QUANTITATIVE DETECTION IN GAS CHROMATOGRAPHY

A Thesis submitted for the Degree of Doctor of Philosonhy of

Brunel üniversity
by Terry Antony Gough.

The difficulties encountered in quantitative analysis by gas chronatoeranhy are discussed, with particular roference to detection osstems. The properties of an ideal detector for quantitative analysis are insted. A descrintion is given of the mode of operation of existing detectors for gas chromatography: and the extent to which they are suitable for guantitative work is assessed. It was concluded that no one detector possessed all the pronerties required For an ideal detector: In particular a qualitative knowledee of the sample for analysis was required by all detectors; and calibration was required by the majority of detectors: The extent to which the Benel mass detector overcomes these limitations was assessed: It is shown that the response of the mass detector depends solely on : eifit changes caused by adsorntion of matcrials eluted from the chronatogranhic column thus completely eliminating the need for calibration and qualitative information. The response of the detector is intecral, so that the proolems associated with peal area measurement do not arise. The sensitivity of the detector is of a similar order to conventional hot wire detectors. The detector gave a quantitative response to all materials analysed: covering a wide boiling range: the unper limit was determined by the maximum column operating tomperature, and the lower limit by the extent to which the detector was cooled. The detector responded quantitatively to water: At room temporature the detcctor responded on a qualitative basis to organic and inorganic gases. The detector was used for the calibration of other detectors, and was operated in conjunction with the Martin gas density balance, to determine the molecular weights of eluted materials.

To Cynthia
CHAPTER 1. Page
The Problems Associated with quantitative Gas Chromatography:
1.1 Introduction 1
1.2 Discussion 1
1:3 Conclusions 15
1.4 References 16
CIIAPTER 2:
The characterists of a vetector for Gas Chromatography:
2.1 Summary 18
2.2 上iscussion 18
2:3 Conclusions 36
2.4 List of symbols 36
2.5 References 38
UHAPTER 3:
vetectors for Gas uhromatography.
3.1 Katharometer vetectors 40
yor Ftrma lotitatidoti jeteotorn 47
 54
3.t jume fhotometric Detectors 55
3:5 Limit of Flammability Detector 56
3.6 Radio-ionisation Detectors 57
3.7 Discharge Detectors 69
3.8 U'.V. Absorption Detector 71
3:9 Ionisation Gauges 72
3.10 Gas Density Detectors 72
3.Il Gas Volume Detectors 77
3.12 Gas Flow Impedence Detector 78
3.13 Surface Potential Detector 79
3.14 Dielectric Constant Detectors 79
3.15 Ultrasonic Detector 80
3.16 Sorptiothermal Detectors 81
3.17 Semiconductor Detectors 81
3.18 Conductivity Detectors 83
3.19 Coulometric Detectors 84
3:20 Titration Detector 85
3:21 Auxiliary Detection Techniques 86
3.22 Conclusions 89
3.23 References 93
CHAPTER 4. Page
Evaluation of The Mass Detector:
4.1 Discussion 102
4.2 Microbalances 103
I. 3 Detecting Elements 118
4.4 The Chromatograph 125
4.5 The Performance of The Mass Detector - Extra Detector Properties 132
4.6 Intra Detector Properties 150
4.7 Conclusions 172
4.8 References 174
CHAPTER 5:Quantitative Analysis by Mass Detection.
5:1 Discussion 176
5:2 Normal Boiling Range Materials. 176
5.3 High Boiling Materials 187
5:4 Low Boiling Materials 195
5.5 The Analysis of Gases 198
5.6 Conclusions 203
5.7 References 204
CHAPTER 6.
Applications of The Mass Detector I - The Calibration of Detectors.
6.1 Discussion 205
6.2 The Gow-Mac Gas Density Balance 206
6:3 The Viartin Gas Density Balance 212
6.4 A Katharometer 216
6.5 A Flame Thermocouple Detector 220
6.6 A Flame Ionisation Detector 223
6.7 Conclusions 225
6.8 References 226
CHAPTER 7:
Applications of The Niass Detector II - The Determination of Molecular weights: 7:1, Discussion 227
7:2 'he Martin Gas Density Balance 235
7:3 The Flame Thermocouple Detector 243
7:I The Measurement of Peals Areas and Step Heights 244
7:5 Conclusions 249
7.6 References 250
Apnendix 251
Acknowledgements 254

The Problems Associated with Quantitative Gas Chromatography. 1.1 Introduction.

Qualitative gas chromatographic analysis is a particularly valuable method of separating and detecting the constituents of mixtures. Quantitative gas chromatography has not reached the same state of refinement as qualitative analysis. The reasons for this si.tuation will become evident on considerin the errors which may arise. There are many inaccuracies in quantitative analysis, and these are discussed in the order in which they occur in an analysis. The materials for analysis are themselves subject to composition changes if not stored correctly: the talring of a sample and the method of injection can make an appreciable difference to the result if care is not taken. Irreversible adsorption of a pronortion of the comnonents of the mixture within the chromatographic column can occur and thus render the results valueless. One of the major difficulties encountered is the inability of all common detectors to give a response which is a simple function of a stoicheometric property. Since detection systems form the main part of this work, the properties of an ideal detector for quantitative analysis are discussed in detail in the following chapters.

The interpretation of results is often a source of difficulty in quantitative analysis. Even assuming that detector resnonses are accurately known, the measurement of peak areas obtained from a detector of differential response is both time-consuming and subject to errors.
1.2 Discussion.

An outline of the difficulties which may be encountered in quantitative analysis has been given: The means by which these difficulties can be overcome, and the resultant errors minimised are
now to be discussed:
1.?a Sample Storage:

The storage of a sample to be analysed by cas chromatography would not at first sight appear to be the concern of tho analynt. But this is far from so, in that incorrect storage will lead to changes in the composition of a mixture with time. Consider a simple case in which a sample from a reaction product in an industrial process is monitored at daily intervals. If an analysis is carried out immediately after a sample is removed from the reaction vessel, and a second analysis performed on the same sample several days later, the results may not be the same. Such an occurrence with samples taken on different days from the same reaction vessel may lead to the erroneous conclusion that the composition of the product varies from day to day. Poor storage of a mixture in which the components differ in volatility will lead to preferential loss of the more volatile components: The percentage composition of the more volatile materials will thus decrease with time, and the amount of the less volatile materials present will appear to increase. Obvious methods of minimising this effect are to store the material in completely air-tight bottles or phials in a refrigerator. But losses of the more volatile components will still occur on opening the vessel to remove a sample for analysis: The recommended methods of minimising changes in composition are to have as little as possible air space in the sample bottle, to open the bottle as infrequently as possible, and for the minimum amount of time: A better method of minimisinc sample losses is to never open the bottle at all, but to fit thi top with a rubber septum which can be pierced with the needle of the syringe used for injecting the sample into the chromatograph.

1.2b Sample Injection.

Methods of sample injection. There are two common methods of injecting a liquid sample into a gas chromatograph, the first usine a mlass microninette, and the second a syrince fitted with a metal hypodermic needle. The micropipette can be discharged on to an open column ${ }^{2}$, throuph which the carrier gas supply has momentarily been shut off. Losses of the more volatile components of the mixture can readily occur after discharge on to the column, prior to reconnection of the carrier fas supply. Alternatively a closed system may be used ${ }^{3}$, in which the carrier fas is not shut off. The pipette is fitted with a niece of soft iron, and is introduced into a sealed chamber via a surstem of stopcocks, such that there is no interruption of the carrier pas supply: The pipette is then lowered on to the column by means of a permanent magnet attached to the outside of the chamber: In general the disadvantages of the micropipette system are that the pipette is usually designed to hold only a fixed sample size; lower boiling components are preferentially lost by evaporation: there is an inherent delay between removing the sample from the bottle and introducing the sample to the column; sample bottles fitted with septa cannot be employed; the outside surface area of the pipette is large compared with the bore and hence the pipette may hold an excess charce unless carefully wiped. Lastly, it is not possible to inject into the column packing, but only on to the column. Hence back diffusion into the space above the column can occur:

A syringe has several advantages over the micropipette. Injection can be accomplished simply by piercing a rubber septum ${ }^{4}$ at the top of the column with the syringe needle: There is no interruption of the carrier gas supply and stopcocks are not required. There need bc virtually no delay between filling the syringe and injecting the
conents on to the column. It is possible to inject the sample into a flash. vaporization chamber (see below), or on to the column. For quantitative analysis, injection into the column packing is the most satisfactory procedure. Several precautions must however, be taken when using a syringe. The outside of the needle should be wined free of excess sample before injection, and all air should be excluded between the sample top and the syringe piston. Since all materials exhibit a finite vapour pressure, any air trapped in the syringe will result in part of the sample enterin $\tilde{C}_{\mathcal{E}}$ the vapour phase, thus changing its composition. Injection must be deliberate and rapid, retaininc the needle in the injection port for the same short time for all injections. The septum must not be permitted to leak and should be renewed as necessary, .

A syringe is capable of giving reproducible and representative sample injections provided the precautions noted above are taken. However, for accurate quantitative work it is advisable to check the syringe calibration. The author has found on a particular.sycinge that although calibration was necessary, the performance of the syrince, and the reproducibility of the injected sample size did not deteriorate at all over a period of nine months continual use: Details of syringe porformance are discussed in Chapter 4 :
Λ method of sample injection has been proposed in which the need to calibrate detector response with respect to sample size is eliminated ${ }^{5}$: The sample is introduced into a chamber, maintained at the temperature of the column, and is held in this chamber until thermal equilibrium between the sample and the operatinc temperature is reached. Only then is the sample allowed to pass on to the column. This ensures that a fixed volume of vapour is always introduced to the column. It is claimed that peak parameters, reduced to unit weight, are independent
of samnle weight, which is not the case with direct injection. Hence calibration of a detector at only one sample size, suffices for all other sample sises, provided that the vapour pressure in the chamber does not exceed the saturated vanour pressure. The alternative mothod of nreheatinc a sample is to inject the sample into a chamber at a temnerature such that "vaporization of all the components of the mixture occurs immediately, and they are swept without delay as vapours on to the column. This method must be used with care since fractionel distillation of the components can occur before reaching the column, and isomerisation or decomposition may occur if too hich a temperature is used:

Tho injection of samnles which are solids at room temperature introduces additional difficulties: Any method which involves the direct removal of a solid. sample from the bulk will not five a representative analysis of the bulk, due to fractional crystallisation which must have occurred during the preparation of the solid: Samples must be taken in the liquid phase, either by meltinc the solid, or dissolving the solid in a solvent. Care must be taken to choose a solvent which does not form one of the constituents of the mixture, does not react chemically, and is well separated chromatographically from all the constituents: The sample should be injected directly into the column using a syringe:

The analysis of faseous samples may be carried out usine a syrince, but adsorption on to the walls of the syringe can lead to erroneous quantitative results: A syrince for gas analysis must be exceptionally clean, and should contain no lubricant. It must of course be gas tirht: For accurate quantitative analysis, injection by means of ? rns sampling valve is more satisfactory, but lubricants and rubber or PTPE fittings must be avoided: The analysis of the contents of a
cylinder of liguified fases noses a particular problem: By. repeatedly taking samples in the faseous phase, and injecting into the chromatocranh via a gas samplinc valve, the percentage composition of the mixture will be seen to change: Consider a cylinder containine: caqual pronortions of a number of gases. For early samples the pas with the createst vapour pressure will predominate, but this gas will be used up preferentially, so that as sampling proceeds, its proportion of the total will progressively decrease:
1.?.c Adsorption Effects.

Adsorption of a sample within the column can occur on the walls of the column itself ${ }^{6}$, on the stationary phase ${ }^{7}$ and on the inert sunnort ${ }^{8}$. Preferential adsorption of one of the constituents of a mixture will render a quantitative analysis invalid. Irreversible adsorption on the column walls is not readily detected by inspection of the resultinc chromatogram and is usually observed indirectly by analysing synthetic mixtures: Adsorption on column walls can be kept to a minimum by using glass columns, in which the active sites have heen rendered inactive by treatment with trimethylchlorosilane or a similar material. For column inlet pressures over about $30 \mathrm{lb} / \mathrm{sq} . \operatorname{in}$. it is "usual " to use metal columns, and stainless steel is preferable to copper: If a copper column is used it js essential to pretrcat it by heating strongly $\left(800^{\circ} \mathrm{C}\right)$, and at the same time passing nitrogen throuch it for at least 24 hours, before packing. Even after such treatment the copper will still contain a substantial number of active sites, and in addition, when operated at high temperatures may promote dimerisation or rearrangement of the materials under analysis. In particular, the use of copper columns should be avoi.ded for the analysis of compounds containing multiple bonds: Adsorption on a metal column can be.reduced by coating the inside surface with the stationary phase
to be used on the inert support. Unfortunately only nol.ar stationary phases will satisfactorily coat the walls and even then the coatinc will only last for a month or so, denendinल on the operating conditions:

In reneral, it is on the inert support that adsorption of components predominently occurs ${ }^{9}$: A number of methors of support pre-treatment heve been pronosed, to eliminate adsorption sites: Acid and alkali. washing of the support to remove iron and aluminium is often employed ${ }^{10}$, but thorough washing after treatment is essential, and cven then activity is still significant. The addition of small auantities of highly polar and involatile liquids to give preferential adsorption on the support has been tried ${ }^{l l}, 12$, but is not particularly successful. Denosition of silver or fold ${ }^{13}$ on the support has been used but although surface activity is reduced, there is a danger of chemical reaction occuring between the deposited material and the components passing through the column. Deactivation by heating the support to about $1300^{\circ} \mathrm{C}$ is very effective ${ }^{14}$, but the most satisfactory method of ninimising support activity is to treat the support with trimethylchlorosidiane or hexamethyl disilazane 12,15 : The latter compound is to be preferred in that it has. a much lower volatility and toxicity: The surface reaction is represented by the equation:

A description of the procedure has been published ${ }^{16}$.
Adsorption losses within the column as a whole can represent a considerable amount of the total quantity of component present. But the amount of adsorntion is not proportional to the charce: The same amount of adsorption will occur, irrespective of the sample size:

Reversible adsorption affects the shape of the resultinc peak, in that it displays a tail. In extreme cases the tail is very long and only just above the baseline: Peak area measurement is thus very difficult, and the results obtained reometrically and by dicital interration will not include the tail and therefore will cause a significant error (see Chanter 7): The smaller the sample size injected on to tho column, the creater will be the proportion in the tail of the peak. It is nossible to estimate the amount of material lost by irreversible adsorption by plotting a graph of peak area as ordinate apainst size of samnle as abscissal: Assuming a detector response linear with concentration, a straight line graph will bo obtained, which does not pass through the origin. The point on the abscissa cut by the Jine, represents the amount of change lost by adsorntion. Hence it is advisable to use as large a sample size as possible, consistent with the capacity of the column and of the detector.

A somewhat different approach to minimising adsorption effects, Which is used in cases of extreme adsorption, is to inject larce cuantities of the material which is itself adsorbed, until all the active sites are filled: Only then is a quantitative analysis of this material attempted.
1.2d Detectors:

For most quantitative work there will be a reasonable amount of sample available so that detectors of hich sensitivity and low limit of detection are not essential. It is preferable to use a detector Which has a predictable response factor, although its sensitivity may De low. In the analysis of trace componentis, and in the interests of high column efficiency and high resolution, it may be essential: to use a hichly. sensitive detector even if extensive calibration is necessary:

The analysis of materials retained for excessive periods on a
column poses a nroblem. As retention time increases, the peaks will become progressively more spread, which in turn often results in peaks or small heicht. Area measurement becomes imprecise, and onen to rross crrors. A procedure has been proposed ${ }^{17}$ to overcome this problem, in which amplification of the detector output is increased in proportion to retention time, so that all peaks are approximately the same height (assumiñ equal response): This makes the later peak arcas rather large, but by making the recorder chart speed inversely proportional to retention time, reasonable sized areas are obtained. It is quite probable however that by adopting this method, rather than the conventional method, other errors would be jntroduced, thus invalidating the advantages claimed. It is preferable to avoid, whenever possible, extremely lonf retention times, by usine higher column temperatures, and carrier gas flow rates. The analysis of a mixture containing materials of a widely different physical or chemical nature, giving retentions from a few minutes to several hours, is often carried out by increasing the column temperature as the analysis proceeds ${ }^{18}$, thus maintaining reasonable retention times for all the materials. More recently the technique of flow programming has been introduced ${ }^{19}$. From the quantitative aspect, both of these procedures must be used with caution. Many detectors give a response which is either temperature dependent or flow dependent: calibration bocomes difficult and even more time consumine than normal. it is often easier and more satisfactory to incorporate a column in front of the main column to remove preferentially some of the components of a mixture ${ }^{20}$, and to analyse this fraction subsequently. By choosing suitable stationary phass the two runs can each be carried out in a rensonable time without resorting to temperature or flow procramine:
\cdots-10-
There are a number of different methods of carrying out the auenti.tative analysis of mixtures, which to some extent depend on the nature of the detector. Several methods are described below. Ahsolute determinations are carried out by measuring peal areas for known amounts of each component, and calculating the calibration factors, Graphs are plotted of amount against response for each meterial. This method must be adopted for detectors of unpredictable response: Internalnonalisation is used when the variation of the calibration factor with molecular species is predictable, e:E: the cas density balance ${ }^{2 l}$:

$$
C_{x}=\frac{A_{x} / M}{\sum_{1}^{j} A / M}
$$

wherc C_{x} is the fraction of component \dot{x} of molecular weight M_{x} and civin a neak area A_{x} in a mixture containing j components.

Calibration may also be carried out by preparing mixtures of known composition, and measuring all response factors relative to one of the components of the mixture. For a detector which does not have a response linear with concentration, the addition of known amounts of the component to a fixed concentration of an internal standard is made, and a craph plotted of: : .
$\frac{\text { peak area of component }}{\text { peak area of standard }}$ against $\frac{\text { amount of component }}{\text { amount of standard }}$
 To analyse a mixture containing the component, a known amount of the stondard is added, and using the calibration graph, the amount of component is estimated.

A method eliminating extensive calibration but which in itself is time consuminc, can sometimes be used to advantace: A chromatogram of a number of components of unknown concentration is compared with that obtained from a known synthetic mixture, run under identical conditions: The approximate composition of the mixture is estimated,
and an identical synthetic mixture prepared. The chromatorrams are comnared, and a new mixture made un if necessary. This nrocedure is Iimited to about, six comnonent mixtures:
1.2e Interpretation of Chromatograms.

The accuracy, of a quantitative analysis will depend a great deal on the correct interpretation of the chromatorram. The majority of detectors hove a differential response, and the composition of a rixxture can be estimated either by measuring poak heifhts or peak areas It is more fundamental to measure peale areas in that the total area is nronortional to the total amount of material present: this is the nethod used where the detcctor response is a simple function of a stoicheometric property of the components. However, in cases where the detector response is not predictable jt is often easier to use nonk hoight measurements. The measurement of poak heichts has, however, no logical basis: a peak height simply represents the concentration of the component at a given time, and is not therefore a measure of the total mount of the component in a mixture: The use of penk heimht measurements demands constant column operating conditions. For example changes in the onerating temperature during an analysis will affect retention times, and hence peak heights are affected. Tho correspondinल peak areas remain constant: On the other hand, (in the case of the kathometer), peak areas are affected by changes in flow rate, so that flow rate variations cannot be tolerated: but by using neak height measurements, small flow rate variations do not affect the quantitative analysis. Peak height measurements are Iimited to symmetrical peaks: in cases where distorted neaks are ontained, peak area measurements must be employed. In peneral poal height measurements are acceptable for the quantitative analysis of large charges of non-polar materials. The analysis of small amounts
of nolar materials of ten rive rise to distorted peaks, caused for examble, by adsorption effects. Peak height measurements are jnnccurate and area measurements must be made:

Neveral methods of obtaining the area under a peak are used ${ }^{22}$: To somo extent, the method adopted will denend on the seometry of the peak to be measured: For a Gaussian curve, the peak area is moportional to the product of the peals height and the neak width. The peak width is measured at a constant fraction of the peak hejght, usually at the half hoight position (which will give 84% of the true area) or at the bascline: This methor demands a stable baseline and is not satisfactory for distorted peals. Ror diffuse (but symmetrical pealss), peak widths at the base are difficult to measure, and the half height position is nreforred:

The area of a peals can be reduced to the moasurement of the area of a triangle by the following means: The area is proportional to the product of the peak height, and the distance between the intersection of the tangents to the points of inflection of the curve with the baseline: The poak height, in this instance, is either the height of the chromatographic neal, or the hoight of the constructed triancle. Mrianfulation is only satisfactory for symmetrical peaks:

The product of peak height and retention distance has been used for nuontitative estimation. The method assumes that column performance is independent of the substances under analysis, and that the calibration constants for the 'detector are proportional to retention volumes: The method is theoretically incorrect, and should not be used. for serious worle.

The areas of distorted peaks can bo measured either by usinc a nlanimeter, or by cutting out the peaks, and weiching the paper. Planimetry requires slilled operation, and several determinations must
be carricd out on each peak. The cutting out of peaks also demands care, and the result will be affected by changes in moisture content, variations in the thickness of the paper: moreover the chromatogram is destroyed:

Interrators are used for peale area measurement ${ }^{23}$, but althoumh pronucing a result ranidly, they are very expensive. Integrators may demnend a stable baseline and virtually complete resolution of components. Difital integrators ${ }^{24}$ require, a finite deflection from the baseline before counting befins: they are not therefore reliable for measuring tho arcas of pealis with long tajls (but see Chapter 7): Analogue interrators ${ }^{25}$ produce an integral chromatogram, and honce measurements must still bo performed, althourh step heights can be measured with more precision than peak areas: Distorted peaks, and those with lons tails can be satisfactorily measured.

The most widely used methods of determining poak areas are; poak height and width measurements, triangulation, and plonimetry: Tho repeatability and reproducibility of these three methods have been investigated 22, 26, Repeatability is defined as the measure of precision of the results obtained by one operator using one set of apparatus: Reproducibility is defined as the measure of precision of the results obtained by different operators usinc different sets of apparatus. The first method is easily the most precise, and planimetry the least satisfactory: Errors arising in the first method were separately investigated and it. was found that peak height.errors were creater than peak width errors, caused primarily by difficulty in locatinc the baseline: However since widths are usually much smaller than heichts, the two error sources contribute rourhly in equal proportions: For wide peaks the measurement of widths depends more and more on an accurate measure of the peak heights, and hence there i.s a decrease in the precision of the resulting area; as retention time increases.
'i'he Author has carried out similar experiments using peak height and width measurcments, poal weichts, and integrators, to detcrmine neal arcar These results are presented in Chapter 7 and compared with thore obtained by scott ${ }^{22}$.

The quantitative analysis of compound peaks poses an added problem. To what extent do the peaks overlap and what proportion of the compound neali is to be allocated to each component ${ }^{27}$? For a resolution of creater than 50\%, the peak heights of the individual components are not afiected, so that analysis based on peak hoight measurements may be nsod: For analysis based on peak areas, internal normalistion is carried out on the total area, and the ratios of the peak heichts used to determine the proportion of the two components: This assumes equal detector resnonse factors: In cascs where the valley between the peals is too shallow to obtain accurate peak widths for area measurement, the :idth can be estimated by plotting a graph of the peals widths of all the components in the mixture, against retention time; the widths of the unresolved peaks are obtained by interpolation. When resolution is loss than 50\%, peak heights are affected, and relative poak positions may also be affected: Results are generally unreliable: Whenever possible quantitative estimation of unresolved components should not be attempted, rather the operatine conditions should be chanced to obtain complete resolution

Whe detector output is usually fed to a potentiometric recorder, often via an amplifier: It is therefore essential that both the annlifier and recorder respond in a linear monner: Non-linearity in the recorder-amplifier system is usually caused by incorrect setting un, or noor enuipment, since equinment with linearity deviations of less than $\frac{1}{2} \%^{\circ}$ are readily available. In general this part of thh chromatographic apnaratus is the only one which does not introduce errors into a quantitative analysis:
2. 3 Conculsions:

Loss of the more volatile components of a mi:iture can occur if the semple to be analysed is not properly stored. It is advisable to store samples in full bottles, and to remove aliquots with a syringe through a sentum. fitted to the bottle. It is preferable to inject samples directly on to the column, and to use a syringe rather than a micronipette. Adsorption effects can be minimised by use of cither n stainless stecl or preferably a class column, and by deactivating the inert supnort with hexamethyl disilazane nrior to coating with stationary phase. A detector for quantitative analysis must either be calibrated for each material at all concentrations employed, or have a predictable response. Quantitative, analysis is preferably. hased on peak area measurements, rather than peak height measurements. The most satisfactory way of determinine peak areas is from the product of the neak heicht and width. The quantitative analysis of unresolved peaks is not recommended.

The accuracy of quantitative gas chromatography depends on so many factors, that reliable results can only be expected when the freatest care is exercised.

I. 4 References:

1. Evans, ReS:, Scott, ReP:W:, Chimia 17137 1963.
2. Martin, A.J.P., James, A.T., Biochem: Jo 631381956 :

3: Scott, R.P.W., Gas Chromatography 189 1958:
4: Amos, R:, Hurrell, R.A., Gas Chromatopraphy 1962.
5. Dimbat, M:, et.al: Anal. Chem. 282901956.

6: Kelso, A:G:, Lacey, A:B:, J: Chromatog: 18156 1965:
7. Pecsok, RoLe, et.al., Anal. Chem. 36 452 1964. Kusy, V:, Anal.Chem. 371748 1965. Martin, R.I., Anal. Chem. 33 347 1961.
8. Bens, E.M., Anal.Chem. 33178 1961. Sawyer, D:T., Barr, J.K., Anal.Chem. 341518 1962. Urone, P:, Parcher, J.F., Anal. Chem. 382701966.

9: Howells, K. M., Dissertation for the Desree of B.Tech, I966, Bruncl University: Studies of Surface Activity of G:I.C. Inert Supports:

10: Orr, C.H:, Collen, J.E:, Ann. N.Y. Acad. Sci: 72649 1959. Iibonti, A:, Gas Chromatogranhy 2141958. James, A.To, Research 881955. Jomes, A:T:, Martin, A:J.P:, Biochem: J. 506791952. Cuthbertison, F:, lusgrave, Wo, J: App: Chem., 799 1957:
11. Fलcertsen, F:T:, Greonnings, S., Anal. Chem, 30201958. Johns, T:, Gas Chromatograph 312958 Acad: Press.

12: Bohemen, J., et. al. J. Chem. Soc: 2444 1960.
13: Qrmerod, E:C:, Scott, R:P:W:, J: Chromatog: 265 1959.
14: BInndenet, G:, Robin, J.P:, J: Gas Chrom: 42881966.
15. Pennett, R.H:, Purnell, J.H., J: Chromatog: 7455 1962.
1.6: Purnell, J.H:, Gas Chromatography236 published by John Wiley, I962.

17: Palm, E:, Gas Chromatography 189 1962.
18. Drew, C.M., McNesby, J.R., Vapour Phase Chromatocraphy 213 1956: dal Nocare, S., Harden, J.C:, Anal: Chem. 31 1829 1959:

19: Purnell, J.H., Gas Chromatography 387 published by John Wiley 1962 : Scott, R:P:H:, Nature 198782 1963. Scott, R.P.W., Gas Chromatomraphy i964. Zlatkis, $\Lambda_{\text {: }}$, et. al., J. Gas Chromatog: 75 1965:
20. Nartin, ReL., Anal. Chem. 32336 1960。 Kerr, J.A!, et. al., Trans. Paraday Soce, 55572 1959. Whitham, B.'l', Nature 1.82391 1958.
27. Rnrtin, A:J:P:, Jomes, A:T:, Biochem: J. 631381956.
22. Scott, R:P.W., Grant, D.W., Analyst 89179 1964:
23. Kellecr, Ho, Gas Chromatocraphy 125 and 187 1962: Scott, R.P.W., Gas Chromatography 31960.
24. e.f. Chromalog (Fisons Ltd.): Precision Integrator (Honeywell Controls Ltd.):
25. H.G: Pye Ltd., Combridge:
26. Krcjci, H:, Janak, J., Chernie (Prague), 102641958.

27: Grant, D.W., Vankhan, G:A., J: Apn: Chem., 10 1.81 1960. jrace, R.O., Principles and Practice of Gas Chromatorraphy (ed. Pecsok, R.L.) 145 published by John Wiley 1959.
Knlmanovski, V:I:, Zhukhovitskii, A:A!, J. Chromatog. 282431965.

Chergr 2.
Tho Characteristics of a Detector for Gas Chromatography.
2.1 Simmary.

The characteristics of a detector suitable. for gas chromatogranhy are discussed, with particular reference to the quantitative aspect. Nethods are given by which the behaviour of practical detectors can be measurcd. The performance of detectors can be assessed by a set of numerical values, and in addition by qualitative description. 2.2. Discussion.

The pronerties of an ideal detector are so numerous, and in some instances conflicting, that no simele detector can satisfy all the requirements. A most important property of a detector is that it mast have a predictablc response. Ideally a detector should resnond equally to all materials, either on a weight basis, or on some other stoichiometric property. Using such a detector, negligible calculation is involved, to find the weight percent of a mixture: In addition, ahsolute quantitative analysis is possible if the total amount of sample injected is known. In practice no detector is found to satisfy this requirement over anythinc more than a small concentration range, or for more than a limited number of materials. In general therefore it is necessary to measure experimentally the response of a detector to the materials under analysis. Qualitative analysis should therefore precede quantitative analysis. Detector calibration for the constituents of cven a relatively simple mixture is a time consuminc process.

For a detector, whose resnonse factors have been measured, the anount C of any component x in a mixture will be given by the expression:

$$
c_{x}=\frac{a_{x} A_{x}}{\sum_{I^{a} A}^{j}}
$$

Where A_{X} is the neak area representing component x, and A is the total area of j components. 'a' values are calibration constants relatinc peak area to the amount of component. For an ideal detector the values

Of 'g' for tho 'j' components rould be identical.
Al7.i2d to the requirement of predictable responses for all. nolecules, is that of a linear response for each matcrial, over the whole rance of concentration encountered in cas chromatocraphy: It is found in practice that few detectors even approach such behaviour ${ }^{\text {I-3 }}$, and in reneral calibration is required for each material at all concentrations. The response of a detector, and hence the calibration thus falls into two narts: 'the response with respect to concentration, of \therefore narticular species, and the resnonse for different species at ench concentration. Both responses can normally be obtained froma sincle scries of experiments. 2.2a Detector Calibration.

Various mothods have been nronosed for the calibration of ietector response acainst concentration. For a relatively insensitive detector, the obvious method is to inject, using a syringe, known amounts of the material' in question, on to the column; a graph is ploted of sample size against the peak area of the resulting chromntorram. To minimise losses due for examnle to adsorption within the column, the unknown mixture must be run under identical conditions: For sensitive detectors such as the flame ionisation detector ${ }^{1}$, this mothod is unreliable, in viow of the very small charges required (<1 $\boldsymbol{\mu}$) : The diffusion of a solute from a Class capillary into the carrier gas stream has been pronosed ${ }^{4}$: by varying the amount of solute, different concentrations of solute vapour are obtained. The procedure is time consuminc in that only one substance may be used at a time. In the method used by Swoboda, the carrier fas is saturated with the vapour of a solution containing the components of interest (as solutes): The amount of solute in the carrier cas, is calculated from Honry's Lav, and the detector resnonse obtained. Λ whole rence of concentration is
covered by repeating the experiment with solutions containing different nroportions of solutes:

The continuous dilution of a solute by a fias stronm has been used for detector calibration ${ }^{6}$: The concentration of the solute will decay exnonentinlly with time, and honce for a linear response a plot of J. og nenk area arginst time will be astraicht line. Deviations from linearity are thus immediately obvious: Unfortunately at low concentrations, where the method would be most valuable, the rate of charre of solute concentration may also denend on the rate of desorption of the solute from the walls of the dilution vessel, although this can ho minimised with careful design ${ }^{7}$. Adsorntion errors are eliminated hy placinm the solute in a high boiling solvent ${ }^{8}$. In addjetion, any numbor of solutes may be examined at one time, thus decreasinc the calibration time sicnificantly: Other methods of detector caljhration or vinour dilution have been discussed by Gregory ${ }^{9}$ and Krueger ${ }^{10}$.

The vapour dilution technique in the form describod by Fowlis and Scoti: ${ }^{8}$, is idcally suited for detectors of low limits of detection and hich sensitivity: For the more insensitive detectors, the Author has used the mass detector ${ }^{3}$, whose response is predictable, to calibrate other detectors, by incorporating the two detecting systems in series or in parallel. Indeed this method is not restricted to the calibration oi relatively insensitive detectors, but may also be used for the calibration of hich sensitivity detectors, provided a suitable stream splittins device is incorporated in the system. A detailed description of this work, togethor with some calibration curves for a number of detectors is given in Chapter 6 :

A detector which resmonds solely to a particular chemical species or which has a widely differing response for different species, can somotimes be used to advantare: For example a detector which responds
predominently to sulphur containinc or holocenated compounds ${ }^{\text {ll }}$, will select these materials from a mixture, and ignore all other materials, thus simnlifying analysis of the sample. Such a detector con for certain applications be as valuable as a detector giving an equal resnonse for all the components of the sample. There still remains hovever, the problem of analysing the remainder of the mixture, so that even in cases such as described above, the ideal detector will be recquired ${ }^{\text {ll }}$:
2.2b Detector Requirements.

It is evident that a detector which does not reguire calibration is of great valuc, even if i.t does not satisfy all the remaining requirements of an ideal detector:

A detector should be insensitive to random changes in carrier gas ilow rato and to pressure fluctuations. Similarly, a detector should bo insensitive to random temporature changes, particularly if it is measuring a property which itself is temperature dependent ${ }^{2}$. A detector sensitive to such fluctuations, can yield erroneous quantitative data, even if it has previously been calibrated. Baseline changes are often the result of such fluctuations ${ }^{12}$: exact location of the bescline is made difficult, and peak area determinations become innrecise.

Detection systems which attempt to measure small changes in'large values are in general unsatisfactory, al though several systems have been pronosed ${ }^{13}$: for example the measurement of the gas flow rate change accomnanying the elution of a solute.

A detector must have a hich sienal to noise ratio in order that the two effects may be unequivocally distinguishcd. Noise is defined as the random fluctuations of the outnut of the detector occurring at any instant. The signal is the output change which occurs when a sample enters the detector:
2.?c Detector Sensitivity:

The relative merits of detcetors are often described in terns of sensitivity. However there is no single definition of the term sensitivity, so that comparisions on such a basis can be very misleadinc: The first quantitative definition of sensitivity was made by Dimbat and co-workers ${ }^{14}$, in a paper on quantitative analysis in general:

$$
S_{w}=\frac{A S_{r} F}{T V}
$$

where $\quad S_{W}=$ sensitivity $\mathrm{mI} \mathrm{mv} \mathrm{mg}{ }^{-1}$
$\Lambda=$ peak area cm^{2}
$\mathrm{W}=$ weight of sample mल
$S_{r}=$ recorder sensitivity $\mathrm{mv} \mathrm{cm}{ }^{-1}$
$T=$ chart speed $\mathrm{cm} \mathrm{min}^{-1}$
$F=$ flow rate at exit $\mathrm{ml} \mathrm{min}^{-1}$
(The symbols have been changed to conform with those used in the remainder of this discussion):

Mowilliam ${ }^{15}$ proposed that, for a differential detector the minimum detectable siefnal represents the minimum detectable fas concentration, but for an integral detector the minjmum detectable weight is quoted. ile dofined sensitivity as the change in gas concentration which gives a signal equivalent to the background noise, i.e: sensitivity is exrressed in terms of micrograms per millilitre S_{2} : It is necessary to quote the noise level. $R_{n}(\mu \mathrm{~V})$ and in addi.tion the baselinc drift ($\mu \mathrm{V} \mathrm{hr}^{-1}$): In some cases the drift may be the limitine factor, rather than the noise level of the system. McWilliam also points out that since the sensitivity of a detector will vary for different chemical species, any relationchin between detector resnonce and some molecular parameter should be quoted with sensitivity valucs. Therefore quoting sensitivitics in terms of the minimum detectable sample size for a differential detector is misleading, since by changing column conditions, the width of a given peak can be reduced, and hence the minimum
detectable sample size is reduced. However, such figures are readily converted to a concentration basis by dividing the minimum detectable weirht by the volume V of the carricr cas in which the component is cluted (m.l).

$$
s_{2}=\frac{s_{1}}{v} \quad 2: 3
$$

wercS ${ }_{I}=$ sensitivity, $\mu \mathrm{C}$ and $S_{2}=$ sensitivity, $\mathrm{l}^{1 \mathrm{C}} \mathrm{mI}^{-1}, \mathrm{~V}$ is obtained From the peak width.

The term detector output D introduced by $\operatorname{HCWilliam}{ }^{15}$ is identical to the definition of 'sensitivity' civen by Dimbat (equation 2.2):

In short, the Dimbat and McWilliam definitions of detector sensitivity are related by the expression:

$$
S_{w}=\frac{R_{n}}{S_{2}}
$$

The nost satisfactory set of definitions to describc detector sensitivities is to be found in a paper by Wounc ${ }^{16}$. Young defincd the sensitivity S, of a detector, as the ratio of the change in response R, to the corresponding change in the quantity measured, Q :
i.e.,
$S=\frac{\Delta R}{\Delta Q}$
2.5
where R i.s measuredin $m V, Q$ is measured in min $m I^{-1}$, therefore S is in ml mV min -

For a detector whose response is not linear with concentration, sensitivity will vary with the amount measured. A new term was introduced which is self descriptive. The term is the limit of detection Q_{0}, and can be regarded as a quantitative measure of the vacue term "sensitivity" referred to in many early papers on detectors ${ }^{17}$. The limit of detection is the smallest amount of the quantity measured which can be detected with a specified defree of certainty. Thc
uncertainty is regarded as the noise lovel, R_{n} (neak to peak). The risnal to noise ratio (minimum) is two, thus:

$$
S=\frac{2 R_{n}}{Q_{0}}
$$

i.e. the limit of detection:

$$
Q_{0}=\frac{2 R_{n}}{S}
$$

A rrani of Q against R, has a slope S : If S is known, then Q_{0} can be colculated if R_{n} is estimated. The noise level may be measured dircctly from the chromatogram, ATthongh the relationshin on? holds when R is a linear function of Q, a roconable estimate of the limit of detection can be obtained for most detectors, provided thet S is measured near the limit of detection. In addition there is an uncertainty in estimating R_{n}, and hence Q_{0} : Dotails of estimating the noise level by a statistical method have been nublisho ${ }^{18}$, but the simple rraphical method mentioned above is quite satisfactory to give reasonable values for Q_{0}. Q_{0} values describe on actual situation, and takc into account noise lovels, whereas S is an unrealistic term and may lead to erroneous conclusions. For example a comparison of the sensitivities of a thermal conductivity cell 14 and a cross-section detector ${ }^{13}$ gives values of s of 4×10^{4} and 5.5×10^{4} rospectively, but identical values for Q_{0}, since the noise level of the crossmection detector is higher than that of the latharometer: Enpression 2.5 is very similar to the definition of sensitivity siven hy Dimbat (expression 2.2), and can be rearranged so that values of S can be obtained directly from chromatograms: The Dimbat expression 2.2 can bo written:

$$
S_{W}=\frac{P F}{W} \quad \mathrm{ml} \mathrm{mV} \mathrm{mG}
$$

The concentration units are not particulariy convenient, althouch values $o f \quad S_{w}$ are within an order of magnitude of sensitivities quoted in
volume/volume units.
The Younf expressions 2.5 and 2.7 can be written:
nnd

$$
S=\frac{\mathrm{PF}}{\mathrm{M}} \mathrm{mI} \mathrm{mV} \mathrm{mM}^{-1} \quad 2: 9
$$

where
$P=$ noak area $m V$ min
$F=$ flow rate $\mathrm{ml} \mathrm{min}^{-1}$
$!=$ weight of component mg
$M=$ amount of component mM .
Concentration measured in millimoles per millilitre is more uceful, and is about twenty times the V / V ratio under normal worling conditions. It follows from equations 2.8 and 2.9 that the limit of detection can be expressed in terms of milliframs per millilijtre ($\mathrm{O}_{\mathrm{o}}{ }^{W}$) or millimole per millilitre (n_{0}):

The $n Q_{0}$ value was introduced, the definition of which is analogous to the definition of nH :

$$
P Q_{0}=I_{G_{10}} \frac{1}{Q_{0}} \quad 2.11
$$

The recommendations of Young go a lonẹ way toward standardisinc the mcthods of detector comparisons. It is however necessary to standardise the conditions under which the measurements are made. This can be achicved by operating with a chromatogranhic column under standard conditions, or preferably using an empty column, and specifying the following variables:
flow ratc, temperature and nature of the carrier cas, the type and quantity of sample, and the manner of injoction, the dimensions of the emnty column.

For the purposes of the calculation of Q_{0} values, the detector Should be taken to include the assocjated amplifier, where appropriate.

It was recopnised that there are two extreme types of differential तetector ${ }^{19}$:
(7) a detector in which the response is pronortional to a chance in the concentration of the material eluted in the carricr gas: (ii) a detector whose resnonse is pronortional to the rate of entry of the smple into the detector.
The former tyre is represented by an ideal kotharometer, and the Jatter by a flanc ionisation detector. Purnell proposes thet the definition oi sensitivity given by Young (equation 219) is to bo used for concentration sensitive detectors. This renresents a recorder response (neak hoirht) per unit concentration of sample in the carrier pas at the detector. This is most suitable, since for an ideal katharometer, for a fixed sample size of material eluted from a column, at various different flow rates, the poak height would remain constant. Purnell extended the proposals of Younc, and expresses sensitivity solely in terms of moles:

$$
S_{m}=\frac{P F_{m}}{M} \quad 2: 12 \quad \text { and hence } \quad Q_{0}{ }^{m}=\frac{2 R_{n} M}{F_{m} P} \quad 2: 13
$$

Where $\quad P=$ peal: area $m V \min$ (quoted as $m V m$ by Purnellil ${ }^{19}$).

$$
F_{m}=\text { flow rate } m M \min ^{-1}
$$

$$
S_{m}=\text { sensitivity } \mathrm{mV}
$$

i.e: Smis the sensitivity in terms of moles/mole, (i.e. V/V). It is however simpler to calculate S_{m} usine the equation:

$$
S_{m}=\frac{P F}{M_{I}} \quad 2: 14
$$

where M_{I} is the gaseousvolume of the sample at the temperature and pressure at which the flow rate is measured.

