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ABSTRACT 

Using the method of matched asymptotic expansions the reflection and transmission coefficients 

are calculated for scattering of oblique water waves by a vertical barrier. Here an assumption is made 

that the barrier is small compared to the wavelength and the depth of water. 

A number of sloshing problems are considered. The eigenfrequencies are calculated when a 

body is placed in a rectangular tank. Here the bodies considered are a vertical surface-piercing or bot- 

tom-mounted barrier, and circular and elliptic cylinders. 

When the body is a vertical barrier, the eigenfunction expansion method is applied. When the 

body is either a circular or elliptic cylinder, and the motion is two-dimensional, the boundary element 

method is applied to calculate the eigenfrequencies. For comparison, two approximations, "a wide- 

spacing", and "a small-body" are used for a vertical barrier and circular cylinder. In the wide-spacing 

approximation, the assumption is made that the wavelength is small compared with the distance 

between the body and walls. The small-body approximation means that a typical dimension of the 

body is much larger than the cross-sectional length scale of the fluid motion. 

For an elliptic cylinder, the method of matched asymptotic expansions is used and compared 

with the result of the boundary- element method. Also a higher-order solution is obtained using the 

method of matched asymptotic expansions, and it is compared with the exact solution for a surface- 

piercing barrier. Again the assumption is made that the length scale of the motion is much larger than 

a typical body dimension. 

Finally, the drift force on multiple bodies is considered. The ratio of horizontal drift force in the 

direction of wave advance on two cylinders to that on an isolated cylinder is calculated. I'lie method 

of matched asymptotic expansions is used under the assumption that the wavelength is much greater 

than the cylinder spacing. 
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CHAPTER 1 

INTRODUCTION 

The behaviour of water waves is familiar from everyday experience. For example, when oil or liquid 

natural gas is carried by ships it will slosh within its container, and this may affect the ship's stability. 

Sloshing of liquid propellents in space craft and missiles can also cause stability problems. It is there- 

fore desirable to avoid external excitationat the sloshing frequencies of the container by suitable 

choice of its dimensions. Here I will calculate the natural small-amplitude frequencies, and not the 

amplitude of the sloshing motions for which viscosity and non-linearity are both importanL Hence the 

theory of linear water waves is applied, as described by several authors, for example Milne-Thomson 

(1968, pp. 426-428). 

In linear theory, we neglect viscosity, compressibility and surface tension. The effects of air 

movement in the atmosphere, too, will be neglected, being replaced by a uniform pressure, po on the 

upper surface of the water. With these assumptions, the velocity vector V(x, y, z, r) satisfies 

curl V=0, 

and so 

V= Vd), 

where Cartesian co-ordinates (x ,y, z) are chosen with x, z horizontal in the undisturbed free surface 

and y vertically upwards, and (D is a velocity potential. The equation of continuity 

V. V=O, 
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implies that 

V'(D = 0, 

where 

2 l a 

- + + -. 
2 2 2 ax ay DZ 

(1.1) 

The pressure on the surface derived from Bernoulli's equation for unsteady potential flow is 

given by 

a(D 
+ 

Po 
+I IV2 I+ gy = F(t) (1.2) 

at p2 

on the surface y= rl. Here p is a fluid density and g the acceleration due to gravity. For small ampli- 

tude waves, we neglect 
IV2 

as a small term; and we may take F(t) and 
LO 

into the potential (D, 
2P 

where they do not affect any velocities. This leaves us with 

(+ 
grl 

at 
Y-R 

Since r7 is small we use Taylor's theorem to approximate the first term by its value at y=0. The 

boundary condition is thus taken to be 

(+ 
977 =0 - at Y-0 
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Also there is a relation between surface motion and fluid velocity which states that free surface parti- 

cles remain in the free-surface. TWs the full non-linear condition is 

a17 
_DI7-Wal7=0, at ax äz 

where V= (u, v, w). Now We linearise this equation to give 

DR a(D 

at 

(ay 

() 

again evaluated at y=0. From both of conditions, q can be eliminated to give 

a2 a) 
+g 

D(D 
=O, on y=O. 

j), 2 Dy 

For time-harmonic motions of angular frequency o) we write 

(P(x , y, z, t) =Re 
( 

O(x ,y, z) e -iwt ), 

and 

i7(x ,z, t)= Re 
( 

q(x , z) e -iwt ), (1.5) 

where Re stands for the real part with respect to i. We then have the boundary-value problem 

v'o = 
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in the fluid, and the free-surface condition is given by substituting equation (1.4) into (1.3) resulting 

in 

LO=KO 
on Y=O, 

ay 

2 

where K -0. For water of constant depth h, the condition of no vertical motion at the bottom is 
9 

'10 
=0 on y=-h. 

ay 
(1.8) 

If we consider simple two-dimensional solutions of these equations describing propagating 

waves of amplitude A such that 

e= 

the corresponding velocity potential is 

(1.9) 

! gA cosh k(y + h) 
e 
ikx (1.10) 

w cosh kh 

provided the real positive wavenumber k satisfies 

2 
6) 
-=K=k tanh kh 
9 

(I. 11) 

i. e. the dispersion relation. Depending on the fluid geometry considered, the potential may have to 
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satisfy a radiation condition in addition to the above. 

The thesis is divided into five further chapters. In chapter 2 the scattering of oblique waves by a 

vertical barrier is considered, the barrier may be either surface-piercing or bottom-mounted. Under 

the assumption that the barrier is small compared to the wavelength and the depth of the water, the 

method of matched asymptotic expansions is applied to obtain approximations to the reflection and 

transmission coefficients. 

In chapters 3 and 4, a number of sloshing problems are considered involving a vertical rectangu- 

lar tank containing various bodies. The bodies considered are vertical surface-piercing and bottom- 

mounted barriers, and circular and elliptic cylinders. 

In chapter 3, the eigenfunction expansion method is applied for the case of a vertical barrier. For 

a circular or elliptic cylinder, the boundary element is applied to obtain the eigenfrequencies. For 

comparison, wide-spacing and small body approximations are applied for a circular cylinder or for a 

vertical surface-piercing barrier. The wide-spacing approximation assumes that the wavelength is 

small compared with the distance between the body and walls. The small body approximation means 

that a typical dimension of the body is much smaller than the cross-sectional length scale of the fluid 

motion. In the wide-spacing approximation, the results for the eigenfrequencies involve the reflection 

coefficient. In the case of the surface-piercing barrier, this reflection coefficient was obtained in chap- 

ter 2. 

In chapter 4, using the method of matched asymptotic expansions, the lowest-order solution for 

the eigenfrequencies is obtained in terms of the cross-sectional area and dipole strengths of an arbi- 

trary shaped body. Here the assumption is made that the length scale of the motion is much larger 

than a typical body dimension. A higher-order solution is difficult for an arbitrary shaped body. 
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Therefore only a circular cylinder or a vertical surface-piercing barrier is considered to obtain a 

higher-order solution. When a body is either a circular or elliptic cylinder, the lowest-order solution is 

compared with the solution of the boundary-element method in chapter 3. When a body is a vertical 

- surface-piercing barrier, the Wghest-order solution is compared with the solution by the eigenfunction 

expansion method of chapter 3. 

Chapter 5 contains results for the theories of chapters 3 and 4. Comparisons are made for differ- 

ent body geometries, and water depths. 

Chapter 6 is concerned with the drift force on multiple bodies. Maruo (1960) and Newman 

(1967) obtained a formula for the mean horizontal drift force in the direction of wave advance. Under 

the assumptions that the waves are long relative to body separation, and the bodies are widely spaced 

relative to body size, McIver (1987) calculated the mean drift force on a group of IV vertical circular 

cylinders by using the method of matched asymptotic expansions. He obtained an additional higher- 

order term, beside the N2 term found previously. In the present work, the work of of McIver (1987) is 

extended in two ways. Firstly the assumption that the cylinders are widely spaced relative to body 

size is relaxed, while retaining the assumption on the wave length. This is done in section 6.2, consid- 

ering the case of two different sizes of circular cylinders. In section 6.3, the effects of body geometry 

are investigated by allowing the N cylinders to be of arbitrary cross-section. The basic procedure of 

Us method is the same as that used by McIver (1987). The result is derived in terins of cross- 

sectional area and dipole strengths of bodies. 
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CHAPTER 2 

SCATTERING OF OBLIQUE WAVES BY A VERTICAL BARRIER 

2.1 INTRODUCTION 

The method of matched asymptotic expansions is used to develop a theoretical solution for the 

diffraction of oblique incident waves by a submerged vertical barrier in water of constant depth. Dean 

(1945) considered the effect of a normally incident train of waves on a fixed vertical barrier, in deep 

water, extending down from a point below the free surface, and obtained the reflection and transmis- 

sion coefficients in integral forms. The effect of a normally incident train of surface waves on a fixed 

surface-piercing vertical barrier, immersed to a given depth beneath the surface in deep water, was 

considered by Ursell (1947). He showed that an explicit solution was possible for the velocity poten- 

tial everywhere in the fluid, and that the reflection and transmission coefficients may be expressed as 

combinations of modified Bessel functions. The reflection coefficient, R, and the transmission coeffi- 

cient, T, are defined as the ratios of modulus of the amplitude of the reflected and transmitted waves 

to the amplitude of the incident wave. If this problem is generalised by considering an obliquely inci- 

dent wave-train, an explicit solution is no longer possible and only short-wavelength asymptotic and 

numerical results have been obtained, see particularly Evans and Morris (1972). 

The matched asymptotic expansions method is appropriate for the study of the diffraction of 

water waves by a small object or a small gap. Tuck (197 1) used this method to obtain analytical solu- 

tions for the diffraction of normally incident waves tlu-ough a small horizontal slit in a vertical barrier 

of zero thickness in deep water. Guiney et al (1972) extended Tuck's theory to include the effects of 

the thickness of the barrier and their theory was verified by experimental data. Liu and Wu (1986) 

considered the diffraction of an obliquely incident wave by a slit in a barrier of finite width using the 
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same method; Tuck's (1971) solution can be considered as a special case of Liu and Wu's solution. 

Liu and Wu (1987) also obtained expressions for the reflection and transmission coefficients when the 

barrier is in finite depth water. Although their theory was developed for the wide barrier case, it can 

be used for the case of a thin barrier. In this previous work it was assumed that the wave length is 

much greater than the gap size. Solutions were obtained for reflection and transmission coefficients as 

far as the first-order term in c= alh, where a and h are the length of the barrier and the depth of the 

water respectively. 

Here the assumption is made that the wave length is much greater than the barrier lengtIL The 

barrier is either surface-piercing or bottom-mounted and is assumed to be uniform in the z -direction. 

244 
The solutions for reflection and transmission coefficients are obtained to orders e, E In 6, and E. In 

the surface-piercing barrier case the solution is more difficult because the free-surface appears within 

the inner region. 

Cartesian coordinates(x, y, z) are employed with the origin in the free surface and y vertically down- 

wards. The barrier occupies the interval, which is 

x=O, 0: 5y: 5a, --<z<+- 

for the surface-piercing barrier, and 

x=O, h-a<y<h, --<z<-. 

for the bottom-mounted barrier, in each case. A time-harmonic factor e -iwl is removed. With the 

usual assumptions of the linearized water wave theory, a velocity potential 4ý (x, y, z) exists which sat- 

isfies Laplace's equation, 
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D2 (D 
+D2 

(D 
+ä2 

(D 
=0 (2.1.1) 

ax 2 äy 2 az 2 

Since the barriers are assumed to have infinite extent in the z -direction and the motion to be periodic 

in z, the potential (D (x, y, z) can be expressed as 

ID(x. y, Z) = OT (x, y) e 
ip-- 

where p is the wave number component in the z direction. The total potential ý., is written in the 

form 

07, =0+ 01 (2.1.3) 

where the 0 and 0, are scattered and incident wave potentials respectively. From equations (2.1.1-3) 

satisfies 

D2ý 
+ 

ýL 0p2 
0=0 

Z)x 2 ay 2 

in the fluid. The conditions of no flow through the bed are 

Lo 
=O, y=h, lxl>0, (2.1.5) 

Dy 

and 

Lo 
= 0, y= h, for all x, 

äy 
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for a bottom-mounted and surface-piercing barrier respectively. The linearized free-surface boundary 

condition is 

Ko+ 
2-0 

=O, y =O, Ixi > 0, 
, gy 

where 

K=m=k tanh kh 
9 

(2.1.8) 

and w is the radian frequency, g is the acceleration due to gravity and k is the wave number of the 

incident wave. There is no flow across the barrier, i. e. 

DO 
T 

ax 

on the barfier. 

(2.1.9) 

In sections 2.2 and 2.3 we assume that the body is small compared to all odier length scales so 9: 1 

that a solution may be constructed by the method of matched asymptotic expansions. Two solution 

domains are considered here as inner and outer regions, as shown in the figure 2.1.1. 

x 
Fr-(-., i R E, -- ZL -I-I 

it R- 
cLDY 

7 
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If a is a typical dimension, k is the wavenumber and ra polar coordinate measured from the 

body, then the inner region is close to the body at distances r << Ilk and the outer region is far from 

the body at distances r >> a. These definitions allow the existence of an overlap region so that 

matching may be carried out, The full solution is found by using the method of matching principle. 

Let V 
(m. n) denotes the mA inner approximation, rewritten in terms of the outer variables and 

expanded to order n. Similarly T (n. m) denotes the n 
th 

outer approximation, rewritten in terms of 

inner variable and expanded to order m. The matching principle requires that, in the overlap region, 

each term in the inner approximation of the outer solution and outer approximation of the inner solu- 

tion are identical. That is, T 
(n. M) 

=V 
(M. R) for any integer n and m. More details of the matching 

principle are given by Crighton and Leppington (1973). 1 consider here two cases, a bottom-mounted 

and surface-piercing barrier in the sections 2.2 and 2.3 respectively. 
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21 Bottom-mounted barrier 

A thin barrier of length a stands in water of depth h so that the barrier occupies x=0, h-a<y<h, 

--<z<-. 
The boundary-value problem is defined by the modified Helmholtz equation (2.1.4), the 

bed condition (2.1-5). the free-surface condition (2.1.7), and the body condition (2.1.9). The incident 

wave potential 0, is written as, 

0, =e 
iax 

cosh k(h - y) 

222 
where a=k-p. From the body condifion (2.1.9), 

a 
(0, +O)=O, x=O, h-a<y<h. (2.2.2) 

ax 

Therefore from equations (2.2.1) and (2.2.2), the condition on the barrier to be satisfied by the scat- 

tered potential is 

ao 
=-iacosh k(h- y) x= 0, h -a <y<h. (2.2.3) 

äx 

OUTER REGION 

Outer coordinates are defined by 

X= x1h and Y= (h - y)lh. (2.2.4) 

In terms of the outer coordinates (X , Y), equations (2.1.4-5) and ( 2.1.7) take the fonn 
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aTa-82W=0 
(2.2.5) 

ax 2 ay 2 

aT 
-=0, Y=O, IXI>0 (2.2.6) 
DY 

and 

DT 
. UT --=0, Y=l (2.2.7) 

ay 

where T is the outer potential in terms of MY) coordinates, g=Kh, and 45 = ph. 

At infinity on both sides of the barrier, the scattered waves must be outgoing. That is, on the left 

side of the barrier, the waves comprise the incident and reflected wave, and on the right side of the 

barrier there is onlY the transmitted wave. This radiation condition is written as 

T- (eizx +R e-i'zx) coshroY , X- >-- (2.2.8) 

and 

T= Te ixx 
cosh roY , X- >- (2.2.9) 

where A= ah, -ro = kh, and R and T are the reflection and transmission coefficients respectively. 

INNER REGION 

For the inner region, scaled coordinates are defined by 
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x (h-y) 
=- 

�77= 
aa 

so from (2.2.4), and (2-2.10) the inner and outer coordinates are related by 

X ý-- 4, y ý-- -617 

where e=a is a small parameter. In terms of (ý, ? 7) equations (2.1.4-5) and (2.2.3) become 
h 

(2.2.10) 

(2.2.11) 

ý2 

+ 
2L 22 

45 0 (2.2.12) 
aý2 D77 2 

ýV, 
O, q=o, 1ý1>0 (2.2.13) 

arl 

and 

DV 6 
=-iA -- cosh roeq iA -- 

(I 
+ +O(c )II ý=O, O<q< I 

(2.2.14) 

where V is the inner potential in tenns of (ý, q). The boundary condition (2.2.14) suggests that the 

first-order inner potential must have the form 

(1) 
(if =E(V1 (2.2.15) 

where from the equations (2.2.12-14), V, is a harmonic function satisfying the boundary conditions, 
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ay/' 
=0,17 ý-- 0,4>0 (2.2.16) 

al 

and 

Lyl 
- iA ,ý=0,0 < ?7 "- 1 (2.2.17) 

11 
ý 

aý 

The solutions are easily found with the aid of a conformal mapping. We define a complex variable 

z=ý+ jil and map the flow region onto the upper half of the 4= u. + jv plane by 

(Z2 
1 

+ 1)2. (2.2.18) 

This solution ý has zero normal derivative on v=0 (see appendix 2.1). Therefore from the appendix 

2.1 (equation A2.1.3) the boundary conditions for V, in tenns of ý- plane variables, equations 

(2.2.16) and (2.2.17) become, 

1=0, ful >1 
av 

and 

(2.2.19) 

L" 
=- i'l "I, lul< 1 (2.2.20) 

av (I -u 
2)1 

Now to find V/v we define the complex potential 

WIM =iW- (C 2- 1) 
1) 

(2.2.21) 
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and differentiate W, with respect to ý, giving 

dW, 
(2.2.22) 

dý 2 

with real part satisfying (2.2.19) and (2.2.20). Therefore, 

V, =Re j(, 'I (ý _ (ý2 _ I)j) 
). 

(2.2.23) 

Here the notation Re 
I. 

means that the real part with respect to j. By expanding, vf,, in terms of outer 

variable up to O(c 2 ), 

2X (2.2.24) 
2R 

where R2= X2 + Y2. 

Equation (2.2.24) suggests that the leading-order outer potential is of the form 

(2) 2 
T=c AG 2 (X, Y) (2.2.25) 

where A is a constant to be determined, G2 is a dipole potential, singular at the origin, and is given in 

appendix 2.3 (equation A2.3.19), and 

2'- as R- > 0. 

; rR 
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(1.2) 
= 

(ZI) Using the matching principle, Vf -T gives 

A=iA lir 
. (2.2.26) 

2 

Looking at the inner expansion of this outer potential and the boundary condition (2.2.14) suggests 

that 

2 
V/1 +E Vf2- (2.2.27) 

Where from the equations (2.2.12-14), V, 2 
is a harmonic function satisfying the boundary conditions, 

ýV2 
=0, ? 7=0,10>0 (2.2.28) 

aq 

and 

LVf2 
=0,4=0,0< 17< 1 (2.2.29) 

aý 

As before, the solutions can be easily found by writing the boundary conditions in transformed plane 

variables. That is, 

ýV/ 
2 

=(), v =O. 
Dv 

We define the complex potenfial 

(2.2.30) 

E(b 
n+C,, 

ý-"). 

Imo 
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Here bn and Cn are constants. Differentiating this with respect to C shows that the real part satisfies 

(2.2.30). However temis of the fonn C _n give a non-physical singularity at C=0. Tberefore, 

V2 = Re ib 
n=o 

From (2.2.24-25), 

(2.2.31) 

(2.2) (1,2) 2X 
IF = V/ = iA-- 

2R 2 
(2.2.32) 

Iberefore, using the matcWng principle, 

(2.2) (2,2) 
(2.2.33) 

shows that all the constants bn are zero. Iberefore from equations (2.2.23) and (2.2.27), the outer 

expansion of the inner potential, 

V 
(2,4) 

=i AE2X -iA E4 
(X 

-3XY) (2.2.34) 
2R 28R6 

which will be used later. 

HIGHER-ORDER SOLUTION: 

Looking at the inner expansion of the outer solution, equation (2.2.25). and the boundary condition 

(2.2.14) suggests that, 
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(3) 23 
V/1 v -0 (2.2.35) +-c 

2+ V3 

where, from equations (2.2.12-14), V3, satisfies, 

ý2 V3 
+ 

a2 V3 
=52 V/1 (2.2.36) 

aý2 D17 2 

11 2V/1 
'0- 17 ý- 0, W0 (2.2.37) 

aý7 

and 

äV3 
=_, 't r02 

17 
,4 =O, 0< q< , (2.2.38) 

aý 2 

where Vf, is defined in (2.2.23). The solution of V3 may be broken down into a number of stages. A 

particular solution of the field equation (2.2.36) may be found by writing V3 = Re jW where W is the 

solution of 

4 
ä2W 

=i 118 
2[(z2+ 

1)1 -Z] (2.2.39) 
azai» 

and bar denotes complex conjugate. Integrating twice yields the particular solution 

W=, A62[ Z+Z (I + Z2), l Z2 
8 

sinli7l 
8+f, 

(z) +f f2 ( z) dz (2.2.40) 
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where f (z) and f (7) are arbitrary functions of z and T respectively. 12 

If we choose f2(-Z) =0 and fI (Z) =IiA62z sinh -1 z, in order to satisfy the equation (2.2.36), then 
8 

V3p =IiA 45 
2 Re 

iI 
siriti-I z (z + TZ) +zT (I +z2z2 (2.2.41) 

8 

Differentiating equation (2.2.4 1) with respect to q and ý gives 

LV3p 

= 0,17=0. ý#O (2.2.42) 
Dq 

and 

ay3p A82 
17 

20,0 
"ý 17 '- 1. (2.2.43) 

aý 8 

We can now write 

V3 = y3p + V31 

where v3, is a harmonic function. By writing P-1 

V31 ý- 1 (4 ro J2) Re 
i. 

z3 (2.2.44) 
24 

we see that V/3p + V3, satisfy the boundary conditions (2.2.37-38). Therefore from equations (2.2.41) 

and (2.2.44), 
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V3 ýiA 
45 

2 

Re, sirili7l z+1 P2 (I + Z2)1 _1 P2 z+I, A (4 V02 _ 452 ý3 - 3ý; 72 
422] 24 

(2.2.45) 

Using the expansions, 

sili 
1z 

=In z +In 2+ 
1 

+0- 
4z 2Z4 

I 

Re (ýsinilz)=4 In 2p+ 
ý 

«'-17 )+0 - 
4p 4 

IP 

6 

and 

P2 + Z2)-lj 
)= 

P2 + Re 2 
_j 

4 
(ý2 -3 772)+0( 

2 8p p 

equation (2.2.45) becomes, 

3 

V/3 iA82 In 2p+ 
2+ý4 44 16p 4p 

Z (r02 _184) (ý3 -3 ý 172) +0- (2.2.46) 
6p6 

In order to match with the outer solution, we must add the homogeneous solutions Vf3 I, h and V/32. h Of 

order 0(c3 In c) to Vf3 
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where 

cX3 
b Re (z +1)-'=bý(4+-. 

L+0( ' 
)J=bl 

X+ 

2 
+o(E ) (2.2.47) VI3 1, h =1i 

2p 2p3c 2R 

j 

where b, is a constam and 

Vf32, h 2- Rej 
(ao 

+ a, ý +a2 ý2 +a3 ý3 + 0(ý4) 
) 

Re 
jaz3 +a z 

2+(3 a3 
+al)z+a +ao+ ( 

3a 
3+a, ) 

I+ 
0( _L ) (2.2.48) 

322282zz2 

Here ao, al, a 2' and a3 are constants. lberefore from equations (2.2.34), and (2.2.46)-(2.2.48), the 

outer expansion of V/ 
(3) 

can be calculated as, 

(3,4) 
3 

-3 ý 172 3 
Ac -L-ize 

(ý 
+C Inc b 

262 2p 8p 2p 
1 -L + 

A 05 
2 (ý 

In 2p+ 
ý+ 

-L -+iA( 
2- 82 3- 

3ý 172) 
42 

TO - 
44 4p 16 p64 

a3 (ý 
33ý 

? 72 +a 2(ý 
2- 

q2)+( 
3a, 

+a, ) 
2 

a2 +ao+(3 
23 

+ 
a, ) ý (2.2.49) 

82 P2 
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Equations (2.2.34) and (2.2.46) suggest that the continuing outer solution is 

2944 
iA-G 

2 +c IneDG 
2 +e (BG 

2 +CG 4) (2.2.50) 
2 

2 

Where B, C and D are constants, and G2 is defined in appendix 2.3 (equation 2.3.20). 
ax 2 

Therefore from equation(2.2.50), the inner expansion of T (4) to order E3 is 

VA ý p2+2 Cý+IE3 Inc DI-+i '1 '52 
ý 

;rp6 7r p24 

322 

282H+ 
In p +In 

2+8ý 2A 
To 

IV02 

2223 
zi To 

+8TT+ 
Bý C8 3 

(2.2.51) -( 2+ 0) -+ 

2A N02 4 jr p22p2p4 

where 

I 

To -f 
M(f) 

dr, 

-1 10 

(K + 8) cosh2 '2 e-'Oh 
2 M(r) = 

(K coshj8h -, 8 sinh, 6h) 

(2.2.52) 
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222 
ß =p +� 

and 

I 

T2 f M(r) tanh 
Lh 

dr, (2.2.53) 
p 

-1 
2 

are defined in the appendix 2.3 where the source solution is obtained. 

Now matching (2.2.49) with (2.2.5 1), gives 

a2 ý- ao = 

iA(, 
ro2 _ 

. 52 

a3=-- (2.2.54) 
64 

C=- 
iAz, 

(2.2.55) 
16 

bl= I 

4, T 
(2.2.56) 

D=I, (2.2.57) 
2 

(B 3C '62 , 1452 3 a, 
+ 

a, 
(2.2.58) 

2 16 82 
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and 

+ In 
382.1 X-+i 

+r2 -TO 2 22222A No 2A No 

621+ 
21n 2+3 

23 
+ a,. 

8 

(2 

2 

Substituting equation (2.2.54) into (2.2.59), we get 

2 (T2 + TO) 

4 

1 45 
21882. 

)r I 
TO + 

X1 'ro 
a, + In +r 

2821iA22 
(T2 + TO) - (- +2 In 2))+ -(To -) - 44244 

Substituting equations (2.2.54-55) and (2.2.60) into (2.2.58), after little algebra gives 

2 
-ro 

2 

In + 45 
2 7r 

- To 
N02 84242A 

22 

2 -5 (T 
2+ 

TO 
2A No 4 

(2.2.59) 

(2.2.60) 

(2.2.61) 
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From equations (2.2.8), (2.2.50) and far-field potential which is calculated in appendix 2.3 we obtain 

Ir 
+ C2 '12 Dln--+B-C (2.2.62) 

Substituting the values of B, C and D into the equation (2.2.62) gives 

2 
TO 45 R= -i Air I+-. -In E+ +- -+-(In -+r) 

4 N02 2 2z 44824 

62 +i 
'ro .52 T0T2+T0 (2.2.63) 

and transmission coefficient T is 

T= I-R. (2.2.64) 

By using the definitions of variables in the equation (2.2.63), and after a little simplification, equation 

(2.2.63) can be rewritten in the simplest form as 

-C 
2 

((M)2 _ (Pý)2)721 
+E2[ 

Lpaý 
)2- 

3 
)2 )2( R=-i ir In c+ (kh (ph + (ph In Ph + 

4 No 24944 

+ ;ri Oh) 
22 

(ph)2)T' (ph)2 (T 
2- 3 To) 

No 21 
(2.2.65) 
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where 

2 sinh 2kh 
No + 

2 2kh 

and integrals TO and T. are defined in the equations (2.2.52) and (2.2.53) respectively. 

As p- > 0. equation (2-2.65) becomes, 

a2+a2 (k 
211 

R- >- ik; r + brk 
h--f M(r), 6dr) 

4NO2 h22 2NO 2 2_1 
(2.2.66) 

which is the two-dimensional reflection coefficient. 
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23 Surface-piercing barrier 

A thin barrier of length a stands in water depth h, such that the barrier occupies x=0,0 <y<a, 

-ý<z<-. The boundary-value problem is defined as for the bottom-mounted barrier, the modified 

Helmholtz equation (2.1.4), the bed condition (2.1.6), the linearized free-surface condition (2.1.7), 

and the body condition (2.1.9). The incident wave potential 0, is written in the form, 

iax ol =e cosh k(h - y) 

222 
where a=kp. From the body condition (2.1.9), 

a 
(0, +O)=O, x=O, O<y<a. (2.3.2) 

ax 

Therefore from equations (2.3.1) and (2.3.2), the condition on the barrier to be satisfied by the scat- 

tered potential is 

ao 
=-iacoshk(h-y) , x=O, O<Y<a. (2.3.3) 

ax 

OUTER REGION 

Outer coordinates are defined by, 

x X=-, and Y (2.3.4) 
hh 

Therefore in terms of (X, Y), equations (2. IA), (2.1.6), and (2.1.7) take the form 
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43 w+a %F 
-, 5 

2 T=o (2.3.5) 

DX 2 ay2 

DT 
PT+- = 0, Y=O, IXI>0 (2.3.6) 

DY 

and 

DT 
=O, Y=l. (2.3.7) 

ay 

Here g= Kh. As for the bottom-mounted barrier, the radiation condition is written as 

T-> (e ilx + Re-i'lx) cosh ro(I - Y) , X- >-ý (2.3.8) 

and 

T- > Te ixx 
cosh ro(1 - Y) , X- >- (2.3.9) 

where A= ah, ro = kh, and R and T are reflection and transmission coefficients respectively. 

INNER REGION 

For the inner region, scaled coordinates are defined by, 

xy 
-, and 77 = -. (2.3.10) 
aa 

Therefore in terms of (ý,? 7), equations (2.1.4), (2.1.6), and (2.3.3) become 
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L 

+ 

ý2yf 

_ '52C2 
aý2 a17 2 

. UV/ + 
Dy 

=0,17=0, ý>O (2.3.12) 
D17 

and 

Ac cosh (ro(- et7 + 1) iAc cosh ro I- TOC17 + 
(T 

0 677) 
2 

+0(-' 
3 

2 

O< rl< 1 ý=0 (2.3.13) 

where V/ is the inner potential in terms of (ý, Y7). The boundary condition (2.3.13) suggests that the 

first-order inner potential must have the form 

(1) 
i, =ey. i1 (2.3.14) 

where from equations (2.3.11-13), VI is a harmonic function satisfying the boundary conditions, 

L vf 1 : --0,17ý0, ý>o 
al 

and 

=-i A coshro=-ivo =0 , O< q<1 (2.3.16) 
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where v. =A cosh r(,. 

