | 30610 | 30644 | -0.1 |
| 54 | 34 | 30644 | 30644 | 0 |
| 55 | 0 | 30644 | 30644 | 0 |
| 56 | 0 | 30644 | 30644 | 0 |
| 57 | 0 | 30644 | 30644 | 0 |
| 58 | 0 | 30644 | 30644 | 0 |

TIME: 83.ه४ SECS.

monitoring constan's
ALPHA=-8.78049E-2 BETA= 7.19382 GAMMA= 4.084
ALPHA=-8.78049E-2 BETA= 7.19382 GAMMA= 4.084
THESE CONSTANTS REPGESENG:-
THESE CONSTANTS REPGESENG:-
(BETA) PEAK PERIOD 159
(BETA) PEAK PERIOD 159
MAXIMUM DURATION }22
MAXIMUM DURATION }22
(GAMMA) PEAK PERIOD 21
(GAMMA) PEAK PERIOD 21
(GAMMA) ALPHA EQUIVALENI 27.8364 ERROR 1.07248%
(GAMMA) ALPHA EQUIVALENI 27.8364 ERROR 1.07248%
(GAMHA) MAX DURATION ESTIMATE 41
(GAMHA) MAX DURATION ESTIMATE 41
CUBIC BETWEEN PERIUDS 3 AND 31
CUBIC BETWEEN PERIUDS 3 AND 31
'IOI'AL PROJECTION ERROR= 3.8 %
'IOI'AL PROJECTION ERROR= 3.8 %
GRAPH OR PROJECT EVALUATIUN
GRAPH OR PROJECT EVALUATIUN
DURA'IIUN 58 PERIOUS AI COS'l 9315 P PUUNDS'

COST TABLE

| ./PRD. | COST | CUM.COST | Forecast | \& ERROR |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 |
| 2 | 4 | 4 | 35 | -0.3 |
| 3 | 608 | 612 | 141 | 5.1 |
| 4 | 1118 | 1730 | 314 | 15.2 |
| 5 | 735 | 2465 | 1745 | 7.7 |
| 6 | 133 | 2598 | 2152 | 4.8 |
| 7 | 366 | 2964 | 2547 | 4.5 |
| 8 | 110 | 3074 | 2930 | 1.5 |
| 9 | 483 | 3557 | 3302 | 2.7 |
| 10 | 507 | 4064 | 3663 | 4.3 |
| 11 | 389 | 4453 | 4013 | 4.7 |
| 12 | 98 | 4551 | 4352 | 2.1 |
| 13 | 129 | 4680 | 4680 | 0 |
| 14 | 120 | 4800 | 4997 | -2.1 |
| 15 | 76 | 4876 | 5304 | -4.6 |
| 16 | 218 | 5094 | 5601 | -5.4 |
| 17 | 367 | 5461 | 5887 | -4.6 |
| 18 | 346 | 5807 | 6163 | -3.8 |
| 19 | 56 | 5863 | 6429 | -6.1 |
| 20 | 342 | 6205 | 6685 | -5.2 |
| 21 | 275 | 6480 | 6932 | -4.9 |
| 22 | 140 | 6620 | 7169 | -5.9 |
| 23 | 19 | 6639 | 7169 | -5.7 |
| 24 | 320 | 6959 | 7396 | -4.7 |
| 25 | 358 | 7317 | 7615 | -3.2 |
| 26 | 135 | 7452 | 7824 | -4 |
| 27 | 295 | 7747 | 8024 | -3 |
| 28 | 719 | 8466 | 8215 | 2.7 |
| 29 | 130 | 8596 | 8397 | 2.1 |
| 30 | 90 | 8686 | 8571 | 1.2 |
| 31 | 147 | 8833 | 8736 | 1 |
| 32 | 8 | 8841 | 8736 | 1.1 |
| 33 | 52 | 8893 | 8893 | 0 |
| 34 | 0 | 8893 | 8893 | 0 |
| 35 | 177 | 9070 | 9217 | -1.6 |
| 36 | 156 | 9226 | 9271 | -0.5 |
| 37 | 89 | 9315 | 9315 | 0 |
| 38 | 0 | 9315 | 9315 | 0 |
| 39 | 0 | 9315 | 9315 | 0 |
| 40 | 0 | 9315 | 9315 | 0 |
| 41 | 0 | 9315 | 9315 | 0 |
| 42 | 0 | 9315 | 9315 | 0 |
| 43 | 0 | 9315 | 9315 | 0 |
| 44 | 0 | 9315 | 9315 | 0 |
| 45 | 0 | 9315 | 9315 | 0 |
| 46 | 0 | 9315 | 9315 | 0 |
| 47 | 0 | 9315 | 9315 | 0 |
| 48 | 0 | 9315 | 9315 | 0 |
| 49 | 0 | 9315 | 9315 | 0 |
| 50 | 0 | 9315 | 9315 | 0 |
| 51 | 0 | 9315 | 9315 | 0 |
| 52 | 0 | 9315 | 9315 | 0 |
| 53 | 0 | 9315 | 9315 | 0 |
| 54 | 0 | 9315 | 9315 | 0 |
| 55 | 0 | 9315 | 9315 | 0 |
| 56 | 0 | 9315 | 9315 | 0 |
| 57 | 0 | 9315 | 9315 | 0 |
| 58 | 0 | 9315 | 9315 | 0 |

SHELL - ELECTRICAL

READY
RUN
RAMN1 15:5y 27-MAR-81

EILE NAME 3SHELL.DAT

- COST LEVEL EQUIVALENI TO REDUNDANT PEKIODS 210

PERICDS $=58$ CLASSES= 7
PRUFESSION NO. ('O' FOR ALL) 34

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | |
| 27 | 28 | 29 | 30 | 31 | | | | | | | | | |
| | | | | | | | | | | | | | |

MONIIORING CONSTANIS
$A L P H A=0.112711 \quad$ BETA $=-5.38347 \quad G A M M A=4.706$
IHESE CONS'IANTS REPRESENI: -
(BE'TA) PEAK PERIOD -84
MAXIMUM DURATIUN 68
(GAMMA) PEAK PERIOD 19
(GAMMA) ALPHA EQUIVALENT -6.29255 EFKUR 1.25298
(GAMMA) MAX DURATION ESTIMATE 34
CUBIC BEL'WEEN PERIODS 7 AND 31
'IOTAL PKOJEC'IIUN ERROR= 2.6 :

GRAPH OH PKOJECT EVALUATIUN

LUlmatuir jo kthiuns al cusi <lubs "ruuivos'

FILE NAME 7SHELL.DAT

- CUS' LEVEL EQUIVALENT TO REDUNDAN'P PERIODS 310 PERIUDS= 58 CLASSES= 7

PKORESSION NO. ('O' FOR ALL) 35

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 21 | 25 | 26 | | |
| 27 | 28 | 29 | 30 | | | | | | | | | | |

```
ALPHA= 1.08596 BEIA= 0.145014 GAMMA= 3.674
THESE CONSTAN'S REPRESENT:-
(BE'PA) PEAK PERIOD 23
MAXIMUM DURATION 59
(GAMMA) PEAK PERIOD }2
(GAMMA) ALPHA EQUIVALENT 13.7496 ERROR 0.1811U7 %
(GAMMA) MAX DURATION ESTIMATE }4
CUBIC BETWEEN PERIODS 2 AND 29
TUTAL PHUJECTION ERROR= 1.4%
GFAYH OF PROJECT EVALUA'IION
```

DURATION 58 PERIODS AT COST' 6645 'POUNDS'

u Us
IS
IAP
$I-G-P A$
9 $\begin{array}{cc}1 & \text { AP } \\ & \\ & \\ & \\ 1 & \\ & \\ & \end{array}$
${ }_{A P} P A$
AP

26
1
(

1

1

1

```
8
```

 \(1^{40}\) *

 PA

$A P$

| PRD. | CUST | CUM.COS' | FORECAST | IERRUK |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 |
| 2 | 19 | 19 | 26 | -0.1 |
| 3 | 177 | 196 | 103 | 1.4 |
| 4 | 405 | 601 | 613 | -0.2 |
| 5 | 190 | 791 | 844 | -0.8 |
| 6 | 356 | 1147 | 1088 | 0.9 |
| 7 | 136 | 1283 | 1341 | -0.9 |
| 8 | 169 | 1452 | 1602 | -2.3 |
| y | 275 | 1727 | 1871 | -2.2 |
| 10 | 491 | 2218 | 2145 | 1.1 |
| 11 | 372 | 2590 | 2424 | 2.5 |
| 12 | 190 | 2780 | 2705 | 1.1 |
| 13 | 254 | 3034 | 2987 | 0.7 |
| 14 | 84 | 3118 | 3269 | -2.3 |
| 15 | 390 | 3508 | 3549 | -0.6 |
| 16 | 318 | 3826 | 3826 | 0 |
| 17 | 345 | 4171 | 4098 | 1.1 |
| 18 | 224 | 4395 | 4365 | 0.5 |
| 19 | 342 | 4737 | 4624 | 1.7 |
| 20 | 321 | 5058 | 4874 | 2.8 |
| 21 | 145 | 5203 | 5113 | 1.3 |
| 22 | 138 | 5341 | 5341 | 0 |
| 23 | 147 | 5488 | 5555 | -1 |
| 24 | 141 | 5629 | 5755 | -1.9 |
| 25 | 241 | 5870 | 5938 | -1 |
| 26 | 172 | 6042 | 6104 | -0.9 |
| 27 | 163 | 6205 | 6250 | -0.7 |
| 28 | 81 | 6286 | 6376 | -1.4 |
| 29 | 135 | 6421 | 6480 | -0.9 |
| 30 | 70 | 6491 | 6544 | -0.8 |
| 31 | 77 | 6568 | 6600 | -0.5 |
| 32 | 77 | 6645 | 6645 | 0 |
| 33 | 0 | 6645 | 6645 | 0 |
| 34 | 0 | 6645 | 6645 | 0 |
| 35 | 0 | 6645 | 6645 | 0 |
| 36 | 0 | 6645 | 6645 | 0 |
| 37 | 0 | 6645 | 6645 | 0 |
| 38 | 0 | 6645 | 6645 | 0 |
| 39 | 0 | 6645 | 6645 | 0 |
| 40 | 0 | 6645 | 6645 | 0 |
| 41 | 0 | 6645 | 6645 | 0 |
| 42 | 0 | 6645 | 6645 | 0 |
| 43 | 0 | 6645 | 6645 | 0 |
| 44 | 0 | 6645 | 6645 | 0 |
| 45 | 0 | 6645 | 6645 | 0 |
| 46 | 0 | 6645 | 6645 | 0 |
| 47 | 0 | 6645 | 6645 | 0 |
| 48 | 0 | 6645 | 6645 | 0 |
| 49 | 0 | 6645 | 6645 | 0 |
| 50 | 0 | 6645 | 6645 | 0 |
| 51 | 0 | 6645 | 6645 | 0 |
| 52 | 0 | 6645 | 6645 | 0 |
| 53 | 0 | 6645 | 6645 | 0 |
| 54 | 0 | 6645 | 6645 | 0 |
| 55 | 0 | 6645 | 6645 | 0 |
| 56 | 0 | 6645 | 6645 | 0 |
| 57 | 0 | 6645 | 6645 | 0 |
| 58 | 0 | 6645 | 6645 | 0 |

38.

Appendix 4 - Program Listings

1. Forecasting and Alteration Programs

| FEST2.BAS | Design Application |
| :--- | :--- |
| ALT1.BAS | Design Application |
| FEST3.BAS | Construction Application |
| ALT2.BAS | Construction Application |

2. Curve Fit Program

RAM.BAS

DESIGN BUDGETING PROGRAM (FESTZ.BAS

00760 X33 =LEFT$(Y$.5)**P.DAT*
00770 PRINT
O5810 PRIAT NINPUT ESTIMATED FEE INCOME FOR THE FOLLONING:-*
05820 PRINT NARCHITECTUREN:\INPUT A
00330 PRINT "STRUCTURAL ENGINEERINGN: IINPUT A1
00840 PRINT NMECHANICAL ENGINEERN:\INPUT F(6)
OO550 PRINT "ELECTRICAL ENGINEER":\INPUT F(7
20950 PRINT "OUANTITY SURVEYING":NINPUT F(3)
00970 PRINT "EXTERNAL CONSULTANTSN;\INPUT F(9)
00930 PAINT "ALLOCATABLE OVERHEAJSN:\INPUT F(10)
00890 PRINT
OO900 PRINT "INPUT \& OF ARCHITECTS FEES ALLOCATED TO SUB/S \& SUP/SN\INPUT A2.A3
00910 F(1) =A2/:00*A\F(2) EA3/100*A\F(3) =(100-A2-A3)/100*A
OO920 PRINT *INPUT G OF STRUGTURAL ENGINEERS FEES ALLOCATED TO SUB/SN\INPUT AY
O0920 PRINT *INPUT * OF STRUCTURAL ENGINE
00930 F(4):
00950 PRINT "INPUT \& TO COVER OVERALL C/H CHARGE AND \& PROFIT EXPECTEDN\IMPUT G.F
OO955 PRINTNINPUT DURATION CF PROJECT IN MONTHSN:\INPUT NI\LET N2\&NI
O0950 REM CALC PRIME COST. OVERHEADS AND PROFIT
05970 FOR X = 1 TO 10
00980 O(X) = F(X) G/100
L
01000U(X)=F(X)-O(X)-L(X)
01005 T(X)=U(X)+L(X)+0(X)

```
(aID MEXT
01010 PEXTX
01020 PRINT
01030
OPRIME COST"

'LlLL

> "Imput stahdard/ayerage cost per man hourn; \imput s
> \(\begin{aligned} & \mathrm{H}=\mathrm{M}+1 \\ & \text { Print © Stamdard man hours available to each profession" }\end{aligned}\)
PRINT

 WMT FI,F2.F3.FA.F5.F6
PRINT



```

02040 SCRATCH \&
02045 FILE S5."EST6.TMP"
SCRATCH S
02055 FILE E6,"EST7.TMPN
02060 SCRATCH *
02055 FILE %."EST8.TMPN
02070 SCRATCH*7
02100 REM A.B GENERATOR
02110PRINT
O2130 PRINTNLIKELY % DURATION EXCESS*:\INPUT DI
02140 PRINT*INPUT PEAK COST MONTH*:
02150 INPUT BI \BI=B1/NT
02160 B=(Bi+1)/3
02170 DEF FNA(X)=1/(3*X*X-2*(B+1)*X+B)
02150 DO: -D 1/200 \D2:1+D1/100
02190 IF FNA(D2)>FNA(DO) THEN A=FNA(DO) ELSE A=FNA(D2)
02195 A=INT(A*1000+.5)/1000 \B=INT(B*1000*.5)/1000
02200 PRINT"ALPHA= "A,"BETA= "B
02210 PRIAT
02275 C1\&F!1)+F(2)+F(3)-((F(1)+F(2)+F(3))*G/100*(F(1)+F(2)+F(3))*P/100)
02300 M=1
02325 y 4=0
O2350 FOR K=1TON1
02400 X3=M/N1
02500 Y 5aC1*(X 3* (1+(A* (1-X3)*(X 3-B))))
02505 Y(N)=Y5
02510 T1(N)=Y5
02515 X1(N)=Y5-Y4
02520 Y4=Y5
02600 WRITE 1.X1(N).T1(N)
02700 MEM+1
02800 NEXT N
02900 C2\&F(4)+F(5)-((F(4)+F(5))-G/100+(F(4)+F(5))*P/100)
03000 M=1
03100 FOR X=1 TO N1
03200 IF(Y(X)/C1)*100>LI coto 3500
03300 M=M+1
03400 NEXT X
O3500 LET LI =M
03600 LET M=1
03700 FOR X = 1TO NI
03750 IF(Y(X)/C1)-130>(100-F1) GOTO 4000
03800 IN=M+1
03700 NEXT X
O4000 LETFIEM
04100 N2=F1-LI
04200 M=1
04250 Y4=0
O4300 FOR N=ITON2
04400 X3=H/N2
04500 Y5=C2*X3*(1+A*(1-X3)*(X3-B))
04505 I2(N)=Y5
04510 YI(N)=Y5-Y4
04520 Y4=Y5
04600 WRITE 2,Y1(N).I3(N)
04700 MsM*1
04800 NEXT N
04900 C3=F(6)-((F(6)*G/100)+(F(6)*P/100))
05000 M=1
05100 FOR X=1 TO Ni
05200 IF(Y(X)/C1):100>L2 50T0 5500
05300 M = M + 1
05400 NEXT X
05500 LET'L2\&M
05600 LET M=1
05700 FうR X=1 TO N1

```
```

05300 IF(Y(X)/C1):100>(100-F2)COT0 6100
05900 M=M+1
NEXT X
06100 LET F2=M
0620年 13=52-L2
05300 M=1
06350 Y Y = 0
05400 FCR N=1 TO N3
05500 X3=M/N3
Y5=C3* X3*(1+A*(1-X3)*(x3-8))
06605 T3(N)=Y5
06510 Y 2(a)=Y5-Ya
05620 Y4=Y5
O5700 WRITE M,Y2(N),T3(N)
06300 M2N+1
06900 NEXT N
07000 C4=F(7)-((F(7)*G/100)+(F(7)*P/100))
07100 M=1
07200 FOR X=1 TON
07300 IF(Y(X)/C1)"100>L3 GOTO 7300
07400 M=M+1
07500 NEXT X
07600 LET L3=M
07700 LET M=1
07800 FOR X=1 TON1
07900 IF(Y(X)/C1)*100>(100-F3)COTO 8200
0.3000 M=M+1
93100 NEXT X
08200 LETF3=M
0830J N4=F3-L3
08400 M=1
09450 Y4=0
08500 FOR N=1 TO N4
03500 KOR N= N4
09700 Y5=C4*x3*(1+A*(1-X3)*(X3-B))
08705 T4(N)=Y5
33725 Y 3(N)=Y5-Y4
08730 Y4:Y5
39800 NRITE \#4.Y3(N).T4(N)
03850 M=Y+1
O3850 M2M+1
03900
09000
09100
09200
09300
09300
09400
09500
09700
09900
FOR X= T ION
9900 IF(Y(X)/C1)*100>(100-F4)G0TO 10200
10000 M=M+1
10100 NEXT X
10200 LET F4\&M
10300 N5=F4-L4
10400 M=1
10450 Y4=0
10500 FOR N=1 TO N5
10600 X3=M/N5
10700 Y5=C5* X3*(1+A*(1-X3)*(X3-B))
10705 T5(N)=Y5
10710 Y4(N)=Y5-Y4
10715 Y4=\$5
10750 y=4+1

```
```

10900 NRITE 5,Y4(N).T5(N)
10300 NEXT
11090 C6zF(9)-((F(9)*G/100)+(F(9)*P/100))
1100
11100
i120%
11300
11400
11500
1.500
11700
11700 LET H=?
1130J FOR X=1 TO N1
11700 IF(Y(X)/C1)-100>(100-F5)S0T0 12200
12000 M=M+1
12100 NEXT X
12200 LET F5 zM
12300 N6=F5-L5
12400 M=1
:2410
12432
12455
12455
12500
12500
12700 Y S=C6*X3*(1+A*(1-X3)*(X3-B))
12755 T6(N)=Y5
12750 M=M+1
12750 Y5(N)=Y5-Y4
12770 Y4=Y5
12800 WRITE 66.Y5(N).TG(N)
12900 NEXI N
13000 C7=F(10)-((F(10)*G/100)+(F(10)*P/100))
13100 M=i
13200 FOR X=1 TO :11
13300 IF(Y(X)/C1)=100>L6 GOTO 13505
13400 M=M+1
13500 NEXT X
13505 LET L6=:
13510 LET M=1
13515 FOR X=1 TO N1
13520 IF(Y(X)/C1)*100>(100-F6)GOTO 13535
15525 M=M+1
13530 NEXT X
13535 LET F6 =M
13540 LET N7=F6-LS
13545 M=1
13547 Y4=0
13550 FCR N=1 TON7
13555 X = M/\&7
13550 Y5=C7*X ** (1+A*(1-X3)* (X 3-B))
甲 3561 YG(N)=Y5-Y4
13562 Y4\&Y5
13563 T7(N)=Y5
13565 WRITE (7,Y6(N).T7(N)
13567 ':=11+1
13570 NEXT N
13585
13600 RESTORE \$1
13700 FOR X=1 TO N1
13800 READ 1.,A5(X,1),A6(X,1)
13900 NEXT X
14000 FOR X=1 TO (LI-1)
14100 A5(X,2)=0\A6(X,2)=0
14200 NEXT X
14300 RESTORE 2
14400 FOR X=L, TO(F1-1)
14500 READ (2,A5(X,2),AG(X,2)
14600 NEXT X

```
```