For detectoigs sensjive to the rate of entry of sample, onlriehone ${ }^{20}$ mropooed the expression:

$$
S_{q}=\frac{P_{q}}{W}
$$

where $P_{T}=$ noak area lA sec.
Arnin, after Young it is preferable to write:

$$
S_{q}=\frac{P_{q}}{M} \quad \text { and } \quad Q_{0}^{q}=\frac{2 R_{n}^{q} M}{P_{q}} \quad 2.16
$$

S_{n} is thus the electrical response of the detector in microcoulombs ner millimole of eluted material. This definition has the added atraction that for an ionisation device $S_{q} / 96.5$ gives the apparent ionisation efficiency of the process occuring in the detector ${ }^{2 l}$: However Ω_{0}^{n}, the minimum detectable rate of entry of a component into the detector is not easy to envisace in practical terms and Condon 22 proposed that Q_{0} (equation 2.10) should be used, even thourh it may seen to be inappronriate:

It is not essential, indeed it is not always possible to guote nrecise figures for the limits of detection. Usually all that is required is the order of the detection limit of one detector, compared to that for another detector, under specified oneratinc conditions:-

It is particularly useful to knov the smallest amount of a component which can be detected, in the analysis of trace impurities in a mixture. It can often arise that the limit of detection of a particular detector is above that of the highest acceptable concentration of an impurity. A knowledge of detection limits is thus required: It is also useful to know detection limit values when analysing materials which are difficult to separate. Since column norformance approaches ideality at an infinitely small sample size, the greatest chance of successfully separating materials is when very small charges are used. It is worth noting that, irrespective of the method used to describe sensitivity, it is the peak heisht which limits measurement. It is of no value, to obtain a large peak area, with a negligible peak height. The limits of detection for a number of detectors are given in Chapter 3 :

The upner limit of detection is a value not found in the literature, but which under some circumstances it would be helpful to know. It is pronosed that the upper limit of detection Ω_{∞}, be defined as the larfest quantity of sample which can be detected before detector overload (not column overload) occurs. Detector overload is. readily observable in the form of distorted peaks (to be distinguished Srom distortions caused by adsorption within the column, too low an operating temperature etc.). For example an overloaded p-ray Argon ionisation detector will five a split peak for a single component (figure 2I). The sensitivity at which overload just occurs is:

$$
S=\frac{R_{\max }}{\Omega_{\infty}}, \quad 2.17
$$

i.e. $\quad Q_{\infty}=\frac{R_{\max }}{S} \quad 2.18$
with units as in equations $2: 10,2.13$ or 2.16 as appropriate: $R_{\text {max }}$ is measured in millivolts and is the point at which anomalous response begins. It could arise, through lack of recognition of the symptoms, that an operator could attempt to resolve a split peak, which was the result of detector overloading:

An alternative definition of overloadinf has been proposed ${ }^{23}$, in which the detector is said to be overloaded at the point where the response ceases to be linear with respect to concentration. The derinition is misleading in that it implies that a detector has no useful workine range beyond its linear dynamic range. In many instances the uscful working range of a detector is several orders of magnitude reater than the linear dynamic range.

The analysis of trace components and major components in the same mixture will frequently require a knowledee, both of the lower limit of detection and the upper limit of detection. The dynamic rance of a detector may be defined as:

The Effect of Sample Size on the Response of the β-Ray Ionisation Detector (see page 28).

This must be distinguished from the linear dynamic rance, which is the rance over which the detector will give a linear response (for a given gecies). The linear dynamic range is usually very much smaller than the dynamic rance, except in the case of an ideal detector, when the two values are equal.

Experimental determination of the limits of detection, and the dynamic ranfes are carried out using the various techniques described under detector calibration.

On the basis of the above discussion, it is proposed that the following numerical description be given for each detector:
(i) the upper and lower limits of detection,
(ii) the dynamic and linear dynamic ranges,
(iiii) the baseline drift,
(iv) the conditions under which (i) - (iii) were measured.
2.2d Response Time.

There are a number of other factors which must be considered. A detector should have a rapid response time ${ }^{15}$. Three factors contribute to the overall response time of a detector:
(i) the speed of response of the sensinc element, or the process involved:

For example the changes in temperature of a katharometer filament are relatively slow compared with ionisation processes.
(ii) The detector volume.
(iii) The time constants of the associated equipment (e.g. recorder):

The speed of response of a detector can limit the resolution observed: A detector of response time 5 seconds, will not be able to distinfuish between two adjacent components which have relative retention times of less than 5 seconds, even though the column itself may be capable of resolving the components: For excessively long speeds of
response, poak distortion occurs, and although the total area under the pook is not affected, it is difficult to obtain an accurate ancessment of the peak aren.

In the case of a detector of instantaneous response, it is nossible to increase the limit of detection by suppressine the noise electrically: This will increase the resnonse time (iii), but nrovidedit is still small ($<l$ sec.) this is of little consequence:

Loss of resolution of separated comnonents can occur within a detector if the detector volume is excessive (several cc's) ${ }^{19}$ and Aistortion of peols will occur: In addition, if the volume of the तetector is creater than the volume of the peak, the detector cannot measure accurately the true differential response (i.c: the rate of change of concentration) and serious errors in analysis may result: The offects of detector volume on peak symmetry and retention volume have been considered mathematically by Johnson and Stross. ${ }^{24}$:

With commercial gas chromatocraphic apparatus the time constant of the associated electrical equinment is usually neglicible, except for the potentiometric recorder, whose response is in general of the order of 1 second for full scale deflection: For the majority of apnlications this is satisfactory, but for high speed analysis usine capillary columns it.may be necessary to use an oscilloscope in place of the recorder ${ }^{25}$. In the case of high sensitivity detectors of high impedence, particularly the flame ionisation detector, even small stray capacitances can give rise to a significant increase in the overall response time: For example the presence of a capacitance of 100 nF , will result in a time constant of I second, for a system of resistance about 10^{10} ohms.

Experimental methods of determining the speed of response of a detector are described by several authors ${ }^{12,} 26,29$: Schmauch defines
rosponse time, r_{t}, as the time required to introduce the gas into the monsurinc: recion (r) and the time required by the measuring tronsducer to reach a new equilibrium (r_{a}),
$\begin{array}{lll}\text { i.o. } & r_{t}=r+r_{a} & 2.20 \\ \text { Usuntily } & r>r_{a} . & \end{array}$
Onl.y r is independant of the carrier cos flow rate:
The time taken for the introduction of the gas into the measuring region will depend on the construction of the detector, and on whether the fas enters by diffusion or direct flow (cf katharometer desicns described in Chapter 3): Expressions are derived to describe the two moans of flow, but these only represent extreme cascs since in most detectors diffusion and direct flow must both contribute. For pure diffusion the concentration of the compound $\underset{m}{(C)}$ in the measuring recrion is diven by:

$$
C_{m}=e^{-t / r} \int \frac{e^{t / r}}{r} C_{0} d t
$$

where $C_{0}=$ concentration of the compound at the openine of the diffusion channel.,
$t=$ time betweon introduction and measurement,
$r=r e s p o n s e ~ t i m e$.
r will depend on the volume of the measuring recion, the diameter and length of the diffusion channel, and the diffusion constants of the eas and sample: To determine the response time, an instanteneous change in the concentration of the component is applied to the detector:

$$
c_{m}=c_{0}\left(I-e^{-t / r}\right)
$$

and $r=t$ when $C_{m}=0,632 C_{0}$
Hence r is calculated from the rosulting chromatorram.

For direct flow:

$$
C_{m}=\frac{C_{0} F}{V_{d}} \cdot t: 2.23
$$

where $F=$ carrier cas flow rate $-m \min ^{-1}, V_{d}=$ detector volume m.
The experimental procedure is simple, and a nrocedure based on that described by schmauch ${ }^{12}$ has been used by the Author (see Chapter 6). The paper also described the effect of response time on neals ceometry and position.

The method of measurinc response time adopted by King ${ }^{26}$ is based on the assumntion that for a detector of zero response time the ratio noat area/retention time, is constant. By plotting a graph of this ratio as ordinate arganst residence time of the sample in the detector, for a practical detector, a curve is obtained. The residence time is:

$$
t_{d}=\frac{V_{d}}{F}
$$

The ratio, peak area/retention time will reach a maximum. At this point the residence time is equivalent to the resnonse time, i.e:

$$
t_{d} \equiv r \quad 2.25
$$

Purnell ${ }^{19}$ gives the expression for the response time of a direct flow detector as:

$$
r=\frac{V_{\mathrm{d}}}{\mathrm{~F}}
$$

which is of course readily obtainable from 2.23 and 2.24. ino experimental procodure is given. Note that althouch the expressions 2.21, 2.22 and 2.26 do not include the contribution r_{a}, the resnonse time which is measured experimentally will include this contribution, if the Schmauch procedure is adopted. The terms "measuring recion volumer and "detector volume" are not necessarily synonymous, i.c: there is a distinction between "effective detector volume" and "reometric detector volume ${ }^{22^{4}}$: in estimate of the effective detector volume can be obtained.from peak widths. By injectinc a sample into a short emnty
column, and assuming rapid injection of a small sample size and a negligible band broadening until the detector is reached, the width of the resulting neak is roverned by the effective detector volume, and the response time r. Usine this procedure the contribution r_{a} to the total response time, is excluded. The effective detector volume, and hence r, are calculated from a knowledge of the recorder chart speed and the carrier gas flow rate (see Chapter 4).

Purncll consicers, in addition to the above contributions to response, the dead volume existing between the column and the detector. however this is not strictly related to the detector performance, and can be minimised by frood desjegn. In any case, dead volume in this rerion will merely introduce an equal delay to all components: only in the case of fairly larce dead volumes will band diffusion produce inferior resul.ts. By operating two detectors of similar volume in series, a measure of the loss of resolution occuring between the detcctors can be obtained. The Author has carried out such experiments, the results of which are given in Chapter 4. The response time of a detector should be included in any table of detector characteristics: 2.2e Other Detector Characteristics:

The remaining properties of an ideal detector do not lend themselves to numerical description.

The detecting element should not be required to operate at such a temperature that pyrolysis of the detected components may occur (except with flame detectors): A system in which components never come into contact with heated filaments is to be preferred, since oxide formation on the filaments and corrosion can result in changes in the sensitivity (Young definition) of the detector during its life, thus upsettinf, calibration. guch a system i.s found in the Martin gas density balance ${ }^{2}$! In general a compromise must be reached. In the case of the katharometer corrosion of filaments is minimised by using
a diffusion cell (see Chapter 3), at the exnense of a rapid response time.

It should be possible to automatically record the resnonse of a detector, rather than be limited to manual plotting. This is a condition casily fulfilled in the vast majority of detecting systems.

A detector should be a simple piece of equinment, beinf readily constructed and requiring the minimum of maintenance. For some anplications a detector is required to be robust. Eade of operation must be borne in mind, althourh since after initial settine up, a detector response is automatically recorded, this should present no difficulty.

The degree of control required to maintain adequate sensitivity and stability is an important factor. A detector which works perfectly satisíactorily only at a carrier gas flow rate or $100 \mathrm{ml} \mathrm{min}^{-1} \pm 0.2$. $\mathrm{ml} \mathrm{min}^{-1}$ is obviously very limited in applicability. A detector must bo as vorsatile as possible, i.e: must operate over a wide range of conditions and respond to as wide a range of materials as possible:

Of ercat importance, at least from the non-scientific aspect, is the cost of the detectine system: this must include not only the detecting element itself, but in addition the associated amplifier, control unit and recorder: It does not follow that cost is directly related to the "degree of ideality" of a detector:

- James ${ }^{27}$ has pronosed that a detector should respond not only to the instantaneous concentration, but at the same time to the total mass eluted, since intecration, either ceometrically or electrically, of a differential sirnal lends to inaccuracies (see Chapter I): It is difficult to envisace such a detector: the nearest apmoach to this idenl is to operate two detectors in series, one havins a differential. rosnonse, and theother an integral response. Such a system has been used by the Author, and is discussed in the following chapters. The
relntive advantaces of detectors givinc differential and integral resnonse are listed below.

Dieforential Response: the component band centre (peak maximum) is readily detected. This is particularly imnortant for the determination of retention date ${ }^{28}$. Partially resolved peaks and very small peaks are more readily observable.

Intecral Response: the need for integration procedures is eliminated and quanti.tative estimation only involves step height measurements: It is more precise, easier, and less time consuming to measure step heichts (see Chapter 7): Quantitative estimation is not difficult with distorted bands: ("Band" signifies the actual component profile, whereas "peak" and "step" describe the detector output profi.le):

The advantaces of a differential detector indicatc that it is more suitable for qualitative analysis, whereas the integral detector is far superior for quantitative analysis. Two detectors in series thus rive the advantaces of both types of detector, and do not give rise to any additional disadvantaces:

Proposals are put forward for the qualitative description of detectors, listed in order of importance. In addition to the numerical description of a detector, civen, in sections $2.2 c$ and 2.2d qualitative description is necessary: The extent to which a practical detector fulfils the function of an ideal detector is described in the following torms:
(i) versatility,
(ii) insensitivity to random changes in operatine conditions,
(iii) ease of construction and operation,
(iv) cost,
(v) robustness.
2.3 Conclusjons.

The most important characteristic of a detector suitable for quantitative analysis is that it must have a response which is predictable for all chemical species, and which varies linearly with samnle size.Detectors with resnonses specific to certain chemical types can be useful in specinlised fields:

Detector sensitivity is most satisfactorily described in terms of the system proposed by Young ${ }^{16}$. It is helnful to auote both the unnor and lower limits of detection, and the linear dynamic rance:

A detector must have a rapid response time and a small effective: volume to minimise resolution losses and peak distortion.

An interral detector is the more satisfactory for quantitative nnalysis.
2.4 List of Symbols.

Symbol	Simnificance	Units
a	response factor	$\bar{\square}$
A	peak area	cm^{2}
C	fraction of component	-
C_{m}	component concentration in measurinf recion	-
C_{0}	initial component concentration	as C_{m}
F	flow rate of carrier gas	$\mathrm{ml} \min ^{-1}$
F_{m}	" "1" " "	$m M \mathrm{~min}^{-1}$
M	amount of component	mM
M_{1}	" 11 "	ml
P	peak area	mV min
P_{q}	" 1	$1^{1 / 4} \sec$
Q	quantity measured	$\mathrm{mM} \mathrm{ml}^{-1}$
Q_{0}	lower limit of detection	mM mi -
$Q_{0}{ }^{m}$	" " "	(moles/mole)
?o?	" "11	$\mathrm{mM} \mathrm{sec}{ }^{-1}$
$Q_{0}{ }^{W}$	" " "1	$\mathrm{mg} \mathrm{ml}^{-1}$
Q_{∞}	upper limit of detection	as Qo's
r	sample introduction time	sec
r^{1}	resnonse time of transducer	sec
r_{t}	response time of detector	sec
R	response	mV
$\mathrm{R}_{\text {max }}$	onset of anomalous resnonse	mV
$\mathrm{R}^{\prime}{ }^{\prime}$	noi.se	$m V\left(o r j^{V}\right.$)

Symbol	Sj. ¢nificance	Units
$\mathrm{R}_{\mathrm{n}}^{\text { }}$	noise	$\mu^{\text {A }}$
5	sensitivity	$\mathrm{mlmVmM}{ }^{-1}$
S_{1}	"	RG
S_{2}	"	$\mathrm{ME} \mathrm{m} \mathrm{m}^{-1}$
S_{m}	"	mV
${ }^{5}$	"	j A sec mi^{-1}
S_{r}	recorder sensitivity	$\mathrm{mV} \mathrm{cm}{ }^{-1}$
S_{w}	sensitivity	$\mathrm{mlmVmg}{ }^{-1}$
t	time lag introductionmeasurement	sec
${ }^{t}{ }_{d}$	residence time	sec
T.	chart speed	$\mathrm{cm} \mathrm{min}{ }^{-1}$
$\mathrm{V}_{\text {d }}$	detector volume	ml
!	weight of component	mg

2.5 References.

1. Mcivillian, I:G., Dewar, R.A., Gas Chromatography 1421958.
2. . Martin, A.J.P., James, A.T:, Biochem. J. 631381956.

3: Bevan, S.C., Thorburn, S:, J. Chromatog: 1] 301 1963:
4: Desty, D.H:', et al., Gas Chromatorraphy 46 1960.
5: Swoboda, P.A.T., Burnett, M.G:, Anal. Chem. 341162 1962:
6: Lovelock, J.E., Gas Chromatography 261960. Williams, H.P:, Winefordner, J.D., J. Gas Chrom: 4271 1966.

7: Krugers, J., Philips Research Report Supplement No. 1701965.
8. Fowlis, I.A., Scott, R.P.W., J. Chromatog. 11 1 1963:

9:. Gregory, N.I., J. Chromatog: 1333 1964.
10: Krugers, J., Philips Research Report Supplement No: 1 83 1965:
11. Lovelock, J.E., Lipsky, S.R., J. Amer. Chem. Soc. 824311960. Oaks, D.M., et al., Anal: Chem. 3615601964 :

12: Schmauch, L.J., Anal: Chem. 312251956.
13. Boer, H., Vapour Phase Chromatography 169 1956.

14: Dimbat, M., et al. Anal. Chem. 282901956.
15: McWilliam, I.G:, J: App. Chem. 379 1959:
16: Young, I.G., 2nd International Gas Chromatography Symposium, ISA, 75 i959:
17. e:S: Scott, R:P.W:, Nature 1767931955.
18. Johnson, H.W., Stross, F.H:, Anal. Chem. 31.1206 1959: Johnson, H.W., Anal. Cheme 37. 15821965 :
19. Purnell, J.H., Gas Chromatogranhy 320 , published by John Wiley 1962 Halasz, I., Anal. Chem!. 3614281964 :
20. Onkiehong, L., Gas Chromatography 71960.
21. Lovelock, J.E., Anal: Chem. 33167 1961:
22. Condon, R.D., et al. Gas Chromatography 30 1960:

23: Krugers, J., Philips Research Report Supplement No. 154 1965:
24. Johnson, H.W., Stross, F.H:, Anal: Chem. 31357 1959.
25. Scott, R.P.W., Nature 1853121960.
26. King, W. H:, Anal. Chem: 361735 1964:
27. Jnmes, A:T:, Vapour Phase Chromatography 1271956.
28. Ettre, L.S:, Anal. Chem. 36 3lA 1964. Gas Chromatography 348 1964.
29. Kieselbach, R., Anal. Chem. 3513421963.

Introduction.
The literature contains a vast number of references to detection systems. The majority of detectors never fain widcspread acceptance, usually due to a failure to satisfy even a few of the requirements discussed in Chapter 2. In some instances, however, the failure of a detector to frain popularity is less readily explained. For each detector described below the principle of operation is riven and roference is made to any papers riving constructional details. The response characteristics are critically discussed, and finally the value of the detector as a quantitative instrument is assessed. The two commonl.y used detectors, namely the katharometer and the flame ionisation detector, , are described first, and these are followed by a number of flame detectors in which different modes of detection are employed. There are a number of detectors based on radiological ionisation, and each of these is discussed: Discharge detectors are mentioned, although they are little used. Detectors based on the measurement of density and volume changes are important from the quantitative aspect, and these are discussed in detail. These are followed by a number of detectors, which although not in common use have been the subject of study by some workers: The value of auxiliary detection techniques is summarised.
3.1 Katharometer Detectors:
one of
The katharometer is λ the most widely used of all detectors, and at the same time satisfies the least number of criteria for a good detector: It was first used in gas chromatography by Ray and Griffiths ${ }^{2}$?

The response of an ideal katharometer depends on the difference in thermal conductivity between the pure carricr gas and the eluted components in the pas stream. In the basic.katharometer a heated wire
is jlaced alonf the path of the carrier gas. Under constant conditions of flow rate and temperature, the resistance of the heated wire will remain constant. In the presence of a component, there is a change in the thermal conductivity of the atmosphere surroundinc the heated coil and the temperature of the coil, and hence its resistance will change: In general the thermal conductivities of organic vapours are lower than those of the permanent gases so that a temperature increase occurs, and hence the resistance of the wire decreases: The thermal conductivitics of a number of orcanic compounds have been nublished ${ }^{3}$: If the wire forms one arm of a Wheatstone bridee, balanced when pure carricr gas flows, the omount of unbalance, in the presence of a component, can be used as a measure of the amount of component present. For an ideal cis mixture, thermal conductivities (k) should be additive ${ }^{4}$:

$$
k_{\text {net }}=x_{1} k_{1}+x_{2} k_{2}
$$

$$
\begin{aligned}
& x_{1}=\text { mole fraction of solvent of thermal conductivity } k_{1} \\
& x_{2}=\text { mole fraction of solute of thermal conductivity } k_{2}
\end{aligned}
$$

The change in thermal conductivity is given by:

$$
\begin{array}{lll}
& \Delta k=k_{1}-k_{\text {net }} & 3.2 \\
\text { i.e: } & \Delta k=x_{2}\left(k_{1}-k_{2}\right) & 3.3
\end{array}
$$

Thus by moasuring the change Δl, the amount of component prosent on a molar basis can be found. However, expressions derived from the linetic theory by Hoffmann ${ }^{5}$ do not predict simple additivity of the thermal conductivities of the components of a mixture. The different molecules in a ças mixture will have different cross-sections, and hence the mean free path lengths will be different. Equation 3.1 is rewritten:

$$
k=\frac{k_{1} K_{1}^{\prime}}{K_{1}}+\frac{k_{2} K_{2}^{\prime}}{K_{2}}
$$

where the ratio $\frac{K}{K}$. pure state: and in mixtures: Thermal conductivities are only additive
when the sample and carrier gas are matched with respect to mass, collision diameter, intermolecular force constents etc. ${ }^{6}$:

Numerous attempts have been made to correlate theoretical and exnerimental katharometer responses. Using a carrier gas such as nitrogen, which has^a low thermal conductivity (i.e. the same order as orgenic materials), the resnonse for different species, even at similar molar concentrations cannot be predicted ${ }^{5}, 7-9$. However, by usin© a carrier gas of high thermal conductivity, such as kelium or hydrogen, the resnonse of many orcsinic compounds is found to be similar at similar concentrations: Using helium the theoretical responses of the katharometer to a number of organic compounds have been calculated, usinc equation 3.3 and compared with experimental values ${ }^{10}$. The majority of theoretical values were about 11% below the experimental values. Better acreement was obtained ${ }^{10,} 11$ by basinc the responses on a weight basis rather than a mole basis: Despite the lack of ceneral acreement, it has been shown that for a limited number of homologous series, the katharometer response per mole of solute, relative to benzene $\left(R_{B}\right)$, can be represented by the equation ${ }^{10,} 12$:

$$
R_{B}=X_{1}+X_{2} M \quad 3.5
$$

where $M=$ molecular weicht of carrier gas (helium)
X_{1}, X_{2} are empirical constants for the homologous series: The equation was found to be satisfactory over a wide temperature range ($30^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$), over a ten fold concentration chance, and for a wide helium flow rate range:

Schmauch and Dinerstein ${ }^{9}$ considered the response of a katharometer to be the product of two factors, the cell factor, which denends on the oneratinf conditions, and the thermal conductivity factor. Using helium, response is apnroximately linear for many compounds, and at any given temperature only a single response factor is reguired for onch material. However, using nitrogen, complete calibration is required. The effect of changing operating parameters on detector response is discussed in detail ${ }^{9,}{ }^{26}:$ Hoffmann 5 has developed
cquations to predict molar response factors. The results are in o:acellent acreement with experimental values for a variety of oreanic compounds, when helium or hydrogen is employed. The equations do not satisfactorily predict response factors when nitrocen is used. Theoretical response factors have been published by several other workers ${ }^{13,14}$

For semi-quantitative work, response factors based on very simple relationships are sometimes satisfactory. For example, using helium, Enstman ${ }^{15}$ found a direct relationship between response and (molecular weirht ${ }^{\frac{1}{2}}$ of the sample. Even using nitrogen, the expression is satisfactory for a few homologous series: In addition, compounds with similar structure and similar composition give similar response factors. Acain, using helium it has been demonstrated experimentally thatseminuantitative results are obtained by calculating the percentace weichts of the components of a mixture directly from the percentafe areas of the poaks. The theoretical hasis of this relationship has been discussed ${ }^{17}$: Using simple thermal conductivity corrections for response, the quantitative analysis of water-alcohol, and other simple solvent mixtures; has been successfully carried out, with helium as carrier cas ${ }^{18}$. Experimentally determined response factors for hydrocarbons in helium, have been published ${ }^{19}$.

In an attempt to obtain predictable response factors on the basis of equation 3:1 Jordan et al 6 have proposed the use of mixed carrier fases such that their molecular properties match those of the components. Quantitative determinations of carbon dioxide have successfully been carried out using a mixture of helium and nitrogen as the carrier gas. Obviously such a method cannot be adopted for the analysis of complex organic mixtures.

It is clear that the response of the katharometer using nj.trogen as carrier gas, is unpredictable. Under certain conditions distorted, split or negative peaks are obtained (see figure 3:1): Such effects

Were first reported in 195620-22 : Peak invorsions are most readily observed at high flow rates, ${ }^{23}$ and are therefore probably not caused by docomposition of material on the hot wire, but by changes in the slope of thermal conductivity isotherms of the different components of a mixture ${ }^{24}$. This view has been substantiated by several other workers ${ }^{7}$, 21, 25. However this explanation is open to critisism in that peak inversions only occur in carrier gases of low thermal conductivity, whereas changes in the slope of thermal conductivity isotherms would be expected to occur with all carricr gases. In addition the detailed mechanism of peak splitting as sample size increases camnot be explained on the above basis. A comprehensive study of peak inversion effects has been carried out by Bohemen and Purnell ${ }^{23}$, in an attempt to find a. nore satisfactory explanation. Inversjon temperatures were found ta be very dependent on flow rate, but thermal conductivity is essentinlly pressure and flow rate independent, thus ruling out previous explanations: The response of the katharometer depends upon the differences between the thermal conductivities and heat capacities of the solute and solvent. Wi.th nitrogen as carrier gas, these two terms are often of opposite sign, so that by changing the flow rate it is possible for either the thermal conductivity or heat capacity contribution to predominate, i.e: a positive or negative peak can be formed, and peak inversion will occur when convection and conduction are of a similar magnitude: On this basis conditions were predicted to avoid peak distortions, and these were found to be substantially correct. In general, neak distortion can be avoided by decreasing the carrier gas flow rate, and by decreasing the filament temperature: The effects of changing these parameters are illustrated in figure 3:2.

Since response factors using nitrogen as carrier ras, are so dependent on the precise experimental conditions employed, values taken from the literature must be.used with caution. The only comprehensive set of response factors to be published, are those determined by Jamieson ${ }^{26}$.

Katharometer design has received much attention. The simplest form of Wheatstone bridfe for a latharometer consists of three external resistors, with the heated filament within the detector block. Small external temperature fluctuations will upset the bridpe balance and rive rise to an unstable bascline. By incorporating one other arm of the bridre in a flow of pure reference ras, adjacent to the katharometer filament proper, temperature fluctuations are minimised. The reference supply must be operated under the same conditions of temperature, nressure and flow rate, as the analytical supply. An extension of this arrangement is to incorporate all the arms of the Wheatstone bridee within the detector block, thus ensurinc greater thermal stabiJity. In addition, by incorporating opposite pairs of filaments in each pas stream, sensitivity is increased two-fold, since a change in the gas composition will upset both sides of the theatstone bridge, and in opposite directions. The effect of bridge current on katharometer response has been studied 9,22 . Details of katharometer design form the subject of many papers 20,21 , and a comparison between the response times of detectors of different geometry has been made by Schmauch ${ }^{25}$. The direct flow katharometer has a fairly rapid response time (about $\frac{1}{2}$ sec.) but is very sensitive to small flow rate fluctuations: The latter can be minimised, at the expense of a rapid response, by relying on diffusion of the components to the heated filament. When diffusion is the sole means by which components reach the filament, response times become excessively long, resulting in anomalous responses, as discussed in Chapter 2: As a compromise, the semi-diffusion pattern is generally accepted. The choice of detecting elements lies between thermistors and heated metal filaments or coils: Metal filaments are usually of platinum or tungsten. Tuncsten is usually fitted to commercial katharometers: For the analysis of corrosive materials, nickel has been used ${ }^{27}$: Thermistors are normally oporatedonly a fow decrees above that of the detector cell itself, but suffer from the
disadvantace that it is difficult to obtain a pair of thermistors exactly matched for resistance, and temperature dependence of resistance. In contrast the matching of metal filaments is a simple matter. Thermistors were first used in latharometors at the National Chemical Laboratory ${ }^{28}$, and a comprehensive study has been carried out by Cowan and stirlinéce The ceneral conclusions are that thermistor fathnrometers should be left running permanently to minimise noise, and that in general they are no more sensitive than a cood hot wire lathorometer. They are however particularly useful in analysos whore thermal decomposition of materials is likely to occur on a hot filament. Constructional details of a thermistor latharometer have been published 30

The design of katharometers for operation at high temperatures $\left(400^{\circ} \mathrm{C}\right)$ has been undertalen by several workers 31,32 :

In eeneral the detector volumes of latharometers are of the order of $2 . \mathrm{ml}$, and hence for high resolution, and for use in conjunction with canillary columns, they are unsatisfactory. Micro-volume latharometers (as small as 3 y. 1) have been described $32-34$ and are available commercially ${ }^{35}$:

There have been several works reviewing the design and characteristics of katharomoters, of which the most recent is that by Lawson and MiJ.ler ${ }^{36}$:

A katharometer can detect all organic materials and the permanont cascs. It is very sensitive to flow rate and temperature chances. The detector requires skill to construct, but its operation is simple The detector is robust, readily commercially available, and is not expensive. The hote wire filament detector is satisfactory for qualitative analysis', provided that the materials under analysis do not corrode, or decompose on the filaments, and a rapid rosnonse time is not required. The detector may be used for quantitative work with helium as carrier gis, provided that calibration is carried ont for ench material under the conditions for analysis: The use of nitrogen as a carrier cas for quantitative analysis is not recommended, since
extenoive calibration for each material at all concentrations is reauired, and anomalous response is often observed. The calculation of rosponse factors on a theoretical basis is partially successful., nrovided heljum or hydrogen is used as the carrier gas, but is unsatisfactor: for nitroren. The calculation of response factors demands a lenowledre of the qualitative nature of the material, and frequently a knowledge of several physical constants as well.

The detector has little to recommend its adoption for quantitative worle, narticularl.y in Great Britain, where helium is extremely ernensive:
3.3.1 Katharometer Performance:

Tyne of Ketharometer	Cell Volume mJ .	Response sec.	Time	Limit of Detcc才ion mMm l	Compound	Ref.
Hot wire				5×10^{-7}		11a
Hot wire diffusion		1.2			Cuclohexane	25
Hot rirc - semi di.ffusion		11			"	25
Hote wire - semi dijrect flow	- 3	2			11	25
Hot wire - semi direct flow Thermistor	0.6	<1		8×10^{-7}	"	25 36
Thermistor				8×10		36
Hot wire - micro	0.04	$0.07{ }^{\prime}$		5×10^{-7}	Ether	34
Hot wire - 4 filament semidiffusion		30		8×10^{-8}	Heptane	Chanter
Hot wire - micro	0.003			$10^{-6} \mathrm{P}$	Propane	Chapter

3.2 Flame Ionisation Detectors:

Thermal ionisation of organic materials by a flame forms the basis of oneration of the flame ionisation detector. The carrier gas from a chromatorraphic column is mixed with a hydrogen-oxygen supply at the column exit and is burnt at a jet. The jet forms one of an electrode nair. The other electrode is placed vertically above the flame. The clectrical resistance along the lenpth of the flame is continuously monitored. The introduction of an organic vapour into the fillame Ereatly
increases the concentration of ions present, resulting in a decrease in the resistance of the flame. The use of such a system for gas chromatocraphic detection was pronosed by Mcirinliom and Dewar in 1953 37 . Such was the simnlicity and elerance of this device that it aroused considerable interest, and detailed studies were undertaken by scveral worliers $38-41$. The mechanism of the jonisation processes occurinc; in the flame is not straichtforward, and has been studied by several workers 42,43 , most recently by Krugers ${ }^{41}$. The various parameters which affect the detector performance have been studied 39,45 , particularly by Onkiehong ${ }^{38}$ and McWilliam ${ }^{47}$. In reneral it is apreed that operating the electrodes at a potential difference of about 200 volts, 39 will ensure that the detector response is independent of the exact voltare, and of the electrode spacing Electrode snacings are of the order of 1 cm . Un to about 180 volts, the linear dynamic rance is a function of the applicd voltage, and at any fiven voltage is greater if the jet is made tho cathode ${ }^{51}$, althouch this conflicts with earlier observations ${ }^{46}$: The electrode shape is not critical, but it has been demonstrated that freater sensitivity and stability are obtained if the unper electrode is the anode.

The effects of changinf detector geometry on response have been studicd in more detail, in an attempt to imprave the overall response of the detector $41,44,58$.

Results obtained by Mcvilliam 47 indicated that the response of the detector was lincar with respect to concentration over a wide range, and calculable on the basis of carbon content, for many materials. It has been shown by many other workers that for a large number of substances, linearity extends over several orders of magnitude $38,39,48$ Indeed Purnell 49 states that the detector is linear over its whole range of operation: the detector can be calibrated with fairly large measurable quantities of material, and extropolated to zero concentration.

Details of the determination of the linear dynamic range of the detector using a lorarithmic dilution technique (see Chapter 2) have been described by $\operatorname{Scott}^{50}$. No deviations from linearity were observed for $\dot{\text { several }}$ different species over a range of four orders of concentration A recent comprehensive study of the linear response of the detector to a varicty of materials, under various operating conditions, showed that the linear dynanic range extends over at least six orders of marnitude ${ }^{5 ?}$: Detector response is in many instances predictable, and empirical calibration for different materials may be avoided, provided that a response correction factor, \mathbb{C}, is used ${ }^{38}$:

$$
\underline{C}=\frac{M_{x}}{12 C_{x}}
$$

where $\mathbb{M}_{x}=$ molecular weight of component x, containing C carbon atoms, i.e. the response should be predictable on the basis of the amount of carbon present, and not on the total amount of material. This equation was found to work satisfactorily for simple hydrocarbons $52,54,57$, and several other species ${ }^{52-58}$ but gives less satisfactory results for oxyeenated compounds 54 , and in the case of halogenated materials breaks down.

The variationof calibration factors, with changes in the carrier cas, hydrogen and air flow. rates has been investigated $51,58,59$. The lower Iimit of detection can be extended if great care is taken to purify the carrier gas: An improvement in sensitivity is obtained if oxycen is used for combustion in preference to air ${ }^{58}$, and extremely pure helium or argon is used as the carrier cas ${ }^{60}$.

The substance-specific correction factor proposed by Kaiser ${ }^{61}$ has becn used to predict detector response: The theoretical substancespecific correction factor, S_{T}, for a homolocous serics is defincd as:

$$
S_{T}=\frac{M_{j} C_{S}}{M_{S} C_{j}}
$$

where $H_{j}=$ molecular weight of the j th member of the series, containing C carbon atoms
$\mathrm{K}_{\mathrm{s}}=$ molecular weight of the standard, of carbon number C_{S} The experimental substance-specific coifrection factor S_{E} is:

$$
S_{\mathrm{E}}=\frac{1}{r_{\dot{j}}}=\frac{M_{j}}{M_{s} R_{j}}
$$

where $r_{j}=$ relative weicht response, experimentally determined, $R_{j}=$ relative molar response.
Ideally for a given compound:

$$
S_{T}=S_{E}
$$

This condition is found to be satisfied by many aliphatic and aromatic hydrocarbons, includins some halogenated materals, but deviations are observed for other classes of compounds. However by: allowing for the carbon deficiency of a compound ${ }^{54}$, good agreement between theoretical and experimental substance-specific correction factors can be obtaincd. Carbon deficiency values for a number of types of compound are listed by Mages ${ }^{51}$: The resnonse factors, expressed on a weight basis, a molar basis and in terms of specific correction factors, for a number of common materials have also been published by Mages ${ }^{51}$.

The detector responds to all organic materials, althouch the sensitivity towards organo-metallice compounds is low, and decomposition of such materials in the flame leaves a metallic deposit in the detector which further suppresses sensitivity: A detector designed specifically for the detection of organosilicon materials is described below. The use of halogenated materials, will produce by pyrolysis, hydrochloric acid which results in detector corrosion. The use of solvents such as chloroform should therefore he avoided. Howcver, Bandjel ond Cullis claim thatby using carbon dioxide as carrier gas, hydrochloric acid is notformed at the detector ${ }^{62}$. Anomalous response
cffects have been reported by several workers, in particular peak nli.t.ing above a particular concentration level ${ }^{47}, 63$.

The detector does not respond satisfactorily to water, and it has been stated by scveral workers, that this has no significont cffect on the rosnonse of the detector to the remaining constituents of the mixture ${ }^{64}$, unless e?uted simultaneously. However Foster and Mrfin ${ }^{66}$ demonstrater that the presence of moisture in a sample will suppress detector resnonse sufficiently to invalidate response factors detormined under non-aqueous conditions. The presence of moisture, derived from the carrier ces will also suppress the detector response ${ }^{67}$, so that for reproducible results it is essential to dry the carrier sas. Woter vanour is continuously nroduced in the detector chamber by combustion, and it is therefore essential to have sufficient ventilation and forced air to sweep out the vapour: In addition the temperature of the detector must be sufficient to prevent condensation of watcr vanour within the chanber. If condensed water is allowed to collect, the rosponse is procressively suppressed and finally the flame is extinguished:

The overall performance of the flame ionisation detector is such that i.t approaches the performance of an ideal detector. The detector has a very low limit of detcction, and is extremely stable. It has a wide linear dynamic rangc, and calibration at all concentrations is not necessary: Response factors, at least for simple hydrocarbons, are nreri.ctable from a knowledfe of molecular weights, but for other materials j.t is preferable to determine experimentally the correction factors. In some instances where this is not possible, it is reasonable to calculate the detector rosponse, on the basis of the response of a cimsiar material. The detector has a vory small dead volume, and rapid rononse. It is simple to construct, is robust and very cheap. The dotector and associnted electronic equipment can be constructed in the
lanorator: 40,68 and exccllent commercial detectors are available ${ }^{83}$. A control unit which can give a linear, logarithmic or interral output has been described by Dewar and Maier ${ }^{69}$: The logarithric output is adjusted such that no pealr exceeds full scale deflection of the mocorder, and at the same time, minor peaks are readily obscrvable The detector is "blind" to all inorgenic cases. The detector totally dostroys the somple under analysis, but by incornoratine a stream silitttinc device at the column outlet, a major portion of the sample may be recovered. Sample destruction may be an advantace in the analysis of toxic matorials. A disadvantege of this detector, serious in 7 aboratories where space is limited, is that three senarate gas sunplies are reauired.
3.2. A number of modifications have been made to the basic flame ionisation detector, for the specific detection of certain elements. A detector for the qualitative and quantitetive estimation of orcanosilicon compounds has been described by Garzo and Fritz ${ }^{70}$: Orcenic compounds are detected in the normal manner, but organosilicon compounds are detected as split peaks (often incorrectly named inverted peaks), or negative peaks. By adding methane continuously to the carrier cas just below the jet, (i.e: by increasing the carbon content of the fiame), the carbon-silicon ratio can be Odjusted to give all negative peaks for silicon containjng materials, and positive peaks for true organic materials: Thus a selective detector is obtaincd. The quantitative response of the detector can be related to the carbon-silicon ratios in the orfanometallic materials. 3.2b Details of a flame ionisation detector with an enhanced response for halogenated and phosphorus containing materials have been given by Knmen ${ }^{72}$. A wire gauze, treated with sodium hydroxide isi nlaced in a hydrofen-oxyfen flame: The presence of a halogen, or phosntorus increnses the rate of volatilisation of sodium from the gause, and the
metal vapour is detected by ionisation in a second flame. The detector riocs not resmond to other materials since these arc burnt in the first flame. The response of the detector is pronortional to the whount of halogen present, but calibration is required. By onerating the lower flame as a conventional flame ionisation detector, specific and non-specific responses are simultaneously obtained ${ }^{70}$.. Details of the construction and performance of a combined flame ionisation detector and soidum thermionic detector have been published by Janak and Svcjanovsky ${ }^{72}$:
Z.2c It was observed by Graiff 73 , that, by employing a sinfing flame, instear of a guescent flane, in the flame ionisation detector, a two fold increase in sensitivity was obtained. Resonance was found to occur at certain gas flow rates: In a subsequent paper Graiff 74 described the operating characteristics of the detector, and proposed a mechanism to account for the enhanced response. There is probably an increase in the ion concentration orion collecting efficiency of the electrode. Since the flame is oscillating, diffusion of oxygen and components to the flame front, and removal of combustion products from the reaction zone, is encouraged. There is little quenching and heat loss, since the vibrating flame is ejected clear of the burner tip. A.c. amplification of the flame output can be used, which has the advantage over D.C: amplification that it is simpler, cheaper, and more stable. The detector is claimed to have a greater linear dynamic range and to have greater sensitivity and stability than the conventional flame ionisation detector. However subsequent workers 75 have found difficulty in producing a singing flane, and in maintaining the flame, once resonance has set in. There are three detectors related to the flame ionisation detector, in that components emerging from the column are burnt at a jet. The mode of detection is however different:
3.3. The Flame thermocounle Detector.