The solutions are easily found with the aid of a conformal mapping. Define a complex variable 

+ Y7 and map the flow region onto the lower half of the ý=u+jv plane by 

ý=(2+1 )1. (2.3.17) 

As for the bottom-mounted barrier, tl-ds solution has zero normal derivative on v=0( see appendix 

2.1 ). Therefore, from appendix 2.1 ( equation A2.1.4), the boundary condition for V, in terms of C 

-plane variables, equations (2.3.15) and (2.3.16) become, 

I =O, Iul> I 
av 

and 

(2.3.18) 

LVI 
=-i 

vou 
lul< 1 (2.3.19) 

av (I u 
2) 

Now to find V, , define the complex potential, 

wI (C) =, VO(C _ (C2 _ )I ) (2.3.20) 

and differentiate W, with respect to C, 

dW 

dC 
I =ivo 12 (2.3.21) 
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The real part of (2.3.21) satisfies (2-3.18) and (2.3.19), that is 

Re 
iI 

iv 
0 
(c - (C2 - )I )1 (2.3.22) 

By expanding V, in terms of outer variables up to 0( c2), 

V/ 
(12) 

= Ivor 
2X2 (2.3.23) 

2R 

where R2= X2+Y2. 

Equation (2.3.23) Suggests that the leading-order outer potential "I- C, 

(2) 2 
T=E AG 

2(X'y) 
(2.3.24) 

where A is a constant to be determined, G2 is a dipole potential at the origin and is given in appendix 

2.4 (equation A2.4-12) and 

x 
asR ->0. 

7rR 

(1,2) (2,1) 
Using the matcWng principle, V=T 

ivog 

2 
(2.3.25) 

By looking at the inner expansion of tl-ds outer potential and from the boundary condition 



-33- 

(2.3.13) 

v 
(2) 

--,: C V, +c2 Vf2 (2.3.26) 

where from (2.3.13-15), V2 is a harmonic function satisfying the boundary conditions, 

UV/, , 17 =0, lýI >0 (2.3.27) 
aq 

and 

avl 
2 

=o , 0< tl <1. (2.3.28) 

As before, the solution can be easily found by writing the boundary conditions in C-plane variables. 

That is 

aV2 
ivou u2u lul >1 (2.3.29) 

av 
2 

and 

aV2 
= ly 

0uu, 
lul < 1. (2.3.30) 

av 

In order to find vr2 , define 

I vo 2+C 
(C2 w 

2(C) 
2iI 

In (C + 1)2 
2+C 
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dW 
where C is a complex constant and Re 

j(2] satisfies equations (2.3.29) and (2.3.30). Thus, 

! VOJU 
+ (ý2 +ý (ý2 ý2 V/2 

2 
Re ij 

(In 2+ CR (2.3.31) 

where CR is a real constam 

2 By expanding V. in terms of outer variables up to the order of c, we obtain 

(2,2) 12x 
=----- 0))+ c E iv 

0(2 U("4 R (2.3.32) 
2R2 

where X=R sin 0 and Y= Rcos 0. 

From equations (2.3.24) and (2.3.25), the inner expansion of outer potential becomes, 

(2,2) 2X 
T iv -- (- +, u (2.3.33) 

20R2 

Matching equations (2.3.32) with (2.3.33) gives, 

R=I vou (2.3.34) 
4 

By substituting CR into equation (2.3.3 1), 

vo op V/2 =i2u Rej j 
(ln(z 

+ (z 2+ 
Z(Z 

2 (z 2+ 1) + 
iv 

4 

7c 
(2.3.35) 
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and from equations (2.3.22), (2.3.26), and (2.3.35), the outer expansion of the inner potential is 

(2,4) 
= 

Wo 2(X 
+ýJo]_ 

I 
, 
4(X3-3XY2 

Juxy v-c--1 (2.3.36) 
2R24R6R4 

which will be used later. 

HIGHER-ORDER SOLUTION: 

From the inner expansion of the outer solution and the boundary condition (2.3-13) 

v 
(3) 

= -0 V, + -0 
2 

V2 +83 V/3 (2.3.37) 

where from (2.3.11-13), Vf 3 satisfies, 

a2V3 
+ 

a2Vf3 

= 452 V1, 
aý 2 a, 72 

(2.3.38) 

2V3 
=_ '4V/2 ' 17 = () ' lý'> 0 (2.3.39) 

a17 

and 

i VOTO ?7 
=0 , O< ?7<1 (2.3.40) 

2 

where V/1 and V/2 are defined in equations (2.3.22) and (2.3.35) respectively. 
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Since equation (2.3.38) is very similar to equation (2.2.36), the particular solution of the field equa- 

tion may be found as for the bottom-mounted barrier. Tberefore the particular solution is 

, VO32 
z (Z+- 

2 
Vf3p 

8 
Re, 

i 
sir6-1 Zý+Zl. (l+Z2)j_Z (2.3.41) 

Differentiate with respect to 77 and ý to give, 

av3p 

=0,77=0, ý#O (2.3.42) 
a77 

and 

V3 iv 05 2 jp =- 0 77 , ý=O, 0<77< 1- (2.3.43) 
aý 8 

Now write 

V3 = V3p + V/31 + V32 + V/33 (2.3.44) 

where Vf, 3, (i = 1,2,3)'s are harmonic functions and V, 3p + V3, and V32 satisfy equations (2.3.40) and 

(2.3.39) respecfively. 

By writing, 

IVO 
(2 (5 

23 

V31 'z ro -) Re iz 64 
(2.3.45) 

VIIp + Vf3I satisfies the boundary condition (2.3.40). To calculate V/3 2 write the boundary condition 
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(2.3.39) in terms of C -plane variables, 

cl Vf3 2-1 
OP 

2u sgn u, lul >1 (2.3.46) 
av 42 J2 

(u 
_ 

1)2 

To satisfy the boundary condition (2.3.46), choose 

122 jir 

Vf32 
2 

ivou2 Re 1) 2 
(In(C 

- 1) 22 (2.3.47) 

For C=u, real and u< -1 , 

aV31 
+1 1VO)rij 

2u (2.3.48) 
av 4 (u 2 

and for u>I, 

OV32 1 
lvolru 

2u 
(2.3.49) 

av 42 -2L (u - 1)2 

That is V32 satisfies the boundary condition (2.3.46). 

However for ý=u, real and lul <I, 

I. 2u21 V32 
=-I vou ln(I-U 2+1 (2.3.50) 

Ov 2 (1 u2)II 

I- 

Therefore from equations (2.3.41), and (2.3.44-50), V33 must satisfy the boundary conditions, 
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avf 
33 

= 0, lul >1 
äv 

and 

(2.3.51) 

aV33 1 
IV oy 

2U- 
In(, _ U2)-ly +I lul <1 (2.3.52) 

av 2 (1 -u 
2)" 

( )l 

To calculate V33 , Green's theorem is applied in appendix 2.2, which gives 

ivop 
2 
(1 - 21n2 -L + 0(-l (2.3.53) V33 

823 

As in section 2.2, in order to match with the outer solution we must add the homogeneous solutions of 

0( C3 In -- ) and 0( e3) which are Vf3lh and V32 h respectively, and are defined in equations 

(2.2.47-48). T'lierefore from equations (2.3.36-37), (2.3.41), (2.3.44-45), (2.3.47), and (2.2.47-48), the 

outer expansion of V 
(3) 

may now be calculated as, 

(3,4) 
.c2 

(ý 
3_ 

3ý172) 
Ivoc 

2+- 
iv 

OUO - 
iv 

06 
2p 2 8p 

I 
VOJU, 

2 477 3 

80p4 
+e InE( 

2p 2+b 

NO 45 i 
+2ý (ln2+ In p)+ 

e- 

--L 

1 

82 2p 4 8p 2 
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ýj72) _1v0 ß2 (1, v0 42(1 
1v0 

('r, 
- 

«9 ) «3 
-3 ýInp+e0)- --2 In2) -L 628 

+a (ý 
3- 

3ýq 
2 
)+a 

22 3a3 
+a 3 2(ý - 17 + (- 

2 

3 a, 
a2 +ao+( 

8a3+22 
(2.3.54) 

where b, is a constant and has to be determined. 

Equations (2.3.36) and (2.3.54) suggest that the continuing outer solution is 

(4) 2944 
T ivo -G2 +-- InEDG 2+ +E (BG 2+ CG 4) (2.3.55) 

2 

where B, C and D are constants, and G4 -`ý 
2 is defined in appendix 2.4 (equation 2.4.14). 

aX2 

Therefore the inner expansion of (2.3.55) is, 

(4,3) 
= 

iv 42 ivo 
2+ 2C4 PO - 2Ciu 

ee 
( 

2p 2 
zp 62 

zp 4 

c3 In -- 
i 

Vop24 +, 
l'o 

4,52 +D 
ý2+c, 

[ iv', 
ýa 

7 _, 42ý In ßp 
(-2 

Irp 2( 

24 
Inup -p2 770 +-'-JB-C ( JU2 

2)+C 
52ý 17 (2.3.56) 

2 
Irp 

221 
; rp 

1 
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where a7 is defined in appendix 2A (equation A2.4.13). 

Matching equation (2.3.54) with equation (2.3.5 6), 

a2=ao =O, C =- ' (2.3.57) 
16 

NO 
T2 

45 
2 

(2.3.58) 3(0 --), 
64 

iv 
0822 b, =-(- -p ), (2.3.59) 

22 

-bl (2.3.60) 
2 

iv 
0282)=3a +a +i 

VO 
J2+2 In 2), (2.3.61) - (a, 7-p Inp +- In p-31 

22282 

and 

I. 2p2a3aI 
C(ýU2 _ 

'52) + C82 -- IVOJ -ivo-(1-2ln2)+3-+a=- B- - (2.3.62) 
64 882z21 

From equations (2.3.57-62) and after little algebra, 

VO 83p082 
++a 7+p) In 'u (2.3.63) 

4(844221 
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and 

2 
D= 

Ivog 
(8 -2 (2.3.64) 

8 

From equations (2.3.8), (2.3.55), and far-field potentials wWch are calculated in appendix 2.4 ( equa- 

tions A2.4.17-18). we obtain 

R=- 
cosh kh 

r2 iv X+r4 (Din +B_ A2C) (2.3.65) 

2N 
02(2 

Substituting the values of B, C and D into equation (2.3.65), gives 

R= -mv 
2 cosh Lh 

I+1 E2 In c (8 2_2p2 

4NO 2(4 

c2( 152 
_3 

U2 r 02 (. 
52 

_ U2) 
U_ A2 

+--+-+a7+- In- - (2.3.66) 
2844224 

and transmission coefficient is 

T= I-R. (2.3.67) 

By using the definitions of variables in equation (2.3.66), and after little simplification, equation 

(2.3.66) can be rewritten in the simplest form as 

22 

Ri ((kh) 
2- 

(ph)2)" 
CoSh2 kh I 

In -- ((ph) 
2- 

2(Kh)2) ++ 
(Kh)2 

4 No 
211+2 

12 

84 
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450 ((kh) 
2- 

(ph) 
2) 

_ (Kh)2 A6 + (ph)2 A4 + ;r Kh ((Kh)2 - 
(ph)2) 

I 

(phý 
- (Kh)2 ) tj +( (Kh) 2_ (ph)2 )t2 (2.3.68) 

2 

where 

K=k tanh kh , 

. 50 ---ý -i 
cosh 

2 kh 

2 (k 2-p2) hNo 2 

cosh -i 
k 

p 

y- In (2cosh a, )+ In 
Kh 

2 

12ý ;ri coth a, - a, coth a, 

A4 fI-I dt, 

0 
K-fltanhgh K-, 8 

p2=p2+t2, 

and 
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A6 
2f2 

dt. 
K01K-, 8 tallll, 8h K -, 6 

1 

Now we define asymptotic expressions. When kh -) 0, the reflection coefficient in equation (2.3.68) 
1 

tends to zero and when kh --ý -, the reflection coefficient in equation (2.3.68) becomes 

=MI 

(I+ Lpaý (_I I 
Rý __ Ka ( (Ka)2 - (pa)2 2 --ln2+ 

L-; 
ricotha2+a2cotha2+-Inpa 

22422 

2 

+ 
(Ka)- 

(3+2 In 2- In pa +; ri coth a2-a2 cotha 2 
(pa)2 4 

(2.3.69) 

where 

a2= cosh -I 
K 

p 

As p- > 0, equation (2.3.68) becomes, 

R- >-i; r-- 
2 kh cosh2 kh 

I+c 
2( Lkhý 

- (Khý 
I+ 

In 
Ka 

+A6++; r(kh) 
2 
. 50 

4N 
022242 

(2.3.70) 

which is the two-dimensional reflection coefficient. In deep water equation (2.3.70) becomes 



(Ka)2 
R 

2Do* zi- 
2 
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- 
(Ka 2 

(in 2- In Ka -y +'3 ) 
2 4 

(2.3.71) 

wWch is the expansion of Ursell's result. 
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2.4 Results 

The reflection coefficient can be calculated from the solutions given in the section 2.2. equation 

(2.2.65), and section 2.3, equation (2.3.68) by using the asymptotic form for the dipole potential. My 

main aim is to find how the reflection coefficient changes with different barrier length, ka and depth, 

kh and for different angles ao = ; r/6, ; r/4, and ; r/3 of incident wave, measured from the x-axis. Here 

ao is defined by 

ao = sin (2.4.1) 

In the case of a bottom-mounted barrier, the reflection coefficient, IRI, is plotted against different bar- 

rier lengths, ka, and depths, kh. Figure 2.1 shows that the reflection coefficient increases monotoni- 

cally with kh for the range of kh plotted. However as kh -4 - it tends to zero since high frequency 

waves will not feel the barrier. Also a comparison is made with the first-order solution in figure 2.1 

which agrees well for small values of kh :50.2. In Figure 2.2 the reflection coefficient increases with 

barrier length, ka -5 0.5, and decreases with angle of incident wave for fixed kh = 0.5. The reason is 

that amplitude of the disturbances increases with increasing barrier length. Since the maximum allow- 

able value of all is one, the barrier length is therefore considered up to 0.5 for fixed kh = 0.5 in figure 

2.2. As for figure 2.1. a comparison is made with the first-order solution and they agree for small val- 

ues of ka: 5 0.2. Figure 2.3 shows IRI plotted against kh> 0.5 for a fixed barrier length ka = 0.5. When 

kh :50.5 the method is not valid, since h1a >I and so ka = 0.5 implies that kh > 0.5. From figure 2.3, 

we see that for all values of kh, when ao increases the reflection coefficient decreases. When kh 

increases, the reflection coefficient tends to zero, as the wave motion is not much affected by the bar- 

Her. 



-46- 

Dean (1945) obtained reflection coefficients in terns of the depth of the barrier below the free 

surface in the deep water. In the present method the reflection coefficient would tend to zero as water 

depth tends to infinity since we have a fixed barrier length. Since the amplitude of the disturbance 

decreases rapidly with increasing depth, the wave motion is not much affected by the barrier. So com- 

parison with Dean's result for different finite depths of barrier submergence below the free surface is 

not possible. 

in the case of a surface-piercing barrier, the reflection coefficient IRI is plotted against different 

barrier lengths ka and depths kh in figures 2.4-2.6. Figure 2.4 shows IRI plotted against different 

depths, kh, for fixed h1a = 2.0. As for bottom-mounted barrier the reflection coefficient increases with 

9 kh and decreasing angles of incident wave. But when kh = 0.51 and ao =-, the reflection coefficient 
6 

is 0.9941, and in this case there is almost zero wave amplitude on the right of the barrier and the 

standing wave on the left. When kh > 0.51 for angle of incidence ; r/6, the reflection coefficient keeps 

on increasing. Clearly the solution is not valid near kh = 0.5 1. A comparison is made with the first- 

order solution in figure 2.4 and the two solutions agree well for small values of kh :50.1. Figure 2.5 

shows IRI plotted against different barrier lengths for fixed kh =1.0. From figure 2.5, we can see that 

the reflection coefficient increases with ka, but is not monotonic in ao. When tro = ; r/3, the reflection 

coefficient is much higher than the other values of ao shown and when ka = 0.46, the reflection coef- 

ficient is 0.985 1. Again the solution is not valid near kh = 0.46. A comparison is made with the first- 

order solution in figure 2.5 and the two solutions agree well for tro =; r/6, and T/4 when ka :ý0.25. 

But when cro = Yr/_3 those results do not agree even for small values of ka. Figure 2.6 shows IRI plot- 

ted against different values of kh > 0.5 for fixed barrier length 0.5. By using the same argument as for 

the bottom-mounted barrier case, when kh < 0.5, the method is not valid. From the figure 2.6, the 

reflection coefficient is increasing with increasing kh up to kh = 4.0 and when kh 2: 4.0, the reflection 
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coefficient is efficiently constant as we would expect for Wgh frequency waves. 

A similar problem in deep water was treated by Evans and Morris (1972), who obtained upper 

and lower bounds for reflection and transmission coefficients for all wavelengths and angles of inci- 

dence; their method was based on complementary variational approximations to an integral equation. 

Their results are compared with the results from equation (2.3.69). In figure 2.7, IRI is plotted against 

angle ao. Comparison for different values of angle ao shows the agreement between the present and 

Evans and Morris result is very good for 0< po = Ka 5 0.4. Here K has been used instead of k, as 

k -+ K in deep water. When p., increases up to one, there is a difference in the reflection coefficient. 

For increasing values of uo, the results do not agree in the range 0< ao < JT 
, but in the range 

3 

-< tro <- they agree quite well. The reason is that the assumption made here is that the barrier 
32 

length is small compared to wave length and depth of water. 

Finally we note that as p -4 0, that is in two-dimensional case, in deep water the reflection coef- 

ficient in the equation (2.3.63) is obtained and comparison is made with Ursell's (1947) result in fig- 

ure 2.8, where IRI is plotted against Ka. From this figure, we notice that the agreement is good for 

small values of Ka: 5 0.4, since the solution derived here is valid for small values of Ka. 
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APPENDIX 2.1: CONFORMAL MAPPING 

(a) Bottom-mounted barrier 

Using conformal mapping, the barrier condition in the physical plane is mapped into a transformed 

plane and the solution in the transformed plane is used in sections 2.1 and 2.2 to obtain the inner solu- 

., 
b er. e tr fo a- 

., 
arri Th ans rm tion. Here the barrier is considered as a bottom-mounted or surface-piercing 

tion 

1)2 (A2.1.1) 

where z+ jq and u+ jv and maps the flow region onto the upper half of the plane as c 

shown in figure 2.1.1. The barrier is mapped onto the interval (- 1,1) and the real part of the z-axis AB 41 

and DE are mapped onto the interval A'B' and D'E' respectively. 

-Irj 
00 

t; iuJ; )'I 

Define the complex potential, 

and so 

0+ jv( 

dW Dyl 
. 
ao dlV dz 

-j dý av av d-- dC 
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ao, 
jLv 

c 
(A2.1.2) 

On BCD, C=u, so 

arg( gr -1) =arg( C+1)+ arg( C-1)= 7r. 

Therefore 

(C 
2_ 

1) =j (I _ U2)-, 
' 

(= P7) 

and so from (A2.1.2), 

av 

av 

(b) Surface-piercing barrier 

(A2.1.3) 

The above transformation (A2.1.1) maps the flow region onto the lower half of the ý- plane as shown 

in the figure A2.1.2. That is the barrier is mapped onto the interval (-I . 1) and the real part of the z- 

axis AB and DE are mapped onto the interval A! B' and D'E' respectively, see figure 2.1.2. As for 

(a), the complex potential, W can be defined as in the equation (A2.1.2). 

On BCD, C=u, so 

arg( c2 -1 )=-Z 

therefore 
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(C 
2_ 

1) 
I=_ 

j (I _ U2)1 (= P7 ) 

and so from (A2.1.2) 

-110 

av 
-u 

22 

0.111,11, 
,o /( 11 1111e /11 19F c '. Dt 

6 -f: qxta 

IFIGgL- I. I. I. 

(A2.1.4) 
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APPENDIX 2.2: APPLICATION OF GREEN'S TH90REM FOR THE SOURCE POTEN- 

TIAL 

Applying Green's theorem to inner and source potentials, and using the boundary condition for the 

barrier, the inner potential, Vf, is calculated in finite integral form. Now applying the above theorem to 

the potential, Vf , and source potential 

G(s, t; ý, q) = In po + In p, (A2.2.1) 

where 

22 
PO (s + (I - 17) 

and 

(S _ ý) + (t + 17)2 
22 

gives 

aG 
-0 )ds=O fG Lo 

(A2.2.2) 
an an 

S- 

Where S s- + s. and n is a non-nal in the outward direction as shown in the figure 2.2.1. 

nw; x 
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Here s_ and sx_ are an infinite surface and x- plane. Assuming 0 decays sufficiently rapidly on s., 

then equation A(2.2.2) gives, 

aG DO 
2; r O(ý, Y7) +f (o -_ G= )ds=0 (A2.2.3) 

an an 

Using the conditions, 

and 

Then A(2.2.3) gives, 

Do 
= f(s), Isl< I 

an 

Do 
=0. Isl >I 

an 

I 

0(ý, ? 7) = -1 
f f(s) G(s, 0; ý, 77) ds (A2.2.4) 

2; r 

Now write 

G(s, 0; e, j7) = In «S - ý)2 In 
( 

(ý 2+ 
17 

2)I+]] 

221 
so for p+ 17 ) >> 
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G(S, 0; ý, e) = In p2 +s2 -2s 
__s 

242 
+o(-). 

p2p4p3 

Substituting this into A(2.2.4), and noting that f (s) is odd, gives 

I 

0(ý, 77) =If f(s) 
2sý 

+ 0( 
1) 

ds 
2; r p2p3 

=-f -ý- f (S) s ds + 0( ) 
Ir 

-1 
p2p3 

(A2.2.5) 

(A2.2.6) 
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APPENDIX 2.3: SUBMERGED SOURCE POTENTIAL 

Here the fundamental singular solution of the modified Helmholtz equation that satisfies the water 

wave boundary conditions is considered. Expansions about the singular point are derived when the 

singularity is on the bed, and hence far-field potentials for dipole and higher-order singularities are 

derived. T'hroughout, the position of the origin is on the free surface with the y axis directed vertically 

downwards and water depth h. 

THE SINGULAR SOLUTION OF THE MODIFIED HELMHOLTZ EQUATION 

The line source solution of the modified Helmholtz equation is given by, MacCamy (1957) 

G=If cosh fi(h - 17) K sinh fly + fi cosh Py ) 
cosrx dr , for y>q (A2.3.1) 

X fl (K cosh, 6h -p sinh Ph) 

m 

where 
f indicates that the contour runs below the pole at .8=k, 

here k is the real root of the equation 

0 

(K cosh Ph -# sinh Ph) = 0, 

and 

fl 
2=p2+T2 

(A2.3.2) 

For y< 17, the expansion for G is similar to (A2.3.1) but y and q are interchanged. 

Ilie function 
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I 
In r 

2; r 

close to the singular point, where 

222 
r =x +(Y-17) . (A2.3.3) 

Using the identity (Gradshtegn and Ryzhik, 1980, pp. 498 ) 

-, 8cv - V) 
KO(pr) fe cos rxdr, fory > r7 (A2.3.4) 

0 

gives, after a little algebra, 

(K. (pr) + K, 
)(pr, 

) e 
cosh ß (h - r7) cos rx dr, y> 17 (A2.3.5) 

2ff 9ß 

where KO is the modified Bessel function of the first kind and order zero , and 

r, 
2=x2 

+(2h-y-77 )2 (A2.3.6) 

Adding equation (A2.3.1) and (A2.3.5) yields 

(KO(pr) + KO(prl) )+If 
(K +fl) e -. 

8 h 
cosh 8(h - y) cosh P(h - q) cos rx dr 

2; r )r 0 
fl(K cosh Ph -# sinh Ph) 

(A2.3.7) 
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By considering the residue from the pole at 8=k and shifting the contour 
f into a new contour 

f 
as 

0 C1 

shown in the figure. 2.3.1, 

_: 0 

RECIURE 3--ýý-j - 

G=-I (K (pr) + KO(prl) 
i cosh k(h - y) cosh k(h - j7) eialxl 

2; r 0 
2ahNo 2 

-I Re f ý(K 
+, 8) e- 

6h 
cosh 8(h - y) eivlxl cosh . 8(h - 77) dr (A2.3.8) 

7r 
cl 

6(K cosh, 8h - fl sinh fih) 

where 

I12 

=-p. 

and 

(A2.3.9) 

21 inh 2kh 
No =- (I +s 

2 2kh 

It follows that 
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i cosh k(h - y) cosh k(h - 77) e 
ialxl 

G=_ 
2ahllo 21 

as lxl- > (A2.3.10) 

which will be used later. By considering the residue from the pole at fl =k in equation (A2.3.7), G 

may be written as 

II 
G=- (KO(pr) + Ko(pr, ) )-- cosh k(h - y) cosh k(h - rl) cos ax 

2; r 2ahN 02 

If (K +, 8) e -j8h cosh P(h - y) cosh 6(h - 17) cos *rx dr 
90 6(K cosh, 8h -6 sinh. 8h) 

where 
f indicates that the principal value of the integral is to be taken. 

0 

(b) THE EXPANSION OF THE SOURCE POTENTIAL: 

(A2.3.1 1) 

From (A2.3.11) the expansion of the source potential about the singular point may be obtained using 

the result (Abramowitz and Stegun, 1965) 

)n (t :t 0) exp w(t+1) (A2.3.12) 
2t 

where In is the modified Bessel function. Define p by 

9=p cosh u (A2.3.13) 
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and, in equation (A2.3.11), put 

wm-pr , tmexp (, u ± iO) 

to obtain 

exp ( 6(y - q) -+ irx c. (cosh nu cos nO ±i sinh ng sin n6) (-I) nI 
n(pr) 

(A2.3.14) 
n--O 

where, 

E =2, if n*0 

=I if n=0. (A2.3.15) 

A similar result for exp (-, o (y - 77) +- irx) may be obtained by letting w= pr. By substituting these 

results into equation (A2.3.11) gives 

G KO(pr) + KO(prl) + En Qn 1,, (pr) cos no (A2.3.16) 
21r 

() 

n=0 

which is general expression for when the source is on x=0, and y=q and is not on the free- 

surface, where 

x=r sin 0, 

il =r cos 0, 
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cosh 
2 kh 

2 N= 
2ahN 02 

(K + 6) COS,? 
flh 

e- j6h 

M(j6) =, 
2 

(K cosh. 8h -# sinh, 6h) 

iN cosh 2njuo + T2. , for all n Q2n 

T 2n 
f M() 

cosh 2nu dr, for an 

cl 
9 

Q(2n-1) ý iN tanh 
kh 

cosh (2n - 1), uo -I T2n-l' for n>0 
2 Ir 

T 2n_l = 
M(, 6) 

tanh 
6h 

cosh (2n - 1), u dr 

cl 
9 

and 

p cosh po. 

SOURCE IS ON THE BED 

When the source is on the bed (q = h) , the equation (A2.3.11) becomes as in the general case and 

equation (A2.3.16) gives 
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G=- KO(pr) + en Q 
2n 

I 
2n 

(pr) cos 2no (A2.3.17) 

n=O 

(i) EXPANSION ABOUT SINGULAR POINT x=0, AND y=h 

By expanding (A2.3.17) about the singular point, G becomes 

G In Pr +r+ To -2 
2 2ahNo 

22r22 
ri 

+E-r (In L+y-1)- PX- 
422 2a 02 

((h _ Y)2 _ X2 _; 
rik 

2+f2 

(T +TO) + O(r 
3 

In r) (A2.3.18) 
2-2 2 2ahNo 4 

where y is a Euler's constant. Using non-dimensional form, 

x (h y) 
,Y=I hh 

and 

R=! L 
h 

Differentiating (A2.3.18) with respect to X, gives 
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aG IX82x 8R 32X2 IN 
8x 

ax R2224 2ANO 2 

-x 
TITO 

+8 (T2 + TO) + O(R 2 In R) 
2AN 

024 

(A2.3.19) 

which represents a horizontal dipole. Higher-order singUlarities can be obtained by differentiating 0 

(A2.3.19) twice with respect to X, giving 

a3G=I( 2X(X2 -3 Y2) 
+ 452 ( 

3X 
_ 

X3 
+ O(R In R) (A2.3.20) 

ax 3 7r R6 2R 2 R4 

00 FAR-FIELD POTENTIALS 

In non-dimensional form equation (A2.3.10) becomes, 

icosh, roY e 
LIM 

G= as IXI- > (A2.3.2 1) 
2AN 

02 

G -,, ý 
DG 

= 
cosh roY e 

il ixt 
sgn(X) 

as IXI- > (A2.3.22) 
2 ax 2N 

02 

and 

G 
ä3G 17 cosh r�Y ei'ýlxl sgn(X) 

, as lxl- > -. (A2.3.23) 
ax 32 

IV 0 
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Equations (A2.3.21-23) represent far-field potentials when the source is on the bed. 
I- 
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APPENDIX 2.4: SOURCE ON FREE SURFACE 

As for appendix 2.3, the fundamental singular solution of the modified Helmholtz equation that satis- 

fies the water wave boundary conditions is considered. Expansions about the singular point are de- 

rived when the singularity is on free-surface, and hence far-field potentials for dipole and higher-order 

singularities are derived. Throughout, the position of the origin is on the free surface with the y axis 

directed vertically downwards and water depth h. 