14700 FJR X=FITO N1
14000 A5(X,2)=0\A5(X,2)=0
14350 :EXT X
149JJ RESTORE \#?
15020 FOR X=1 TO(L2-1)
15100 A5(x,3)=3\A6(x,3)=0
15200 NEXT X
15j00 FOR X=L2 TO (F2-1)
15400 READ 13.A5(X,j),A6(X,3
15500 NEXT X
15600 FOR X=F2 TO N1
15700 A5(X,3)=0\AG(X,3)=0
15300 NEXT X
15900 RESTORE 4
50J0 FOR X=1 TO(L3-1)
16100 25(X,4)=0\16(X,4)=0
16200 NEXT X
16300 FOR X=L3 TO(F3-1)
16400 READ 4.A5(X,4),A6(X,4)
16500 NEXT X
16500 FJR X=FjTO N1
15700 A5 (X,4)=0\AG(X,4)=0
16300 NEXT X
16900 RESTORE \$5
17000 FOR X=1 TO(L4-1)
17100 A5(X,5)=0\A6(X,5)=0
17200 NEXT X
17300 FOR X=L4 TO (F4-1)
17400 READ 5,A5(X,5),A6(X,5)
17500 NEXT X
17600 FOR X=F4TO N
17700 A5(X,5)=0\A6(X,5)=0
17300 NEXT X
17900 RESTORE *
19000 FOR X= 1 TO (F5-1)
18100 A5(X.6)=0\A6(X,6)=0
18200 NEXT X
18300 FOR X=L5 TO(F5-1)
18400 READ % A5(X,6),A6(x,6)
18500 NEXT X
18600 FOR X=F5 TO N1
18700 A5(X,6) =0\A6(X,6)=0
13900 NEXT X
18900 RESTORE }
19000 FOR X=1 TO(L6-1)
19100 A S (X,7)=0\AG(X,7)=0
19200 NEXT X
19300 FOR X=L6 TO(F6-1)
19400 READ 7.A5(X.7).A6(X.7)
19500 NEXT X
19500 FOR X=FGTO N1
19700 A5 (X,7)=0\AG(X,7)=0
19800 NEXT X
19900 FILE \&,X1%
19950 SCRATCH
20600 FOR X=1 TO N1
20700 FOR }X=1\mathrm{ TO N1
20800 15(X,8)=A5(X,8)+15(X,Y)
20900 NEXT Y
21000 NEXT X
21050 X1=X +1
21100 FOR Y=1 TO g
21200 FOR X = I TO N T
21300 A5(X),Y)=A5(X1,Y)+A5(X,Y)
21400 NEXI X
21500 NEXI Y

```
```

21520 FOR X=1TON
21530 WRITE 8,A5(X,Y)
21540 NEXT Y
21550 NEXT X
2160J PrINT "Project ESTIMate and programme of prime cost expendituren
21700 PRINT "---***

```

```

22100 PRAINT"
22300 PRINT n-n:
22400 NEXT X
22500 PRINT
22600 FOR X=1 TO N1
22700 PRINT USING 22800,A5(X,1),A5(X,2),A5(X,3),A5(X,4),A5(X,5),A5(X,6),A5(X,7),A5(X,8),X

```

```

22700 NEXT X
22910 FOR X=1T090
22920 PRINT"-";
22930 NEXT X
22940 PRINT
23000 PRINT USING 23100,A5(X1,1),A5(X1, 2),A5(X1, 3),A5(X1,4),A5(X1,5),A5(X1,6),A5(X1,7),A5(X1,8)

```

```

23150 Y4=0
23200 FILE 19,X3%
23200 FILE SG,X3\$
23305 S4=0
23310 FOR Y=1TOT
23320 FOR X=1TON1
23330 A7(X,Y)=S4:S4+A5(X,Y)
23340 NEXT X
23345 S4=0
23350 NEXT Y
23400 FOR X=1TON1
2j410 FOR Y=1TOT
23420 WRITE O.A7(X,Y)
23420 WRITEY9.A7(X,Y)
23430 NEXT Y
23440 NEXT X
23500 PRINT
23510 FILE 1."G.TMPN
23520 SCRATCH \#
23530 FOR X=ITON1
23530 FOR X=1TON
23550 WRITE 1.A5(X,Y)
23560 NEXT Y
23570 NEXT X
23600 PRINT"END OF RUN"
23700 PRINT
23800 PRINT"FILES SAVEDN\PRINT X1%,X3s
23850 CHAIN "RAM.BAS"
23900 END

```
FORECASTING ALTERATION PROGRAM (ALTI.BAS)

\begin{tabular}{|c|c|}
\hline 02300 & NEXT R \\
\hline 02400 & FOR \(\mathrm{R}=\mathrm{T} 3\) TOT3(1) \\
\hline 02500 & FOR C=1T07 \\
\hline 02600 & LETAG (R,C) \(=0\) \\
\hline 02700 & NEXT C \\
\hline 02800 & NEXT R \\
\hline 02850 & IF \(Y=1\) GOTO 4900 \\
\hline 02900 & FOR \(\mathrm{Z}=1 \mathrm{TO} \mathrm{Y}-1\) \\
\hline 03000 & INPUT T4(2) \\
\hline 03100 & FOR \(R=T 3(2)+1\) TO T4(Z)-1 \\
\hline 03200 & FOR C=1T07 \\
\hline 03300 & READ \#1,A6(R,C) \\
\hline 03400 & NEXT C \\
\hline 03500 & NEXT R \\
\hline 03650 & INPUT T3 \({ }^{\text {( }}+1\) ) \\
\hline 03700 & FOR \(R=T 4(Z) T O T 3(Z+1)+1\) \\
\hline 03800 & FOR \(\mathrm{C}=1 \mathrm{~T} 07\) \\
\hline 03900 & A6 (R,C) \(=0\) \\
\hline 04000 & NEXT C \\
\hline 04100 & NEXT R \\
\hline 04300 & NEXT 2 \\
\hline 04320 & PRINT \\
\hline 04400 & IF END \#1, GOTO 5050 \\
\hline 04500 & FOR C= 1T07 \\
\hline 04700 & READ \#1,A6 (R,C) \\
\hline 04800 & NEXT C \\
\hline 04900 & \(\mathrm{R}=\mathrm{R}+1\) \\
\hline 05000 & GOTO 4400 \\
\hline 05025 & IF \(\mathrm{Y}>1\) GOTO 5200 \\
\hline 05050 & \(\mathrm{R} 1=\mathrm{R}-1\) \\
\hline 05200 & PRINT \\
\hline 05300 & PRINT"TOTAL REVISED PROJECT DURATION IN MONTHS";R1 \\
\hline 05400 & PRINT \\
\hline 05500 & PRINT"DO YOU WISH TO MAKE ANY ALTERATIONS" \\
\hline 05600 & PRINT"INPUT YES OR NO"\INPUT A\$ \\
\hline 05700 & IF A\$ = \({ }^{\text {NO" }}\) THEN 6900 \\
\hline 05800 & PRINT"INPUT MONTH NUMBER AND PROFESSION" \\
\hline 05900 & PRINT"I.E. 11.2 MEANS MONTH \(11 . \mathrm{STRUCT} \mathrm{ENG}\) " \\
\hline 06000 & INPUT R,C \\
\hline 06100 & PRINT"INPUT AMOUNT IN POUNDS STERLING"\INPUT C1 \\
\hline 06200 & LET \(A 6(R, C)=C 1\) \\
\hline 06300 & PRINT \\
\hline 06400 & PRINT"DO YOU WISH TO"MAKE ANY MORE ALTERATIONS" \\
\hline 06500 & PRINT"ANSWER YES OR NO" \\
\hline 06600 & INPUT A\$ \\
\hline 06750 & IF A\$ = "YES" THEN 5800 \\
\hline 06800 & PRINT \\
\hline 06900 & PRINT \\
\hline 07000 & PRINT"DO YOU WISH TO MAKE AN ALLONANCE FOR INFLATION" \\
\hline 07100 & PRINT"ANSWER YES OR NO"\INPUT A \\
\hline 07200 & IF A\$="NO" THEN 8100 \\
\hline 07300 & PRINT \\
\hline 07400 & PRINT"INPUT ANHUAL INFLATION KATE AS A ;"\INPUT 11 \\
\hline 07600 & FOR R = 1TOR1 1 O \\
\hline 07700 & \(F O R \quad C=1 T 07\) \\
\hline 07800 &  \\
\hline
\end{tabular}
```

07900 NEXT C
08000 NEXT R
08050 FOR I = 1TOR 1
08060 A6(I, 8) =0\NEXT I
08100 FOR R=1TOR1
08200 FOR C=1T07
08300 A6 (R,8) =A6(R,8) +A6(R,C)
08400 NEXT C
08500 NEXT R
08600 R2=R1+1
08700 FOR C=1T08
08800 FOR R=1TOR1
08900 A6(R2,C)=A6(R2,C)+A6(R,C)
09000 NEXT R
09100 NEXT C
O9200 SCRATCH \#
09300 FOR R=1TOR1
09400 FOR C=1T07
09500 WRITE \#1,A6(R,C)
09600 NEXT C
09700 NEXT R
09800 FILE \#2.X3\$
09900 SCRATCH \#2
10000 FOR C=1T08
10050 S5 =0
10100 FOR R=1TOR1
10200 A7(R,C) = S5 =S5+A6(R,C)
10500 NEXT R
10600 NEXT C
10605 PRINT
10610 FOR I = 1TOR1
10710 FOR J=1TO7
10810 WRITE \#2.A7(I,J)
10910 NEXT J
11010 NEXT I
21550 FOR I=1 TO 2
21555 PRINT
21556 PRINT

```
MONTH"
\#


PRODUCTION BIDGETPROGRAM [FEST3.BAS]
```

ty festu.bas
00050 DIM P(10),O(10),F(10),L(10),A5(200,8),Y(200),Y1(200),Y2(200),Y3(200),Y4(200),Y5(200),Y6(200),X1(200)
00075 EIM T1(200).T2(200).T3(200),T4(200),T5(200).T6(200).T7(200),A(20J,d),A1(200.8),P1(20)
00080 OIM A7(200.3)
00150 PRIHT"PROJECT CASH FLOW. ANALYSIS AND FORECASTM
00250
00350 PRINI
00450 PRINI
00550 PRINT"INPUT PROJECT NAME(MAX FIVE CHARACTERS)N
00650 ENPUT Y\$
00750 X1SELEFTS(YS.5)+"G.DAT"
00760 X3$2LEFT$(Y\&,5)+"P.DAT"
00765 X4$=LEFT$(Y$.5)+nA.DAT"
00770 PRINI
00810 PRIHTNI|PUT BUDGET FOR EAGH COST CENTREN
00920 PRINT "SUBSTRUCTURE":\INPUT AO
00830 PRINT "SUPERSTRUCTUREN:\INPUT A,
00840 PRINT NFINISHINGS":\INPUT F(6)
00850 PRINT NEXT NORKS": \INPUTF(7)
00960 PRINT "DRAINAGEN:VINPUTF(Z)
O0870 PRINT NNOMINATED S/C'S":\INPUT F(g)
00880 PRINT "SITE O/H'SN:\INPUT F(10)
00590 PRINT
OOgO0 PRINf"INPUT DURAIION OF PROJECT IN WEEKS"
01000 INPUT NI
01330 PRIHT
01390 PRINT
O1400 PRINT"STATE THE START WEER FOR EACH COST CENTRE I.E."
O1500 PRINT*SUBSTR,SUPERSTR,FIN,EXT WKS,DRAINS.NOM S/C,SITE O/HN
01600 INP:JI L,LLL,L3.L4.L5.L6.L7
O1700 PRINTNSTATEFINISH NEEKFOR EACH COST CENTREI.E."
O1800 PRINTNSUBSTR,SUPERSTR,FIN,EXT WKS,DRAINS,NOM S/C,SITE O/H*
01900 INPUT F1,F2,F3,F4,F5,F6,F7
02000 FILE 1.X4S
02005 SCRATCH !
02010 DS&"INPUT & ALLOCATION OF LABOUR.PLANT,MATERIAL"
02015 PRINT DS\PRINTNSUBSTRUGTUREN\INPUT P1(i).P1(2).P1(3)
02020 PRINT DS\PRINTNSUPERSTRUCTUREN\INPUT PI(4),P1(5).P1(6)
02025 PRINT DS\PRINT"FINISHESN\INPUT PI(7),P1(8).P1(9)
02030 PRINT DS\PRINT"EXT WKS"\INPUT P1(10).P1(11).P1(12)
O2035 PRIMT D$\PRINT*ORAINAGEN\INPUT PI(13).PI(14).PI(15)
02040 fon }x=1T01
02045 NRITE 11.P1(X)
02050 XEXI X
02200 PRINTNINPUT ALPHA, BETA SUBSTRUCTUREN\INPUT Ä,B
02210 PRINT
02275 C1=F(1)+F(2)+F(3)-((F(1)+F(2)+F(3))*G/100+(F(1)+F(2)+F(3))*P/100)
02300 M= {
02325 Y4=0
02350 FOR H=L! TO F1
02355 N7=Fi-Li+1
02400 X3=M/N7
02500 Y = =10* (X 3*(1+(A*(1-X3)*(X3-B))))
02505 Y(N): V5
02510 T1(N) = Y5
02515 X1(N)=Y5-Y4
02520 Y4=Y5
02525 A(N,1)=X1(N)NAT(N,1)=T1(N)

```
```

02700 M=M+1
02800 NEXT N
04200 M=1
04250 Y4=0
04255 N2:F2-L2+1
04300 FORN=L2 TO F2
04405 X = M/N2
04505 T2(N)=Y5
04510 Y1(N)=Y5-Y4
04520 Y4=Y5
04700 M=:4+1
04800 NEXT N
06200
06300
05350
06400
06450
06500
06600
06505
06610
06620
06625
06300
06900
03300
08400
08450
08500
08550
08550
03600
08700
03705
09725
08730
08735
08735
08850
08900
10300
10405
10450
10500
10500
10550
10500
10650
10700
10705
10705
10710
10715
10750
10755
10900
12300
12400
12400
12432
12455
12435
12500
12550
12600

```
```

12705 T6(N)=Y5
12750

```
```

04000 PRINTNINPUT A,B SUFERSTRUETUREN\INPUT A.B

```
04000 PRINTNINPUT A,B SUFERSTRUETUREN\INPUT A.B
04500 Y5=A1*x3*(1+A*(1-X3)*(X3-8))
04500 Y5=A1*x3*(1+A*(1-X3)*(X3-8))
04525 A(N,2)=Y1(N)\A1(N,2)=T2(N)
```

04525 A(N,2)=Y1(N)\A1(N,2)=T2(N)

```


```

M=M+1

```
M=M+1
Y4=0
Y4=0
M=i4+1
M=i4+1
PRIHI"INPUT A,B FINISHES*\INPUT A,B
PRIHI"INPUT A,B FINISHES*\INPUT A,B
M&1
M&1
Y4=0
Y4=0
FOR N=L3 TOF3
FOR N=L3 TOF3
N3=F3-L3+1
N3=F3-L3+1
X3=M/N3
X3=M/N3
Y5*F(6)* X 3*(1+A*(1-X 3)*(X3-B))
Y5*F(6)* X 3*(1+A*(1-X 3)*(X3-B))
T3(N)=Y5
T3(N)=Y5
Y2(N)=Y5-Y4
Y2(N)=Y5-Y4
Y4=Y5
Y4=Y5
A(N,3):Y2(N)\A1(N,3)=T3(N)
A(N,3):Y2(N)\A1(N,3)=T3(N)
M=M+1
M=M+1
NEXT N
NEXT N
PRINT"INPUT A,B EXT WKS"\INPUT A,B
PRINT"INPUT A,B EXT WKS"\INPUT A,B
M=1
M=1
Y4=0
Y4=0
FOR N=L4 TO F4
FOR N=L4 TO F4
N4=F4-L4+1
N4=F4-L4+1
X3=M/N4
X3=M/N4
Y5:F(7): X 3*(1+A*(1-X3)*(X3-B))
Y5:F(7): X 3*(1+A*(1-X3)*(X3-B))
T4(N)=Y5
T4(N)=Y5
Y 3(N)=Y5-Y4
Y 3(N)=Y5-Y4
Y4:Y5
Y4:Y5
A(N,4) =Y 3(N)\A1(N,4) =T4(N)
A(N,4) =Y 3(N)\A1(N,4) =T4(N)
M=M+1
M=M+1
NEM+1 N
NEM+1 N
NEXT N
NEXT N
printminput a,b drainagen\input a,b
printminput a,b drainagen\input a,b
M=1
M=1
Y4=0
Y4=0
FOR N=L5 TO F5
FOR N=L5 TO F5
N5=F5-L5+1
N5=F5-L5+1
N5=F5-L5
```

N5=F5-L5

```


```

T5(N)=Y5

```
T5(N)=Y5
Y4(N)=Y5-Y4
Y4(N)=Y5-Y4
Y4(N)=
Y4(N)=
M=M+1
M=M+1
A(N,5)=Y4(N)\AI(N.5)=T5(N)
A(N,5)=Y4(N)\AI(N.5)=T5(N)
NEXT N
NEXT N
PRINT"INPUT A,B S/C'S*\INPUT A,B
PRINT"INPUT A,B S/C'S*\INPUT A,B
M=1
M=1
Y4=0
Y4=0
FOR N=LG TO FG
FOR N=LG TO FG
N6&F6-L5*1
N6&F6-L5*1
X3:4/N6
X3:4/N6
T6(N)=Y
T6(N)=Y
M=M+1
```

M=M+1

```
\(12760 \quad Y 5(N)=Y 5-Y 4\)
\(12770 \quad\) Y4:Y5
\(12775 \quad A(N .6)=Y 5(N) \backslash A 1(N, 6)=T 6(N)\)
12900 NEXT N
13540 PRINT"INPUT A,B SITE O/H'SNIINPUT A.B
\(13545 \quad \mathrm{M}=1\)
\(13547 \quad Y 4=0\)
\(13550 \quad\) FOR N \(2 L 7\) TO F7
13551 N7×F7-L7+1
\(13555 \quad \times 3=M / N 7\)
\(13550 \quad Y 5=F(10) \times 3^{*}\left(1+A^{*}(1-\times 3) *(\times 3-B)\right)\)
\(13551 \quad Y 6(N)=Y 5-Y 4\)
\(\begin{array}{ll}13551 & Y 6(N)= \\ 13562 & Y 4=Y 5\end{array}\)
\(13563 \quad\) T7(N) \(=Y 5\)
13563
13564
13567
13570
13585
19900 FILE \(8, X 1 \$\)
19750 SCRATCH 88
20500 FOR \(X=1\) TO N
20700 FOR \(Y=1\) TO 7
\(20800 \mathrm{~A}(X, \delta)=A(X, 8)+A(X, Y)\)
20950 NEXT Y
21000 NEXI X
\(21050 \quad \mathrm{X} 1=\mathrm{X}+1\)
21100 FOR \(x=1\) TO 8
21205 FOR \(X=1\) TO N1
\(21300 A(X 1, Y)=A(X 1, Y)+A(X, Y)\)
21400 KEXT X
21500 :JEXT Y
```

FOR X=ITONT
21520 FOR Y=1 TO 7
21530 WRITE 8,A(X,Y)
21540 NEXT Y
21550 NEXT X
2155; for x=1t090
21552 printN-N:
21553 next x
21554 print
21555 print
21555 print
21557 print
21600 PRINT "PROJECT ESTIMATE AND PROGRAMME OF PRIME COST EXPERDITURE*
21700 PRINT
21800 PRIHT
21850 PRINT"COST CENTRE ANALYSIS*
21850
21855

```