The flame thernocouple detector, introduced by Scott ${ }^{76,77}$ noasures the change in temperature which occurs in a flame when a component is introduced at the jot. The hot, junction of a thermocouple is placed slichtly above the normal flame and the cold junction is nlaced in constant temperature surroundinfs. then an oreanic vapour onters the jet the flame lengthens and enfrulfs the thermocouple. The output from the thermocouple is fed directly to a suitable recorder. Althouch in the original work, hydroren was used as carrier ras; improved performance is obtained if nitrogen is used, and nydrogen introduced at the column exit $38,78,79$. Primavesi and co-workers ${ }^{80}$ studied the temperature contours; within the flame, in order to determine the most suitable site for the thermocouple. Scott ${ }^{76}$ showed that the resnonse of the detector, at least for simple hydrocarbons, was directly related to the mass of material present, after a correction had been made for the heats of combustion of the components: Henderson and Knox ${ }^{79}$ continued the investigation and obtained excellent agreement between experimentally determined relative response values, and those calculated from relative heats of combustion, for a wide range of compounds. This would sugfest that provided heats oi combustion are known, the detector only requires calibration with one compound, although doubt is cast on this statement by Bullock ${ }^{81}$ and Primavesi ${ }^{82}$. The relationship between response factors, and heats of combustion has also been investicated by cullis ${ }^{85}$. The use of oxycen for combustion is recommended ${ }^{84}$, as this increases the linear dynomic rance of the detector:

Although it is evident that the detector has many commendable features, further study of the resnonse and linearity is necessary. The Author has measured the linearity of the detector over a limited range for a few materials, and the results are given in Chapter 6 : The detector is very simple to construct, and any commercial flame
ionisation chamber may be used. No amnlifying device is required and hence the detector is remarlably cheap. In common with the flaine ionisation detector there is an insignificant response toward inorfanic rases. The detector is not widely used, not because of any overriding disadvantage, but probably because it offers no distinct advantage over the flame ionisation detector.
3.4 Flane Photometric Detectors.

A further modification of the hydrogen flame detector was made by Grant ${ }^{90}$: Column effluent is combined with a stream of coal gas, and the mixture burnt at a jet. The light emitted by the flame is measured, via a reflector and condensing lens, by a photocell, and the resulting current recorded by a microammeter: The introduction of an organic vapour into the flame causes a large increase in light emission. Excellent quantitative data have been obtaincd with this detector, and the linear dynamic range is stated to be "rood". For stable operation the device demands steady Eas flow rates. Λ particular advantage of the detector is that although its response for the mombers of a particular homologous series is constant, the response between different series is in many cases quite different. Thus is offered a detector which gives characteristic responses for dirforent chemical classes Z.la A simple modification, by incorporating a piece of copner wire in the flame, renders the detector specific for halogenated materials, i.c: the effluent is continuously subjected to a Beilstein test. This detector has been used succesofully for qualitative work 86,207 , and thoqvantitative aspect has been discussed, althourh no experimental confirmation carriod out ${ }^{l 07}$.
3.4b Juvet and co-workers 91,92 doscribed a flame emission detector winch conld onernto selectively or non-selectively. The dotector oneratos soloctivcly by eramining spocific cmisoion lines, characteristic of particular functional crouns or fracments. A table of response.
factors relative to benzene, for two different characteristic $\cdots v e l e n c t h s$ are given, but no attempt is made to prodict response ractors. Plots of molar rosponse acainst carbon number for most homolocous series are in ceneral non-linear, althourh the lincar dynamic rance (for benzene) extends over three orders of magniturce. the rosponsc time is nocligible, and response is virtually independent of flow rate. The detcctor can be made non-selective by obtaininc a broad band spectrum, rather than specific emission lincs: Using the non-selcctive mode, the lower limit of detection is increased. Constructional details of the detector are given ${ }^{92}$. Using a similar susten Braman ${ }^{93}$ investigated the response to various compounds at specific wavelencths and related this to the chomical structure. Using in addition a flame ionisation detector, empirical relationships between structure and the relative response ratio of the two detectors are given. The detcctor wes found to cive a non-linear responco with respect to concentration for most materials although in some instances deviations from linearity were slight. Details of the design of a single detector in which both modes of detection operate, are given. 3.4c A flame photometric detector with a response snecific for phosnhorus and sulphur containine materials, to the exclusion of all other materials includinf halogens, has been developed by Brady and Chancy ${ }^{94}$:
3.5 The Limit of Flanmability Detector.

A flame detector which gives an interral resnonse was invented by Behrendt ${ }^{95}$: A mixture of pronane and oxycen, just below its flammability limit is fed into the column effluent and to a pilot rlame. The addition of an organic material, from the column, results in a mixture above the flnmmability limit, an exnlosion oocurs and a CTame back fanshes into the effluent fras stream. The resultine ens exnancion in cuantitative and hy means oí an electrolysis cell actuated by a relay, an exactly correct volume of oxyeon is fed back into the
offluent (cf section 3.19a): Hydrogen cenerated is collected in a nithometer and mensured and by this means an intecral resnonse is obtrined. Obvious disadventeees are the difficulties of maintaining tine mas minture just below the flammability limit and the necessity for Ω sililed onerator.
3.5.7 Flame Detoctor Performance.

merne of Detector	$\begin{aligned} & \text { Limit.t. }^{\text {of }} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Detection } \\ \text { miml }^{2} \end{gathered}$	Linear Dynamic. Range.	Compound	Ref.
plame	$3 \times 1.00^{-1.2}$	4×10^{-13}	10^{6}	Pronane	12.4
ionisation	2×10^{-11}	2×10^{-13}	1.06	hentrne	50
(Soction 3.2)	6×10^{-11}	$1+\times 1.0^{-13}$		p-त̈ichlorobenzene	72
	7×10^{-11}			di-isopropyl	72
				methyl phosp	onate
	1×10^{-12}	1×10^{-14}	10^{6}	benzene	5.1
Plame	1×10^{-9}		5×10^{2}	siliticon	70
ionis-tion (methane)					
Flame	6×10^{-9}	4×10^{-11}		p-dichloro-	72
ionisationiva salt				benzene	
	2×10^{-11}			di-isopropyl methyl phosp	$\begin{array}{r} 72 \\ \text { horate } \end{array}$
Flame thermocounle (Section 3.3)		$\begin{aligned} & 4 \times 10^{-6} \\ & 6 \times 10^{-5} \end{aligned}$			1.52
		6×10^{-5}	210^{2}	benzene	Chapter6
$\begin{aligned} & \text { Flame } \\ & \text { emissivity } \\ & \text { (Section 3.4) } \end{aligned}$	1×10^{-5}		10^{3}		41
Flame (conper	2×10^{-7}	6×10^{-9}		chlorine	86
wire)					
Flame photome	tric	$4 \times 10^{-7 .}$	small	bonzene	92

3.6 Radio-ionisation Detectors:

Ionisation by radiation is a process employed in several detection systems. Several different ionising reactions can be used for the measurement of concentration chances within a cas stream.
3.6n the Arron Detector:

The most popular detector of this typc is the macro arcon detector of Lovelock ${ }^{96}$. The basic detector consists of a small brass cylinder holdine the ionisinf source (usually ${ }^{90}$ Sr). The cylinder itself acts
as one clectrocie, and the other electrode is alength of brass rod, in the axis of the cylinder. Argon is used as the carrier ras, and on enterine the ionisation chamber, the argon atoms are excited to a metastable state (of energy about 11.6 eV). On introducing any component whose ionisation notential is less than that of areon, energy transfer occurs from the metastable argon atoms, resulting in ionisation of the foreign constituents ${ }^{102}$. This causes an increase in the current developed across the ionisation chamber, which is amplified and recorded. The ionisation potentials of most orranic comounds. the energy of metastable argon atoms. and several inorfanic gases are lower than The equation rolatine the current increase to the concentration of the vapour in the ionication chamber has been derived by Lovelock 96,97 . Accordine to this equation, at some finite concentration of organic vapour, the ionisation current will increase to infinity. This current rise is limited by placinc a linearisinc resistor in parallel with the detector: However it has been shown that no one resistor will give more than a limited linear dynamic range, and that its presence contributes sicrificantly to the response time of the detector ${ }^{39}$. To overcome these difficulties Lovelock 98 , 99 modified the cell design to induce an internal positive repace charge. It has been found that the detector is sensitive to some substances of ionisation potential greater than ll. 6 eV , contrary to expectations. This is explained by assuming that there is a small number of argon atoms or ions present in higher resonance levels.

The linearity of response of a macro arcon detector has been studied by Scott and co-workers, under different conditions of applied voltage and flow rate, and for a variety of organic materials. I.t was concluded that the detector has a very small linear dynamic range, and that calibration for all substances at all concentration levels is necessary for accurate quantitative work ${ }^{50}$.

Colculations of resmonse factors for different species on the basis of collision frenuencies between organic molecules and arcon atoms was attemnter by Lovelock ${ }^{96}$. From the kinetic theory the relative molar resnonse R, is given by:

$$
R=K\left(r_{c}+r_{x}\right)^{2}\left[\frac{1}{M_{c}}+\frac{I}{M_{x}}\right]^{\frac{1}{2}}
$$

Where $H_{c}=$ molecular weicht of carrier fas, of radius r_{c}
$I_{x}=$ molecular weight of orcanic compound, of radius r_{x}
$K=$ proportionality constant.
Good arreement between calculated and experimental response factors ' was obtained for a number of different species of molecular weights up to about. 100. Above this value there was an increasing divergence of the resnonse factors.

The resnonse of the detector to several classes of compounds has been published, includino methyl esters ${ }^{87}$ and steriods ${ }^{88}$: Complete calibration was found to be necessary, and virtually no lincar response with respect to concentration was found. However, it has been show for a variety of hydrocarbons, including aromatics and unsaturated materials, that the response for each component of a mixture, expressed as a percentage of the total, is a direct measure of the percent weight of the component, without the necessity for peak area correction factors.

The simple arfon detector is very sensitive to most organic materials, but gives only a weak response to fluorocarbons and nitriles. It does however resnond to a few inorganic pases. The detector has a rather low upper limit of detection, detector overloadinf resulting in pook splitting: However by using a nitrogen-argon mixture as carrier the unner limit of detection can be significantly extended ${ }^{103}$: The lower limit of detection is cven greater than that of the flame ionisation detector, so that the detector is particularly suitable for the analysis of minor constituents, even though calibration is required. The detector does not resnond to water ${ }^{98}$, but the presence of water vapoin , derived either from the carrier gas, or the sample under analysis,
seriously affects the response of detector ${ }^{100}$. The sensitivity is reanced, the response may become random, and recovery $:$ to normal onhaviour may take several days. Sources of contamination of argon are considered by Evans and Scott ${ }^{101}$. It is essential to dry the carrier by passing it thouch a molecular sieve via metal tubing and ensurc that all samples are completely free from water before analysis. 3.60 The Helium Detector:

Netostable helium atoms have a higher energy than metastable i arfon atoms, so that an ionisation detector usine helium as carrier mas should resnond to a greater variety of materials than the argon detector. Using this system detection of the permanent gases has been accomplished by several workers ${ }^{104}$. It is essential to use extremely pure heliun, since impurities present in the helium, will themselves be ionised in the detector chamber, and give rise to a high background current. A detector in which the helium is excited by tri.tiun has been nsed by Itartmann and Dimick ${ }^{106}$: The detector was calibrated by the losarithmic dilution technigue and values for the linear dynamic rance and limit of rdetection are quoted. The need to use extromely pure helium is stressed:
3.6c The Micro Arcon Detector:

Following on from the work on the simple macro argon detector, Lovelock ${ }^{105}$ has developed a minieture version of this device, which as the name implies has a much smaller dead volume, and hence morc rapid reoponse time. Sensitivity is significantly higher than in the macro arcon detector:
3. 6d The Triode Arcon Detector:
Λ further improvement in nerformance is broucht about by intronucing a third electrode, situated near the anode tin. This forms the trionc miniature arcon detcctor ${ }^{98}$: The electrode i.s necratively charsod, and its nurpose is to confine the primary electrons to a norrow beam, and to collect any positivo ions. Thus the backeround is
ifrowed from the rignal, with a subsoquent roduction in noise, and an natension of the lower limit of detection. The detector is not difficult to construct, and since its nerformance is superior to that of the simnle arcon detcetors, there seems little point in emn?oyine the latter.
Z. 6 e The Ionisation Crossmsection Detector.

This wns the first ionisation detector for gas chrometocraphy and wn nronorod by Pompeo and Otvos 109 in 1953. Practical designs based on this nronosal were introduced indenendently by otvo 17.0 and Boer 17. The crosr-section detector consists of an ionisation chamber to which \therefore ponlind a notential rradient. The gas within the detector is irradiater with a β way source, and the ionisation current recorded. In the nrosence of a carrier ens alone, the current is small, but incroseses ojenixicontly on the introduction of other heavier gases or vanours. rhe heavier rases cause an increase in the total cross-section for ionisation, and this is anproximately proportional to the total numbn of clectrons in each gas molecule: Provided that hydrocen is used as carrior gas, the introduction of any other material rill cause 2 Ineme increase in the number of elcetrons present in the chamber: mine nse of gnses such as nitrogen of relatively high cross-section of ionisation will give: an increase in the backeround curcent and hence a decrease in the lower limit of detection. Arcon and helium cannot be usod, since the detector would simultaneously function as an "areon" and a cross-section detector, resulting in unnredictable responses: Detailn of the nhysical basis of this detector have been published ${ }^{12}$. The change in current ΔI produced when a component is introduced into the fos stream is riven by:

$$
\Delta I=\frac{K \cdot P V}{R T} \cdot x\left(Q_{x}-Q_{C}\right)
$$

where P, R, n have the usual nhysico-chemicol simnificonce
$V=$ volume of the detection chamber $\left(\mathrm{cm}^{3}\right)$ $x=$ mole fraction of component
$Q_{R}=$ molecular ionisation cross-section of the component $\Omega_{c}=$ molecular ionisation cross-section of the carrier cos. Insnection of eruation 3.71 shows that the detector resnonse is nressure and tempernture derendent. The relationshin assumes that the total molcoular cross-scction is the sum of the individunl atomic cross-sections of the consti.tnent atoms of the molecule, and is independent of the nature of the chemical combination. The relationshin also nssumes ideal conditions for collection and production of ions within the chomber, thot a nerligible amount of energy of the incident radiation is absorbed by the gas, not that no significant loss of ions, for exnmnle by recombination, takes place. The conditions can be apnroached in practice: Loss of energy to the gas can be minimised bry unin: a hirh energy p-ray source such as 90 Y , althourh many other sources have been used ${ }^{113}$. If the coll volume is reduced significantly, a weale β-ray emitter such as tritium may be used ${ }^{11.4}$. Details of the conatruction of a micro cross fiotector have been nublishedlo8, 114 , Tritium sources are nonular in view of their convenience in handing and aafety, although they camnot be used above $225^{\circ} \mathrm{C}$ as outciassing irom the foil occurs.

Consideration of equation 3.1.7 indicates that the detector should rive a linear response, under the correct operating conditions, over itis entire dynamic range, i.e: satisfy an important condition for an ideal detector. Morcover, resnonse factors for all materjals can be calculated from a knowlede of atomic cross-sections for ionisation of the atoms constituting the molecules 110 , 111. Boer. gives a simple cxpression for the calculation of response factors, if:

where $\mathrm{M}_{\mathrm{x}}=$ molecular weicht of the component of ionisation cross-section Q.:

Colculoted and observed responses were in reasonable arrecment for a number of hydrocarbons ${ }^{111}$, and using several different carrier gases? Intousen 118 has however observed deviations from the theoretical resoonse then uring carrier mases of high ionisation cross-section min detector has been nroposed for use as an ahsolute reference stmindard in aunntitative analysis ${ }^{7 l 5}$. The mass m"of component dotected is calculated usinc the equation:

$$
m=\frac{P v A_{x} M Q_{c}}{R\left[I+T\left(Q_{x}-Q_{x}\right)-A_{x} T P Q_{c}\right]}
$$

where $v=$ volume of carrier fas in which the peak is eluted ('cm)

```
    I = standinc current (amps)
```

 \(A_{x}=\) area of peals (amp sec)
 \(t=\) time taken for compound to pass through the detector i.e.
 peak width (sec).
 The remaining symbols have the same sipnificance as in equation 3.11 and 3.12 assuming that P and T are constant and the mole fraction of component is less than 0.01 , the expression simplifies to:

$$
m=\frac{P v A_{x} M_{x} Q_{c}}{R I t T\left(Q_{x}-Q_{c}\right)}
$$

$M_{x}, Q_{c} \theta_{x}$ and R are known, the remaining quantities can be measured, and honce the absolute mess response of the detector found. However no conclusive experimental evidence is put forward in support of equation 3.14; rather the equation is assumed to be obeyed, and quantitative analysis carried out on this basis.

Matousek ${ }^{116}$ has used the cross-section detector to obtain both a differential and an integral response: Using two ionisation chambors, one in the analytical stream, and one in the reference stream, the sensitivity of the detector to temperature fluctuations and pressure chances is minimised, and the ionisation current produced by the pure carrier gas is nutomatically compensated by the second cell. To. obtain an integral signal the innut resistance used for a differential sifnal is replaced by a capacitor: In the presence of an eluted
commonent a current will flow and the canacitor becomes chareed thus riving a time intefration of the current. The potential rise E, on the capacitor, of capacity C is amplified and displayed as an integral response:

$$
E=\frac{k}{C}\left(Q_{x}-Q_{c}\right) \int x d t
$$

The significance of the symbols is as in cquation 3.11.
In practicc it is not possible to balance out completely the standing current in the two ionisation chambers, and the residual current interferes with the integral response, resulting in a driftinc oascline.

The detector offers many attractive features, and the claims are such that it may renresent a most satisfactory detector for quantitative analysis. The resnonse apnears to be prodictable, provided that nolocular weicltes and ionisation cross-sections are known, although confirmation of its response to a greater varicty of orcanic species ịs renuired. Purnell ${ }^{l 19}$, however states that its porformance is little better than a katharometer, and that it offers no advantage over other ionisation detectors. In view of its predictable response, its ability to respond to all materials and its very hich upper limit of detection, this is a surprising statement. On the other hand; the lower limit of detection does not approach that of the argon detector:

The detector has one serious practical disadvantare: the electrodes are casily contaminated, for example. by stationary phase, resulting in a particularly noisy and unstable background current. The electrodes must be thorouchly cleaned, but in the case of a high energy β-ray source, they cannot be removed without the necessary safoty precautions being observed. Using a tritium source contamination is even more serious since a reduction in emission, and hence in detector sensitivity occurs, although a tritium source is safe to handle without shieldinc:
i.B. Purnell ${ }^{119}$ refers to the above detector as a "crossusection of conture" detector, not to be confused with the "electron capture" detector described below: Boerlll refers to the detector as a " β-ray ionisation" detector, rather than a "cross.-section" detector. 3.6f The Electron Canture Detector.

The majority of ionisation detectors are designed to minimise recombination of ions, whereas the electron capture detector depends on the process of recombination for its successful operation. The detnctor is thus extremely sensitive to compounds of high electron affinity. the possibility of usine ion combination effects was nronosed by Lovelock ${ }^{120}$ and first employed by Goodwin ${ }^{121}$ in 1961. An ion chamber containing an ionisable gas is maintained at a potential which is just sufficient for the collection of all free electrons produced. On introducing an electron canturing vapour a current recreasc occurs, which is ralated to the concontration of the vapour $n y$ the exprescion:

$$
I=I_{s} e^{-k c x} \quad: 3.16
$$

where $I_{s}=$ seturation current in pure carricr gas
$I=$ current in the presence of a comnonent of concentration C
$k=$ constant depending on field strength and the electron affinity of the component
$x=a$ factor dependine on the dimensions of the ion chamber
This simple detector was unsuitable for guantitative analysis, since anomalous responses were observed, and evon small changes in onerntine conditions caused non-linearity of response with concentration. Several mechanisms of detection were simultancously occurring ${ }^{\text {l22 }}$: The detector can also function as a cross-section detector, an arcon dotnotor, and an electron mobiljity detector. The mechanism of Cetection which predominates will denend on the precise conditions of operation. Lovelock ${ }^{122,} 123$ has develoned the detector so that $a l l$
mecinnisms other than reconbination, are virtual? eliminated, thus removine the major sources of anomalous resnonse. A simple ionisation chanon in emnloyed: the jonisinf source (trjotimm) is attached to the cotwode, and at atmosphere prossure the low encrey radiation from the tritium onnnot nenetrato the carrier sas deener than about 2 mm . Thus -ll nositive ions and electrons reside in the vicinity of the cathode. The detector cennot therefore function as a cross-section detector, since the introduction of a vapour with a higher ionisation cross-section than the corrier gas will merely chance the range of radjation, and not tho rate of ceneration of ions. Arcon is used as a carrier cas to $\because n i c h$ a few porcent of a non ionisable cas (methone or water) has been adतen, to remove any arcon metastable atoms as soon as they arc formed. Thus the retector connot function as on argon detector. The presence of methanc or water vapour also maintains tho electron enersy at in conetent thermal level, so that the detector connot function as an electron mobility detector. A low pulse potential is applied between the rlectrodes and the free electrons present are collected. The pulses are intereated to provide a steady direct curent for recording numposer. The addition of a compound of hich electron affinity, rosults in a decrease in the number of collected electrons; and hence in the output current. Oneration in the D.C. mode is sometimes used, but onn nroduce anomalous responses since the detector can operate martiall. as a cross-section detector:

Detcctor desief and electrode ceometry have been discussed by. severnl workers ${ }^{124-16}$, and the construction of a detcctor has been describod in detail ${ }^{131}$.

The detector is so sensitive to compounds of hich electron affinity trat onlibration near the lower limit of detcotion, even by logarithmic dilution techniques ${ }^{50}$ cannot be used reliably. A method of calibratinf the doteotor, msinc a stroam splititer, and feeding the majority of the offluent to a cross-section detector as a stendard, has been used by

Lovelnctri22, and the responre of the detector towner a number of clcotron capturing materials deterpined. The linear dynamic ronge of the detectior is very small, and response factors based on simple caditivity of the electron capturing fracnents of the molecules are unsatiofactory. Response characteristics under verious operatine conditions, and with different carricr cases have also been studied by Mams and Smann ${ }^{\text {l27 }}$: The sensitivity of the detector toward a halocennted hydrocarbon comnared with a simple hyrdrocarbon can be of the orier of $10^{4 /}$ as larce: Response factors for halocenated materials have ben nublished by several worlsers 130 .

In view of the selective characteristics of the detector, and its very hich sensitivity it is not particularly suited to quantitative analysis. If quantitative analysis is contemnlated the detector sinould be operated at minimum sensitivity, so that a reasonable sample sine may be injected, to minimise loss by adsorntion and other effects (see Chapter 1). The detector should nreferably be used in conjunction with a non-selective detector for reliable ruantitative worl. It has been used in coniunction with the cross-section detector? the flame ionisation detector ${ }^{128}$, and the gas density balonce ${ }^{729}$. It has also been used in combination with other halogen detectors, to distinçuish between similar materials, by makinc use of differences in response ratios ${ }^{141}$. Dimick and IIartmann have published an account of the operating characteristics and applications of a commercial electron capture detector ${ }^{140}$. Lhe detector has the advantage that the presence of water is desirable for successful operation, so that there is no difficulty in analysing moist samples, and those contained in water as solvent.

Colibnation for all materials is necessary and the linear drnamic ranme is small. The detector is easily disturbed by impurities, reculting in a system which is unstable and difficult to maintain.
3.6e The Electron Mobility Detector.

A detector which functions by mosurine chances in electron mobility in the presence of foreicg meterial has been described by Loveloct ${ }^{132}$. Collisions between electrons and noble fas atoms are elastic at low ficld streneths. But on introducinf another pas, colisions between electrons and the nolecules of this gas are non-. onstic, the electrons lose .energy, and their velocity decreases: Tinis decreases the ability of the electrons to excite the noble gas, and also increases their bulk drift velocity in the direction of the apnlied ricld. Usine a conventional "argon" detector several workers ${ }^{133}$ have made use of this effect, by usine as carricr gas, arcon contaminated with an ionjsable gas, at a high potential to ensure ionisation (reforred to as indirect ionjsation): The introduction of a permanent ras into the detector causes a fall in the electron energy, resul.ting in a decrease in metastable arfon atoms and hence a decrease in the number of ionised molecules. Lovelock ${ }^{132}$ used pure arron which was ionised by α or weak β.radiation, (i.e: direct ionisation): The use of arfon is limited to those gases which are not themselves ionised by metastable arron atoms, i.e: a detector selective for the nermanent rascs is obtained. However by using helium (and an ionisible gas) aimost all gases and vapours can be detected. The detector also forms the subject of a paper by Smith and Fidian ${ }^{134}$.

The response to different gases is not predictable and both forms of the detector require calibration. As with other ionisation detectors, it is very readily upset by impurities: The main value of this detector lies in its ability to detect the permanent gases, and for the determination of very small quantities of water vapour:
J.n.l Radio-ionisation Detector Performance.

jetector
ml .

The electrical properties of a glow discharge at low pressures depend unon the composition of the gases present. Thus this phenomenon can be used as a basis for a gas chromatographic detector ${ }^{135}$. Although the resnonse of the detector cannot be predicted, it will resnond to all fases and vapours, and has been found to have a reasonable linear dynamic range ${ }^{236}$. The detector has been satisfactorily used to determine impurities in argon ${ }^{\text {137 }}$. Decomposition of the components of a mixture in the discharge chamber produce carbon deposits on the cathode, which have been found to permanently affect the emission of the electrodes: A major disadvantage is that the device must be operated at reduced pressures.
3.7b Radiofrequency Discharge Detector:

A radiofrequency dischorge can be maintainod at atmosnheric pressure, so that a detector operatin, on this principle would overcome one of the disadvantares of the flow discharge detector. In addition deposition on the electrodes does not appear to affect the detector response. Using
heliun as carrier fas Bowman and Karmen found that on introducing a sambe into the detector, there was a measurable reduction in voltace ${ }^{138}$. Phe detector is claimed to have a wide lincar dynamic range and to be extremely sensitive. Its major disadvantages are that for the best....... rosults helium must be used, the response is unpredictable, and expensive ancilniary equipment is requircd: Hampton ${ }^{143}$ described a simi.7.er dotector in which the rosponse, althouch unprodictable is linear for smale sizes of less than about $1 \mu \mathrm{l}$. The detector is sensitive to all matorials, and has a particularly hich sensitivity toward hydrogen. $3.7 c$ stornbers and paulcon ${ }^{744}$ have used a Tesla discharee as a rictoctinf device, which has the advontrece that it is choap and requires no ancilliary oruipmont.

Discharce detectors have olso been used by several other workers, 145, 146 , mainly for the onalysis of permanent cas mirtures. 3.7d A discharee dovice in which the intensity of the emission npoctre of excjted compononts is measured photo-clectrically can be used as a selective and as a non-selective detector ${ }^{7.49}$. The mode of detection is jdentical to that used for the flame photometric dotector deccribed previously. The detector readily distincuishes between normal hydrocarbons, and those containing halogens, phosphorus or sulphur, by a suitable choice of wavelength. It is also satisfactory for the nermenent sases. Interferonce between different crouns at a rpecific wavelength is measured quantitatively in terms of the selectivity ratio: this is defined as the amount of an unknown compared to the amount of hexane required to give an identical detector response: Details of selectivity ratios, characteristic wavelengths and limits of detection for a number of materials are given ${ }^{149}$. The detector has a linear response for nonane at least over three orders of concentration, which is the same order quoted for the flame photometric detoctor usinc benzene 92 .
3.7e Photo-ionisation Detectors.

The detector ${ }^{139}$ consists of a chamber containine a clow discharce Wich is sumaliod with a nure ras. The ultra violet irradjation from the discharme jilluminates an ionication chorber, thouch which column effluent nasses. The discharec can either be operated at roduced nerocure usinc a water pump, or, using a radiofrcquency dischorece and nelium, at atmosnhere pressure. The detector has a wide linear dynamic range and con resnond to nearly oll reses and vapours. It is not subject to contanination and does not give anomalous rosults with hologenated materials.

Yamane ${ }^{142}$ has used \because photo-ionisation detection in which helium is used both as the discharce gas and the carrier gas. The effect of various onerating parameters on the response has been studied: the use of very nure helium is essential. The main use of photo-ionisation detectors is for the analysis of permanent gases.
3.7.7 Discharce Detector Performance:

3.8 Ultra-violet Absorbtion Detector ${ }^{199 \text {. }}$

The detector cell is irradiated with ultra-violet lieht at a snecific wavelength and the intensity measured by a photomultiplier tube. Orcenic materials, on entering the cell will absorb radiation, resultinc in a loss of intensity: The detector has a ranid resnonse, ir, cimnle to construct, and has a linear dynamic range to saturation Invel. It is insensitive to changes in carrier cis flow rate, pressure and tomperature. The resnonse is partially aelective, but is not predictrble. The limit of detection is about $2 \times 10^{-11} \mathrm{mMmI}$ for benzene:

?.? Ionisation Goures.

The ionication gauge is basically a conventional triode valve, the potential difference between the filament and crid, accollerating electrons which can ionise any gas present. If helium is used as carrier ras, and the potential difference is just not sufficient to ionise helium, but all materials of lower ionisation notential, then the device can be used as a gas chromatorraphic detector ${ }^{1 / 27}$. The detector is onereted at a low pressure and the crid voltace must be ricoronsly controlled (to 0.01%) to ensure reasonable stability ${ }^{148}$. Alinough the detector has a reasonnble linear dynamic range, response connot be predicted. The resnonse is imnoired by electrode oxidation, and doposition of decomposed materials on the elcctrode: Oxidation cen be minimised by a suitable choice of electrode metal (e.c. rhenium or tuncsten ${ }^{148}$).
viradi and Ettre ${ }^{150}$ have combined an ionisation fauge and mass spectrometer as a single unit for simultaneous quantitative and
 detector calibration.

The limit of detection of the ionisation gauge is about $I \times 10^{-8}$ ming^{-1} :
3.1.0 Gns Density Detectors:
3.10a The Nartin Gas Density Balance.

The measurement of the density changes of a gas stream emerging from a chromatograph offers the basis for a detection systen, sinco the resnonse of the detector depends on the molecular weight differences between the carrier gas and the components. An apparatus based on this orincinle was first constructed by Claesson. in 1946^{154}, but the first ‥ns density bolance desicned as a chromatocraphic detector was made by wrtin and Jomes eicht years later ${ }^{155}$. Fieure 3.3 is a diagram of the fio: system within the gas density balance: A reference gas enters the retector at A and is split equally so that one part flows upward, and

Figuro 3.3

Who Gas Donsity Balanco:
the other downward. The analytical carrier gas stream enters at C, ond is sinilarly split. The divided onalytical streams combine with the divided refcrence streans at D and $D^{\prime \prime}$, and these two streams thenselves combine at the detcctor outlet E. When a component which is heavier or lishter than the carrier fas enters conduit $D D^{\prime}$, there ir a pressure change at point D which is sensed as a flow rate change in a conduit X^{\prime} parallel to D^{\prime}, and hence a flow of pure gas will occur alone $X X^{\prime}$. If the component detected is heavier than the carrier लas, the gas flow in $X X^{\prime \prime}$ will occur in an upward direction, but if the density is less than that of the carrier, flow will be in a downard diroction. The detectinc elemont, nlaced along $X X^{\prime}$, consists of a heatod wire, at cach end of which is a thermocouple: When there is no लas flow throurh XX' the thermocounle outputs are equal, but when a rlow throuch $X X^{\prime}$ occurs, rosulting from a comnonent in conduit $D D^{\prime}$, there is a temperature gradient between the thermocouples, which can bo rolated directly to the density differences botween the carrier and the component. Since only reference fas passes along XX', no component ever comes into contact with the heated filament, so that contamination of the filament and pyrolysis of components cannot occur. In practice it is round that even when there is only pure carrier gas in both roference and analytical conduits, there are pressure differences within the systen, causcd by flow restrictions in the conduits: However, since the analytical and reference conduits each form a pneumatic Wheatotone bridre, the incornoration of variable restrictions in the bridee arms, enables the detector to be balanced. (Reference to a pneumatic bridec detector has anpeared in a Russian journal ${ }^{170}$, but desien details are not ?

The oricinal fas density balance was constructed from a solid connor block. The construction is time-consumine and demands considerable silil. Vunday and Primavesi 156 have constructed a skeletal tyme of fas density balance from conper tubine, and have compared some of the
cinaracteristice of the two models. The ovnrall conclusions were that the original block detector rives less noise, but has a smaller linear rymomic ranec than the skeletal model. However both detectors have a finoor drnonic ranse ereatiy in oxeoss of that reguired for rios chromatorranhy. The skeletal ras density balance is far easier to construct. Other minor modifications to the original Martin and James design heve been proposed by several worlers ${ }^{157-160}$, but these concern mainly the construction of the detector and do not substantially alter the performance characteristics: Λ, pas density balance for use at high temneratures has also been described ${ }^{161}$.

The sensitivity of the detector will depend on the volume of the main conduits, the power dissipated by the heater, and the nature of the carrier pas. A gas of low thermal conductivity will increase the temmrature rradient along the wire, and for this reason nitrogen is fencrally used as carrier gas. However for the analysis of materials of similar molecular weight to nitrogen other carrier gases should be used, to maintain a reasonable sensitivity.

The detector is temperature sensitive, and for maximum stability the temperature must be controlled to $\pm 0.001^{\circ} \mathrm{C}$. For a correctly balanced detector, the response is completely flow insensitiyebut flow rate is limited by the onset of turbulence within the conduits: however this is not a serious limitation of the detector:

The responce of the detector is predictable from a knowledge of molecular weifhts. By correcting the peak areas corresponding to each of the constituents of a mixture using the expression:

$$
f=\frac{M_{x}}{M_{x}-M_{c}}
$$

whore i_{x} and H_{c} are the molecular weights of the constitucnt x, and of the carrjer gas, respectively, the gracentare composition of the mixture by weight, is obtained dircetly:

$$
\because \text { roight of comnonent } x=\frac{\Lambda_{-}: 1.00}{\sum_{1}^{j} A f} \quad 3.78
$$

Unon A poal aroa.
This no experimental calibration of the detector is reguired, and the responsc should be linear for all materials. Nlthouch the linearity of resmonse has been confirmed for a limited number of compounds ${ }^{162}$, the majority of worlsers who hove published data obtained from the fas nensity balance, male the assumntion that response is alwors calculable from ecuation 3.17, and pive no experimental sunnorti29, 163, 164, In the course of the present \because ork the resnonse of the dotoctor to a number of difforont materials has been studied and no anomalous responses have boon found under normal onerating conditions. Experimental details and rosults res civon in Chaptor 6 :

On the ascumntion that ernation 3.17 is oboyer for all materials, and provided that the mass of x is knom, the cas density balance may be used for the detormination of the molecular vejghts of unlenown materials. A number of workers ${ }^{\text {163-5 }}$, including the present Author, have used the mas density balance, as the basis for a technigue to determine molecular weights. This is discussed in detail in Chapter 7:

Tho Martin mas density balance has many of the propertics of an ideal ietcotor: It is robust and reliable: It does not reauire exnensive ancillary equipmont. Its resnonse is predictable for all nocos and vapours, and it has a wide linear dynamic renge. The Cetector is non destructive, and components never come into contact with the heated detector filament. However the detector is not easy to construct, its limit of detection is not very low compared with ionisation detectors, and it requires excellent temperature control. 7. TOb The Gou-ing Gas Densi.t.r Balance.

A study of the eas censity betance was undertoleen by Nerheim ${ }^{766}$, and ar a rorult of his work a, simnlified version of the detoctor was derigned ${ }^{767}$: The basic difference lies in the fact that the conduit $X X^{\prime}(f j$ gure 3.3$)$ containing the detecting element, is completely removed,
and is roplaced by two heated filments, one in oach of the horizontal reforemon ons conduits, i.e: betwen $B D$ and $B D^{\prime \prime}$. Those filaments form two orms of a Wheatston hridee Adjustable flow restrictors aro not incornorated in the detector. The detector appears to perform setisfoctorily in that resnonse factors for some simple ormanic comounds calculated from equation 3.17 acrec with cxperimental volues. Anomalous resnonse is observed for hydrocen and ethene. No value is riven for the linear dynamic range of the detector: The detector forms the nasis of an instrument available commorcially 168 , which will be referred to as the Gow-Mac ras density balance, to distincuish it fromthe oriminal Martin pattern. Iittle data have been published on the nerformence of the Gow-Nac detector, the only papers beine a series by Guillemin and Auricourt ${ }^{169}$. 215 These authors set out to define the ontimium oneratinf conditions for quantitative nnalysis. The sencitivity of the detcctor rginc nitrogen is greatost for an analytical mos flow rate of $33 \mathrm{ml} \mathrm{min}^{-1}$ and a reference flow rate of $100 \mathrm{ml} \mathrm{min}^{-1}$: The nerformance of the detector was examined usinc several difforent corrier cases, both permanent geses, and those of hich molecular weicht fuch as the halogenated alkenes. The effect of temperature on detector sensitivity was studied. The linearity of the detector was hriefly examined, but no serious study was undertaken. Results of suantitative analysic of a number of mixtures of low boiling halogenated hydrocarbons are in crood afreement with the true mixture compositions. Each mixture was analysed three times, at one sample size only.

In the present work the linear dynamic range and response of the Gow-inc fos density balance has been determined for several different matcrials; it is concluded that althouch the detector is in most fnetancos sntiefactory for relative percentace compositionanalysis, the absolutc recnonse docs not always arree with calculated valucs, and deviations from lincarity occur. Details of this work are to be found in Chanter 6 .
3.10c The Jet Strenm Detector.

A very simple detector whose resnonse is a function of density, jes the jet stream detector ${ }^{273}$. This conaise of a movine coil minoommeter , to the needle of mhich is attached a vne, held in couilibrium nosition br a curront nassinc throumh the coil. Reference ens imninces on one side of the vane, and the analytical pas streom on tine othor side. Elution of components causes a deflection of the nocdle, and the current required to restore the needle to its equiljbrium nosition is measured. Since the resnonse of the detector denonds on the density difference between the two gas supplios, it is colculnile, and can be used for quantitative analisis and molecular veinht determinations. fihe main drawack of the device is that precise control of ras flow is required for stability.
3.10.1 Gas Density Detector Performance.