SINGULAR SOLUTION OF MODIFIED HELMHOLT"Z EQUATION 

When the source is on the free surface, MacCarny (1957) shows that 

22 11 
If cosh 6(h - y) cos (, 0 -p )2 x .8d, 

6 

7r 
p (K cosh j6h -P sinh fih ) (J62 _ P2)1' 

By considering the residue of the pole at 6=k, we obtain 

i cosh kh cosh k(h - Y) Cos ax 

2a h No 2 

(A2.4.1) 

Re fe(, 
6(h _ Y) +i(. 82 _ P2)1 X) 

6 d, 8 

2z 
P (K cosh j6h - fl sinli 6h ) (fl 2- p2 

_ (ß(h _ y)_i(ß2 _p 
2)4 

x) ß dß e 

2_ 2 
p (K cosh ßh -ß sinh ßh ) (ß p)) 

that is, 

(A2.4.2) 

G=- 
i cosh kh cosh k(h 

2 
Y) Cos ax +I (TI + T2) 

2 ah No 2z 
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where 

e 
(, 6(h _ Y) + 02_ p 

2)1 
X) 0 dO T, =Re 

f 

(e _ P2)j 
, and 

p (K cosh Ph -6 sinh 6h ) 

and 

T2 = Re fe- 
C8(h - Y) _i (fi2 _ p2)j X) 

fi dfi 

p (K cosh, 6h -P sinh Ph ) (, 6 2_p2 

T2 is a convergent integral for all x and y. However T, is not a convergent integral for x-y=0 and 

neither are its derivatives with respect to x and y. Consider 

w 
T, =Re 

fe(, 
6(h - y) +1(, 6 2-p2 

X) # dfl 2e 
(fly +i ('02 _p 

2)f 
X) 

0 dfl 

22 ('82 2)1- 
p (K cosh Ph -, 8 sinh, 8h ) (, 8 -p (K - fi) _p 2 

+2 fe(, 
8y +i (fl2 _, P2 )l -) 

j6 dp 

p (K -, 6) ('61 _ P'2)1 

and 

- (fl), +i(. 82 _p 
2)1 

X) - 
. 
8y 2_ 2j 

2 Re fe9d, 8 
-2 

fe cos(, 8 p x, 6 dfl 

p (K -. 8) (, 8 
2_ 

p2)Ip (K - 8) (. 82 P2)j 

(A2.4.3) 

jrlK e 
Ky 

cos aox 
"8e fly 

Cos 02_p2x 
.8 

dO 
=-2- +2 f 

fl) (J62 2)1 
(A2.4.4) 

ao 
p (K -_p 
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where 

222 
ao 

From (A2.4.4), and using 6=p cosh po, equation (A2.4.4) becomes, 

(A2.4.5) 

2 Re fe(, 
6y +i (fl2 _p 

2)1 
X) 

8 d, 8 2ziKe 
Ky 

Cos aox 
T 

p (K _, 6) ('62 _ P2)' 110 

-2p 
f coshuo e py cosh /to cos (px sinh po ) duo 

(A2.4.6) 

0 
(p coshuo - K) 

The integral on the right side was considered by Ursell (1962). Therefore from (A2.4.1-4) and 

(A2.4.6), G becomes 

G=i cosh kh cosh k(h - y) cos ax 
_ 

iK 
e 
Ky 

Cos aox +I (T2 - UO) 
2ahNo 2 ao 2z 

Re fe 
21r 

p (K coshj8h -, 8 sinh Ph (. 8 
2_p2 

2e (ßy +' (ß 
2-p2) 

x) 
ß dß (A2.4.7) 

(K - ß) (K cosh ßh -ß sinh ßh ) (ß 2_p2)i) 

where 
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x=r sin 0. 

r cos 0, 

m 
UO = (; r i-a, ) coth a, 210 (pr) +4Y, (-I)- Im(pr) cos mO cos ma 

M=l 

M-1 a 
+ 2KO(pr) +4 (-1) - (lv(pr) cos v8) sinh ma, coth a (A2.4.8) 

M=l 

lav 

V--m 

a, = cosh -1 
(K) 

(A2.4.9) 
p 

and here KO and Im denote modified Bessel ftmctions and y is a Euler's constant. 

(b) EXPANSION ABOUT THE SINGULAR POINT 

Using the expansions of KO , 10 and Im about the singular point (0,0) (Erde'lyi 1953), equation 

(A2.4.7) becomes 

G In Kr -; r8o +, &4 +r-F, -F 
TKi 

2 
ir ao 

- Ky X, 50 +A, _ 
Ki 

+r-I-F, -F Ky In Kr 
ao 
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+KxO+ 
P2r2 In Kr +K2 (y 

2-x2 irJok 
2+A 

6- 
iriK 

- Fl-F 
2 42K2 ao 

+22- (Yri -a coth a+r_3 +InKr +p2x2_ 2r3o + A4 _ 
ZK 

2K 222 ao 

22 
r(F, +F 2+1-y)+ K2 xy0 

1+ O(r 1 In r) (A2.4.10) 

where, 

i cosh 
2 kh 

2erhN0 2 

F, =zi coth al, 

F ý- In (2 cosh a, ) - a, coth a, I 

n+4 

Inf22n 
dfl jor n=0,2 

K 
P (K - fl tanh j6h) (I - (K -, 6) (1 -p 

0292 

and 

w 
Ij tanh j6h 18 

dfl. 
K2 P2 P (K-, 8tanh, 6h)(1-L-)T (K - P) (I - -)'I 

,62 fi 2 
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In non-dimensional form, 

X=- 
,y=Y, 

and 

45 = ph, 4= Kh, 

equation (A2.4.10) becomes, 

In pR + a3 -, uYa 4 -, uY In pR+pX 0+ 
JR 

In pR 
4 

2 
(Y2 

2 
15 x3R tr2 

+, U2XYO _ X2) InuR + 'g (Y2 _ X2) a5'-6-+ O(RI In R) 
2224 

(A2.4.1 1) 

where, 

2 =F, +F 2-Y, 

; riK 
a3 450 + A4 -a 2- 

ao 

TiK 
a4 -'TSO +'&S 2 

ao 
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5 

ir, 50k 
2+A 

6- 
; riK 

- a2 + 45 
2 

(; ri - a, ) coth a, -3 
K2 ao 2, u 

22 

and 

a6 z8o + A4 - 
; riK 

ao 

The horizonal dipole can be defined by differentiating equation (A2.4.1 1) with respect to X, 

aG 
=IX+, u 0+ Xa7 _ JU2X In pR 

aX Ir R2 

8x 
ln8R-p 2 YO +O(R 

2 In R) (A2.4.12) 
2 

where 

a7 JU 
2a 

5+5 
2 

a6 -5 a2 +8p (2.4.13) 
242 

Higher-order singularities can obviously be generated by further differentiation; thus differentiating 

(A2.4.12) twice with respect to X gives, 

a3GI( 2X(X2 - 3Y2 2, uXY '42X '52X '52XY2 +-+- +0(1) (A2.4.14) 
ax, )r R6R4R2 2R 2R41 

FAR-FIELD POTENTIAL 
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From equation (A2.3.10), 

Gi cosh k( -y+h) cosh kh eia 
lxl 

as Ixl- > (A2.4.15) 
2ahNo 2 

In non- dimensional form, we obtain 

i cosh -ro(- Y+I) cosh ro e 
il txl 

G=-- as IXI- > (A2.4.16) 
2A N02 

aG cosh -ro( Y+I) cosh To e 
il 1XI 

sgnIXI 
G2= 

ax 
-- 

2NO 21 
as IXI- > (A2.4.17) 

and 

Ga3GA2 
cosh ro( -Y+I) cosh ro ei*llxl sgnIXI 

as IXI- > (A2.4.18) 
ax 3 2N 

02 

Equations (A2.4.16-18) represent far field potentials when the source is on the free surface. 
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CHAPTER 3 

SLOSHING IN A RECTANGULAR TANK WITH INTERNAL BODIES 

3.1 INTRODUCTION 

In a number of circumstances it is important to know the natural frequencies of fluid with a free sur- 

face in a container. For example, when liquid natural gas carried by ships sloshes within its container 

this could seriously effect the ship's stablity, and so it is desirable for the ship's design to avoid exter- 

nal excitation at the natural oscillation frequencies of the liquid by suitable choice of container di- 

mensions. T'hese oscillation periods each correspond to different sloshing modes of the liquid, which 

are functions of the tank geometry and size. Another important application of the results below con- 

cerns the stablity of spacecraft and missiles with liquid-fuel tanks. 

Here the main aim is to calculate the natural frequencies, and not the amplitudes of the sloshing, 

motions for wWch viscosity and non-linearity are both important. We suppose that such effects will 

only slightly de-tune the natural frequencies or eigenfrequencies of the container from their small 

amplitude oscillation values. Hence the linearised, inviscid equations of motion will be used in the 

following. 

The Cartesian co-ordinates (x, y, z) are employed with the origin in the undisturbed free sur- 

face and y measured vertically downwards. The fluid occupies the container which has a flat bottom 

at y=h, and the walls correspond to 

x=b; 0: 5 z: S I; 0: 5 y: 5 h 

x=-b; 0: 5 z: 5 1; 0: 5Y: 5h 
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z=O ; -b: 5x: 5 b; 0: 5 y5 h 

=1; -b: 5 x! ý- b; 0! 5 Y: 5 h. (3.1.1) 

See also figure 3.1.1. 

7 
vt 

r-- , T- uAURE 

Bodies with generators parallel to the z direction will be introduced into the tank and a cross-section 

is illustrated in figure 3.1.1. In this cross-section, a reference point within the body has coordinates 

(x, y)=( xO , yo ) and the surface of the body cross-section is denoted by C. A time-harmonic fac- 

tor e -iWI is removed. Under the usual assumptions of linearized water wave theory, a velocity poten- 

tial (D(x ,y, z) exists which satisfies, 

a 2XD a2(D a2(D 
r-+ -=O 

ax 2 ay 2 az 2 

in the fluid. No flow through the walls at z=0, I requires 
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a(D 
=0 on z=O, i 

CIZ 

which may be satisfied by taking 

(3.1.3) 

(D(x ,y, Z) = O(x , Y) Cos pz 

with p=Nx and N is any integer. From (3.1.2), O(x , y) satisfies 
I 

ý2ý 

+ 
D20 

p2 0=0 
ax 2 ay 2 

(3.1.5) 

in the fluid. The problem is now two dimensional because the factor cos pz has been removed. The 

potential 0 must also satisfy the linearised free-surface condition 

0+ 
Lo 

=O, y=O, lxl<b 
ay 

2 
W 

where K=-. There is no flow through the solid boundaries and so for the bed 
9 

LO 
=0 on y=h, lxl: 5 b 

ay 

for the walls 

LO=O 
on x=±b, O<Y<h 

ax 
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and for the body 

ao 
=0 on C 

Dn 
(3.1.9) 

where n is a normal coordinate measured into the fluid. This boundary-value problem will be solved 

by a number of different methods which are described in sections 3.2 and 3.3 . 

In the absence of the body, the potential O(x ,y, z) can easily be found by using the separation 

of variables method and the boundary conditions (3.1.6-7). Thus 

(D(x ,y, z) = Cos [a (x - b)] cosh [k (h - y)] Cos pz 

where 

a=a, =M'T, k=(a 
2+ 

P2 )-j' 

2b 

and M is any integer. The eigenfrequencies of the tank may then be found from the finite depth dis- 

persion relation 

2 
(1) 
-=K=k tanh kh. 
9 

(3.1.12) 

These values are shown on the presented graphs of eigenfrequencies with bodies for easy comparison. 

Firstly, I consider a thin vertical barrier. When the barrier penetrates the entire depth of the fluid 

so as to form two separate containers, it will make two sets of eigenfrequencies appropriate to the 

dimensions of the respective containers (see equations 3.1.11 and 3.1.12). When the barrier is 
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introduced which extends from the free surface but does not reach the bottom, it can be shown from 

standard eigenvalue theory (Courant and Hilbert, 1953, chapter 6) that the eigenfrequencies are 

decreased in general. In fact, as the length of the barrier increases from 0 to h with p fixed, Courant 

and Hilbert show that the nth eigenfrequency decreases continuously from its value in the absence of 

the barrier, to the closest eigenfrequency not greater than it corresponding to the two separate contain- 

ers obtained when the barrier length is h. When the position of the barrier coincides with an antinode 

of the oscillation at which the horizonal velocity is zero throughout the depth, introducing the barrier 

has no effect. Another deduction from Courant and Hilbert is that when the geometry is fixed p and K 

may only change in the same sense. 'Ibus, for example, if p is increased then every eigenfrequency 

will also increase. My aim is to examine in detail how these frequencies are influenced by the pres- 

ence of the body in detail, but it is worth noting that the calculated eigenfrequencies are consistent 

with these more general results. 

In section 3.2 the problem is formulated by using the eigenfunction expansion method. By using 

the condition of continuity of pressure and horizontal velocity, the eigenfunction expansions valid 

either side of the barrier are matched across the gap in the fluid not occupied by the barrier. An inte- 

gral equation is obtained for the unknown velocity across the gap, and an explicit condition is 

obtained for the wavenumbers in terms of a quantity A which is related to this velocity. This method 

has been applied by other authors, for example Evans and McIver (1987) in a related 2-D problem 

(when p= 0). The expansion of the unknown velocity in a series of orthogonal functions enables, 

after truncating the series, a determinant form to be obtained in terms of A and known matrices B 

and C. 

In section 3.3 a more general approach is described applicable to bodies of any shape. Green's 

second identity is applied to two different potentials, and flie original boundary-value problem 

becomes an integral equation eigenvalue problem for the eigenfrequencies. By using constant values 
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of ý along the boundary elements, the integral equation eigenvalue problem is converted to a matrix 

eigenvalue problem. 

In section 3.4, two approximate solutions based on the "wide-spacing approximation" and a 

"small body approximation" are obtained. The wide-spacing approximation assumes that the wave- 

length is small compared with the distance between the body and walls. The small body approxima- 

tion means that a typical dimension of the body is much smaller than the cross-sectional length scale 

of the fluid motion. Both methods are used to consider two cases: a vertical surface-piercing barrier, 

and submerged circular cylinder on the line x=0. By using the wide-spacing approximation, we 

obtain a general expression to determine the eigenfrequencies in terms of the reflection and transmis- 

sion coefficients for that body. Approximations to the reflection and transmission coefficients for the 

barrier are known from Chapter 2 (equation (2.3.66) ). The same coefficients for the cylinder case 

have been calculated by Davis and Leppington (1977) who used the method of matched asymptotic 

expansions. In the small-body approximation, Green's theorem is applied to the potential with and 

without the body being present. We obtain the explicit form for the eigenfrequencies in terms of free- 

surface and body integrals, which are estimated for both body geometries above to obtain analytical 

results for various body dimensions within a fixed container geometry. 
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31 EIGENFUNCTION METHOD FOR THE VERTICAL BARRIER 

The contour C is here taken to be a thin vertical barrier which will be denoted by LI, That is LI is 

x= xO 9 0: 5 y: 5 a for a surface piercing barrier, and LI is x= xO I a: 5 y: 5 h for a bottom-mounted 

barrier, with 0: 5 a :5h in each case. Here the boundary value problem is defined by the modified 

Helmholtz equation (3.1.5), the linearized free-surface condition (3.1.6), the bed, wall conditions 

(3.1.7-8) and the body condition (3.1.9). The body boundary condition is 

ao 
ax 

0 on L,. (3.2.1) 

As in equation (3.1.12) we wish to find the wavenumber k which is related to the frequency w 

through 

40) 
-=K=k tanh kh. 
9 

(3.2.2) 

We introduce the orthonormal eigenfunctions chosen to satisfy the bottom boundary condition (3.1.7) 

-1 Vn(y) = N. cos kn(h - y) (3.2.3) 

where k. (n=1,2... ) are the real positive roots of the equation 

K+k 
n 

tan kh =0 (3.2.4) 

with ko = ik, and 

2 Nn 2h+ sin 2knh 
(3.2.5) 

2kn 
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Let 0, and ý2 be the solutions of the equation (3.1.5) for the regions on either side of the barrier. 

Using the separation of variables method 

Anm, x +Bne -M Rx) V/ 
n 

(y), for xo<x<b (3.2.6) 

n=: O 

and 

02 (X, Y)= (C 
n 

em'x +Dne -M, X )Vf 
n 

(y) 
, 

for -b<x<xo (3.2.7) 

R=0 

where A. I Bn , Cn , and Dn are constants, and V, (y) is given by the equation (3.2.3), 

222 

n=p 
+k 

n 
(3.2.8) 

and 

mo =i (k 2-p2)=ia, (3.2.9) 

say. Let L be the interval on x= xO not occupied by the barrier. Then continuity of pressure and 

horizonal velocity requires, 

ol = 02 on 

12 on (3.2.10) 
ax ax 
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and the wall condition( 3.1.8), 0, and 02 may be conveniently written in the form 

cosh m, (b - x) 
OI(x , Y) =- I Ut - V,, (Y), for xo: 5x: 5b 

n=O mn sinh mnb 

m cosh mn (b + x) 
V, (Y), for -b: ýx: 5x (3.2.12) 02(X 

- Y) I U- 0 

n--o mn sinh mnb 

where the uR are the Fourier coefficients in the expansion of the horizonal velocity U(y) across 

X=X 0,0 -< y -< h. Using the condition U(y) =0 on L', we have 

U(y) u. V,, (y) with u. =<U, V/,, >af U(y) v. (y) dy. (3.2.13) 
n=O L 

The continuity of 0 across L gives 

2um -1 
( 

coth M, (b - XO) + Coth m. (b + xO) Vn(y) =0 on L (3.2.14) 
nn 

n_-O 

It follows on substitution from (3.2.13) that 

f U(t)K(y, t)dt=O a<y<h; O<y<h-a (3.2.15) 

L 

where 

s,, yf. (y) V,, (t) (3.2.16) 
n=O 
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and 

S" =amn -I ( 
coth mn (b - xO) + coth Mn (b + xo) 

) 
(3.2.17) 

Here a factor a has been included for later convenience. By introducing 

K (y, t) =- A-1 Vo(y) V10(t) + K, (y, t) (3.2.18) 

where 

KI(y, y) v. 0 (3.2.19) 

and 

tanh [a (b - xO)] + tanh [a (b + xo)l 
) 

(3.2.20) 

and defining u(y) by 

U(y)=Uo A-1 U(Y) 

equation (3.2.15) becomes, 

(3.2.21) 

f 
u(t)KI(y, l)dt=vo(y), (ycL). (3.2.22) 

L 

Multiplication of (3.2.21) by Vf, (y) and integration over L gives 
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Vo >= f 
u(t) V10(t) dt =A (3.2.23) 

L 

It follows from ( 3.2.20) and ( 3.2.22) that 

2 

A<U, Yo > (3.2.24) 

<u, Vn>2sn 

Now U(y) can be expanded in an infinite series of tenns of the orthonormal set (Vm (y) ), m= 

0,1,2... . If we substitute, as a trial function, the truncated expansion 

m 
U(Y)= z u.. V,,, (Y) (3.2.25) 

M=o 

into (3.2.24), we obtain, 

A=ucu (3.2.26) 
uTBU 

where, 

TTT 
(Uo 

IuI...... umC= cc ,c coo Ic lo, c 20 c 
mo 

mn ý- <vm, Vf, >, B=(Bm, ), (3.2.27) 

and 
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Bmp= c 
mn 

c 
pn 

s 
R, 

n=l 

The best possible approximation of the form (3.2.25) is now obtained by requiring u in 
to be chosen 

so that equation (3.2.24) is stationary. By differentiation of (3.2.26) widi respect to the elements of U, 

we obtain 

det( C -AB )=O. (3.2.28) 

In this equation C and B are known matrices (given by (3.2.27)) and A is related to the unknown 

eigenvalues k via equations (3.2.8-9) and (3.2.20). 
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3.3 BOUNDARY ELEMENT METHOD 

The following is based on the work of Brebbia and Walker (1980, pp. 35-38). Let the potential 0 and 

source potential G (except at the source point (ý, q)) satisfy the modified Helmholtz equation (3.1.5), 

and the condition of no flow through the solid boundaries of the tank, equations (3.1.7-8). We consid- 

er the case p=0, i. e. the problem is two-dimensional. By the application of Green's second identity 

to G and the potential ý of equations (3.1.6)-(3.1.9), we have that 

f V2G -G V2 O)dV=f (0 
DG 

_G 
Lo 

) ds (3.3.1) 
an an 

s 

where n is a normal directed out of the fluid, and S= Sw +SB +S F+ S'r . Here SW denotes the tank 

walls, SB the boundary of the internal body, SF the free surface and Sr is a small semicircle of radius 

-- taken about the source point (ý, 77) which is on the boundary. By the application of equation (3.1.5) 

into equation (3.3.1), we have 

aG 
_G 

ao 
)ds =0 (3.3.2) 

sw +S 
a 

+S 
F +S, 

an 
' 

an 

Applying the wall conditions, equation (3.1-8) to equation (3.3.2), gives 

f (0 
DG 

_G 
Lo 

)ds =0 (3.3.3) 
an an 

sw 

and hence 

f (0 
aG 

-G 
ýo 

)ds = 0. (3.3.4) 

SB+SF+S, 
an an 
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Since S. is a circle of radius e centred at the source point (ý, q) , 

9 
aG 

-G 
Lo 

)ds = �nI f DG DR 
_G 

20 aR]c 
do 

an an DR an DR an 

where R is measured from the source point, so 

aR 

an 

Also near to the source poim 

G =In R 

Thereforr, 

G0 f [OL-G 
00 

]ds=tim f [-ý+L Inc ]--dO. 
an an e-+O 0 

DR 

Since lim e In c=0 we have 
C-+O 

DG 
_G 

Lo 
I ds =-; r (3.3.5) 

an an 

Thus for any boundary point (ý, q) 

aG 
-ir 0+f (0- -G 

'30 )ds =0 (3.3.6) 

s 
an Dn 
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Applying the boundary condition (3.1.9) and 

ao 
an 

=0 on S. 

gives 

-go+ 
f0 aG 

ds +f (0 
aG 

_K0 G) ds=O. 
an an 

sBsF 

That is, 

(3.3.7) 

-Ir 0+ f0 aG 
ds +f0 

aG 
ds=K f oGds (3.3.8) 

an an 
sBsFsF 

Now by using the boundary-element method with constant values of 0 over each element, this inte- 

gral equation eigenvalue problem for K can be solved. 

The constant boundary element can be described as follows: 

(a) The boundary SB is divided into N straight-line elements 

(b) Assume that ý is constant over each individual element, and takes the value at the node ( the mid- 

point). 

If the nodes are numbered in an anticlockwise direction such that the nodes numbered 1,2,3,.. ., NB 

lie on the boundary SB , and the nodes numbered N. + 1, NB+2..., N lie on the boundary SF ' then 

equation(3.3.8) can be expressed as 
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No N aG.. N 

ds +Z Oj f 'j ds =K1: oj fGV ds (3.3.9) f 
an k-N a +1 s 

an j--NB+l SF. SBJ. F, i 

(c) Take the source point (ý, r7) at each node in turn. Then by using (3.3.9). we have 

No aG.. N aG.. 

-7r 0i + F, Oj f tj ds + F, Oj f2 ds 
j--l an j--Na+l s 

an 

N 

K F, 0if Gij ds ,i=1,2,3,... N (3.3.10) 
j--N 8 

+1 s 

Now the equation (3.3.10) can be written in matrix notation as 

(-g l+B+C)0, =K D 0, 

where 0, are unknowns, 

aG.. 
Bf 'j ds, 

an 
sai 

(3.3.12) 

DG.. f 'j ds, 
an 

sF 
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Dj Gj ds 

sF 

and I is an identical matrix of order NxN. Here Bj, C 
ii and DY. are evaluated in appendix 3. 
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3.4 APPROXIMATE METHODS 

(a) Wide-spacing approximation 

This approximation is applied by several authors, for example Evans and McIver (1987), and 

assumes that the interaction of the wave field with the body is governed by the appropriate 

reflection and transn-dssion coefficients for waves incident upon the body in a fluid having a 

free surface extending to infinity in either direction. 

Near x=b we require the potential to satisfy the boundary condition in the container walls. We 

can thus write O(x , y) as 

O(x , y) = 2B cos a(x - b) V/0(y) , 

=B(e 
ia('x b) 

+eia 
(x b) 

) VO(Y) , (3.4.1) 

where B is a complex constant and VfO(y) is defined by the equation (3.2.3), with n=0, whilst near 

x=-b, 

ý(x , y) = 2C cos a(x + b) v/o(y) , 

=C(eia 
(X -t- b) 

e-ia 
(x 

vfo(y). (3.4.2) 

Here C is a complex constant.. 
_ A 

jj, 
-9-46, ý 

"Ck- TIC 4a, 
VTouit-, -'N'to-jý 4w-- 

., I, t-, I- I it 'LL I 

1 4-41( Z- JLý-) 

W64 -k-iký)7 

"(Xib) 
-ýO; 

Ao 

T 

Cc . 2a- 
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Let R, and T, be the reflection and transmission coefficients for waves incident from the left of the 

body and R2 and T2 be the reflection and transmission coefficients for waves incident from the right 

of the body (as shown in the figure 3.4.1 ). 

Newman (1976) has shown that T, = T2 = T, i. e. the transmission coefficient is independent of 

direction of the incident wave, for any arbitary two dimensional body. Using his idea we can prove 

that T, = T2 = T, for any arbitrary three-dimensional body in the wave tank. Using conservation of 

energy 

222 
IRII +ITII = IR 21+ 

IT212 

gives, IR, I= IR 
21= 

IRI. 

Consider the source of waves travelling away from the body(x = xO ), as shown in the figure, and 

assume C=I 

ia(x -b) -4a (x -b) ia(x +b) 
Be0=RBe0+Te0 (3.4.3) 

and 

e 
-ia(xo+ b) 

=Reia 
(x. + b) 

+TBe 
(x. b) 

(3.4.4) 

where a is defined by equation (3.2.9). From (3.4.3) and (3.4.4) we have 

T2e 
2i ab=e -2i a b-2 

Rcos (2axo)+ R2e 
2i ab. (3.4.5) 

TWs is a general expression derived under the wide-spacing approximation for the determination of 
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the frequencies in a tank containing any body whatsoever, in terms of the reflection and transmission 

coefficients for that body when in open water. Define 

(k 2_p2 
am -I f(e) a2 (3.4.6) 

2b 

M Ir 
where am = 

2b ,M is an integer and the form of f( r) is to be determined. My aim is to determine 

a2. From equation (3.4.6), we have 

k=km- 
M jr f (C) a...... (3.4.7) 

4b 2km 

where 

ku = (am 
2+ 

P2)-yI 

and 

(3.4.8) 

cosh 
2 kh cosh 2k, h +I- 

Mgh 

2 
f(c) a. 2 sinh2k, h+--- (3.4.9) 

2 4kmb 

Now I am going to consider two cases, the surface-piercing barrier and the submerged cylinder. 

(i) Surface-piercing barrier 

From the section 2.3 (equation 2.3.66 ), R can be written as 
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R=- az ih 
cosh 

2 kh e2+ O(e 4 (3.4.10) 
4N 

02 

where 
a. For the barrier, 
h 

R+T= 1. 

(To prove this, take an incident wave coming from the left, that is it is moving in the direction of x 

increasing. Applying Green's theorem twice to the unknown potential 0 and e 
(iax) 

and 0 and e 
(-iax) 

gives and expressions for R and T which yield (3.4.11). ) 

From equations (3.4.5-6), and (3.4.9-11) and after little simplification, we obtain 

a= 
am irh 

cosh 
2 

kmh r2(I -(-I) 
m cos 2amxo (3.4.12) 22 

O, M 

and 

No, m 
2=4k1h( 

sinh [2k. hl +2 km h ). 

m 

2 
In order to find a2, from (3.4.12) we define f (c) = -- . Therefore 

am xh cosh 
2 kmh 

I- (-I) m 
Cos 2a, x (3.4.13) 

4N 
ON 

2-( 

) 

Substituting this into equation (3.4.6), we have 
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a= 
mr 

-c 
2- Mr 2h 

cosh 
2 kuh 1- (-l)u cos 2a, x (3.4.14) 

2b 16 b2 NO. 
M 

2ý 

(ii) Circular cylinder, centred on (xO , yo) with radius a and yo > a. 

From Davis and Leppington (1977), we have 

Yr kh i 
-- 

2+ 
O(e 

4 

2 
0 

and 

T=I+ ;r kh iE2 
cosh [2 kh (2ý0 + 1) (3.4.16) 

N02h 

By substituing equations (3.4.15-16) into equation (3.4.5) and using the equations (3.4.7-9), we get 

2; rikmh 2 2ia b -2 i f(r) a 2; r kuh i2 Yo 
+2 cos 2akf xo eeI+2c cosh [2k, h + 1)] 

No, 
m 

No'm h 

2 
As before, in order to find a2 we observe f (c) =c. Therefore, 

z kxf h 
cosh [2 kmh ( 

-vo 
+I (-I) m 

cos 2a, x (3.4.17) 
Nom 2(h) 

By substituting a2 into equation(3.4.6), we obtain 

Mz ;rkmhc2 
cosh [2 kmh ( 

10 
+I (-I) m 

cos 2a, x (3.4.18) 
2b20 2b Ný'm h 
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(b) A small body approximation 

It has been pointed out in section 3.1 that solutions of the boundary-value problem (3.1.5-9) when 

there is no body within the tank are of the form 

om =cos am( x-b ) coshkm( y- h ), (3.4.19) 

where 

= MzI2b, kbf =2+p2 )1 (3.4.20) trk, ( am 

and M is any integer. From the free-surface condition (3.1.6) the corresponding value of the fre- 

quency parameter K is 

Km = k. tanh kh. (3.4.21) 

If M is odd, these modes of oscillation are antisymmetric in x, while if M is even the modes are sym- 

metric in x. For a given tank geometry there are a doubly infinite set of modes which can be identified 

by the integers N and M in the defu-dtion of p and a. * 

As before, the aim is to calculate the change in K when a body of uniform cross-section spans 

the tank in the z direction. Since 0 and 0., the potentials with and without the body respectively, both 

satisfy the modified Helmholtz equation we may apply the Green's theorem to the potentials over the 

fluid domain exterior to C giving, 

00 f (0 
aou 

-om 
L 

)ds+f 0 
Lm 

ds=O. (3.4.22) 
än Dn Dn 

Fc 
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Here F denotes the free-surface contour and C denotes the body surface contour. The body boundary 

condition (3.1.9) has been used to eliminate a number of terms. Replacing the normal derivatives on F 

by using the free-surface condition (3.1.6) and rearranging yields 

K= Kw -f0 ds 0 0, ds. (3.4.23) 
an 

F 

When a typical dimension C is much smaller than the cross-sectional length scale of the fluid 

motion, equation (3.4.23) may be used, with care, to estimate K by using the fact that over most of the 

fluid domain the solution will differ little from that given in equations (3.4.19-21). A typical length 

-I scale of the fluid motion is k. , so an approximation is sought under the assumption kma << 1. 

Now I am going to consider two cases, a circular cylinder and barrier as before. 

(i) Circular cylinder: Suppose C is a circle of radius a centred on (xO I YO) and the motion is two- 

dimensional, that is p=0. We define the polar coordinates (r , 0) by 

(x - X0 )=rsinO (y-yo)=r Cos 0. (3.4.24) 

Near (xO , yo), the potential 0M may be expanded as, 

Om = cos fkm(xo - b)] cosh [km(yo - h)] - kr sin 0 sin [km(xo - b)] cosh [km(yo - h)] 

km r cos 0 cos [km (x. - b)1 sinh [km (yo - h)] + 0«k. r) 
2)- (3.4.25) 

All terms in equation (3.4.25) are solutions of Laplace's equation and represent a uniform flow. 