```

22200 FOR X=1 T090
22300 PRINT "-":
22300 PRINT
22400 NEXTXX
22500 PRINT
22500 FOR X=1 TO N1
22700 PRINT USING 22800,A(X,1),A(X,2),A(X,3),A(X,4),A(X,5),A(X,6),A(X,7),A(X,8),X

```


```

22900 NEXT X
22910 FOR X=1T090
22910 FOR X=1TO90
22920 PRINTN-*:
22930 NEXT X
22940 PRINT
23000 PRINT USINO 23103,A(X1,1),A(Xi,2),A(XI, 3),A(X1,4),A(X1, 5),A(X1,6),A(X1,7),A(X1,8)

```

```

23150 Y4=0
23200 FILE G.X3\$
23305 S4=0
23310 FOR Y=1TOT
23320 FOR X=1TON1
23330 A7(X,Y)=34=S4+A(X,Y)
23340 HEXIXX
23345 S4=0
23350 NEXT Y
23400 FOR X=ITONI
23410 FOR Y=1T07
23420 URITE 19.A7(X,Y)
23430 NEXTY
23440 NEXT X
23500 PRINT
23510 FILE 1."G.TMP%
23520 SCRATCH*1
23530 FOR X=1TON1
23540 FOR Y=1TO7
23550 ARITE 1.A(X.Y)
23560 NEXTY
23570 NEXT X
23600 PRINT"END OF RUNN
23700 PRINT
23300 PRINT"FILES SAVED"\PRIHT X1\$,X33,X43
23850 GHAIN "RAM.BAS"
23900 END

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ALTERATION PROGRAM: ALTZ.BAS} \\
\hline 00050 & MARGIN 132 \\
\hline 00100 & DIM A6(200,9), T3(20), T4(20), A7 (200,9) \\
\hline 00200 & PRINT"FORECAST ALTERATION AND ADJUSTMENT PROGRAM" \\
\hline 00300 & PRINT \\
\hline 00400 & PRINT \\
\hline 00500 & PRINT"INPUT PROJECT NAME"; IINPUT \(^{\text {P }}\) \$ \\
\hline 00600 & X1\$ \(=\operatorname{LEFT} \$(\mathrm{Y} \$ .5)+\) CG.DAT" \\
\hline 00700 & X \(3 \$=\mathrm{LEFT}\) ( \(\mathrm{Y} \$ \mathrm{~F})+\) "P. DAT" \\
\hline 00800 & FILE \#1, X 1 \$ \\
\hline 00850 & RESTORE \# 1 \\
\hline 00900 & PRINT \\
\hline 01000 & PRINT \\
\hline 01100 & Print"ARE there any redundant periods to be allowed for in time span" \\
\hline 01200 & PRINT"ANSWER YES OR NOM \INPUT A\$ \\
\hline 01300 & IF A\$ = "YES"THEN 1400 \\
\hline 01310 & \(\mathrm{R}=1\) \\
\hline 01320 & IF END \#1,GOTO 1380 \\
\hline 01330 & FOR C=1107 \\
\hline 01340 & READ \#1,A6(R,C) \\
\hline 01350 & NEXT C \\
\hline 01360 & \(\mathrm{R}=\mathrm{R}+1\) \\
\hline 01370 & GOTO 1320 \\
\hline 01380 & R \(1=\mathrm{R}-1\) \\
\hline 01390 & GOTO 5200 \\
\hline 01400 & PRINT \\
\hline 1500 & PRINTHOW MANY REDUNDANT PERIODS"\INPUT Y \\
\hline 1600 & PRINT"ON ? SPECIFY REDUNDANT PERIOD PARAMETERS IN ASCENDING ORDER" \\
\hline 1700 & INPUT T3 \\
\hline 1800 & INPUT T3(1) \\
\hline
\end{tabular}
```

01900
02000
02100 READ \#1,A6(R,C)
02200 NEXT C
02300 NEXT R
02400 FOR R=T3TOT3(1)
02500 FOR C=1TO7
02600 LETA6(R,C) =0
02700 NEXT C
02800 NEXT R
02850 IF Y=1 GOTO 4900
02900 FOR Z=1 TO Y-1
03000 INPUT T4(Z)
03100 FOR R=T3(Z)+1 TO T4(Z)-1
03200 FOR C=1T07
03300 READ \#1,A6(R.C)
03400 NEXT C
03500 NEXT R
03650 INPUT T3(Z+1)
03700 FOR R=T4(Z)TOT3(Z+1)+1
03800 FOR C=1T07
03900 A6(R,C) =0
04000 NEXT C
04100 NEXT R
04300 NEXT Z
04320 PRINT
04400 IF END \#1.GOTO 5050
04600 FOR C=1T07
04700 READ \#1.A6(R,C)
04800 NEXT C
04900 R=R+1
05000 GOTO 4100
05025 IF Y>1 GOTO 5200
05050 R1=R-1
05200 PRINT
O5300 PRINT"TOTAL REVISED PROJECT DURATION IN WEEKS";R1
05400 PRINT

```
21600 PRINT "PROJECT FORECAST AND PROGRAMME OF PRIME COST EXPENDITURE"
 - o - N-

- TY RAM. BAS

00050
RO\$="RILA , A B"
00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01410 FILE f1,"G.TMP"
01420
01430
01440
01450
01460
01470
01600
01700 S
01800
01900
02000
02100
02120
02140
02160
02180
02200
\(02210 \mathrm{C}(\mathrm{I}, 4)=\mathrm{C}\)
\(02215 \mathrm{SG}=\mathrm{C}(\mathrm{I}, 2)=\mathrm{S} 6+\mathrm{C}\)
02220 IF C>R1*C(I,2)/I GOTO 2240
02230 I \(4=I 4+1\)
\(02240 \quad \mathrm{SS}=\mathrm{C}(\mathrm{I}-\mathrm{I} 4,1)=55+\mathrm{C}\)
02250 NEXT I
\(02260 \quad \mathrm{P}=\mathrm{P}-\mathrm{I} 4\)
02270 FOR \(I=1\) TO \(P\)
\(02280 \quad X 5(I)=I / F\)
\(02290 \quad Y 5(I)=C(I, 1) / S\)
03000 NEXTI
\(03010 \mathrm{Z} 1=\mathrm{Z2}=\mathrm{F}-1\)
03020 K゙9=11
03050 GOTO 4000
03100 FRINT"BEST RII \& AB TO DATE EY REL SD \& SD OF Y"
03200 PRINT
03300 FRINT' USING 1.REL SII FOK AB 2.SII OF Y FOR RI •
03400 FFINT
03450 FRINT"NO. OF FEFIOLSS "F'FFIINT
03500 FFINT"EELOW WHICH FEEL SI \% n 10 YOU WISH OUTFUT";
03600 INFUT K'9
03700 FRINT'WHICH FRRIS RANGE FLS. •il INFUT Z1, 22
03800 IF \(21 \geqslant 1\) GOTO 4000
03900 FRINT"NO FRII. 1 ALLOWED (2.3..) "\GOTO 3700 04000 FOR \(I=Z 1\) TO Z2
\(04200 \operatorname{DEF} \operatorname{FNF}(A, Y)=(1-\operatorname{EXF}(-A * Y * Y)) /(1-\operatorname{EXF}(-A))\)
04300
A \(\$=\) "N"\GOTO900
REAII N:A \(\$\)
IF \(N=Z\) GOTO 900
READ S,P
FOR I=1 TO F
REALI \(X\)
NEXT I
GOTO 200
Q1\$="*** AB CHANGE *** PRI. "
Q \(\$={ }^{*} * * *\) RD CHANGE *** PRD. "

DIM \(Y(100), Y 6(100)\),Y1(100)
\(P 4=0\)
DIM X5(100), X(20),Y5(100),C(100,4)
IF ENDf1 GOTO 1470
READ \(£ 1\), X
\(\mathrm{S}=\mathrm{S}+\mathrm{X}\)
\(\mathrm{P}=\mathrm{F}+1\)
GOTO 1420

\(\mathbf{S S}=0\)
\(S \$=" Y\) "
IF S\$>= "Y" GOTO 2000
FRINT"FRD.","COST","CUM.CST."." X"," Y"
FOR I=1 TO P
\(\mathrm{C}=0\)
FOR \(J=1\) TO 7
REALI fi X
\(\mathrm{C}=\mathrm{C}+\mathrm{X}\)
NEXT J
```

04400 FFINT
04500 IF I=F GOTO 8300
04600 T8 =500
04700 FOR AS=.1 TO 10 BY . 1
04800 GOSUB 27900
04900 NEXT AS
04950 Q=A6-. 2\Q1=A6+. 2
05000 FOF AS=Q TO Q1 BY .002
OS100 GDSUE27900
05200 NEXT AS
05300 A5=INT(1000*A6+.5)/1000
05350 GOTO8300
05400 PFINT"RDA="A5" RD'B'='SQF(4.5/A5)-1
055OOFRINT"YMAX AT X=2 "100*FNF(AS,2)"%"
05600S4=T4\S5=T5
05700 PRINT"SLI OF Y="S4y"REL SD="SS
05800 GOTO 8300
05900 FRINT"YMAX AT X=2 IS "FNR(AG,2)
06000 A0=A6
06100 PRINT"RD A= A6,"RD B== SQR(4.5/AG)-1
06200 PRINT"USING PRD. "TG
06300 IF T6=T7 THEN TO=1 ELSE TO=0
06400 TT=T6
06500 P4=I
06600 PRINT"Y.SII= "T4,"R.SD.= "TS
06700 GOTO8300
0 6 8 0 0 ~ F R I N T ~
06900 PRINT"SOLUEI RD A SOLN."
07000 GOSUB 22300\PRINT Q$FP4
07100 PRINT" ---------------------
07200 I2=1\P2=F
07300 A5=0
07400 A=A1\ E=B1
07500 [1=1\ n2=P \GOSUB 19000
07600 PFINT\ PRINT A$;Q4,B\$5QS
07700 IF QS>K90R AS=.07 THEN }800
07800 GOSUB 10600
07900 GOSUE 29900
08000 A5=A6
0 8 1 0 0 ~ P R I N T " t + t + t + t + t + t + t + t + t + t + t + t + " '
08300 PRINT\FRINT
08400 'TO FIND A,B,RD
08500 ,
08600 Q8=R9=200
08700 D1=1 \D2=F
08800 FOR G1=2 TO I
08900 IF I=F GOTO 9400
08950 PRINTG1" *;
09000 FOF G2=1 TO G1-1
09050 A=FNA(G1,G2)\ E=FNE(G1,G2)
09090 GOSUB22300
09100 FOF: F'7=F4 TO F. EY INT(F/10)+1
09105 F.4=F7\GOSUE19000
09110 NEXT F7
09200 NEXT G2,G1
09300 A=A(1)\E=E(1)\Q4=Q8
09350 FOFi II=1 TO 10\FRINT\NEXTII

```
GOTO11700
\(5 D=-54\) PRINT"A="A1 "B="B1
PRINT"USING PRD"W1" \&"W2 PRINT
\(A=A 1 \backslash B=B 1\)
\(\mathrm{B} 2=\mathrm{B}\) THEN \(\mathrm{BO}=0\) ELSE \(\mathrm{BO}=1\)
\(\mathrm{B}=\mathbf{C}\)
GOSUB 22300
IF \(S \$={ }^{\circ} Y^{*}\) GOTO11700
\(\stackrel{A}{\circ}\)
RD \(A=-A 5\)
\(Y(R-D F) \%^{\prime \prime}{ }^{\prime \prime}\)
(
FNI (Y1):
PRINTI1;TAB(4);100*FNI(II/P);TAB(10);100*FNI (Y);TAB(16);100*
PRINTTAB(29);FNJ(Y,Y1);TAB(45);100*FNI(Y2);TAB(56) \(F F N J(Y ; Y 2)\)
NEXT I1
FRINT
GQTO 15800


    16060 PRINT"A="A"B="B" PEAK COST PRD. \({ }^{\prime \prime}\) INT ( \(\left.(B+1) / 3 * P+.5\right) \backslash P R I N T\)
\(\qquad\)
16416 FFINT
16420 GOTO 18010
    16440 FFIINT
    16500 FFINT "IDEAL COMEINEII FESULTS"
    \(16520 \quad K 8=1\)
    16600 FFINT
    16700 II=I \(\backslash I=F\) GOSUB 22300
    n1=1 \n2=1
    GOSUB 19000
    IF \(54<K\) OFi \(\mathrm{BO}=1\) THEN \(\mathrm{K} 8=1\) ELSE \(\mathrm{K} 8=0\)
    GOTO12700
    IF \(I=3\) THEN \(Q 6=05\)
    IF I<4 THEN 12700
    IF (Q6-QS)/Q6)= K゙9/100 THEN K゙8=1 ELSE K゙8=0
    IF \(K 8=1\) THEN \(Q G=Q 5\)
    PRINT" FRESENT - TO DATE PRI."I

    FRINTVFFINT"YMAX AT X=2 IS "FNF(A5,2) FRINT
    \(I 2=1 \backslash P 2=I\)
    IF I<4 GOTO14100
    IF \(K 8=1\) THEN GOSUB 10600
    FRINT A\$ 5 Q4, B \(\$\);Q5
    IF P4>I THEN PRINT ELSE PRINT Q\$iFAS PRINT
    IF F'4) I THEN 14700ELSE PS=P4
    F'4=F't1 GOSUB 19000

    P4 = PS
    D1=I \(\quad 12=F\)
    GOSUB 19000
    PRINT\PRINT"FUTURE FROM PRD."I
    PRINT A\$SQ4y B\$yQS
    \(I 2=I \backslash P 2=P\)
    IF \(K 8=1\) THEN GQSUB 10600
    IF F'4<I THEN PRINT ELSE PRINT Q\$\$F4
    IF F4<I THEN 15800ELSE PS=P4
    F4 \(4=0\) \GOSUE 19000
    PRINT" RII ONLY "A\$;Q4;B\$;QS
    P4=P5
    D1=1 \D2=P
    PRINTXPRINT"MONITORING CONSTANTS"
    PRINT"

PRINT-
    \(T=(B+1) / 3 \backslash K=(B-1 / A) / 3 \backslash K=(T * T-K)\)
    IF KぐO GOTO 16400
    K=SQR(K)
    IF \(T-K>0\) THEN IO=INT((T-K)*P+.5) ELSE IO=0
    P3=INT( (T+K)*F)
    IF P3<P4 THEN P4=INT(P3*.95)
    GOTO 16400
    PRINT Q1\$\$IO,Q\$iP4\PRINT