Wyne of Coll Detector Volume ml	Response rime sec.	$\begin{aligned} & \operatorname{Limit} t-\rho^{f} \\ & E \sec ^{-1} \end{aligned}$	Detection mNm	Linear Dynamic Range	Compound
Mortin (Pef. 25) (Ref. Chanter 6)	3	4×1.0^{-7}	$\begin{aligned} & 4 \times 10^{-6} \\ & 6 \times 10^{-6} \end{aligned}$	>103	Pentanol octane
Nerheim - filament (Ref. 166)	8	6×10^{-8}	1×10^{-6}		butane
Nerheim - thermistor (Ref: 166)	8	1×10^{-8}	2×10^{-7}		butane
```Gow-Mac - filament 8 (Ref. j5a) (Ref. Chapter 6)```	11	$10^{-7}$	$\begin{aligned} & 4 \times 10^{-6} \\ & 3 \times 10^{-8} \\ & 6 \times 10^{-7} \end{aligned}$	$\begin{array}{r} 10^{3} \\ \operatorname{small} \end{array}$	$\mathrm{CCCl}_{4}$ octane
Pncumatic bridge			$5 \times 10^{-6}$		

^ (Ref. 170)

### 3.11 Gas Volume Detector.

Direct measurement of the volurne of components eluten from a column is the basis of a detection system devised by Janals ${ }^{171}$. By usin".. carbon dioxide as carrier ras, complete absorption of the ras at thn colum exi.t, into a vessel containine potassium hydroxide, is accomplished. Other constituents of the fas, which are not absorbed by potassium hydroxide, pass into a gas micro-burette. Thus the
response oif the detector is measured as a volune change, and is
interral. The detector can be used for all materials which are not ancorjed by, or react with caustic alkali solution and are not soluble in matcr: i.t is not very satisiactory for partially resolved components. It does not have a ver: low limit of detection, since volume chances saller than 1.0 pl cannot readily be moasured. the detector must be opnrated at a temperature sufficiently high to prevent condensation of constituents in the burette. In practice the detector is normally oncrated at room temperature, thus severely restricting materials for analysis. The system is very temperature dependent, and it is essential to use extrencly pure carion dioxide. The detector is cheap to construct: and simple to operate, and has the great advantage that response is prodictable for all materials. Examples of the determination of smallamounts of alkanes in gascous olefin mixtures, usine, an automatic ras volme detector have been published by Jnals ${ }^{172}$. Experinental procedure for the analysis of gaseous hydrocarbons, and permanent gases, have alro been mublished ${ }^{173}$.

The acouracy and precinion of the method are better than $2 \%$ and the limit of detection for any component in a mixture is given as 0.3\% by volume. It is meaningless to quote the limit of detection with rospect to the concentration in the carrier gas, since this never reaches the detector: in any çase, the detector eives an integral resnonse. The absolute limit of detection is of the order of $4 \times 10^{-4} \mathrm{mM}$.

Several other papers have been published on the Janate detection systen, the majority of which have appeared in the less common journals? 3.12 Gns Flow Impedence Detector:

The pressure develoned across a choke throurh which a gas flows at a constont rate is a function of the pas composition. This effect has been used as the basis for a detector ${ }^{775}$, but sensitivity is low and rigorous control of flow rate is cssential. The limit of detection is about $4 \times 10^{-5} \mathrm{mMm}^{-1}$.
3.13 Suriace potential Detector.

The neasurement of surface potential chances for use as a detection arotna was mroposed by Phili.ins ${ }^{176}$, and examined for its applicability to fas chromatocraphic analysis oy Griffiths and Phillins ${ }^{175,177}$. An alternatince.m.f. is set un by two dissimilar motals when one is vibunted close to the other. The e.m.f. depends on the natiro of the mas nossinm between the plates. The device is partially selective, and sensitivity is rreatest for poler matcrials. It suffers from the diradvantafes of irreversible adsorntion on the plates, non linearity of resnonce, and lonf response time. The limit of detection is about $4 \times 1.0^{-8}$ mim. $7^{-1}$.
3.24 Diclectric Constant Detector.

Keasutement of the dielectric constant changes of a gas stream heve beon used as a besis for a gas chromatographic detector by Philinins ${ }^{175}$, murner ${ }^{178}$, and more recently by Winefordner ${ }^{179}$ : The detcctor comprises a cell containing a variable capacitor between the nlotes of which the carrier gas is passca. In Winefordnor's system this capacitor forms part of a resonant circuit, such that therc is no frequency difference between a reference oscillator and an oscillator connected to the detector cell. The presence of an impurity in the cell produces a frequency difference which is a function of the amount of component. At high concentration the response, measured from peak heichts (i.e: maximum frequency chance), is non lincar, but tends to Jinearity with decreasing sample sizc. Theoretically a inear response is expected, since the frequency change $\Delta F$, in the presence of an impurity iss given by the cquation:

$$
\Delta F=f_{0} \frac{\rho_{K}}{2}\left(K_{I}+\frac{\left.K_{2}\right)}{T}\right.
$$

where $f_{0}=r e f e r e n c i$ frenuency
$\rho_{x}=$ density of component $x$
$K_{1} K_{2}=$ constants in Debye equation.
The response of the detector is clained to be very ranid, and

Vindall: inconcitive to cras flow fluctuntions. The cell volume (70 ml.) is mother lareo compared to that nsed by Turner. ${ }^{178}$. 3.7.5 Ultrnoonic Detector.

A detector hased on the measurement of the velocity of sound was cucmenter by Jamos ${ }^{211}$ in 1956. A:prnctical detector has been deviscd by ionle ${ }^{\text {I. } 80}$ : The detector cell je operated at a fired frecuency, and on crancine the far composition in the coll, a chance in velocity, and hemo a change in wavelength occurs, which is detected as a phase chonce. This phase change, resulting from the presence of a component in the carrier gas, can be derived from a fnowlodee of the molecular Moints and spocific heats of the constituont gases or vapours. Provided that hydrogen is used as carrier gas, the response to many materinle un to a molecular weight of ohont 300 , is in excollent ampoment with the theoreticnl rosponse calculated from the enuation:

$$
\Delta Q=K \frac{\left(M_{c}\right)^{\frac{1}{2}}}{\gamma_{c}} n \frac{\left(M_{Y}-M_{C}\right)}{M_{c}} \quad 3.20
$$

where $K=$ constent dependinc on cell path Jencth, fixed frequency, temncrature and the universal gas constant
$\gamma_{c}=$ specific heat ratio for the carrier cas, of molecular weicht $N_{c}$
$M_{x}=$ molecular weight of comnonent $x$
$n=$ mole fraction of component $x$.
The rosponse of the detector is dependent unon, temporature, prossure and flow rate. The resnonse is linear un to about $5 \%$ by volume of the carrier sas, and the linear dynamic range extends over five orders of marnitude. Response factors, using nitrogen as carrier cannot be nredicted satisfactorily: The detector may be uscd for molecular weight dntominations, provided that the weight of the unlenown material ( $r_{x}$ ) is known:

$$
M_{x}=\frac{W_{x} M_{c}}{W_{x}-K^{\prime} \Lambda_{x}}
$$

wherc $\mathrm{in}_{y}=$ molecular woicht of component $x$
$A_{x}=$ peak area correspondinc to component $x$
$K^{\prime}=$ constant for eiven experimentel conditions:
3.7 Eonntiothomm Detectors.

One junction of a thermocounle is buried in $a$ plue of activated charcoal, in the end of a chromatorrophic column. The other thermocouplo junction is placed in a column through which only pure carrier nn masces, and the hent liherated on adsorption of vapours is detected. nr a chance in thermocoumle outout ${ }^{187}$. Priestley ${ }^{782}$ describer a method In wich the two mes streams are switched every few onconds from one intector to the other, so that on oscillating sienal is recoived by the recorder. Fe claims that the response is mroportional to the weight of comnonent prosent, but no experimentol evidenco is riven. Blumer. 183 ins nond $n$ detoctor bnsed on the same principle using thermistor nrobes. A sorptiothermal detector has been patented by Bevan and Thorburn 274 , and a dotailed study of the device mos recent?y uncortaken by Lowes ${ }^{784}$ : Eine resnonre of the detector is not lineor with respect to sample siee Response factors calculated from heats of adsorption were only in fair ameonent with observed responses. The response of the detector is flow rote and temmerature dependent: the limit of detection is about I $: 10^{-5} \mathrm{minm} \mathrm{m}^{-3}$ (for benmene) The detector in i.ts oresent form is not setisfactory for auontitative analysis without extensive calibration, but in vicw of its simplicity and cheapness it is useful as o qualitative device.
3.7.7 Semiconductor Detectors. 3.17a The Semiconductor Adsorption Detector:

Certain properties of semiconductors chance in the presence of $a$ mon or vepour. The use of thermistors in katharometer and sorptiothermal dotectors has already bcen described. In addition the measurement of chances in the electrical nroperties of semiconductors can be used diroctly as a moens of detection. It has been shown that at temperatures in the rerion of $400^{\circ} \mathrm{C}$, the adsorntion, and subseavent desorption, of a ar on a somiconductor, will change sicnificontly the electrical conructivity of the somiconductor, and this effect can form the basis of a ras chromatomranhic detector ${ }^{185}$ : Details of the construction of such

- retector have been publinheri ${ }^{186}$. Using $n$ rinc oxide film, the roponse to a number of orconic compounds has been measured. The rerponse of the detector denends on the electron donating or accenting nower of the compound, but is non-lincar, and unpredictable: 3.l'? The Pieroclectric Detector:

Pionoeloctric cuartz crystals have been used as detectors by rinm 187 .

A relationship between the weicht of a metal film deposited on a crystal, and the resultins change in frequency $\Delta P$ has been derived ${ }^{188}$, a simplified version of which is given belov:

$$
\Delta F=K F^{2} \frac{\Delta V}{\Lambda}
$$

Where $F=$ frequency of the quartz plate

$$
\Delta W=\text { wejrht of deposited film }
$$ $A=$ area of quartz plate.

If a liquid stationary phase is coated on to such a crystal, there is, a nemanent frequency decrease. When the gas emergine from the chromatorraph is absorbed into the liquid there is a further decrease in frequency and anplitude of vibration, and by measuring those changes, the crystal can be used as a detector for gas chromatography. Using the frequency change $\Delta F$ as a basis for quantitative measurement, from cquation 3.22 , it follows that:

$$
\Delta F=\Delta F_{0} \frac{\Delta W}{\Delta W_{0}}
$$

Where $\Delta F_{0}=\begin{aligned} & \text { frequency change duc to continc of stationary phase on } \\ & \text { the crystal }\end{aligned}$
$\Delta W_{0}=$ weisht of coating
$\Delta V=$ weight increase due to sorbate :
The difforence in frequency botwoen a refernnce crystal, and the andyytical crystal is measured. The reference crystal is identical to the analytical crystal, excent that it is not coated with stationary nhase. Kany oreanic vapours show a linear relationshin between the vapour concentration and the value $\Delta W / \Delta H_{0}$, so that provided equation
3.23 is obeved, the response with respect to concentration will be Iinnar over a wide range.

Since the detector is itself acting as a chromatosranhic column, the residence time of a given material in the detector, will depend on the nature of the crystal contine, and the material sorbed (i.e: the partition coefficient) as well as the carrier mas flo:s rate

The detector may be made partially selective by a suitable choice of etationary phase: The detector requircs calibrationfor all inaterials, since the resnonse is a function of the weirft of each component Dertitionnd within the detector stationary phase, and not of the woight of material injected. Ireversible adsorntion on to the crystal coating must be nerligible, otherwise erroncour crlibration will rosult, and there will be a nermanent chanco in the basic frequency emitted by the crystal. For the same reasons the detector is presumably very suscentable to contaminetion by impurities in the corrier sas, and stationary phase bleed from the chromatographic column. Loss of stationary phase from the crystal itself will also give rise to instajility.
3.1.7.I Semiconductor Detector Performance:


Ansorption
(Section 3.17a)

$\underset{\sim}{\text { Piezoelectric }}$(Section 3illb)	0.02	0.04	$\bar{c} 10^{-8}$	$2 \times 10^{2}$

### 3.1.8 Electrolytic Conductivity Detectors:

Decomposition products of organic compound burnt in oxygen are dissolved in water, and the resultant change in conductivity is measured. In foneral, carnon dioxide, sulphur dioxide and trioxide and hydrogen holides will be formed. Several devices based on thi- princinle have been tried 189 , 190. The end of a chromatogranhic column is fitted with a combustion chamber into which oxycen is passed. The effluent from the column is thus decomposed, and is nassed into. a chamber through which
whor is flowing at a conntant rate. Dissolution ocours, and the solnion ilo:s into a conductivity cell. The resnonse of the detector is colculable and linear over a wide rance. The detector can be made sncoific for the detcction of halocens and sulphur if the contact time of the goses is sufficiently short to prevent carhon dioxide absorption. Whe fetector can bo made specific for the detection of nitrogen alone, by hedrorenatinf the components over a nickel catalyst; and passing the ammonia produced into the cell ${ }^{191}$.

Guantitative analysis relies on a movledce of the qualitative nature of the compounds, and the method is of course destructive: 3.79 Conlonctric Detectors:

Conlometry can be used for quantitative detection, the amount of material present being calculable from Faradays Laws. A. non-selective detector rearires the pyrolysis of all materials to carbon dioxider; שhich is then nossed into a coulometer ${ }^{192}$. Several delective detectors have been described; for example tho detection of sulphur is accomplished by oxidising column effluent to sulphur dioxide or reducing to hydrogen sulphide ${ }^{\text {193 }}$. Coulson has given a detailed description of a microcouloncter which he has used for the detection of chlorine ${ }^{194}$. 3.19a The Reaction Coulometer ${ }^{195}$.

In this device the coulometric cell output is maintaincd at a conntant level by the following system. The carrier gas, emerging from tho colum, is passed into a combustion furnace, and then into a coulometric cell. The furnace is continuously supplicd with oxvgen by passing a senarate pure carrier gas strean through an oxyeen generator. In the absence of any cluted material, the oxygen suproly to the coll. remainc constont, but rhen a component reaches the furnace it io muntitntively converter into carbon dioride nd rator, which ronulte in $a$ docrosse in the amount of oxycen reachine the cell. The coll outmit is thus decronsed, and br menns of a foedback loon, an enuivalent arount of oxreen is produced in the oxycen eenerator,
returning the oxeren concontration in the cont to its former value. rihe incrense in oxycon outnut $b$ the gencrator is thus a measure of the anowt of combusted materinl. Response is therorore calculable and Ifnern with roopect to concentretion. Absolute, in nddition to relative -ucntitetive anslysis, may be carrich out provided that the molecular roimits on the commononte uncor -nolysia aro inom. Exemmos aro iven of the ruantitntive analysis of aimple allene, ketome and 27cohol mizturos. The results are cxcollent. fowever the detcctor offnrs from a number of drawbacks. The resnonse is on? prodictable "on thooe matoriale containing carbon, hrdromon and oxycen. It is not slitinnle for tho ounntitative annlrsis of halomenated matorials, or incoce ony organic compound which contoins elements other than corbon hrerosen and oxyen. The detector does not resnond to water. It ir. neceronr: to have a full malitative lmowledse of n sampe before cuntitotive rosults on be celoulated. The mothod is dostructive The rennonse time, contrary to exnectation, is in cenoral less then $\cdots$ rece Within the aiove limitations the detector offers a means of obtaining nuantitative analysis without the necossity for calibration. 3.20 ritration Detector.

The titration of materials eluted from a column was used by liartin and James for quantitative estimations of fatty acid mixtures ${ }^{7.96}$, omines ${ }^{797}$ and pyridine homolomes ${ }^{798}$. The column cffluent is nassed directly into n titration coll, and burette roadincs are taken either at rixed time intervals or by ndding a fixed volume of acid (or base) and notine the time for neutralisation. Obviously the method is limited to tho detoction of titratablo materinls, but it has the reat advantoce that rosponse is calculable, and the apparotus is extremely simple and oren. Tt can bn made to rocord atomatically if the colour chonmer in the rorion of the enuivalence noint are nonitored by a photocol17.96,21?

כ.?0.7 Coulometric and Titration Detector Performance.
Soction Detnctor Tyne Limit of Detection Comnonnd Ref.
3.79 Simnle coulomoter $\quad 4 \times 7.0^{-2}$ mimi -7 sulnhum 188
E.99a Renction coulometer
$1 \times 10^{-8} \mathrm{mirmI}^{-1}$ hydrocorbons 190
$\therefore$ ? Titration 0.3 pe equiv acids or hases lag
3.?1 Auriliary Detection Techniaues.
mhere are n number of methods of detection used in confunction
with ras corometography, which form the basis of an analytioal tochnigue in thomselves. Several of these have alrnady heen mentioned in connectiol With - narticular detector (e.r. photometry and coulometry). However it is rienirable to discuss some of the more imnortent technimues, such no infra-red spectroscopy, on a more menernl basis. It is not proposed to rivn ? ?etailed account of these methods for a number of reasons: they are not otrictiy mas chromotorranhje detectors; ther are nomaily omploued in conjunction with a conventional gas chronatogranic detector; thoir successful operation requires worlcers slillod not only in chronatogrephic analysis, but, for example, in-spoctroscovic analysis in addition.
3.210 Infre-red Snectroscony 200 :

Infrn-red spectroscopy can of course be applied to mixtures before chromatomraphic onalysis, but because of the complex nature of the spectra obtajned, this method is of limited value. It is far more informative to examine the spectrum of each separate component obtained by ras chromatorranhy. There are two means of performine the analysis: erch commonent emerring from the column, observed by a conventional deteotor, is nassed into a trap cooled with linuid nitrogen, and subsenucntly transferred to the infra-rod cell: altornatively the infra-red anolysis is cerried out on the vapour as it. emorces from the column. Whe first methor is more time consuming and there is the dancer of Iosinc. oltopether ser minor components in the mixture conused by ineffective tranping or the formation of fors. This can be minjmised
her filine the trap with stationory phose or active charcoal. the use of an apnaratus 202 in which column effluent passes directly into an infra-red coll cooled in liquid nitrogen is more efficient with respect to the leneth of time for analysis, and recovery of material. It is in coneral preferable to examine samples in the liquid phose, since more information avout the liguid phase is available in the literature. Fomevor in vinw of the small sampe sizes availablo from fas chromatom pronir, this is not olways nossible, and onalysis in the vapour phase must sometimes bo carried out.

Bamination of infra-red snoctra has the added advantame that jit nat reveal the mesence of a second component in a fiver elution band, minch has not boen resolved by chromatoeraphy.
Z.21b Mnss spectrometry ${ }^{150,} 202$.

Gns sooctrometry offers several advantages over infra-red nenetroscony. It is extremely sensitive and may be used for almost any tyne of materjal. Interpretation of results requires calibration guectra and a knowledee of the reneral relationships between structure and mass snectra for a complete qualitative analysis. The mass seectrometer may be coupled to the exit of a pas chromstopraphic colunn, via a stream splitting device and the eluent continuously monitored: the complete mass spectrum is ranidly and continuously scanned throurhout the run, or the spectrometer iss fixed at one particular mass for each chromatographic run. Fortunately it is not essential to have a complete mass spectrum of a mixture to obtain a. complotc identification of all the components: all that is reguired is the relative intensitics of several characteristic masses, e.g. for the inentification of alkyl benzones, the apparatus is set to a mass numbne charnctoristic of the moleculos (e.r. 91) and an analysis carried out. Comparison of the peaks obtained by a chromatographic detcetor with the mass spectrum on the some time scale enablos the allorl benzenes to be readily identificd.
3.? ? $\quad$ Redioactive Detection.

For the detection of radioactive materials injected into a chrom-tosrephic column, the conventional radioactive detection systems roc used ${ }^{203}$. A method for the analysis of ${ }^{24} C$ and $3^{H}$ labelled compounds has been deve?oned by Jmmes and Piper ${ }^{204}$. After passing through a coromatorraphic onlumn, the effluont is split, a proportion nassing to a chromatogranhic detector, and the romainder to a furnace containinc copner andiron filings at $900^{\circ} \mathrm{C}$. $\Lambda 11$ components entering the furnace are converted into ${ }^{J / 4} \mathrm{CO}_{2}$ or ${ }^{3} \mathrm{H}_{2}$ and these frases are passed into a proportionol counter. The final result is obtained via a rotemetor, in the form of a differential or interral disploy. The chromatogram and correspondine radiochromatograms are compared, on the same time scale. This method is particularly valuable for the detection of materials of very salall mass but himh activity, which may be missed by chromatogranhic analysis alone. Since the column effluent is spli.t, only a proportion of the sample is destroyed, and the romainder may be col.lected if nocessary.

Of more general annlicability, is the method described by Behrondt ${ }^{205}$, in which non-radioactive substances can be detected after conversion to labelled materials by an exchange process. $\therefore .21 d$ Polarographic Detection.

Br employinc a polarograph in addition to a conventional detector it is possible to distinलuish between various chemical species in a mirture ${ }^{207}$. Janals and coworkers ${ }^{206}$ detected halogens by passing column eifluent into a solution containing qi III ions, and measuring the current increase in the cell, caused by the halogens. 'This arraneement i.r narticularly limited in its application, and a more useful neocedure may be as follows. The use of an aprotic solvent, such as acetonitrile would anable the qualitative and quantitative analysis of many organic compounds, senarated by chromatorraphy, to be erfected. Polarogrophy is not restricted to the analysis of reducible materials
nt a dronping mercury electrode, but can equally well be carried out with oxidisable matorials ucing a rotating platinum electrode ${ }^{208}$. The nroblems associated with polarographic analysis coupled with fas chromatogranhy are similar to those of infra-red spectroscopy. Either eac'? component must be tranped independently and then analysed in a nolarorranhic cell, or the clectrode potential must bc panidly varied bedoen predetermined limits durin: the chromatographic run. The rate of notential change must be far proater than the rate of emergence of a chromitorraphic poak, and it would be essential to employ a cathode raw tobe for the display of results.
purnell states that nolnography is of no great value in gas chromatogranhic detection ${ }^{209}$. Its narticular valucs would be that it acts as a specific detector for electron donating and accepting species and distincuishes between the two. In addition, by using published half wave potential data it is possible to obtain qualitative inforaation, and at least to classify components into particular chemical classes ${ }^{210}$. For simplo oxidation and reduction mechenisms, a quentitotive rosult is readily obtained from the Illkovice equation:

$$
i=k n c \quad 3.24
$$

Where $k=$ constant depending on the experimental conditions
$n=$ number of electrons of component $x$ involved in the oxidation or reduction
$c=$ concentration of component $x$ in the cell.
The disadvantages envisared stem from the use of a larce coll volume, and the difficulty of cuantitatively trapping materials in the cell. The rosponse time can be minimised by using a rapid scen rate. 3.?2 Conclusions.

Whe ruitability of existing detectore for quantitative analysis onn be nonessed on the basis of the forcooing discussion. Importont -romrties are summarised in the table below. No detector is compoticly matisfactory for quantitative andysio but outstonding among the detectors is the Martin gas density balance, whose response
is :hol? Aynamic ringe (3.10a). The detector rosponas to all materinas of molnculnr wejght different from that of the corrier cas. However, a dotector must not on?y be suitoble for guantitative analysis, but must bn available comercially or be readily conotructable in the laboretory. It ins a matter of recret that neither of those conditions are met by the Hintin cas density balance: The detailed nerformances of the GowSnc versions of the cas density halance (3.10b) have been to some nxtent unlenorm, and certainly unpublished. The Author's own obserrations sho: that small deviations from expected response do occur with some moterials, but nevertheless, the detector js a cood second best. For munntitntive rosults with either form of cas donsity balance, it is erenntial to know the moleculer weights of nll the comnonentis of intiornst. The flame ionisotion $\boldsymbol{A c t e c t o r ~ ( 3 . 2 ) ~ o n n ~ b e ~ u s e त ~ r e l i a b l y ~}$ for much ruantitotive work, and has a very wide linear dynamje ranee However response is not almays calculable, and the detector must be onlibrator for all chomical species. Although it will not detect whor, the nresence of water interferes with the resnonse of the detector toward other constituents. It does not resmond simnificantly to the inorronic maces. For routine quantitative work, the flame jonisotion detector is excellent, but for the analysja of unlenown matorials, it cannot be used with complete confidence.

The response of the flame thermocoun? detector (3.3) is cal.culabie from a movlodre of heats of combustion for a number of materinls, but B rotoiled study of its volue as a quantitative device has not been nuhาished.

The cross-section detector (3.6c) is clajmed to give a predictable rnsonnen for all matnrials, for hydroren as crrier cas, based on a 7nornodre of atomic cross sections and molecular weights. nithourh it is onpable of givine cerelfont guontitative rosulto, insurfioiont evidence has becn published for it to be assumed that tho detector is
fron from anomalous beheviour: indoed i.t is lenoun to be readily Aistumber by contaminants.

The ron volume detector (3.J7) is capable of eiving excellent auontitative results, and weight response is colculable directly from moloculer weifhts. It in oxtremoly temperature dependent, and is rontrictoc to the anolysis of foirly low-boiling materials; which must neither react with notossium hydroxide nor be soluble in water. Mifo nurity corbon dioxide mot be used as carrier gos.

The ultrasonic detector (3.3.5) has a wide lincar drnomic range, and reononse i.s calculable from a knovledee of molecular weights, orovided that hydrogen is used as carmier gas. A more detailed stuny of its resnonse characteristics is reguired for a true assessment of its valne as a mantitative detector. Obvious disadvanteces are the high cost of the associated equipment, and the use of hydrogen as carrier 0.as.

Conductometric detection (3.18) offers no advantare over the other detcotion systens discussed herein. The sample is totally dertrored, and a qualitative knomledre is necessary for auntitetive estimation.

The reaction coulometer response is predictalle (3.19a) arain on a molecular weight basis, and should give oxcellent ouantitative results nrovided that the only elements present are carion, hydrogen and oxycen.

The above detectors are all suitable, in varyinct deprees and within certain limitations, for nuantitative analysis, but they all momire a mowledre of the molecular weichts of the conrtituents of the sample before quantitative results can be calculated, io: cualjetative nnalysis must preacede nuantitative analysis. Of those detectors the only ones which have found widespread ndoption are the flame ionisation detector, and to 2. Iesser extent the Gow-iac cras density balance and the crosa-section detector.

The present situation with resard to a detector suitable for guantitative analysis in thus unsatiofactory: it was with this fact in
mind thet the develonment of the Brunel mass detector was carricd out.
E.22.1 Sumary Toble of Detector Performance of Mon-Snocific Detectors.

Detector
Iimit of
Deteqtion
Linear Dynamic Resnonse Range
$\left.\mathrm{F} \mathrm{sec}^{-1} \mathrm{mmm}\right]^{-1}$

Katharomoter	$10^{-6}$	small	Not predictable
Flame ioniration $10^{-11}$	$10^{-13}$	$10^{6}$	Predictable for
	$10^{-6}$		many materials   Colculabla for
Finme thermocounle	$10^{-6}$		Colculable for some comnounds
ilame eminsivity $10^{-5}$		$10^{3}$	Prodictarlo within
			a homolosous serie:
Flone nhotometric	$10^{-10}$	smal.	Not predictable
Areon-macro $10^{-13}$	$10^{-1.5}$	small	Not prodictable
Areon-micro $10^{-12}$	$10^{-14}$	small	Not predictable
Arron-triode 10-13		$10^{5}$	Not nredictable
Ielium $10^{-14}$	$10^{-1.5}$	1.05	Not mredictable
Cross-section $10^{-8}$		$10^{4}$	Colculable
Electron mobj.7.ity $10^{-1.1}$		1.03	Not prodictable
GIo\% discharge	$10^{-9}$	$10^{3}$	Not predictabl.e
P/P discharge	$10^{-8}$		Not predictable
Discharce spectra $10^{-16}$		$10^{3}$	Not predictable
Ionisation gauge	$10^{-8}$	$10^{4}$	Not prodictable
Ultre-violet absorption	$10^{-11}$	wide	Not predictable
Gos density balance mertin	$10^{-6}$	wide	Colculable
Gas density balance GOW-HEC	$10^{-6}$	1.03	Calculable
Gas volume	$10^{-4} \mathrm{mM}$	wide	Calculable
Gas flow impodence	$10^{-5}$		-
Surface notential	$10^{-8}$	non linear	Not predictable
Di.electric constant		small	No data available
illtrasonic	$10^{-172} \mathrm{~min}$	$10^{5}$	Calculable
Sorntiothermal	$7.0{ }^{-5}$	non linear	Not predictohlo
Scmiconductor - ZnO	$10^{-9}$	non linear	Not mrodictable
Piezonlectric	$10^{-8}$	$10^{2}$	Not predictable
Conductometric		wide	Calculable
Conlometric (wiseman)	$10^{-8}$	wide	Calculable

1. Ray, N. $\mathrm{N} ., \mathrm{J}$. Anpl. Chem. 421 1954.
2. Griffitins, J.II. et al. Mnalyst 77897 1952.
3. Vines, R.G., Bennett, L.A., J. Chem. Phys. 22560 1954.
4. Mnッsdorif, H. H., Vnnour Phase Chromatorranhy 3771956.

5. Hoffmann, E.G. Anal. Chom. 3412161962.
6. Jordan, J. et al. Anal. Chem. 3715721962.
" " " " J. Amer. Chem? Soc. 8823981966.
7. Littlewood, A.B. Gas Chromatogranhy 186 1958.
8. Van de Cratis, F. Gas Chromatopraphy 2481958.
9. Schmarch, L.J:, Dinerstein, R.A., Anal: Chem: 32343 1960.
10. Rosie, D.M., Grob, R.L. Anal. Chem. 2912631957.
11. Dimbat, M. et al. Anal. Chem. 282901956.

Ereertsen, F.T. et al. Anal. Chem. 283031956. Fredericks, E.M:, Brooks, F.R. Anal. Chem. 282971956.
12. Nessner, A.E. et al. Anal. Chem. 312301959.
13. Luy, H. Gas Chromatogranhy 186 1962. Mason, E.A., Saxena, S.C. Physics of Fluids I 361. 1958. Guiochon, G. J. Chromatog: 143781964 ?
14. Smith, B.D., Bowden, W.W: Anal. Chem. 3682 2964:
15. Eastman, R.H. J. Amer. Chem. Soc. 79 4243 1957.: Anal. Chem. 291263 1957:

IÚ: iveto, C.C. et al. J. Chromatog. 153011964.
17. Necke, R., Zinker, K: J. Chromatog. 7 I 1962:
18. Brownine, L.C., Watts, J.O. Anal. Chem. 2924 1957:
19. Gos Chromatography Abstracts No. 3911965.
20. Brooks, I: et al. Vanour Phase Chromatorraphy 281. 1956. Kennler, J.G.et al. " " $" \quad$ " 222 1956. Ryce, S.A., Bryce, iv.A. Anal. Chem. 291386 1957. " " $"$ " $"$ Nature $1799^{\frac{1}{41}} 1957$.
21. Keulemans, A.I.M., et al. Anal. Chim. Acta 16291957.
22. irillor, in. Vapour Phase Chromatorraphy 63 1.956.
23. Bohemen, J., Purnell, J.H. J. Anpl. Chem. 84331958.
24. Harvoy, D., Morran, G.O. Vapour Phose Chromatogranhy 74 1.956.
25. Schmouch, L.J. Anal. Chem: 31225 1959:

27. تllis, J.I., Ireson, G: Gas Chromatography 300 1958.
20.. Amorose, D., Collerson, R.R. J. Sci. Inst. 22323 1955:
29. Cowan, C.B., Stirline, P.II. Gos Chromatography (ed. Coates V.J.) 1651958 (Academic Press).

ה!. Davis, A.D., Howart, G. A. J. Anol. Chen. 81831953.
37. Devies, A.T., Johnson, J.K. Vapour Phase Chromatograniny 185 1956:

32: Blyumbore, E.A. et al., Neftekhimiya (Perfoman Press translation) 2569 1963.

33: Camin., D.I. et a... Anal. Chem. 361175 1964. Petrocelli, J.A. Anal. Chem. $35 \overline{22201963 .}$
34. Prean, G., Guiochon, G. J. Gas Chromator: 4343 1966.
35. Gow-Nac Instrument Company, New Jersey. Servomex Controls Lti,., Crowborough, Suscez. Chem. Brit. 2220 .

36: Lemson, A.E., Miller, J.M., J. Gas Chromator: 42731966 :
57. IIc:İliam, I.G:, Dewar, R.A:, Gas Chromatomraphy 1.4? 1958。

38. Onl-ichons, L., Ph.D: Thesis, University of Eindhoven 1960. " " Gas Chromatogranhy 71960.
39. Condon, R.D., et al. Gas Chromatopraphy 301960 .

40: Thomson, A.E., J. Chromatog: 2 I:8 1959:
11. Krugers, J. Philips Rescarch Report Supplement 1965:

12: Levis, B., Van Elbe, G: Combustion, Flames and Ernlosions P. 206 nublishod by Acedcmic Press 1951.

1F. Knowstubb, P.F., Sugden, T.M., Natire 181 474 1261 1958. $"$ " $" 1$ " Proc. Roy. Soc. A己55 520 1.960.
4.t: Sperlman, P:F: Column I (2) 91966.

Dewar, R.A: J. Chromator. 63121961.
Karmen, $A: J$. Gas Chromatog. 31.801965 .
4. Destr, D.H:, ot al. Gas Chromatography 461960.
16. Voriminiam, I.G: Gas Chromatography 150 I.053.

4'7. Vicidili.iam, I.G: Gas Chromatography 147 7.958. J. Chromatog. 6120 1961.

48: Kieselbach, R. Ann. Mecting ACS, September, 1959, Atlantic City, N.J

No. puanoll, J.H: Gno Chromatogranhy 302 published by Witcy lof?
SO. Scott, R.P.T. et ol. J. Chromotog: 15471 1.964.
57. :Vajrs, R.J: Column I (2) 21966.

52: Etire, I.S., Kabot, F.J., J. Gas Chromatop. I (10) 7 1963. $"$ " $"$ " J. Chromatog: 21. İ工4 1963:
5. Ackman, R.G., Sipos, J. J. Chromator. 16208 1964.
54. Porkins, G: et nl. Annl. Chom. 35360 1963.
55. Ittre, L.S: J. Chrometog: 8.5251962.

56 : Voore, J. I: J. Gna Chronator. 2 ( 100 ) 37.8 1964. Parackevonoulos, G., Cvetanovic, R.T., J. Chromatog. 25 1779 1966.
57. Ardroatch, J.A., Feinland, R. Anal. Chom. 3210211960.
58. Holone, I., Echneider, W. Anal. Chem: 32978 1961. Anal. Chem. 36461 1964.
59. Bath, I., Cruickshank, F.R: J. Chromatoe. 212967966.
60. Croon, R., Joner, K. Nature 205671965.
61. Kainor, R. Gas Phase Chromatography 386106 published by Buttervorths.

62: Baddiel, C.B., Cullis, C.E. Chem. Ind. 11.541 .960 .
63. Fovak, J., Janak, J. J. Chromator. 点 249 l960.
64. Emery, E.M., Koener, W.E. Anal. Chem. 33 146. 2961. Murray, W.J., :İliams, A.F: Analyst 86849 1961.
65. Cincotti, J.J., Feinland, R: Anal. Chem. 36488 1964:
66. Foster, J.S., Murfin, J.W. Analyst 90118 1965:
67. Hill, D.t., Newell, II.A: Naturo 206 708. 1965:
68. Jmith, J.F. Gas Chromatogranhy 114 1960. Purnel.t, J.H: Gas Chromatocraphy 298 publisned by. Wiley l96?.
69. Dowar, R.A., Maicr, Y.E: J. Chromotog: 15461 1.964:
70. Garao, G., Fritz, D: Gas Chromatography 1501966.

7‥ Karmen, A. Anal. Chom. 36,14761964 .
" " Nature 207 12041964.
" " J. Gns Chromotog: 3 326 1965.
72. Jnnok, J., Svojonovsly, V. Gns Chromatography 166 I966.
72. Groiff, L.B. Nature 203856 1964:
74. Graifi, L.B. J. Gas Chromatog: I 255 1965:
75. Tuey, G.A.P: Gas Chromatogranhy 2901966. Mili.er, W: Gas Chromatopraphy 1911966.

7h: Scott, R.P.W. Nature 176793 1955:
77. Ecott, R.P.W: Vanour Phase Chromatomranhy İI 7956.

78: Wirth, M.in. Vapour Phase Chromatogranhy 1541956.
79. Henterson, J.I., Knox, J.iI. J. Chem. Soc. 2299 1956.
80. Primnvesi, G.R., et al. Gas Chromatomranhy 1.651958.
81. BuIlock, P. Gas Chromatomranhy 1751958.
82. Primavesi, G.R: Ges Chromatography 1761958.
83. For cxample, W.G. Pye Ltd., Cambridge. Philins Chromatogranhy Ltci., Crowley, Sussex.
84. Scott, R.P.W: Gas Chromatography 1761958.
85. Cullis, C.F., et al. Chem. Ind. 11.58 7.961.
86. Gunther, F.A. et al. Anol. Chom. 34 302. 1962.
87. Unham, F.T. Anal. Chom. 338451961.

名. Swecley, C.C. et al. Anal. Chem. 331860 1.961.
89. Ronayheb, G.H., ot al. Anal. Chim. Acta. 26378 1962:
90. Grant, D.t. Ges Chronatormnhy 1531958.
91. Juvet, R.S., Durbin, R.P. Anal. Chom. 38565 1966.
92. Zado, F.F., Juvet, R.s. Anal. Chem. 385691966.
93. Braman, R.S: Anal. Chen. 387341966.
94. Brody, S.S., Chaney, J.E. J. Gas Chromatog. 4 4t2 1966.
95. Behrendt, S. Z. Phys. Uhem. 21240 1959.
96. Lovelock, J.E: J. Chromatog: 135 1958.
97. Lovelock, J.E. . Nature 181 I460 1958 .
98. Lovelock, J.E: Gas Chromatography 161960.
99. Lovelock, J.E: Anal. Chem: 33170 1961.
100. Hill, D.W:, Newell, H:A. Nature 2055931965 :
101. Evans, R.s., Scott, R.P.W. Nature 1907101961.

10?. Shakin, H.M., Linsky, S.R. Anal. Chom. 3515621963.
203. Wilti., D., Wilkins, T. J. Chromator. 35891960.
104. Berry, R. Nature 1885781960. Parisin, R.V., Parsons, W.H. Chem. Ind. 1951 1967. Wiseman, W.A. Neture 19011871961.
105. Lovelock, J.E. Nature 18216631958.
106. Hartmann, C.H., Dimick, I.P. J. Gar Chromator. 4 163 1966. Inctmann, C.II., Thompson, K. Lerograph Research Fotes, Snring 1967
107. Gns Chrometogranhy 237333 ed. Noobels et al. publisned by Acodemic Press 1961.
108. Abnl, K. Anal. Chem. 369541964.
1.09. Pomneo, D.J., Otros, J.W. U.S. Pat: 2, 641, 71.0 (1.253):
170. Denl, C.II., Otros, J.W: Anal. Cnem. 28 1958 1956.
171. Boor, a. Vanour Phase Chromatogranhy 1691956.
122. Otvoo, J.H:, Stevenson, D.P: J: Amer: Chom. Soc: 785461956.

17末。 Graven, W.M. Anal. Chiem. 311197 1959.
.1.4. Lovelock, J.E., et al. Anal. Chem. 35460 1.963. Lovelocl-, J.E: Anal. Chem. 3614101964.
115. Simmonds, P.G., Lovelock, J:E: Anal. Chem. 3513451963.
7.1.. Nntousele, S. Gas Chromatogranhy 65 1960.
117. Boer, H. Ges Chromatomranhy 79 1960.
118. Matousek, S: Gas Chromatogranhy 801960.

119: Purnell, J.H. Gas Chromatography 3ll-31.3 nublished by wiley l962:
1?0. Loveloc!, J.E., Linoky, S.R: J. Amer. Chom. Soc. 8̇ 4311960.
121. Goodwin, E.S. ct al. Analyst 36697 1.961.

1??: Lovelock, J.E. Anal. Chem. 35 474 1963:
123. Lovelock, J.I., Gremory, N.L. Gas Chromatomranhy 219 ed. N. Brenner, published by Academic Press 1962 :
I.24: Lovelock, J.E. Anal. Chem. 331621961.
125. Linsiny, S.R., Landowne, R.A. Anal. Chem. 34726 1962.
126. Kabot, F.J., Ettre, L.S. J: Gas Chromatoc. 2 (1) 21 1964: Hartmann, C.H., Oaks, D.M. Aerograph Research Notes, Winter 1.965:

727: Marns, R.J., Swann, D.F.K. Column I: (3) 21966.
128. Albert, D.K. Anal. Chem. 362034 1964: Derson, H.J. $\quad$ " $\quad$ " $\quad \frac{36}{36} 18521364^{\circ}$ Onks, D.M. " $" \overrightarrow{36} 1560$ 1964:
129. Grecory, N.L. J. Chromatog. 1333 1964:
1.30. Lnndowne, R. A., Einsley, S.P. Anal. Chom. 355321963. Clorke, D.D. et aJ. J. Gas Chromator. $43 \overline{10} 1066$. Clemons, C.A., Altchuller, A.P. Anal. C̄hem. 381331966.

131: Abbott, D.C., Maunder, M.J: Chem. Ind. 82 1965.

IF. Lovelock, J.E. Nature 185491960.
13. ifintir, V. Nature 1831.

Johnson, R.E. Srmporium of I.S.A. Montreaj 1960. Ellis, J.F', Forrest, C.ire Anal. Chim, Acta. 243291961.
7.4. Smith, J.W., Fidian, J.F. Anal. Chom. 361739 1964.
1.35. innley, J., Pretiorious, V. Nature 1788.244 .7 .956.
1.76. Pitkothl.r, R.C. Anal. Chem. 3013091958.
137. Riloy, B. Gas Chromatogranhy 81. 1.960.
138. Borman, R.L., Karmen, A. Nature 7821933 1.958.

139. Lovelock, J.E. Nature 1884011960.
1.40. Dimick, K.P., Martmann, H: Wilkens Instrument and Research Inc., :Tnlnut Creelc, Calif.
14.7. Goul.den, R. et al. Analyst 88 951. 1963.
142. Yamane, I. J. Chromatog: 14355 1964:
143. Kampton, W.C. J. Gas Chromator: 3217 1965:
144. Stemberr, J.C., Paulson, R.E. J. ChromatoE. 3406 1960.
1.45. Evrard, E. et al. Nature 19359 I962.

Arnikar, HJ. et al. J. Chromator. 26301967.
J.46. Yomane, M. J. Gas Chromatog. 9 162 1963:
147. Ryce, S.A., Bryce, W.A. Nature 1795411957. Can: J. Chem. 351293 1957:
148. IInlile, E.A. et al. 2nd International Symp. I.S.A. Lansing I959:
149. NicCormack, A:J: et al: Anal. Chem: 3714701965.
150. Varadi, P.F., Ettre, K. Anal. Chem. 3414171962.

1.51. Desty, D.H. Nature	179	241	1957.
180	22	1957.	

I.52: Mowilliam, I:G. J. Anpl. Chem. 379 1959:
153. Purnell, J.H: Gas Chromatopraphy 319 published by Wiley 1962:
7.54. Clacsson, S: Ark. Kemi. Nin. Geol. 23 A 11946.


156. Bunday, C.U., Primaveri, G.R. Vapour Phase Chromatomnaphy 146 1.956:
157. Minis, J.F., Ivoron, (: Gas Chromntomraphy zoo 1.958.
158. Ponjak, G.J:, Cornforth, R.H. J. Chromator. 4 214 2960 .
159. Johnson, E.A. ct al. J. Chronatog: 4. 4!29 1960.
160. Kurray, K.E. Aust. J. Anpl. Sci. 100156 1959.
161. Hownos, J.C. Vanour Phase Chromatogranhy 2661956.

163: Tijherti., A. ot al. Nature 178 IO67 7.956.
164. Thintins, C.S.G., Timmo, P.I. J. Chromatog. 5 I31 1961:
165. Revol'slein, I.A. et al., Neftolohimira (Porgaman Pross tronnlation) 42.961965 .
166. Norteom, N.G. Anal. Chom. 55.1640 1963. $"$ " I37th Nat. A.C.S. Moctine April 1950.
167. Nerhoim, A.G. U.S. Pat. 3090112 (1.963), 3082616 (1963): Ruchton, J.H. U.S. Pat. 30826.19 (1963): ףucker, E.B. U.S. Pat. 3050984 (.2962):
163. Gow-ifac Instrument Company, Now Jersey.

169: Guillomin, C.J., Aurionrt, F: J. Gas Chromatom: I (10) 2l: Io63:

170. Kulakov, V:, Shratov, F.F: Chem. Ab. 62 251玉. 1965.

171: Janals, J: Colloction 19964, 700917 1954.
172. Janak, J: Vanour Phase Chromatocraphy 247 1956.

173: Rouit, C: Vapour Phase Chromatography 291 1.956.
174. Chem. Ab .5148771957 (Ieibnitz E. et al. Brennstoff. Chom. 38 14 A957). Chem. At: 52178221958 (Sevenster, P.G. S. African Ind. Chem: $10751958)$.
Von der Craĩts, F: Anal. Chim. Acta. 24.1361 .956 :
" " " $"$ Z. Anal. Chom. 164621958 .
175: Grifeiths, J.H. et al. Analyst 77 901 1952:
176. Phillins, G: J. Sci. Inst. 28 342 1951.

177: Griffiths, J.H., Phillins, C.S.G. J: Chem. Soc: 3446 1954.
178. Turner, D.t: Noture 187 1.?65 1958.

179: Finfordner, J.D. ot al. Anal. Chom. 33 515 1.961.
180. Nohle, F.i. ct al. Anal. Chom. 36 1421 1964.
181. Duהenhostel, B.I., Priostley, T. Ind. Eng. Chem. 49 99A 1957: Clavton, G: J. Chromatoc: 2136 1959.
182. Priostloy, W. Venour Phase Chromatogronhy 1.651956.
185. Blumer, M: Anal. Chem. 327721.960.
134. Lo:ns, H. Dissertation for B.Tech., Brunel. University IO66.

185: Seiyma, T. et al. Anal. Chom. 341502 1.962.
186. Neiyoma, T. et 21. Anal. Chen. 281069 1966.
187. Kine, ri. H. Anal. Chem. 3617.35 1964.
138. Snuerbrey, G: Z Phyoik 155 206 1959.
189. Boer, H. Vanour Phase Chromatogranhy 374. 2956.

197. Coulson, D.K. J. Gas Chromatog: 4285 1966:
192. Liberti, A:, Cartonj, G.P: Gan Chromatorraphy 327 1.958.
193. Adamr, D.F. et al. Anal. Chem. 3810941965.
194. Covlson, D.M. Anol. Chem. 321245 1960.
195. Miseman, W.A. et al. Gas Chromatorranhy 1931966 .

196: Jomes, A.T:, Hartin, A.J.P: Biochem: J: 50679 1952.
197: James, A.T., Mintin, A.J.P. Biochem. J. 52238 1953:
198. James, A.T: Biochem. J. 52 242 1953:
199. Johnson, R.A.IT, Douclas, A.G: Chem. Ind: 154 1959:
200. Martin, A.F., Smart, J. Nature 275142219550

Tiberti, A. et al. Chim. e. Ind. 38674 1956. Anderson, D.M.V. Analyst 84501959. Haslam, J. et al. Analyst 86441961. Flett, M., Huches, J. J. Chromator: 1124341963. Bartz, A.M., Ruhl, H.D. Anal. Chem: 3618921964. Wills, P.A:, Brown, R.A. Anal. Chem. 361896 2964.
201.: Rescorch and Industrial Instruments Ltd., Jondon.