We are here using the small-body approximation, namely that the undisturbed potential 0. does not 

vary significantly over a typical body dimension scale. Providing ka is small, the perturbation to 
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the motion from introducing C will be neglible except in the immediate vicinity of the body. Near the 

body, 0 is written 

2 

constant - k. (r +a) sin 0 sin [km(xo - b)] cosh [kvf (yo - h)] 
r 

2 

k. (r ,a) cos 0 cos [k m (X 0- b)1 sinh [km(yo - h)1 + 0«k. r) 
2) (3.4.26) 

2 

where terms r sin 0 and r cos 0 represent the uniform flow and the term a 
represents the dipole. 

r 

Together these have zero normal derivative on C. The value of the constant in (3.4.26) is not needed 

for the present calculation. The integral over C in (3.4.23) can be calculated approximately by using 

the forms of 0 and ý, given by the terms displayed explicitly in equations (3.4.25) and (3.4.26). The 

influence of the body is small in the free-surface integral and 0 is approximated by 0. over F as seen 

from equation (3.1.9). With these approximations to the potentials equation (3.4.23) yields 

K=K 
2; r km2a2 

(sin 2 km(xo - b) cosh 
2 km(yo - h) 

b cosh 
2 kmh 

Cos 
2 km (xo - b) si2 km (yo - h) ) (3.4.27) 

with k. =M irl2b 

(ii) Thin vertical barrier Here the body is a thin vertical barrier piercing the free surface and extend- 

ing downwards a distance a. The motion is three-dimensional, but its variation is taken to be small on 

the other length scales of the problem so that the plate is far from the walls and base of the container. 
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The reference point in C is now chosen as (x , y) = (xO t 0) and the polar coordinates (r , 0) are 

defined by 

X-xo= r sin o, y=r cos 0. (3.4.28) 

As in (i), near (xO 1 0) the potendal may be expanded as 

ou = cos [am (xo - b) ) cosh kmh - amr sin 0 sin [am (xo - b)] cosh kmh 

- amr cos 0 cos [am (xo - b)] sinh k, h + 0((k, r) 
2) (3.4.29) 

Near the barrier, 0 is written as, 

21 
c cosh k, h sin [aM (xO -b )] Re i (z + 1)7 (3.4.30) 

where 

a x-xO 
and c=- (3.4.31) 

aah 

which has zero nonnal derivative on the barrier and for large r the unifonn flow terms correspond 

with the potential in equation(3.4.29). 

To calculate the integral over the barrier in equation (3.4.21) we approximate using equation (3.4.29) 

and (3.4.30). This gives 

f0 L'M- 
ds =fca. cosh2 kxf h sin 

2 
a4f (xo - Y) (I - dy 

an a2 
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02 

-f ev axf cosh2 kh sin 
2 

a, (x(, - b) (Iy2 dy 
a a 

)r 
c a. cosh 

2 kh sin 
2 

am (xo - b) (3.4.32) 
2 

As in (i), the influence of the body is small for the free-surface integral and 

0-0. on 

Therefore, 

(3.4.33) 

b 

f ds= f 
Cos 

2am 
(x - b) cosh 

2 
kmh dr =b cod kh (3.4.34) 

F -b 

By substituting (3.4.32) and (3.4.34) into (3.4.23), we obtain 

K=K 
a. 

sin 
2a (x b) (3.4.35) 

m 2bh m0 
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APPENDIX 3: SOURCE POTENTIAL 

Here the source potential which satisfies the two-dimensional Laplace equation, and the condition of 

no flow fluough the solid boundaries, equations (3.1.7-8), is calculated using a conformal mapping. 

From the source potential the matrix coefficients B, C., and D which are defined in (3.3.12) are 
V Ij Ii 

calculated. 

(a) Conformal mapping 

Firstly consider containing two walls a distance 2b apart and without the free surface nor bot- 

tom. Define a complex variable z=ý+ jr7, and map the flow region onto the upper half of the 

ý=u+ jv plane (see figure. . 3.1) by 

--ir 
- (Z - b) 
2b 

r 

Al 
c 

ýýM C, - 

-1. ;ný Vil 
irv, ii, gc, --) i 

r'- " -� --- 

0 

Therefore the complex source potential in the C plane can be written as, 

(A3.1) 

--I 
.9 -1 .9 

- (: o - b) - (-To + b) 
W= In 

(C 

-e 2b +In C-e 2b 
I- 

In C (A3.2) 
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where zo =ý+ jq and YO is a complex conjugate. After simplification, W can be written as, 

W= 2r17 ,2 In 2++ In sin 
277 (z - zo) + In os -L (z + -z, -) + hr . 2b 

1 

4b 

1 [c 

4b 

1 

By neglecting the constant and taking real part, the potential, 0 becomes 

12 7r (y _ 77) _ C0S2 
9 (X _ ý) 

1 
cosj 

ir 2 7r (X + ý) 0=-ln osh +- In -(Y-17)-Sin - 
2 

IC 

4b 4b 

]21 

4b 4b 

1- 

(A3.3) 

By the method of images, when the tank contains the bottom the source potential becomes, 

12 Jr I 
COSý2 

IC (y _ 17) _ S, 
29 

(X + ý) '7 (x-ý) +-In n G= In osh2 ' (Y - 17) - COS 
2 

Ic 

4b 4b 2 4b 4b 

In c02 -x (y - 2h + 17) - cos 
2X (x - ý) 

2[ 4b 4b 

1 

I 
in cosh 

2X (y - 2h + 17) - sin 
2 ;r (X + (A3.4) 

4b 4b 

TWs is a required source potential wWch satisfies the wall and bed conditions. 

(b) To obtain B 
.: 

Now 

DG aG 
sin a, + 

aG 
Cos as (A3.5) 

Z)n i)x ay 
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where each line element makes an angle a, with horizontal. Differentiating (A3.4) with respect to x 

and y and substituting into (A3.5), and using 

x=X. +S COS a. II 

and 

y=y, +s sin a, 

we get, 

aG 
= 

;r (e ++ gj +h (A3.6) 
an 4b 'j 

where, 

sinh 2r (y +s sin aI- r7j) COS ai - sin 
7r (x +S COS a ýd sin a 

e.. 2b 2b (A3.7) 
li r ;r 

cosh - (y +s sin a 17j) - COS - (xj +s COS a ýj) 
2b 2b 

sinh -T (y +s sin aJ- 17j) COS ai + sin -L (x +S COS a+ý, ) sin a 
2b 2b (A3.8) 

cosh 
Ir (y +s sin ai- rld + COS 

z (x i+S COS ai+ ýj) 
2b 2b 

. )r 
sinh 'T (y +s sin a 2h + qj) cos a sin - (x +S Cos a sin a 

2b 2b (A3.9) 9ij 
Ir 9 

cosh (y +s sin a- 2h + ? 7, ) - cos - X. +S cosx 
2b 2b j 
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and 

sinh 
x (y i+s sin a 2h + 17, ) Cos a+s in -2, 

r (x +S Cos ct +Q sin a 
2b 2b 

=. (A3.10) 
cosh 

Ir (y i+s sin a 2h + i7j) + Cos 'T (xj +s cos a+ 
2b 2b 

Here (x, . yj) are coordinates of elements and (ý, , 17, ) are coordinates of singularities. Express the 

variable s in terms of v, i. e. 

I. 
S=(v+ 1) j 

2 

where, 

I -, jý +(yj+ 
I- yj) 

From the definition of B and (A 3.6) 

(A3.11) 

I 
B.. =If 

aG 
Ii dv 1,2,.., NB; i#j and i=j (A3.12) 

'j 2 an 

can be calculated. Here NB represents number of elements on the body. 

(c) To obtain C .: 

Differentiating (A3.4) with respect to y at free surface gives 

sinh 
ah 

sinh Th 

I! =-- -bb Dy 4b irh )r h 
cosh ' Cos (x - cosh 

z+ cos (X + 
b 2b b 2b 
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i= NB+V N 
B+2'* --N. (A3.13) 

where N is a total number of elements on the body and free-surface. Writing x=x,. +s and, since 

X. +x 
1+, we get from (A3.11) and (A3.13) 

2 

DG!, sinh rh sinh zh 
b+b 

li=j (A3.14) 
Z)y 4b 

cosh Th 
- Cos ; rvd cosh xh + Cos z( vd +xl+xi+l 

-b4b22 

where d is the distance between two nodes and from (A3.4), 

sinh 
fj 

sinh 
"I 

DG 9 2b 2b 
ay 4b 

cosh 
"*7j 

-cos 
X (XI +S-ý cosh 

T'7j 
+ cos 

Ir (XI +S+ý 
2b 2b 2b 2b 

sinh (- 2h + j) sinh 2h + 77 P 
+ 2b + 2b 

7r cosh 2h + j) - Cos - (xi +s- cosh 2h + ?7i )+Cos -1ý (xi +S-ý P 
2b 2b 2b 2b 

j=N B+1, N B +2,..., N and j*i., i=1 j 

where 

(A3.15) 

x. + x. Yj +Yi+i 
and qj = 
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Therefore from the definition of C 
li and from equations (A3.13) and (A3.15) 

dI DG.. 
cii f 'j dv, j=N, +I, N B+2,..., N; i*i and i=j (A3.16) 

2 
-1 

ay 

can be calculated. 

(d) To obtain D: 

Near source point Gii = In r, where r=Ix-ý1, we have from (A3.4), when 

(x, y)-*(, )-+(, O), 

Gii - In r ---> tt, i= NB + 1, ND + 2,... N (A3.17) 

where 

9 ; rý h12 ; rh + COS2 
X4ý 

In (- coS -) + In sinh -7r +- In (sinh (A3.18) 
4b 2b 2b 2 2b 2b 

Integrating this with respect to x gives 

d 

f (Gi, - In r) dx =dt 
0 

and 

(A3.19) 

d 

f In r dr =d (In 
d_ 

1) (A3.20) 
2 

0 
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Therefore from the definition of D for i=j, and from equations (A3.19-20), we have 

D.. =d ý-I+Infl, i=N +I, N +2... N (A3.21) I 
u 

(2 

2BB 

and from (A3.4) and (A3.18), we have 

G.. =I (p +q +r. +u.. -4ln2), i#j (A3.22) 
11 2 'j ii ii li 

where, 

T17 * 
pij == In cosh i- cos 'r (x, +s-ý j) (A3.23) 

2b 2b 

) 

In 
(cosh f7L 

+ Cos -L (xi +s+ (A3.24) 
ij 2b 2b 

In osh -x ( -2h + )-cos -L(x, + s-ý (A3.25) 
(C 

2b 2b 

and 

u =In osh ij 
T (-2h + rl i )+Cos (xi+s+ý j) i#j (A3.26) 

(C 

2b 2b 

From the definiflon of D 
li and using (A3.22), we have 

I 

D, 
j 

fG 
ii 

l, dv, J= NB+1, NB +2,..., N; j#i, j=i. (A3.27) 
2 

_1 
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CHAPTER4 

SLOSHING IN A RECTANGULAR TANK WITH INTERNAL BODIES - 

SOLUTION BY MATCHED ASYMPTOTIC EXPANSIONS 

4.1 INTRODUCTION 

Here solutions to the problems discussed in chapter 3 are obtained by formal application of the 

method of matched asymptotic expansions. The boundary-value problem is, defined by the modified 

Helmholtz equation (3.1.5), the linearized free-surface condition (3.1.6), and the condition of no flow 

through the solid boundaries (3.1.7-9). We assume that the length scale of the motion is much larger 
I 

than a typical body dimension. The solutions obtained will not be valid for higher modes as the fun- 

damental length scale decreases as mode number increases. 

in section 3.4, a solution was obtained on the above assumption and for the submerged cylinder 

case but it is not clear how to find a solution for non-zero p. Here p=n. T/21 and n is any integer and 

21 is tank walls is in z -direction. To calculate the higher-order solution for non-zero p we use the 

method of matched asymptotic expansions. This method is a powerful tool which has been used by 

several authors, for example Davis and Leppington (1978) who obtained a higher-order solution for 

wave scattering by various obstacles. 

From the previous work on scattering by submerged bodies, for example Davis and Leppington 

(1978), and from the related work of McIver (1991) it is clear that the outer solution will contain only 

sources and dipoles at leading order. The form of solution may be justified by retaining a full expan- 

sion of the multipole potentials defined in Appendix 4.1. These are singular solutions of the modified 

Helmholtz equation satisfying all the conditions of the problem except that on the body. It follows 

that the leading-order inner solution corresponds to the potential flow for a uniform stream past the 
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body cross-section. The disturbance to the stream is dipole-like at infinity and the only way Us can 

be reconciled with the inner expansion of a multipole representation in the outer region is if the dipole 

in that representation has a certain form. In particular, the terms in the inner expansion of the dipole 

- potential in the outer region are to be matched onto the w-dforin stream and dipole terms of the inner 

solution, at the same order in e= alh << 1. Here a and h are the cross-sectional length of the body 

and depth of the water respectively. T'his determines the order of eigenfrequency in e and matching 

gives an explicit expression for the eigenfrequency in terms of the body geometry and the dipole 

strength resulting from a uniform flow past the body. 

In section 4.2, the lowest-order solution is obtained for a submerged cylinder of arbitrary cross 

section. By matching inner and outer expansions a standard matrix eigen-value problem is obtained 

and the lowest-order solution is formed in terms of the cross-sectional area and dipole strengths of the 

body. The higher-order solution is very difficult for a body of arbitrary cross section. Therefore a cir- 

4 
cular cylinder is considered to obtain the higher-order solution up to -- . The calculation is different 

from the first-order solution. The fourth-order outer and inner solution are required to find this solu- 

tion. Using the matching principle gives a non-standard eigenvalue problem. Writing these equations 

in matrix form gives the same matrix as in the lowest-order solution which is of order three by three 

and rank two. So using matrix theory, any rows or columns in the matrix can be written as a linear 

combination of any two rows or columns of the same matrix and then by simplifying the higher-order 

solution can be obtained. 

In section 4.3, a surface-piercing vertical barrier is considered. The solution procedure is very 

similar to section 4.2, but here the leading order outer solution contains only dipoles. Since the body 

is a vertical barrier of zero cross-sectional area. The calculation for a higher-order solution is much 

easier than in section 4.2. 
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The lowest-order solution for an arbitrary cross-sectional body with coordinates (xO, yo) is given 

by 

zh P2 (I+ (-I)" cos 2axf xo cosh2 kxf (h - yo a2 ý2 -L 2 2ammo. m 

( 

ira 

2 vk, 
2(I+ (-I)" cos 2a 

mxo 
)) sint? k, (y - yo) 

-(T- A )auku (-I) m 
sin 2amxo sinh 2kkf (h - Yo) 

+ 2A a Af 
2(I- (-I)m cos 2amxo ) cosh2 k, (h - yo) 

)- 
(4.1.1) 

Here S is a cross-sectional area of the body, v, T, A, and A are dipole strengths of the body and a2 is 

related to the frequency parameter K by the equation 

K= KAI 

where 

am = 
M; r kP4 = (a 

2+ 
P2). 

', 

2b m 

(4.1.2) 

21 
NO, m= 4kAf h( 

sinh 2k, h + 2kuh 
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Km = km tanh kmh, 

V= 
M7C0r2 

1+k M2h Kh 

4k m2b2 
Km m 

and M is any integer. For a circular cylinder the Wgher-order solution, a4 is given by 

aj 
c lo'o 

cil'o 
+( cil'o + fil. 0 - 

fil. 
0 

cooo 
C 10.0 

Coo'o 
bII+c 11 -0 B2+b 

45 

1 

d, 
lo 

dll'o do, 
,0d, l'o 

(4.1.3) 

+ CilO+fiio-fl1,0 
c00,0 

b 
21 -Co()'O +b 22 

CI-110 
+B3j+ cm, 0 

b� 
Co0' 0+b 

32 
cl "0 +b 

d, 
1,0 

d01,0 d, 
1,0 

d01,0 d11,0 31 

where 

2= 

73 3c 

11.0 
+3c 11,2 

+ a, 2( 
In 

8+3+8(e 
21.0 

d 
12,0 +c 21.0 C12.0 

16 2(22 16a2 

78 3885+d 
fl 

1.0 + f1l. 
2 + a2 ( In '5 

21,0 12.0 21 oe 12,0), 3 16 222 16a2 

bl, = 
78 3c 

ol'o + 45 c 01,2 +(e 21,0 
d 

02,0 +c 21,0 c 02,0 16 2 16a2 

(4.1.4) 
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b 13 ý- 
78 

3 

ello + .6e,,, +8(e 21,0 
f12,0 + C21 ,e 12,0 

16 2 16a2 

b 21 -`ý 
78 

3 

dol'o +3 do, 
. 2+ 

85( 
f2l 

.0 
d02 

,0+d 21,0 COZO 
16 2 16o-2 

b 
745 

3d+8d+ 
45 

f2l. 
o d12.0 + d2lo c, 2,0 22 

16 11,0 2 
11.2 16U2 

b 31 ý- a 2- 
38 

4c 

00.0- 

82 
COO. 2 - C2 (r + In 

5)-85( d02.0 e2o 
,0+ 

c2o 
.0 

c02 
,0 16 2(2) 16a2 

32 

3.5 
4 

-10.0 

52,10,2- 85( 
C20,0 c12.0 + e2o 

.0d 12,0 16 2 16U2 

38 
482 

45 
5( 

33 - '10,0 , 10,2- - 20,0 12,0 20.0 
f12,0 

16 2 16U2 

gwnma is Euler's constant, and 8= ph. The coefficients cim, d.. e.. , and f., Ji, j, k=0,1,2) are IM, IJA fil 

known from the appendices 4.1-2. 

When the body is a surface-piercing vertical barrier and the higher-order solution is obtained up 
4 

toe , at is 

0 
(4) 

2£ 
202[, 

+ e2 In c cr 41 
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a2tTM 
2K h+ 

sinh 2kmh 

4k 
m2 

bNo, 
m2m 

2kmh 

zxoamh co2 kkf h 
sin 2auxo 

4bNo. u 
2 

I 
SI'm + Re 

i cl, m +m+am2h2 
Cod kh 

p2h2h (y+InL-- cosh 217 +0 sinh W+ n 
4(424 

where 

fraAlh 
cosh 

2 kuh (I- (-I) u 
Cos 2aM xo (4.1.6) Cr2 "': 

4NO, 
m 

2 

04, =-1 (5 
2 

cosh 20 a2 
4 

anh cos knh -2a b 
2yr Y, - -- -- -- --( CoSh 2a xe 

n=l N 
n, M 

2 
sin 2a 

nb 

ci'm 2h 2 in4 -e 

Ph 2 e-'6h 
-t 

2 dt 
Km -8 sinh j8h 

Km -, 6 K. cosh Ph -P siWi, 8h 
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21ri. amh cost? kh 
sinh 20 (4.1.9) 

NO. xf 
2 

(p 2+t2)I 

ý 
KAf 

cosh v=-, 
p 

and Re, c,,, is a real part of c,,,. 
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4.2 A submerged cylinder 

The contour C is taken to be fully submerged, with the typical dimension a much less than the dis- 

tance of C from the boundaries (including the free surface). The boundary-value problem to be solved 

is given by the modified Helmholtz equation (3.1.5), the linearised free-surface condition (3.1.6), the 

bed, wall conditions (3.1.7-8) and the body condition (3.1.9). 

OUTER REGION 

At distances r >> a from C, a non-dimensional outer radial coordinate is defined by 

R= r1h, 

where the polar coordinates (r, 0) are defined by (3.4.24). 

OUTER SOLUTION 

The complete outer solution T( R, 0)a 0( r, 0) is expressed as 

m 
T=Aogo(R, 0)+ 1: (A. g. (R, 0)+B� h�(4,0» (4.2.2) 

n-- 1 

where 

gn =sin a on (b) 
and hn= sin a ytn 

(b) (4.2.3) 

and on (b) 
and vn 

(b) 
are the multipole potentials defined in appendix 4.1. They are singular solutions of 

the modified Helmholtz equation satisfying all the conditions of the problem except that on C. The 
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additional factor of sin a has been introduced for convenience. Write 

gn = gn'l +sin agn. 2 arid hn = hn, 
l + sin cr h 

n. 2 (4.2.4) 

where 

gn, 2 2-- K, ( 8R) cos no and h,, 2 = Kn( 8R) sin no (4.2.5) 

are the singular parts of the multipoles. Thus, for exunple, go is a source while gI and h, are a hori- 

zonal and vertical dipole respectively. From the results in appendix 4.1. part(b), the non-singular 

parts have expansions of the form 

Cnq cos qo +d nq sin qO )Iq( 8R) (4.2.6) 
q=O 

(e 
nq 

cos qO + f. 
q 

sin q9 )Iq( 8R (4.2.7) 

q=O 

where 8= ph. In the above Kn and Iq denote modified Bessel functions. By virtue of (4.1.2) and 

(4.1.3), the expansion coefficients in equation (4.2.6) have expansions in terms of -- in the form 

c nq 
ý- c 

nqO 
+f( -- 

)c 
nq. 2 +..., (4.2.8) 

where c nq, j = 0(l), with similar expansions for the remaining coefficients in (4.2.6-7). Note that the 

0(l) terms in these coefficient expansions arise from the first terms of the summations over m in 

equations (A4.1.31-32). 
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From previous work on scattering by submerged bodies, for example Davis and Leppington (1978), 

and from the related work of McIver (1991) it is clear that the outer solution will contain only sources 

and dipoles at leading order. Thus, the leading-order outer solution is written 

ly = Ao go., + Al 91,1 +B1h1,1 (4.2.9) 

where, in a standard notation, a superscript in parentheses is used to denote the order in e of a quan- 

tity. (Ms form for T (0) 
may be justified by retaining a full multipole expansion and allowing the 

matching to eliminate all but the source and dipole terms. ) The problem is homogeneous so the order 

in _- of the solution may be freely chosen. It is natural to take it to be 0(l) as in equation (4.2.9). 

INNER REGION 

Within distances r << h of C, a radial inner coordinate is defined by 

r1a. (4.2.10) 

In terms of the inner coordinates the inner solution V( p, 0)a 0( r, 0) must satisfy the field equa- 

tion 

Ia aVf 
)+I 

a2V 22 
(p -- c .6 V=O 

p ap ap 
p2 D02 

and the boundary condition 

avdan =0 on C. (4.2.12) 

The solution is fully determined by matching with the outer solution. 
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Using well-known expansions of the modified Bessel functions, the inner expansion of the leading- 

order outer solution, equation (4.2.9), is 

(011) T= no+ ni epcoso+n 2 -- p sin 0, (4.2.13) 

where 

rlo = Ao coo 
,0 

+A, clo 
,0+B, 

elo, o, 
(4.2.14) 

18( 
Ao colo + A, cll. o + B, ello (4.2.15) 

2 

2ý18( 
Ao dol'o +AId, l'o + Bi fl 

1.0 (4.2.16) 
2 

Here, IF (p, q) denotes the result of expressing T (P) in inner variables and expanding up to 0( eI). A 

similar notation is used for the inner solution. Thus, VW is the inner solution up to 0( eq) which, 

P W. P) 
when expressed in terms of outer variables and expanded to 0( is denoted by V The match- 

(q, P) (p, q) ing principle requires that V/ T when both are expressed in the same coordinates. 

INNER SOLUTION 

Equation (4.2.13) suggests an inner development 

v 
(1) 

=p0 +-- (PI+p2(P COSO+Tl( P 'o ) )+ P3 (psinO+T, (p, O) )), (4.2.17) 

where, from equations (4.2.11) and (4.2.12), -r, and T, are harmonic functions satisfying 
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L 'rl a 
(4.2.18) c (pcosO) and 

LT'=- a 
(psinO)onC. 

an an an an 

The potentials r, and T, are respectively the disturbances to a uniform flow past C in the horizontal 

and vertical directions respectively. From Batchelor ( 1967, pp. 127), as p -ý - 

T, =V 
Cos 0+A sin o 

+O(P-2 (4.2.19) 
pp 

and 

T, =T 
Cos 0+A sin 0+ 

0( p -2 (4.2.20) 

pp 

where the dipole coefficients v, A, T and A are assumed known. The outer expansion of equation 

(4.2.17) when expressed in inner coordinates, is therefore 

Yf 
(1,0) 

=P0+r(P2P COSO + P3 sin 0 ). (4.2.21) 

Matching (4.2.13) and (4.2.2 1) gives 

Po =riot P2= ri,, P 3= 
ri 

2' (4.2.22) 

Further expansion of the inner solution (4.2.17) using equations (4.2.19-20) gives 

(1.2) Cos 0S 

rio +6 
1 

Pi +n 
R+R(v 

coso+ A sin o 
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rl 
2 

Rsina 
+. i (Tcoso+ A sin G) (4.2.23) 

(cR 

The dipole terms in equation (4.2.23) appear at an 0( c2) Wgher than the uniform flow terms, 

which can only be reconciled with the outer solution if the same is true in the inner expansions of the 

dipole potentials. From equation (4.2.4) this requires a= 0( e2), and so the choice (e =e2 is 

made. 

Retaining only the multipoles that can possibly match with equation (4.2.23), the outer solution 

can now be continued as 

(2) (2) (2) 
T= Aogo +Alg, +B 1 

hi +E 
1 

Co 90 +C 191 +D, h1 

E (0) 
+Eg 

(0) 
+F h (0) )l. (4.2.24) 

090 nnnn 

Note that 

(2) 22 
g', CnqO +r c 

nq. 2 ) cos qO+( d 
nq. 0 

+6 d 
nq. 2 )sin qO] Iq (gR)+e az Kn OR) cos no 

q=O 

(4.2.25) 

(2) 
with a similar expression for hn. The inner expansion of equation (4.2.24) yields 

(2,2) A, coso a2B, sinO 2 T 
O+C 

11 
3+ 

rl 
1 10 COS 0+ r12P sin 0+ 

a2 
+c Inc a2Ao 

1Jp 

45 p 
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2n4- 
a2 Ao In P+ r15 P COS 0+ r16 p sin 0+ rý P2 cos 20 + rl, P2 sin 20 + 11 01 45 

2p 21. 14 

(4.2.26) 

where 

r13 = Co c00,0 +C1 c10,0 + D, e10,0 , 

rl 
4= 

Ao cooa + Al cloa + B, e 10,2- a2 Ao r- a2 Ao In (8/2) + Eo cooo 

2 
Y, 

nc no, o 
+Fne 

no, o 
n=l 

ri 
5=(co col'o cIc 

llo +DI ello 
2 

11 6=8( 
Co d01,0 + C, d, 1,0 + D, fl I'() ), 

rý =(0c 02,2 +AIc 12,2 +B, e 12,2 
4 

and 

2 
H8 - (A 

0d 02,0 +Al d 
12.0 +B I 

f12,0 
4 
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However the above constants r1mg m=3,4,.. 8. are not required to calculate the q2 . The equation 

(4.2.26) is suggests that the inner solution is continued as 

(1) 
+e2 In e02 (4.2.27) P4 +' V/2' 

where V 
(1) is given by equations (4.2.17) and (4.2.22). The term at 0(-- Inc) is chosen as a constant 

since it is the only harmonic function satisfying (4.2.12) that can match with (4.2.26). Substituting 

(4.2.27) into (4.2.11-12) and equating like terms in c shows that v/2 must satisfy 

p 
LV2 

+1 

ý2 
V2 

= 45 
2 

rl (4.2.28) 
p i) p Dp P2 D92 

0 

in the fluid and 

DV21an =0 on C. (4.2.29) 

A particular solution of equations (4.2-28-29) is chosen in the form 

V/2, 
p 

82 FIO P2+ f2( p0 (4.2.30) 
4 

where 92( p, 0) is a harmonic function satisfying 

L2 +82 rl. 
s2 

Inp -ý 0 as p (4.2.31) 
2z a 

and the boundary condifion 
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2 

52 rio on C. (4.2.32) 
an 4 an 

Here S is the area of the cross section inside C, the logarithmic term in equation (4.2.3 1) is due to the 

flux across C indicated by equation (4.2.32). Bearing in mind the inner expansion (4.2.26), the full 

fomi for v2 is taken as 

(p sin O+T, (p, 0 V/2 ": V2, 
p+QO+QI(IOCOSO+TI(P'O))+Q2 

+Q 3(p2 cos 26 + -r2 (jo ,6))+ Q4 ( P2 sin 20 + T2 (p' 0)) (4.2.33) 

which leads to an outer expansion for V 
(2) 

of 

n +c. P +n p Cos O+v Cos 0+A sin 0 
+11 psino+Y 

cos 0+ sin 0 
011pp2pp 

e2 in E ri 
4+E2 

82 no P2 _, 52 n" 
S2 

In p+QO+Q, P COS o+Q2p sin 0 
42za 

22 
Q3 p cos 20 + Q4 P sin 26 (4.2.34) 

Matching (4.2.34) and (4.2.26) gives, in particular, 

a2 Ao =82 r1o 
s2, (72 A,. 

= rl, V+rl 2 
Y, 

f2 B, 
=I., IA+ rl 2 A. (4.2.35) 

2 ;raJ 45 
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Substituting for 1-1,, i=0, I, 2, from (4.2.14-16) and expressing in matrix form gives 

222 
coo, o ( Shr a) clO. 0 ( Slit a) elo. 0 ( Sfir a)A0 2o- Ao 
vcoi, o+Ydol. o vcl,, G+Ydll ,0 

veii. o+yf I1 .0 
Al 

22A, A co,. O+Adol. 0 Acl,, O+Adll, o A el,, O+Afllo 
B, BI 

(4.2.36) 

which is a standard eigenvalue problem to detennine a2. The eigenvalues are a repeated value ar2 = 

and 

ai : -- 
.5, c00,0 

s2+(v 
c01,0 +T d01.0 )1 "() +(A c01,0 +A d01,0 ) 

e, �, 
. (4.2.37) 

2 ir a c01,0 c01,0 

The zero eigenvalue leads to the remaining non-zero parts of the multipole potentials in equation 

(4.2.9) combining in such a way as to give a zero total potential; therefore the required result is given 

by equation (4.2.37). 

The expansion coefficients appearing in equation (4.2.37) follow by comparison of equations 

(4.2.6-7) with equations (A4.1.31-32). From (A4.1.17) and (4.1-2) 

sinh 2aob =-i sin 2ab = i(- I)H sin a (4.2.38) 

so that, bearing in mind (4.2.3), we have 

coo, o =-i roo ( (-1) u 
sin 2am xo +I) cosh km (h - yo), 
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c 
2ik 

-K r( (-i) m 
sin 2a x+I) sinh klf (h - yo), ol'o 00 m0 

p 

2ik m 
cllo-": -AFIO((-I) sin2amXo+l)sinhkm(h-yo), (4.2.39) 

p 

do, 
,0= 

2ia 
- Foo (-I) m 

cos 2am xo cosh km (h - yo), 
p 

ell. 0 = 
2k 

-810(-1) 
m 

cos 2am xo sinh k. (h - yo) 
p 

and so 

zh 
(S 

P2 (I+ (-I)m cos 2amxo ) cosh2 km(h - yo) CT2 =2 
am No, 

m2 ir a2 

2vk U2 
(I+ 

(-I)m cos 2axf x(ý 
) 

sinh2 km (h - yo) 

-(T-A )am k. (-I)m sin 2axf xo sinh 2km(h - yo) 

+2Aa m2(I- (-I)m cos 2auxo 
) 

cosfý km(h - yo) 
) 

(4.2.40) 

The above approximation, to order -- 
2 is not given for greater accuracy. In order to obtain 

greater accuracy, we have to consider a higher-order solution. But in the case of arbitrary cross- 
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sectional cylinders higher-order solution is difficult. So a circular cylinder is considered to obtain the 

higher-order solution. 