    PRINT"YMAX = "FNY \((T+K)\)
    PRINT'COMEINED RESULT* GOSUB 19000
    PRINTXPRINT Q\$iP4;
    PRINTQO \(\$\) \& \(A\), \(A, B\)
```

16800 I=I1

16900 FRINT Q\$$F4;
17000 GOSUB 19000
17100 PRINT A$%Q4,B$;05
17200 F:4=F+1
17300 GOSUB 19000
17400 PRINT" AE ONLY RESULTS "A$;Q4,B$;RS
17500 PRINT\ P4=0
17600 GOSUB 19000
17700 PRINT" RII ONLY RESULTS "A$;Q4,B\$;QS \PRINT
17800 FRINT"---
17900 NEXT I
18000 GOSUB 29900
18010 PRINT\PRINT"PRIN, COST","CUM,COST","FORECAST","%ERROR"
18020 FOR I=1 TO F
18030 PRINTI;TAB(5);C(I,4),C(I,1),INT(S*YG(I)+.5),FNJ(Y5(I),Y6(I))
18040 NEXT I
18050 PRINT
18100 STOF
18200 IIEF FNZ(X)
18300
18400 IF EXF(-A5)<>1 GOTO 18700
18500 Z=.01
18600 GOTO 18800
18700 Z=1-EXP(-A5)
18800 FNZ=(1-EXP(-A5*X*X))/Z
18900 FNEND
19000 'RD CHANGE TESTS
19100 ,
19200 Q4=Q5=0
19300 FOR I 1=1 TO P
19400 Y=Y5(I1)\ X=I1/P
19420 IF FNY (X)<= 0 THEN IO=I1+1
19440 IF FNY(X)>= 1 THEN PG=I1-1
19460 IF P6SP4 THEN P4=P6
19500 IF I1<IO OR I1>= P4 THEN Y1=FNZ(X) ELSE Y1=FNY(X)
19600 Y = Y-Y1 \Y4=Y3/Y
19700 Q4= Q4+Y3^2
19800 Q5= Q5+Y4^2 'R SII
19900 NEXT II
20000 D3=F
20100 Q4=SQR(Q4/D3) , Y SD
20200 QS=SQR(QS/D3) ' R SD
20300 Q4=FNI(Q4)*100
20400 QS=FNI(Q5)*100
20410 IF Q8<Q4 GOTO 20430 'YSD
20420 08=Q4\A(1)=A \B(1)=B
20425 F'8=F'4\ I8=10
20430 IF QQ\&QS GOTO 20500 'RSI
20435 FO=F4\ IG=10
20440 व9=05\A(2)=A \B(2)=E
``` ```
20500
20600 20700 20800
20900
21000
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300 22400
22420
22430
22440
22445
Next 12
$I 3=I N T(.15 *(F+14))$
22500 IF I＜I3 GOTO 22800
22600 FOR J＝I3 TO P
22700 IF Jく＝I GOTO 23000
22800 P4＝INT（．95＊F）
22900 GOTO 23800
$23000 \quad Y 3=Y 4=0$
23050 IF Jく2 GOTO 23800
23100 FOR 12＝J－2 TO J
$23200 \quad Y 3=Y 3+A B S(Y 5(I 2)-F N Z(I 2 / P))$
$23300 \quad Y 4=Y 4+A B S(Y 5(12)-F N Y(I 2 / P))$
23400 NEXT I2
23500 IF Y4－Y3＞． $1 * Y 5(J)$ THEN P4＝J－1 ELSE 23700
23600 GOTO 23800
23700 NEXT 」
23800 IF P6＜ 44 THEN P4 $=P 6$
23850 RETURN
23900 DEF FNB（G1，G2）
24000 ，
$24100 \quad \times 1=X 5(G 1) \backslash \times 2=\times 5(G 2)$
$24200 \quad Y 1=Y 5(G 1) \backslash Y 2=Y 5(G 2)$
$24300 K=(1-X 2) *(Y 1 / X 1-1) /(1-X 1) /(Y 2 / X 2-1)$
24400 FNB＝（K＊X2－X1）／（K－1）
24500 FNEND
24600 DEF FNA（G1，G2）
24700
$24800 \quad Y 1=Y 5(G 1) \backslash X 1=X 5(G 1)$
$24900 \quad \mathrm{FNA}=(\mathrm{Y} 1 / \mathrm{X} 1-1) /\left(\mathrm{X}_{1}-\mathrm{FNB}(\mathrm{G} 1, \mathrm{G} 2)\right) /\left(1-\mathrm{X}_{1}\right)$
25000 FNENG
25100 ＇TEST A．E
25200 ，
```
$A=F N A(G 1, G 2) \backslash \dot{B}=F \mathcal{N}(G 1, G 2)$
$T=(E+1) / 3 \backslash K=(E-1 / A) / 3$
IF T＊T－K゙くO GOTO 27050
S1＝56＝0
FOR J＝1 TO I
$X=J / F$
$Y=Y 5(J) \backslash \quad Y 1=(F N Y(X)-Y) / Y$
$Y 3=Y 1 * Y$
$\mathrm{n}=\mathrm{D}+(\mathrm{FNY}(\mathrm{X}) / \mathrm{Y}) * * 2$
S6＝56＋Y1＊Y1
$51=51+Y 3 * Y 3$
NEXT J
$\mathrm{D} 1=100$＊SQR $(\mathrm{D} / \mathrm{I})$
$53=100 * \operatorname{SQR}(51 / I)$
S9＝100＊SQR（S6／I）＇REL SII
$\mathrm{D}=\operatorname{ABS}(1-\operatorname{SQR}(\mathrm{D} / \mathrm{I})) * 100$
$\mathrm{G}=59$
IF G9 $=100$ THEN $\mathbf{G}=53$
If GO＞G THEN GO＝G ELSE 27100
$\mathrm{SB}=\mathrm{S} 3 \backslash \mathrm{~A} 1=\mathrm{A} \backslash \mathrm{B} 1=\mathrm{B} \backslash \mathrm{W} 1=\mathrm{G} 1 \backslash \mathrm{~W} 2=\mathrm{G} 2 \quad \backslash \mathrm{S7}=\mathrm{D}$
S4＝59 5 S5＝ $\mathrm{D1}$
$T=K=0$
RETURN
LIEF $\operatorname{FNY}(X)=X *(1+A *(1-X) *(X-E))$
，
＇TEST R－DF
，
B4＝FNB（G1，G2）
IF B4＜－． 5 THEN $E 4=-.5$
$A 5=4.5 /(B 4+1) * * 2$
$52=56=11=0$
IF AS $=.07$ GOTO29400
FOR $J=1$ TO I
$Y=Y 5(J)$
$Y 1=((1-T 1 / 100) * F N Z(J / P)-Y) / Y$
$\mathrm{D}=\mathrm{I}+\mathrm{Y} * \mathrm{Y}_{1}$
$52=52+(Y * Y 1))_{2}$
S6＝S6＋Y1＊Y1＇R SD
NEXT 」
S0＝100＊SQR（S6／I）
S2＝100＊SQR（S2／I）＇Y SD
G4＝52
IF T8．$>$ G4 THEN TB＝G4 ELSE 29400
$T 4=S 2 \backslash T 5=S 0 \backslash W 3=G 1 \backslash W 4=G 2 \backslash B 5=B 4 \backslash T 6=I$
A $6=A 5$
RETURN
IUEF FNI $(A)=.001 * I N T(A * 1000+.5)$
，
DEF $\operatorname{FNJ}(A, B)=.1 * \operatorname{INT}((A-B) * 1000+.5)$
DEF FNC $(X, Y)=(Y / X-1) /(X-B) /(1-X)$
，
$\mathrm{A} 2=\mathrm{A} \backslash \mathrm{E} 2=\mathrm{E}$
$\mathrm{E}=3 / \mathrm{SQF}(2 * \mathrm{~A} 5)-1$
GO $=G 9=100$
FOR $I=2$ TO F－1
$Y=Y 5(I) \backslash \quad X=X 5(I) \backslash A=F N C(X, Y)$
$\mathrm{T}=(\mathrm{E}+1) / 3 \backslash K=(\mathrm{B}-1 / A) / 3$
IF T＊T－K゙くO GOTO29860
$T 1=T+S U R(T * T-K)$
$\begin{array}{ll}\text { NEXT } \\ A 3=A 1 \backslash & B 3=B 1 \backslash A=A 2 \backslash \quad B=B 2\end{array}$ $T=(B 3+1) / 3 \backslash K=(B 3-1 / A 3) / 3$

$\mathrm{I} O=18$
$\mathrm{P}=\mathrm{P}+\mathrm{I} 4$
$\begin{array}{lll}F=F+I 4 & & \\ F R I N T " A L P H A=" A " & \text { BETA="B" GAMMA="AS } \\ \text { FRINTXPRINT"THESE CONSTANTS REPRESENT:- }\end{array}$
30012 FRINT\PRINT"THESE CONSTANTS REPRESENT:-"\FRINT" (BETA) PEAK PERIOD (INT((B+1)/3*P)+1

 FRINT"(GAMMA) MAX DURATION ESTIMATE INT($1+T 1 * P) \backslash P R I N T$
PRINT"CUBIC BETWEEN PERIODS "IO" AND "P4
FIINTVFRINT"TOTAL FROJECTION ERROR="Q4" \%"
FFINTXFRINT TOTAL
FRINT GRAPH OF PROJECT EVALUATION:
PFINT\PRINTXPRINT"DURATION"P" WEEKS AT COST "S" 'POUNDS"•

a a an a a a a óo
FFFINTAPRIN
IF CLOG(S)>4 THEN C=1000 ELSE C=100
S\$=STR $\$(C)$
FRINT"COST

H
$\frac{1}{4}$

$=S / C$
$F O F \quad J=1$ TO 5
PRINT TAB(6+10*J)"!"INT(S1*J*.2);
NEXT J
PRINT":\PRINT"COSTZ $X^{*} ;$
FOF I5=1 TO 12\PRINT"----X"iNNEXTISXPRINT**
0

영
O8
8
C
M
008
800
08
O
M
ELSE PRINT TAB(5)"I";
INT(100*X6/P+.5);"\%"; X6
X6/5=INT(X6/5) OR X6=PTHEN PRIN
出× IF $\times 6=0$ GOTO 31340
$C(X 6,1)=55=55+K$
IF $K<=R 1 * S S / X 6$ THEN $X=x+1$
IF $X 5<=10$ OR X5>=P4 THEN $Y(X 5)=F N Z(X 5 / P 1)$ ELSE $Y(X 5)=F N Y(X 5 / P 1)$
IF $X 5=I 0$ OR $X 5=P 4$ THEN PRINT"-G-";

IF $\mathrm{X} 6>5$ THEN PRINT TAB(FNT $(4 * C(X 6,4) / 5))^{\circ} *^{\prime \prime} ;$

NEXT $\times 6$

DATA 1, "N"
DATA 20000,2E4,32500,32500,41E3,41E3,45750,45750 DATA $15 E 3$
DATA $100000,28 \mathrm{E} 3,12 \mathrm{E} 4,72500,72500,8 \mathrm{E} 4,16 \mathrm{E} 4,5 \mathrm{E} 4,5 \mathrm{E} 4,6 \mathrm{E} 4,14 \mathrm{E} 4,1 \mathrm{ES}$ DATA 5E4,4E4
DATA 2,"C"

DATA $28300,56600,84900,114900$
DATA $152700,181500,205300,229100$
DATA $2529000,278900,303000,320100$
DATA $337200,348600,360000,371500$
DATA $3, N^{\circ}$
DATA 323500
DATA 12
DATA $10000,25000,50000,75000$
DATA $10000,12500,15000,20000$
DATA $25000,26500,27000,27500$
DATA $4, " N^{\circ}$
IATA 78750
DATA 12
DATA $1 E 4,9500,9000,8500$
DATA $8250,8000,7900,7850$
DATA $5000,2500,1500,750$
END

Program Listings

Project Monitoring and Control

PROJ5.BAS	Design monitoring
PROJ7.BAS	Construction monitoring
RPRJIl.BAS	Prediction Program

MONITORING \& CONTROL PROGRAM (PROJ5.BAS) DESIGN AIPLICATION

응
융융
앙
00005
00006
00007
00008
00009
웅
00011
N․
00014
00014
00016

응
02000
61000
00021
N
N
O
0
M
N
0
0
N
-
-
-
n
N
0
0
0

0
$\stackrel{1}{\circ}$

00027
N

00031
N
M
0
0
0
in
00100

00110	DIM T9(12), A2 (200,9)
00200	PRINT"DESIGN PROJECT CONTROL PROGRAM MODULE"
00300	
00400	PRINT
00500	PRINT"CONVERSATIONAL MODE DATA INPUT PROCEDURE"
00600	
00700	PRINT
00800	PRINT"INPUT PROJECT NAME(MAX 5 CHARACTERS)":
00900	INPUT Y\$
00910	X $\$=\mathrm{LEFT} \$(\mathrm{Y} \$.5)+$ "U. DAT"
00920	PRINT
00930	PRINT"INPUT PROJECT BASE DATE I.E. 4.80 (WEEK 41980)"
00940	INPUT P8,P9
00950	X 6 \$ $=\mathrm{LEFT}$ (Y \$.5) + "T. DAT"
00960	FILE ${ }^{\text {\# }}$, X6\$
00970	SCRATCH 2
00980	WRITE \#2,P8, P9
01000	PRINT"INPUT PROJECT WEEK NUMBER"
01100	INPUT W
01200	PRINT"INPUT NUMBER OF STAFF WORKING ON PROJECT"
01300	INPUT M
01400	FOR R = 1TOM
01500	PRINT"INPUT EMPLOYEE NUMBER"
01600	INPUT N
01700	FILES STAFF.DAT
01800	RESTORE 1
01850	REM READS EMPLOYEE NO, NAME AND SALARY RATIO FROM STAFF
01900	READ (1,N(R), $\mathrm{N} \$(\mathrm{R}), \mathrm{R} 1$ (R)
02000	IF $N=N(R)$ GOTO 2300
02100	GOTO 1900
02150	REM PROCEDURE FOR READING THE HOURS OF EACH EMPLOYEE TO
02300	PRINT"INPUT ACTUAL HOURS WORKED ALLOCATED 1 TO 5 (I.E.
02400	FOR C=1T05
02450	INPUT A (R,C)
02500	NEXTC
02505	PRINT"IS EMPLOYEE DATA O.K. ANSWER YES OR NO"
02510	INPUT Q\$
02515	IF $\mathrm{Q} \$={ }^{\text {"NO" }}$ GOTO 2400
02600	NEXT R
02640	PRINT
02641	FOR I = 1 T098
02642	PRINT"-n:
02643	NEXT I

PRINT \quad PRINT"PROJECT "; Y $\$$
PRINT"WEEK NUMBER ";
PINT"WEEK NUMBER
WK
FOR I=1T062
PRINT"-":
H
\&

NO~NLOOOOOOOOOOOOOOOOOOO
 N~NNN NN NOM

NEXT I
PRINT

PRINT USING $8100, N(R), N \$(R), A 1(R, 8), A 1(R, 1), A 1(R, 2), A 1(R, 3), A 1(R, 4), A 1(R, 5)$ NEXT $\stackrel{R}{ }$ PRINT
FOR I=1 TO 67
FOR I=1
NEXT I
PRINT USING $8400, A 1(M 1,8), A 1(M 1,1), A 1(M 1,2), A 1(M 1,3), A 1(M 1,4), A 1(M 1,5)$
\# WEEKLYTOTALS
FOR I=1T084
PRINT\#-n:
PRINT"-":
 M゙ज
正

RINT＂？？？？FILE ERROR IN＂，X1\＄
TOP TOP

IF $R-W=0$ THEN 9960 IF $R-W=0$ THEN 9960 $\mathrm{R}=\mathrm{R}+$
IF $R-W=0$ THEN 9960
$R=R+1$
GOTO 9910
FOR C $=1$ TO7
FOR $C=1$ TOT
$A 2(R, 8)=A 2(R, 8)+A 2(R, C)$
A2（R， 8 ）$=\mathrm{A} 2(R, 8)+\mathrm{A} 2(R, C)$
NEXT C
PRINT
PRINT
PRINT＂PROFITABILITY ANAL
A2（R， 8 ）$=\mathrm{A} 2(R, 8)+\mathrm{A} 2(R, C)$
NEXT C
PRINT
PRINT
PRINT＂PROFITABILITY ANAL
Q．S．

SERV
ENG
O웅№n
人Nかんかんのが
O

A2（R， 8 ）$=\mathrm{A} 2(R, 8)+\mathrm{A} 2(R, C)$
NEXT C
PRINT
PRINT
PRINT＂PROFITABILITY ANAL
PRINT
PRINT＂PROJECT＂； $\mathbf{Y} \$$
PRINT
PRINT＂WEEK NUMBER＂；W
PRINT
PRINT＂WORK CATEGORIES＂
PRINT
PRINT＂
PRI
FORI＝1T09
PRINT＂－＂
EXT I
$\stackrel{\leftarrow}{2}$ VALUE TO $E 1(C)=E(C) * P 3(C) / 100$ $E 1(8)=E 1(8)+E 1$（C）
NEXT C
\#\#\#\#\#\#\#\#, \#\#
$\left.8^{\circ} \mathrm{y}\right) \mathrm{CV}(2$ lon

[^5]
\＃7，E3（8）

ば
ばばい
由H以
 030

$=1 \mathrm{TO} 91$
 ＂：

 NIMdyOg

a
＂RESOURCES UTILISED TO DATE＂
＂GENERAL ANALYSIS OF PROJECT STATUS TO DATE＂

＂POUNDS STERLING＂：A3（W1．9）

${ }^{\text {＂RESOURCES UTILISED TO DATEN＂}}$
8）／E（8）＊100
＂OVERALL PERCENTAGE OF WORK COMPLETE TO DATE＂；P8
に
）－A3（W1．9）
＂POUNDS
＂POUNDS STERLING

11
M

30000
T
T
江糹
3000

TO Y5 "
 $\propto 11 ヵ$
응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

MONITORING \& CONTROL PROGRAM (PROJ7.BAS) PRODUCTION APPLICATION

```
.TY FROJ7.EAS
00050 marsiri }13
00100 LIM A(200,20),W2(200,20),R1(200),N$(200),N(200),A1(200,20),A3(200,20),E(20),E1(20),E3(20),Y1(20)
00110 IIMM T9(20),A2(200,20),P2(20),F3(20),E8(20),T8(20)
00111 DIM F1(20),E2(20)
00200 FRINT'FROJECT CONTROL FROGRAM MODULE*
```



```
00400 PRINT
00500 FRINT'CONUERSATIONAL MODE DATA INFUT PROCEDURE*
```



```
00700 PRINT
00800 FRINT:INPUT FFOJECT NAME(MAX 5 CHARACTERS)*:
00900 INFUT Y&
00910 X $=LEFT$(Y$,5)+"U.DAT*
00915 PRINT" INFUT FROJECT WEEK NUMRER'
00916 INPUT W
0 0 9 2 0 ~ P R I N T
00925 IF W>1 THEN 1200
00930 FRINT'INFUT FROJECT EASE DATE I.E. 4.80 (MONTH 4 1980).
00940 INFUT FB,Fg
00950 X6$=LEFT$(Y$,5)+"T.DAT*
00960 FILEE 2;X6$
00970 SCFATCH £2
00980 WFITE E2,F'8,F'9
01200 FEEM FROCEDUFE FOR READING CENTRE COSTS
01300 J=0
01400 FOR I=2T06
01500 PRINT'COST CENTKE NO. - I-I
01600 FRINT'INFUT LABOUR; PLANT AND MATERIAL COSTS RESFECTIUELY*
01700 INFUT T9(J+2),T9(J+3),T9(J+4)
01800 J=J+3
01900 NEXT I
02000 FRINT'CCG NOM/S-C'S'\INPUT T9(17)
02100 PRINT'CC7 SITE O/H'S'\INFUT T9(18)
02200 REM STORES WEEK NO.
02300 T9(1)=W
02400 REM CALC TOTALS FOR WEEK
02500 FOF I=2 TO 1B
02600 T9(19)=T9(19)+T9(I)
02700 NEXT I
02800 REM F'ROCEIURE REAII %'S FROM FILES CCI TO CCS
02900 X8$=LEFT$(Y$,5)+"A.IIAT"
03000 FILE E1,X8$
03100 FOF I=1T015
03200 FEALI f1,F'1(I)
03300 NEXT I
08500 FILE £2,X$
O8505 FILE E6,'FROJ1.TMF'
08510 , (TEMP. FILE TO ALLOW AFFENDING OF MONTH TO MONTH DATA)
O8E15 RESTORE E2
08520 SCRATCH E6
08525 IF END £2, GOTO 8544
```

```
FOR I=1T019
08527 READ {2,T8(I)
08528 NEXT I
08529 FOR I=1T019
08530 WRITE E6,T8(I)
08531 NEXT I
08532 OOTO 8525
08544 FILE {2,Xs
08548 FILE E6,'FROJ1.TMF'
08550 RESTORE &6
08555 SCRATCH E2
08560 IF ENI &S, GOTO 8590
08561 FOR I=1T019
08562 READ f6,T8(I)
08563 NEXT I
08564 FOR I=1T019
08565 URITE E2,T8(I)
0 8 5 6 6 ~ N E X T ~ I ~
08575 GOTO 8560
08590 (...NOW WE CAN GET ON WITH THE REAL STUFF)
08610 FOK I=1T019
08620 WRITE E2,TG(I)
0 8 6 3 0 ~ N E X T ~ I ~ I
08631 FOR I=1TO95\PRINT***;\NEXT I
08650 FOR I=1 TO S\FRINT\NEXT I
08655 PRINT "MONTHLY EXFENDITURE TO DATE'
0 8 6 6 0 ~ P R I N T ~
08665 PRINT'COST CENTRES*
8665
08670
PRINT.MONTH SURSTRUCTURE
08676
08677
08681
08682
08683
08685
08690
08700
RESTORE I2
08705 FOR C=1TO19
08710 READ E2, A3(R,C)
O8715 NEXT C
08717 NEXT R
08718 FOR K=1 TO W
08720 PRINT USING 8725,A3(R,1),A3(R,2),AB(R,3),A3(R,4),A3(R,5),A3(R,G),A3(F,7),A3(R,B),A3(R,G),A3(R,10)
```



```
08730 NEXT R
08735 W1=W+1
08740 FOR C=2 TO 19
08745 FOR K=1 TO W
08750 A3(W1,C)=A3(W1,C)+A3(R,C)
08755 NEXT R
0 8 7 6 0 ~ N E X T ~ C ~
```

FRINT $1=1$ to 95
FRINT
FOR I
PRINT
PRINT USING 8770,A3(W1,2),A3(W1,3),A3(W1,4),A3(W1,5),A3(W1,6),A3(W1,7),A3(W1,8),A3(W1,9),A3(W1,10)

ORR $1=1$ TO 95

70

REM FILE GENERATED BY ESTIMATING FROGRAM (\% WK CAT ALLOCATIONS)

$$
\begin{aligned}
& \text { PRINT } \\
& \text { FILE E4: X3 }
\end{aligned}
$$

IF END $f 4$, GOTO $9787, Z(4), Z(5), E(16), E(17)$
READ $f 4, Z(1), Z(2), Z(3), Z(4), Z(5), E(16), E(17)$
GOTO 9740
PRINT???? FILE ERROR IN':XIs


```
0 9 7 8 7
09788
09789
09790
09791
09792
09793
09794
09795
09796
09797
09798
09799
0 9 8 0 0
09801
09802
09803
09804
09805
09806
09807
09910
09920
0 9 9 3 0
09940
09950
09955
09960
09965
09970
09975
09980
09985
09990
09995
10000
10005
10010
10015
10020
10025
10030
C=1
10040
R=1
E(18)=Z(1)+Z(2)+Z(3)+Z(4)+Z(5)+E(16)+E(17)
FOR C=1 TO 3
E1(C)=Z(1)*F1(C)/100
NEXT C
FOF C=4TO6
E1(C)=Z(2)*P1(C)/100
NEXT C
FOR C=7TO9
E1(C)=Z(3)*P1(C)/100
NEXT C
FDR C=10 TO 12
E1(C)=Z(4)*P1(C)/100
NEXT C
FOR C=13 TO 15
E1(C)=Z(5)*F1(C)/100
NEXT C
E1(16)=E(16)
E1(17)=E(17)
FILE £4,X3$
RESTORE &4
IF END EA,GOTO 9960
READ &4,P2(1),P2(2),F2(3),F'2(4),P2(5),A2(R,16),A2(R,17)
IF R-W=0 THEN }995
F=R+1
GOTO 9910
FOR J=1 TO 3
A2(R,J)=P1(J)/100*P2(1)
NEXT J
FOR J=4 TO 6
A2(R,J)=F1(J)/100*P2(2)
NEXTJ
FOR J=7 TO 9
A2(R,J)=F1(J)/100*F2(3)
NEXT J
FOR J=10 TO 12
A2(FrJ)=P1(J)/100*F2(4)
NEXT J
FOR J=13 TO 15
A2(R,J)=P1(J)/100*P2(5)
NEXT J
FOR C=1 TO 17
A2(R,18)=A2(F,18)+A2(R,C)
NEXT C
```

16.

10600
10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11701 11850 11860 11870 11900
12650 12560 12670 12680 12690 12700 12701 12705 12710 12715 12720 12725 12730
12735
12740
12745
12776
12777
12780
12800
12850
12860
12865
12870
12880
PRINT
PRINT
PRINT•PROFITABILITY ANALYSIS REPORT•

PRINT
PRINT
PRINTPPROJECT •;Y\&
PRINT
PRINT'WEEK NUMBER'; W
PRINT
PRINT'COST CENTRES'
PRINT
PRINT: SUBSTRUCTURE
PORI=1T0101 LAB PLANT MAT LAE PLANT MAT LAE PLANT

NEXT I
FRINT
rem value to date $=*$ comp/100*ests cat value $* 2$ est alloc
FOR $\mathrm{C}=1 \mathrm{TOJ}$
$E 2(C)=E 1(C) * P 3(1) / 100$
NEXT C
FOR C=4 TO 6
$E 2(C)=E 1(C) * F 3(2) / 100$
NEXT C
FOR C=7 TO 9
E2(C) $=$ E1(3)*F3(3)/100
NEXT C
FOR C=10 TO 12
E2(C) $=E 1(\mathrm{C}) * F 3(4) / 100$
NEXT C
FOR C=13 TO 15
$E 2(C)=E 1(C) * F 3(5) / 100$
NEXT C
E2(16) E E1(16)*F3(6)/100
$E 2(17)=E 1(17) * P 3(7) / 100$
FOR C=1T017
E2(18) $=$ E2(18) E 2 (C)
NEXT ${ }^{-}$
PRINT
FRINT USING 12870,A2(R,1),A2(R,2),A2(R,3),A2(R,4),A2(R,5),A2(R,6),A2(R,7),A2(R,8),A2(R,9)