2.02: Drew, G.if. Anal. Chem. 28979 1956: Holmes, J.C., Horrcl.l, F.A. Appl. Snec. 1186 1957. Danner, $\because$. ct al. Anal. Chem. 291378 1.957. Gohlke, R.S. Anal. Chem. 315351959 . Lindeman, L.P: Anal. Chem. 32 1742 1960. Fbert, A.A. Anal. Chem. $33 \overline{1865}$ 196]. Varadi, P.F. I.S.A. Intern. Symp: on G.C. pp 133-1.40 1.961. Hennobers, D. Z. Anal. Chem. IIennobere, D. Ges Chromatogranhy 191 J.962.

2ng. Kolos, R.J. ct al. J. Amer. Chem. Soc: 77.58601955. Piesr, P., Welrboch, K.E. J. Phys. Chnn. 6261958. Molfrane, R., Roviand, F.S: Anal. Chom. 309031958. Noussebois, G., Dajckaerts, G. J. Chromator. 12001958. Mason, L.H. et al. J. Chromator: 23221959.

204: Jomes, A.T:, Piper, E.A: J: Chromator. 5265 1961.
205. Bohrondt, s: Z: Phys. Chom. 20 367 1959.
206. Jonat, J. et at. Chem. Listy. 52896 1957: Nedorost, H. Chem. Listy. 503171956.

207: Rovnolds, G.F: Analyst 884931.963.
208. Gough, T.A., Peaver, H.E. Polaromraphy 19641017.
209. Purnell. J.H. Gas Chromatography 270 published by Wiley 196?.
210. Ponver, ir.E. J. Chem. Soc: 45401962.
2.7. James, A.T. Vnnour Phase Chromatocranhy 129 1956.

212: Janes, A.i', Martin, A.J.P. Analyst 77 91.5 1952: IoInnes, A.G: Vapour Phase Chromatocraphy p. $\mathrm{JO}_{\mathrm{H}}$ ed Desty, D.H: Academic Pross 1957.
21.3: Smith, V.N. Gas Chromatopranhy 316 1962:

214: Devan, S.C., Thornburn, S.B.P:
215: Walsh, J.T., Rosie, D.M. J. Gas: Chromatoge 5232 1967: (published subsequent to completion of this chapter:)

CYAPTER 4.
Evaluation of the Mass Detector.
4.l Discussion - General.
"An ideal detector for quantitative analysis might consist of a minute halance carryinf a cylinder loaded with adsorbent, so that all comnonents are totally adsorbed as they leave the chromatographic colnmn" ${ }^{\text {l }}$. This summarises a statement made by hartin at the Intemational Gas Chromatorranhy Symposium in 1962. . At the same symnosium thorburn ${ }^{2}$ described an experimental set-un which was in effect identical with Martin's description of an ideal detector. The nossibility of continuously weighing the components of a mixture enerrinc from a column was thus shown to be experimentally nossinle. Lovelock, whilst acknow?edring that weirining would offer a mons of actection, remarded the procedure as too laborious to be of ny nracticnl value ${ }^{3}$.

The nreliminary exneriments on mass detection carried out by Bevan and Thorburn ${ }^{4}$, were conducted.on an ordinary direct readinc lavoratory analytical balance. On one pan of the balance was placed a vossel containing an involatile solvent. Effluent from the chromatorraphic column was passed into the solvent, and the presence of a component in the carricr eas was detected by an increase in wejght of the vosscl, due to dissolution of the component in the solvent. by plottinc a granh of the woight increase of the vessel against the time from injection of the sample, an integral chromatogron was obtained. Each stop hoight was related to the weight of component present in the mixture: This simple, and very successful experiment was the first step in the development of a quantitative detector for chas chromatocraphy, in which the qualitative nature of the sample does not have to be known. A detector whose resnonsc is based solecy on weighine the components as they emeree from the chromatorraph will heve a prodictable resnonse, a linear dynamic range equal to its dynamic
ramge, and since an interral resnonse in recorded, functions at its ow integrator, thus eliminating crrors arisine from the measurement of noals areas. In addition it is not necensary to know the anount of samule injected.

The experiment described above, did hovever, give rise to tro crors. Due to the volatile nature of the solute, there wes a continuous slow loss in weight of tho vessel, resulting in a drifting bascline. iJore seriour was the buoyancy effect; between the absorbent Iinuid and the ras inlet tube, the depth of which varied durine a run. The first error was eliminated by usinc a chomically reactive absorbont in pace of the solvent. For exomple the analysis of acidic materials requires a vessel containine potassium hydroxide solution. This severely limits the type of sample which can be analysed, and to extend these limits, concentrated sulphuric acid was used, which will absorb anincs, alcohols, ethers etc. The second error was eliminated by causing the column effluent to flow over the surface of the absorbent I.inuid in the vessel, rather than into the bulk of the liquid. 4.2.1 Microbalances - Discussion.

In the form described above the detector is not particularly convenjent for use in gas chromatographic analysis for a number of reasons. The use of an ordinary laboratory balance limits the minjmum sample size which must be injected into the column to obtain a reasonable resnonse. With a good four-place balance, the limit of detection is about $\frac{1}{2} \mathrm{~m}$, so that sample sizes of at least 100 are required: Chromatograms must be plotted by hand, althouch automatic recording of the chromatograms was achieved usinc, a stanton recording thermobalance. With a vicw to overcominf the restrictions imnosed by the balance system, a number of other balancos have bcen considered. A belance was required which could weirh differences at least the order of loper (about 1 fl. cherfes can then be used). Fifcrobalances have been used for many years, particularly as an aid in the study of surface

## $-104_{4}$

phenomena, notably by KeBain ${ }^{5}$ who used a silica helical sprine balance, and Greffé who used a beam type balance. Helical sprine bajances hove in encral, only a small woight onpacity, and aro very fragile. The uen of metal sprincs has enabled more robust balances to be constructed, but thoy are more temperature dependent than silica balances ${ }^{7}$. Sprinc balnnces are cencrally used in vacuo: they are not readily a anatable to nutomatic recording of weight chancen. The bean bulance has a monoter canacity than the spring balance, and is for more robust. In the balance desicricd by Groces ${ }^{6}$, the adsorbent in held in a mall contoiner suspended from onc end of the balance arm, and from the other ond of the arm is sumponded a small solonoid, placed botwoen a froce otrning outer solonoid. By adjusting the current in the outer solenoid the balance arm can be maintained in its null nosition as the adcorbent Weight incresses; woicht chnnes are pronortional to the solenoid current changes. The balance can be arianted for the automatic recording of weight changes ${ }^{8}$ :

Surveys of microbolance design and technicuc have been publiched ${ }^{9}$, With particular reforence to operation in vacuo and dovelonments in microbolance technique are published annually ${ }^{10}$. Automatic rocoring el.ectromjecobalances have been described in the literature ${ }^{7 n}, 72$, and some are available commercially ${ }^{17,}$ 13. These balances all operate on the same principle: the balance beam is attached at right ancles to a coil njaced between the noles of a permanent macnet. The coil is held in nosition by a torsion band. At one end of the bolance beom is susnended the sample, and the other end is used to attach tare Weights: To one side of the end of the beam containinc the sample is placod a small lamp, and on the other side of the beam, a photocolle: When the beam is balancer, a shicla attached to the beam botwen the limht source and the photocell, provents illumination of the nhotoccll. When a veight chance occurs, the balance berm moves, one lifht mosehos the photocell. The output from the photocell is fed via a servoamplifier to the coil, and restores the bearn to its ecuilibrium nosition.

Figure 4.1

Rino ILOotwomiorobalanoo:

fino limet falline on the nhotocell in proportional to the hean roflection, and hence to the weight chance. The arrangement ins inhustratod in fiçuro 4.I.

The pieroolectric effect has been nsed to detoct weipht changer. The fiperucnoy of n piemoctectric crotel depends on the mass of the crystal, and hence changes in froguency con bo used as a measure of the :meight changer of the crystal cansed by sorntion or desorption of moterisl. Suarte crostal microbalances have beon develoner by several workers ${ }^{14}$, and a ces chromatomraphje detector usinf the princinle has benn तesoriber ${ }^{15}$ (see section 3.17).

The electrolevel ${ }^{16}$ detects movement from the horizontal plane in the same manner as a conventional spirit level. A glass envelope is almost filled with a solution of lithium chloride in alcohol: The envelope contains three electrodes and the solution between the electrodes forms two arms of a wheatstone bridge. A quantitative measure of the movement out of the horizontal plane (and hence a weight change) is obtaincd by measuring the change in conductance of the solution resulting from a change in position of the air bubble:

An electromicrobalance model RG, manuractured by the Cohn
Instrument Co., was considered. The balance hes mass ranges from I mef fed to 1 E fsd. The lower ranges are suitable for the detection of samnles usunlly encountered in fas chromatogranhy. The conacity of the balance is 1 p for arecision of $\pm 0.2 \mathrm{pe}$ and $2 \frac{7}{2}$ for a precision of $\pm 1 \mu E$. Weicht changes are recorded automotically, and provision for a recorder scale cxpansion to 20 pe fod (l c load) and 100 pre foct (2? load) is made. The Cahn balance has been used successfully by Bovan and. Thorburn, and has been incorporated into a Pye Panchromatocroph. The main object of this work whs to sho: that woiching of commonents on the miterogram scole could be nchieved as readi?y as onjehine on the millimpan scele, described at the Gas Ghometorraphy s. $\mathrm{S}_{\mathrm{m}}$ nosium in 2962. In addition to this the mass detector was used in conjunction with a Gow-Mac gas densi.ty balance to demonstrate the
possibility of obtaining molecular weights of unknown materials ${ }^{1.7}$. The adontion of a balance, such as the Cahn or Sartorius electromicrobalancos for mass detection, suffers from onc overridinf disadvantace: it is very expensive compared with ajl existinf commercially avnilable detectors. It was necessary therefore to consider cheaper electromicrobrlances which subsequently became available, even though the nerformance of the Cohn balance was satisfectory.

The work undertaken by the Author has been carried out with the for?orine objocts:
(i) to tost suitable (i.e: cheap and relinble) apnaratus for detectins woirht chances,
(ii) to confirm the suitabjlity of the princinle of mass detection as a means of detectinc vapours and fases,
(iij.) to enrry out a systematic investicgation into the properties one hehnviour of the mass detector,
(iv) to investigate the porformance of the mass detector for auantitative analysis,
(v) to otudy apnlications of the principle of mass detcction, eqG: the determination of molecular weights, and the calibration of conventional detectors.

Two electromicrobalances were investigated with a view to their use in mass detection:
(i) The balance made by Research and Industrial Instrument Company ${ }^{18}$. The onerating principle is similar to that described above (figure 4.J). A mirror is attached to the torion band, which reflects light from a small hulb to a pair of photocells, between which is placed a snlitting device. In the null nosition, an equal light intensity reaches the two photocells, but when a weight change occurs, the balnnce beam is derlected, the torsion band, and hence the mirror is twisted, and one photocell receives a preater intensity of illumination than the other.
mhe renultinr, current is for to a servomechanism, and the balance
 mass rances, tinc most sensitive of which is 1 me isd. The mass dirference between the two balance pans is read from a helical note:tionnter, calibroted in milliframs. The value is obtoined by rotntinf, the notentionnter dial untill zero deflection is observed on a aovinr: coil malvonometer. Ihe potentidncter can be read to about O.? oi a divirion, i.e: to 0.2 fg on the 1 mg range. The balance outnit cra br fed to a notentiometric recorder; weirht changes are observer as a recorder deflection instead of beinm obtained from the notontionntor iial. The maximum capacity of either balance nan is $2 ?$ and the maximum difference in weight between the pons is 200 m , which is adequate for chromntoernphic purposes. A recorder scale exnancion to $7.00 \mu \mathrm{H}$ and 10 pr fsd is incorporated. there is no temperature comnensatine device built into the balance, and the temperature coefficient is about 1 pr ner ${ }^{\circ} \mathrm{C}$.
(2) The balance made by Combustion Instruments ${ }^{29}$ :

In tho C.I. balnnce, two nhotocells, which form nart of a Wheatrane bridre network, are placed to one side of the balance arm, and are illuminated dinectly by a small bulb, placed on the other side of the aria. $\Lambda$ shield is attached to the arm, which when in the null posjtion, allows equal illumination of the two photocells. Balance arm movement caused by weicht changes, will result in unequal illumination of the photocells, and unbalance of the theatstone bridre. The brirme is restored to balance by a servomechanism. The balance is available with a minimum range of $250 \mu \mathcal{G}$ fsd and a maximum of 100 me fsd. Weifht chanfer can be read directly from a movinc coil micronmmoter, or by moans of a potentiometric recorder. $A$ backinm off control (i.ee. a moans of electrically taring the balance) is nrovi.ded. Ditibration of the balance must bo performed on each ranfe indivicually. Whe maximum load per balance pan is 1 E :

A balance for incorporation into a mass retenction system, must itself sotisfir oll, or at loast most of the condition reauired for an idcal detector. The conditions have been discussed in dotail in Chopter 2 and in view of their imnortance, some of these conditions are sumarised below. The balance must resnone linearly to weirht, chancos, and be able to detcct weight chancer in the micromam rerion. Whe iolanco must be robust, reliable, not excessively expenrive, and readily available commercially. The resnonce time must be less than avout 2 sec.

An experimental study of the performances of the R.I.I.C. ond C.I. balances was undertalen, with a view to confirming their suitability For use in gas chromatographic detection.
4.2.2. Mi.crobalances - Experimental.
4.2.2.. The R.I.I.C. Balonce.

Bxperiments were designod to chock the performance of the anparatus used simply as a balance, in the absence of any ras chronatographic equipment: Primary calibration of the balance was nerformed on the 10 mg range with a standard weight of 9.837 mr . Using a number of different weights and weighing each of these on each range of the balance, consistent results were obtained; i.e: calibration of the 10 me range satisfactorily calibrates all the remaining ranges at the same time. An example is given in table 4.1. Table 4.1

Range (mg)
200
100
50
20
10
5
2
1

Observed weight (mg) (helinot readinss)
5.6
5.5
5.45
5.40
5.54
5.51 .5
0.710
5.554
0.718
5.593
0.719

The helical potentiometer can be read to $\pm 1 \mu \mathrm{E}$ on the 10 me range .
The linearity of the potentiometric recorder used in conjunction with the microbalance was checked. The recorder was a Honeywell twin chonnel ( 1 mV and 10 mV fsd) instrument. $\Lambda$ decade potential divider to which was attached to $2 \frac{7}{?} V$ battery, was used to inject accurately fnown voltaees into the recorder. Each voltage was calculnted, checked on a valve voltmeter, and compared with the porcentare full scalc deflection of the recorder. The results are given in table 4.2 . Table 4.2
Linearity of Honeywell Recorder - 10 mV Channel.


$$
\frac{1.60: 10^{3} \mathrm{R}}{10^{4}} \quad \text { i.c. } 0.16 \mathrm{R}
$$

Where $R=$ potential dividar setting (ohms):
The precision of the rosistors in the docade box $= \pm 0.1 \%$.
The moximum ohserved orror on the recorder $=0.2 \%$ fed.
A similar cexperiment tas corried out on the other channel of the recorter. Thjs was a 1 miV fisd ranee, and was used to measure the ontwh of detectors placed in sories or in parallel with the mass detector:

Table 4.3
Linearity of Iloncywcll Recorder - I mV Chennel.

$\begin{aligned} & \text { Rocordor } \\ & \text { rod } \end{aligned}$	Deflection	Resistance ohms	Calculated Deflection mV	Valvo Voltmeter Roedine mV
5.3	zero	zero	zero	zero
27. 0	0.157	1.00	0.160	0.258.
37.0	0.31 .8	2.00	0.320	0.325
55.7	0.478	3.00	0.480	0.485
60.1	0.638	4.00	0.640	0.645
85.2	0.709	5.00	0.800	0.809
5.4	zoro	zero		

The precision of the resistors $= \pm 0.5 \%$. The maximum observed error in the recorder is $2 \%$,

Whe linearity of the potentiometric recorder is satisfactory on both the 1.0 mV and the 1 mV channclas:

The 10 mV channel of the recorder was used to detcrmine the linearity of the balance response on any given range.' The 1 mg balance range is the most useful for chromatographic work, and the rocults on tinis rance for a number of different weights, are fiven in table 4.4 .

Table 4.4
Linearity of Rlectromicrobalance - 1 me range.
Recordor Readinf ( $\mu \mathrm{G}$ ) Balance Readinf ( fr )
$370 \quad 374$
397 - 397
401 405
470 . 470
663 665
739 . 740
On the $I$ mg rance, 1 ffe is ronresontod by $0.1 \%$ fod of the recordor ( 0.3 mm ), i.e. the recorder readings are $\pm \frac{1}{?} \mathrm{JE}$. The maximum observed orror is J.". Comparison of recorder readines and balance potentiometer rondings on higher blanace ranges, over a wide weight rance gave
noriforihle discropencies. Deviations are rendom, and do not dopend on the nereentace deflection of the recorder. This simnle system connot be used conveniently in conjunction with the mass detector as there is no meens of backine off the weight increanc clectricnly after completion of a run. The oneration mot be performed mechnically by adding counterweights to the balance. This is clearly inconvenient, rad in view of the smallness of the veight changes involvon in rether Cirficult. The bolance is fitted with a means of zero sunnresnion, such that by usinc the helical notentiometer in conjunction with the notentiometric recorder, the total weight of $n$ sample is renresented b. the sum of the potentiometer roaing and the recorder deflection (ofter calibration). Since the potentiomoter setting and the recorder deflection operate in onnosition, it: was proposed that the notentiomoter bo used to hack off excess weieht after each chromatographic analysis. Calibration using this method was setisfactorily carried out for a number of different notentiometer settings. Ilowever, it was found that the maximum weirht which could be backed off using this nrocedure was of the order of 2 mg on the 1 mog range. Thus the method can only be applied to a small number of runs before mechanical re-balancing becomes necessary. An attempt was made to overcome this limitation by using the balance on the 10 mg rance with the ten fold scale expansion provided, i.e. the recorder deflection remains at 1 mg fsd, but the potentioneter can now be ured to back off un to 20 mg . Two disadvantages arise from this procedure: balance sensj.tivity is decreascd tenfold, and the recorder amplifier gain must be decreased considerably to minimise noise, thus increasing the deadband. The recorder also anpeared overdanped, even at optimum dampine control adjustinent. This difficulty could be overcome to some derree either by unine a recorder of Ilower impedence (e.c: Kent type $2 \mathrm{H}-5 \mathrm{~K} \Omega$ ) or by introducine a ereater input imnedence with a rosistor network. The mazimum impedence of the Honcywell amplifice is $25 \mathrm{~K} \Omega$. Since nll difficulties stem from the limited use of the backing off syston, a
now means of backin", off was devised in which a mall. current was applied through the coil of the balance nechanism, from a stable rumply. The current was proportional to the weicht backen off: The bockinf off dovice was derigned such that the backed off weight was . continuously variable from 3 j g to 5 mg . The current was sunplied by a mercury cell, via a numbor of notentiometers, actinc as coarse, medium, and fine adjustments, to the balance coil. 1 circuit diacrom i.s ohow in figure 4.2. A morcury cell was used since it offers a chonp and simnle means of obtaininc a snall stable current. The backing off circuit does not contribute sifnificantly to the overall instabiljty of the balnace. It is still possible to back off to a limited cxtent with the balance potentiometer and no interdependence betweon this and the new backine off unit was detected. Whoreas the derere of baclainf off usinf the balance potentiometer dopends directly on the mass range setting on the balance, this new unit is independent of the range setting. The backing off unit incorporates a millianmeter. calibrated in micrograms: The lineari.ty of the unit was checked, and found to be perfectly satisfactory. There is no fallinc off of nerformance of the balance un to a current of $\frac{3}{4} \mathrm{~mA}$ ( 5 mc ), but above this value slicht drift was observed. The backing off unit was calibrated by the following means. A small piece of wire was weighed on the microbalance, usinc the potentiometric recorder. The current necessary to return the recorder to zero was measured on the backing off meter. This experiment was repeated for a number of different weights, and a graph plotted of weight backed off against current apolied to the coil (figure 4.3). A straight line was obtained of slope $0.70 \mathrm{mg} \mathrm{mA}^{-1}$. The backing off unit has proved of rreat value, not only in norforming its intended nurpose, but also in the calibration of very sensitive mass ranges which have subsequently been built into the olectromicrobalance: In later worls, the bachine off unit was simnlifind by replacinc the meter ( $M$ ) and current control resistors $\left(V R_{1}-V R_{3}\right)$ by a ten turn helical potentiometer fitted with a dial

Firume 4.2

## Bacicing OníUnit.



enlibrated in". microrrans.
Heither the recorder itrelf, nor the balance unit was fitted with a means of marking on the chromatorranh, injection noints or other relevant data. Accordincly an event marker was fitted to the recorder. Whis commrised a potential divider circuit driven by a la $\frac{1}{2}$ volt pen batitery and :ras desirned to rive lof of fulit scale deflection on the rocondor chart, The marker wa actuatod with a push-to-mako switch mointed on the front pancl of the recorder.

In cencral the 1 mg range is satisfactory for pas chromatogranhic nolysin, where samples of the order of 1 fla are under analysis: Howner in canos, either where trace components are prosent, or nmansis of smmples much less than I pl. is dosired (e. © : to obtoin better colum nerformence, or due to scarcity of sarile), it is usoful to be able to use more sonsitive rancos. Scveral methods of obtainine more sensitive (i.e: lower) ranges have been tried. The onl: method available on the original balance unit is to use the tenfold and hundredfold scale cxnansion dovice. Tho Xlo multiplier was found to give a satisfactory and linear response on all rances, but tho offects noted previously (parc lll) were observed. Noisc vas elininated by introducinc a. $100 \mu F$ canacitor across the recorder innut, but response time was increased. The xl00 multiplier was not found satisfactory since noise was excessive. An alternative method of obtaining a llower series of ronges is to place a shunt across the bolance coil. For example, with a coill of resistance $5 \Omega$, if the total rosistance is changed to $0.5 \Omega$ (i.e: a $0.56 \Omega$ shunt), then a tonfold jncreaso in the sensitivity of all ranges will occur: the lowest ronge becomos 100 je: This method was found to five satisfactory results on the basice rances from 200 me to 10 mp , but for the more sensitive braic ranges, the methon was uncoliable and had to be rojectod. Tho mosti successful menns of lowering the ranges mos bir changine the volues of the resistors in the existinc rences. The original ? mg range has boen modified to rive either 250 jG or 100 lig fod, the required range
hoine solectod by a dudt suitch. Colibration of such sensitive rancos conot be corried out successfutly usinc sanll lencths of wire as ocondary standards. The method adonted was to use the backing off unit ar a stondard, since it has been caljbrated and its linoar rononoe shown (figure 4. 3). In nddition ench weight wars checked nsine thn 1 mg rance. The 250 per range nerformod entiroly satiofactorily (son figure 4.4 ) but it wns not nossible to obtain reliable readinms on the 100 jf range, since the selibrated settinme continuously driftode The conclusions reached are that the balanco is satisfactory on the 1 rig and 250 ןranges. The $X 10$ scale expansion facility may be usod on hoth of these settings to obtain the new rances of 100 per and 25 رG rospectivelr. Some results are given in table 15.5 . Table $4: 5$.


The repeatability of the resnonse of the balance-recorine nystem to a Given weight har been investigated. A known weight mas placod on one of the bal.ance pans, and its weight recorded 14 times, over a neriod of eicht hours, on the l. mes range. The step heichts on the rocorder chart were measured both when the recorder was switched in and out of the bolance circuit, i.e: step heights wore measured for incronsing and decreasine pon excursions. The rosults are summarised in toble 4.6, and in the form of a histogram (figure 4.5) of intorval $0.2 \mathrm{~mm}\left(0.7 \mathrm{~J}^{\prime} \mathrm{C}\right):$ The results show a distribution appronchinc a normal Aistribution.


True mass (measured by balance potentiometer) 685.0 JE

Recorder deflection (increnoine) mean value 683:85 196

Recorder deflection (decrensing)
meon voluc 638.80 1 G
2.66 MG
$0.39 \%$
$1.41 \mu \mathrm{~F}$
$0.20 \%$

There was a positive bins of about 4 pe ( $0.6 \%$ ) of the recorder roadines compared with the halance potentiometer readinss. Whe step heights tended to show a very slicht incrosse with time, which can be ? tributed to a temperature increase during the period of the oxperiment. Consider the first three sets of readinfs, and the last three sets of roadincs (i.e: a total of 2 2 roadings): Table 4.7

Mean detecter woimht (gr)

First set of readincs	687.12
Last set of readincs	693.01
Difference	-5.89
$\%$ Difference	0.86

The tomporature coefficient of tho balance is about 1 foper ${ }^{\circ} \mathrm{C}$.
Assumine a (maximum) teanorature chance of $l_{4}^{\circ} \mathrm{C}$ during any given day, (in the laboratory in which the experiment was carried out)
 and a $0.6 \%$ weicht change in this particular experiment. Further error can arise in the actual measurement of the step heights. A stecl ruler was uscd, calibrated at $20^{\circ} \mathrm{C}$. Temperature variations of $\pm 5^{\circ} \mathrm{C}$ will have no detectable effect on the accuracy of the ruler and will not therefore contribute to any deviations observed: Assumine that the ruler can be rend to the nearest 0.2 mm , this reprosents a ponsible error of $0.075 \%$ fad and $0.7 .1 \%$ ( $0.75 \mathrm{\rho} \mathrm{~g}$ ) in this particular experiment. Anparent step hoichts will change with changes in the water content of the chart naper, i.e. with relative humidity, but this will be virtunlly constant
for the duration of the experiment.
The maximum source of error is due to temperature chanfes between onibration checks, but this is only likely to amount to ahout frid fst, even with a $l^{\circ} \mathrm{C}$ temperature chance.

Balance Stability.
On the 1 mg range and hicher (i.e: less sensitive ronces) noise was inetectable; drift, measured on the 1 mg range, over 16 hours, was 0.02 ner hour: The maximum temperature variation over the duration or the experiment was $I^{\circ} \mathrm{C}$.

The noise levels of the balance on various rances were measured and are listed in table 4.8.

Table 4.8


The limit of detection is greater on the $25 \mu \mathrm{~g}$ rance than the 10 per range, as a rosult of the lower noise level, and is about $\frac{1}{4} \mathrm{fI}$ : (Calibration on the 10 pg range was unsatisfactory, and this rance was not used for any subsequent work):

The performance of the balance is completely satisfactory when there is a negligible load (j.e: a few millicrams) on the balance pans. Erperiments were conducted to see the effect of propressively increasing the total beam load, un to its maximum of $5 \mathcal{G}\left(2 \frac{1}{2} \mathbb{E}\right.$ ner pan) usinc the 1 me rance. The weight on each pan was increased by 50 me increments, and a smant standard woight ( 1430 M) added after each incroment. Gramhs of the observed weicht of the standard weirht apoinst the total weirht on one balance pan showed thot the balance romonse decreased as the lond increased. Up to a load of about $\frac{1}{?}$ of the resnonse was constant.
-


The Effect of Total Load on Repeatability of Balance Response (see page 117):

For loads over $\frac{7}{7}$ the response of the balance prorressively decreased. The results are exhibited in more fenerat forms by firure 4 . 6 : at :ocro load it is assumed that loos response is obsorved. In general the offect of changing the load by as much as $\frac{1}{4} \in$ has no serious effect on calibration, and any effect can be entire? $\begin{gathered}\text { climinatoct by calibratinf }\end{gathered}$ the balance with the load in place, rather than before the Joad is adicd. The repeatability of readincs at various total londs for a. standard weight, was measured, and the coefficients of variation calculated. Ficure 4.7 shows how the coefficient of variation of the recorded weight increases, as the total load is increased, when" the balance is calibrated with zero load.
4.2.2b The C.I. Balance.
$\Lambda$ similar series of experiments was carried out on this balance to determine its reliability. It was necessary to calibrate each range in turn, and this was done usinc ASA class 14 weirhts. The balance takes about 4 hours to stabilise (the R.I.I.C. balance takes 15 minutes). Excessive noise was reduced by incorporatinc at $5000 \mu \mathrm{~F}$ eapacitor across the balance input. The balance was particularly unctable on the 250 ph range. Operation of the balance on $A C$ mains gave on all ranges for creater noise ( $1 \%$ fsd $2 \frac{1}{2} \mathrm{mE}$ range), than the R.I.I.C. balance, but battery onoration was satisfactory ( $0.2 \% \mathrm{fsd}$ ) : Drift on the $2 \frac{1}{2} \mathrm{mg}$ range was measured overnight and was of the order of $I$ pe per hour ( $0.04 \% \mathrm{fsd}$ ) .

The relative merits of the two balances, in the form supplied by the manufacturers, ::1s listed in table 4.9:
R.I.I.C. Balance.

Neclicible drift and noise No electrical backing off over $2 \mathrm{~m} \cdot$. Calibration only required Temperature dependent. on any one rance.

Maximum load per pan $2 \frac{1}{2}$ E: No direct woicht readout. Ninimum range 1 me: Balance is fairly bully.
C.I. Balance.

Direct weight readout
Minimum range 250 pg :
Balance is comnact.
Bacline off device incorporated.

Drift and noise appreciable. Temperature dependent. Maximum weipht por pan 3. ©: Calibration required for each rance

Suisequent to this work both R.I.I.C. and C.I. have introduced balances of improved specifi.cation.
4.2:3 Microbalances - Conclusions:

The cost of the balances is of the same order. The R.I.I.C. balance is more suitable for incorporation into a gas chromatocraph, since it is far more stable than the C.I. balance used in this comparison: $\Lambda$ backing off unit can bo roadily addod to the R.I.I.C. balance at necliçible cost, and more sensitive ranges can be addod, with minor modifications to the balance. The overall performance is excellent and this balance was selected for the remainder of this investication on the Bruncl mass detector:
4.3.1. Detecting Elements - Discussion.

For a completely non-sclective detector, a matorial is rocquired which will adcorb, to the same extont, and proferobly complotoly, nIl materiols in the vapour ghase, irrespective of their phreicol and chomicol nature: In addition concitions mot be chosen such that the carrier gas does not intorfere with the process, and that dosorption
of Onnle roes not fol?o: adsorption to ony npmrociable catent. The copacity of the adsorbent muct be such thet continual adsorption of artorials is nossible for a roasonable time, without detcrioration of the officioncy of adsorption. If those conditions can be fillfillor, e. detector will be obtoined thich resnonds directly on a woight basis and recuires no calibration arainst standard adsorbatos, or with respect to concentration for any mivon adrorbate.

Ihe only matorial which is likely to satisfy those conditions is activatod charcoal. Provided that adsorntion is carried out at a suitable temperature and prossurc, physical adsorntion on the chercool. will nredominate, and hence the detector will be comnletely non-selective: Chemisorntion is fovoured by hich temneratures and pressures, so that it is to be expected that by operatinc a dotector at atmoonheric nrossure and at room temnerature or below, non-spocjfic adsorption will occur. Ecuinibrium is rapidly roached and is rocdily reveroible, so that the continuous poscare of carrier cas into a charcoal dotector, mill at first give rise to a woight chance, which bocomes procrosoitocly less as cruilibrium is approached, until finally a constant weicht is obtained, (i.e. a straicht basoline jos observed). Tho maximum amount of any Given matorial which active charcoal con adsorb donends on the critical temperature (and hence the boiling point) of the adsorbate. By using a permanent gas such as nitrogen ow hydrogen as carrier, the oxtent to which this is adsorbed by the charcoal is negligible comparco with the amount of an orcanic compound (boilinc above say $0^{\circ} \mathrm{C}$ ) that can be adsorbed. In effect therefore no interference in the adsorption of orcenje materials, should be caused by the carrier fas.

It is essential that the untake of adsorbate by charcoal increaros lineorly fith concontration in the corrier ros, for a linear dotoctor rosponse. This condition en only be fultiller un to a riven woight of nerorbnte, determined from the adsorntion isotherm. The mojority of orfanice vanours obey Tyne I isotherms when ndsorbed on active charcoal so that nrovided the adsorbate weight does not oxceed that reruired for
ronolaver formation, complete untole of adsorbate con occur; howover it is likely that guantitetive untonte of materinl will be affected by subsequent docorption before the monolnyor copacity is reached. The conscity of the adsorbent toward a given gisoriate, under fixed conditions, is directly proportional to the weight of ansorbent present. The unper limit of detection of a gas chromatocranhic detector can therefore be extended simnly by increasing the woight of charcoal in the detecting element.

Specific adsorbents conld be used for the detection of certain materinls. For example the use of a 18 molecular sicve would onable the snecific detection of straight-chain hydrocarbons to be accomplished. 4:3.1a The Desion of Detecting Elements.

A practical detectinc element must satisfy the following conditions. It must be licht (less than lif ge , such that it is within the cnpacity of the micobalance. It must be simple to construct: a cronular adsorbent must be contained within on impervious material, to act both as an adsorbent sunnort, and to promote effective trapping of all effluent prior to adsorption. The eeometry of the adsorbent supnort must be such that there is a maximum amount of adsorbent per unit area of support: A suitable support is aluminjum. foil, and the majority of detectine elements have been made using this material. The adsorbent is attacher to the aluminium foil with an adhesive. since this must result in loss of active sites, an alternative supnort of nolystyrene into which the particles of charcoal are imbedded by prior softening of the polystyrene is sumsested as a possibility: No experiments wore carriod out to cyomine the suitability of this supnort. Loss of active sites would still occur, but to a lesser extent than with adhesives. The possibility of using fine wire mesh into which the charcool is enbedded has also be considered, but metal. mesh is too heavy, and fibres lack rimidity.

Whe detecting clements must have a small effective doad volume to minimise resolution losses and step distortions. This requirenent is

$$
-120-(1)
$$

at variance with the requirement of a Jarce surface area of adsorbent, so that a compromise must be reached. The following detector eometrics have been considered, and some have been experimentally investigated (sce section 4.6.3).
(i) Spherical sumport, with access for carricr gas. This satiofies tive condition of minimum volume and maxjmum surface area, but was rojected for practical reasons.
(ij.) Celindrical support, open either at the top or bottom end: simple to construct.
(isi) Varions modifications of the basic cylindrical desien to encournee efficient trapning, and to minimise the total element weicht. (iv) Tray desion, to decrease the dead volume of the element. Such detectors contain insufficient charconl to give a detector of reasonable capacity.
4.3.2: The Construction of Detecting Elements:

Hass detecting elements are constructed from aluminium foil, the inside of which is lined with charcoal. The majority of the elements are in the form of cylinders, closed at one end.

A shect of $1 \frac{1}{2}$ thou aluminium is cut to the apmropriate size for the cylinder side. It is li.ghtly coated with Araldite epoxy resin anhesive, which is mixed with n-butyl alcohol to promote oven spreading This is weighed, coated with an even layer of charcoal of a know particle size range, and reweighed. It is then wrapped round a corindrical former and placed in an oven at about $200^{\circ} \mathrm{C}$ to evaporate the alcohol and cure the adhesive. The closed end of the cylinder i.s mace in an analogous maner, and attached to the cylinder itoclf whon drien. A susnension wire of 42 SWG is attached to the ton of the cylinder. Tynical detecting elements, drawn apmoximetely fint size are shown in figure 4.8. Tnhle 4.9 gives the details of all detectors used in this work.

Detecting Elements- (cylindrical)


29


25
Variable oharooal capacity
wiro gauze


11


## Detectinc: Elements

No.	Leth	$\begin{array}{r} \text { Dimen } \\ \text { Di.a: } \end{array}$	sions Area	$\begin{aligned} & (\mathrm{cm}) \\ & \mathrm{Vol} . \end{aligned}$	$\begin{gathered} \text { Char } \\ \text { Particle } \\ \text { Size } \\ \hline \end{gathered}$	$\begin{aligned} & \text { oal } \\ & \text { Weicht (e) } \end{aligned}$	Total Weicht $(\mathrm{c})$
1.							
2	5.5	1.7	30.7	12.5	60-80	-	1.21 .6
3	5.5	2.4	46.0	25.0	20-40	0.97 .4	1.892
4	$5 \cdot 5$	1.9	35.7	15.3	20-40	0.615	1.358
5	5.5	1.6	29.7	17.0	20-40	0.523	1.230
6	5:5	1.5	26.7	9.7	20-40	0.533	3.020
7	5:5	1.1.	20.0	5.2	20-40	0.412	0.847
8	5.5	0.8	. 24.0	2.7	20-40	0.334	-
9	-	1.2	1.1	-	20-40	0.057	0.700
10	0.8	1. 5	5.5	1.4	20-40	0.125	0.395
11	1.7	1.0	6.1	5.4	20-40	0.152	1.746
12	5.5	2.6	29.7	11.0	100-120	0.752	0.938
13	5.5	1.6	29.7	11.0	80-7.00	0.195	0.898
3.4	5.5	1.6	29.7	11.0	60-80.	0.2 .46	0.917
15	5.5	2.6	29.7	11.0	40-60	0.4 .17 ,	1.066
16	5.5	1.6	29.7	11.0	20-40	1.4 .10	1.480
17	5:5	2.6	29.7	11.0	6-12	2.119	2.466
18	$5 \cdot 5$	1.6	29.7	11.0	unsieved	1.902,	2.452
19	5.5	1.6	29.7	11.0	12-18	1.381	1.835-
20	4.1	1.6	22.7	8.2	4 A sieve	-	2:733
21	$5 \cdot 5$	1.6	29.7	11.0	40-52	0.396	1.150
22	$5 \cdot 5$	2.6	29.7	21.0	52-60	0.343	1.034
23	5.5	1.6	29.7	11.0	60-72	0.275	1.010
24	5.5	1.6	29.7	11.0	72-80	0.244	0.943
25	5.5	1.6	29.7	11.0	-	varioble	variahle
? 5	3.7	- 0.8	9.8.	1.9	60-80	0.106	0.353
27	5.5	2.4	24.7	8.5	60-80	0.333	0.754
23	5.5	1.4	9.9	8.5	60-80	0.156	0.592


io.		Dimensions (cm)			Charcool		Total Weirnt (r)
	Leth	Dia.	Arca	Vol.	$\begin{gathered} \text { Particle } \\ \text { Size } \end{gathered}$	Wcight (r)	
$2 ?$	5.5	1.4	14.2	8.5	60-80	0.381	0.573
30	5:5	1.4	18.4	8.5	60-80	0.242	0.640
3 l	5.0	1.3	21.8	6.6	60-72	0.238	0.584
31 b	3.5	3.3	15.6	4.5	60-72	-	0.420
32	2.4	3.4	12.2	3.7	-	-	0.160

Charcoal narticle size ranges are in $B S$ mesh.
The charcoal employed in all ceporiments was from a single batch of "charcoal activated for Gas Analysis" supplied by Iopkin and Gijlians. It was crushor, and sieved into a number of differcnt prrticle size ranges. The removal of the last traces of solvent in a detecting element and activation of the charcoal ras carricd out by neatinf ovornight at $130^{\circ} \mathrm{C}$ and 0.005 mm H pressure. This method completel.y outgassed the charconl, as no further weight loss was observed when the detector was placed for several days on a high vacuum ric, Detectors, after activation were stored (at atmospheric oressure) in an oven at $150^{\circ} \mathrm{C}$.
4.3.1b Charcoal Characteristics.

The surface area of the charcoal was determined by nitrogen adsorntion at $-195^{\circ} \mathrm{C}$ on a high vacuum rig: BET plots for two different norticle size ranges are show in ficure 1 . 9 . The monolarer capacity of the charcoal $\nabla_{m}$ is given by:

$$
V_{\mathrm{n}}=\frac{1}{\text { Intercept }+ \text { slope }} \quad 1.1
$$

from which the surface area $A$, per fram of charcoal is:

$$
\Lambda=\frac{V_{\mathrm{m}} f^{N A_{m}}}{n_{\mathrm{v}}}
$$

$\rho=$ density of adsorbate
$\mathrm{N}=\mathrm{Ar}$ aodrós number
$W=$ weight of adsorbent.
$A_{m}=$ arca per molecule of adsorbate


For nitrogen adsorntion the surface nroa in metre ${ }^{2}$ por gran of adonobent is $4.36 \mathrm{~V}_{\mathrm{m}}$ : Values of $\mathrm{V}_{\mathrm{m}}$ ohtained from figurc $4 \cdot 9$, and tio murface areas, are given in table ly:

Table 4.10

Particle Size Rance BS mesh	$\begin{gathered} \text { BET Plot } \\ \text { intercept glone } \end{gathered}$	$\mathrm{V}_{\mathrm{m}}$	Gurface Ared m
$50-80$	$2 \times 10^{-5} 3.79 \times 10^{-3}$	$2.63 \times 10^{2}$	1144.
80-100	zero $3.35 \times 10^{-3}$	$2.98 \times 10^{2}$	1300

The precision of the surface area deterninations is better than $10 n^{-l}$, so the difference in surface area between the two narticle size ronges is roal. This is surprisine, since it is conerally accopted that the offect of different particle sizcs on surface area is neslipibly small ${ }^{20}$ : The charcoal used in the mass detector can be classified as a hichly active charcoal, in view of the high surface area avai.?able for nitromen adiorption ${ }^{26}$ :

The surface area determined by nitrogen adsorption will not be $a$ reasonable assessment of the surface area available for adsorption on 2. mass detecting element. The mass detector is oporated in cenerol, at about room temperature; the recult of attaching the charcoal to on aluminium supnort with on adhesive winl cut down apnrociably the rurfaco nrea available for adsorption of organic vapours. It was therefore necessary to measure the surface aroas of several detectine elements in situ. As a tynical adsorbate, benzene was selectod since it has a foirly high vapour nressure at room temperature, and its moleculor surface arca is lnown ${ }^{27}$. Nitrocen was bubbled throngh bensone, dilutor with a nure nitrogen stream, and passed continuously into a mass detectine elenent. The orrancoment is show in figurc 4. Toa: The clement increaser in weight until the rates of adsorgtion and desorption were identical, i.e. equilibrium was reacher, and a stable bascline obtained. The nartinl pressure of the benzene was cheneer by chancing the decree of dilution of the benene/nitrogen otrean with the nure nitrogen stroam. By roneating this nrocoduro sevorol times, a reasonable relative pressure range ( 0.005 to 0.2 ) was covered, and an

Figure 4.10a

Flow System for Surface Area Determinations:


Figure 4.10b

Flow System for Ifnoarity Dotorminationa,


$$
-1.24-
$$