HIGHER-ORDER SOLUTION FOR THE CIRCULAR CYLINDER 

In section 3.4 the solution was obtained to order E2 for the submerged circular cylinder case. So 

4 
my aim is to calculate the higher-order solution up to the order -- for the special case of a circular 

2 
cylinder. For the circular cylinder, S= ;ra, v=A=I and A=T=0. 

Looking at the inner expansion of IF (2) to order -c 
3 

suggests that the continuing inner solution is, 

(3) 
= no + P, + ri, p cos o+ "' ')+ ri 2p sin 0+ sin 0 

pp 

2 In cP4+ ev 
2 

V2 + -- 
3 In -- vr3l + -- 

3 
V3 (4.2.41) 

where V2 is given by the equation (4.2.33). 

TO COMPUTE V/3 1 

Since Vf3l is a harmonic function and from equation (4.2.12) satisfies, 

ay-31 
=0 onp=1 (4.2.42) 

ap 

then to match with inner expansion of outer solution, V3, can be written as 
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V31 ý- p5+p6 (p Cos 0+ 
Cos 0 

)+ P7 (p sin 0+ sin 0 
(4.2.43) 

pp 

where P,, P6 and P7 are unknown constants. 

TO COMPUTE V3 

From the equations (4.2.11-12), V/3 satisfies, 

p 
aV/3 

+I 
a2V/3 

= '52 p+ 1-11 (p Cos 0+ Cos 0 )+rl (psinO+ sin 0) (4.2.44) 
p ap DP 

P2 a6 2p2p 

and 

aV3 
=0 on p= 1. (4.2.45) 

ap 

The particular solution of (4.2.44) is easily found, 

V3 = 45 Pp2+ 45 (nl P3 COS 6+n2 p3 sin )+ 
8(n, 

p In P COS 0+ n2 p In p sin 
p4182 

(4.2.46) 

Therefore the complete solution for V/3 is, 

V "ý V3p + 03 (P0 (4.2.47) 

where Q3 is a hannonic: function and satisfies, 
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L113 32 
(p7 -+-( rl 

I Cos 0+ rl 
2 sino ) onp=l (4.2.48) 

ap 24 

In order to find Q3' we write 

01=0 +il 31 32 

where 

(4.2.49) 

2 a031 L 
P, on p (4.2.50) 

ap 2 

and 

DO 32 
=_ 

78n, 
cos o+ ri 2 sino) onp=1 (4.2.51) 

ap 8 

Tberefore from (4.2.5 1), 

32 "ý 
76 

2 

(n, -""' +n2 
in 0 (4.2.52) 

8pp 

and from (4.2.50) 

31 +8P, In p --> 0 as p (4.2.53) 
2 

Therefore the complete solution for V/3 is, 
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V3 :ý V3p + Q3 + Q5 + Q6 (p COS 0+ 
COS 0)+ 

Q7 (p sin 0+ sin 0) 

pp 

2 cos 20 2.20 
+Q, (p cos2o+-)+Qg(p sin 20 + 

sin 20) 
22 

pp 

+ Q10 (p 
3 

cos 30 + cos 30 
+ Qll (p 

3 
sin 30 + sin 30U 

(4.2.54) 
33 

pp 

where Q5'Q6'.. ., 
Q, 

l are unknown constants. Therefore from (4.2.33), (4.2.41), (4.2.43), and 

(4.2.54), the outer expansion for V 
(3) 

of 

(3,4) Cos 0 sin 02 
0+pI+ 

rI 
I 

(Pcoso+ + rl 
2(p sin 0+ +E InEP 4 

2 452 2 45 
2 

co 0 ! Lin 0 
- no P_ -rlolnp+QO+Ql(pcoso+ 

s )+Q2(psini9+ 
42pp 

+Q3 (p 2 
cos 26 + 

cos2O)+Q (P2 sin 20 + 
sin 20 

p24p2 

()s + -- 
3 

In c1 PS +P6(P COS 0+c0)+P7(p sin 0+ si 

3 82 28233 
-PIP +-(rl IP Cos 0+F, 2P sin 0 
48 
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2 
+-(ri, p In pcoso+n 2p 

In p sin 0) 
2 

8 
P, Inp+ 

7 
.52( rl I 

COS, 
+ rl 2 

sin a+ Q5 + Q6 P COS 0+ COS 0 

28ppp 

+ Q7 (p sin 0+ sin 0 
)+Q8 p2 cos 20 + Qq p2 sin 20 + Q10 p3 cos 30 + Ql, p3 sin 30 

p 

(4.2.55) 

This outer expansion of Vf 
(3) 

can only match with the inner expansion of T(4) if a has the 

expansion, 

233 
or2 + ln 

31 
+ -0 a3 (4.2.56) 

Further expansion of the inner solution (4.2.27) using equations (4.2.17) and (4.2.33) gives, 

Vf 
(2.4) 

=n, +n, RcosO+rl 2 Rsino+S 
2 rlo R2 

+Q 3R2 cos 20 +Q4R2 sin 20 
4 

+el P, +Q, Rcos 0 +Q2 Rsin0 +c 
2 

In -- 11 4 +ýn 2 

2 Q0 
32 Cos 0 

Fl Sin 0 
c2 Flo In R+ 11, 

R+2R 
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3 Cos 0 LinO)+, 4(Q cos2o+Q sin2o). 
+ -- (Ql -+Q 2-3242 

(4.2.57) 
RRRR 

FOURTH-ORDER OUTER SOLUTION 

Equation (4.2.57) suggests that the continuing outer solution is, 

(4) (4) (4) (4) (3) (3) (3) 
T= Aogo +Algl +Blhl +c 

I 
Cogo +Clgl +Dlhl 

I 

2 (2) ) +-o 
3H (1) +H 

(1) 
+M h (1) 

+-C 
IE090(2)+Z(E, 

9, 
(2)+F h( 

090 191 11) 

4( 
wo go 

(0) +Z (W� g, 
(0) + U� h. (0) )- (4.2.58) 

n=I 

By using (4.2.25), the inner expansion of equation (4.2.58) yields, 

A, COS 0 a2 B, sin 0 
y0,3) = no + 'c r13 + n, P COS 0+ n2 p sin 0+ 

a2 

p+p 

c2 InEj-a2AO+a3' (A, -Coso+Bl 
sin 0 

8pp 

21 
r14 -a2 Ao In p+ 1715 p COS 0+ r16 p sin 0+ cos 0( or2 Cl 

+ 
a,; Al 

p83 
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+ 
sin cr2 DI+ ý3 BI 

)+ + rl 7 P2 cos 20 + r18 P2 sin 20 
p84 

+2 
a2 

E 
Cos 20 

+F 
sin 20 

) -(C 
3 

In e)2Aa+r3 Inc rl 
222220 31 

19 

a 31 
Ao In p+j or, ( A, pcos O+B, p sinO)+Illo 

Cos " 
+rll, 

sin 01 

2pp 

ri 
12- 

ri 
13 

In p+ cr2 In p(A, p cos 0+B, p sin 0) 
1 

+8( rl, 
4 P COS 0+ H15 p sin 0)+rl, 

6 

COS 0+r, 

17 
sin 6+ 82 

rl 
3P2 

2pp4 

.5 (n 18 P2 cos 20 + nlq p2 sin 20 +5(r, Ip3 
Cos 0+ rl 

2P3 sin 0 
48 

n 
20 P3 cos 30 + F121 P3 sin 30 (4.2.59) 

48 

where, 

rig a2 Co - a3l Ao (In 8 
+r)-aýl Ao, 

2 
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ri 
10 = U31 

C, 
+ (741 

A, 

85 

D BI 
"3 18 +a,,, -3 

ri 
12 =c0 COO. 2 +cIc 10,2 +D, e 10.2 + Ho cooo + H, c 10.0 + M, elo, o 

- a, 20 
(In 

8+ra3 
Ao (In 

8 
+r 

22 

fi 
13 2- u3 Ao + a2 Co 

, 

ri 
14 ": A0c 01,2 +AIc 11ý2 +B, e 11.2 + Eo colo 

2 
.63 +2: (E 

n 
CR 1.0 +Fe 

nlO 
+a2A, ( ln +7--), 

n=l 22 

rl 
15 *: - 

AO d 
01,2 + Al d 

11,2 + BI fll, 
2 + Eo dol'o 

En d, 
1,0 + F, f. 

1,0 
)+ �2 B, ( In -+y--)- 

n-- 1 

ri 16 (a4 A, + a2 El + a3l C, 
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ri 
17 =I(a4J!? l + a2, Fl + a3l DI 

45 

ri «' + D, fl20, 
is «, 2 Co d02,0 + CI L'12,0 

ri "cc +C c +D, e 19 -ý 0 02,0 1 12.0 12,0 

ri 
20 -'ý A0c 

03,0 +AIc 13,0 
+BI e13,0 ' 

and 

n 
21 --ý A0d 

03,0 +A, d 
13,0 + B, fl3,0* 

Matching (4.2.55) with (4.2.59), the coefficient of (e3 In c)2 gives, 

u 31 
(4.2.60) 

From this matcldng we do not have enough information to find a3. In order to find a3 we have to con- 

(4,4) (4,4) 
sider the matcWng principle Vf T 

FOURTH-ORDER INNER SOLUTION 

By looking at inner expansion of T (4) 
suggests that the continuing inner solution is, 

Yf 
(4) 

=V 
(3) 

+E4 In c vf4l +c 
4 

V4 (4.2.61) 

where, V 
(3) is given by the equation (4.2.41). 
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TO COMPUTE vf4, 

From the equations (4.2.11-12), V/ 41 satisfies, 

10 41 
1 02V41 

=2 -- PLY +-8P4 (4.2.62) 
P OP ap P2 D62 

and 

aV41 
=0 on P= 1. (4.2.63) 

ap 

The particular solution of (4.2.62) is, 

V41P P4P2 (4.2.64) 
4 

Therefore the complete solution for V41 is, 

822 
Y41 

4-p4p+ 
1241 (P'O) (4.2.65) 

where L2 41 is a hannonic. function and 

92 
41 +8p4 In p -ý 0 as p (4.2.66) 

4 

TO COMPUTE V4 
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From the equations (4.2.11-12), V/4' satisfies, 

V4 1 a2 V4 

'o 

Lyf4 
+- (4.2.67) 

.0 
D'o ajo P2 a02 

= 32 Vf2 

and 

aV4 
0 on P= 

ap 

where 

V2 32 r, 
2_8 Cos 0 

0p- flo In p+QO+Q, (p Cos 0+ 
42p 

(4.2.68) 

Q2 (p sin 0+ 
sin 

+ Q3 (10 2 
cos 20 + 

cos 20 
+ Q4 (10 2 

sin 20 + 
LIn 2-0) 

(4.2.69) 

pp2p2 

From the equation (4.2.67), the particular solution of (4.2.67) is, 

52 15 
2 

QO P2_ 
454 (ýP2 P2 

4p -2 (Q, In ppcosO+Q, In pp sin 0)+ 
48 

no In p 

2 
P3 

Q3 
. 52 ýý4 52 054 r, 4 

(Ql P3 COS 0+ Q2 Sill 0) -- Cos 20 - sin2o+- op 
844 64 

2 
45 ( Q3 P4 cos 20 + Q4 P4 sin 20 (4.2.70) 
12 



-134- 

By differentiating V/4P with respect to p and on p=I, the equation (4.2.70) becomes 

LV4 
p= 

1(5ý 

no + 45 
2 

Q0 +762 (Ql COS 0+ Q2 sin 0) 
ap 16 28 

(Q3 cos 20 +Q4 sin 20) on p=1 (4.2.71) 
3 

Therefore the complete solution is, 

+12 (4.2.72) V4 V4p 
4 

where 04 is a harmonic function, and from the equations (4.2.68) and (4.2.7 1), must satisfy 

ýn 
4 35 

4 

r1o + 45 
2 

QO +782 (Ql Cos 0+Q2 sin 0) +8 (Q, 3 cos 20 + Q4 sin 20) 
ap 16 283 

(4.2.73) 

write 

fl 
4a 42 

+ ý2 
43 

where Q 
42 and il 43 satisfy 

ýil 
42 3S ri 

0+8 Q0 
ap 16 2 
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and 

On43 
8 2(7 (Ql COS 9+122 sin9)+ 

I 
(Q3 cos 20 +Q4 sin 20 on p 

Op 83 

respectively. That is, from the above equations 

L2 
42 + rio +8Q0) In p ---> 0 as p -+ 

2 

and 

45 
2.7 

((Ql 
Cos o 

+Q 2 
sin 0+I (Q3 cos 20 

+Q4 sin 20 
) onp=l (4.2.74) L243 

8622 

From the inner expansion of outer solution the homogeneous solution is required in the inner solution 

at 0( c4 (In 02). That is, 

V42 ýp8 (4.2.75) 

where P8 is a constant. Therefore from the equations (4.2.61), (4.2.64-66), (4.2.70), (4.2.72) and 

(4.2.74-75), the outer expansion of (4.2.6 1) when expressed in imer coordinates, is therefore 

(4,4) COS 0+ 
r12 

sin 0+2 
rl 

0+'61 
P, +, -', (Pcos6+ 

p 
(p sine+ 

p 
Inc P4 

21 32 
rio P2_ 

452 110 In p+QO+Q, (p Cos 0+ Cos 0 
42p 
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+Q2 p sin 0+ 
sin 0+ 

Q3 P2 cos 20 + 
cos 20 

+ Q4 (P2 sin 20 +p3 Cos 0 
pp2 

os n +e3 In tip5+p6(P COS 0+ 
c0)+P7 

(P sin 0+ si 0) 

31 
Q5 + 452 P Inp+ 

462 

plnp(rl coso+n sinO)+ 
7 

45 
2( 

rl cos 0+r, sin 0 

-2121281p2p 

+Q6 (P COS 0+ COS 0+ Q7 (p sin 0+ sin 9+ 95 
2 

P, P2 +Q8 P2 cos2o+Qg p2 sin 20 
pp4 

p3 Cos 0+ 1-1 
2 'ýo 

3 
sin 0) +Q 10 p3 cos 30 + Qll p3 sin 30 

8 

5282 4 In ec 

i 
Q12 -(2p4 In P+ Q13 P COS 0+ Q14 p sin 0+4 P4 P2 

+e4( In 2 PS +e 41 Qls_( 
384 

rio + 45 
2 

Qo ) In p+ .52p In pQ, cos 0+Q2 sin 0 
16 22 

342 52 54 82 
Q16 P C'OS 0+ Q17 p sin 0-- n. p In p+- Qo +- no)- - Q3 cos 20 

8484 

-8 Q4 sin 20 + Q18 p2 cos 20 + Q19 p2 sin 20 + 05 (Qj P3 COS 6+ Q2 P3 sin 0 
48 
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4 

+Q 2010 
3 

cos 30 + Q21 P3 sin 30 + rio P4 

524444 

12 
(Q3p cos28+Q 4P sin 20 +Q 22 p cos 40 + Q23 P sin 40 

(4.2.76) 

This outer expansion of V 
(4) 

can only match with the inner expansion of T (4) if cr has the expansion 

a 
(4) 

= cr 
(3) 

+ene Cr4l +c (T4 (4.2.77) 

where a 
(3) is given by equation (4.2.56). Therefore from (4.2.25), (4.2.58), (4.2.60), and (4.2.77) the 

inner expansion of outer solution (4.2.5 8) yields, 

(4.4) 
= rl 

0+ 
rl 

3+n, p Cos 0+ 1-1 2p sin 0+ 
U2 A, cos 0+ a2 B, sin 0 

3p .5p 

- -c 
2 

In--a2 O+E 
21 r14 

- az Ao In p+ rl, 10 
COS 0+ 116 p sin 0 

COS 0( a2 C, 
+ 

!3A, 
+ 

sin 0( (72 D, 
+ 

a3 B, "2 P' +n 
2 

COS 20 +- )+n, 7P 
p8p84 

22 a2 cos 20 sin 20 
r18 P sin 20 +2(E22+F22 
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E3 In ep 
I 

rlg+-'6 a2( A, pcosO+B, p sin o)+n,,, i--s' +n,, 
sin 0 

2ppI 

3 ri 
12- 

ri 
13 

In p+8 a2 In p( A, pcoso+B, p sin 0) 
12 

45 Cos 0 sin o22 
(n 14 p cos 0+ rI, 

5 p sin 0)+1-116 + rl 
17 .+- rl 

3p 
2pp4 

2228333 

( rl,,, p cos 20 + rl, g p sin 20 +-( ri, p cos o+ n2 p sin 0 
48 

(n 20 p3 cos 30+n 21 P3 sin 30 c4( In 
2A0a 

41 
48 

4 16 
22 

+e Inc 
I 

ri 22 + 11 
23 10 COS 0+ n24 psino-a4l AoInp- 

4 
a2 Ao p 

4 rl 
25- 

rl 
26 In p+ rl 27 P COS 0+ 1128 p sin 

2 
11 

29 
8p 

cos 0 In p+ rl 
30 p sin 0 In p+- (rl 

4- 
Ao P2 

224 

-82 a2 Ao P2 In p+ 45 
2(r, 

31 P2 cos 20 + r'32 P2 sin 26 
48 
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ri 
6P3 sin 0+ 45 ri, p3 Cos O+n 33 P3 cos 30 

8 

where 

4 

+n 34 P' sin 30 +8 110 P4 
64 

1 

rl. =-a4 Ao- a. Eo-a4l Ao (In 
8 

+7), 
2 

n23 05 ( a2 C, + A, a3 
2 

ri 
24 

05 ( a2 D, + B, a3 
2 

2 

n 25 -'- A0c 00.4 +AIc 10,4 +B, e 10A +E 0c 00,2 + F, (E 
nc nOa +F ne nO, 2 

n=l 

882 

-a2 EO(In +y)-a 4 Ao ( In -y)+W. c.,, ) + Y, ( W. c, oo + Un enOO 
22 n--l 

n26=a2( AO+Eo), 

(4.2.78) 

r127 =8( Co c01,2 + C, c�, 2 + D, e�, 2 
er2 Cl 

2 
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a2cI( in 45 +r)+a3 A, (5 ( In 
8 

+7- ), 
2222 

ri 
28 ý- 

8( 
Co d01,2 +C, d, 1,2 + D, fl 1,2 - 

cr2 D, 

a, 2 D, (In 45 +r+ a3 B, (In 
8+r- 

222 

ri 
29 =AI (T 3+ 

Cl (T 2' 

ri 
30 "': 

B, ar3 + D, cr2, 

11 31 =A0c 02,2 +AIc 122 +B, e IZ2 +E 0c 02,0 

n 32 -': A0d 02.2 +A, d 12,2 +Bl f12,2 + Eo d 02,0+ 

Y, 
nc n2,0 

+Fne 
n2.0 

)' 

n-- 1 

Y, (End 
nZ0 +F n 

fn2,0 )' 

n=I 

3 
ri 

33 "ý -(c0c 03,0 
+cIc 13.0 +D, e 13,0 

48 

and 

3 

ri 
34 -(C0d 03,0 

+CId 
13,0 +DI f13,0 

48 
(4.2.79) 

Matching (4.2.76) with (4.2.78), and considering only the equations below in order to calculate the 
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higher-order solution up to a4 gives 

rl P19 
2 

-ý 1-14 (4.2.80) 3,: QO - 

rp Cos 0: Q, = rl,, S psin6: Q2ýF'6 (4.2.81) 

2p2 
sin 20 :Q4ý ri., c2p2 sin 20 :Q3ý rý (4.2.82) 

2 COS 0: 
Ql= 

I( 
(7"2 C, + u3 A, c2 

sin 0: 
Q2 (a2 DI+ a3 B1 (4.2.8 3) 

p 45 p 

2 cos 20 2 a2 E22 sin 26 2a2 F2 

2: 
Q3 =32r2: Q4 =2 

3 Inepcoso :P6ý8 a2 A,, 
2 

3 
In E Cos 0: rl 

10 ý- p6 
p 

2 

c3 In p: rl 13 ý2 - 
P19 

2 

e3p sin 0: 
S 

rl 
15 = QV 

2 

and 

p Cos 0: 
8 

rl 
14 ý Q6 

2 

3 COS 0 78 2 

p 
1116 = Q6 +8 ni 

(4.2.84) 

(4.2.85) 

(4.2.86) 

(4.2.87) 

3 sin 0: n, 
7 ý- Q7 + 

73 
2 

r12, e4 In p- 11 262- 
33 

4 

no +32 QO (4.2.88) 
p8 16 2 
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(i) TO CALCULATE a4, 

From the equations (4.2.85), a4, is easily find that 

r1lo =5 a2 A, (4.2.89) 
2 

or 41 
A 

but r1lo Substituting into the above equation, we get 

a4l -8-2 
(4.2.90) 

2 

where a, 2 
is known and is given by the equation (4.2.40). 

(ii) TO CALCULATE a3 

From equations (4.2.80), (4.2.86), and definitions of rl, and rl 13 gives 

2 

u3A0 + u2C () 21 
Co c00,0 + C, c�� + D, e�� 

1, 

(4.2.91) 

From (4.2.81), (4.2.83), and definition of 115 gives 

or2C, + U3 A, = 
95 Co c01,0 + C, cl 1,0 + D, e, �, 

1, 
(4.2.92) 

21 

and from (4.2.81), (4.2.83) and deMtion of rl 6 gives 
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82 
u2D1 + er3B, =21 Co d01,0 + C, d, 

1,0 + Di f11,0 
1- 

(4.2.93) 

From equation (4.2.35) A0, and AI can be written in terms of B, and so there are five unknowns 

in the equations (4.2.91-93). To solve this we can write above equations (4.2.91-93) in the matrix 

forin 

(c0) 

A C, =BtY 

ý 
D, 

ýo 

where, 

c olo -fl l'o - cooo 
dol'o d, l'o 

-C 11,0 - fi 
1,0 clo'o 

ello 

11.0- 00,0 a2 . 93 
elo, o 

(4.2.94) 

(4.2.95) 

0a30 

00 a3 

a300 

and 

Ao 
A, 
BI 

(4.2.96) 

(4.2.97) 

By rewriting equation (4.2.36) in one side gives a matrix which is same as the matrix A. Since 

matrix A is singular and r (A) =2 and where r stands for the rank of the matrix. Therefore using the 

matrix theory, for equation (4.2.94) to have a solution, 
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A)=r( 6, B LC )=2. 

Therefore matrix BY can be written as a linear combination of any two rows or columns of matrix A. 

That is 

BX = yj q2 + Y2 93, (4.2.98) 

where r, and r2 are unknown constants. 

TO SOLVE MATRIX EQUATION 

From equation (4.2.98) 

a3A, = ya 21 
+ y2a 31' (4.2.99) 

a3B, = ra 22 + 72a 32' 
(4.2.100) 

and 

a3 Ao = ra 23 
+ r2a 33' (4.2.101) 

However from the matrix equation for a2 

c 00,0 c ll'o Ao = B, -, A, = B, (4.2.102) 
dol'o dllo 

and substituting into equations (4.2.99-101), and by eliminating y, and r2 we get, 
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or 3= 

(iii) TO CALCULATE or4 

(4.2.103) 

This calculation is same as in (ii). Therefore from equation (4.2.86) and (4.2.87) we have 

ri 
16 ý8 ri 14 +782n, (4.2.104) 

28 

and similarly considering equations (4.2.80), (4.2.87), and (4.2.88) we get, 

ri 
17 ": 

8 
ri,, +7 432 ri 2' 

(4.2.105) 
28 

and 

n26 ý- 
3-5 

4 

no +32n 4' (4.2.106) 
16 2 

By using the definition of rl's, equations (4.2.104-106) can be written in the matrix form 

82( 
EO 

Bx= A EI 

where 

(4.2.107) 

1! = ij)3x3' 
A= (a ij)3x3 ' 
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and elements of matrix B are 

bl, = 
75 

3c 

ol'o +5c 
01,2 +55(e 21,0 

dO2,0 + C21,0 c 02,0 
16 2 16a2 

b 12 = 
75 

3c 

ilo 
+c 

1112 
+ a, 2( In 

8 
+7- 

8 

16 222 

5 

+(e 21,0 d 12.0 
+c 

21,0 c 12,0 Mai 

b13 
73 

ello + 45 e 11.2 
+ 

45 
5e 

21,0 
f, 

2,0 
+ c., 

.0e, 2,0 
16 2 16a2 

b 21 
78 

3 

dolo +8 dOI, 
2 

+ 
15 

5( 

f2l. 
0 d 02,0+ d 21,0 C02,0 

16 2 16a2 

(4.2.108) 

22 -'ý 
7d5 

3 

di 
io +8d 11,2 

+ 45 
5( 

f2l. 
0 d 12,0 +d 21.0 c 12,0 16 2 16a2 

b -' 
745 

3( 

In '5 +y- -'5 23 ': fl 
1.0 

+ 
45 (fl 

1,2 
+ C2 

16 222 

5 

_ 
er4 

+-( f21,0 f12,0 + d2, 
,, 

e 12,0 
)' 

8 160r2 



-147- 

31 ýa 2- 
3e 

cooo -82c 00,2-47 2 
(r + In 

8)- 45 
5(d 

02,0 e 20,0 +c 
20,0 c 02,0 

16 2(2ý 16a2 

b 
32 

334 

- 10.0 
45 

2- 

10,2- 

85(c 

20,0 C12,0 +e 
20,0 

d 
12,0 

16 2 16a2 

and 

33 
334 

- 10,0 
45 

2- 

10,2- 
45 

5(c 

20,0 elzo +e 20,0 
f12,0 

16 2 l6a2 

TO SOLVE MATRIX EQUATION 

As for (ii), from equation (4.2.107), by writing matrix BX as a linear combination of any two 

rows or columns of matrix A and after simplification, we have 

32 (bl, Ao+b 12 A, +b 13 BI) -a 31 (b 21 Ao+b 22 Al+b 23 BI) = r, (a 2, a 32 - a22 a 31) 

(4.2.109) 

and 

a 33 
(b2l Ao + b22 A, + b23 BI) -a 32 

(b 
31 

Ao+b 
32 

Al+b 
33 

BI) = r, (a 
22 a 33 - a23 a 32)* 

(4.2.110) 

But from the definition of (a 
ii ) (i, j=1,2,3), 

aa-aa 2-- 
3 

C00.0 ( fil'o + coo.. o +CI Ip 
(4.2.110) 21 32 22 31 4 
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and 

3 

aa-aac (4.2.112) 
22 33 23 32 - 10,0 

(fil'o + coo, o + cil'o 
4 

Now from equations (4.2.101) and (4.2.109-112) we get 

clo, o a(bc 02'0 +bc1 "0 +b )-(a c +a cb 
coo, o +b 

cl"o 
+b 32 11 

dol'o 
12 

d il'o 
13 31 10,0 33 00,0 21 

dol'o 
22 

dll'o 23 

cc 
=-a 32 C00.0 (b 31 

d- 
+b 32 

d- 
+b 33 (4.2.113) 

ol'o il'o 

But from the definition of a.., li 

ac +a c =-a 
f, 

10 
31 10,0 31 00.0 32 

( CIIO+ fllO 

dý 
"ý C00.0 

ll'o 

Substituting this into (4.2.113), and after little simplification, gives, 

U4 
Clo'o 

Cl 1.0 +( Cl 1.0 + fl 
1.0 _ fl 

lo 

COO. 0 
C loo 

Coo'o 
bl, + -C"o B2+b 

.5 dllo d, lo 

( 

dol. 0 d, l'o 
11 

cI l'o + f, 
l'o - 

f, 
l'o 

coo'o (b 

21 
coo' 0+b 

22 
c11 

'o +B3+ coo 
,0(b 31 

coo'o 
+b 32 

cII' () +b 13 dll, 
o 

dol'o dll. 
o dol'o d, 

l'o 

(4.2.114) 

where, 
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745 
3c 

ll'o 
+3c 

11,2 +a2( In 45 +7- 
8 

16 2(22 

and 

745 3 

16 

(e 
21,0 

d 
12,0 +c 21,0 CIZO 

16a2 

45 
5 

16a2 
( f2l. 

0 
f12.0 + d2l, 

O t'12.0 

This is an explicit expression for a4 and where coefficients c.. ,d, e. (i, k=0,1,2), and y, k Uk qk 

are known from the appendix 4.1. 
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4.3 A surface-piercing vertical barrier 

The contour C is now taken to be a thin vertical plate piercing the free surface. Here the boundary- 

value problem to be solved is given by the modified Helmholtz equation (3.1.5), the linearised free- 

surface condition (3.1.6), the bed and wall conditions (3.1.7-8) and the body condition (3.1.9). The 

parameter a. is introduced as in equations (4.1.1-6). 

The reference point in C is now chosen as (x , y) = (xO , 0) and polar coordinates (r , 0) are 

defined by 

x -x. = r sin0 , y= r cos 0. 

INNER REGION 

Within distances r << h of C, suitable non-dimensional coordinates are 

X-X 0yr 
- 77=- , P= - (4.3.2) 

aaa. 

In terms of these coordinates the governing equations for the inner potential V are the field equation 

LVf LV 

_ £2 32 V/ = 0, (4.3.3) 
4 a17 2 

the linearized free-surface condition 

(I_, 
2V LY 

+c Ic V =0 on q=O, ý*O (4.3.4) 
arl 
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and the boundary condition 

=0 on ý=O, O<q< 1. (4.3.5) 

Here ir = KO h and K has been replaced in the free-surface condition using (4.1.5-6). 

OUTER SOLUTION 

For this problem, the complete outer solution has the form 

m 
T= 1Bh (R, 0), (4.3.6) 6., 9n 

n=O 

where 

hn= sin a v,, 
(fb) 

(4.3.7) 

and Vn 
(f, b) 

are the antisymmetric multipoles defined in appendix 4.2. Each multipole is decomposed 

as 

hn=h 
nj 

+sin ah na, 
(4.3.8) 

The singular parts are the infinite depth multipoles given in appendix 4.2, thus 

0,2 
2jt e- Y sin t. Y 

di (4.3.9) 
P0K-, 8 
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and 

h,,, 
2 =K 2n +I(8R) sin (2n +I)0+I-e2V+... ) K 2n 

(8 R) sin 2no 

K2n 
_, 

(8R)sin(2n-1)0, n=1,2,.... 