```
FOR C=1 TO 18
13950
E3(C)=E2(C)-A3(W1,D)
NEXT C
14120
14120
14200
14300
14400
14500
14600
14600
14700
14800
14900
15000
15100
15200
5300
15300
15500
15504
15505
15510
15515
15520
5520
15525
15530
15535
5540
15540
15545
15550
15555
15560
15565
15570
15580
15585
15590
15600
15601
15602
15603
15604
15605
D=C+1
PRINT*ESTIMATED*
FRINT"UALUE OF:
FRINT USING 14300,E2(1),E2(2),E2(3),E2(4),E2(5),E2(6),E2(7),E2(8),E2(9)
```



```
PRINT'DATE'
PRINT
PRINT
FPRINT 'ACTUAL*
PRINT USING 14900,A3(W1,2),A3(W1,3),A3(W1,4),A3(W1,5),A3(W1,6),A3(W1,7),A3(W1,8),A3(W1,9),A3(W1,10)
```



```
PRINT*TO DATE*
PRINT
FOR I=1 TO 101\PFINT--':NNEXT I
FRINT USING 15400,E3(1),E3(2),E3(3),E3(4),E3(5),E3(6),E3(7),E3(8),E3(9)
```



```
PRINT*LOSS*
X5$=LEFT$(Y$,5)+`U.DAT.
FILE E7,X5%
FILE E8,*PRO1.TMP'
FILE f8;'PR
RESTORE {7
SCRATCH &8
IF END £7 GOTO 15545
FEAD E7,TB
WRITE E8,T8
GOTO 15525
FILE £70X5s
FILE E8, 'FRO1.TMP:
FESTORE fB
SCKATCH &7
IF END E8,GOTO 15590
READ f8,T8
WRITE &7,T8
WRITE E7,TIG
GOTO 15565 
PRINT
FOF: I=1T0101
PRINT-=';
NEXT I
PRINTIFRINT\PRINT
FRINT: EXTERNAL WORKS
SITE
```

```
18650 Q=(E(18)-T1)
18700 PRINT SHORTFALL/GAIN ON ANTICIFATEII FORECAST FROFIT/COST •:Q
18800 PRINT
18900 FFINT
19100 FFINT:----------------------------------
19200 FRINT
19201 GOTO 41900
19225 GOSUB 30000
20300 PRINT
20550 FFRINT
20600 GOSUE 33000
20650 PRINT
20900 GUTO 40000
30000' FORECAST AND GRAFH CONTROL
30100 FRINT' INTERMEDIATE GRAFHICS AND INITIAL FORECASTS*
30200 A(1)=0\F1=F1(1)=1
30300 PRINT\PFINT'IO WISH TO SET YOUR OWN FORECASTING CONSTANTS *:
30400 INFUT Y1$
30500 IF Y1$<'Y. THEN B(2)=0 ELSE 30700
30600 NB=1 \GOTO 31200
30700 FRINT'INFUUT Z OF COMFLETION AT THE TURNING POINT*
30800 FRINT'I.E. WHEN CASH OUTLAY STARTS TO DROF *:
30900 INFUT T
31000 E(2)=3*T/100-1
31050 A(2)=A(1)
31100 N&=2\ P1 (2)=0
31200 'TEMPRY END
31250 GOTO 35500
31300 RETUFN
33000 'FORECAST OUTPUT
33100 FRINT PRINT CUMULATIUE COSTS.
33600 FRINT-WEEK BUDGETEL FREDICTED OWN*
33700 PRINT'NO. DHSS PREDICTION'
33800 FOF K=1 TO Y5
33850 R1=R/Y5
33900 FRINT R:TAB(5);A2(R,8):TAB(14):E(8)*FNF(R1,1):
34000 IF B(2)=0 THEN FRINT TAB(26):" * E ELSEPRINT TAB(26) E(B)*FNF(R1,2)
34100 NEXT F
34200 FRINT\PRINT
34300 RETURI
34499 'CUM.COST CALC. ACTUAL & %(FNF)
34500 DEF FNF(X,J)
34600 FNF=X*(1+A(J)*(1-X)*(X-B(J)))
34700 FNENI
35500 'ALFA,BETA
35600 S5=E(8)
35600 S5=E(8)
35700 IF SS<1ES THEN A1=.8+55/3.6E5
35800 IF S5<2E6 THEN A1=1.5
35900 IF S51E7 THEN A1=1,45+55/5E7 ELSE A1=1.8
36000 IF S5<1ES THEN B1=3*S5/1E6
36100 IF S5<7.5ES THEN E1=.29+S5/7E6
36200 IF S5<4E6 THEN B1=.4455/2E7 ELSE B1=.6
36300 A(1)=A1 \B(1)=E1
36400 GOTO31300
40000 DIM Y(300),C(300)
40005 IF W<E GOTO 41900
40010 FRINT'FFEEDICTION ANALYSIS*
40015 PRINT:-NENT
```

FRINT
INT
INT－INFUT FROFOSED ALFHA／BETA CONSTANTS to COMFLETION• \ INFUT A，B $F 1=-Y-A * X^{-} 3+A *(1+B) * X^{-} 2+(1-A * B) * X$
$F 2=-3 * A * X^{2} 2+2 * A *(1+B) * X+1-A * B$
IF AHS $(X 1-X)>1 E-6$ THEN $X=X 1$ ELSE 40100
GOTO 40050
FRINT－$x={ }^{\circ} x$
$P=W / X$
$P=1 N T(P+.5)$
PRINT
FFINT FREDICTED IURATION TO COMFLETION：IP
$\begin{array}{lll}\text { FRINT } & \text { RAIIO } & \text { FREDICTED＂} \\ \text { FRINT：} & \text { CONTH } & \text { COMFL }(Y) \text { EXFENDITURE }\end{array}$
RINT
RINT
OR M＝WTO P
$X=M(M)=X *(1+A *(1-X) *(X-R))$
$C(M)=T 1 * Y(M)$
FRINT MoY（M），C（M）

FILE f1，X6
SCKATCH F 1
－GRAFHICAL FRESENTIIION OF＇S＇CURUE＂
USING 41200 ex（b） feffefe
KKS
RINT．
8．
588
8
$0<00$
0600 t

$\stackrel{0}{0}$
$\stackrel{\circ}{c}$
0
㸚交交
RRINT

[^6]
CURVE FIT PROGRAM RPRJII. BAS

```
.TY RF'RJI1.EAS
COO10 OFIGINAL FORM OFTHIS PROG IS NOW RFRJ21.EAS
00020 /111
00050 MARGIN 120
00100 [11MC(100),Y(100),X(100)
00110 [IIM G(100),F(100)
00120 IIM Y5(100),C1(100),K2(100)
00150 GOTO 1005
00200 FILE E2,"F.TMF'
00250 FEAI E2, G
00300 IF END &2 GOTO }70
00400 P=P+1
CO500 READE2,C(F)
00SOO GOTO 300
00700 K= F-3
00750 F2=C(R+1)\F3=F2+C(R+2)
00770 FRINT'INFUT EXFECTED DURATION*:\INPUT DS
00780 T1=1.5*D5
COB00 FIES' MONTHLY INFLATION UALUE
09805 GOTO 850
00810 FRINT 'ERFOR'\PFINT
00820 FRINT -TTL COST -O
00830 FOR I=I TO P\PFINT"F='I,C(I)\NEXT I
00840 PFINT'LIKTN -C(F+1),"REDNDNT FRDS -C(F+2),"PEAK FRL,'C(R+3)
00845 STDF
00850 FO=F=C(R+3)
00870 FOR I=1TO R
00880 K2(I)=(1+F1/100)-I
00885 C1(I)=C(I)
00890 C(I)= C(I)/K2(I)
00900 NEXTI
01000 I 4=C(F+2)
010C5 FILE £3,0F.TMP.
01010 READ E3.F',G(R),C9
01015 P=R/SGR(-2*LOG(1-C(F)/1.0J/C9))
01020 EO= 3*F/K-1
01022 T=F/R \AO=1/(2.3-3.3*T)
01024 FRINT "INFUT DATA :-"\ PRINT'FRESENT DURATION 'F'` MONTHS AT UALUE 'C(R)
01026 FRINT*EXFECTED FRDJECT COST *C9
O1026 FRINT:EXFECTED
01027 T1=3*F\C=C(R)
01030 IF C/FNG(R,
01033 GOTO 1030
01035 D=T1\T1=1.5*I\59=1.1*C9
01037 IO=O\ FOF I=R TO D
01039 IF C9CC(F)*FNG(I,R) GOTO 1043
01041 NEXTI
O1043 IO=INFFINT\ FRINT \bulletFRESENT EXFEECTED COST OCCURS AT PERIION •10
01045 FRINTIFFINT MMAX FFEIICTED COST IS 'C(R)*FNG(D.F)N FRINT\FRRINT
01047 GOTO 3490
01050 FRINT*(MIN. S PERIONS) - & TO=R
01055 RE=F-3
01060 INFUT R
01070
```

```
01075 C=0\FOR I=1 TO R
01080 C1=C(I)-C(I-1)
01085 Z=C(I)/I*RR-1
01090 FRINT *FRI'I,'COST'C1,'CUM. COST'C(I):' Z='Z
01095 IF C1<C GOTO 1120
01100 C=C1\F1=1
01120 NEXT I
01125 PRINT'HIGHEST COST WEEK 'P1' AT COST 'C
01200 'TEST DURATIDIV ETC.
01202 FFINI "GAMA"
01203
01204 FOF I=1 TO F-1
01206 K'9=Y9=100
01208 KiV=F-1
01210 S8=59=C(R) \ Y7=C(I)/S9
0i211 IF Y7>(I/R)~2 GOTO 1215
01212 N1=S2=Y9=G(I)=0 \GOTO 1230
01215, FEAK SEARCH
01216.
01218 FOR PE=2 TO F*10 BY. 3
01220 F=FE \ Y=FNG(I,N)
01223 IF Y>Y7 THEN 1226 ELSE 1228
01226 NEXT PS
01228 F=G(I)=F.5\ GOSUR S000
01230 PRINT I" NO,"N1,G(I),"EX='S2,"X*X="(I/R)N2,"YA="INT(1E4*Y7+.5)/1E4
01232 NEXT I
01242 FFINT BETA.
01242 FFKI
01243
01245 FOR I=6 TO K
01250 S8=59=C(I)
0125E Y9=R9=100
01260 F7=1
01262 IF R=R7 GOTO 1298
01265 FOR 11=-.3 TO 2 EY . 3
01270 FOR J=-.5 TO 6.5 BY .03
01275 F=(1+J)/3*I
01280 EO=J
01282 AO=I1
01285 GOSUB 6000
01293 NEXT J.II
01293 NEXT J.II , 'EX='YY,'A='A3,
C1296 FFRINT'E='3*A/I-1
0 1 2 9 7 ~ N E X T ~ I ~
01298 IF G(R)=0 THEN G(R)=R(R)
01299 13=O\FRINT\PRINT\ GOTO 135S
01300 F'{=INT((ER(R)+G(R))/2+.5)
01305 FO=INT(F1/3+.5)\F1=2*F1
01307 PRINT'FO='FO,'F'I=*FI
01308 IF F1>3*C(TO+3) GOTO 1353
01310 FOR:F'=FO TO F'1 EY . }
01315 IF 1-1/FF <.O1 GOTO 13S2
01320 KO=-LOG(1-1/F)
01325 GOSUE 8000
01327 IF N=O GOTO 1352
01330 IF FB3:I3 THEN I3=R3 ELSE 1352
01335 F'9=F
01340 IF PQ<.99*F1 GOTD 1350
01345 FO=F'1-1\ F1=2*F'1
01347 GOTO 1307
01350 12=11\ K2=K1\ R2=R1\ T2*T
01351 NEXT F
0i352 FENFINT
01353 IF F`.8*C(TO+3) GOTO 1355
01354 F=C(TO+3)
013E5 FFINT"F'EAK='F'NEW UALUE OR OLE INFUT FEEAK,A,R'S INFUT F.AO,EO
```

```
01356 GOT02415
01357 PRINT*P**1/(1-EXP(-KO)),*SLF**KO,'INTCPT'I2,"TAN'T2
01360 FRINT*R'R2,*SLF'K2,*TST'I3
01375 FRINT'FEAK FPEIDD 'F',' XERROK 'INT(100*(1-R3)+.5)
01379 PRINT\FFINT
01400 Y9=100 'YSD
01500 R9=100 'REL SD
01600 FOF I= 1TO R-1
01700 FOR J=It1 TO R
01800 K=FNK(I,J)
01900 P1=P*F-K
02000 IF FI<O GOTO 2300
02200 D=P+P1-.5
02220 S9=C(R)/FNG(R,D)
02260 IF D1<D THEN D1=D
02300 NEXT J
02400 NEXT I
02403 IF D1>0 GOTO 2410
02406 F=R-1 \ GOTO 1400
02408 IF D1>13.2*F THEN D1=13.2*P
02410 [|=D1\ FRINT*MAX IRTN. 'D
02415 PRINT'ADJUSTED DNTN.'D*P3/P2
02450 GOTO 3210
02500 % RESULTS
02550 D=05
02600 II=DS
02650 S9=C(R)/FNG(R,II)
02700 FOR I=R TO T1 BY INT((D-R)*.It,5)
02800 IF I>10*F GOTO 3200
03100 GOSUB 5000
03200 NEXT I
03210 PRINT\PRINT\FRINT
03215 D=DE
03220 S9=C(F)/FNG(R,D)
03250 E=R9\DO=D9
03260 GOTO3360
03300 PRINT 'BEST GAMMA RESULT'
03350 FRRINT "COST 'C(R)/FNG(R,D8)" DURATION *D8' (YSD)ERROR *S2
03360 IF P2=F3 GOTO 3400
03370 FRINT -ADJUSTED DRTN. -D8*P3/F2
03400 PRINT
03420 FRINT`PFESENT DURTN. "R" AT COST 'C(F)
03460 PRINT\FRINT'INFUT IUURTN. "TO' WITH 'I4' REDUNDANT FRDS.'
03465 PRINT: AT COST -Q' KNOWN DRTN. -TO+I4
03470 PRINT'PEAK FR. SLECTED'P: GIUEN (GAMMA) FEAK -C(TO+3)
03475 PRINT GOTO 3800
03476 FRINT\FRINT'INFUT ZMONTHLY INFLATION '\INFLIT FI\G$E"*\PRINT
03477 FRINT'PEAK INPUT 'P' -
03478 PRINT'A='AO,'E='EO
03479 PRINT
03490 R6=INT(F*EO+.5)
03495 GOTO 3800
O3500 FRINT"EXFECTED DURATION=" INT(R*RO+.5)" MONTHS*
03600 FRINT'AT CB,CST=*C(R)*FNC(RG/R.AO,&O)' EXF.CST=*C(R)*FNG(RG%R)
03700 PFIINT*ALTERNATIUE SOLUTION AT *RO* Z'
03800 FOR I=R TO T1 BY INT(.I#(I-K)+.S)
03900 C=C(R)/FNG(R.I)
04000 IF C>= RO*S9/100 GOTO 4150
04100 NEXT I
04150 GOTO 4400
04200 PRINT'COST='C'IFNTN'I', CUBIC COST='C(R)*FNC(I/R,AO,RO)\FRINT
04300 FRINT'INFLATED COST= 'C*(1+F1/100)~I
04400 FRINT\PRINT
0450N IF RO=99 GOTO 9100
04600 RO=99
04700 GOTO 3800
04800 F'=F'O\R=ズ\\GOTO 1000
05000 .
050:0 'FEL SI TEST GAMA
05040 ,
```

05050 IF I＞10\％P GOTO 5300
$05060 \quad N 1=S 1=S 2=0$
05100 FOR J＝1 TO I
05110 IF I $>10 \%$ GOTO 5300
05115 IF Jう10＊F GOTO 5300
05120 Y＝FNG（J．I）
$05140 \quad Y_{1}=C(J) / C(I)$
05145 IF Y1〔．9＊（J／I） 2 GOTO 5200
$05150 \quad N 1=N 1+1$
05155＇Y2．51 R．SD
$05160 \quad Y 2=(Y-Y 1) / Y 1$
$05170 \quad Y 3=(Y-Y 1)$
$05180 \quad \mathrm{Si=S1t}(\mathrm{~J} / I)-2 * Y 2 * * 2$

05200 NEXT J
$05202 \quad$ S2＝INT（1000＊SQR（S2／（N1））＋．5）／10
05203 GOTOS300
05205 IF Y9＜S2 GOTO 5220
$05210 \quad Y 9=52 \backslash A=K 4$
05215 D8：
$05220 \quad S 1=\operatorname{INT}(1000 * \operatorname{SQR}(S 1 /(N 1+1))+5) / 10$
05240 IF R9くS1 GOTO 5300
$05260 \quad R 9=51$ \D9＝I
05270 A1＝K4
05280＇REL SD ERROR K9（E）DRTN D9（DO）
05300 RETURN
06000 ，BETA
06050 ＇RTEL SD TEST
06100 ，
$06150 \quad S 1=52=0$
06200 FOR JI＝RT－S TO R7
06250 Y\＆FNC（J1／R7，AO，BO） 5 S9
$06300 \quad Y 1=C(J 1)$
06350，Y2．51 R7．SD
$06400 \quad Y 2=(Y-Y 1) / Y 1$
$06450 \quad Y 3=(Y-Y 1) / 59$

$06550 \quad 52=52+(11 / R 7)$－ $0 . * Y 3$ 草 22
06600 NEXT JI
06620 S2＝INT（1000＊SQR（S2／（6））＋．5）／10
06650 IF Y9＜S2 GOTO 6750
$06750 \quad S 1=I N T(1000 \% \operatorname{SaR}(S 1 /(6))+.5) / 10$