-rrormtion iscthern and BET nlot obtainod. The concentration of
inngene in the bonzone/nitromen mixture was colculited from the rato of vatake of benmene by the detcotor and the flow rote of the mixture. From ornotledre of the flow reto of the nure nitrogen oupnly, the concontration of benmene reachines the detector, at any total flow rate, Uns enloulated and honce the mole froction of benoone in the nitrogen ontained. Assuminc Honry's In was obeyod, the nartial nrossure of $\because$. benzeno at each flow rate was obtained. The s.v.n. of bonoone at the apnronriate tomporatures was obtained from the Iitorature ${ }^{28}$, and the rolative prossure of benoenc colominted. At each rolative nrosouro, the untikn of benzene of the charconl was meanured directiy by the microbalance. The results of a typionl run are shown in toble li.1., and the isotherms and BFR plots are shown in figures 4.17 and 4.7.2. Table 4.17

Injection	Total	Weight of benzene adsorbed mG $C^{-7}($ charcoal $)$	Benzene $\mathrm{A}$	Concen B	ation $\mathrm{C}$
1	34.46	191	4.43	0.0119	0.308
2	40.35	224	8.04	0.0216	0.481
3	43.56	242	14.5	0.0389	0.816
4	46.95	262	68.7	0.184 .4	.4.23




## Adsorption Isotherms: Benzene on Charcoal at $21^{\circ} \mathrm{C}$ (see page 124).


B.E.T. Plots: Benzene on Charcoal (see page 124).

Surfoce area does not increase regularly with weight of charcool, -ut this is not a function of the reliabjlity of the method (two determinations on the same clement were within $10 \%$, but a result of minor differences in the preparation of the clements. Indeed the surface area of element 27 is less than element 30 , although it contains more adsorbent. The surface area per eran of adsorbent, in a detecting element is about 600m? For a typical detectine element containinc. 250 m of of charcoal, the area available for adsorption is $150 \mathrm{~m}^{2}$. 4.4 The Chromatomranh.

An apnaratus was assembled for the anolysis of materials by mass detection. The chromatograph proper comprised a Shandon IGG2 oven with a temperature control of $\pm 0.1^{\circ} \mathrm{C}$ between $50^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$, containing a 4 metre PEGA column, the details of which are given below (rection 4.4.l). Samples wore injected with a microsyrince, via a sjolicone ribber septum. The chromatograph has two jndependent carrier gas supplics, controlled by needle valves, fitted to rotancters. One supnly was connected to the analytical column, and the other was for usc with a reference column. Carrior gas was dried by passing throuch a cylinder containine $5 \AA$ molecular sieve. Column effluent was fed into a mass detecting element, via a lencth of stainless stecl tubinc, Eontained in a small chamber, attached to the underside of tholelectromicrobalance. The detector was suspended from one side of the mi.crobalance beam by means of a leneth of fine wire, which passed throuch a small hole in the balance cabinct floor, to the detector chanber. The balance output was fed to one channel of a dual channel potentiometric recorder. To prevent condensation of materials in the delivery tube to the mass detector, provision was made to heat the tube. A heatine coil was wronmed round the tube, and the whole covered with asbostos tope. The linerine made the system rather cumbersome, and unless the heatinc coill was carefully wound, uneven heatine of the tube resulted: For' Inter work (see section 5.3 ) dircct resistive heatine was used.

For the purnoses of comparison, the chromatorraph was fitted with a Cow-inc fns density balance for much of the worle Ihis detector was nlaced before, and in series with the mass detector. With this detector in the nystem, the carrier sas flov rate reachinc the mass detector was the sum of the flov rates through the analytical and reference columns: Whe fas donsity balance output was connected, via an anplifier to the I mV chanel of the dual pen recorder.

A number of nreliminary experiments were carried out on the chromatogranh before embriking on a systematic stury of mass detector behaviour. These experiments are listed below.

The two rotometers measure respectively the flow rate through the reforence column and the analytical column of the chromatocranh. The two streams can be corabined at a common outlet. Calibration was carried out with a carrier gas of nitrogen at an inlet nressure of 30 lb in ${ }^{-2}$, usine a soap bubble meter attacher to the ras outlet. The calibration was carried out at $22^{\circ} \mathrm{C}$, and a correction anplice for the s.v.p. of water in the bubble meter. The reference arm was calibrated from 10 to $185 \mathrm{ml} \mathrm{min}^{-1}$, with the analytical flow turned off. The analytical arm was calibrated from 5 to $95 \mathrm{ml} \mathrm{min}^{-7}$ with the other arm off: The caljbration curves are shown in firure 4.13. To determine the total combiner flow rate of carrier gas, i.e. that reaching the mass detector, one rotameter was set for a given flow rate, and the othor varicd over a wide range. This was repeated for a number of fired readinfs on each of the rotameters. The total flow rate was apain measured usinc a soap bubble meter. A graph was plotted of total Llow rate calculated from the two rotmeter readings, against the totaze flow measured directly by the soap bubble meter. A straight line was obtained of slope 0.99 , so that the total flow rate reachine the mass detector could befoblained directly from the sum of the rotameter readines using figure 4.13. The temperature of the injection block was enntrolled by vary:ing the potential applied to a heating coil. surrounding the block. The heaten was calibrated usine a thermocouple.


rhe del.ivery tubc heater was similarly calibratcd. The caljbration curves are show in figure 4.J.4.
4.4.7. Column Performance:

For the majority of work, the anparatus was fitted with a
4 meter $\times 4 \mathrm{~mm}$ stainless stcel column nacked with $72-85$ mesh chromosorb, conted with a stationary phase of ( $2.0 \%$ ) nolyethylenc flycol adipate (PEGA). The characteristics of this column were therefore investigated more fully than any of the othor columns used. To deternine the flow rate rance over which the efficiency of the column was in the region of j.ts maximum, an HETP/ linear ras velocity curve was constructod. The determination was carried out over the range 15 to $250 \mathrm{ml} \mathrm{min}^{-1}$ using n-butyl acetate, and a column temperature of $100^{\circ} \mathrm{C}$. Valucs of n , the number of theoretical plates, were calculoted usine the equation:

$$
n=5.545\left[\frac{\text { retention distance }}{\text { peak width at height }}\right]^{2} 4.3
$$

For each value of $n$, the height equivalent to a theoretical plate, Minp, was found using the relationship:

$$
\operatorname{HETP}=\frac{1}{n}
$$

where $I=$ length of column:
The linear cas velocity, u, was calculated from flow rates, using the equation:

$$
u=\frac{F_{A}}{60 A} \quad \mathrm{~cm}^{-1} \quad \therefore \quad 14.5
$$


$A=$ cross-sectional arca of the column: $\mathrm{cm}^{2}$.
Results are disnlayed on figure 4.25 . Column porformance is orcollent in the range 3 to $10 \mathrm{~cm} \mathrm{sec}^{-l}$, ioco about 20 to 75 ml min . The number of theoretical phates per metre in this rerion is of the order of 2,300 .

H.4.2 Som?n Injection.
somple jnjection was by means of Hemilton syringes. The rencatability of delivery of tnown omounts by the syrinces was detormined usine the electromicrobalance. In a tynical experiment a lo $\mu$ I suringe war fillod to the 1 pl mark and the contents injected, throurh a rubher sontum, into a small polythene vessel containing an absorbent paner. The increase in :tcight of the vessel was monsured on the microbalance. The detcrmination vas repeated 15 times, and the moan, and standard deviation of the delivery calculated. The percentace of the marled volume delivered was calculated from a knowledre of the density of the
 cxperiments in which a syringe was used as a basis from which to colculate the adsorption efficiency of the mass detector. Its nerformance was measured both at the heginning of the oxperiments, ond at the end: no deterioration was observed. About 500 injectione werc corried out between these two syringe performance checks. The results for soveral different 10 pll oyringes are civen in table 4.13.

Table 4.23
Syrince Performance

syringe	No. of times nsed	Mean \% delivery	standard deviation ( $\%_{\prime}^{\prime}$ )	Charce (p3)
Hamilton   Rer. 7	unknown	91.6	2.2	1
Honilton Rof. 1	$+500$	92:0	1.9	1
$\begin{aligned} & \text { Homizon } \\ & \text { Rคf: } \end{aligned}$	unused	91.4	2.1	1
Terumo	unused	$87: 6$	$3 \cdot 7$	1.
$\begin{aligned} & \text { ITamilton } \\ & \text { Ref. } 4_{4} \end{aligned}$	unl-nown	97:5	-1.9	$1+$ to 6
Haniliton Rer. ?	+900	98.3	1. 8	5

The matorial used for oll injections was n-butyl acetato, which had honn nurified chromatographically (section 4.4.4). The nerformancos are erpressed in the form of historroms: ficure 4.th. The valuer quoter in tnble 4.73 for byrince Ref. 4 were calculated from figuree publishod by Iovoloc' $2 l$, who filled the syringe with mercury to various markings

botweon 1 phend 6 pI , and injected the contents directly on to $a$ Balance. Ihe rimilarity of the standard dovintions for the follo in aiton grinfer is etrikine. The 10 pr Momilton syrinfes give reproducible anamle deliveries, but not loo\% of the noted volume. The Terumo syringe nerformane is sicnificonti.y poorer, and connot be romarded as suitable for cuantitative work. No other 30 fr

Torumo syrinces werc tested, and it may he that tho norformanco was atypicni.

The conditions under which the exneriments were corried out are not identionl to those of an injection into the chromatograph, in that injection vas at atmospheric pressure and room temnorature ( $24^{\circ} \mathrm{C}$ ), rather than acainst $30 \mathrm{lb} \mathrm{in}^{-2}$, and at a temprature of about $200^{\circ} \mathrm{C}$. If these factors have noy effect on nercentace delivery, it wolld be expected to decrease the volues. A back pressure cerertod on the gyrince may tend to force liquid, or veporised material, up the sides of the syrince piston.

Similar experiments were performed using I fl Hamilton and Terumo syringer. The reneatability of results was so excessively poor for both makes of syringe, that the quantitative use of these syringen connot be contemnlated. Many attempts to inject varying quantities into the polythenc vessel (and into a column), resulted in zero delivery. No injection was more thon $80 \%$ of the marled value.

For quantitative work, in which an accurate assessment of the amount injected is required, a $10 \mu \mathrm{l}$ syrince is satisfactory, The smallest sample which can be reliably injected is noout 3. In. Indeed Bvans and Scott ${ }^{22}$ have surgested that for quantitative work, the maximum nossible sample be injected, consistent with the capacity of the column and the detector: 4.4.j Preparation of Columns.

In nddition to the columns sunplied with the Shandon chromatogranh, several columns were neenared in the laboratory. In a trinical proparation 20 of Chromosorb $G$ was sicved to Give a narticle size
range of $80-700 \mathrm{mosh}$; it was thorourhly dried by heating in on oven at $11.0^{\circ} \mathrm{C}$, and then placing under an infro-red lamp for a few hours. The dried support was placed in a dry round bottom flasls, and covered with 60-80 petroleum ether. 2 ml of hexamethyldisilazone was added to the flask, which was fitted with a rerlux condencor and calcium c'loride drying tube. The contents of the flask were reflused for about l? hours, when the bulk of the solvent was decanted. The sunnort vas washed successively with n-propyl alcohol and petroleum ethor, and the residual solvent removed on a rotary evaporator, and finally under high vacuum.
0.8 of Apiezon $L$ grease was dissol.ved in an exeess of $40-60$ netroleum ether, in a round bottom flask, and $20 \%$ of Chronosorb $G$ added. The flask was attached to a rotary evaporator, care beine taken to prevent damage to the inert support particles, and to obtain a slow rate of evaporation, thus ensurine a uniform coating of stationary phase on the supnort. The final traces of petroleum ether were removed by placing the material on a vacuum pump (at room temperature and 0.05 mm He pressure) overnight. Finally the column packing was rosieved, and stored in a sealed vessel until required. Proparation of the column. All columns prepared in the laboratory were wound to a helical shape before packing. They were cleared by filling with chromic acid and left for several hours, after which time they were thoroughly washed with water. Each column was filled several times with hot toluene, and hot acetone. The columns were then placed in an oven and heated to $150^{\circ} \mathrm{C}$ overnight, nitrogen flowing through the columns during this time. Copner columns, in addition to the above treatment were deactivated by heating to about $800^{\circ} \mathrm{C}$ overnight in the nresence of nitropen.

Column packing. The packing densities of the materials used for column nacicinc were determined by nlacing the material in a graduated neasuring cylinder, thppine the material down, and weighine the measured volme. for each column, the internal volume was calcilated, and hence the
nnount or nactinn required to fill the column estimated. Eramples ore miven in table 4.1.4. The colums were packer by the followinc means: one end was plurged with rlass yorn, and to tho other end was otitached a steel cylindrical reservoir (of internal volume about 75 ca:.), containine the column nocking, a little in excess of the calculated ouantity. The othor end of the reservoir was attached to a nitroren supnly, and the nitrofen pressure was slow? and uniformly increased to a maximum of $30 \mathrm{lb} \mathrm{in}^{-2}$ thus forcine the packine into the column The colum was frequently tapped to ensure free movement of the packinf, but was not subjected to any viforous vibration which iould damere the morticles. After packine the remaininm end of the column was nlurceत with -T.nss rarn, and conditioned overnirht at $175^{\circ} \mathrm{C}$, wi.th a s.ow nitrogen Plou.
$\Lambda$ complete list of columns used in this work is riven in toble 4.15 . Table 4.14

Column Ref. No.	Internal Volume (cc)	$\begin{gathered} \text { Packinem Density } \\ \mathrm{CcC}^{-1} \end{gathered}$	Weight recuired.	Weight used
A	7.9	0.58	4.58	4.68
D	3.9	0.34	1.32	1.36

Table 4.7 .5

innufacturer	Ref:	Stationary Type	Phase $\%$	Inert   Trpe	Support BS mesh size	Length (motre)	$\underset{(\mathrm{mm})}{\mathrm{i} \cdot \mathrm{~d}}$	Materio
T.G.	A	ApI	$7 \frac{1}{2}$	chromosorb G	80-100	1.1	3	S/S
TG	B	$\begin{gathered} \text { Carbowax } \\ 20 \mathrm{~m} \end{gathered}$	15	celite	60.80	1.1	3	S/S
T.G.	C	$\triangle \mathrm{PL}$	4	chromesorb G	$70-80$	0.3	4	Cu
T.G.	D	Porapak Q	- .	-	100-120	0.56	3	$S / S$
Shandon	E	PEGA	20	chromosorb	72-85	4	. 4	S/S
Shandon	F	ApL	20	11	72-85	4	4	Cu
T.G.	G	ApL	$7 \frac{1}{2}$	chromosorb G	80-100	2.5	4	Cu ,
Shanton	H	ApL	20	chromosorb	72-85	2	4	Cu
I.G.	$I$	charcoas.	-	- .	52-60	0.21	4	Cu
T.G.	J	-		emnty column	-	1	17	Cu
Wi.7.kens	K	$\Lambda \mathrm{pI}$	10	chromosorb	80-1.100	6	$2 \frac{1}{2}$	S/S

4:4.4 The Proparation of Samples.
Prior to use in the experiments described in this and the followinf, chapters, all comnounds wero chocked for impurities by conventional. लas chromatorranhic techniques. storting with the purest readily available sample of each compound, the purity was checked using two different stationary phase types, in general an ApL and a PraG column, operating under suitable conditions, usine a flame ionisation or a katharomoter detector. The majority of hydrocarbons were found to be of high purity, and needed no further purification. However, branched alkanes observed in some of the n-alliane samples, were removed by shakjnr, with molecular sieve, and recovering; the n-olkanes by heatine the sieve. Ropeating the process several times almost completely removed tho jminurities. The acetates, kotones and aldehyces, which were jn general better than 98\% pure, were all distilled bofore use. In addition, impurities in scveral of these compounds were removed by pronarative scale chromatorraphy, using a iilkens Autoprop Chromatograph. A typical rosult is illustratoci in ficure f.l7: The lower alcohols and letones were dried by standing over molecular sieve for several weeks before use, and the vater contont checked using a Martin gas density balance. 4.5.1 The Performance of the Iass Detector - Discussion. Adsorntion Efficiency:

The most important sinele characteristic of the mass retector is the abjlity to totally ndsorb all vapours emerring from the column, or at lenst to adsorb constant proportions of all vapours. The narameters :hich effect adsorption efficioncy can be divided into two main sections:
(i) e:stra detcctor narametors, such os corrier cas flow rate,
(ii) intra detector parameters, such as detcctor ecomotry:

Pretra dotector proportios aro discussed first, sinco to some docreo thone murt be within cortain limits, dotcrmined by the conditione recuired by the remainder of the chromatocronhje annaratus: The relative adsorption efficiency of the mass detector is definer as the retio of the amount of a matorial acoorbed, and the mount

adroubed of a reforence matorial (i.e. a rolative romonec factor):
The absoluto adsorption efficiency is defined as the ratio of the onomnt of a civen material adsorbed by the detector, and the onount intronuced into the detector.

To obtain relative aunntitative resulte, the relative adsorntion efficiencjes of the materials in a criven oomple should be erual, but not necescarily lnown. For absolute munntitative mosults, the absolnte הतsorntion efficiency must be $1.00 \%$ for all materials, or at least lnown for all matorials.
4.5.2 The Performance of The Mass Detector - Experimentel. Pxtra Detector Parameters - Carrier gan flow rate.

The offect of flow rote into the mass detector, on the adsorntion mixture officiency wis sturied using a three comnonent/of known rolative comosition. The mixture was nropared by weiching diroctly into a 10 ml somple bottle, using a 4-nlacc anolytical balanco. precautions wore taken to ensure the minimum of loss of materigls by cunroration, by completely filling the bottle, and storing at $-20^{\circ} \mathrm{C}$ when not in use: The composition of the mixture is given in table 4.18 ( $x_{0}$ values): Methyl acetate was not used, since its hich volotility would cnhance any changes in composition of the mixture with time. The operating conditions are given in table 4.16 :

Table 4.16

Apporatus	Shandon KG?
Column	PEGA ref. E
Inlet pressure of nitrocen	$30 \mathrm{lb} \mathrm{jn}{ }^{-2}$
Ontlet " "	at.
Injoction temperature	$154{ }^{\circ} \mathrm{C}$
Column temperature	$1.04 \pm 0.1{ }^{\circ} \mathrm{C}$
Delivory tube temnerature	$34 \pm 1{ }^{\circ} \mathrm{C}$
Nominal sample size	1.2
Gas density botance ourrent	t 150 mA
" " "	X 200
mossenctitivortyonge	l. mg for

olirinnte as for as nossible any changes in detector rosponse, not nonser by changes in flow rate (e.e. incorrect rimount of somple injocter, ranion tomerature and flow rate fluctuotions) three runs worocarricd out at ench flow rate, and mean resnonce values calculated. In didition the varintions in flow rete were not cerried out in a completely recular mannor. The object of this was to eliminate the nossibility of the innvitable slow chance in composition of the solution, fivinf - rolse relationship between detector response and flow rate: 4.5.3. Results - The response of The Mass Detector.

An exampe of a chromatogram of a three component acetate mixture is riven in figure 4.18 . from the step heichts of the chromatograms, the mass of each component adsorbed is found djrectly. Hence the norcentoce by weight of each comnonent in the mixture is calculated. The sten height results will show up any variation in absolute response with changes in flow rate, and any differences in adsorntion efficiency for the different components of the mixture. The percentace composition results are not dependent on complete adsorption, and by comparison with the actual percentace composition can be used to define the flow rate range over which the mas detector fives a satisfactory relative response: 4.5.3a Relative Resnonse.

The simplest way to oxpress these results is by graphs of rolative composition against flow rate for each matorial (figure 4.19): However this doos not take into account any differences between the observed and true percentage composition of the mixture, i.e. the bias of the results. In addition the results onl.y apply to one specifice mixture. By expressing the results in terms of percentare bias, they aro of more ceneral applicability. Bias values are calculated as iollows:

The true soight of the component $=x_{0}$, and the measured so $_{0}$ weight - (the mean of 3 values) at a fiven flow rate $=\bar{x}$.

$$
\begin{aligned}
& \text { Chromatograms showing the Response of the Mass Detector } \\
& \text { and a Gas Density Balance to some Acetates (see page 134). }
\end{aligned}
$$

Hence bias $=\bar{x}-x_{0} \quad 4.6$
and

$$
\text { (absolute) } \% \text { bias }=\frac{\pi-x_{0}}{x_{0}} \times 100 \quad \text { 4.7: }
$$

Response factor $\overline{\mathrm{R}}=\frac{\bar{x}}{\mathrm{x}_{0}} \quad 4.8$
The chnce in bias with rlo: rate was about $5 \times 10^{-3} \%$ por $\mathrm{ml} \mathrm{min}^{-1}$, for noch material. This roprosents such insignificant changes in relative retector response with flow rate, that it is reasonable to assume that the relative resnonse of the detector is independent of flow rate at least over the rance 15 to $250 \mathrm{ml} \mathrm{min}^{-1}$. Bias values, crabrains the whole flow rate range are riven in table 4.17. A statistical analysis was carried out on the results, and a measure of the repeatability obtained. The results are summarised in table 4.17, and expressed in the form of histograms (of interval $0.25 \%$ ) in ficuro 4.20. All histograms show approvimately normal distributions of the relative response variations.

Table 4.17
Mass Detector Results

Commont	$n$	$\bar{x}$	$\sigma$	$\cdot v$	$x_{0}$	Bias	$\%$ Bias	$\bar{R}$	
Ethyl acctate	51	33.04	0.634	1.93	33.49	-0.45	-1.37	0.99	
n-Propyl	$"$	51	31.38	0.282	0.90	31.64	-0.26	-0.85	0.99
n-Butyl	$"$	51	35.50	0.671	1.89	34.87	+0.80	+1.99	1.02

$\bar{z}=\operatorname{mean} \%$ weight of $n$ determinations.
$\sigma=$ standard deviation.
$V=$ coefficient of variation (\%).
Results for n-propyl acetate are in better agreement with the true value ( $x_{0}$ ), than the other two acetates: The standard deviation is Olso considerably less. From the experiments performed on the belance recorder system (sec section $4.2 .2 a$ ), it was concluded that errors of י to ${ }^{1}$ ? may arise. The introduction of the mass detector into the system has increased the maximum error to 2\%. This increase my arise from nny of the followine causes:


(i) changes in the composition of the solution. Evaporation will cause a decrease in the amount of ethyl acetate present, and affect to a lesser extent the amount of propyl acetate. The overall effect will be an apparent increase in the amount of butyl acetate, very little change in the percentage weight of propyl acetate, and a decrease in the percentage weight of ethyl acetate. This is in line with the bias values quoted in table 4.17: An indication that changes in solution cofiposition with age, is a contributing factor can be obtained by comparing the bias values soon after the mixture was prepared, and after a period of about a week: The complete experiment was carried out over 15 days: Bias values calculated over a period of 2 days (table 4.18 column A) were compared with a similar set of values 10 days later (column B):

Table $4: 18$
A

Component	$n_{A}$	$\bar{x}_{A}$	Bias $_{A}$	$n_{B}$	$\overline{3 f}_{B}$	Bias	Expected trend
in bias							

(iii) Errors may have arisen during the preparation of the sample: Assuming a maximum error of $\pm 0.1 \mathrm{mg}$, the total possible error is 0.4 mg : Calculation of the $\%$ weights of each component, allowing for such errors, made no difference to the values, taken to 2 decimal places:
(iv) Less complete adsorption of the lower boiling acetates by the mass detector: Any such effect would be evident by calculating the adsorption efficiency for each component of a mixture, at a given flow rate: subsequent work (e:f: section $5: 2$ ) has shown that effects of this nature are negligible:
(v) condensation of higher boiling acetates in the detector delivery
tube: This will have the opposite effect on bias values to that observed experimentally, and hence if condensation occurs, it is to a negligible extent. Condensation will also result in distorted steps, which are not observed.
(vi) rapid desorption from the mass detector: Desorption effects will be greater the lower the boiling point of the component, and will be evident by the presence of a falling baseline on the chromatogram: Although in many runs there was a baseline drift, the drift was small, regular and of the same order for all components:
(vii) the presence of impurities in the acetates: this will not affect the repeatability of response, but could enhance bias values: The use of the Gow-Mac gas density balance in series with the mass detector, has made it possible to determine with more certainty whether the bias values quoted in table 4.17 are a function of the mass detector, or are a result of some other effect. The response of the gas density balance is predictable on a molecular weight basis isee section 3.10b) :

The percentage weight of any completelf resolved component in a mixture is given by equation 3.18: Peak areas were measured using the equation:
$\begin{array}{rlr}\text { peak area }= & \text { peak width at half peak height } \\ & \times \text { peak height }\end{array} \quad 4.9$
Graphs of the percentage weight detected against flow rate are shown in figure 4.21: Scatter of points is very much greater than for the mass detector results (figure 4.19): The percentage deviation was calculated in an analogous manner to that described for the mass detector rosults. variations of the values with flow rate were about $I \times 10^{-2} \%$ per $\mathrm{ml} \mathrm{min}{ }^{-1}$ for each component, and although this value is greater than for the mass detector, for practical purposes the relative detector response is flow independent. The condition that there must be a substantially greater flow rate through the reference arm of the detector ( $>10 \mathrm{ml}$ minin${ }^{-1}$ ) was maintained.




A statistical analysis was carried out on the results, and is expressed in the form of histograms (figure 4:22) and summarised in table 4.19 (cf figure 4:20 and table 4:17):

Table 4.19
Gas Density Balance Results

Component	$n$	$\overline{\mathrm{x}}$	$\sigma$	V	$x_{0}$	Bias	Bias \%	$\stackrel{\sim}{1}$	
Ethyl acetate	74	32.68	2.4	7.34	33:49	-0.81	-2:42	0:98	
n-Propyl acetate	74	31.05	1.8	5:80	31.64	-0.59	-1.86	0.98	
n-Butyl acetate	74	36.26	2.0	5.52	34:87	+1.3\%	+3.84	1:03	
				6.62			\|2.34		

There is a similar trend in bias values to those obtained using the mass detector: It is therefore a reasonable assumption that the bias values do not depend to any appreciable extent on the performance of the mass detector: Indeed the bias values of the mass detector results are about half those of the gas density balance results: The standard deviations of the gas density balance results are all of the same order, and are much greater ( 3 X ) than those obtained using the mass detector: Repeatability can be defined numerically in terms of the coefficient of variation: If the coefficient of variation is $n \%$, then the repeatability of 19 out of 20 results is $\mathrm{H}_{\mathrm{n}} \%$. The repeatability of the mass detector response is $\pm 2 \%$ and the Gow-Mac gas density balance士6\%: The very much higher value obtained with the latter detector, may result from the difficulty of precisely assessing peak areas by graphical methods: Peak areas have also been measured using a digital integrator, and the results compared with the most satisfactory of the graphical methods: this work is discussed in detail in Chapter 7: Coefficients of variation were of the same order ( $3 \%$ ) for both methods: The fairly high values for the standard deviations of the results obtained from both detectors may be a result of carrying out the experiments over a wide flow rate range: A similar mixture to that used above, was analysed under the same conditions as given in table 4:16, but at a single flow rate: The flow rate range for the most satisfactory operation of the gas density balance, recommended by the
manufacturers is:

> analytical flow rate 30 to $70 \mathrm{ml} \mathrm{min}^{-1}$ reference flow rate 50 to $90 \mathrm{ml} \mathrm{min}^{-1}$
with a difference of at least $10 \mathrm{ml} \mathrm{min}^{-1}$ between the two arms: This represents a total flow rate range of 80 to $160 \mathrm{ml} \mathrm{min}^{-1}$ : The experiment was carried out with a total flow rate of $126 \mathrm{ml} \mathrm{min}^{-1}$, with $77 \mathrm{ml} \mathrm{min}^{-1}$ flowing through the gas density balance reference arm, and $49 \mathrm{ml} \mathrm{min}^{-1}$ through the analytical arm: The experiment was carried out over 2 days, so that changes in composition of the mixture were negligible compared to those which may have arisen in the previous work: The results for the mass detector are summarised in table 4.20 and figure 4.23:

> Table 4.20
> Mass Detector Results

Component	n	$\overline{\mathrm{x}}$	$\sigma$	V	$\mathbf{x}_{0}$	Bias	$\%$ Bias	$\overline{\mathrm{B}}$
Ethyl acetate	15	33.07	0.414	1.25	33.29	-0.22	-0.66	0.99
n-Propyl acetate	15	30.66	0.158	0.52	30.93	-0.27	-0.87	0.99
n-Butyl acetate	15	36.26	0.404	1.11	35.78	+0.48	+1.34	1.01

Comparison with table 4.17 shows that both the percent bias and the coefficient of variation values are lower when the experiment is conducted at a single flow rate

Peak area measurements on the chromatograme: obtained from the gas density balance were carried out firstly with a steel ruler, and repeated with a travelling microscope, in an attempt to improve on the precision of the measurements: These results are given in table 4:21, column A and B respectively, and histograms (results A) are shown in figure 4.24.
回

$$
\begin{aligned}
& \text {-140- } \\
& \text { Table 4.21 } \\
& \text { Gas Density Balance Results } \\
& \text { A } \\
& \text { B }
\end{aligned}
$$

These results should be compared with table 4.19; it is evident that the performance of the detector is much improved when the analysis is carried out at one particular flow rate: Coefficients of variation have been halved, and the bias of the results considerably decreased: The use of a travelling microscope to determine peak widths and hence areas gave only marginally more repeatable results: in view of the additional length of time required to perform measurements with a travelling microscope, it is concluded that the use of a steel ruler is the preferable method: 4:5:3b Relative Response - Conclusions:

Excellent relative quantitative results were obtained with the mass detector over a wide flow rate range: Repeatability is $\pm 2 \%$ over this range ( $6 \%$ for the gas density balance) : When analysis is carried out at a fixed flow rate the repeatability of the mass detector response is $\pm 2 \%$, and the gas density balance $\pm 3 \%$ : 4:5.4 Absolute Adsorption Efficiencies:

The absolute responses of the mass detector, $i=e$ : the adsorption efficiency, toward the components of the acetate mixture (see table 4.17) were measured: For each component a graph was plotted of the mass of material adsorbed against flow rate of carrier gas: A similar pattern emerged for all components, the amount of material adsorbed
increasing with decreasing flow rate: considerable scatter of points was observed, and the results were not considered entirely satisfactory. It is preferable to measure adsorption efficiencies for single substances rather than mixtures, since the results cannot be affected by changes in sample composition. A new series of experiments was designed, for the measurement of absolute adsorption efficiencies:

For general chromatographic analysis flow rates of the order of $50 \mathrm{ml} \mathrm{min}^{-1}$ are commonly employed: The absolute adsorption efficiency of the detector (NO: 27) has been measured at this flow rate: The conditions of operation are given in table 4:16: A total of 104 runs were performed, using n-butyl acetate, and the mean and standard deviation of the absolute adsorption efficiency was calculated. A $10 \mu \mathrm{l}$ syringe (ref: No: 1 ) was used to inject $1 \mu \mathrm{l}$ samples: The syringe had been previously calibrated using the electromicrobalance and found to deliver $92 \%$ of the quoted volume at the $1 \mu \mathrm{l}$ level (see table 4.13): Calculations of adsorption efficiency take into account this error: Similar experiments were undertaken using $5 \mu$ i samples, of several different compounds: These results are sumimarised in table 4.22 , but are discussed in more detail in section 4.6 .2 since they form part of the programme to assess adsorption capacity:

Table 4.22
No: of runs Sample size ( $\mu \mathrm{l}$ ) Sample Mean $\%$ Adsorption Standard Deviation

104	1	$n$ butyl acetate	99.2	0.7
7	5	" "	95:9	
7	5	111	95:3	
4	5	n octane	95.8	
6	5	11	93.8	
5	5	n butanol	96.5	
7	5	" 1	96.3	

The absolute adsorption efficiency appears to be appreciably less for the $5 \mu$ l charges, compared with the $1 \mu$ l charges: The significance of this is discussed below.
-142-

The method of determining absolute adsorption efficiencies described above is open to a number of possible errors, all of which stem from the fact that it is not possible to guarantee that all the material with which the syringe is charged, reaches the mass detector. An experiment was designed to eliminate the need to know the quantity of sample injected, and to remove the possibility of loss of sample between the injection point and the detector: The Pye Panchromatograph was used in this experiment: The column effluent was led to a small cylindrical chamber outside the chromatograph oven, and then back into the oven to a Gow-Mac gas density balance. The chamber could. contain a mass detecting.element or an empty cylinder of the same dimensions: To determine the absolute adsorption efficiency of the mass detector at any flow rate, a sample was injected in the normal manner, a proportion of which was adsorbed by the mass detecting element. The remainder of the sample was detected by the gas density balance: By repeating the experiment in the absence of the detecting element, the proportion of material adsorbed, and hence the adsorption efficiency, was found. In both experiments, all conditions were identical (see table 4.23), so that any losses of material due to leakage or irreversible adsorption on the column were equal, and did not affect the results:

	Table 4.23
Apparatus	Pye Panchromatograph
Column	ApL ref: A
Inlet pressure	30 Ib in ${ }^{-2} \mathrm{~N}_{2}$
Injection temperature	$100^{\circ} \mathrm{C}$ on column
Column temperature	$100^{\circ} \mathrm{C}$
Mass detector temperature	$25^{\circ} \mathrm{C}$
Gas density balance	$100^{\circ} \mathrm{C}$
$\quad$ temperature	
Detecting element ref:	22

$\frac{1}{2} \mu \mathrm{I}$ samples of chloroform were injected, at a number of flow rates covering the range 15 to $250 \mathrm{mI} \mathrm{min}^{-1}$, in the absence of the mass detecting element, and the resulting peak areas were measured: The
experiment was repeated, again using $\frac{1}{2} \mu l$ samples, in the presence of a mass detecting element: The relative amount of material reaching the gas density balance at each flow rate, with and without the detecting element, was found, and hence the absolute adsorption efficiency of the mass detector was calculated. The results are displayed graphically on figure 4.25: The whole experiment was repeated for nominal sample sizes of $\frac{1}{4} \mu l, 1 \mu l$ and $2 \mu l$ of chloroform, and $\frac{1}{2} \mu$ l of n-nonane: The results were calculated in an anologous manner:

The results confirm that adsorption efficiency decreases with flow rate, which is of no consequence in the determination of the proportions of components in a mixture, assuming that the determination is carried out at a fixed flow rate: The absolute weight of materials present is obtained from the quotient of the observed step heights (in milligrams) and the adsorption efficiency at the flow rate employed. An effect of more serious consequence, illustrated in figure 4.25 is that adsorption efficiency decreases as sample size increases: For mixtures containing a number of materials in widely differing proportions, the observed composition will not agree with the true composition. This at first sight appears to be at variance with the linear response of the detector illustrated in figure 4.47: The upper end of the linearity plot was obtained by injecting varying amounts of benzene, all at the same concentration, but for different lengths of time: Injection using a syringe is normally for about the same period of time, irrespective of the sample size, ige: although in both cases sample size is varied, in the former it is maintained at constant concentration, and in the latter the concentration is increased: Calculations show that the concentration of benzene injected in the linearity experiment was about $110 \mu \bar{\delta} \mathrm{mI}^{-1}$ for all quantities: the concentration of a $5 \mu \mathrm{l}$ sample just after injection into a gas stream flowing at $30 \mathrm{ml} \mathrm{min}^{-1}$ is about $8 \mathrm{mg} \mathrm{m} \mathrm{m}^{-1}$, so that for a very short retention time the concentration will not be significantly less than

this value: Under the conditions given in table 4.23 the retention time of chloroform was about 1 minute, so that a high concentration was reaching the detecting element, indicating that adsorption efficiency is a function of the concentration of the adsorbate. To confirm this, adsorption efficiencies were measured at a fixed flow rate, for a number of different sample sizes of n-octane; introduced into the detecting element at varying concentrations: lihis was achieved by using two columns of different retention characteristics and by inserting dilution chambers between the column exit-and the detecting element: The operating conditions are given in table 4:24: Table 4:24

Apparatus	Pye Panchromatog
columns	ApI $\mathrm{A}, \mathrm{G}$
Difution chamber volumes	$4 \mathrm{ml}, 74 \mathrm{ml}$
Lnjection temperature	$100^{\circ} \mathrm{C}$ on column
Column temperature	$100^{\circ} \mathrm{C}$
Detecting element temp:	$25^{\circ} \mathrm{C}$
Detecting elements ref:	24,27
Gas density balance temp:	$100^{\circ} \mathrm{C}$
Analytical gas flow rate	$31 \mathrm{ml} \mathrm{min}^{-1}$,
Reference gas flow rate	52 ml min

Adsorption efficiencies were calculated for each sample and at each concentration, and are shown on figure 4:26: The more dilute the sample the smaller was the effect of sample size on adsorption efficiency. The most dilute sample (column $G+$ large dilution chamber) gave an efficiency of over $99 \frac{1}{2} \%$ for all sample sizes injected: the largest sample size was $8 \mu \mathrm{l}$, and the maximum concentration of the sample reaching the detecting element under these conditions was about $120 \mu \mathrm{~g} \mathrm{ml}^{-1}$ : The most concentrated sample (using column A) never attained $100 \%$ adsorption, even for a $1 \mu$ injection: the minimum concentration in this case was 1 mg mil : The remaining samples were all totally adsorbed, up to a sample concentration of about $230 \mu \mathrm{~g} \mathrm{mi}^{-1}$ :

4.5:4a Absolute Response - Conclusions:

It is concluded that although absolute adsorption efficiency decreases as flow rate increases, under normal operating conditions it is not affected by sample size. However for high speed analysis (with retention times the order of 1 minute) in which there is a high concentration of sample reaching the detecting element adsorption efficiency falls as sample size is increased. It is still sensibly complete for samples of less than about $\frac{3}{4} \mathrm{mg}$ per component, and for flow rates below $30 \mathrm{ml} \mathrm{min}^{-1}$. The effect on the analysis of samples of short retention time, carried out at more rapid flow rates is shown in the following examples:
(i) A $1 \mu l$ sample consisting of approximately equal proportions of two or more components, at any flow rate will produce negligible errors in a relative percentage composition determination.
(ii) A $2 \mu \mathrm{l}$ sample containing a minor constituent. A sample contains say 1. 424 mg of n-heptane and 0.176 mg of hezane, i:e: $89.00 \%$ and 11:00\% by weight respectively: At a flow rate of about $50 \mathrm{mI} \mathrm{min}^{-1}$ the mass detector will adsorb only $98: 4 \%$ of the heptane, but $99.6 \%$ of the hexane, i:e: 1.401 mg and 0.175 mg : The detected percentage composition is 1. $401 \times 100$ i.e: $88: 90 \%$ heptane in the mixture, and 1:576
$0.175 \times 100$ i:e: $11.10 \%$ hexane in the mixture: It has been established 1. 576 .
that the percentage composition values are precise to $\pm 1 \%$ (section 4.5:3) : The above results are within these limits and negligible error has arisen through changes in absolute adsorption efficiency with sample size:
(iii) Consider an extreme case in which the total volume of the sample is $5 \mu \mathrm{l}$, the mixture contains about $60 \%, 39 \%$ and $2 \%$ of three materials of similar density, and which is analysed at $150 \mathrm{mI} \mathrm{min}^{-1}$ : Analysis details are given in table 4:25:

Table 4.25
Component True \% Weight per Adsorption Weight \% Detected
weight $5 \mu \mathrm{I}$ (mg) Efficiency Adsorbed weight (mg)

	59.12	2.365	$90.7 \%$	2.145	58.69
B	39.83	1.593	12.2	1.469	40.18
C	1.05	0.042	98.0	0.041	1.13

Again, the results are perfectly acceptable: Satisfactory results will be obtained even for components of very short retention time, and which are present in widely differing proportions. 4:5:5: Delivery Tube Dimensions:

Changing the diameter of the mass detector delivery tube will not affect the flow rate of carrier gas into the detector, but it will affect the linear gas velocity, as shown in table 4.26.

The use of a narrow bore stainless steel tubing offers several advantages over a wide bore tube: it is easier to accommodate in a detecting element; its higher electrical resistance enables direct heating of the tube to a high temperature, without requiring a high current; loss of resolution of components after leaving the column is minimised: The absolute adsorption efficiency of the detector was measured with several delivery tubes, using the same sample size of n-butyl acetate: A capillary delivery tube ( 0.2 mm ) was used at temperatures up to $80^{\circ} \mathrm{C}$, both with a standard size detecting element (ref: 2) and a miniature element (ref: 26), and flow rates between 20 and $50 \mathrm{ml} \min ^{-1}$ : In no instance did adsorption efficiency exceed $60 \%$ : The introduction of a diffuser at the delivery tube outlet had a negligible effect on adsorption efficiency: Similar results were obtained using a 0.7 mm bore tube, but the use of a $1 \frac{1}{2} \mathrm{~mm}$ bore tube under similar conditions gave an adsorption efficiency of $95 \%$ : Typical results are given in table 4.26; the results refer to a flow rate of $48 \mathrm{ml} \mathrm{min}{ }^{-1}$ (at $23^{\circ} \mathrm{C}$ ):