The non-singular parts h have coordinate expansions in the form of equation (4.2.7). 
n. I 

(4.3.10) 

Without loss of generality, dipole coefficient BO may be chosen to be unity because the problem is 

homogeneous. Tbus, the leading-order outer solution is written 

(0) T= ho', 

which has an inner expansion 

(0, I) I 
eooo +( eolo cos 0+ fol'o sin 0)-5cp. (4.3.12) 

2 

LEADING-ORDER INNER SOLUTION 

The equation (4.3.12) suggests that the first term in the inner solution must have the form 

v 
(1) 

= PO +6 V/1 (4.3.13) 

where, from (4.3.3-5), V, is a hannonic function satisfying the boundary conditions 

avfl 
+icPO=O on ij=O, ý#O (4.3.14) 

D17 
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and 

=0 on ý=0,0<77< 1 (4.3.15) 

TO CONWUTE V, 

By inspection, a particular solution is V/,. 
P =-r PO q; homogeneous solutions are easily found 

with the aid of a conformal mapping. Define a complex variable z=ý+j Y7 and map the flow region 

onto the upper half of the C=u+jv plane by 

ý2+ I)I. (4.3.16) 

Solutions having zero normal derivative on v=0 are of the form Re i Cn where n is a non-negative 

integer (negative integers give non-integrable singularities in the velocity. Retaining only those homo- 

geneous solutions needed for matching with (4.3.12) gives 

yl =-Jr PO 17+ PI + P2 Re 
i(z2+1 

)4. (4.3.17) 

This may now be used in (4.3.13) and expanded to obtain 

(110) PO+E(-X POP COS O+P2 p sin 0) (4.3.18) 

which when matched with (4.3.12) gives 

Po = eooo, P2=1 45 fol'o. (4.3.19) 
2 
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An examination of the outer expansion of V 
(1) 

yields, 

(1.2) 2 sin 0 
v=p 0- r Po Rcos O+P 2R sin O+e PI+ -- p2 

2R * (4.3.20) 

SECOND-ORDER INNER SOLUTION 

Equation(4.3.20) suggests that the continuing outer solution is, 

(2) (2) 2 (0) 
T= ho +E Bi hi (4.3.21) 

which has an inner expansion 

(2,3) 12 a2 sin 
eooo +r (eol. o cos 0+ folo sin 0) -8p+-- 

126p 

+6 
21 

e 00,2 +e 00.0 
1J2p2+(e 

00,2 +e 00.0 
1J2p2 

44 

es 26 +f sin 20 )152p2+2 
ic a2 

O+B e 02,0 Co 02,0 881 10,0 

3 
In c 

1- 
8 a2 cosh 2V p sin 0 

e,,,, cos 0+ fol. 0 sin 0 83 pl +( eola cos sin 0 45P 0+ fOI, 
2 

16 2 
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133 
+ (e 

03,0 COS 30+ A03,0 sin 30) -8p-a2 .5 cosh 20 In 8p p sin 0+ cr2 b, 45 p sin 0 
48 

0 pcos 0+B, ( ello cos 0+ fllo sin 0)13p (4.3.22) 

.52 

Observe that there is no constant term at 0(--) in T (2,3) 
so that the constant P, appearing in (4.3.17) 

must be zero. 

HIGHER-ORDER INNER SOLUTION 

Further, (4.3.22) suggests that the inner solution must be continued as 

(3) 233 
eoo. o +c vil +, e V2 + -0 In r Vf3l +c Vil (4.3.23) 

where vf2 satisfies 

v2 V/2 = '52 eooo (4.3.24) 

in the fluid region together with the free-surface condition 

LV2 
P2 "2 +1 )1 on q =0 #0, (4.3.25) 

D17 

V31 satisfies homogeneous equations and V, satisfies 

v2 V3 = 452 Vfl =, 52 
(- 

Kp 0 17 + P2 Re 
i(z2+I) 

11 ) 
(4.3.26) 
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and 

ýV3 
r2 , -rVP, on q=O, ý#O. (4.3.27) 

a17 

All of V,, i=2,31,3 satisfy the barrier condition (4.3.5). 

TO COMPUTE yf2 

Note that a particular solution of equation (4.3.24) is 

2 

V/zp =- Po P2 (4.3.28) 
4 

so write 

V "ý yf2, 
p 

+v (4.3.29) 2,1 

where Vt2., is a harmonic function and from (4-3.5), (4.3.25) and (4.3.29) satisfies the boundary condi- 

tions 

ýV2,1 

=21 
D17 

- Ic p2 Re 
i(z+I)T on q=O, ý#O (4.3.30) 

and 

0 on ý =0 , O< q<1. (4.3.31) 
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By integrating (4.3.30) and satisfying the boundary condition (4.3.3 1) we get 

V/2,1 z- -IKp2 'M 
j[ in( Z+( Z2 ++z(z2+ (4.3-32) 

2 

Here the notation Im 
j. means that the imaginary part with respect to j. Also homogeneous solutions 

are needed to match with (4.3.22), including these gives 

V/2 -': 
182 

Po P 
2_ 1 

Ic p2 Im 
[In(Z+( 

Z2+ I )I 
)+Z 

( Z2+ I+p3+p4 Re 
iz 42 

From (4.3.17) and (4.3.33), the outer expansion of v/ 
(2) to O(c 2) 

as, 

(2,2) sin 0 
V/ = Po+-O. -1cp OPCOSO+P2 

(p 
sin 0+ 

2p 

2 
'52 Po P2 - Ic p2 (-0+' +p2sin2o)+ P3 - P4 p2 cos 20 

422 

Match (4.3.22) with (4.3.34) up to 0(-- 2) 
gives 

epcoSO: Po=-eolo 
8, 

2 ic 
rpsinO: P ýf 

8 
2 01,0 2' 

(4.3.33) 

(4.3.34) 

(4.3.35) 

in 0-t a2 2p2 
sin 20 :P 05 

2 

:p (4.3.36) 
p22 

402,0 

4 
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and 

2p2 
cos 20 : P4 -3,02,0' 

8 

2 7r 
Ic p2 +P 

3ý e 00.2 + B, elo. 0 4 
(4.3.37) 

A careful examination of the definitions of the expansion coefficients e and f shows that the new 

expressions for PO and P2 in equations(4.3.35) and (4.3.36) are consistent with equations (4.3.19). 

From (4.3.35) and (4.3.36) 

a12f (4.3.38) 
28 45 ol'o 

is a first order approximation to a, defined in equation (4.1.2) is given by c2 a2 ' 

As in section 4.2, the above approximation, to order e2 is not given for greater accuracy. In 

order to obtain greater accuracy, we need to consider the higher-order solution. By looking at the 

inner expansion of T (2) 
to order O(c 3), 

that is from (4.3.21), the solution for V3, requires only suit- 

3 
able homogeneous solutions to match with the e In -- n (4.3.22) and so 

V/3 I=p5 Re i(z 

TO COMPUTE V/3 

(4.3.39) 

The solution for V/3 may be broken down into a number of stages. A particular solution of the 

field equation (4.3.26) may be found by writing V3 = Re 
iW where W is the solution of 
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4-8, 
( 

ic P', jz + P, ( Z' +1 (4.3.40) 

and F denotes complex conjugate. Integrating twice gives the particular solution 

V13, 
p (5 

2 Re 
jI rp Oj Z2-! + P2 f In z+(z 

2 
+1 +Z(Z 

2+1 
(4.3.41) 

81( 

Note that 

V/3, 
pSp2 0ý on q=O, ý#O (4.3.42) 

8 

and 

ýl-fIlp 
=0,4=0,0< 17 <1 (4.3.43) 

aý 

Now write 

V3 = V3. 
p 

+ V3.2 (4.3.44) 

where V/3.2 is a harmonic function and from (4.3.27), (4.3.42), and (4.3.44) must satisfies the bound- 

ary condition 

ýV3,2 

X. (1 45 
2p0) 

ý2+ P3-V PO on r7 = 0, ý: * 0 (4.3.45) 
D17 

181 
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and also the barrier condition (4.3.5). It is easily verified that a suitable combination of harmonic 

functions satisfying (4.3.45) and (4.3-5) is 

V/3,2 =I Ic (1 452 Po + P4 773 - 3ý2 17 'C ( P3 -Vp0 )17* (4.3.46) 
38 

Including all the homogeneous solutions required to match with (4.3.22), 

212321)1. 
V3 ý- V3, 

p 
+ V3,2 + P6 Re, (z +I )-' +P7 Re 

i 
(Z +1)2+p , 

Re iiz 
In 

(z+(z 
+I)-y 

(4.3.47) 

It is not immediately apparent that the final term in (4.3.47) is required, it might be thought that the 

logarithmic term in (4.3.38) is sufficient to match with the In pp sin 0 term at 0(-- 3) in (4.3.22) but 

(3) 
0(_4) Us is not the case. From (4.3.23) the outer expansion of V/ to the C can be calculated as 

(3,4) 1 sin 01 sin 30 
v Po+e. -1cp 0P COS 0+ P2 (p sin 0+ 

2p8p3 

2 46 
221 

Ir I sin 20 22 
Pop --)rp 2 

(--O---+p sin20)+P 3- 
p4P COS 2o 

4228p2 

3 Inc P, (p sin 0+ 
1 sin 0 

2p 
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3 
j2 

33 

8 
IC p0p COS 0+ P2 

( 
In 2p p sin O+pcos 0(2 -0) +p sin 0 

2 
95 ), 03 

1 sin 0 +p 4+ - Po COS 36 7- ic (P 
3- 

VP 
0)P COS 0+ P6 (p sin 0+- 

382p 

+P7 
3p 

sin 0+3 sin 0-p3 
sin 

28p 

P8[ In2p p sin 0- pcos 0( 7r 
-0)+-l 

sin 0-p3 
sin 30 (4.3.48) 

24pI 

As in section 4.2. the outer expansion of V 
(3) 

can ordy match with the inner expansion of IF (4) if a has 

the expansion 

cr 
(4) 

=E2 0-2 +E3 In -- U31 +c3 a3 + -- 
4 In -- a4, +E4 Cr4 . 

(4.3.49) 

By using the matching principle, T (2.3) 
= V/ 

(3,2) 
we can easily prove that 

or 31 =a3= 

Therefore, 

a 
(4) 

=£2 U2 +e 
4 

In c U41 + -c 
4 

er4 " 
(4.3.50) 

TO COMPUTE a4, AND a4 
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To obtain the next two terms a4l and a4 in the expansion of a, we need to consider the match- 

ing T (4,3) 
=V 

(3,4). The non-dipole singular terms in the outer expansion of V 
(3) imply that the outer 

solution must continue as 

Y 
(4) 

=h0 
(4) 

+ -- 
2 

B, h1 
(2) 

+ -- 
4 

In -- B2h1 
(0) 

+c41B3 hl (0) +B4h2 
(0) 

1' 

Using the expansions of ho and hIq the inner expansion of outer solution is 

T (4,3) 
= ewo +ý (e Cos 6+ sin 0) 

1J 
P+ 

2 a2 sin 0+8B, a2 sin 30 

01.0 
follo 

2p33 

22p2 
eoo. o +BI elo. 0 

+4 e+2K 
a2 

+4B, 
or2 x sin 20 

00,0 5 45 
32 

(4.3.5 1) 

(e 02,0 cos 20 + 402,0 sin 20 ) 452 P2 
+-o 

3 
In e8 a2 cosh 20 p sin 0+ 

LU4, sin 6 

81- 45 pI 

+e 01.2 COS O+fola sin 0) '5p +(2cr4+B, a2 ) 
sin 0 

28p 

01,0 sin 083p3+(e cos 30 + sin 30 53 PI eol, o cos 6+f 03,0 
A03,0 

16 48 

- or, 2 45cosh2Vln5ppsino+a2b, 8psino- 
2r 2 

a2 
6P COS 0 

05 
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2( 
e�� p cos 0+ f11,0 p sin 0)) (4.3.52) 

Match (4.3.48) with (4.3.52) gives, 

sin 36 
p2 ý- 

64 B, 
rr2' (4.3.53) 

p1 45 
3 

E3 Inepsino: P, =- a25 cosh 2V, (4.3.54) 

3 sin 04 cr4, 
e In -- :p5=-9 (4.3.55) 

3p3 
sin 30 : P7 ý- -133 f03,0' (4.3.56) 

48 

2 

-- 
3 

PCOSOO: P8a2 gcosh20-- P 2' (4.3.57) 
8 

3 
psino: P6 ý- 

18 
fo,. 

2 - cr2 8 In & cosh M+ a2 8 bl, 
2 

1123 j2 
8 fll'o B, -3P 2-- 

p 
7- 

In 2-P2+p8 (4.3.58) 
2 16 28 

and 

3 sin 0 P6 3P7p81 
E +-+-=- (2a4+Bl a2) (4.3.59) 

p2848 
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from (4.3.36) and (4.3.53), 

2 
Bl=5 

16 

From equations (4.3.54) and (4.3.55) give, 

(4.3.60) 

2 

a4l ' 
C2- 

cosh 20 84 folo cosh 20 (4.3.61) 
4 32 

is a second approximation of 0( c4 In c) for a. Substitute for P6 , P7 , P8 , and B, in the equation 

(4.3.59) gives, 

II 
8A 

183f, 

1,0 
+1 45 

3 A03,0 a4 -2 
24 01.2+ 64 128 

a2[b, -( -5] 
I+ 

In cosh 20 -- (4.3.62) 
2228 

The coefficient fOl is the coefficient of 1, (p r) sin 0 in the expansion of ho defined through (4.3.7-8). 

Using (4.2.38) it foHows from (A4.1.32), (A4.2.3) and (A4.2.15) that 

2a (f) "+I 2iap 
(Sl+c fol 00 cos 2axo -e cosh kh + sln 

2 
(4.3.63) 

p8 

where 

ah cos kh -2a b 
SI=2yrY, '2 '" 

( 
cosh '2am xO -e (4.3.64) 

n--l N sinh 2a h 
mm 
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c, =-2h 
2f-e2+e12 di 

aK cosh j6h -6 sinh Ph K-fi) Kcoshflh-, 6sinh, 6h 

ah cosh 
2 kh 2 

+2zi--8 sinh 29 (4.3.65) 
No 2 

and 

p2+t2)I- 

Expanding fol using (3.4.6-7) gives 

(2) 2 
401,2 = A01.0 +C 401,2 (4.3.66) 

where 

2 aAf (f) m fI =-A (1-(-I) cos2amx )coshklfh, (4.3.67) 
0.0 ooo 0 

p 

and 

a. 
- 2KH h+ 

sinh 2k, h 
401,2: 401.0 a2' 

4k 
H2b 

NO, M2 

(2 

kmh 

XO (-I)m sin 2a"xo + ib a2 

b(I- (-I)m cos 2am xo 
+ 

45 
2 

(S 
I'M +c (4.3.68) 
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where No, 
m s SI. 

M and cl. m are now evaluated at K= Km. AM 

22 
2km 

3+ 
4tr m (4.3.69) 

11.0 ,- 
401.0 

' 
403.0 

2 OlO' 
p2 cost? k, h p 

4 
Gathering all of these results together in (4.3JO) gives the expansion of a to 0( 6) as 

2 45 
2 

cr =c orz 
1 

1-e In-- cosh 2V 

a2 CeM 
- 2K h+ 

sinh 2kAf h 

4k 
m2 

bN 
O'm 

2(m 2kmh 

irxoamh cosh 
2m 

(- 1) m 
sin 2cr x 

4b Nom 2 

sl. m +Re i c,,, + 
km 

2h2+I 

Cr m2 
h2 

cosh 
2 

kmh 2 

I 
P2, h2 (( -1 hI 

+, y + In ft ) cosh 2V +0 sinh 20 + (4.3.70) 
4244 

where 

ir aAf h2 hf 
a, 2 =4 

No'n 
2 

cosh kuh(l-(-I) cos2axfxo), (4.3.71) 
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K 
cosh 0=- and y is Euler's constant. 
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APPENDIX 4.1: Submerged multipole potentials 

(a) Construction 

The aim is to construct solutions of the modified Helmholtz equation that axe singu- 
lar at (X, Y) = (x - xo, y- yo) and satisfy all of the conditions of the problem, equations 

(3.1.5-6) and (3.1.9), except for the condition on the body contour C. The construction is 

carried out in three stages. (i) Integral representations are obtained for the fundamental 

singulax solutions of the modified Helmholtz equation, (ii) non-singular terms are added 

to satisfy the free-surface and bed conditions and (iii) further non-singular terms axe 

added to satisfy the conditions on the vertical walls. 

(i) Integral representations of fundamental singularities 

From Twersky (1962, equation (31)), for Y>0 

0 

1, e_(12_k2)112y C -'(tlk)) 
Hn(kr)i"einO =2. _OS 

(tX +n sin dt (A4.1.1) 
7rz 0 (t2 - 

k2)1/2 

where H,, denotes the Hankel function of the first kind and order n. The substitution 
k= ip gives 

Kn pr 
00 e-, 6y cos(tX - inp) 

dt (A4.1.2) 
JO 

where 
(P2 + t2)1/2 (A4.1.3) 

and p is defined by 

sinhp = t1p and coshp = filp. (A4.1.4) 

Now separate real and imaginary parts, and extend the definition to Y<0 by making 

use of the relevent symmetry or antisymmetry of each multipole, to obtain 

Kn (pr) cos nO sgn Y)' 
' e-, 8 ly I cos tX cosh np in 

13 

and 

K,, (pr) sin n0 sgn Y)n+l 
Ooe-ý61ylsintXsinhnp 10 

0 

dt, n=0,1,2 

dt, n=1,2,3.... (A4.1.6) 
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The singularities in equations (A4.1.5) and (A4.1.6) wiH be referred to as symmetric and 

antisymmetric (about X= 0) respectively. 

(ii) Free, surface and bed conditions 

To construct symmetric multipoles satisfying the free-surface and bed conditions 

write 

I-C,, (pr) cos nO + 
00 

(A(t) sinh fly + B(t) cosh fly) cos tX cosh n1l dt. (A4.1.7) 
0 

Substitution into the free-surface condition (3.1.6) and the zero flow condition on y= 

h, and making use of the integral representation (A4.1.5) for the singular part, gives 

simultaneous equations for A and B which when solved yield 

=K,, (pr)cosnO +j00je-, 6(h-YO)(Ksinh fly - flcosh fly) 
0 0 

- (-l)'(K +, 8)e-flyO cosh, 8(h - y) 
cos tX cosh np 

- dt. (A4.1.8) 
I 

(K cosh flh -0 sinh Ph)fl 

There are poles of the integrand corresponding to the roots of 

tanh, 3h. (A4.1.9) 

Let k be the real positive root of (A4.1.9) then the corresponding pole is at t= (k2 _p2)1/2 

which lies on the path of integration for k>p. The path of integration is chosen to run 

beneath this pole in order to give outgoing waves at large distances. If k<p there 

is no pole on the integration path and the multipoles are non-radiating. These non- 

radiating multipoles for infinite depth were used by Ursell (1951) to construct trapped 

wave solutions in the presence of a submerged horizontal cylinder. 

Alternative forms for 0,, follow from replacing K",, (pr) cos nO by the integral repre- 

sentation (A4.1.5). For y> yo the result is 

0. = 
jo 00 (K _ O)eflyo _ 

(_l)n (K + P)c-flyo 
coshfl(h-y)costXcoshnlidt (A4.1.10) 

0 (K cosh flh -# sinh flh)# 

and for y< yo 
f, e-, O(h-yo) + (_l)n,, 6(h-yo) 

On -(K sinh, 6y -0 cosh 8y) cos tX cosh np dt. 
0 (K cosh flh -# sinh Oh)O 

(A4.1.11) 
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For n=0 equations (A4.1.10-11) axe the results for the source solution of the modified 
Helmholtz equation given by MacCamy (1957). 

Following a standard procedure (see, for example, Mei, 1983, pp. 380) the multipole 

expansions may be expressed as eigenfunction expansions. Thus (A4.1.10) is rewritten 

- as 

0=I" 
(K - #)e, 6yo - (-l)'(K + O)e, 6yo 

coshp(h-y)e"lxlcoshnttdt (A4.1.12) 
n2f 

00 
(K cosh flh - fl sinh flh)p 

where now the path of integration runs below the pole at t= (k2 - p2)1/2 and above 

that att= -(k 2- ý2)1/2 when k>p. This integral may be evaluated using the residue 
theorem. There are further poles on the imaginary axis in the t-plane corresponding to 

the imaginary roots of (A4.1.9) denoted by P= ±1 k,,,, m=1,2,3... giving poles at 

±2+ P2)1/2 i(km (A4.1.13) 

There axe also branch points at t= ±ip and suitable branch cuts must be inserted 

that do not cross the Rt-axis, but these do not cause any difficulties. Evaluating the 

integral with the aid of the closing semi-circular contours described by Mei, modified to 

circumnavigate the relevant branch cuts, yields 

where 

00 1: r,,,,, cos k,,, (h - y) (A4.1.14) 

M=O 

7r iký(h-yo) + (_j)niký, (h-yo) Iýnm ý- i-amhN, 2 C- 
) 

cosh nv., (A4.1.15) 
n( 

N2 sin 2k,,, h 
m2 

(1 
+ 2k,,, h 

(A4.1.16) 

ko = -ik, ao = -ia = _i(P2 -k 
2)112 (A4.1.17) 

and v,,, is defined by 
ik.. 

sinhv,, =""M, cosl.,,,, - (A4.1.18) 
pp 

Equation (A4.1.14) is valid throughout the fluid, both (A4.1.10) and (A4.1.11) yield the 

same eigenfunction expansion (A4.1.14). 
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Similar calculations may be carried out for multipoles 0,, that are antisymmetric in 

X. The form, equivalent to (A4.1.8), explicitly displaying the singularity is 

On =Kn(pr) sin nO + 
jooýe-, 6(h-yo) (K sinh Py -P cosh fly) 

00 

+ (_l)n (K + O)e-, 6yO cosh#(h - Y) 
sin tX sinh nit 

_ dt. (A4.1.19) 
I 

(K cosh Oh -0 sinh, 6h), 8 

As in (A4.1.10-11), the singular part maybe incorporated into the integral using (A4.1.6). 

The eigenfunction expansion representation is 

00 
On ý sgn XE Anm cos k,,, (h - y)e-'-Ixl, (A4.1.20) 

M=o 

where 

Anm 7r 
C- 

iký(h-yo) 
_ 

(_l)nik .. (h-yo) 
sinh nv,,,, (A4.1.21) 

2i -a,,, h N, 2n 

( 

For k>p, the first terms in the series (A4.1.14) and (A4.1.20) give the propagating 

waves generated by the singularities at large distances. 

(iii) Side-wall conditions 

To obtain multipole potentials appropriate to a closed basin, that is having zero 

x-derivative on x= ±b, a similar strategy to that used in (A4.1.7) is adopted. Write 

00 
Z r��, cos k .. (h - y) ý A,. � cosh a�, (x - xo) + B.. sinh a�, (x - xo)} 
m=O 

(A4.1.22) 

using the eigenfunction representation (A4.1.14) for 0, and apply the boundary condi- 

tions on x= ±b to determine the unknown coefficients. The resulting multipole potentials 

are 

OM = ý. + 
00 r� m cos k�, (h - y) f (cosh2a�, xo + e-2a,. 

b 

nE sinh 2a�, b cosh a�, (x - xo) 
m=O 

+ sinh 2a,,, xo sinh a,,, (x - xo) I (A4.1.23) 

and the corresponding result for the antisymmetric multipoles is 

cos kn(h - y) On(') = On + 
sinh2a,,, b sinli 2a .. xo cosh a,, (x - xo) 

M=o 
+ (cosh2a,,, xo _ C-2, -b) sinh a .. (x - xo)). (A4.1.24) 



-172- 

(b) Expansion about singular point 

The generating function for the modified Bessel functions I. is 

! Z(T+T-1) 
= 

... 
2E TqIj(Z). (A4.1.25) 

q=-oo 

The substitutions Z= pr and T=± exp(p + 0), where p is defined in (A4.1.4), give 

00 
±(, 6y+itx) 

=E fq (±l)q cosh q (p +i 0) 1, (pr) (A4.1.26) 

9=0 

where co =1 and Eq = 2, q>1. Equation (A4.1.26) may be used to expand the integral 

terms in (A4.1.8) and (A4.1.19) to obtain 

Co 00 
(C2pyo (e2,6yo + ie, I. (pr) cos q0 V o', - K', (pr) cos no =1E 2 

q=O 

_(_l)n( K+P) 1+ (_, )q, 2#(h-yo) e-#h cosh ny cosh qp dt (A4.1.27) )I 
(K cosh Oh -# sinh, 8h), 3 

and 

00 too r 
(. 2,6yo + (_l)q) (. 2,3yo 0,, -K,, (pr)sinnO=EIq(pr)sinqOf JK 

q=l 0 

+(-i)n(K + ß) 
(1 

_ 
(_1)qp2p(h-yo) e -Ph sinh np sinh qli dt. (A4.1.28) )1 

(K cosh Ph -ß sinh ßh)ß 

These expansions are valid for 0<r< 2yo. As h --+ oo in (A4.1.27) the result of Ursell 

(1951, equation (11)) is recovered. 
To expand the summation terms in (A4.1.23) and (A4.1.24) a modification of the 

result (A4.1.26) is needed. Replace t by i(k' + ý2)1/2 = ian to give m 
00 

e 
±(ikýY-aýX) 

=E fq (±I)q cosh q(v,,, + iO)Iq (pr) (A4.1.29) 
q=O 

where v,,, is defined by 

silihv. =ia,. /p and coshv,. =ik,,, /p. (A4.1.30) 



-173- 

Thus 

Co 
o(b) - 0. =1 Eq I. (pr) 

n2E 
q=o 

OKD IP 

nm (cosh 2a .. xo +e -2ci, ýb iký(h-yo) + e-ik,. 
(h-yo) 

x 
ýc0sq0 E- 

sinh2a�, b 
«-1)qe cosh qv.. 

m=O 

+i sin q0 
c'o r��, sinh 2a .. xo «_1)q, ik .. (h-yo) - e-ik,.. (h-yo) sinh g v�, (A4.1.31) Z 

sinh2a�, b 
m=O 

and 
00 

. o(b) -On =1 2E Eq I. (pr) 
q=O 

xI cos qO 
00 Anmsinh2a,,,. xo ((_l)qik 

.. (h-yo) + e- 
ik,,, (h-yo) 

cosh qv,,, F- 
sinh 2a,,, b 

M=o 

00 Anm(cosh2amxo _ e-2ctýb) ((_l)qeikn(h-yo) ikn(h-yo) sinhqv,,, +i sin qO 
E 

sinh 2an b 
M=o (A4.1.32) 
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APPENDIX 4.2: R-ee-surface multipole potentials 

(a) Construction 

The main results for the source and horizontal dipole may be deduced from the 

_ results on submerged multipoles in appendix 4.1. From (A4.1.10) the free-surface source 

satisfying both the free-surface and bed conditions is 

00 cosh P(h - y) cos tX 0(f) = Ooly. =o = -2 . dt (A4.2.1) 0 
10 

Keosh, 6h-#sinhflh 

and the corresponding free-surface horizontal dipole is then defined by 

(f) 

'O(f) 
1000 

0 =- (A4.2.2) 
p OXO 

It is conventional to take the definition of the free-surface source to be half that given in 

(A4.2.1), this has not been done here to enable direct use to be made of the results for 

submerged singularities. The eigenfunction representations and the series' to be added 
in order to satisfy the side-wall conditions follow immediately from (A4.1.14), (A4.1.20) 

and (A4.1.23-24). The series coefficients for the free-surface source and dipole are defined 

by 
ro(fm) ý roml(yo=o), A(ofm) = Alinl(yo=o), rn = 071,2... (A4.2.3) 

where Fo.. and Al,, axe given by (A4.1.15) and (A4.1.21). 

Following Ursell (1968) two sets of wave-free potentials are also defined. The sym- 

metric potentials for deep water axe 

K2,, (pr) cos 2nO + 
2K 

K2,, 
-, 

(pr) cos(2n - 1)0 
p 

+ K2n-2(pr) cos(2n - 2)01 

2 JOO K+9 
0 e-Py cos tX cosh(2n - 1)p dt, n=1,2,3... (A4.2.4) 

p0 

where the integral representation (A4.1.5) has been used. The potentials appropriate to 

finite depth are found in a similar fashion to the derivation of (A4.1.8) and the result is 

(K + p)e-, 6h(K 
sinh fiy -0 cosh fly) 

cos tX cosh(2n - 1)y dt np )() 
(K cosh, 6h -0 sinh Oh)p 

2' (K 2 -9 2) cosh P(h - y) 
cos tX cosh(2n - 1)p dt (A4.2.5) 

P 
10 

(K cosh flh -# sinh Oh)p 
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which has an eigenfunction representation 

00 
0(f) =E r(f) cos k,,, (h - y) e-*- Ix I (A4.2.6) n nm 

M=O 

where 

r(f) = 
7rikn cosh(2n - 1)v.. 

nm phamN, 2,, cos kmh 'n=1,2,3... 
(A4.2.7) 

and N,, and vm are defined by equations (A4.1.16) and (A4.1.18) respectively. The 

antisymmetric wave-free potentials for deep water are 

ý(f )= K2,, +, (pr) sin(2n + 1) 0+ 
2K K2 

n (pr) sin 2nO 
p 

+ K2n-I (pr) sin(2n - 1)0, 

2100K+P 
-fly 

0e sintXsinh2nttdt, n=1,2,3... (A4.2.8) 
p0 

where the integral representation (A4.1.6) has been used. The finite depth potentials are 

0(f) 
+, 8)e-, 6h 

-# cosh fly) 
_ 

ý(p + 
21'(K (K sinh fly 

p0 n (K cosh Oh -# sinh Oh), 8 sin tX sinh 2nlt dt 

2 fo (K 2_ #2) coshfl(h 
sin tX cosh 2nit dt (A4.2.9) 

a-P sinh Ph)# p0 (K cosh Ph 

which has an eigenfunction representation 

where 

00 
iO(f) = sgn X 1: A(f) cos k�, (h - y) e--IXI (A4.2.10) 

n nm 
m=O 

irkn sinh2nvn 
nm pha�, NT2 

(4.2.11) 
, cos k .. h' 

The eigenfunction representations (A4.2.6) and (A4.2.10) are identical in form to those 

for the submerged multipoles given by (A4.1.14) and (A4.1.20). Hence, the additional 

series' required to satisfy the side-wall conditions follow immediately from (A4.1.23) and 

(A4.1.24). 