```
0 6 8 0 0
06850
06900
06950
07000
07500
08000
08000
08050
08100
08150
08160 N
OB200 FOR I=2TOR
08220 IF KO*I>80 G0TO 9000
082こを K゙=F゙*(I-EXF(-hO*I))
08250
08270
08300
08320 N=N+
08350
08400
08450
08500
O8550
08600
08450
08650
08650 IF INT(.8*(R-1))<N GOTO 8700
08700 K1=(N*Z-Si*S2)/(N*Q1 -S1*S1)'SLOPE
    08725 Fl=K1*K1*(N*O1-S1*S1)/(N*Q2-S2*S2)
08750 II=(S2-K1*S1)/N II9=ARS(II)+.0001
08850 T=(KO/(1-II)-K1)/(1+KO*K1/(1-I1))
08855 F1=SQF(R1)
08860 R3*(1-ABS(T))*R1
08860 R3=<1-A
09100 'TABLE 
09130 T1=.9*T1\ IF D<TI THEN D=T1
09150 PRINT"FRD CUM. COST PREDICTED (CUM. COST)*
09200 FOR I=RTOD
09210 CO=C(R)*FNG(I,R)
09220 C1=C(R)*FNG(I+1,R)
09230 IF C1-CO<10 THEN }970
09300 IF I>R THEN C$E'X' ELSE C&=STR&(C(I))
09303 IF IK=R AND C(I)>C(R)*(I/R)=2 THEN G&=0'OK* ELSE G&E'!*
09400 PRINT I;TAB(7)IC$,INT(.1%(CO+5))%10
09500 NEXT I
09700 'GRAPH
09750
IF R9<S1 GOTO 6950
K9=S1 \L19=P
    'REL SD ERROR R9(E) URTN D9(DO)
    RETURN
    IEF FNA(I,R,P)=(C(I)*R/C(R)/I-1)/(I/R-3*P/R+1)/(1-I/R)
    DEF FNC(X,A,E)= X*(1+A*(X-B)*(1-X))
    ,
    -corgltN
    S1=52=7=01=02=0
N=0
    IF ABS(K-G(I))<ARS(K-B(I))THEN Y=G(I) ELSE Y=B(I)
IF 1-Y/F <.01 GOTO }860
Y=-LOG(i-Y/F)
N=N+1
    SI=S1+I 'SUM X
    S1=S1+I (Y
    Z=Z+Y*I 'Y
    M1=Q1+I*I 
    NEXT I
    IF INT(.8*(R-1))<N GOTO 8700
    IF I>R THEN C$E'X' ELSE C&=STRS(C(I))
```

```
09800 S=C\F1=I
09850 FFINT\FRINT
09900 F'RINT'GRAFH OF FROJECT EVALUATION
```



```
10000 FRINT\PRINT\F'FINT'DURATION "PI' WEEKS AT COST *S* 'POUNDS'.
10050FRINT\FRINT
10100 IF CLOG(S)>4 THEN C=1000 ELSE C=100
10150 S$=STR$(C)
10150 SFESNT'COST (*S$*'S)*:
10こCO FRRINT COST
l0250 X=
lo300 K=0
10400 FOR J=1 TO =
10450 F'FINT TAB(6+10*J)*!'INT(S1*J*.2)
10500 NEXT J
10550 FRINT**NFRINT*COST% X*;
10600 FOR IF=1 TO 12\FRINT*----X*:NNEXTIS\FRINT**
10650 GOTO 11650
10700 FOF X6=0 TO F1
```



```
10800 IF X6=0 OR X6>R GOTO 11000
10850 C1=(FNG(X6,P1)/X6*P1-1):4
10900 Y2=C(X6)/S
10950 GJTO 110EO
11000 Y2=0
11050 Y=FNG(X6,P1)
11100 IF YS(XG)=Y THEN G1$=** ELSE G1$=*A*
lil
&1130 GOTO 1.1200
11150 IF X6:R THEN FRINT TAB(FNT(CI))'**:
11200 IF Y2`.Y GOTO 11350
11250 IF Y2<Y GOTO 11400
11300 FRINT TAB(FNT(Y))'S*N GOTO 11450
11350 FRINT TAB(FNT(Y))*P•&TAB(FNT(Y2))&G1$\GOTO 11450
11400 FRINT TAB(FNT(Y2))G1$:TAB(FNT(Y)); 'P0
11450 NEXT X6
11500 FRINT TAB(6)'Xe%
11550 FOR IS=1 TO 12 \PRINT*----X*'\NEXT IS\PRINT* -
11600 FRINT*COST%i=%
11650 FOR IJ=1 TO 12\PRINT TAB(5+5%I5):10&I5%NNEXT IS
11700 FRINT**
11750 IF X6=P1 THEN GOTO 30362 ELSE 10700
11800 UEF FNT(A)=INT(50*A+.5)+6
```

```
11850 GOTO 30362
18000 'N-RFSN G1=GO-(Y-YO)(1-En-G0)/GO/(1-YO
18020 P=R/SQR(2*G5)
18025 PRINT*P,GS*P,GS
18035 IF P>10*R THEN }1830
18050 G6=1-EXF(-GS)
18150 YG=FNG(I,R)
18200 GS=G5-(Y7-Y6)*G6/G5/(1-Y6)
18250 F*=R/SQR(2*GS)
18280 FRINT 'G6,Y6,G5,P' G6,Y6,G5,P
18300 FETUF'N
19990'
19993'FINDIS INTN
19996
20000 HEF FNK(A,B)
20050 XI=A*(3*F-A)
20100 X2=E*(3*F-B)
20200 Y1 =C(A)/A
20300 Y2 =C(B)/B
20300 FN=(X(BY/B
20500 FNEND
20600 DEF FNZ(W)=1-EXP(-W*W/2/P/P
20700 DEF FNG(W,D): FNZ(W)/FNZ(D)
30000 'BETA PEAK
30040 .
30080 UEF FNB(I,J,R)
30120 Y1=C(I)/C(R)\ Y2mC(J)/C(R)
30140 X1=I/R\X2=J/R
30150 IF Y2/X2=1 THENFNB=1 ELSE 30160
30155 GOTO 30361
30160 K=(Y1/X1-1)/(Y2/X2-1)
30200 U1=X1*(1-X1)
30240 U2=x2*(1-X2)
30280 B1=K*U2-U1
30320 B2= X1-1-K*(X2-1)
30360 FNB=B1/B2
303&1 FNEND
30362 PRINT*RESPECIFY PROJECT NAME YES OR NO*\INPUT A9%
30363 IF A9$ ='NO" THEN STOP
30365 FRINT*RESFECIFY PROJECT NAME FOR CORPORATTE PROG REFERENCE:
30370 XI$=LEFT$(X$(1).5)+*S.DAT*
30375 FILE E4,X18
30380 SCRATCH &4
30385 WRITE £4,IO
99999 END
```


Appendix 6

Program Listings

CORP \varnothing	Future Project Turnover
CORP2	Overall Company and Project Status

CORPIRATE TURNOVER PROGRAM CORPQ

```
CORPO 12:00 15-0CT-82
100 MARGIN 132
200 DIM A(500,9),A1(12,400),P$(50),A2(400,9),D(300),D1(300)
205 REM SET UF ARRAY WITH ZERO UALUES
210 FOR I=1T012
220 FOR J=1T0400
230 A1 (I,J)=0
240 NEXT J
250 NEXT I
302 REM PERIOD TO RE SET UF FOR ANALYSIS
305 PRINT 'INPUT PERION TO EE ANALYSED i.E. MONTH,YEARBMONTH,YEAR*
310 INPUT W2,Y2,W3,Y3
400 PRINT"INFUT FROJECTS IN PROGRESS NAME(MAX FIUE CHARACTERS)TERMINATE WITH ENI|
450 II=1\A(I;8)=0
500 INFUT X$
550 IF X$="END" GOTO 2260
555 REM BASE DATE FILES
560 X2$=LEFT$(X$,5)+"T.INAT"
570 FILE &1,X2$
380 RESTORE *1
585 FEM REAII BASE LIATES
590 READ *1,W1HY1
591 REM CALCULATION OF TIME PERION PARAMETERS (MONTHS)
592 K1E(रW1+Y1*12)-80*12)
594 R3=((W3+Y3*12)-80*12)
997 REM COUNTERS
600 R=O\S1=0\F$(II)=X$\I=1
650 REM ACCESS ANI READ MAIN BUDGET COST FILE
700 X1%=LEFT$(XS.5)+'G.DAT*
1200 FILE $2,X1%
1300 FESTORE $2
1400 IF ENII %2, GOTO 1810
1500 READ %2,A(I,1),A(I,2),A(I,3),A(I,4),A(I,5),A(I,6),A(I,7)
1600 I=I+1
1700 R=R+1
1800 GOTO 1400
1810 FOR I=1TOR
1820 51=0
1830 FOR J=1TO7
1840 A(I,8)=S1=S1+A(I,J)
1860 NEXT J
1870 NEXT I
4 G8O FOR I=1TOR
    195 NEXT I
1900 FEM FROCEIURE TO TRANSFER TO ARRAY AI(I.J)
1950 I=1
2210 FOR J=R1 TO R3
2220 LET AI(II;J)=A(I,8)
2227 I=I+1
2230 NEXT J
2240 II=II+1
2250 GOTO 500
2260 PRINT
2262 R2=((W2+Y2*12)-(80*12))
2264 F:4=((W3+Y3*12)-(80*12))
2265 FEM RESET OUTFUT ANALYSIS FAFAMETERS
2270 PRINT
2280 FRINT "CORFORATE CONTROL FEFORT"
```

```
        sOO PRINT •-----------------------------
        310 PRINT
    S320 FRINT "RULIGETEL EXFENDITURE ON FROJECTS IN HAND"
    2330 PRINT
    2340 PRINT
    2350 REM CALC OF HEADING DATES PROCEIIURE
    2400 J = 1
2500 I = 1
2600 DI(I) = Y2
    2700 D(J) = W2
    2800 W2 = W2 + 1
& 2900 IF W2>12 GOTO 3300
    3000 J=J+1
    3050 I=I+1
| 3100 IF J>9 GOTO 3750
    3200 GOTO 2600
    3300 W2=1
    3400 Y2=Y2+1
    3500 J=J+1
    3600 I=I+1
; 3700 GOTO 2600
    3750 PRINT" CALENDER TIMESCALE MONTHS/YEAFS'
    3752 PRINT
```



```
    3905 FOR X=1T095
    3910 PRINT*`=%
    3930 NEXT X
    4 0 0 0 ~ P R I N T
\because4050 II=II-1
    4100 FOF N=1TOI1
    4200 P=1
O 4250 REM PROCEIURE TO ENABLE OUTPUT EY FRINT USING STATEMENT
    4300 FOR J=R2TOR4
    4400 A2(N,P)=A1(N,J)
    4500 P=P+1
    4 6 0 0 ~ N E X T ~ J ~
    5000 PRINT LSING 5100,P$(N),A2(N,1),A2(N,2),A2(N,3),A2(N,4),A2(N,5),A2(N,6),A2(N,7),A2(N,B),A2(N,9)
```



```
    5150 NEXT N 
2( 5300 59=0\12=I1+1
    5400 FOR M=1 TO }
    5450 A2(I2,M)=0\S9=0
    O 5500 FOR N= 1 TO I1
    5600 A2(I2,M)=S9=S9+A2(N,M)
    5 7 0 0 ~ N E X T ~ N
    5 8 0 0 ~ N E X T ~ M ~
    5 9 0 0 ~ P F I N T
    6000 FOR X = 1 T0 95
, 6100 PRINT -_";
    6 2 0 0 ~ N E X T ~ X ~
    6300 FRINT USING 6400,A2(I2,1),A2(I2,2),A2(I2,3),A2(I2,4),A2(I2,5),A2(I2,6),A2(I2,7),A2(I2,8),A2(I2,9
```



```
    6500 FOR X=1 TO 95
    6600 PRINT "-*:
    6 7 0 0 ~ N E X T ~ X ~
    6800 FRINT
    6 9 0 0 ~ P R I N T ~
    7000 PRINT"IIO YOU WISH TO ANALYSE ANOTHER PERIOI (ANS YES OR NO):\INPUT U&
    7100 IF U$="YES" GOTO 100
    9 9 9 9 9 ~ E N D ~ I N D
```

```
(ORPORATE PROJEGT STATOS (CORPZ.BAS)
COKF'2 11:52 15-OCT-82
10 MAFGIN 132
100 IIM A(300,6),E(50,50),X$(50),N(300)
200 FRINT 'CORFDFATE CONTFOL MODULE 2*
300 FFINT •-N--------------------
4 0 0 ~ P F I N T
425 FRIINT'INFUT CURRENT MONTH, YEAFSII.E. 3,80)"\INFUT WI,Y1
450 I = 1
500 N = 1 \S=0
800 FFINT IINFUT FROJECT NAME(MAX FIUE CHARACTERS)TERMINATE WITH ENII*
900 INFUUT X$(I)
1000 IF X$(I) = "ENI" GOTO 2200
1150 X1$=LEFT $(X$(I),5)+\mp@subsup{0}{}{\circ}\textrm{C}.IIAT*
1160 X2$=LEFT $(X$(I),5)+`U.DAT•
1165 X3$=LEFT$(X$(I),5)+`S.DAT"
1170 FILE $1;X1%
1200 RESTOKE *1
1300 REAI $1,A(I,1),A(I,2),A(I,3),A(I,4),A(I,5),A(I,6)
1310 FILE *3,X3$
1320 RESTOKE *3
1330 REAII #3,A(I,4)
1400 FILE &2, X2&
1500 RESTORE *2
1600 IF ENI *2,GOTO 2000
1700 REAI *2, E(I,N)
1800 N=N+1 \N(I)=N
1900 GOTO 1600
2000 I=I+1
2100 GOTO 500
2200 I*I-1\II=I+1
2300 FOF X=1 TO I
2400 A(I1,3)=5=S+A(X,3)
2500 NEXT X
2600 FRINT
2610 FOR X=1 TO }7
2620 FRINT**";
2630 NEXT X
2635 FRINT
2700 PRINT MONTH - WL
2800 FRINT YEAR 19-IY1
2850 FRINT
2900 FRINT "FRROJECT STATUS SUMMARY ANII SHDRTFALL/GAIN ANALYSIS TO IIATE"
3000 FRINT •--------------------------------------------------------------------
3100 FRINT
3200 FRINT "FFOJECT FINAL EST % COMFL SHORTFALL/ PREIIICTEN RESQUFCES RESOUKCES.
```



```
3500 FOK X= 1 TO 76
3600 FRINT "=0;
3700 NEXT X
3800 FEINT
3900 FOF X=1 TO I
4000 FRINT USING 4100,X$(X),A(X,1),A(X,2),A(X,3),A(X,4),A(X,5),A(X,6)
```



```
4200 NEXT X
4300 FOR X=1 TO }7
4400 FRJNT ---';
4500 NEXT X
4600 FRINT
4650 FFRINT
4700 PFINT 'OUEFALL GAIN SHORTFALL ON CUFRENT FROJECZTS $';A(II,3)
4 8 0 0 ~ F R I
4 9 0 0 ~ P R I N T
5000 FOF J= 1 TO I
5100 PRINT "FFROJECT "$X$(J)
5150 PRINT*****************
5200 FRINT
S300 F'RINT "F'ROFITAEILITY TFENII ANALYSIS*
5400 FRINT •---------------------------------
E500 FRINT
5600 F'FINT`MH NO MONTHLY +/-`
5700 FFFINT '--------------------
5800 FRINT
5 9 0 0 ~ F F K I M T ~
6000 FOF: N=1 70 N(.)
6100 F'KINT USIHG 620O,N,F(J,N)
```



```
6300 NEXT N
6400 NEXT J
6500 ENII
```

Appendix 7

Simulation Program Listings

SIMI.BAS

PREDI.BAS

's' curve simulator simi.bas

```
-TY SIMI EASS
00050 IIIM A(50)
00100 FFIINT "IIATA SIMULATOF"
```



```
00220 FFINT\FFIINT"NON-CUMULATEII COSTS/UALUATIONS"
00230 FRINT
00300 FFRINT
00400 FFRINT"INFUT NO. OF FEFFIOLIS";\INFUT N
OO410 FIFIINT
OO420 FILE #1, "G.TMF"
OO440 SCFATCH #1.
00500 FOF X=1 TO N
OO600 FFFINT "FFIL."X"INFUUT UALUATION"#\INFUT A(X)
OO8OO WFITE #1, A(X)
00900 NEXT X
01000 CHAIN "FAM1.EEAS", 20
O9999 ENI
```


PREDIGTION TEST PROGRAM PREDI.BAS

```
-TY FFIEIII EIAS
OOIOO FFINT"FROJECT TIME FFEIICTION INFUT"
00200 FFFJNT"*****************************"
00300 FFFINT
00400 FFFINT
OOSOO FFIINT"INFUT ELAFSEII MONTHS TO IATE"
00600 INFUT F:
OO700 FFIINT"INFUT UALUATION TO IIATE ANII ANTICIFATEII FINAL COST"
00800 INFUT A,E
00900 FILE##1,"F.TMF"
01000 SCRATCH #1
O1100 WFITE #1,FI,A,E
01150 CHAIN "FFFRJII,EAS",1005
01200 ENII
```

Graphics Programs
1.

GRF3.ALG

```
00100 BEGIN
OO10S INAEGER C1;
202J0 REAL B,C,P,I,R,N,J,F,G;
OO210 REAL D,K,X,Y,YO,YY,Y2,A;
S0250 REAL ARRAY A1,E1,PH[,S1,P1,F1,K1[0:4]:
OO300 EXIERNAL PROCEDURE START,DSCALE,AMOVE,ADRAN,FINISH,ALPHA:
O0350 EXTERNAL PROCEDURE TNUM,JRIGIN,TSIZE,TEXT.DASH. SOLJUR:
004CJ P 100:C10כ0;
00425 WRITE("TN] NO. OF PLOTS (MAX 4) = [B] n);READ(:|);
20430 FOR J_I UNTIL N DO
20440 BEGIN
OO442 WRITE("[C]l (CUBIC) 2 (EXP) [B]"): READ(FI[J]):
00445 IF FI[J]=2 THEN SOTO EXP:
00450 \RITE(n[C]A,PEAK[B]n);READ(A1[J],Pq(J]):
00455 R_0:
00457 R-R/100:
00450 BT{[J]:=3*P![J]-1:
j0465 GOTO CND;EXP:
j0467 URITE("[C] PHI=[B]n):READ(PHI[J]):
00470 MRITE(N[C]A,K,B,G : FOR I-K*EXP(-BX)-A*EXP(-GXX) [C]N);
00475 READ(Al[J],Ki[J],Bi[J].GI[J]):
30480 GGI[J]:URITE("[C] PEAK:z "): IF GzOTHEN WRITE("NONE M) ELSE PRIFT(100/(20G)*.5.3.2):
00485 CND:
20490 END:
30500 NEWLINE(2):
0500 START:
00650 COLCUR(1):
=0700 TSI2E(.15..15):
כ0300 DSCALE(150,150..5):
00850 ORIGIN(0.25):
02700 amOVE(25.0);
01000 ADAAN(25.140):
01025 AMOVE(25.135):TEXT(" COST N):
01100 AMOVE(0,25).
01250 ADRAW(140.25):
01225 AMOVE(125.25):TEXT(" MONTHS 100: n):
01250 AMOVE(5,125): ADRAW(130.125):
21270 AMOVE(125.5); ADRAW(125.130):
01300 amJVE(0.0):
01320 ORIGIN(25.25):
0i330 F1[0] i|Ai[0]B1[0]_0:
21332 AMOTE(-20,105):
01340 FOR J_O UNTILN NO
01350 BEGIN
01350 BEGIN
01380 A Al[J]; B Bl[J];F F![J]:
01385 G-G!!J]: C-PHI[J]:-KKK{J];
01357 IFENTIER(\overline{C})=C THENE\_C ELSE CI_2:
01390 IF A=0 THEN GOTO SKP:
01395 COLOUR(J):
01397 AMOVE(-25,110-J*10):
01400 AMOVE(-25,105-J*10);
01410 INUM(A,1,2):
01420 AMOVE(15,105-J*10):
01430 TNUM(B,1.2):
01440 AMOVE(35,105-J*10):
01443 IF F=1 THEN GOTO CUB:
01445 TNUM(G.1,1):
01450 AMOVE(5,105-J*10):
01455 TNUM(C.1.1):
01450 AMOVE(15,105-J.10):CUB:
01451 IFG:OTHEN TNUM(100*(B+i)/3.3.1) ELSE TNUM(100/(100)-.5.3.1):
```