(b) Expansion about singular point 

In deep water, the free-surface source is 

W) 
= lim O(f) = -2 

00 e-fly Cos tx dt (A4.2.12) 
hýoo 0 

10 
K-0 
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and so 

5(f) ým 
00 ( eflh 2 

10 0 
10 1K 

cosh Ph -# sinh Ph -- K-P) e-16Y 

+ e-Phe, 6y 
cos tX dt (A4.2.13) 

K cosh Ph - fl sinh Ph 

I 

which may be expanded using (A4.1.26) to give 

e Ph 

_, )q eqI, (pr) cos q0 
000 K cosh ßh -ß sinh ßh K, 0 01 

q=o 

cosh qp dt. (A4.1.14) 
K cosh, 8h -P sinh Oh 

I 

The corresponding expression for the free-surface dipole follows from (A4.2.2) and is 

co 
off) - 

W) 
=I -) sin(q - 1) 0) 

00 -ý 
E 

eq (1,, 
+, 

(pr) sin(q + 1)0 - Iq-l (pi 

q=o 
00 f 

(_, )q 
( eph 2 

K cosh Ph -0 sinh Ph --P 

+ e- 8h 
cosh qy dt. (A4.2.15) 

K cosh Ph -0 sinh Ph 
I 

The expansion about the singular point of the deep water source potential is given 
by Ursell (1962, pp. 502); after a simple change of integration variable it may be seen 

that his 4)0 is identical to ý(f) 
0. In particular 

ý(f) =-21npr+2a, -2+2KrlnprcosO-2a, KrcosO 0 

- 2Kr 0 sin 0-1. (pr)2 In pr - (Kr)2 In pr cos 20 + ! 
-a, (pr 22 

+ a2 (pr)2 cos 20 + (Kr)2 0 sin 20 +0 ((pr)3 Inpr) (A4.2.16) 

where 

a, =ln2--y+l+(7ri - fl) coth P, 

a2 = (In 2-7+ 3/2) cosh' iý +1 (7ri - f, ) coth ý cosh 2ý, (A4.2.17) 2 

-t is Euler's constant and f/ is defined by 

cosh iý = Klp. (4.2.18) 
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ým Using the definition of the horizontal dipole, equation (A4.2.2), the expansion of 0 
may be calculated from (A4.2.16) by differentiation as 

ý(f) 
=2 

sin 0+ 
20 cosh pr In pr sin 0 cosh 21ý 0 pr 

+ b1pr sin 0- 2pr 0 cos 0 cosh 2f, + 0 ((pr)2 Inpr) (A4.2.19) 

where 

b, = 1/2 - a, + 2a2 - cosh 
2 f, 

= 1/2+ (In 2-, y+ 1)cosh2f, +(7ri - P)sinh2ý,. (A4.2.20) 
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CHAPTER 5 

SLOSHING IN A RECTANGULAR TANK WITH INTERNAL BODIES: RESULTS 

5.1 INTRODUCTION 

In this chapter results are presented for the sloshing frequencies of fluid contained in a rectangular 

tank containing internal bodies. The boundary-value problem is defined by the modified Helmholtz 

equation (3.1.5), the linearized free-surface condition (3.1.6), and the condition of no flow through the 

solid boundaries (3.1.6-9). The eigenfrequencies are calculated by using various methods which have 

been described in chapters 3 and 4. My aim is to examine how these eigenfrequencies are influenced 

by the size, shape and position of the body. Here the bodies considered are vertical surface-piercing 

and bottom-mounted barriers, and circular and elliptic cylinders. 

When a barrier is introduced only partly into the fluid it can be shown (Courant and Hilbert 

1953) that the eigenfrequencies are decreased in general, except when the position of the barrier 

coincides with an antinode of an oscillation where the horizontal velocity is zero throughout the 

depth. The eigenfrequency then remains the same. As the barrier is introduced further and further into 

the fluid the nth eigenfrequency changes continuously from its corresponding value in the absence of 

the barrier to the closest eigenfrequency not greater than it corresponding to the two separate contain- 

ers. 

In section 3.2, the problem is solved for a vertical barrier by the eigenfunction expansion 

method and the sloshing frequencies were found to be the solutions of 

det( C -AB )=O, (5.1.1) 

where 
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A=- 
( 

tanh [a (b -x0 )] + tanh [a (b + x, )] 
), 

TT 
cc ,c cool c 10, cw ...... CM0 ), c 

mn 
Vf. ' Vn > 

B=(Bmn), Bmp= c mn 
c 

pn 
sn 

sn=a mn-I 
( 

coth mn (b - xo) + coth m. (b + xo) 
)l 

cos k (h - Vn(y) = Nn 
n 

kn(n=1,2. .. ) are the positive roots of the equation 

K+k. tan knh = 0, 

with ko = ik, and 

sin 2k h 

2k 
n 

(k 2 Nx 

i 

22 
p +k 



-180- 

and the wave number k which is related to the frequency o) through 

2 
w 
-=K=k tanhkh 
9 

In section 3.3, the body is taken to be arbitrary but of finite thickness and the motion is two- 

dimensional. By using the constant boundary element method, the original boundary-value problern 

becomes the solution of a matrix eigenvalue problem which is given by 

(-ir I+B+C) 0, =K D 0� 

where 0, are the unknown nodal values of the potential, 

DG.. 
Bf ll ds 

an 
SB 

DG.. 
C ij ds 

Dn 
s 

D= Gij ds, 

s F, 

and I is the identity matrix of order NxN. Results are given for an elliptic cylinder whose equation is 

given by 

22 
x2+y2 

ac 
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where 2a and 2c are the lengths of the major and minor axes and the major axis is parallel to the tank 

bottom and the minor axis is fixed. This includes the special case of a circular cylinder. 

In section 3.4, two approximate solutions are described, these are a "wide-spacing approxima- 

tion" and a "small-body approximation". Here the body is eidier a vertical surface-piercing barrier or 

a submerged circular cylinder. By using the wide-spacing approximation, we obtained a general 

expression to determine the eigenfrequencies in terms of reflection and transmission coefficients for 

that body. For a circular cylinder, centred on (xo I Yo ) with radius a and yo > a, 

M Jr zkmh-, 2 
cosh f2k 

m 
h(yo +I (-I)AI cos 2am xo (5.1.3) 

2b 2b NO, 
M2 

h 

where 

c=a, am = 
mg 

, h 2b 

kxf 
M 7r 

+ P2 

4b2 

and 

No'm 2=4kI 

uh 

( sinh 2k, h + 2kuh ), (5.1.6) 

and for a surface-piercing barrier 

a= 
M; r 

-c2M; 
r 
2h 

cosh 
2 kuh I -(-I) 

m 
cos'-Iamxo (5.1.7) 

2b 16b 2N0 
'm 

2 
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In the small-body approximation, by applying Green's theorem to the potentials with and without the 

body being present, explicit forms for the eigenfrequencies are obtained in terms of free-surface and 

body integrals. For a circular cylinder with two-dimensional wave motion, the eigenfrequency is 

given by 

21r 
2a222 

K=K M-- 
m( sin km( xo -b) cosh km(yo - h) 

b cosh2 kmh 

Cos 
2 k, (x, - b) sinlý km(yo - h) 

) 

with k. = 
Mir 

, and 
2b 

Km = k. tanh kh, (5.1.9) 

and for a thin vertical surface-piercing barrier, the eigenfrequency is given by 

K=K 
za a 

sin 
2 km(xo - b). (5.1.10) 

2bh 

In section 4.2, the lowest-order solution was obtained in terms of the cross-sectional area and 

dipole strength of the body by using the method of matched asymptotic expansions for an arbitrary 

cross sectional body. Here a is small compare to wavelength and water depth. The lowest-order solu- 

tion, a2 is given by 

a2 ý 
7rh 

( 
SP2 

+(-l) 
m 

cos 2a 
mx0 cosh2 k, (h - yo 

2amNo, 
m 

2 
ira 

2 
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2 vk, 
2( I+ (-I) " 

cos 2a 
m xo )) sinh 

2 km(y - yo) 

-(Y- A) am km (-I)m sin 2amxo sinh 2km(h-yo) 

2A am 
2(I- (-I) Al 

cos 2amxo cosh2 km(h - yo) 

Here S is a cross-sectional area of the body, v, T, A, and A are dipole strengths of the body and cr2 is 

related to the frequency parameter K by the equation 

K=K Al -6 
2 V), 

where 

(5.1.12) 

2 

V= 
MTU2 

I+k xf hKh 
(5.1.13) 

4km 2b2 Km m 

For a circular cylinder S= ; ra 
2 

and 

v=A= I, A=T=O. 

When the body is elliptic cylinder whose equation is given by (5.1.2), the cross-sectional area is 

S= zac. From Newman (1977, pp. 144), the dipole strengths for an elliptic cylinder are given by 

cc (1+-), A= +c 
2a 2a a 
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and 

T=A=O. (5.1.15) 

The higher-order solution is very difficult for a body of arbitrary cross-section. Since first-order solu- 

tion gives good agreement with the solution of boundary element method, the 1-dgher-order solution is 

not presented here. 

In section 4.3, the body is a surface-piercing vertical barrier and the Wgher-order solution was 

4 
obtained up to c, that is 

a 
(4) 

=e2 C2 
11+ 

-- 

2 
In ca 41 

a2t'M 
- 2K h+ 

siDh 2kmh 

4km 2 bNo, 
m2(m 

2kmh 

; rxoamh cosh2 kmh 
(- 1) m 

sin 2a x 
4bNO, 

m 
2 Al 0 

Sl. 
m + Re i CI. Al +m+ am 

2h2 

cosh 
2 kuh 

10 

p2h2+ in Ph 
-I) cosh 20 +V sinli 20 + -1 

)I], 

4424 
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where 

cosh 
2k h(1-(-1) m 

cos 2«, x, ) 
), (5.1.17) or2 ý -2 m 

4N0, " 

Cr 41 ý- 
182 

cosh 20 CF 2 
4 

ah cos 
2knh 

-2a b 
S 

I'm = 2yr 
2( cosh 2a 

n xo-e 
n--l N 

n, M sin 2a 
nb 

-. 8 h 

2h 2f e'611 2+e 
ýt 
2 dt 

0 
Kw -, # sinh j8h Km - K. coshj6h -, 8 sinh, 8h 

2; riý 
amh cosh 

2 

-. 6 2 
sinh 20 (5.1.20) 

Noým 2 

.8= 
(P2 + t2)T' ,8= ph, 

cosli 11 

and y is Euler's constant, and Re,. c,,, is a real part of cl,,. nis solution is based on a rational 

approximation for 
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-ý '2 or 
I+Ae 2 In e+ Be 2ýe2 

Cr2 ( I+(A-C e2 In c+ (B - D)c 2 
or '0 22 

1+ ce 2 In c+ Dc 2 

which gives the expansion for a provided 

A-C= 
a 41, B-D= 

a4. 

a2 ar2 

The best results were obtained by choosing 

A=B=O. 

In section 5.2 results are calculated using the above methods are presented and, where appropri- 

ate, comparisons made between exact and approximate solutions. 
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51 Results 

Here the following variables are used: a is a cross-sectional length of the body, ho is a submergence 

of cylinder, h is a water depth, and p= Njrll, where N is an integer and I is the width of the tank in 

the z- direction. The results are presented as curves of kd(d = 2b) against ald for different values of 

h1d, and pd using different methods; the eigenfunction expansion method, small-body and wide- 

spacing approximations, and the method ofmatched asymptotic expansions. The aim is to examine 

how the sloshing frequencies are influenced by the presence of the body. The bodies considered here 

are the vertical surface-piercing and bottom-mounted barrier, the circular cylinder and the elliptic 

cylinder. When bodies are either circular or elliptic cylinder the two-dimensional motion is consid- 

ered. 

5.2.1 THE VERTICAL BARRIER 

Figures 5.1-5.2, show the values of kd corresponding to the lowest six modes for a surface-piercing 

barrier placed centrally in the tank for pd =I and 3. The symmetric modes have zero horizontal 

velocity on the centre and so are unaffected by the barrier. The values of kd for the lowest mode is 

slowly reduced as the submergence of the barrier is increased, until the tank is almost fully divided 

when there is a very rapid drop to its lowest value which is given in the table 5.2.1. Also the higher- 

frequency modes are reduced to their lower limiting values given in the table 5.2.1. This gives a 

numerical confirmation of Courant and Hilbert's result. For these higher modes, the eigenfrequencies 

decrease much more rapidly than lower eigenfrequencies as the submergence increases. We would 

expect this given that these shorter waves do not penetrate deeply. 

A comparison of the exact method with the lowest-order approximation of equation (5.1.7) is 

made on the same figures. For the lowest mode both methods agree well for values of ald < 0.15. 

For the higher modes, the results do not agree well as we assumed that the body is small compared to 
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the wavelength in the approximate method. 

In figures 5.1-2, a comparison of the exact method with the lowest and higher-order approxima- 

tion of equation (5.1.16) is made when the barrier is centrally placed in the tank. Both methods agree 

well in the case of the lowest mode. But for higher modes there is good agreement only for the values 

of ald:: -: 0.2, because the assumption is made that the length scale of the motion is much larger than 

the body dimension. Also we can notice that the higher-order approximation gives better agreement 

than the first-order approximation. 

When barrier is not centrally placed in the tank the results are displayed in figures 5.3-4. A com- 

parison of the exact method with the lowest and higher-order approximations is made on the same fig- 

ures. Again there will be some unaffected modes. As before the higher-order approximation gives bet- 

ter agreement than lowest mode. For higher modes the agreement is good only for values of ald,. 5 

0.15. The reasons are given above. 

In the case of a bottom-mounted barrier, the behaviour differs from the surface-piercing barrier, 

as can be seen from figures 5.5-5.8. Note that a is here the barrier length and that the horizontal axis 

is reversed so that the fully-divided tank again lies on the right of the figures. In this case the barrier 

must extend over a substantial part of the depth before there is a significant change in the eigenfre- 

quencies. The higher modes are less affected by the barrier as we would expect for shorter wave- 

length. Good approximate solutions for the bottom-mounted barrier were found by Evans and McIver 

(1987). 

So far all the calculations reported have been for a depth to width ratio of unity. Figures 5.9-10 

give kd vs ald for an off-centre surface-piercing barrier in a shallower tank with h1d = 0.5. The 

effects of the reduced depth do not became significant change until the gap is small. As before, the 
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higher-order approximation gives good agreement for the lowest mode. In the case of bottom- 

mounted barrier which is not centrally in a shallower tank the graph is drawn for different values of 

kd vs 0.5 - ald (see figures 5.11-12). Since h1d = 0.5, the range of values of 0.5-ald is chosen up to 

0.5. Now that the bottom-mounted barrier is extended over a larger proportion of the depth it will pro- 

duce bigger changes in kd. From above figures the changes of values of kd decreases with increasing 

values of pd. 

5.2.2 A CIRCULAR CYLINDER 

Figures 5.13-16 show the results for the eigenfrequency parameter Kb plotted against alb for a circu- 

lar cylinder with radius a placed centrally in the tank. Here the submerged depth of the cylinder, 

holb = 0.25 and 0.5, and 0.5 and 1.0 for fixed depth of water, h1b = 1.0 and 2.0 respectively. In fig- 

ures, 5.13 and 5.14 the maximum values of alb are 0.2 and 0.4 respectively, otherwise the cylinder 

will overlap the walls or free surface. For the lowest mode, there can be a considerable change in 

eigenfrequencies with increasing alb. But for higher modes there is usually only a small change in 

eigenfrequencies. A comparison is made with the approximation of equation (5.1.3) and good agree- 

ment is found for all modes. When the submergence increases for fixed depth, there is not good agree- 

ment in the case of higher modes for some range of values of alb. The reason is that in this range the 

small-body assumption is not valid; the body is then not small compared with tank dimensions or the 

wavelength. 

Figure 5.17-18 show the results for eigenfrequencies for a circular cylinder not centrally placed 

in the tank. The submergence depths, hdb = 0.25 and 0.5 and depths of water, h1b = 1.0 and 2.0 are 

considered. The range of values of alb are 0.2 and 0.4, otherwise the cylinder will overlap the bound- 

aries of the tank. As before, there is considerable change in eigenfrequencies when alb increases. A 

comparison is made with the approximate solution and good agreement found, even when the 
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cylinder is not in the middle and for all modes. The reason is given above. From these figures the 

comparison is good whether the cylinder is in the middle or not, so a higher-order approximation is 

not pursued. 

5.2.3 A ELLEMC CYLINDER 

Now the body is an elliptic cylinder and its equation is given by (5.1.2). In the results presented the 

major axis is parallel to the bottom of the tank and the minor axis is held fixed. Figures 5.19-20, 

shows the results for eigenfrequencies for an elliptic cylinder placed centrally in the tank. From the 

graphs some of modes are very little affected by the cylinder. A comparison is made with the approxi- 

mate solution, equation (5.1.11) and there is reasonable agreement for some of the modes. For values 

of alb Zt 0.35, there is not good agreement except the lowest mode. But in figure 5.20, they agree 

well for all values of alb and all modes. The reason is given above. 

Figure 5.21 shows that the result for eigen frequencies corresponding to various alb for an ellip- 

tic cylinder which not centrally placed in the tank. Here submerged depth hOlb is 0.25 and depth of 

water h1b is 1.0 for fixed c1b = 0.05 . From the graph the comparison is good for all values of alb 

and all modes. Finally, when the body is either a circular or elliptic cylinder the comparison is good 

for all values of alb. 

CONCLUSION: 

When body introduces into three-dimensional rectangular tank, it will reduce the eigenfrequencies. 

Nearly, a half immersed surface-piercing barrier reduces the lowest eigen wave-number to less than 

halfwhenp: 5 1. This similar result was observed by Evans and McIver for two-dimensional similar 

problem, i. e. p=0. But for increasing values of p>1, it is not true. In contrast, a bottom-mounted 

barrier of the same length has negligible effect on eigen wavenumbers. By using eigen-function 
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expansion method, the eigenfrequencies can be computed for either a surface-piercing or bottom- 

mounted barrier of any length, position and values of p and for all tank dimensions. 

We obtained the general formula, for determining the eigenfrequencies in terms of the reflection 

and transmission coefficients for the body in an infinite wavetrain, based on the wide-spacing approx- 

imation. 

When the body is either a submerged circular or elliptic cylinder this considerably changes the 

lowest eigenfrequencies. By using the boundary element method the eigenfrequencies were deter- 

mined for any geometry and depth and for all tank dimensions. 

Using the method of matched asymptotic expansions, we obtained the general expression for 

eigenfrequencies in terms of dipole strengths and cross-sectional area of the body. 
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CHAPTER 6 

DRIFT FORCES ON MULTIPLE BODIES 

6.1 Introduction 

The scattering of an incident wave field by a group of bodies may give rise to wave forces on one of 

the bodies that differ significantly from the forces it would experience if in isolation. The modifica- 

tion of wave forces due to hydrodynamic interaction in arrays is the subject of the present chapter. 

Let a perodic wave train with frequency w whose first-order amplitude is A, approach a body 

from large negative x, and let co = kA be the small wave slope. Then, using Stokes' expansion, the 

potential (1) can be expressed as 

(D = --0 01+c02 (D 2+.. ... (6.1.1) 

where each (D,, (D 2 '. .. contain incident and scattered waves. The first two terms in (6.1.1) contribute 

to the first- and second- order exciting force on the body. The first-order force is just the linearized 

exciting force on the body. The second-order problem involves solving a boundary-value problem 

where the boundary conditions contain products of two terms from the first-order solution, each of 

which are harmonic oscillations with frequency o). The products of the first-order terms will give one 

term that is time independent, and one term that is oscillating with frequency 2w. The second-order 

potential will have the same time dependence as the boundary conditions for the problem. The pres- 

sure, and hence the force, associated with the second-order potential can be found from Bernoulli's 

equation. The time average of a periodic quantity is zero so that there is no contribution to the mean 

wave loads at second order from the second-order potential. However, the contribution from quadratic 
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terms in the first-order potential to the mean wave forces is non-zero. Tbus the second-order mean 

force, or drift force, may be calculated from knowledge of the first-order potential only. 

The drift forces, can give rise to constant offsets from the equilibrium position, and are therefore 

of interest to the designers of rigs with flexible mooring systems. Furthermore for mixed seas widi 

narrow-banded spectra, Newman (1974) has shown that the forces on a floating body give rise to dif- 

ference-frequency oscillations which can be approximated in terms of the mean drift force on the 

body in regular waves. 

The horizontal drift forces on multiple bodies in long waves have been considered by Eatock- 

Taylor and Hung (1985). They found numerically that, for certain geometries, the drift force on a 

group of N bodies is approximately N2 times that on an isolated body when the incident waves are 

long compared with the group size. Eatock-Taylor and Hung (1986) also suggested that radiation 

damping coefficients will obey an N2 enhancement law and the first-order exciting forces and vertical 

mean drift forces have an N-dependence for arrays of bodies in low-frequency waves. 

Under the assumptions that the waves are long relative to body separation and the bodies are 

widely spaced relative to body size, McIver (1987) calculated the mean drift force on a group of N 

vertical circular cylinders by using the method of matched asymptotic expansions. He obtained an 

additional higher-order term, beside the N2 term found previously and this additional term indicates 

how the geometry of an array affects wave forces. 

In the present work, the work of McIver (1987) is extended in two ways. First of all the assump- 

tion that the cylinders are widely spaced relative to body size is relaxed, while retaining the assump- 

tion on the wave length. This is done in section 6.2, considering the case of two circular cylinders. 

Two flow regions are used with the inner region now containing both cylinders, and bipolar 
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coordinates are used to obtain the inner solution. In section 6.3. the effects of body geometry are 

investigated by allowing the cylinders to be of arbitrary cross-section. Three flow regions are defined. 

These are: an outer region at large distances from the array where the lengthscale is k-I (k is the wave 

number); an intermediate region within the array (but not 'close' to any body) where the lenath scale C, 

is the body spacing; and an inner region surrounding each body where the length scale is the body 

radius. In the outer region, the scattered wave appears to be the result of singularities at a single ori- 

gin, wbilst in the intermediate region the disturbance appears to be genearated by sinc,,,, ul ari ties at the 

origin of each body coordinate system. The basic procedure of tl-ds method is the same as that used by 

McIver (1987). 

Consider a plane wavetrain of amplitude A and frequency w, incident upon the fixed vertical 

cylinders, and standing in water of finite depth IL Cartesian coordinates (x ,y, z) are defined so 

that the (x , y)- plane corresponds to the mean free surface and the z- axis is directed vertically 

downwards. The origin of the coordinate system j is at (x y, z) = (ýj I y1i 1 0), while the position 

of body I relative to body j has polar coordinates (rj , vfj =( Rj, , a,, ) as sho%km in figure 6.1. rD 

11 
ErRLRE: (0- 1- fl-Au ufu oFpaey buc. ý, 6 t4 =iý5ýhzt. 

The usual assumptions of linearised water wave potential theory are used. lience the fluid 

motion is described by a velocity potential 
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(D (x, y, z, t)=RC 
gA 

z) e-i T- 

Lg 
-, 

4 
OT (X'y' 

The complex-valued function OT ( X'Y' z) satisfies 

V'O, =o 

within the fluid, the linearized free-surface condition 

2 OLT 
+ 

0) 
OT=O' Z=O' 

az 9 

the zero-flux condition on the bed 

ao" 
= 0, z=h, (6.1.5) 

Dz 

and the no-noimal-flow condition on each body sw-face 

DOT 
= 

an 

where n is the normal measured into the fluid. We take the incident wave to travel in die direction of 

increasing x, so that 0T may be written in the form 

OT (x, y, z)= e 
ikx 

+ 0(. x Y) 
cosh k(z - h) 

cosh kh 

where the first term within the large bracket represents the incident wave and ý the scattered wave. 
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This separation of variables is possible since the cylinders extend throughout the fluid depth, and the 

fonn (6.1.7) clearly satisfies equations (6.1.4-5) with the usual dispersion relation, 

0) 
-=k tanh kh. 
9 

Substituting the expression for OT into (6.1.3) gives the Helmholtz equation 

2ýo 
+ 

a20 
+k20 

ax 2 gy 2 

From the body boundary condition (6.1.6), 0 must satisfy 

ao a (e 

an an 

on each body. 

By using the ideas of Maruo (1960) and Newman (1967), Faltinsen (1990, pp 140), obtained the 

result for the mean horizonal drift force in the direction of wave advance as 

2 2z 

fm 
(2) 

=pgA+ 
2kh )f(I_ 

COS 0) If (0)12 dO. 
2; rk sinh 2kh 

0 

Here po is the fluid density, and the angle 6 is defined by 

x=rcoso, y=rsino. 



-197- 

6.2 T'wo circular cylinders with different radii 

Each body is taken to be a vertical circular cylinder, extending throughout die depth of die fluid and 

with radii a and Ja as shown in figure 6.2. 

p 

Here the boundary-value problem to be solved is given by the Helmholtz equation (6.1.9). the free- 

surface condition (6.1.4), the bed condition (6.1.5), and the body condition (6.1.6). In terms of the 

scattered potential 0, the body boundary condition is 

a( 
'a- 

218 00 ý r, COS (, g, -, g, ) 
) 

ao 

=-- 
12 

C('5 

r, =a, r2= 8a, Q=1,2) 
an an 

where 

45 j2 ýI, when j=2, 

= 0, when j* 

FTL-ýWýf (-. I PLAWý-- 
ý-T T, \ýo CTLZN. DFýRs 
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21 is a distance between centres of the two cylinders, 00 is the angle between the incident wave and a 

line joining the centres of the two cylinders, and polar coordinates ( r, .0i) are defined by 

xi=ri cos (0, - 00), yj = rj sin (oj - 00). 

INNER REGION 

Scaled coordinates for the inner region are defined by 

ýj 
xi, 

nj = 
Yj 

aa 

From equation (6.1.9), the inner potential V/( ýj , 77j ) satisfies 

JVf 2LV 
+ C2 Vf =O. (6.2.2) 

aý 
i 

De 
i21 

Here el = ka. The body boundwy condition (6.2.1) becomes 

2 

j 
:LP. Cos _)+ 0( v3 

av/ 
=- -ý- 

it, Pi Cos (a 
1 -00) )=- a-00)c2 2(o, 

e i--j pi Cos (0 
1 

00 
an an 

( 

an 2j 

(6.2.3) 

on each cylinder. Here the local polar coordinates (p, ,01) are defined by 

4j = Pi Cos 01., 
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and 

i7j = p, sin 01. 

The boundary condition (6.2.3) suggests that the leading-order inner potential V/ 
(1) is of order --, and 

from (6.2.2-3) Vf 
(1) 

is a harmonic function and satisfies 

av (1) a 
an 

=-i el 
an 

COS 00 + 77, sin 00 (6.2.4) 

on each cylinden To find the solution for V 
(1), bi-polar coordinates are used. By using two- 

dimensional bipolar coordinates, Morse and Feshbach (1953, pp. 1210-1211) obtain the solution for 

'-, satisfying the boundary condition 

az- 
= 

an 

on each cylinder as 

(6.2.5) 

1= =ýi COS 00 + 17i sin 00 + fl( a, P)+ f2(a ' 8) (6.2.6) 

where 

2c, ,n 
-n ,, cosh n( a- iX2 ) 

f, (a, #)=-2: (-1) e cos ( 00 + n. 8 (6.2.7) 
a n=o sinh n( aI-a 2) 

2c 
2-R" cosh n( a-a, ) 

f2( p-Z (-I) e- Cos( O. -n (6.2.8) 
a n=O sinh n( a, - a2 ) 
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and a and 8 are related to x and y by 

x+ jy =c txih 
(a 

(--<a<-, -ir<. B<; r). 
2 

Also 

c2 
)" 

222 
a, = sirdi-I I c, =(? -a I a2 = S'nlý-l 

( C2 ), 
C2 a 

Sa 

Therefore from (6.2.4-6) the solution for V 
(1) is 

Yf 
(1) 

=ic I 
"I +f2)* 

To find expansions of the series of f, (a , P) and f (a , 8), define 2 

Z= X+ j Y=C coth T. 

By using above equation, terms of series f, (a , 0) and f2(a , 8), can be written in the forms 

(-I)n cosh n( a-a2) Cos (00+n, 6 )=I cosh 2rn cosh tn- sinh 2nr sinh t 
2( 

cosh 2nr cosh t- sirih 2nr sinh t 
)' 

nn 

and 

(6.2.9) 

(-I)n cosh n( a-a, ) Cos ( 00 - njO )=I cosh 2nr cosh vn- sinli 2nr sinh v 
2( 
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cosh 2ni- cosh vn - sinh 2nr * sinh v. 
) 

respectively. Here * denotes complex conjugate, and 

tn=na2-ioo, vn=na, +160. 

Expanding the above expressions for f, ( a, fl ) and f(a. ft ) as a series in inverse powers of p, 2 

and substitute into (6.2.9) gives, after some algebra, 

=lei alcosoo+bi cosOo 
L' 

+b 2 sin 00 +0 (6.2.10) 
224 

pipi Pi 

where 

2e -n a, C, cosh ncr2 e" a2 C2 cosh na, 
a, = 

a n. 0 sinh (n( al -a2 sinh (n( al -a2 

bl =_4c 
-f e-n al 

nc, sinh n«2 en 
a2 

nc2 sinh nct, 
(6.2.12) 1 

a2 =O 

ý 

sinh [n(a1-a 2) 
1 sinh [n(a1-a 2) 

1 

and 

4c e -n a, 
n cl CoSh na2 e" 

a2 
n C2 cosh nal 

b2=- (6.2.13) 

a n=o(sinh[n(al-a 2 sinh fn(a, - a2 )] 

Here c can be related by the equation, 
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22 )-1 21=(a +ci+( '52 a2+c2 

Therefore from (6.2.10), the outer expansion of Vf 
(1) 

to order -- 
2 is 
I 

(1.2) b, 
Cos 

+b 2 
sin 

(6.2.14) 
Pi Pi 

OUTER REGION 

Outer coordinates are defined by, 

X=kx, Y=ky (6.2.15) 

so that, from (6.1.9), T (X, Y) satisfies 

aT 
+- 

aT 
+T=O (6.2.16) 

ax 2 aY2 

in the fluid region. Equation (6.2.14) suggests the leading-order outer potential 

2 
y= ei TO (6.2.17) 

where from (6.2.16), To satisfies 

a2ýv a2T 
0+0+1,0 =0 (6.2.18) 

cl x2 ay 2 
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in the fluid. The general solution for To satisfying the radiation condition and (6.2.14) is 

TO= Ao Ho( R)+( A, cosO+B, sin 6) HI(R), (6.2.19) 

where Ho and H, denote the Hankel function of the first kind of order 0 and I respectively, and 

A0, A I. and B, are complex constants to be determined from the matching. 