```
01462 IF F&1 THEN GOTO SKP:
01464 AMJVE(20,105-J*10):
01455 TMUM(K1(J).1.2):
01453
01470 AMJVE(-20.-20*(1+1.2*A*(-.2-8))):
01430 END
j1500 FOR I:8-.2*P UNTIL 1.2*P DO
01650 BEGIN
01650 IF:=0 THEN I_..J1:
01790 X I/P:
IF F=I THEN GOTO EB;
01730 IF ABS(B*X)>30 OR ABS(G*X*X)>80 THEN COTJ JUT:
01734 Y2_1-K'EXP(-B)-AEEXP(-G):
01736 IF ASS(Y2)< 1&-5 IHEN GOTO OUT:
01738 Y1 1-X*EXP(-B^X)-A EXP(-X* XeG):
01740 IF-ABS(Y1)) I&5 THEN GOTO OUT:
01741 Y_(Y1/YZ):
01742 YO_(1-K-A)/Y2:
31743 IF ABS(C)<.3 THEN GOTO OUT:C_I/C:CI_I/C1:
01744 YO-0:
O1745 IFYY<0.0001 ANO CIGCIGI THEM COTO OUT ELSEY:EYCCI-YO:
21750 IF Y>=0.0001 THEN Y:= Y'C-YO:
01770 GOTO XP:
01790 CB:
21800 Y X* (1+A* (1-X)* (X-8));
```



```
j1810 X\overline{P}:
01850 IF`J>0 THEN DASH((J-1;*2*2.J*3):
01700 ADRAW(X=100.Y*100):
01905 OUT:
02090 END:
O2050 END:
99000 FINISH:
09105
SKP:
END:
X I/P;
YO_O:
OUT:
END:
```


6RFRD. ALG

00100
00105
00200
00210
00250
00300
00350
00450
05425
00430
00440
00442
00445
00450
00455
00457 R R/100:
B1[J]: : 3*P\{[J]-i;
20465 GOTO CND:EXP:
00467 WRITE(N[C] PEAKS [B]");READ(PK[J]):
00470 A PK[J]/100:
00475 AT̄[J]_1:Ki[J]_B![J]_0:G1[J]_1/2/A/A:
$00477 \quad$ PK[J] $1:$

05485 CÑD:
00490 END:
00550 NEWLINE(2):
00600 START:
00650 COLJUR(1):
00700 TSIZE(.15..15):
00800 DSCALE (250.250.1):
00850 ORIGIN(10.20):
20900 AMOVE(10.0):
31000 ADRAW(10.140):
01025 AMOVE(-20,135):TEXT(NCUM. COST 100\% w):
01100 AMOVE(0.10):
01200 ADRAW(140.10):
01225 AMOVE(110.10):TEXT(N MONTHS 1008 "):
51260 AMOVE(5.110): ADRAW(130.110):
01270 AMOVE(110.5): ADRAW(110.130):
01300 AMOVE(0.0):
01320 ORIGIN(10.10):
$01330 \quad F i[0] \ldots 1 ; A 1[0]$ B1[0]_0:
01332 AMOVE(-20.115):
01334 IF Fi[1]=1 THEN TEXT("ALPHA BETA (X)PEAKg*) ELSE
01335 TEXT("A B G PK PEAKS INTCPT"):
01335
01337
$\begin{array}{llll}01337 & \text { IEXT(N } & \text { PN): } \\ 01340 \text { FOR JO UNTILN DO }\end{array}$
01340 FOR J_O UNTILN DO
01350 BEGIN
01350 BEGIN
01380 A_A1[J]: B_Bi[J];FEI[J]:
$01385 \quad G \quad G i[J] ; C^{-P K[J]: \bar{K} K I[J] ;}$
01387 IF ENTIER($\overline{\mathrm{F}})=\mathrm{C}$ THEN CI_C ELSEC1_2;
01390 IF $A=0$ THEN GOTO SKP:
01395 COLOUR(J):
01397 AMJVE(-35.110-J*10);
01398 TEXT("(n):TNUM(J.1.0);TEXT(")n):
01400 AMOVE(-25,115-J*10):
01405 IF B=O THEN SOTO RD:
01410 TNUM (A.1.2):
J1420 AMOVE(15.115-j*10):
01430 TNJM(B, 1,2):

```
01440 AMOVE(35,115-J:10):
0144j IFFEI THE:N GOTO CUB;
01444 RD:TEXT("EXP. PEAK&2n):
01445 TYJM(100/SQRT(2*G),3.1): GOTO SKP:
01450 AMOVE(5.115-J"10):
01455 TNUM(C.1.1):
01460 AMOVE(15,115-J*10):CUB:
IF G&OTHEN TNUM(100*(
01462 IF F=1 THEN GJTO SKP:
01464 AMOVE(20.105-J*10):
01465 TNUM(K1[J].1.2);
O1468 STop:
01470 AMOVE(-20,-20*(1+1.2*A*(-.2-8))):
01430 END
C1500 FOR I:=-.3*P UNTIL I.3*P DO
01500 BEGIN
J1650 IF I=0 THEN I_.01:
01700 X I/P: THEN GOTO CB:
01730 IF ABS(B*X)>90 OR ABS(G*X*X)>30 THEN GOTO OUT;
01734 Y2_1-K"EXP(-B)-A"EXP(-G):
01736 IF ABS(Y2)< 1&-5 THEN GOTO OUT:
J1738 Y1_1-K"EXP(-B*X)-A*EXP(-X*X*G):
01740 IF ABS(Y1)> 1&5 THEN GOTO JUT:
J1741 Y (Y1/Y2);
01742 Y号 (1-K-A)/Y2;
01743 IF-ABS(C)<.3 THEN GOTO OUT:C_1/C;C1_1/C1:
01744 YO O:
01745 IF-Y<0.0001 AND こ1*C1/1 THEN GOTO OUT ELSE Y:=Y^C1-YO;
01750 IFY>=0.0001 THEN Y:=Y^C-YO:
01770 GOTO XP;
01790 CB:
01800 Y_X*(1+A*(1-X)*(X-B)):
01305 Y- Y=(i+R)^I;
01805 齐Y
01850 IF J>0 THEN DASH(-(J-1)*2+2,J*3):
01900 ADRAN(X*100,Y*100);
01905 OUT:
02000 END:
02350 END:
09000 FINISH;
09100 END:
```


GRF2.ALG

```
00100 BEGIN
OO105 INTEGER CI:
00200 REAL YM,XM.B.C.P.I.R.N.J.F.G:
00210 REAL D,K,X,Y,YO,Y1,Y2,A;
00220 STRI:NG SC.VAL:
00250 REAL ARRAY A1,B1,PHI,G1,P1,F1,K1[0:4]:
O0300 EXTERNAL PROCEDURE START,DSCALE,AMOVE,ADRAN,FINISH,ALPHA;
OO350 EXTERNAL PRJCEDURE TNUM,CRIGIN,TSIZE,TEXT,DASH,COLOUR;
00370 WRITE(n z SCALE ? TYPEIN "N ..."n [B]n): READ(SC):
00375 P XM YM 100;
00380 I\overline{F}
00395 IF SE>E"Yn THEN GOTO SCALE;
OO390 NRITE("[C] XMAX,YMAX ? [B]"); READ(XM,YM);
00395 P XM:
00400 S\overline{CALE:}
O0425 WRITE:N[N] NO. OF PLOTS (MAX 4) = [B] N);READ(N);
00430 FOR J_I UNTIL N DO
00440 BEGIN
00442 WRITE("[C]1 (CUBIC) 2 (EXP) [B]"): READ(FI[J]):
30445 IF FI[J]=2 THEN GOTO EXP:
OO450 WRITE(n[C]A.PEAK [B]N);READ(A1[J],P1[J]);
00460 Bl[J]:=3"P1[J]-1;
00465 SOTO CND;EXP:
00467 WRITE("[C] PHI=[B]");READ(PHI[J]):
00470 dR+TE(n[C]A,K,B,G : FOR 1-K"EXP(-BX)-A*EXP(-GXX) [C]N):
CO475 READ(Al[J],Ki[J],B1[J],GI[J]):
00480 G_G1[J]:WRITE("[C] PEAK&= "): IF G:OTHEN WRITE("NONE ") ELSE PRINT(100/(2*G)^.5.3.2);
00485 CNTD
00490 END:
00500 NENLINE(2):
00600 START;
00650 COLJUR(1):
00700 TSIZE(.13..13):
00800 DSCALE(150.150..5):
00850 ORIGIN(0.25):
00900 amove(25.0):
01000 ADRAN(25,140):
01025 AMOVE(25.135):TEXT("COST n);
01050 TNUM(YM.3.0):TEXT(VAL):
01100 AMOVE(0,25):
0:200 ADRAW(140.25):
01225 AMOVE(125.25);TEXT("MONTHS n):
01250 TNUM(XM,3,0):TEXT(VAL);
01250 AMOVE(5.125): ADRAW(130.125):
01270 AMOVE(125.5): ADRAW(125.130):
01300 amJVE(0,0);
01320 ORIGIN(25.25):
01330 F1[0]_1;A1[0]_B1[0]_0:
01332 AMOVE(-20.105T.
01335 TEXT("A B G PHI PEAK& INTCPTN):
01340
01350
01350
01370
01380 A_AI[J]: B_Bi[J];F_Fi[J]:
01385 G-G1[J]; C-PHI[Jj;-KK1[J]:
01387 IF ENTIER(\overline{C})=C THEN C̄1_C ELSE C1_2:
O1390 IF J=O THEN GOTO SKP;
01395 COLOUR(J):
01397 AMOVE(-25,110-J:10):
01393 IFF=1 THE: TEXT("CUBIC:N) ELSE TEXT("EXPONENTIAL:"):
01400 AMOVE(-25,105-J*10);
```

01410 01420 01430 01440 01445 01450 31455 01460

TXUY (A, 1, 2):
AYOVEi-15.105-J*10):
TNUM(B,1,2):
A.YJVE $-5,105-\mathrm{J}$-10):

TNUM($6,1,2)$:
AMOVE(5,125-J 10):
TNUM(C.1.2):
AMOVE(15.105-J*10):
IF G=OTHEN TEXT("NONE*) ELSE TNUM(100/(2*G)".5.3.2):
AMOVE(20.105-J 10):
TNUM(K1[J],1,2):
SKP:
AMDVE(-20. $\left.-20^{*}\left(1+1.2^{*} A^{*}(-.2-B)\right)\right)$:
END:
FOR I: $=-$.2*P UNTIL 1.2*P DO
BEGIN
IF I=O THEN I_. 01 :
$X I / P$;
IF Fil THEN GOTO CB:
IF ABS(B*X)>30 OR ABS (G*X*X)>30 THEN GOTO OUT:
IF VALsnn THEN Y2 1 ELSEY2 $1-K * E X P(-B)-A * E X P(-G)$:
IF ABS (Y2) < $13-5$ IHEN GOTO JUT:
$Y 1 _1-K * E X P(-B * X)-A * E X P(-X * X * G)$;
IF ABS (Yו) $1 \& 5$ THEN GOTO OUT:
$Y(Y 1 / Y 2):$
IF ABS $(C)<, 3$ THEN GOTO OUT:C_1/C;C1_1/C1:
IF Y<0.0001 AND C1"C1 1 THEN GOTO OUT ELSE Y: EYaC1:
$I F Y\rangle=0.0001$ THEN $Y:=Y^{\wedge} C$:
Y_YM"Y/100:
GЈTTO XP:
CB:
$X \quad I / P$;
$Y^{-} X^{-}\left(1+A^{-}(1-X)=(X-B)\right):$
$X \bar{P}$:

ADRAW(X*100.Y•100):
OUT:
END:
END:
FINISH:
END:

GRFSL.ALG

00100
00105 00200 00210 00220 00250 00300 00350 00370 00375 00377 00380 00385 00390 00395 05400 00425 00130 00440 00442 00445 00450 00465 00467 00470 00485 00490 00500 00600 00650 00700 00800 00850 00900 01000 01025 01050 01100 01200 01225 01250 01260 01270 01300 01320 01330 Fi[O] 1:Ail(O) 01332 AMOVE $(-20,105)$: 01335 TEXT("A E PEAK n); 01340 FOR J_ UNTIL N DO 01350 BEGIN $^{-}$

BEGIN
INTEGER C1;
REAL YM,XM,B,C,P,I,R,N,J,F,G;
REAL D,K,X,Y,YO,Y Y,Y2,A;
SZRING SC.VAL:
REAL ARRAY A1, B1, PHI,G1, P1, F1,K1[0:4]:

SC ${ }^{\prime \prime} \mathrm{Yn}^{\prime \prime}$
P $\bar{X} M$ 100:
$\bar{Y} \bar{M}-1 \overline{50}:$

IF SC> ="Y" THEN GOTO SCALE:
WRITE("[C] XMAX,YMAX ? [B]"); READ(XM,YM);
P_XM;
SĒALE:
FOR J_i UNTIL N DO
BEGIN
IF Fi[J]â THEN GOTO EXP:
WRITE("[C]A, PEAK [B]");READ(A1[J],GI[J]):
GOTO CND:EXP:
WRITE("[C] PEAK=[B]n);READ(G1[J]):
A1[J]_B![J]_O;
CND:
END:
NEWLINE(2):
START:
COLOUR (1):
TSI2E(.15..15):
DSCALE(150.150..5):
ORIGIN(0.25):
AMOVE $(25,0)$:
ADRAW(25.140): TNUM (YM. 3,0); TEXT (VAL):
AMOVE (0,25):
ADRAW(140.25):
AMOVE(125.25):TEXT("MONTHS *):
TNUM (XM, 3.0): TEXT (VAL):
AMOVE $(5,125)$: ADRAW (130.125):
AMOVE(125.5): ADRAW(125.130):
AMOVE(0.0);
ORIGIN(25,25):
Fi[0]_1;A1[0]_B1[0]_0;
TEXT("A E B
FOR J 1 UNTIL N DO

EXTERNAL PROCEDURE START, DSCALE, AMOYE, ADRAW,FINISH,ALPHA:
EXTERNAL PROCEDURE TNUM,ORIGIN.TSIZE, TEXT,DASH, COLOUR;

WRITE("[N] NO. OF PLOTS (MAX 4) = [B] ${ }^{(M)}$) READ(K):

WRITE("[C] (CURIC) 2 (EXP) [B]"): READ(FI[J]);

AMOVE(25,135):TEXT(NCOST\% (y\%) AND PERIOD COST (dy/dx) n):

```
01360 BEGIN
01370 IF J=0 THEN F_1;
01375
01330
01382
01385
01387
01390
01395
01397
01398
01400
01410
01420
01430
01440
01445
01468
01470
01480
01500
01600
01650
01705
01720
01730
IF ABS(B*X)>80 OR ABS(G*X*X)>80 THEN GOTO OUT:
01734 IF VAL="" THEN Y2_1 ELSE Y2,1-EXP(-1/2/G/G):
01736 IF ABS(Y2)< 1&-5 THEN GOTO OUT;
01738 Y1_X/G/G*EXP(-X*X/G/G/2):
01740 IFABS(Y1)> 185 THEN GOTO OUT;
01741 Y_(Y1/Y2);
01742 GÖTO XP;
01743 IF ABS(C)<.3 THEN GOTO OUT;C_1/C;CI_1/CI;
01745 IF Y<0.0001 AND C1*C1/1 THEN-GOTO OUT ELSE Y: &Y^C1;
01750 IF Y>=0.0001 THEN Y: =Y^C;
01790 CB:
01795 X_I/P;
01800 Y-1-3*A*X`2+6*A*G*X-A*(3*G-1); -
01810 X\overline{P}:
01850 IF J>0 THEN DASH((J-1):2+1.J*3):
01900 ADRAW(X*100.Y*100/1.5):
01905 OUT:
02000 END:
02350 END:
09000 FINISH:
09100 END:
BBI[J];
A-Al[J];
FF1[J]:
G-Gi[J]:
IFF=1 THEN BG*3-1;
IF J=O THEN GÖTO SKP;
COLOUR(J):
AMOVE(-25,110-J*10):
If F=1 then text("CuBIC:") Else text("Exponential:");
AMOVE(-25,105-J*10):
TNUM(A,1,2);
AMOVE(-15,105-J*10):
TNUM(B,1,2):
AMOVE(-5,105-J*10):
tnum(G.1.2):
SKP:
AMOVE(-20,-20*(1+1.2*A*(-.2-B)));
END:
FOR'I:=-.2*P UNTIL 1.2*P DO
FOR 1:=-.2*P UNTIL 1.2*P DO
BEGIN
IF I=O THEN I_.01:
XI/P;
IF F=i THEN GOTO CB;
CB:
    XP
    OUT:
    END:
```


GRFRS.ALG

```
00100 BEGIN
00105 INTEGER C1;
00200 REAL B,C,P,I,R,N,J,F,G;
00210 REAL D,K,X,Y,YO,Y1,Y2,A;
00250 REAL ARRAY A1,B1,PK,G1,P1,F1,K1[0:4]:
OO300 EXTERNAL PROCEDURE START,DSCALE,AMOVE,ADRAN,FINISH,ALPHA:
OO350 EXTERIGAL PROCEDURE T:IUIA,ORIGIN,TSIZE,TEXT,DASH,COLOUR;
00400 P 100:C 1000:
00425 W\overline{RITE("TN] NO. OF PLOTS (MAX 4) = [B] ");READ(N);}
OO430 FOR J_1 UNTIL N DO
O0440 BEGIN
00442 WRITE("[C]1 (CUBIC) 2 (EXP) [B]"): READ(F1[J]);
00445 IF Fi[J]=2 THEN GOTO EXP:
00450 WRITE("[C]A,PEAK [B]"):READ(A1[J],P1[J]):
00455 R 0:
00457 R R/100;
00460 BT[[J]:=3*P1[J]-1;
CJ465 GOTO CND:EXP:
00467 WRITE("[C] PEAK& [B]"):READ(PK[J]):
00470 A PK[J]/100;
00475 AT}[J]_1;Ki[J]_B1[J]_0:G1[J]_1/2/A/A:
0)0477
00480
00485
00490
00500
00600
00650
00700
00300 DSCALE(250.250.1):
00950 ORIGIN(10.20):
00300 AMOVE(10.0);
01000 ADRAW(10,140);
01025 AHOVE(-20.135);TEXT("CUY. COST 100% m);
01100 AMOVE (0,10):
01200 ADRAW(140,10):
01225 AMOVE(110.10):TEXT(" MONTHS 100% "):
01260 AMOVE(5,110): ADRAW(130,110):
01270 AMOVE(110.5): ADRAW(110.130);
01300 AMOVE(0.0);
01320 ORIGIN(10.10):
01330 F1[0]_1;A1[0]_B1[0]_0;
01332 AMOVE(-20,115):
01334 IF F1[1]=1 THEN TEXT("ALPHA BETA (X )PEAKg") ELSE
01335 TEXT("A B G PK PEAK% INTCPT*):
01336 AMOVE(-20.113);
01337 TEXI(" PN):
0i340 FOR J_O UNTILN DO
O1350 BEGIN
O1350 BEGIN
01380 A_Al[J]: B_B1[J];F_F9[J]:
01335 G-G1[J]; C-PK[J]; \overline{K}K1[J];
01387 IF ENTIER(要)=C THEN`C1_C ELSE Ci_2;
01390 IF A=0 THEN GUTO SKP:
O1395 COLOUR(J):
01397 AYOVE(-35.110-J*10);
01393 TEXT("(");TNU:I(J.9,0):TEXT(")");
    01400 AMOVE(-25,115-j*10);
    01405 IF B=O THEN SOTD RD;
    01410 TNUM(A,1,2);
    O1420 AMOVE(15,115-J*10):
    01430 TNUM(B,1,2):
```