From (6.2.17) and (6.2.19) the inner expansion of T (2) is 

(2.1) Cos 0. sin 0 
T =-2c, A, i1 -2c, B, i (6.2.20) 

NP i Ir pi 

Matching (6.2.14) with (6.2.20) gives 

;rb (6.2.21) 

and 

; rb 2 (6.2.22) 
2 

Furthermore, the inner expansion of T (2) to order c2 gives I 

(2.2) 2 
1,2 

i Cos 0. sin 0j. 
+2A0i( C2 

2 
T El Ao Al I+BII lne+el Inp j) (6.2.23) 

Pi Pi X 

where 
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r=l+ 2i 
In 2 (6.2.24) 

9 

and y is Euler's constant. Equation (6.2.23) suggests that 

vt 
(2) 

= -0 +6 
2 Inc P+c2 (6.2.25) Vi IIII v/ 2 

where P is an unknown constant and, from (6.2.2) and (6.2.3), V. is a harmonic function which sat- 12 

isfies 

22 
LV2 pi 

-+ 
pj 

Cos f2 Oj - 00 (6.2.26) 
an an 44 

on each cylinder. The solution of Vf2 is 

V2 =(a2 In pi+ IC(pi 9oi .)) (6.2.27) 

where 

I+ 45 
2- 2 

and x(pi 901) is a harmonic function satisfying 

(6.2.28) 

2 

ioj 
cos (2 Oj - 00) 

an an 4 
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on each cylinder. I'lie solution of x is such that 

r=O 2 
Pi 

(2-2) (2.2) (2) 
and so is not necessary in the matching. i. e. VT Now writing the outer expansion of V 

to o er -- 
2 and matching with (6.2.23) yields I 

Ao=- Iri (1 +8 

2 

THE MEAN DRIFT FORCE: 

(6.2.29) 

Maruo (1960) and Newman (1967) show that the mean drift force on a body is related to the far field 

of the first-order scattering potential. Since 

HO(R) 
2Re4 (6.2.30) 

and 

Ii (R - 
'V) 

HI (R) -- i( 
ir 

2R 
)y e4 R->-, (6.2.31) 

from (6.2.17). (6.2.19), (6.2.21-22), and (6.2.29-3 1) we have that 

i(R- 9) 

lp 
(2) 2 

)l e4 f(o), (6.2.32) 
jr R 



-206- 

where 

ir ia 

22' _j A, cos 00 + B, sin 00 ) cos 0+(B, cos 00 - A, sin 00 ) sin 0 
)(6.2.33) 

Evaluating the integral in (6.1.11) gives the mean horizontal drift force as 

pgA 
2r49 

2( 1+ 
2kh )ý 

(I ++A2+B2-A cos 00 - B, sin 00 
2k I sinh 2kh 

J(8111 

(6.2.34) 

where 

2c ' (e -na, 
CIn sinh na -e 

na2 
nc sinh na A, =- Cos 0 1: 221 (6.2.35) 

a20 R=O sinh [n (a, - a2)1 

) 

and 

B, =_ 
2c 

sin 00 
- e-""' n c, 

_cosh 
na2 +e na 2nc2 cosh na, 

- (6.2.36) 
a2 R=O sinh [n( a, - a2 )l 

McIver (1987) shows that the mean horizontal drift force on a single cylinder with radius a is given 

by 

fl, 
MX 

(2) 
-1: 

5pgA2 Ir 
2+-2 kh 

04 (6.2.37) 
16 k sinh2kh 

)-l' 

Therefore from (6.2.34) and (6.2.37), the ratio of the horizontal drift force on two cylinders to that on 
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an isolated circular cylinder with radius a is given by 

Fnu 
(2)= 81 (1 +82 ý+A12+B1 2- (1 +82) 

A, cos 0() + B, sin 00 (6.2.38) 
5 

(8 

2 

where 00 is the angle between incident wave and the line joining centres of two cylinders, whose radii 

are a and 8a. A, and BI are given by equations (6.2.35) and (6.2.36) respectively. 
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63 N arbitrary cross-sectional cylinders 

To calculate the ratio of the drift force on N cylinders to that on an isolated cylinder, we have 

to consider a single arbitrary cross-sectional cylinder first. 

(a) Single cylinder: 

The cylinder extends throughout the depth of the fluid and a typical radius of the cylinder 

cross-section C is denoted by a. The boundary value problem to be solved is given by the 

Helmholtz equation (6.1.9), the free-surface condition (6.1.5), bed condition (6.1.4), and the 

body condition (6.1.6). The body boundary condition is 

ao a (e ikx )on 

an an 

INNER REGION 

Scaled coordinates for the inner region are defined as in section 6.2. Define a small parameter, 

ec, = ka. From equation (6.1.9) the inner potential Vf( ý, q) then satisfies 

A 2Lvf 
+ el Vf = 0. (6.3.2) 

4 a17 2 

and the body boundary condition (6.3.1) becomes 

2 
it, p Cos 0223 

cl n cln 

(e 
an 

ir, p Cos 0-2p Cos 0+0(el) 
) 

on C. (6.3.3) 
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Here the polar coordinates (p , 0) are defined by 

4= Cos 6, 

and 

q= sin 0. 

The boundary condition (6.3.3) suggests that the leading-order inner potential is 

(1) 
v =e1v1 

where from (6.3.2-3), V, is a harmonic function and satisfies 

(6.3.4) 

LVI 
=-i -a(pcoso)onC. (6.3.5) 

an an 

The solution for vf, can be written as 

Vf, =irI 

where r, is a harmonic function and satisfies 

(6.3.6) 

L, 
=--' (pcoso)onC. (6.3.7) 

an an 

Here the potential -r, is the disturbance to a uniforin flow past C in the direction of wave incidence. 

From B=helor (1967. p. 127), as p->- 
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V0 
Cos 0+ Ao sin 0 

+0( 
12 

ppp 

where vo and AO are the dipole strengths of the cylinder in two orthogonal directions, and assumed to 

be known. Therefore from (6.3.4), (6.3.6), and (6.3.8), the outer expansion of V 
(1) to onler c2 is 

(1.2) cos o in 0) 
I( vo 10 

Ln (6.3.9) 
pp 

OUTER REGION 

Outer coordinates are defined as in section 6.2, equation (6.2.15), so that, from (6.1.9), IF (X, Y) satis- 

fies 

aT, aT 
+T=O (6.3.10) 

ax 2 ay2 

in the fluid region. Equation (6.3.9) suggests the leading-order outer potential 

T 

where from (6.3.10), IF2 satisfies 

ýIV2 

+ 
a2 T2 

+T 2 ý- 0 (6.3.12) 

ax 2 ay2 

in the fluid. As in section 6.2, the general solution for T2 satisfying the radiation condition and able to 

match with (6.3.9) is 
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T2= Ao Ho( R)+( A, cosO+B, sin 0) H, ( R), (6.3.13) 

where HO and H, denote the Hankel function of the first kind and order 0 and I respectively, while 

Aot All and B, are complex constants to be determined from the matching. From (6.3.11) and 

(6.3.13), the inner expansion of T (2) is 

(2,1) 
=-2e, A, i cos 0 

-2 ei B, i sin 0. (6.3.14) 
ir p 7r p 

Matching (6.3.9) with (6.3.14) gives 

z vo 

2 

and 

A0. 
(6.3.16) 

2 

(2) 2 
Furthermore, the inner expansion of T, to order c, gives 

T (2,2) 2A r-- 
2"i 

(A cos 0 sin 0+2 Ao i(e2 
Ine +e 2 Inp) (6.3.17) 

10 Ir 
IppXIII 

where r is defined in (6.2.24). Equation (6.3.17) suggests that 

v=E1 Vi +e 
1 

hi c1p1+ el V/2 
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where P is an unknown constant and, from (6.3.2) and (6.3.3), Vf, is a harmonic function 
12 

which satisfies 

22 
L+Lcos20 onc. (6.3.19) 

an Dn[ 44 

The solution for vr2 is 

V2 -"- r2, (P ' 0) +r 22(10 ' 
()) (6.3.20) 

where -r., and r22 are harmonic functions and satisfying C 

L121 
=1a(p2 cos 20 ) on C, 

an 4 an 

and 

ar 
22 p 

- on C. (6.3.22) 
an 4 an 

Since there is no term in 0 because there is no circulation around the body and no logarithm ic term 

by tile divergence theorem. Therefore from Batchelor (1967, pp. 127), as p->- 

Cos 0+A sin 0+V, cos 20 
+A, sin 20 

(6.3.23) r2l = VO 02 
pp P" p 

and 
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'r. 22 -s2 In p -> 0. (6.3.24) 
2; r a 

Here v, and A, are the quadrupole strengths which depend on C, and are assumed to be known, and S 

is the cross-sectional area of the body. Therefore from (6.3.18), (6.3.20), and (6.3.23-24), the outer 

expansion of V 
(2) to order c2 may be found. MatcWng with (6.3.17) yields I 

is 
Ao=- - 

4a2 
(6.3.25) 

Now the constants A0, A,, and B, are known, and the mean horizonal. drift force on a single arbitrary 

cross-sectional cylinder may be calculated. 

THE MEAN DRIFT FORCE 

As before in section 6.2, by using Maruo's (1960) and Newman's (1967) dieory, the mean drift force 

on a body can be calculated. From (6.3-13), (6.2.30-31), (6.3.15-16), and (6.3.25) we have that 

i *(R x) 

T 
(2) 

=c 
2( ) 

e' 
4f (0), (6.3.26) 1 Yr R 

where 

f(0)=Ao-i( A, cosO+B, sin 0). (6.3.27) 

Tberefore by integrating (6.1.11) with respect to 0, and after a little algebra, die mean horizonal drift 

force can be calculated as 
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pgA 
242+ 2kh ) 

2k 
-1 

sinh 2kh 4, 
( VO +A0 

a4 

2+ IT VO S 

4a 
(6.3.28) 
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(b) N cylinders: 

The cylinders extend t1uoughout the depth of the fluid and the typical cross-section of each cylinder is 

denoted by Ci(i=1.2, 
. .., N). The boundary-value problem to be solved is given by the Helmholtz 

equation (6.1.9), the free-surface condition (6.1.4), bed condition (6.1.5), and the body condition 

(6.1.6). 7be body boundary condition is 

ao 
=- -L(e 

ikx on C,. (6.3.29) 
ani an, 

OUTER REGION 

Outer coordinates are defined by, 

X=kx, Y=ky. (6-3.30) 

Under the assumptions that, a << 1, and p= kI << 1, from (6.1.9) the outer potential IF(X, Y) sat- 
I 

isfies equation (6.3.10). As before the leading-order outer potential is 

(2) 2 
'IF 

2 (6.3.31) 

The general solution for T (2) 
satisfying (6.1.9) and the radiation condition, is given by 

0 

(2) 
T= Ao HO(R)+( A, COS O+B, sin 0) H, (R), (6.3.32) 

where A09 A,, and B, are complex constants to be determined from the matching. 
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INTERMEDIATE REGION 

Scaled coordinates for the intermediate region are defined by 

- 
111 

and from (6.1.9), F( T. y) ( =- g x, y)) satisfies 

(6.3-33) 

ty/ 

+ 
a2V 

+ ýU2 
0 (6.3.34) 

-2 -2 ax ay 

witWn the fluid. Intermediate expansion of the outer solution suggests that the intermediate potential 

is expanded ing as 

Ij 02+ JU2 p V/ + ju in u Fj/21 ýf 2 (6.3.35) 

Here only those terms required to determine the outer potential to leading order are given. Substitu- 

tion of (6.3.35) into (6.3.34) shows that each term in the expansion of F, to the order displayed, is a 

solution of the two-dimensional Laplace's equation. Therefore the solutions of each intermediate 

potential V, (t=1,21,2 ) are of the form 

N 

rift --12 ; fi, 
0 +Z lit, 

io InF 
i+( 

A1, jI cos 0i+ B�j, sin 0i (6.3.36) 
j=I 

r 
where Yi=j and A,, O, A,, jI, B,, jo, and B,,,, are complex constants to be determined. 

I 
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OUTER/INTIERMEDIATE MATCHING: 

The intermediate expansion of T (2) to order u2 gives 

IF (2.2) 
=- 

2iju 
( A, Cos 0+B, sin 0+ 

/1 
2 In p2 

Ao i+22 Ao i 
In'F+ p2 Ao F (6.3.37) 

9T "F IT 9 

where IF is defined by equation (6.2.24). To obtain the outer expansion of the intermediate solution, 

define 

ie io ia 

z=r e, z, =r iesie 

where (r, O), and (rj 8i) are polar coordinates of field point with respect to origin and body 

respectively, and ( si Iai) are polar coordinates of body j with respect to origin. Therefore 

Z =u. + Z.. 
ii 

In terms of outer variables, Z=R eia, the above equation can be rewritten as 

a or j 

z 

z. a. 

where -L, and U. Now using the above equation, the outer expansion of the intennediate 
Ii 

2 
potential up to orderg is 

-(2.2) +N Ul. 
jo 

(In 
-F Cosa 

Cos 0 
sin , 

sin 0 
ju 1.0 

1FifF --S I tyj 
F j-- 
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N 

cos 0+9,,,, sin 0+ ; J2 III il X21.0 + 'U21JO in T 

+ 112 Ä2.0 + Y, 97., 
jo in'F (6.3.38) 

Matching (6.3.37) with (6.3.38) gives 

. 
A 1,0 B 1, jo 

B 21J0 =O, A, szi, 
ji, 

(6.3.39) 

91 
N VA 2i N- 

B ZU ==A =-X, =B I'ji , 21,0 2,0 2JO' 
2 k-I Ir XF 

INNER EXPANSION OF INTERMEDIATE SOLUTION: 

Define 

ia. ie 

jp 
ji =p i 

where ( sjp a jP ), and ( pjv 0i) are polar coordinates of body p with respect to body j, and of the 

field point with respect to body j in tenns of inner coordinates respectively, and ( r,. 01. ) are polar 

coordinates of body j with respect to origin. Then 

Z. =or. +Z . i ip p 
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In terms of inner variables above equation can be written as 

ip 
ip 

z (7. 
Here Y= -f. and U. = jP 

- Using the above equation, the inner expansion of the intermediate 
PI jP I 

solution can be written as 

Cos a 

lu Cos 0+ ul.,, sin 0+ jp 
rp P=j jp 

P; t j 

sin a jp c2 
2 

Pi cos ( 0j. - 2a 
ip 

+ 91, 
P1 

+2p, sin (01 .- 
2ajp 

S ip 
S ip Y. 

jp 

2 
U In pA 21.0 

+ A 2,0 +B 2JO In --p i+A 2JI COS Oj +B 2JI sin 
ep j 

N 

B In Y. - -i- p. cos (0. -a-)+ O(c 
2) 

P=l 
2, jo jp 7 

ip 
ii ip 

P*j 

cos ct ip -cp COS (0. - 2a. ) 2, pl s2 ip 
in si. 

pi 
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sm a 
jp c2 

B 2. pl 
+- pi Sffl i- 

2a 
ip 

+ 0(c (6.3.40) 
s2 ip 

wNch will be used later. From equation (6.3.39), to calculate far field potential we need to compute 

and which are coefficients of dipole terms of order u, and Bz, jo which is coefficient of 

source term of order p2 These terms will be calculated by doing inner/intermediate matching. 

LNNERREGION 

Scaled coordinates for the inner region of body j are defined by 

X-X. Y-Y 221 
ýj = 17j =ai, pj = (ýj + 17 i)2. 

(6.3.41) 

From (6.1.9), the inner potential Vf, satisfies 

02 V/j 
+ 

a2Vj 

+ (, Ue)2 vfj = 0. (6.3.42) 
aý 

i2 
al 

i2 

From the boundary condition (6.3.29) 

ip (c ýj + ýj )+ 

'U2 

f, 

-0 
2 aý2 

+0(, 438) 
'Vj=--L 

e se 
Iie 

ýj +i on C,, 
ani ani 

( 

an, ani 2 an, 

(6.3.43) 

x. 
where ýj and n, is a normal coordinate to the body. 
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The intermediate solution (6.3.35), and the body boundary condition (6.3.43), suggest that the 

inner solution can be written as an expansion in p of the fonn 

(2) 
= +, g 

2 
In u2 (6.3.44) vj P vj. I 

Vi. 21 
+ 

'o Vj, 2 ' 

By substituting (6.3.44) into (6.3.42), it is seen that each term in (6.3.44) is a solution of Laplace's 

equation and, from equations (6.3.43-44), the boundary conditions for Vj.,, V,. 21, and yf,, 2 are 

Lvi, 
I =-ir 

a(pi 
Cos a on C, (6.3.45) 

Dn, cl n, 

= 0, on C, 
an, 

and 

(6.3.46) 

ayl 
j. 2 a12a 

(ý02 COS2 a. ), 
=C ýj (P i Cos a )+-e -i. i on C,. (6.3.47) 

an, an, 2 an, 

TO COMýpLrrE VI, V,, 2, , 
AND vrj, 2. 

In order to match with (6.3.40), the solution of equation (6.3.46) is 

Vf j, 21 
A 

21.0 
(6.3.48) 

Batchelor (1967, pp. 127), shows that, as pi->-, the particular solution satisfying die boundary 

conditions (6.3.45) is 
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Cos 0. sin 0. 
=Irv -, +A ----L+O(-), (6.3.49) ýým-p i 

JI pi 
ji 

pi Pi 
2) 

where uj,, and Aj, are dipole strengths which depend on the body contour CI. The particular solu- 

tion of (6.3.47) is 

vj. 2, p, =Ui., ( pj .ai)+U J2 
( pi ) (6.3.50) 

where fl,, . and Q '2 are harmonic functions and satisfying 
if 

a 
(pj Cos 0. ) + 

eD( 
pj2 ýj 

i-- 
cos 2a, 

an, an, 4 an, 

and 

a012 
pi2) on C, (6.3.52) 

an$ 4 an, 

However to calculate the far field potential we do not need to consider the solution L1,1 to equation 

(6.3.5 1). From Batchelor ( 1967, pp. 127), as pi->-, the solution for Q 
ir'2 satisfies 

S. 
12 

j2 -j2 In p>0 (6.3.53) 
2 ; ra 

where Si is the cross-sectional area of body i. The general fonn of yf i. 11 IC 
(t = 1,21,2) which satisfies 

Laplace's equation, and has zero-normal derivative on body j, is 



-223- 

m 

Aj.,, o + Ajtm (p. cos mo. + jr. )+ B. pm sin mo. + Z,, I, m 
)) (6.3.54) Vii.. 

M-1 

(ii 

itm jiin ii 

where r JAM and Z J. Im are hannonic functions satisfYing 

(p Cos mo +. rj.,. m 
0 on C (6.3.55) 

and 

am 
-(P i sin mo i . 

+Z 
j. Im 

)=O onC 1 
(6.3.56) 

an. 
i 

To calculate the far-field potential we need to consider vfj.,. That is m=1, and therefore, from Batch- 

elor 0 967, pp. 127), as pi->-, we have 

cos 6. sin 61 
K. (6.3.57) 
J-1,1 ji 

pi 
ji 

pi Pi 
2 

and 

> Tl 
Cos 01 

+A,, 
sin 01. 

+0( 
12 

(6.3.58) 
Pi Pi Pi 

INTERMEDIATE/INNER MATCHING: 

In order to find constants A09 A, gand Bog consider Vj, , in the inner potential equation (6.3.44). From 

(6.3.49), (6.3.54), and (6.3.57-58), expanding each constant in (6.3.54) in powers of -0, the 
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3 
intermediate expansion of Vr,., to order c is 

r 

ivjl 
Cos 

+iAjl 
sin 0+A 

ji'l Pi Cos + vjl 
Cos 

+A ji 
sin 0 

Pi Pi Pi Pi 

sin 0. 
+B J1.1 Pj sin 01 . +T il 

Cos oj 
+ Aj, 

Pj pi 

+A il. 2 Pi Cos + vji 
Cos 6i+ 

Ajl 
sin 0i 

Pi pi 

p sinO +T 
Cos 0+ 

Aj, 
sin 0 

J1.2 ii ji 
pp 

Cos 0 sin 0. 
+c3A jo Pi Cos 0i+v 

ji 
I+A 

ji - ---j 
pi pi 

Bp sin 0. +T 
Cos 

+A 
sin 0+ 

0( E4 (6.3.59) 
j1.3 ji 

ppp 

Similarly the expansion of the intermediate solution in powers of e is equivalent to expanding the 

constant coefficients in (6.3.40), and this idea will be used here. To match with (6.3.59), consider die 

coefficient of ji in the inner expansion of intermediate solution, equation (6.3.40). The inner 
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expansion of V, to 0( C3 ) gives 

P, = -c sin 0.1 + -c 
2 xl, 

PI2 r cos 2a. p. cos 0. Cos 'i + -2 jp ii 
p P=l Y. 

P; t iý jp 

- Y. cos 0. -e sin 20 p sin 0. + 
LLpl, 2 

c sin 20. p cos 0 
jp r jp iI)2 jp 

S. 
jp 

+c cos 20. p sin 0. - Y. sin 0. +c3 jl. 3 cos 0. + E,, 
j,., 3 sin o, 

I 

jp iI jp jp 

))i) 

Pj 

+o(C 
4 

), 

Matching (6.3.59) with (6.3.60) yields 

(6.3-60) 

Ajl� =A i1,2 = Bji, i =B j1,2 = 01 (6.3.61) 

+vA ji'l +Tj. IB ji'l, A IJ1.3 = vil A ii. 3 +B jl, 3 
y1 

. 19 (6.3.62) 

cos 2a. sin 2a. 
1 

(6.3.63) j1.3 l, pl, 2 jp 
+ El, 

pl, 2 jp 

)-2 

P=j S. 
P*j 

jp 

BI. 
P1.1 =i Ajl, B 

IJ1.3 = Aj, Ajl,. 
3 + Aji B 

jl. 3' (6.3.64) 
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and 

B. =- sin 2a. 1.2 cos 2a. 
1 

(6.3.65) 
11,3 

Y' 
( 

Xl, 
pl. 2 ip IIP JP 

-2 P=l 
p; e j 

From equations (6.3.61-65) 

'ivv cos 2a +A sin 2a. 2 
XI. 

pl. 3 il 
Z 

PI jr PI jp 
P-1 
psi 

jp 

N 

E vp, sin 2a 
ip -A pl cos 2a jP 2 

(6.3.66) 
P=l S ip P*j 

22- 
Ajl, l 2-- 1(i vjl +rA IJ1.3 (6.3.67) 

IV 
B 

IJ1.3 
iA 

ji v 
PI 

cos 2a 
jp + Ap, sin 2a 

jp 2 
P=l 
P*j 

jp 

-iA v p P, sin 2a 
jp -A pl cos 2a,., 

p 2 (6.3.68) 
P-1 S. jp P*j 

and 

Igi, jl = -- 
2(iA 

ji +-v 
2 'Tl, 

jl, 3 
)' (6.3.69) 
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Similarly in the matcWng of the inner solution V,. 2 with the intermediate solution (6.3.35), the term in 

In pj gives 

2 S. 

zjo =c2 
jr a2 

(6.3.70) 

Now from equations (6.3.39), and (6.3.66-70) A0, A,, and B, are known. That is 

2N 

AO =- 
E Is (6-3.71) 
4a2 k-I 

29( 
N2N 

v ji -E Vji tjl +T jl tj2 (6.3.72) 
2 k- I 

and 

NN 
2 2r 

- JA -e'y, (A t +A (6.3.73) 
2 jý- IjI j=l 

ji ji il tJ2 )) 

where 

v cos 2a +A sin 2a. 
1 

(6.3.74) 
PI jp PI JP 

)-2 

P=l S jp 
P*j 

and 

N 

J2 
-ý Iv 

PI sin 2a 
j-p-A pl cos 2a 

2 
(6.3.75) 

P=l 
jp 

) 

S. 
P*j jp 
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From above equations (6.3.71-73) the mean horizonal drift force can be calculated. 

THE MEAN DRlFr FORCE: 

As in section 6.2, f(O) can be defined as 

f(0)=Ao-i (A, cosO+B, sin 0). (6.3.76) 

nus 

2x NN 
f lf(0)12 (I -cos 6) dO= c4Y, S) 2- ; rA I ISj+-! (A 2 

+Bl 
2 

0(8a4 jý-- ij 2a 2E2 j-- Ic4 

(6.3.77) 

where Si is a cross-sectional area of the body j, and A, and B, are given in series form by equations 

(6.3.72) and (6.3.73) respectively. By substituting (6.3.77) into equation (6.1.10) and dividing by 

(6.3.27), the ratio of the mean horizonal drift force to that on an isolated cylinder is given by 

N2_AI t4 122 
Y, S -FS +-(A +B 

(2) 8a 4 
j--l 2a 2e2 

j--i 
ie4 

Fmx 
s2+92(u2+A2+ 'T Po s 

(6.3.78) 

8a44004a2 
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6A Results 

Here results are presented for the long-wave limit of the drift force on two cylinders using the exact 

method in section 6.2 and the approximate theory derived under the assumption a << I in section 6.3. 

Here a is a typical radius and 21 a typical spacing. The incident wave makes an angle 00 with the line 

joining the centres of the two cylinders. McIver (1987) considered only the long-wave limit of drift 

force on circular cylinders of equal radii under the assumption a << 1. My aim is to investigate the ef- 

fects of relaxing both these assumptions. 

When all -) 0 the ratio of horizontal drift force is given by 

2 
(S +s )2 +Xv-t2 

4122 
(SI +S2 )(VII + 21 

)+ X 

cz) 8a4a4 
Fna 

s2 Ir 
2229 vo s 

(6.4.1) 

+ (v +Ao)+- 
8a 440 4a 2) 

where 

2 
v ll+V21 

) +(All +A 
21 

SI 'S 2, and S are cross-sectional areas and VW V21' Ali, A 21' A09 and vo are dipole strengths of the 

body. 

Firstly, two cylinders with the saxne radii were considered. Since 21 is the spacing of the two 

cylinders then the maximum value of all is one. From theory, when all -* 0 the ratio of horizontal 

drift force is four. Figure 6.1 is of drift force vs all for different angles of wave incidence 00 and com- 

parison is made with McIver (1987). Figure 6.1 shows that the agreement is good when all < 0.6 and 
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9 for all angles of incident wave, 0: 5 00: 5 -. When all > 0.6, there is a difference in the graph since 
2 

our solution gives the exact long-wave limit of the drift force, whereas McIver's solution is only an 

approximation valid for all << 1. As 00 -4 -*T McIver's solution substantially underestimates the drift 
2 

force. 

Now cylinders with different radii are considered. The results in section 6.3 involve the cross- 

sectional area and dipole strengths for the cylinders. Newman (1977, pp. 144) gives the dipole 

2 
strength of a circular cylinder with radius Sa as (3a) . Firstly, the ratio of horizontal drift force on 

two cylinders with radii a and 2a to that on an isolated circular cylinder with radius 2a was consid- 

ered. From the result, as all -* 0 the drift force is 25. Figure 6.2 is of drift force vs all for different 

angles of wave incidence 00 and comparison is made between the two theories. In figure 6.2 the 

allowable range of values of all is 0: 5 all: 5 0.4, since otherwise the two cylinders would overlap. 

Figure 6.2 shows that there is reasonable agreement up to about 0.15 for all angles of incident wave, 

0: 5 00: 5 f. Also from the figure, the difference between two solutions increases with increasing all 
2 

and angles of incident wave, since the solution in section 6.2 gives the exact long-wave limit of the 

drift force whereas the solution in section 6.3 uses the approximation all << 1. Next, circular cylin- 

ders with radii a and 3a are considered. From result as all --) 0, the drift force is 100. The compari- 

son is made with both results in sections 6.2 and 6.3 and results are displayed in figure 6.3. Here the 

range of values for all to avoid overlap is between 0.0 and 0.3. From figure 6.3 the agreement is good 

for values of all up to about 0.075. From figures 6.2 and 6.3 the results from each section for all 

angles of incident wave are same for values of all :ý0.1, since when all decreases the distance 

between cylinders increases for fixed a. Therefore the drift force is nearly same for small values of 

all. That is bodies are not much affected when their distance increases. McIver (1987) shows that the 



-231- 

drift force is proportional to (radius) 3 for a single cylinder, therefore in figures 6.2 and 6.3, the drift 

force increases with size of the cylinder. 

Now consider geometries other than circular cylinders. Here we consider one elliptic and one 

circular cylinder. The equation of the ellipse is given by 

22 

+y 

b2a2 
(6.4.2) 

where 2b and 2a are lengths of major and minor axis of ellipse respectively. From Newman (1977, 

pp. 144) the dipole coefficient for an elliptic cylinder is given by 

vil ý- +b (6.4.3) 
2a 

Here the permitted range of values of afl is 

0: 5 a 1: 5 
2b 

(6.4.4) 

+ -) 
a 

otherwise the two cylinders would be overlapped. The range of values of all depends on bla, here we 

consider bla = 0.5,1, and 2. From theory when all -ý 0, the ratio of the drift force on two bodies to 

that on an isolated elliptic cylinder is given by 2.524 with bla = 0.5. Similarly when all --> 0, the 

drift force is 4 and 7.300, with bla = 1, and 2 respectively. My aim is to find out how the drift force 

changes with different body geometries. Figure 6.4 is drawn by using the result of section 6.3, and 

shows drift force vs all for different angles of incidence 00 with bla = 0.5,1, and 2. Here 00 is an 

angle between incident wave and the line joining centres of two cylinders. From the graph die drift 
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force increases with body size and angles of incident wave. For small all :50.1, the drift force is same 

in each case for different angle of incident wave. However there is a big difference in the drift force 

with increasing all when 00 = ; r/2. The results of figures 6.2 and 6.3 suggest that the curves in figure 

- 6.4 underestimate the drift force. 

CONCLUSION: 

In section 6.2, the solution for the ratio of horizontal drift force was constructed for two different 

sizes of circular cylinder due to incident long waves. TWs solution gives the exact long wave limit but 

can be used only for two circular cylinders. 

In section 6.3, a solution was constructed under assumption e= afl << I for N arbitrary cross- 

sectional cylinders and with results in terms of the cross-sectional area and dipole strengths of the 

bodies. This general solution could be used for finite number of any shaped bodies. The dipole 

strengths of various bodies, for example circular and elliptical cylinders were calculated by several 

authors, for example, Newman (1977, pp. 144). The expression for ratio of the horizontal drift force 

confirms the N2 behaviour found previously when the bodies are circular cylinders. Finally we note 

that close proximity of the cylinders can enhance the horizontal drift force by more than 50% com- 

pared to that of widely-spaced cylinders. 
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