```
01440 AMOVE(35.115-J*10):
01443 IF F=1 THEN GOTO CUB;
01444 RD:TEXT("EXP. PEAK:xn):
01445 TNUM(100/SORT(2*G).3.1): GOTO SKP;
01450 AMOVE(5.115-J*10):
01455 TNUM(C.1.1):
01460 AMOVE(15,115-J*10):CUB:
01461 IF G=OTHEN TNUM(100*(B+1)/3.3.1) ELSE TNUM(100/(1*G)^.5.3.1):
01462 IF F=1 THEN GOTO SKP:
01454 AMOVE(20.105-J*10):
01455 TNUM(K1[J],1,2):
01468 SKP:
01470 AMOVE(-20,-20*(1+1.2*A*(-.2-B))):
01430
01500
01600
01650
01700
01720
IF ABS(B*X)>80 OR ABS(G*X*X)>80 THEN GOTO OUT:
01734 Y2_1-K*EXP(-B)-A*EXP(-G):
01736 IF-ABS(Y2)< 1&-5 THEN GOTO OUT:
01738 Y1_1-K*EXP(-B*X)-A*EXP(-X*X*G);
01740 IF-ABS(Y1)> 1&5 THEN GOTO OUT:
01741 Y (Y1/Y2):
01742 Y0_(1-K-A)/Y2;
01743 IF-ABS(C)<.3 THEN GOTO OUT:C_1/C;C1_1/C1;
01744 YO 0;
01745 IF`Y<0.0001 AND CI*C1/1 THEN GOTO OUT ELSE Y:=Y^CI-YO:
01750 IF Y> =0.0001 THEN Y: IY^C-YO;
01770 GOTO XP:
01790 CB:
01800 Y_-3*A*X*X+2*(1+B)*A*X+1-A*B;
01805 Y-Y* (1+R) I I;
01810 X\overline{P}:
01850 IF J>0 THEN DASH(- (J-1)*2+2.J*3):
01900 ADRAW(X*100.Y*100):
01905 OUT:
02000 END:
02350 END:
09000 FINISH;
09100 END:
```

01335 01340 01350 01360 01370 01380 01385 01390 01395 01397 01398 01400 01410 01420 01430 01440 01445 01450 01455 01460 01465 01468 01470 01430 01500 01600 01650 01700 01720 01730 01740 01742 01743 01745 01750 01755 01760 01770 01790 01800 01810 01850 01900 02000 02350 09000 09100

```
ITEXT("A B G PHI PEAK"):
FOR J_O UNTIL N DO
BEGIN
BEGIN
NEWLINE(2):
A Al[J]: B Bl[J];F Fi[J]:
G-GI[J]: C-PHI[J]:
IF J&O THEN GOTO SKP:
ICOLOUR(J):
|AMOVE(-25,110-J*10):
IF F=1 THEN !TEXT("CUBIC:") ELSE ITEXT("EXPONENTIAL:");
!AMOVE(-25,105-J*10):
ITNU:1(A,1,2)
! AMOVE(-15,105-j*10):
!TNUM(B,1.2)
1AMOVE(-5.105-J*10):
ITNUM(G,1,2);
!AMOVE(5.105-J*10):
!TNUM(C,1,2):
!AMOVE(15,105-j*10):
ITNUM(P1[J],1,2):
SKP:
!AMOVE(-20,-20*(1+1.2*A*(-.2-B))):
END:
FOR I:x-.2*P UNTIL 1.2*P DO
BEGIN
IFI=O THEN I_.01:
X I/P:
IF F=I THEN GOTO CB;
C 1/C;
YT 1-({-A)*EXP(-B*X)-A*EXP(-X*X*G):
WRITE("[C]I[6S] X[6S] Y1 [6S] Y1~C[C]");SPACE(3): PRINT(I,2,1): SPACE(3): PRIUT(X
SPACE(3);PRINT(Y1): SPACE(3);PRINT(Y1^C):
Y1_Y1^C:
Y2-1-(1-A)*EXP(-B)-A*EXP(-G):
Y2-Y2*C:
Y Y 1/Y 2:
GOTO XP:
CB :
Y X ( 1 + A ( (1-X)* (X-B)):
X\overline{P}
IF J>0 THEN IDASH((J-1)*2+1,J*3):
IADRAW(X*100.Y*100):
END:
END:
IFINISH:
END:
```


GRFTST. ALG

00100
00200
00250
00300
00350
00400
00425
00430 00440
00442
00445
00450
00460
00465
00467
00470
00475 00480 00485
00490 00500 00600 00550 00700 00300 00850 00900
01000
01025
01100
01200
0122
01260
01270
01300
01320
01332

```
BEGIN
REAL X,Y,Y , Y2,A,B,C,P,I,R,N,J,F,G:
REAL ARRAY A1,B1,PHI.G1,P1,F1[0:4]:
IEXTERNAL PROCEDURE START,DSCALE,AMOVE,ADRAW,FINISH,ALPHA:
IEXTERNAL PROCEDURE TNUM,ORIGIN,TSIZE,TEXT,DASH,COLOUR;
PC 100:
W\overline{RITE("[N] NO. OF PLOTS (MAX 4) = [B] ");READ(N):}
FOR J_1 UNTIL N DO
BEGIN-
WRITE("[C]1 (CU3IC) 2 (EXP) [B]"): READ(F\[J?);
IF F1[J]=2 THE: GOTJ EXP:
#RITE("[C]A,PEAK [B]");READ(AI[J],P{[J]):
B1[J]:=3*P1[J]-1:
GOTO CND;EXP:
WRITE("[C] PHIz[B]");READ(PHI[J]):
WRITE("[C]A,B,PEAK: FOR 1-(I-A)EXP(-BX)-A*EXP(-GXX) [C]*);
READ(A![J],B1{J],G):
G1[J]_1/2/G/G;WRITE("[C]GzN);PRINT(G1[J],2.3);
P![J]_G:CND:
END:
NEWLINE(2):
:START:
ICOLOUR(1):
ITSIZE(.15..15):
!DSCALE(150.150.1):
IORIGIN(0.25):
!A:1OVE(25.0):
IADRAW(25,140):
!AMOVE(25.135);!TEXT("COST 100% n):
IAMOVE(0.25):
IADRAW(140.25):
IAMOVE(125,25):!TEXT(MMONTHS 100% n):
IAMOVE(5,125): IADRAW(130.125):
IAMOVE(125.5); IADRAW(125.130):
!AMOVE(0.0):
1ORIGIN(25,25):
Fi[0] 1;A1[0] B1[0]_0;
! AMOVE(-20,105):
```


GRFI.ALG

00100 BEGIN
00105 INTEGER C1:
00200 REAL B,C,P,I,R,N,J,F,G;
00210 REAL D,K,X,Y,YO,Y1,Y2,A:
00250 REAL ARRAY A1, B1, PHI,G1,P1,F1,K1[0:4]:
00300 EXTERNAL PROCEDURE START, DSCALE, AMOVE, ADRAW, FINISH, ALPHA;
JO350 EXTERNAL PROCEDUSE TNUM,ORIGIN,TSIZE,TEXT,DASH,COLOUR:
0C400 P 100; C 1000:

00430 FOR J_I UNTIL N DO
00440 BEGIN ${ }^{-}$
00442 WRITE("[C]1 (CUBIC) 2 (EXP) [B]"): READ(Fi[J]):
00445 IF FI[J]=2 THEN GOTO EXP:
00450 URITE("[C]A, PEAK OB]"):READ(AI[J],Pi[J]):
00455 R_0:
00457 R-R/100:
00450 BīगJ]:=3*P1[J]-1:
20465 SOTO CND:EXP:
00467 WRITE("[C] PHIx[B]"):READ(PHI[J]):
00470 सRITE("[C]A,K,B,G:FOR 1-K"EXP(-BX)-A*EXP(-GXX) [C]n):
20475 READ(Al[J],Ki[J],Bi[J],Gi[J]):
00480 GGi(J]:WRITE("[C] PEAK\% = "): IF GaOTHEN WRITE("NONE ") ELSE PRINT(100/(2*G)^.5.3.2):
00435 CN̄D:
00490 END:
00500 NENLINE(2);
00600 START;
00550 COLOUR(1):
30700 TSI2E(.15..15):
00800 DSCALE(300.300.1):
00850 ORIGIN(0.10):
00900 amove(10.0):
01000 ADRAN(10.140):
01025 AMOVE(10.135):TEXT(" COST 100\% n):
01100 AMOVE(0.10):
01200 ADRAW(140.10):
01225 AMOVE(110.10):TEXT(" MONTHS 100\% n):
01250 amOVE(5.110); ADRAW(130.110);
01270 AMOVE(110.5): $\operatorname{ADRAW}(110.130)$:
01300 amove(0.0);
01320 ORIGIN(10.10):
01330 Filo] 1;Ai[0]B1[0]_0:
01332 AMOVET-20.115):
01334 IF Fi[1]=1 THEN TEXT("ALPHA BETA (X)PEAK\&") ELSE 01335 TEXT("A B G PHI PEAK: INTCPT"):
01336 amove(-20.113):
01337 TEXT(n pn):
01340 FOR J_O UNTIL N DO
01350 BEGIN $^{-}$
01360 BEGIN
01380 A_Al[J]: B_Bi[J]:F_Fi[J]:
$01325 \mathrm{G}^{-} \mathrm{G} 1[\mathrm{~J}]: \mathrm{C}^{-}$PHI[J]: $\mathrm{K}^{-K 1(J) ;}$
01387 IF ENTIER($\bar{C})=C$ THEN $\overline{\mathrm{C}} 1 _$C ELSE C1 2:
01390 IF $A=0$ THEN GOTO SKP:
01395 COLOUR(J):
01397 amove ($-35,110-\mathrm{J} * 10$):
01398 TEXT("("):TNU: (J.1.0):TEXT(")"):
01400 AMOVE(-25,115-Ji0):
31410 tnum(a, 1, 2):
01420 A:1OVE(15,115-J*10):
01430 TNUM(B, 1, 2);
01440 AMJVE(35.115-J*10);
01443 IF F=1 THEN GJTO CUS:

01445 01450 01455 01460 01461 01462 01464 01465 01468 01470 01490 01500 01600 01650 01700 01720 01730 01734 01735 01738 01740 01741 01742 01743 01744 01745 01750 01770 01790 01800 01305 01810 01850 01900 01905 02000 32350 09000 09100

```
TNUM(G,1,1):
AMOVE(5,115-J*10):
TNUM(C,1,1):
AMOVE(15,115-J*10):CUB:
    IF G=OTHEN TNUM(100*(B+1)/3.3.1) ELSE TNUM(100/(1*G)^.5.3.1):
IF F=1 THEN GOTO SKP:
AMOVE(20.105-J*10);
TNUM(K1[J],1,2):
SKP:
AMOVE(-20.-20*(1+1.2*A*(-. 2-B))):
END:
FOR I:z-.2*P UNTIL 1.2*P DO
BEGIN
IF I=0 THEN I_.01:
X I/P;
I\overline{F}F=I THEN GOTO CB;
IF ABS(B*X)>30 OR ABS(G*X*X)>80 THEN GOTO OUT:
Y2 1-K"EXP(-B)-A"EXP(-G);
IF-ABS(Y2)< 1&-5 THEN GOTO JUT:
Y1 1-K"EXP(-B*X)-A*EXP(-X*X*G);
IF-ABS(Y1)> 1&5 THEN GOTO OUT:
Y_(Y1/Y2):
YO (1-K-A)/Y2;
IF-ABS(C)<.3 THEN GOTO OUT;C_1/C;C1_1/C1;
YO_O:
IF-Y<0.0001 AND C1*CI#1 THEN GOTO OUT ELSE Y:=Y^C1-YO:
IF Y>=0.0001 THEN Y: =Y^C-YO:
GOTO XP:
CB:
Y_X*(1+A*(1-X)*(X-B));
Y-Y*(1+R)~I;
XP
IF J>O THEN DASH((J-1)*2+2.J*3):
ADRAW(X*100.Y*100):
OUT:
END:
END:
FINISH:
END:
```


GRF.ALG

00100 00200 00250 00300 00350 00400 00425 00430 00440 00450 30450 00480 00500 00500 00650 00700 00300 05950 00900 01000 01025 01050 01100 01200 01225 01250 01260 01270 01300 01320 01330 01332 01335 01340 01350 01360 01380 01390 01395 01400 01410 01420 01430 01460 01470 01480 01500 01500 01700 01800 01810 01815 01820 01850 IF F 人 O THEN DASH $((J-1) * 2+1 . J * 3)$; $01875 \quad X \quad X / 100 ; Y$ Y/100; 01900 ADRAW (X*100,Y*100): 01950 OUT: 22000 END: 02350 END: 09000 FINISH: 09100 END:
BEGIN
REAL YY,X,Y,A,B,C,P,I,R,N,J;
REAL ARRAY A1, B1[0:4]:
WRITE("XMAX,YMAX [B]N);READ(P,C);
WRITE(N[N] NO. OF PLOTS (MAX 4) = [B] $)$ iREAD(N):
FOR J_I UNTIL N DO
BEGIN
ARITE("[C]A,B[B]"):READ(A1[J],B1[J]):
END:
NEWLINE(2):
START:
COLOUR(1):
TSIZE(.25..25):
DSCALE(150.150..5):
ORIGIN(0.25):
AMOVE(25.0):
ADRAW(25,140):
AMOVE(25,130):TEXT("COST"):
TNUM(C.8.0):
AMOVE 0.25$)$:
ADRAW(140.25):
AMOVE(125.25):TEXT("WEEKS"):
TNUM (P, 3,0):
AMOVE(5,125): ADRAW(130.125):
AMOVE(125.5): ADRAW(125.130):
AMOVE (0.0):
ORIGIN(25.25):
A![0]_B![0]_0:
AMOVE(-20,105):
TEXT("A B"):
FOR J_O UNTIL N DO
BEGIN ${ }^{-}$
BEGIN
A_A1[J]: B_B1[J];
I $\bar{F} A=0$ THEN GOTO SKP:
COLOUR(J):
AMOVE(-25,105-J*10):
TNUM (A, 1, 2):
AMOVE(-10.105-J*10):
TNUM(B-1,2);
SKP:
AMOVE (-20. $\left.-20 *\left(1+1.2 * A^{*}(-.2-B)\right)\right)$:
END:
FOR I: =-.2*P UNTIL 1.2*P DO
BEGIN
IF I< 5 THEN X:ء6 ELSE X: $\mathrm{I}:$
Y: = (1-EXP (-An $\left.\left.2 / X^{n} 2 / 2\right)\right):$
Yi: $=\left(1-E X P\left(-B^{\wedge} 2 / X^{\wedge} 2 / 2\right)\right)$:
IF Y1<1\&-2OTHEN GOTO OUT:
Y $\mathbf{Y} / \mathbf{Y} 1$;
$X-X / 100 ; Y Y / 100 ;$
$A D R A W(X: 100, Y * 100):$
OUT:
FINISH:
END:
EXTERNAL PROCEDURE START, DSCALE, AMOVE, ADRAN,FINISH,ALPHA:
EXTERNAL PROCEDURE TNUM,ORIGIN,TSIZE,TEXT.DASH, GOLOUR;

Bromilou, F.J.	Measurement \& Scheduling of Construction Time and Test Performance in the Building Industry.	Division of Building Research CSIRO Melbourne 1972
$\begin{aligned} & \text { Beaven, L. \& } \\ & \text { Dry, D. } \end{aligned}$	Architect's Job Book	RIBA 1977
Booley, M.	The British Construction Industry	Cambridge 1976 University Press
Barrie, D.S. Paulson, B.C. Jr.	Professional Construction	McGrav Hill 1978
Bathurst, P.E. \& Butler, D.A.	Building Cost Control Techniques and Economics	Heinemann 1980
Barton, P.K.	Co-ordinating Services Subcontractors: a systems approach	Building Tech. \& Man. March 1979
CIB	Procedures of W-65 Symposium on Organisation and Management of Construction	May 1976
Burger, A.M. \& Halpin, D.W.	Organisational Concepts for Control of Large Construction Projects	IV 96
Burger, A.M. \& Halpin, D.W.	Application of Data Base Methods to complex Project Control	$\text { III } 42$
Peer Shlomo	A Model for Forecasting Construct Cost Flow	$\text { tion IV } 164$
Peer Shlomo \& Shlomo Selinger	CPT - New Approach to Constructio Planning	on IV
Orr, W.R.	Cost and Time through Historical Models	III 182
Ragade R.K. \& Handa, V.K.	Management Information Systems for Construction	IV 209
Chartered Institute of Building	Project Management in Building	CIOB Occacional Paper No. 201979
Chartered Institute of Building	Construction Management in Building present and future	CIOB 1965
DHSS	Capricode	

DHSS	Expenditure Forecasting Method	Surveying Div. 1977
Hudson, K.W.	DHSS Expenditure Forecasting Method	Chartered Quantity Surveyor
Fisk, E.R.	Construction Project Administration	Wiley, 1978
Foxhall, W.B.	Professional Construction Management and Project Administration	The American Institute of Architects 1976
Franks, J.	Project Management Series	Building Trades Journal 1976
Gill, P.G.	Systems Management Techniques for Contractors	
Graves, F.C.	Managing the National Exhibition Centre	Hoop.Eng. 1977
Graves, F.C.	Management of a Construction Project	Paper to RICS Annual Conference 1976
Glen, R.	Project Management	Pitman, 1981
Howes, R.	The Use of the Computer as an Aid to the Medium Sized Building Contractor	CNAA 1977
$\begin{aligned} & \text { Howes, R. \& } \\ & \text { Berny, J. } \end{aligned}$	Project Management Control using real time budgeting and forecasting models, with particular reference to the Building Industry	$\begin{aligned} & \text { CIOB Research Paper } \\ & 1983 \end{aligned}$
Howes, R.	Management Contracting	Mogul International Conference February 1983
Hollins, R.J.	Production and Planning Applied to Building	Godvin, AOP
IQS	Project Management: A Reviev of the State of the Art	1976
Kerzner, H.	Project Management: A Systems Approach to Planning and Scheduling	
Loomba, N.P.	Management - A Quantitative Perspective	Collier MacMillan 1976
ICI	Mathematical Trend Curves An Aid to Forecasting	ICI 1980
Martin, W.R.	Network Planning for Building Construction	Heinemann 1967

Moxley, R.	Alternative Method of Management	Building, January 1978
NEDO	How Flexible is Construction Study of resources and participants in the Construction Process	HMSO 1978
NEDO	The Public Client and the Construction Industries	1975
NEDO	The Professions in the Construction Industries	1976
National Building Agency	Project Co-ordination: The pre contract planning and control of buildings	NBA
Parkin, A.O.	Systems Management	Arnold 1980
Paterson, J.	Information Methods	J. Wiley 1977
Penn, H.	Co-ordination of Mechanical and Engineering Services	Building Technology and Management December 1978
Putnam, A.O.	Management Information Systems	Pitman 1980
Putnam, L.H.	Quantitative Software Management	QSM Inc. 1979
R.I.B.A.	Plan of Work	1972
R.I.B.A.	The Architect and His Office	1976
R.I.B.A.	Resource Control	1976
Report No. 4	Computer Programs for Construction Management	Design Office Consortium 1979
```Reynolds, W.A. & Coates, J.B. Rodham, G.```	Cost Control for Production   Management   Construction Monitoring Techniques	Building 1970
Scurry, P.	Contract Planning	HVRA 1974
Scurry, P.	Features of Site Work Control Systems	TN4/77
Silverman, M.	Project Management (Series)	J. Wiley, 1976
Tricker, R.J.	Management Information and Control Systems	J. Wiley, 1976


Teets, R.L.	Profitable Management for   the Subcontractor	McGraw Hill 1976
Vincent, G.	How to Integrate M. \& E.   Services	Building Technology   and Management   February 1978
Webster, J.	Office to Site Communication   A Survey	HVRA 1972


[^0]:    (1) Bromilow, F.J. Measurement and Scheduling of Construction Time and Test Performance in the Building Industr.y. Division of Building Research. CSIRO, Melbourne 1972

[^1]:    (1) DoE Housing and Construction Statistics

    HMSO 1982 New orders obtained by contractors: by value range

[^2]:    Figure 17 Prediction of Project Duration at 33\% Completion or at Month 5

[^3]:    6.5.1 Case D

    The Office and Commercial Centre was the result of a joint venture between a private client and the local

    Borough Council. The design vas seriously protracted due to Toun and Country Planning objections which required
    several alterations to the basic structure. The

[^4]:    A=ACTUAL P=FORECAST S=IDENTICAL 'VALUES'
    --G-- SWITCH TO GAMMA

[^5]:    \#

[^6]:    
    
    $\mathrm{N}+1$
    $\mathrm{H}+\mathrm{H}$
    H
    RINT ENT OF REFORTING FROCEIURE：
    FRINT－－$F$ ININFRINI VFRINTIFRINT
    IF R＞A GOTO 42100
    GOIO 99999 ．TKP•
    告
    