Outside   ins.	DelDia.mm	$\begin{gathered} -147- \\ \text { able 4:26 } \end{gathered}$		Adsorption Efficiency \%	Linear Gas Velocity cm sec
		very T			
		$\begin{gathered} \text { Bore } \\ \text { mm } \end{gathered}$	$\underset{\mathrm{C}}{\text { Temperature }}$		
-	0.42	0.22	23	22.2	2110
-	0.42	0.22	50	39.2	-
1/16	1.46	0.70	23	45.3	207
1/16	1.46	0.70	50	45:5	-
1/8	3.02	1.48	50	95:0	47

The use of a $1 / 8^{\prime \prime}$ delivery tube is recommended for reasonable (i,e: over 90\%) adsorption efficiency: To minimise losses of resolution which may occur in the delivery tube (section 4:6.1.), the tube was packed with the same stationary phase as used in the main column. It was necessary to maintain the delivery tube at a hipher temperature, than an empty tube, since the increase in residence time of components in the packed tube led to condensation within the tubing: In general a packed delivery tube should be maintained at column temperature: A packed delivery tube cannot be used in experiments in which another detector is placed in series with the mass detector: The back pressure exerted by the packing on the first detector chamber may cause erroneous response: In addition the time delay introduced between the responses of the two detectors is excessive, and the analysis of a complex mixture would be made difficult by the non-coincidence of the chromatograms obtained from the two detecting systems: Indeed even using an empty delivery tube; a detectable time lag occurs (see figure 4.18): At a flow rate of $50 \mathrm{ml} \mathrm{min}^{-1}$, with a $50 \mathrm{~cm} x$ $1 \frac{1}{2} \mathrm{~mm}$ empty delivery tube, the delay is about 1 second, assuming equal detector response times.

4:5:5a Delivery Tube Dimensions - Conclusions:
The use of a narrow bore delivery tube does not give a reasonable adsorption efficiency at the flow rates demanded by the column:for maximum performance: It is concluded that the most satisfactory delivery tube for quantitative adsorption by the mass detector, is a tube of the widest possible diameter, consistent with a minimal loss
of resolution. Loss of resolution and condensation of components is minimised by using the shortest possible delivery tube: An 1/8". ( $1 \frac{1}{2} \mathrm{~mm}$ bore) tube is recommended:
4.5:6: Delivery Tube Temperature and Position,

The adsorption efficiency of the detector will be affected if the delivery tube is operated at extremes of temperature. If the temperature of the tube is too low to give significant vapour pressures of the compounds passing through the tube, condensation within the tube will occur, resulting in a decrease in adsorption efficiency: distortion of the chromatogram also occurs, and this is illustratedin figure 4.27: By operating the delivery tube at too high a temperature, the detecting element temperature is raised, and rapid desorption of adsorbed materials will occur, resulting in peaks rather than steps for the detector response: An extreme case is illustrated in figure 4.28: Between these limits the adsorption efficiency will depend on temperature to a lesser extent and it is this dependence which is examined here: conditions suitable for the analysis of solids and permanent gases are considered in sections 5:3 and 5:5. It is evident that it is the temperature difference between the boiling point of the adsorbate, and the detector which must be considered, rather than absolute temperatures: Experiments were carried out at a fixed detector temperature $\left(24^{\circ} \mathrm{C}\right)$ whilst the delivery tube temperature was varied over the range 24 to $100^{\circ} \mathrm{C}$ : Operating conditions are as in table $4: 16$ where appropriate, with a flow rate of $110 \mathrm{ml} \mathrm{min}^{-1}$. The changes in efficiency were measured, using $I \mu I$ samples of n-butyl acetate (bp $116^{\circ} \mathrm{C}$ ): It was concluded (section 4:5:5) that maximum adsorption efficiency is favoured by slow flow rates. However condensation of material within the delivery tube is minimised if the residence time of the sample within the delivery tube is as showt as possible, i:e: the flow rate is a maximum: Although these two conditions are incompatible, the latter may be met indirectly by operating the delivery tube at: a sufficiently high temperature to prevent condensation,


## Chromatogram ohowing the responce of the Mass Detector to 4 ther (see pape 148).


even at slow flow rates:
The temperature of an $1 / 8{ }^{\prime \prime} 0 . d$ : delivery tube was monitored, at a point just outside the chromatograph oven, midway along the tube, and within the detecting element. The adsorption efficiency of the detector for several delivery tube temperatures was measured, in some instances with the delivery tube exit fitted with a baffle: The baffle had a marked effect on the dependence of adsorption efficiency with tube temperature, which is illustrated graphically on figure 4:29: The presence of a baffle caused the temperature range of maximum efficiency to decrease, and the actual value for the maximum efficiency was lower: A baffle could thus give erroneous results for the analysis of a wide boiling range mixture: No increase in detector noise caused by direct impingement of hot carrier gas on the walls of the detecting element was observed in the absence of the baffle: the use of a baffle was in no was advantageous, and it was discarded.

A number of experiments were carried out at several different temperatures in which the effect of changing the length of the tube within the detecting element was investigated: The results are shown in figure 4.30. The length of delivery tube within the detector is expressed as a percentage of the detector length. All curves exhibit a maximum; there was a maximum difference in adsorption efficiency between the different delivery tube positions, of about $10 \%$ : Operating over a temperature range of about $50^{\circ} \mathrm{C}$, the adsorption efficiency only changed by $3 \%$.

4:5:6a Delivery Tube Temperature and Yosition - Conclusions:
Although variations in adsorption efficiency were observed, neither the position of the delivery tube within the detecting element, nor its temperature are critical for good adsorption efficiency, even at a fairly rapid flow rate: It is recommended that, for a cylindrical detector, the delivery tube occupies about $60 \%$ of the detector length: For materials boiling in the region of $100^{\circ} \mathrm{C}$, the delivery tube should be operated at about $40^{\circ} \mathrm{C}$ : In general the delivery tube temperature is
A

## The Effoot of Mana Dotoctor Dolivery Tubo Tomperaturo

 on Adoorption Efficionoy (see pnefe 149).(
chosen between limits, such that condensation in the tube, and desorption from the mass detector are minimised.

4:6:1 'the Performance of the IIass Detector - Intra Detector Parameters: Detector Geometry and adsorption Efficiency:

Detecting elements used in all experimental work so far discussed have been cylindrically shaped, and closed at one end (figure 4:8): A number of other geometries have been considered (see section $4: 3: 1 \mathrm{a}$ ) and several elements constructed, in an attempt to increase adsorption efficiency, and to decrease their volume and weight. The efficiencies of these elements, relative to cylindrical element ref. 2, have been measured, under identical conditions, and are listed in table 4:27: They are drawn approximately full size in figure $4: 8$ :
rable 4. 27
Element No. Adsorption Efficiency (\%)

2	100
9	68
10	75
11	86

Hhe detainls of detecting element weights and dimensions are given in table 4:9: wlement 9 was very light, and was mounted directly on to the balance stirrup: The stability of the balance was better than with any other detecting element, but adsorption efficiency was poor: Element 10 was difficult to construct, and to align inside the detector chamber: Element 2 was the most efficient design: although this element contained more charcoal than the other designs, it is established (see figure 4:34) that adsorption efficiency is not affected by the amount of adsorbent. Since a cylindrical detector was the most efficient investigated, and was also the simplest to construct, it was adopted for the majority of work on mass detection. The effect of changing the dimensions of a cylindrical detector was considered: A number of detectors of identical length, but different diameters, all containing the same particle size range of charcoal, were constructed, and adsorption efficiencies measured: Experimental conditions are given
in table 4:16: I $\mu$ I samples of $n$-butyl acetate were used: The delivery tube temperature was $53^{\circ} \mathrm{C}$, and the carrier gas flow rate $141 \mathrm{ml} \mathrm{min}^{-1}:$ Elements $3-7$ were used in the experiment, the characteristics of which are listed in table 4:9: The results are shown on figure 4:3la: No variation in adsorption efficiency was observed when the detector diameter was varied from 1 to $2 \frac{1}{2} \mathrm{~cm}$. Since the larger diameter detectors contained more charcoal, it is evident that the amount of charcoal present (ige: the surface area of the charcoal in this particular case) has no effect on adsorption efficiency (unless effects of detector diameter and charcoal area act in opposition): A 1 cm diameter detector is the smallest which can be constructed without encountering difficulties in preparation, and alignment in the detector chamber: Detectors of diameter greater than $2 \frac{1}{2} \mathrm{~cm}$ may lead to excessive $20 s s$ of resolution of components entering the detecting element, although the actual dead volume of the detector is far smaller than the geometric volume of the detector (see section 4.6.4):

Resolution losses within the mass detecting element can be measured by comparing the resolution of two components observed by a detector of negligible dead volume placed in parallel with the mass detector, with that observed by the mass detector: Resolution losses along the detector delivery tube can be estimated by measuring resolution at the colum exit, and at the mass detector: The detector at the column exit must have a dead volume similar to that of the mass detector: Two component mixtures were prepared and analysed under conditions which just gave complete separation: the components were in approximately equal proportions: The resolution $R$ of the components was calculated from the equation ${ }^{25}$ :

$$
R=\frac{2 \Delta V_{R}}{y_{a}+y_{b}}
$$

where $\Delta V_{R}=$ difference in retention volumes of components $a$ and $b$ $y_{a}, y_{b}=$ peak widths for components $a$ and $b_{2}$ measured as the distance between the tangents to the curve, at the baselinc:


Tha Effoot of dotecting, lilemnnt Geomotry on Adaorption Effioioncy (seo papios 151 and 154).


Experiments were carried out with the following detector combinations:
(i) A flame ionisation detector placed in parallel with the mass detector, ensuring that the narrow bore connecting tubes from the end of the column to each detector were of similar volume: If resolution losses within the stream snlitter are equal, then any differences in resolution of the components between the flame ionisation detector and the mass detector must result from the effective dead volume of the latter, since the volume of the flame ionisation detector is only a few microlitres (see pace 30): The contribution of the splitter was estimated by measuring resolution with first the major and then the minor stream to the mass detector, in parallel with a flame thermocouple detector:
(ii) A Gow-Mac gas density balance in series with the mass detector: The gas density balancehas a dead volume of about 8 ml : the effective volume of the mass detecting element used in this experiment was not greater than $1 \frac{1}{2} \mathrm{ml}$. The volume of the tubing, of internal diameter I弪 mm , between the two detectors was $\frac{1}{2} \mathrm{ml}$ :
(iii) A katharometer of dead volume about 3 ml in series with the ass detector:

Values of the Resolution $R$ (equation 4:10) were obtained from 12 chromatocrams: In no case did the mass detector impair the degree of resolution to an extent greater than the flame detectors or the hot wire detectors: An example of a chromatogram of partially resolved materials is shown in figure 4:32. Comparison of the differential and integral response curves, obtained from a gas density balance and the mass detector shows that the observed resolution is similar for both detectors The effect of changing the length of a cylindrical detector, at a fixed diameter was investigated: The conditions were identical to those of the diameter variation experiment: 'The delivery tube was a fixed distance into the detector chamber throughout the experiment,

## PAGE

## NUMBERING

## AS ORIGINAL

i:e: the proportion of detector length occupied by the delivery tube varied with detector length. she overall effect of shortening the detector length is shown in figure 4.3lb: Detector details are given in table 4.29:

I'able 4.29

Element No.	Length (cm)	Geometric Surface Area ( $\mathrm{cm}^{2}$ )	Charcoal Height (g)	$\%$ Detector occupied by delivery tube	Mean \%   Adsorption
6 a	5.5	26:7	$0: 53$	49	90:2
6 b	5.0	24.4	0.49	44	89.2
6 c	4.4	21.7	0.44	36	89:1
6d	3.9	21.1	0.39	28	85:6
6 e	3.4	17.2	0.35	18	83.8
$6 \pm$	2.9	14.9	$0: 30$	3年	83:1
$6{ }_{5}$	2:4	12.6	0.26	-2	77:4
68	2:4	12.6	0.26	75	87:3

Detector diameters $1: 45 \mathrm{~cm}$ : charcoal particle size 20-40 BS mesh. The fall off in adsorption efficiency may be due to two factors:
(i) decrease in the weight and surface area of the adsorbent, ige: dependent on the length of cylinder:
(ii) decrease in trapping efficiency, ige: dependent on the fraction of delivery tube within the detecting element.

The adsorption efficiency of element 6 g (the shortest element) was determined with the delivery tube below the base of the element, andalso occupying 75\% of its length. The increase in adsorption efficiency was marked, and approached that of the largest elements ( $6 a, b$ ): Thus the major contribution to the changes in adsorption efficiency is the position of the delivery tube with respect to the detecting element, and not the overall element length.

The effect of maintaining a constant element length, but changing the proportion of its surface area covered with charcoal, as illustrated in figure 4:8, yielded the results given in table 4:30:

Table 4.30

Element   No.	Charcoal seometric   Surface area (cm $)$	$\%$ Detector Area   covered by charcoal	Adsorption   Efficiency
28	9.9	40	83.6
29	14.2	57	89.6
30	18.4	74	95.2
27	24.8	100	95.2

AIl elements were of identical dimensions (table 4:9) and lined with 60-80 BS mesh charcoal:

Reasonable adsorption efficiency is observed for percentage coverages over about $70 \%$.

Adsorbent Particle Size Range:
Several elements of identical dimensions were constructed and lined with different particle size ranges, obtained from a single batch of charcoal. The adsorption efficiency of each element was measured under the conditions given in table 4.16: The carrier gas flow rate was $115 \mathrm{ml} \mathrm{min}^{-1}$, and $1 \mu \mathrm{l}$ samples of $n$-butyl acetate were used:

It was not possible to construct the elements such that each carried the same weight of charcoal: The adsorption efficiency of each element was measured five times, and the mean values are quoted in table 4:31:

$$
\text { Table } 4: 31
$$

Element   No.	Particle Size   Range BS mesh	Mean Particle   Size ( $\mu$ )	Weight of   charcoal (g)	Mean \% Adsorption
12	$100-120$	138	0.152	69.6
13	$80-100$	165	0.195	85.5
14	$60-80$	213	0.245	92.6
15	$40-60$	310	0.417	91.5
16	$20-40$	500	1.410	90.8
19	$12-18$	1129	1.381	92.9
17	$6-12$	2109	2.119	90.8

The percentage element length occupied by the delivery tube was $51 \%$ in all cases: The reliability of the values obtained for elements 17 and 19 are open to question since the weights of these elements were in the region of the capacity limit of the electromicrobalance (see figure 4:6 and 4:7): Notwithstanding this, high adsorption efficiency
is obtained on elements using a mean particle size of 70 BS mesh or smaller (i:e: larger diameter): The experiment was extended to cover a narrower series of particle size ranges in the region of maximum efficiency: The results are given in table 4:32.

$$
\text { Table } 4: 32
$$

Element Particle Size Mean Particle Weight of Mean \% Adsorption

No.	Range BS mesh	Size $(\mu)$	charcoal ( $(\mathrm{g})$	
24	$72-80$	198	0.244	91.8
23	$60-72$	231	0.275	91.4
22	$52-60$	273	0.343	91.5
21	$40-52$	342	0.396	92.9

Comparison of the adsorption efficiencies in tables $4: 31$ and 4.32 indicate that particle size range has a negligible effect on adsorption efficiency, and that particle size has ho effect over about $200 \mu_{\text {: }}$ The overall effect of particle size on efficiency is illustrated in figure 4:33:

On the basis of these experiments, it is recommended that the particle size range $60-80$ BS mesh be used: Larger diameter particles increase the element weight to the limit of the electromicrobalance, but do not increase adsorption efficiency: Smaller diameter particles result in loss of efficiency:

To confirm that the above results, and indeed any previous results are not appreciably dependent on the differences in weight of charcoal, in different elements, an element of identical dimensions to those used above, was constructed. This element (ref: 25) was designed to hold variable weights of charcoal, and is shown in figure 4.8: Adsorption efficiency was determined under conditions identical to those above: Efficiency was measured six times for each charge of charcoal, which was increased in 50 mg increments up to 1 g : All charcoal was from the same batch as above, and had identical regeneration treatment. The range was $20-40$ bS mesh, chosen, since smaller sizes would fall through the element mesh: the results are shown graphically on figure 4.34: The mean percentage adsorption remains sensibly constant for charcoal


charges up to about 350 mg : Even with a charge as small as 35 mg , the adsorption efficiency is relatively high: a charge of this size is represented by only about 300 particles of charcoal, which occupy a very syiall fraction of the element surface area. It is surprising that for charcoal charges over about 350 mg there is a gradual decrease in adsorption efficiency, when the reverse effect may be expected: This is due to a fall off in the balance performance, since the total weight of the element exceeded 1 GB: The observed deflections have been corrected for balance response fall off using figure 4.6, but conditions of operation were not directly comparable, since figure 4:6 was obtained using the standard balance stirrups and pans, and not a detecting element attached to a suspension wire.

The overall low absolute adsorption efficiency is a result of the element design. In order to charge the element with fresh charcoal, it was necessary to incorporate a removable cap on the top of the element, which it was not possible to make leak tight. In addition only the top of the element contained adsorbent, the walls of the cylinder being uncoated.
4:6:1a Adsorption Efficiency - Conclusions:
Un the basis of the above work an element of high adsorption efficiency can be constructed. the most satisfactory form of detecting element is a cylinder closed at one end, and lined with charcoal. An element which will give a high adsorption efficiency, and is simple to construct, consists of a cylinder of length $5 \frac{1}{2} \mathrm{~cm}$ and diameđer $1 \frac{1}{2} \mathrm{~cm}$, of 60-80 BS mesh charcoal: Adsorption efficiency is not affected by the amount of adsorbent; a reasonable quantity of charcoal is 300 mg : 4.6.2 Adsorption Capacity:

The adsorption capacity of a detecting element is defined as the weight of a given material which the element can hold under given conditions before desorption of that material takes place. It is necessary to have a knowledge of adsorption capacity to predict the frequency with which the element must be regenerated. It is of little
use to have an element giving high adsorption efficiency if regeneration is required after each run: An experimental study of the adsorption capacity of mass detecting elements toward several compounds covering a wide boiling range was undertaken. An element (No. 27) of high adsorption efficiency was constructed, and its capacity determined: $1 \mu l$ charges of n-butyl acetate were injected into the chromatograph, at fixed intervals of time, and the total amount of the sample which could be held by the element before desorption occurred, was measured the experiment was carried out over 80 hours of continuous running: The overnight periods were used to measure the detector noise and drift (see section 4:6:5) : Experimental conditions are given in table 4.16: Carrier gas flow rate was $48 \mathrm{ml} \mathrm{min}{ }^{-1}$ : Rates of desorption of the n-butyl acetate were calculated from the chromatograms, and the total weight of sample on the element found, taking into account the rates of loss of sample: The value was checked by weighing the element both at the beginning of the experiment, and after completion of the run. To determine the adsorption capacity of the detecting element a graph (of the type shown in figure 4.36) was plotted of the rate of desorption against the total sample weight on the element. The element adsorbed 25 mg of material before there was any perceptable desorption: This is equivalent to $331 \mu I$ injections: The experiment was repseated using $5 \mu$ sample injections to determine whether adsorption was affected by the size of the charge: Desorption was not observed until the element had adsorbed 25 mg of material: Charges greater than $5 \mu \mathrm{I}$ were not introduced, since this would be outside the capacity of a normal analytical chromatographic column: Charges significantly smaller than $1 \mu l$ would increase the time of the experiment to at least 15 days continuous running, and in any case, quantitative analysis of very small charges is not recommended: Figure $4: 35$ shows examples of chromatograms obtained at the beginning of the run, and on an exhausted detecting element.

similar boiling point) on adsorption capacity was investigated: The compounds chosen were $n-o c t a n e\left(b p 125^{\circ} \mathrm{C}\right.$ ), $n$-butyl acetate (bp $124^{\circ} \mathrm{C}$ ) and n-butyl alcohol (bp $118^{\circ} \mathrm{C}$ ): 'thus, major differences in adsorption characteristics are not a result of boiling point differences. For each compound, 5 pl injections were made at fixed time intervals, until rapid desorption was observed: the element was regenerated under identical conditions before its capacity toward each of the materials was measured: the weight of the detecting element was checked before each set of runs, to ensure a clean adsorbent surface, and no experiment was started until a stable baseline was obtained. 'lhis was usually about one hour after placing the detecting element in the detector chamber: It was found more satisfactory to measure the adsorption capacity at a finite rate of desorption, rather than at the point at which desorption just occurred, since this point was difficult to locate graphically (see figure 4.36): Capacities for a desorption rate of $100 \mu \mathrm{~min} \mathrm{~min}^{-1}$ are given in table 4.33: Estimates of the point at which desorption just occurs is more readily made by inspection of the chromatograms, and it is these values which are quoted in the table below: 'the adsorption capacity per gram of charcoal was calculated from these values:

Compound	'1able 4.33			
	$\begin{aligned} & \text { Uharge } \\ & (\mu \mathrm{I}) \end{aligned}$	Adsorption zero desorption	$\begin{gathered} \text { Capacity }(\mathrm{mg}) \\ 100 \mu \mathrm{~min} \end{gathered}$	Capacity per gram of charcoal (mg $\mathrm{m}^{-1}$ )
n-Octane	5	26	53	780
n-3utyl acetate	2	25	-	750
n-Butyl acetate	5	25	70	750
n-outyl alcohol	5	27	56	810

Adsorption capacity values are similar for all the materials, and for both sample sizes?

Adsorption capacity will depend upon the physical surface area of the charcoal exposed to the adsorbates: Using the same particle size range of charcoal, the adsorption capacities of three detecting elements of identical dimensions, containing different amounts of charcoal, were
measured: Detector details are given in table 4.34:

$$
\text { Table } 4.34
$$

Element   No:	Weight of   Charcoal (	Area of Element   containing adsorbent   $\left(\mathrm{cm}^{2}\right)$	Adsorbent Weight   Ratio
28	0.156	9.9	1.0
29	0.181	14.2	1.2
30	0.244	18.4	1.6

The adsorption capacities are given in table 4:35, and a representative graph (capacities toward n-butyl acetate) is shown in figure 4:36.

Compound	Table 4.35			Capacity per gram of charcoal (mg g ${ }^{-1}$ )
	$\begin{gathered} \text { Element } \\ \text { No: } \end{gathered}$	Adsorption zero desorption	Capacity (mgi $100 \mu \mathrm{E} \mathrm{min}^{2}$	
n-0ctane	28	11	26	70
	29	21	36	116
	30	30	48	123
$\begin{aligned} & \text { n-Butyl } \\ & \text { acetate } \end{aligned}$	28	16	28	103
	29	19	42	105
	30	28	59	115
n-Butyz alcohol	28	12	27	77
	29	23	39	134
	30	37	57	152

Adsorption capacity increases as the weight of adsorbent is increased, and on each element is similar for all the adsorbates:

The adsorption efficiency of an element may depend on the degree. of saturation of the charcoal. To determine whether adsorption efficiency decreases with the total sample load on the element, efficiencies were calculated from the above runs, and graphs plotted of efficiency against the total sample load. Figure 4.37 shows the results for $1 \mu \mathrm{l}$ charges of n-butyl acetate on element 27. No decrease in the adsorption efficiency was observed, even at high total sample loadings, although scatter of points is greater: The mean adsorption efficiency was $99.2 \%$ with a standard deviation of $0.7 \%$ for 104 runs. Using $5 \mu$ charges fall off in adsorption efficiency was observed, as


The Effect of Charcoal Weight on Adsorption Capacity (see page 160):


The Effect of Total Sample Loadinc on Adsorption Efficiency (see pages 160, 161).


shown on figure 4:38, which gives the results for n-butyl acetate on elements 27-30. The rates of fall off in adsorption efficiency for n-ortane and n-butyl alcohol gave identical patterns, so that the effect on determining the relative composition of a mixture using a partially exhausted element is negligible: The total sample weight at which efficiency begins to fall off, for each compound, and on three different detectors is given in table 4:36:

Table 4.36

Element	n-octane		n-butyl acetate		n-butyl alcohol	
	a	b	a	b	a	b
28	7	$4 \frac{1}{2}$	7	$4 \frac{1}{2}$	7	$4 \frac{1}{2}$
29	10	$5 \frac{1}{2}$	10	$5 \frac{1}{2}$	15	8
30	20	8	25	10	22	9

$a=$ total sample weight on the element when adsorption efficiency begins to fall off (mg)
$b=$ percentage of the charcoal weight on which adsorption has occurred when efficiency begins to fall off:
the variation of adsorption capacity with temperature was determined indirectly by keeping the detector temperature constant and adsorbing materials of different boiling points: A homologous series covering the boiling range $36^{\circ} \mathrm{C}$ ( $n$-pentane) to $193^{\circ} \mathrm{C}$ (n-undecane) was analysed under conditions similar to those used for the determination of the adsorption capacities of materials of different polarity: Difficulty was encountered with materials boiling higher than $150^{\circ} \mathrm{C}$, since condensation in the detector delivery tube gave rise to distorted steps: To change; the conditions of the runs for high boiling materials would invalidate the comparison of the results with the lower boiling materials. Element 27 was used for the experiments, and the results are given in figure $4: 39$ and summarised in table 4:37:

Table 4:37

Compound	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Boiling }} \text { Point }$	Temperature Difference bp -detector ( ${ }^{\circ} \mathrm{C}$ )	```Adsorption (mg) .zero desorption```	Capacity   100 $\mu \mathrm{g} \mathrm{min}^{-\frac{7}{n}}$
n-Pentane	36	12	4	16
n-Hexane	68	44	9	26
n -Heptane	98	74	19	36
$n-O c t a n e$	125	101	21	36
n-Honane	150	126	23	48
$n$-Decane	173	149	-	46
n-Undecane	193	169	. -	44

In order that the results may be of more general applicability, a graph (figure 4.40) was plotted of the difference in temperature between the boiling point of each compound and the detector, against capacity: ror a temperature difference of up to about $100^{\circ} \mathrm{C}$ capacity increases fairly regularly; for temperatures greater than $100^{\circ} \mathrm{C}$ there is little change in capacity:

The change in capacity with boiling point may arise solely from adsorption effects or from condensation of materials on the walls of the detecting element. It is evident that adsorption plays the major role for the following reasons: simple condensation of materials on the detecting element would result in continuous evaporation from the detecting element, irrespective of the total sample load, which would be detected by a drifting baseline: l'his is not observed until a definite sample loading is exceeded. In addition the amount of condensed material would increase as the homologous series was ascended, and would not reach the maximum, which is observed experimentally Hence it is reasonable to assume that adsorption effects predominate:

The increase in adsorption capacity with temperature difference is expected, and will continue until all available sites on the charcoal are occupied. At this point adsorption capacity can no longer increase with temperature difference, and a stable value for capacity is reached: It is difficult to be certain whether the slight decrease in capacity at high temperature differences is a real effect, or caused by
difficulties in measuring the chromatograms, which were less well defined. the capacity decrease can be explained by considering the changes in molecular dimensions of the adsorbates. As the homologous scries is ascended the size of the molecule adsorbed increases, so that fewer and fewer sites become available within the pore structure of the charcoal. However, the effect of increasing the boiling point of the adsorbates is to increase the amount which can be adsorbed. For the lower members of the series boiling point effects predominate, but for the high members, molecular dimensions are more important.

The effect of adsorbing a branch chain hydrocarbon on the adsorption capacity (below the capacity limit) was investigated: The capacity of element 27 toward 2,2,4,-trimethyl pentane was measured, and compared with that obtained for a straight chain hydrocarbon of similar boiling point, under identical conditions. The results are shown in figure 4.41: no difference in adsorption capacity was observed Both the straight chain and branch chain hydrocarbons were sufficiently small to be accommodated in the majority of adsorption sites, thus giving similar adsorption capacity values:

Experiments were performed to determine the effect of flow rate into the detecting element, on its adsorption capacity: The chromatographic column $E$ was replaced by an empty column $J$ (see table 4.15) and flow rates controlled by a needle valve: The capacity of element 30 at $25^{\circ} \mathrm{C}$ was measured with $5 \mu \mathrm{~s}$ smples of n -heptane, at several flow rates covering the range 17 to $220 \mathrm{ml} \mathrm{min}^{-1}$ : Figure 4.42 shows the relationship between rate of desorption and sample loading on the element for each flow rate: Using this graph, the relationship between adsorption capacity and flow rate was found, and the results are shown on figure 4 : 43 for various different rates of desorption. 4:6.2a Adsorption Capacity - Conclusions:

Adsorption capacity is independent of chemical species, but is increased by increasing the temperature difference between the boiling point of the adsorbate and the detecting element. Capacity decreases



as flow rate of carrier gas into the detecting element is increased. In general the adsorption capacity of an element containing a few hundred milligrams of adsorbent is sufficient for many analyses, and regeneration may be conveniently carried out during overnight periods, when the detector is not in use:
4.6.3 Detector Iinearity :

The linear responses of the electromicrobalance and the potentiometric recorder have been demonstrated in section 4.2.2. Experimentuit evidence to confirm the Iinear response of the mass detector to weight changes is given in this section.

The vapour dilution technique of Scott 23 was tried, but this was found to be too time consuming and not ideally suited to a detector of only moderate sensitivity: Direct injection of known volumes of samples is not reliable, since a syringe does not necessarily deliver the same fraction of its charge for each different volume injected (see table 4.13): In addition it would be necessary to use a $10 \mu I$ and a $1 \mu$ syringe to cover the weight range as fully as possible, thus introducing further errors: Calibration of the mass detector was carried out using two methods which overcame the difficulties noted above: One method was suitable for small samples, less than 1 mg , and the other method for large samples:
(i) Method of calibration for small samples.

A $10 \mu I$ syringe which had previously been calibrated for the $1 \mu I$ setting using $n$-heptane, was used to deliver $I \mu I$ charges of a mixture of $n$-hexane as solvent and pure ( $99.9 \%$ ) n-heptane as solute: These two compounds form virtually ideal solutions over the whole piole fraction range ${ }^{24}$ : By varying the amount of heptane in hexane it was possible to cover a wide mass range ( 15 to $700 \mu \mathrm{~g}$ ) : This method rules out any errors due to the syringe, and overcomes the difficulty of using very small amounts of material. All solutions were weighed out on a 4-place analytical balance using a total of about $\frac{1}{2} g$ of material.

No solution was kept for more than two hours after preparation, and samples were removed via a septum fitted to the containing vessel: The response of the detector to n-heptane in each solution was measured at least three times (on each mass range): The experiments were carried out under the conditions quoted in table 4.16 with a carrier gas flow rate of $36 \mathrm{ml} \mathrm{min}^{-1}$ : The results were calculated directly from the weights of heptane adsorbed and not relative to the total sample injected, i.e: absolute weight response and not percentage composition was measured. The results are shown on figure 4.44 covering the mass range up to $200 \mu \mathrm{~g}$, and figure 4.45 covering the range up to 1 mg : A straight line, of slope unity passing through the origin is obtained in both instances, i:e: adsorption is sensibly complete over this range and at a flow rate of $36 \mathrm{ml} \mathrm{min}{ }^{-1}$. the detector thus gives an ideal response at least up to a sample size of 1 mg : lihe results are summarised in table 4.38 which quotes the mean response values for each sample size, and expresses detector response as the ratio of the detected and injected quantities: The mean and standard deviation of the response on each mass range have been
calculated, and these values are shown in table 4.39 (line a): These low values have been included for completeness:

Table 4. 38
$100 \mu \mathrm{~g}$ range
\% heptane in Injected Quantity Mean Detected Response solution
( A S S )
Quantity (pg)

2.3	13.0	15.1	1.16
3.6	20.8	19.8	0.95
7.2	38.7	37.9	0.98
9.9	56.8	58.8	1.03
10.0	57.9	56.5	0.98


8.2	47.0	43.9	0.94
9.9	56.8	51.3	0.91
10.0	57.9	53.1	0.92
11.1	64.2	65.7	1.02
15.6	90.2	87.9	0.97
18.0	104.3	99.4	0.96
21.9	126.6	125.7	0.99
24.0	139.2	$\because 135.7$	0.98

1 mg range

S heptane in solution	Injected Quantity ( $\mu \mathrm{g}$ )	Mean עetected Quantity ( $\mu_{\mathcal{E}}$ )	Response
8.2	47.0	42:9	0.92
9:9	57.2	51:2	0.90
11.1	64.2	64.7	1:01
21.9	126.6	127:9	1:01
24.0	139:2	134:1	0.97
25:9	149:8	152:4	1.02
26.3	152.6	246.8	0.97
48:3	282.1	288.1	1.02
76:3	450:4	442:2	0.98
100:0	595:6	590:1	0:99
100.0	714.7	727:9	1.02
100:0	833:8	839:8	1.01

un all ranges the detector gave a response close to unity except where only a small fraction of the recorder full scale deflection was employed: Since these discrepancies occurred on all ranges they can be attributed to the difficulty in measuring precisely the small step heights which were involved $(<3 \mathrm{~cm})$ : In addition, in all instances the amount of heptane in the mixture was less than $10 \%$, so that minor errors in sample weighing during preparation, and evaporation will be maenified considerably: The coefficient of variation was recalculated, ignoring results of less than $10 \%$ of the recorder full scale deflection on each range, and a marked improvement was observed (see table 4:39 Iine b):

Table 4.39

	n	Mean Response	Std Deviation	Coeff of Variation
a	25	0.98	$5.2 \times 10^{-2}$	5.2
$b$	19	0.99	$2.8 \times 10^{-2}$	2.8
$c$	9	0.99	$2.1 \times 10^{-2}$	2.1

(ii) liethod for large sample sizes.

It is difficult to inject, using a syringe, large quantities of material on to the column, due to the possibility of column overloading, and jack pressure effects causing blow back of the sample via the syringe



Incarity of Response of the Mass Detector (see page 165).
piston: A reliable method of quantitative sample introduction must overcome these difficulties, and the following method was adopted. The column $E$ was removed, and replaced by empty column $J$, operated at room temperature. Pure carrier gas at a known flow rate was passed continuously through the column and into the detector: A separate carrier gas supply, at the same flow rate, was bubbled continuously through benzene, also at room temperature: This stream was introduced into the column, in place of the pure nitrogen flow, for fixed interval of time, by means of a 4-way tap. A diagram of the system is given in figure 4.10b: The amount of benzene introduced per unit time was measured by covering the upper part of the calibration curve obtained using a syringe (figure 4:45), using this new injection system. Hence by comparing the amount of benzene detected during various known intervals of time, with the calculated injected values, the mass range was greatly extended. The partial pressure of benzene was constant throughout the experiment, since only the length of injection time, and not the flow rate or temperature, was varied. The amount of benzen injected was $66 \mu \mathrm{~g} \mathrm{sec}^{-1}$ :

The response curve is shown in figure 4.46 , and response values for each injection are given in table 4:40:

Table 4.40

Injection Time   $($ sec $)$	Injected Quantity   $(\mathrm{mg})$	Detected Quantity   $(\mathrm{mg})$	Response
20.6	1.357	1.357	1.00
40.7	2.686	2.660	0.99
60.7	4.000	4.000	1.00
80.6	5.320	5.285	0.99
100.2	6.613	6.374	0.96
120.7	7.966	8.160	$I .02$
139.8	9.227	9.285	1.00
160.8	10.613	10.177	0.96
180.2	11.893	11.963	1.01
200.4	13.226	12.677	0.96
200.9	13.259	11.963	0.90
240.7	15.886	14.067	0.88
300.5	19.833	17.319	0.87
420.5	27.753	20.710	0.74

The mean and standard deviation of the response over the linear portion of the curve are given in table $4: 39$ (line $C$ ):

The mass detector gives a linear response and quantitative adsorption up to a sample size of about 12 mg . This represents about $5 \%$ by weight of the total amount of adsorbent in the detector. Above this weight the response of the detector slowly falls, and much desorption occurs: d'he adsorption capacity of this particular system is estimated at 10 mE , using the adsorption capacity results previously quoted (section 4.6.2): The value obtained from the chromatograms is between 8 and 11 mS: Thus linearity of response does not break down until the adsorption capacity of the detector is reached, and can readily be extended by increasing the quantity of adsorbent available: However this is by no means essential, since the upper limit of the linear dynamic range well exceeds the upper limit of sample sizes normally employed in analytical gas chromatography: The non linearity of response at high sample sizes may also result from the difficulty in the interpretation of chromatograms with rapidly falling baselines:

The lower limit of detection is more difficult to extend, and will depend, as with other detectors, on being able to maintain a high signal to noise ratio: The microbalance is capable of detecting quantities as small as $\frac{1}{4} \mu \mathrm{~g}$ but the incorporation of the mass detecting element, and the continuous flow of nitrogen into the system gives rise to significant noise at such low masses:
"ithe overall linear response of the detector, embracing all the balance ranges, is shown on figure 4:47, which is drawn to a log/log scale: The line of regression has a slope of 1.02 and an intercept of -0.05: The linear dynamic range of the particular detecting elements investigated (27 and 30) is $10^{3}$, with a lower limit of detection of $10^{-5}$ G (see also table 4:43): The detector gives a linear response over a wide range of sample sizes, and in addition at the particular flow rate eraployed the mean absolute response factor is unity: This will only be the case if the absolute adsorption efficiency of the detector

is $100 \%$, since the results are expressed, not in terms of the percentage of heptane detected in the mixture, but in terms of absolute weights of heptane:

It has previously been established that absolute adsorption efificiency decreases with increasing flow rate: It may arise that the use of a rapid flow rate is necessary for a particular analysis: Experiments were carried out to determine whether a linear response is still observed, even though absolute adsorption efficiency is decreased: A flow rate of $105 \mathrm{ml} \mathrm{min}^{-1}$ was used: all other conditions were identical to those used for the determination of linearity described above: the results (table 4.41) are expressed in the same manner as above and are to be compared with table 4:38:

Table 4.41

$\%$ heptane	Injected (iuantity   $(\mu \mathrm{g}$ )	Mean vetected quantity   $(\mu \mathrm{g})$	Kesponse
8.7	50.6	47.6	0.94
24.1	139.5	135.1	0.97
54.8	320.9	305.9	0.96
68.7	403.6	383.3	0.95
100.0	595.5	580.9	0.97

the overall mean response is 0.96 with a standard deviation of $2 \times 10^{-2}$ for 15 runs: The results are shown graphically on figure 4.48 . The response is less than unity, since, as expected adsorption efficiency is decreased: nevertheless, the response is linear over the whole range investigated: It is reasonable to assume therefore that the detector will give a linear response with respect to mass, over a wide flow rate range, embracing at least flow rates between 30 and $100 \mathrm{ml} \mathrm{min}^{-1}$ : 4:6:4: Detector Response Time:

In general, provided the response time of a detector, including the associated equipment is less than about 2 seconds, negligible peak or step distortions will occur:

The response time of the mass detector (see equation 2.20) i.e: the time lag between a sample entering the detecting element, and a movement


Inoarity of Reanonoe of the Macs vetector (see page 169).
occurring on the recorder, was measured by the means described below: The technique was very simple and cannot be expected to give a precise value for the response time. However, since response time will depend on the effective detector vollume and the carrier gas flow rate, both of which are variable, an order of response time is all that is required:

The response time was estimated using detector No: 29, by comparing the observed and calculated retention times of a n-alkane: I $\mu$ I samples of n-heptanewere injected into an empty column about 30 metre Iong, and the time taken for a response to be observed on the recorder was noted: The expected retention time of the same compound under identical conditions was calculated from the volume of the column, and the flow rate of the carrier gas: The volume of the column was found by filling it completely with a known weight of water: a correction was made for the depth of insertion of the syringeineedle at the injection point. The results are summarised in table 4:42.

$$
\text { qable } 4: 42
$$

Retention Mimes (mins)   Observed	Difference	Response Iime (secs)	
2.68	2.70	0.02	1.2
1.68	1.68	zero	zero
1.41	1.40	0.01	0.6

The order of the response time of the detector is the same as that of the recorder: It can therefore be regarded as satisfactory for normal packed column chromatographic analysis:

Alternative methods of determining response times were described in Chapter 2: The method proposed by the Author in which an estimate oi the effective detector volume is obtained from peak or step widths was used. An empty column about 10 cm long was attached to the mass detector: The column injection part was maintained $134^{\circ} \mathrm{C}$ and $I \mu I$ samplea of $n$-octane were injected. For a $\frac{1}{2}$ second injection time, the volume of the carrier gas containing the octane at the column exit can be calculated, assuming no diffusion within the column. The volume of carrier gas containing the sample can be measured from the step width
oi the chromatogram, and the difference between the two values is the effective detector volume: This method will give a maximum value, since some band spreading must occur, however short the column. For flo: rates of the order of $30 \mathrm{ml} \mathrm{min}^{-1}$ the effective detector volume of clement 3 lb was no greater than $1 \frac{1}{2} \mathrm{ml}$ : The geometric detector valume was $4 \frac{1}{2} \mathrm{ml}$ : The detector can therefore distinguish all peaks of retention time difference greater than 3 seconds (a retention distance difference of $l_{2} \mathrm{~mm}$ at $3011 / \mathrm{hr}$ ): The dead volumes of katharometers and gas density balances are normally about 3 ml , and are sometimes greater: Whe procedure used by King ${ }^{15}$ to measure response time, assumes that the absolute response of a detector is independent of flow rate: the method is not therefore widely applicable.
4.6.5: Mass Detector Stability.

The noise of the mass detector has bien measured on all the ranges employed for gas chromatographic analysis.

From the noise values, the limits of detection on each range have been estimated: since the detector gives an integral response the values are quoted in terms of absolute weight: However in order to be able to compare the limit of detection of the mass detector with conventional differential detectors, the concentration limit of detection has been estimated from step widths and carrier gas fiow rates: The values quoted in table 4.43 are for a carrier gas flow rate of $30 \mathrm{mI} \mathrm{min}^{-1}$ and elution time of 2 minutes, for a compound of molecular weight 100 (n-heptane):

$$
\text { Table } 4.43
$$

Kange	Noise level   $(\%$ fsd)	Limits of   $\mu \mathrm{g}$	Detection   mMmI
1 mG	not detectable	4	$6.6 \times 10^{-7}$
$250 \mu_{\mathrm{S}}$	negligible	2	$3.3 \times 10^{-7}$
$100 \mu_{G}$	0.25	0.5	$8 \times 10^{-8}$
$25 \mu_{B}$	2	1	$1.7 \times 10^{-7}$

The lower limit of detection of the mass detector is $0.5 \mu \mathrm{E}$ : The linear dynamic range can be estimated from the limit of detection, and
by using figure 4.47, and is $2 \times 10^{4}$ : The smallest amount of material which has been directly measured using the mass detector is $0.8 \mu \mathrm{~g}$ : the chromatogram is shown in figure 4:49: The limit of detection of the microbalance in the absence of the detecting element is $0.25 \mu \mathrm{G}$ (table 4.8): the incorporation of a detecting element and the continuous flow of carrier gas into the element, do not result in a significant decrease in balance stability:

The limits of detection of conventional detectors are given in table 3.22.1: Although the limit of detection of the mass detector does not approach that of ionisation detectors, it is of the same order as the katharometer and the gas density balances:

Detector drift was measured on the $I$ mg range over a period of 15 hours: The major contribution to drift is desorption of materials from the detecting element. It is of little value to measure the drift of an unused and regenerated detector since this represents an ideal condition: the experiment was carried out using a partially exhausted detector which contained a total sample load of 77 mg of n-butyl acetate: The total loss of sample was $32 \mu \mathrm{~g}$, which represents a rate of loss of $2 \mu \mathrm{E}$ per hour ( $0.2 \%$ fsd per hour) : The drift of the microbalance in the absence of a detecting element is $0.02 \%$ fsd per hour, (section 4.2.2a):

4:7 Conclusions:
The continuous weighing of materials as they emerge from a chromatographic column is a satisfactory basis for a quantitative detector: The characteristics of the mass detector show that it is a most satisfactory device for quantitative analysis and offers outstanding advantages over conventional detectors: The characteristics are given on the lines proposed in Chapter 2:

Lower limit of detection	$0.5 \mu \mathrm{~B}$
Upper limit of detection	25 mg
Dynamic Range	$5 \times 10^{4}$



Linear Dynamic Range
Baseline drift
Response time
Effective detector volume
$2 \times 10^{4}$
$2 \mu_{\mathrm{g} \mathrm{hr}}{ }^{-1}$ (1 mg range)
$\overline{\mathrm{c}}$ I sec.


The lower limit of detection is similar to that for hot wire detectors, and the upper limit of detection exceeds that required for nornal gas chromatographic analysis: the detector has a wide linear dynamic range, which approaches the dynamic range: Baseline drift is neglişible, and response time and dead volume are sufficiently small for normal packed column analysis.

The response of the mass detector is predictable on a weight basis: The relative response of the detector is independent of carrier gas flow rate, and repeatability of the response at a fixed flow rate is In \% : The absolute response of the detector decreases as flow rate is 2 increased, but is independent of chemical species: The detector has sufficient capacity to adsorb material from many runs before regeneration is required: the capacity is a function of the amount of adsorbene and the temperature difference between the adsorbate and adsorbent. Changes in operating temperature and flow rate result in a baseline shift, but random fluctuations do not affect the stability of the detector:

Detecting elements are simple to construct, and the operating procedure is straightforward. The cost of the detecting element is negligible, and the cost of the complete detector, including the microbalance and associated equipment is of the same order as a katharometer complete with amplifier and control unit. In addition the mass detector functions as its own integrator: The detecting element and microbalance are sufficiently robust to withstand normal careful handing: the detector operates perfectly satisfactorily on an ordinary wooden laboratory bench:

The advantages of the mass detector for quantitative analysis, over all other detectors are:
(i) the response is predictable and no calibration with respect to sanple size or chemical species is required.
(ii) since response is a function of mass, no qualitative information is required for a complete quantitative analysis.
(iii) peale area measurements are eliminated since quantitative data are obtained directly from step height measurements.
4.8 References:

1. Vartin, A.J.P: Gas Chromatography XXIX 1962.

2: Thorburn, S: Gas Chromatography 187 1962.
3: Lovelock, J:E. Anal: Chem: 351345 1963:
4. Bevan, S.C:, Thorburn, S: J: Chromatog: II 301 1963:

5: UcBain, Je, Balre, A! J. Amer: Chem: Soc: 48690 1926:
6. Gregs, S:U: J. Chem: Soc: 561564 1946.

7: Anderson, F:J:, Horlock, ReF: Trans: Harad: Soc: 58 1993 1962:
8. Gregs, S:J:, Wintle, M:F: J: Sci: Inst: 23259 1946:

9: Rhodin, T:N: Adr: Catalysis 539 1953: Gulbransen, E.A: Ady: Catalysis $5119^{\circ} 1953$.
10. Vacuum Microbalance Techniques, published by Plenum Press, 1960e.tsec:
11. Gorbach, Ge Anal: Chim. Acta 29453 1963: Cahn, L: Schultz, H:R: Vacuum Microbalance Tech: $\underset{\sim}{2} 7191962$.
12: Pope, M.1: J: Sic: Lnst: 342291957 :


13: Cahn Instrument Co:, Paramount, Calif: sartarius-Werke, A:Ge, Germany:

14: Sauerbrey, C: Z: Physik: 155206 1959: Warner, A.W:, Stockbrides, C:D: Vacuum Microbalance Tech: 27193 Haller, I:, White, P: Rev: Sci: Inst: 34677 1963.
15: iing, W.H: Anal: Chem. 361735 1964:
16:
17: Bevan, S:C:, Thorburn, S: Chem: Brit: 206 1966.

18: Research and Industrial Instruments Co., London: Electromicrobalance rodel EMBI:

I9: C.I. Electronics Ltd., Wimborne, Dorset, Electromicrobalance Mark I
20: Greg', S.J. lihe Surface Chemistry of Solids, Chapman and Hall 1951 p 64.
2I: Lovelock, J.E. Anal. Chem: 351346 1963.
22: Evans, R:S:, scott, K:P:W: Chimia 17137 1963:
23: Fowlis, I:A:, Scott, K.P:W: J: Chromatog: II 1 1963:
24:. Calingaert, G:, Hitchcock, L:B: J: Amer: Chem: Soc: 49750 1927:
25: Gas Chromatography 429 1960:
26. Kipling, J.J. Quart: Kev: 101 1956.

27: Gregg, S.J. The Surface Chemistry of Solids, Chapman and Hall, 1951 p 97:
28. Young, S. J. Chem. Soc. 55486 1889. Jolly, V:li:, briscoe, $H: \frac{J}{J}$ : Chem: Soce 1292154 1926.

Quantitative Analysis. by viass Detection:
5.1 Discussion:

The absolute and linear response of the mass detector has been demonstrated over a variety of operating conditions and a number of simple acetate mixtures have been quantitatively analysed. The purpose oi the present chapter is to cover a wider range of materials, and thereby demonstrate the value of the mass detector for the quantitative analysis of mixtures: A wide variety of species was analysed, and it is convenient to divide the results into several sections, relating to the boiling ranges of the materials under analysis: This is not a consequence of any peculiarity of the mass detector, but arises from the conditions under which the chromatograph itself must be operated to give a satisfactory performance: In general, it is convenient to place raterials for chromatographic analysis into the following categories: (i) normal boiling materials covering approximately the range 50 to $250^{\circ} \mathrm{C}$,
(ii) high boiling materials: liquids boiling over $150^{\circ} \mathrm{C}$ (including solids at room temperature),
(iii) low boiling materials ( 0 to $50^{\circ} \mathrm{C}$ ), (iv) cases:

The mass detector was used to analyse materials in all these categories, and the results are presented below. Any problems associated with a particular boiling range are described in the appropriate section. 5.2 Normal Boiling Range Materials

Whe precautions necessary to prevent deterioration of samples have been discussed in Chapter 1 : Mixtures were prepared by weighing directly into sample bottles which were filled almost to the limit. Samples were removed with a syringe via a rubber septum. No mixture was lept for more than a few hours. A number of different sample sizes of each mixture were analysed covering the mass range $10 \mu$ to 1 mg per component
of a mixture: Usually this amounted to a total of about 10 determinations The choice of constituents for mixtures: Several mixtures comprised homologous series, or materials of similar chemical nature, embracing both aliphatic and aromatic compounds: Mixtures containing difierent chemical species were prepared, covering aromatic and aliphatic hydrocarbons, including halogenated materials, oxygen containing compounds, saturated and unsaturated compounds, polar and non-polar materials, and aqueous solutions: the conditions of analysis are given below, and this is followed by a summary of the results: For each mixture the mean observed percentage weight of the components ( $\overline{\mathrm{x}}$ ) was calculated, and the standard deviations ( $\sigma$ ) and coefficients of variation ( $v$ ) of these values were found: The mean detector response ( $\overline{\mathrm{R}})$ defined as the ratio of the mean observed percentage weight and the true percentage weight $\frac{(\bar{x})}{x_{0}}$ is given: Bias values represent the discrepancy between the mean observed composition and the true composition and are calculated using expressions 4.6 and 4:7: For each mixture, the components are listed in order of increasing retention time:

Table 5:1
Conditions of Operation:

Chromatograph column
Column Temperature Carrier gas
inlet pressure
Carrier gas flow rate Sample sizes
Mass detector ranges
Detecting elements
Detector temperature

Shandon KG2
PEGA E
$101{ }^{\circ} \mathrm{C}$
Nitrogen
$30 \mathrm{Ib} \mathrm{in}^{-2}$
$51 \mathrm{ml} \mathrm{min}^{-1}$
0.1 to $5 \mu 1$ :
$100 \mu \mathrm{~g}$ to 5 mg fsd
27, 30
22 to $24^{\circ} \mathrm{C}$

Table 5.2

Compound	$\overline{\mathrm{x}}$	$\sigma$	v	$x_{0}$	$\overline{\mathrm{R}}$	Bias	
Benzene	39:71	1.32	3:32	39:20	1.01	+0.51	
Toluene	29:97	0:91	3.04	30.25	0.99	-0.28	
Ethyl benzene	30.32	1.03	3:32	30.55	0.99	-0.23	
Wethyl ethyl ketone	38.75	1.84	4.75	37:56	1.03	+1.19	
Methyl n-propyl "	29:84	1.73	5:70	29:77	1.00	+0.07	
Methyl n-butyl "	31:41	0.54	1.72	32:67	0:96	-1.26	
Ethyl acetate	41.45	0.73	1.74	40:36	1.03	+1.09	
n-Hropyl acetate	31.63	0.66	2.08	31. 58	1.00	+0.05	
n-Butyl acetate	26:92	1.06	3.95	28:06	0.96	$-1.14$	
n-Heptane	17:72	0.40	2.26	17:82	1:00	-0.10	
n-Octane	17:30	0.56	3.24	17:50	0.99	-0.20	
Ethyl acetate	21.38	0.79	3.70	21.73	0.98	-0.35	
Methyl ethyl ketone	16:39	0.55	3.36	16.09	1.02	+0.30	
Benzene	27,22	0.33	1.21	26:86	1.01	+0.36	
Cyclohexane	22.63	0.67	2.96	22.86	0.99	-0.23	
n-Octane	15:52	0.97	6.27	15.46	1.00	+0.06	
Carbon tetrachloride	35.95	0.50	1. 39	35.02	1.03	+0.93	
Dichloromethylene	25:90	0.72	2.78	26.65	0.97	-0.75	
2,2,4-Trimethyl pentane	44.27	0.61	1.37	43.97	1.01	$+0.30$	
n-Octane	28:47	1.34	4.70	27:86	1.02	+0.61	
1-Octene	27.26	0.84	3.07	28.16	0.96	-0:90	
n-Octane	35.79	0.74	2.06	34.28	1.04	41251	+2.52
sutylene oxide	32:91	0.55	1.67	32.03	1.03	+0:88	
Dioxan	31:30	0.91	2.90	33.69	0.93	-2.39	

'Ihe results shown in table $5: 3$ were obtained using a yye
Panchromatograph fitted with column A, and using detector 31: A11 other conditions are as given in table 5:1: Figure 5.1 shows two chromatograms, representing different sample sizes of the three component mixture given in table 5:3:

Table 5:3

compound	$\overline{\mathrm{x}}$	$\sigma$	$V$	$x_{0}$	$\overline{\mathrm{~B}}$	Bias
Methyl propionate	33.05	0.60	1.81	33.51	0.99	-0.46
Moluene	30.35	0.41	1.35	30.41	1.00	-0.06
Chlorobenzene	36.59	0.44	1.20	36.08	1.01	+0.51
Ethyl alcohol	54.25	0.55	1.01	53.63	1.01	+0.62
n-Propyl alcohol	45.75	0.57	1.24	46.37	0.99	-0.62

Nany analyses of similar mixtures were carried out at a flow rate of $105 \mathrm{mI} \mathrm{min}^{-1}$, on the Shandon KG2 chromatograph, under the conditions given in table 5.1 where appropriate. Variations in conditions are noted at the foot of table $5: 4$, which summarises these results:

Table 5:4

Compound	$\overline{\mathrm{x}}$	$\sigma$	V	2	$\overline{\mathrm{R}}$	Bias
$n-$ Pentane ${ }^{\text {a }}$	22:30	0.66	2.95	22:50	0.99	-0:20
n-Hexane	18.40	0.71	3.86	17.57	1.05	+0.83
n-Heptane	15.16	0.59	3.85	14.67	1.03	+0.49
n-Cxtane	16.46	0.64	3.87	16:45	1.00	+0.01
n-Nonane	27.69	0.89	3.23	28.82	0.96	-1.13
Benzene	41:35	0.70	1.70	41:33	1:00	$+0.02$
Toluene	30.94	0.69	2.23	31.00	1:00	-0.06
Ethyl benzene	27:72	0.60	2.16	27:67	1:00	+0.05
Methyl ethyl ketone	43.05	0.57	1.32	42.20	1:02	+0.85
Nethyl n-propyl "	25:75	0.84	3.28	25.69	1.00	+0.06
Methyl n-butyl "	31.20	1.32	5.58	32.10	0.97	-0.90
Methyl acetate	21.46	0.83	3.85	23.72	0.90	-7.26
Ethyl acetate	25.50	0.81	3.17	23.47	1.09	+2.03
n-Propyl acetate	23:03	1.01	4.38	22.82	1.01	+0.21
n-Butyl acetate	30.02	0.46	1. 53	29.99	1:00	+0.03
n-Heptane	18.61	0.20	1.08	18.44	1.01	+0.17
n-Octane	13.81	0.34	2.46	13.77	1.00	+0.04
Ethyl acetate	23.92	0.31	1.30	23.68	1.01	+0.22
Methyl ethyl ketone	16:28	0.36	2:21	16.49	0.99	-0.21
Benzene	27:37	0.31	1:13	27.63	0.99	-0.26

Chromatogramo ohowinf, tho hoaponao of tho hans botoctor to a Throo Component inixturo ( 000 parso 178)

$\text { paf;o } 170):$										
		1-2.								
-										
							-		\%	
-			$\cdots$				-		-	
ㅍ..	-									
$20$										
$\because 0$					$\square$	...			-	
	$\cdots$								-	
-						--				
-	$\square$	Ch	020		On					
$\cdots$	-									
$\cdots$							$\cdots$			
	,									
-0	-									
			--							
		-			-					
			$\cdots$							
0										
$=\mathrm{Q}$										
$\because$										
-										
-							-			
							+			
$\therefore 1-\infty$										
$-\mathrm{F}$										
$\square-1 \mid 1$										
- 1 - $-1-1$										
Methyl-a-b- $-\infty$										
- Piopionato -										
$\square \square \square$										
$\square 1 \square 1 \square$										
1-1										
-6- $-\square \square \square$										
$\square 1-10$										


Compound	$\bar{x}$	0	V	$\mathrm{x}_{0}$	$\overline{\mathrm{R}}$	Bias
Cyclohexane	19:39	0.59	3.04	19:30	1:00	+0.09
n-Octane	16.14:	0.43	2.68	15.87	1:02	+0.27
Carbon tetrachloride	34.79	0.63	1:81	34:92	1:00	-0.13
Dichloroethylene	29.68	-	-	29:92	0.98	-0.24
$\begin{gathered} \text { 2,2,4-Trimethyl } \\ \text { pentane } \end{gathered}$	38.25	0.72	1.88	38.03	1.01	+0.22
n-Octane	35.52	0.71	2.00	35:59	1:00	-0.07
I-Octene	26.23	2.00	7:65	26:38	0.99	-0.15
n-Octane	27.63	0.47	1.71	26.74	1.03	+0.89
Butylene oxide	28.56	0.59	2.06	28.80	0.99	-0.24
Dioxan	43.81	0.82	1.87	44.45	0.99	-0.64
n-Butyraldehyde ${ }^{\text {a }}$	39.24	1.03	2.62	39:80	1:00	-0.56
Methyl ethyl ketone	60.76	I. 06	1. 74	60.20	1:00	+0.56
n-Butyl alcohol ${ }^{\text {b }}$	53.42	1.05	1:97	52.95	1:01	$+0.47$
$n-$ Amyl alcohol	46.58	1.05	2.26	47.05	0.99	(-0.47
n-Propyl alcohol ${ }^{\text {b }}$	45:36	0.28	0.62	44.94	1.01	+0.42
Methyl n-propyl ketone	54.64	0.52	0.96	55.06	0.99	-0.42
a Colurnn temperature $66^{\circ} \mathrm{C}$.   b Porapais column D at $140^{\circ} \mathrm{C}$ :						

There is a negligible difference between the precision and accuracy of the results at 51 and $105 \mathrm{ml} \mathrm{min}^{-1}$. The overall standard deviation ( $\sigma$ ) was $0.75 \%$, and the coefficient of variation (V) 2:5\%, for 180 analyses: whe corresponding values for runs carried out at a single sample size on a single mixture were $0.4 \%$ and $1.0 \%$ respectively (table 4:20): Values for a single mixture over a wide flow rate' range were $0.6 \%$ and $1.6 \%$ (table 4.17): The accuracy of the results is expressed in terms of bias, and the mean value of the runs in tables 5.2 to 5.4 is $0.54 \%$ (absolute bias $1.8 \%$ ); cf tables 4.17 and 4.20 for a single three component mixture. Response factors are very similar for all materials, and for practical purposes can be taken as unity:

The detector gives satisfactory quantitative analyses for a wide
variety oí materials, in proportions ranging from $15 \%$ to $60 \%$ in a mixture, and covering the mass range $10 \mu$ g to $l \mathrm{mg}$ per component. 5:2.1 The quantitative Analysis of finor Constituents:

In tables $5: 2$ to $5: 4$ details of the analyses of mixtures in which the percentage weight per constituent varied between 15 and $60 \%$ of the total quantity, have been given. In order to assess the reliability of the rass detector for the analysis of minor constituents and to detect any trends in bias and precision with respect to percentage composition, a number of mixtures of heptane and hexane were prepared, in which the proportion of one compound was progressively increased from 2\% to 100\%: This experiment was combined with the determination of detector linearity given in Chapter 4 (see table 4.38) : Experimental conditions are given in table 5:5. Results are calculated solely on the basis of the weight of heptane present and not on the proportion of heptane in the mixture: The results, given in table 5:6, were only used to determine the bias of the measurements, and not the precision of the measurements for each mixture.

Table 5:5
Experimental Conditions

Chromatograph Column
Column Temperature
Carrier gas
Inlet pressure
Carrier gas flow rate
Sample size
Mass detector range
Detecting elements
Detector temperature

Shandon KG2
PEGA E
$64^{\circ} \mathrm{C}$
Nitrogen
30 Ib $\mathrm{in}^{-2}$
$32-36 \mathrm{ml} \mathrm{min}^{-1}$
$1 \mu \mathrm{I}$
$100 \mu \mathrm{~g}$ to Img
27, 31
$24^{\circ} \mathrm{C}$
dable 5:6

$\%$ Heptane	Bias		\% Heptane	Bias	
	$\mu \mathrm{E}$	$\%$		$\mu \mathrm{s}$	\%
2:3	+2.1	+15.8	18:0	-4.9	-4.7
3:6	-0.8	-4.0	21:9	-0.9	-0.7
7.2	-0.9	-2.2	21.9	+1:3	+1:0
8.2	-4.1	-8.7	24.0	-5.1	-3.6
8.2	-3.1	-6.4	24.0	-3.5	-2.5
9:9	-6:0	-10:5	25.9	+2.6	$+1.7$
9:9	-5.5	-9:6	26.3	-7.8	-5.2
9.9	+2.1	+3.5	26.3	-2.6	-I:7
10.0	-1.4	-2:5	48.3	+6.0	+2.1
11.1	-0.5	+0.8	67.5	+5.6	+1.4
11.1	+2:5	+2.4	76.3	-8:2	-1. 8
I5:6	$-2.3$	-2.6	100.0	-5.5	-0:9

The percentage bias values show a slight improvement when the proportion of heptane exceeds about $10 \%$ : ithe mean value of the (absolute) bias is 4ic:

Using a similar series of hexane/heptane mixtures, and carrying out 10 determinations per mixture, a measure of the precision of the detector at each heptane composition was obtained. ill values were calculated on a percentage weight rather than an absolute basis, and the results are given in table 5.8 in the same manner as table 5.2, with which they may be compared. sxperimental conditions are given in table 5:7:

Table 5.7
Experimental vonditions
Chromatograph Pye Panchromatograph

Column
ApL G
Column temperature $\quad 100^{\circ} \mathrm{C}$
Carrier gas flow rate $40 \mathrm{mI} \mathrm{min}^{-1}$
Sample size
Mass detector range
Detecting element Detector temperature $24^{\circ} \mathrm{C}$

Table 5:8

$\bar{x}(\%)$	$\sigma$	$V$	$x_{0}(\%)$	Bias	$\%$ Bias
0.34	0.05	14.7	0.29	+0.05	17.2
1.51	0.04	2.65	1.38	+0.13	9.4
4.17	0.20	4.80	4.39	-0.12	2.7
12.16	0.32	2.63	12.65	-0.49	3.9
22.19	0.51	2.29	22.45	-0.26	1.2
35.87	0.18	0.50	35.94	-0.07	0.19
44.68	0.29	0.65	44.79	-0.11	0.24
55.33	0.29	0.52	55.21	+0.12	0.22
64.13	0.18	0.28	64.06	+0.07	0.11
77.82	0.17	0.22	77.55	+0.27	0.35
87.85	0.33	0.38	87.36	+0.49	0.56
95.80	0.21	0.22	95.61	+0.19	0.20
98.49	0.00	-	98.62	-0.11	0.11
99.66	0.05	0.05	99.71	-0.04	0.04

All runs were carried out using $1 \mu$ samples on the 2 mg range, except those samples of percentage composition less than $2 \%$ and greater than 98\%: For these runs $3 \frac{1}{2} \mu I$ samples were used, with the 5 mg range for the major constituent and the 1 mg range for the minor constituent.

The changes in standard deviation and coefficient of variation with sample composition are shown on figure 5:2: The coefficient of variation is less than $7 \%$ for all sample compositions over $30 \%$ and evan at $5 \%$ composition has only increased to about $4 \%$. The standard aeviation remains sensibly constant throughout the whole range of sample compositions, at about 0. $25 \%$. The overall mean bias is $0.2 \%$ (absolute bias 2.6\%):

Satisfactory quantitative analyses may be obtained for minor constituents in mixtures:
5.2.2 The Determination of Water by the Mass Detector:
ihe adsorption of water on activated charcoal follows the type $V$ isotherm, but this should not give rise to any difficulty in a quantitative estimation, using the nass detector: The analysis of aqueous samples by chromatography is however particularly difficult in that the excessively polar nature of water invariably produces grossly

cistorted peaks, with all conventional stationary phases: a high proportion of water is irreversibly adsorbed on the stationary phase: Similar effects are observed with the lower members of the alcohol series: As a consequence, even assuming that a detector will respond quantitatively to water, the results bear little reserablance to the composition of the sample injected: ioreover, several of the commonly employed detectors give spurious responses toward water vapour: The Pray ionisation detector (section 3.6a) will not respond to water, but the response factors for the other constituents of an aqueous sample are different from those of the same constituents in a non-aqueous medium. the flame-ionisation detector (section 3.2) will scarcely respond to even a large proportion of water in a sample, which after aifects the response of the detector to the remaining constituents: Whe effect is by no means as narked as in the pray ionisation detector, and does not inferfere with subsequent analyses. The katharometer (section 3.1) will detect the presence of water in a sample, but requires extensive calibration: The gas density balance (section 3:10) should give a normal response to water vapour, which will be negative if for example nitrogen or argon is used as carrier gas:

The problem associated with the analysis of aqueous samples is thus two-fold; a chromatographic column is required which will give a symmetrical and quantitative pass of the water band, and a detector is required which will give a quantitative estimate of the water present, without affecting the response factors toward the remaining constituents:

An example of a chromatogram of water, obtained from a conventional column' (ApL ref C, table 4.15) using a katharometer in series with the mass detector is shown in figure 5:3: Clearly an estimate of the peak area by any means would be difficult in view of the gross distortion of the peak: step height measurement, on the other hand would be relatively simple:

Recently a new type of column packing has been introduced ${ }^{\text {l }}$, which it is claimed gives symmetrical elution peaks for hishly polar materials,


Chromatograns blowing the wiffoct of the istationary Phase on the Peak Symmotry of Polar Materials: (see page 184),

[^0]
and that all materials including water are not irreversibly ansorbed. This material appears to be ideal for the quantitative analysis of aqueous samples, the material is basically a cross linked polystyrene, but details of the modifications to the standard polystyrene preparation, which malse the material suitable for use in chromatography have not been published: A column, D, (see table 4:15) was prepared usine a packing such as that described above, which is commercially available under the name forapak ${ }^{2}$. A number of samples of known composition were prepaici, and quantitatively analysed using column $D$ fitted to the $K G 2$ chromatograph, with a Martin gas density balance in series with the mass detector: The conditions under which the analyses were carried out are given in table 5:9:

Table 5:9
Carrier gas
Nitrogen

How rate (analytical)	$56 \mathrm{ml} \mathrm{min}^{-1}$	
$" \\| \quad " \quad$ (reference)	$55 \mathrm{ml} \mathrm{min}^{-1}$	
Column temperature	$70^{\circ} \mathrm{C}$	
Gas density balance	$10^{3}$ (maximum)	
sensitivity	5 mg	
Mass detector range	27	
Detecting elenent	27	

An example of a chromatogran obtained for a mixture of ethyl alcohol and water is given in figure 5.4. excellent peak shapes are obtained, comparable with those expected for a typical analysis of nonpolar materials on a non-polar stationary phase. The results are summarised in table 5:10a.

Table 5:10a


Table 5:10b

Compound	n	$\overline{\mathrm{x}} \underset{\sigma}{\mathrm{Composition} \text { by Mass }} \underset{\%}{\mathrm{~V} \text { vetector Bias }} \quad \mathrm{x}_{0}$				
Water	3	4.3:41	-	-	-16.8	52.53
ithyl alcohol		56.59	-	-	+16.8	47:47

The percentage compositions determined by the two detectors are in excellent agreement with each other, but are completely different from the prepared composition: To ensure that no error in sample preparation had occurred, a fresh sample was prepared and analysed under identical conditions (table 5:10b): A similar discrepancy was observed. A major change in the composition of the mixtures was therefore occurring arter injection, but before either of the detectors. There was a substantial loss of water resulting in a marked decrease in the percentage of water reaching the column outlet. There may in addition have been a loss of alcohol, but this was small compared with the amount of water which was lost. An estimate of the amount of water and ethyl alcohol lost between injection and detection can be obtained by comparing the cxpected and observed adsorption efficiencies at the mass detector. Tor a $3 \mu \mathrm{l}$ sample of the water/alcohol mixture, the expected amounts of constituents detected by the mass detector are 1.134 mg of water and I. 329 m of alcohol. The mean observed weights were 0.873 mg and 0.959 mg , i:e: a loss of 0.459 mg of water, and 0.175 mg of alcohol.

The analysis of one of the mixtures was repeated for sample sizes between $0.2 \mu \mathrm{I}$ and $4 \mu \mathrm{l}$ : The results are given in table 5.11:

Table 5:17

Nominal Sample Size   $(\mu \mathrm{L})$	\% Water Detected in   mixture
0.2	36.22
0.5	38.23
1.0	39.29
2.0	43.48
4.0	44.68
$(\infty)$	$(52.53)$

It is clear that as the sample load is increased, so the percentage of water reaching the detector increases:

Preferential loss of water may also arise from condensation in the injection block, or in the mass detector delivery tube: The boiling point of ethyl alcohol is only $22^{\circ} \mathrm{C}$ below water, and injection temperature was maintained at $235^{\circ} \mathrm{C}$, so that no condensation at the injection block is likely: Condensation in the mass detector delivery tube, would result in significantly lower values of water content in the mixture between the gas density balance and the mass detector: Whe mass detector results for water are identical with the gas density bolance results: In addition condensation in the delivery tupe results in excessively broad and distorted steps, which were not observed:

It is concluded that the loss of water between injection and detection was predominately due to adsorption on the column, even thoush symmetrical elution bands were observed. Adsorption effects may be minimised by more vigorous column pretreatment, and by conditioning with large volumes of water (several milligrams) before undertaking quantitative analysis:

Holecular weight determinations, using the above samples have been carried out, and gave entirely satisfactory values, again indicating that all water losses occur before either detector, and that both detectors give normal responses. These results are presented. in Chapter 7:

The mass detector gives satisfactory quantitative results for the analysis of aqueous samples: 5:3 High Boiling Materials:

It is to be expected that a number of experimental difficulties, not present to any significant extent at normal temperature operation, will become apparent when analysing high boiling materials. For exanple, the temperature of the carricr gas emerging from the chromatographic column may be sufficiently high to create disturbances by convection within the mass detector chamber. Condensation of materials in the doivery tube prior to reaching the mass detector is more likely, and
could lead to erroneous results, in particular with samples containing materials covering a wide boiling range. Experiments were designed to measure any decrease in stability of the detector as the carrier gas teaperature was increased, and to determine the extent to which condensation within the delivery tube occurred. On the basis of these experiments the mass detection system was modified to be suitable for hish temperature analysis. The aim was to have a detecting system capable of detecting the highest boiling material which the column could accept, i:e, the highest boiling material which could be analysed, must be a result of column limitations and not detector limitations: 5:3a Experimental:

The column outlet tube, and the detector delivery tube which was heated resistively, were electrically insulated with a short length (2'I) of LTFE 1/I6" o.d: tubing: The detector chamber was used in the same form as that for normal temperature operation for the initial experiments, in which a mixture of n-nonane and n-dodecane was analysed: The experimental conditions are given in table 5:12:

Table 5.12

Apparatus	Shandon KG2
Column	ApI H
Column temperature	$176^{\circ} \mathrm{C}$
Carrier gas flow rate	$4 \mathrm{~S}^{-1} \mathrm{ml} \mathrm{min}$
$\quad$ through column	
Sample size	$I \mu I$
Mass detector range	$I \mathrm{mg}$
Detecting element	27

The flow rate of carrier gas through the column was kept constant, and by introducing an additional nitrogen supply at the column exit, the flow rate along the delivery tube could be varied over a wide range ( 43 to $250 \mathrm{ml} \mathrm{min}^{-1}$ ): With this secondary gas supply off, the step corresponding to dodecane was very broad, more so than expected from the normal band spreading within the column: On increasing the overall flow rate to the detector, the step becane more well defined, demonstrating that partial condensation in the delivery tube was
contributing significantly to the spreading of the band. The temperature inside the detector delivery tube, ige, the carrier gas temperature, was monitored at several points: a temperature drop from $134^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ occurred over the last few centimetres of the delivery tube: $\dot{\text { elivery }}$ tube temperature was not affected by the flow rate of the carrier gas through the tube. The improved chromatograms at rapid flow rates were a result solely of decreasing the residence time of materials in the tube:

Lypical analyses of the nonane-dodecane mixture are given in table 5.13a for a delivery tube temperature of $134^{\circ} \mathrm{C}$, and in table 5:13b for an overall delivery tube temperature of $26^{\circ} \mathrm{C}$. The total. fas flow rate into the detector was $43 \mathrm{ml} \mathrm{min}^{-1}$ for both runs: Hable 5:13a

compound	x	$x_{0}$	Bias	\% Bias	$\begin{gathered} \text { Uptake }^{2} \\ \text { (ug sec }^{-1} \end{gathered}$
n-ivonane	56.49	54.86	-		9.6
n-Dodecane	43.51	45.14	$-1.63$	3.6	0.8
Table 5.13b					
n-Nonane	56.77	54.86	-		7:5
n-Dodecane	43.23	45.14	-1.91	4.2	0.4

The percentage composition results ( $x$ values) are similar for
both a cold and a heated delivery tube, and show a small permanent loss of the higher boiling alkane (a table of boiling points is given at the end of this section): The rate of uptake of each material by the detector, which is a measure of the band spreading, is similar at both temperatures, but is vastly lower for the dodecane. Since no appreciable improvement in results occurred when a heated delivery tube was used, it is clear that the majority of the loss of material was occurring in the last few centimetres of the tube, which was heated only by conduction. Indeed the tube was designed so that this part, aII of which was within the detector chamber, did not exceed room temperature, to avoid convection currents:

The temperature of the delivery tube within the detector chamber was increased to $40^{\circ} \mathrm{C}$ ，the main length of the tube remaining at $234^{\circ} \mathrm{C}$ ， and the analysis was repeated．The results are given in table 5：14a for a flow rate of $43 \mathrm{ml} \mathrm{min}{ }^{-1}$ and table 5.14 b for $100 \mathrm{ml} \mathrm{min}^{-1}$ ： Table 5：14a


Comparison with table $5: 13$ shows an increase in the recovery of dodecane，and an overall increase in the rates of uptake：Although the results for dodecane are only about $1 \%$ low（ $2 \frac{1}{2} \%$ absolute）， improvement is essential，if the analysis of higher boilinc materials is to be successful．The main temperature of the delivery tube was increased to $162^{\circ} \mathrm{C}$ ，and the run repeated：Rates of uptake were not increased significantly，again indicating that condensation is occurring mainly in the last few centimetres of the tube，which was still at $40^{\circ} \mathrm{C}$ ： A mixture containing all the normal alkanes from nonane to dodecane was analysed under the conditions given in table 5．12，with a total flow rate into the detector of $100 \mathrm{mI} \mathrm{min}^{-1}$ ，and a mean delivery tube temperature of $159^{\circ} \mathrm{C}$ ：The temperature of the section heated by conduction was $38^{\circ} \mathrm{C}$ ：The results appear in table 5：15．The analysis was carried out eight times，and the mean percentage weight and standard deviations calculated．A chromatogram is shown in figure 5：5． Table 5：15

comporne	玉	$\sigma$	V	－	S	Bias	$\%$ Sias
\＃－Nozaze	15：42	0.65	3.4	15．19	1.01	＋0．21	1.2
n－Decane	20：60	0.27	コニア	20.26	1.01	$+0.34$	1.7
n－Undecane	24.52	0.55	2.2	$2^{4}, 38$	1：00	＋0．14	0.6
n－Dodecane	36.46	0.39	コ．コ	37.17	0.98	－0．71	1．9

Chromatogram showing the Response of the Mass Detector to somo n-Alkanes (see page 190).


The observed \% composition for each component is satisfactory At a given temperature there is an increasing tendency toward condensation, the lower the vapour pressure of the solute: As a result there is an increase in distortion of the steps as the homologous series is ascended, and the points of inflection on the chromatogram become progressively more difficult to locate (see Fon cxample figure 4.27): s graph of log: retention distance against carbon number for a homologous series will in general give a straight Iine: nowever, as a result of step distortion, a straight line may no longer be obtained. using the chromatograms from which table 5.15 was compiled such a graph was plotted, and is shown in figure 5.6: a straight line plot was obtained. the analysis of hydrocarbons, certainly up to undecane is satisfactory. In general, the quantitative analysis of materials boiling up to about $200^{\circ} \mathrm{C}$ can be carried out satisfactorily, but for higher boiling materials it is evident that further improvements in the delivery system are essential. The delivery tube exit temperature was raised to $65^{\circ} \mathrm{C}$ (the bulk was maintained at $159^{\circ} \mathrm{C}$ ): chromatograms obtained under these conditions were more well defined than those previously obtained, and the analyses oi hydrocarbons up to tetradecane (bp $253^{\circ} \mathrm{C}$ ) were satisfactorily accomplished. Exporimental dotails aro given in tablo 5.16, and tho results in table 5:17:

Table 5:16
Experimental Conditions

Column	ApI H
Column temperature	$203^{\circ} \mathrm{C}$
Flow rate through column	86 ml min
-I	
Flow rate to mass detector	$141 \mathrm{ml} \mathrm{min}^{-1}$
Delivery tube temperature	$159^{\circ} \mathrm{C}$
Erit temperature	$65^{\circ} \mathrm{C}$
Detector temperature	$32^{\circ} \mathrm{C}$

Hable 5:17

compound	$\bar{x}$	$\sigma$	$V$	$x_{0}$	Bias	io Bias
n-Decane	31.56	0.85	2.7	31.48	+0.08	0.35
n-Dodecane	26.64	0.82	3.1	26.31	+0.33	1.3
n-Tetradecane	41.80	0.68	1.6	42.21	-0.41	1.0

Both standatd deviations and bias values are less than $1 \%$, which is acceptable:

The analysis of hexadecane and octadecane under the same conditions Gave slightly distorted chromatograms, but the effect of raising the temperature of the end section of tube without significantly changing the overall temperature had so improved the chromatograms that further increase in the exit temperature should overcome condensation problems entirely: It was to be expected that since heating was well within the detecting element itself, a significant increase in noise would occur: Noise measurements were made, with the tube exit at $110^{\circ} \mathrm{C}$ and a flow rate of $120 \mathrm{mI} \mathrm{min}^{-1}$ : The noise level was unacceptably high on the 1 mg balance range (table 5:18), but was decreased by a factor of ten, by lagging the inside of the detector chamber with expanded polystyrene, making operation on the 1 mg range satisfactory: The eifect of delivery tube exit temperature on detector stability is shown in taole 5.18.

Table 5:18

$\begin{aligned} & \text { Delivery } \\ & \text { Main } \\ & \hline \end{aligned}$	be temp. $\operatorname{Exit}\left({ }^{\circ} \dot{\mathrm{C}}\right)$	Flow kaje   $\mathrm{ml} \min ^{-1}$	$\begin{gathered} \text { Hass range } \\ m_{g} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Noise } \\ & \% \text { fsd } \\ & \hline \end{aligned}$	Limit of Detection MS
26	26	43	1	0.7	14
106	26	43	1	0.5	10
134	38	43	1	0.5	10
138	39	100	1	0.4	8
180	78	168	1	4.3	90
180	78	121	1	0.7	14
180	110	121	1	5:0	100
180	110	221	5	0.4	40
$1.80{ }^{2}$	110	121	5	zero	-
$180^{\text {a }}$	110	121	1	0.5	10
$196^{\text {a }}$	240	151	5	0.3	30

Detector noise levels at normal operating temperatures are shown in table 4:43: Operating the delivery tube in the region of $200^{\circ} \mathrm{C}$ has decreased the limit of detection by a factor of ten.

To confirm that the delivery tube system was satisfactory at least for materials which could be analysed up to the maximum operating temperature of the colurin, replicate analyses of high boiling mixtures, includirg materials solid at room temperature were carried out (see table 5.20): the results are tabulated below, (table 5.19): The n-alranes were analysed on an ApL column $H$, at a flow rate of 108 ml min : The column temperature was $232^{\circ} \mathrm{C}$, the delivery tube temperature $196^{\circ} \mathrm{C}$, and the detecting element temperature $51^{\circ} \mathrm{C}$. The mixtures containing aromatic hydrocarbons were analysed on the same column at $155^{\circ} \mathrm{C}$ with a delivery tube temperature of $I 12^{\circ} \mathrm{C}$, and a flow rate of $35 \mathrm{ml} \mathrm{min}^{-1}$ :

No runs were carried out above $232^{\circ} \mathrm{C}$, which was regarded as the limit above which very rapid deterioration of the column would occur. Evan at this temperature measurable bleeding of the stationary phase occurred, resulting in a steady increase in detector baseline. At this temperature the retention times of the high alkanes were excessive; for example the retention time of n-tetracosane was 8 hours, at a flow rate of $108 \mathrm{ml} \mathrm{min}^{-1}$ :

Sone samples of the high alkanes contained one member much lower in the series: The object of this was twofold:
(i) to act as a solvent,
(ii) to eliminate the possibility that all materials within a small boiling range were condensing to the same extent, and thus giving a False impression of satisfactory performance.

上efore injection, samples were warmed to ensure complete mixing and liquifaction, and the syringe needle was warmed before use:

Table 5.19

Compound	$\overline{\text { x }}$	$\sigma$	V	$\mathrm{x}_{0}$	$\overline{\mathrm{R}}$	Bias
n-Dodecane	24.44	0.82	3.4	24.92	0.99	-0.48
n-Tetradecane	14:90	0.47	3.1	15.61	$0: 96$	-0.71
n-Hexadecane	32.98	0.63	1.9	32.44	1.02	+0.54
n-Octadecane	27.68	I. 26	4.5	27.03	1:02	+0.65
n-Dodecane	26.12	0.57	2.2	27.11	0.96	-0.99
n-Iezadecane	14:96	1.00	6.7	14.86	1.01	+0.10
n-Octadecane	17.72	0.85	4.8	18.32	0.97	-0.60
n-Monadecane	4.28	0.41	9.6	3.84	1.12	+0.44
n-Eicosane	36.92	0.96	3.1	35.88	9.0̂?	F1.64
n-Dodecane	35:33	0.64	1.8	33.92	1. 04	+1.41
n-Eicosane	27.47	0.60	2.2	28.18	0.98	-0.71
n-Docosane	27.80	I. 07	3.9	28.57	0.97	-0.77
n-Tetracosane	9:40	1:30	13.8	9:33	1:01	+0.10
n-Eicasane	42.45	2.09	4.9	42.65	1.00	-0.20
n-Docosane	42:99	1. 48	3.4	43.24	1:00	-0.25
n-Tetracosane	14.57	1.71	21.7	24.12	1.03	+0.45
n-Hexadecane	40.16	2.91	7.2	40.05	1.00	+0:11
n-Eicosane	4.85	2.78	6.6	41.57	1.00	+0.28
n-Docosane	18.00	2:19	12.2	18.38	0.98	-0.38
Cunene	15.01	0.29	1.9	15.26	0.98	-0.25
Mesitylene	20.98	0.74	3:5	21.68	0.97	+0.30
p-Cymene	12.81	0.47	3.7	13.06	0.98	-0.25
Iodobenzene	51:20	2.13	4.2	49.99	1.02	+0.21
n-Monane ${ }^{\text {a }}$	27:71	0.74	2.7	27.56	1:00	+0.15
p-Cymene	53.53	0.36	0.7	53.44	1.00	+0.09
Iodobenzene	18.76	0.79	4.2	19.00	0.99	-0.24

a This mixture was prepared outside the laboratory, and its true composition unknown to the Author until after analysis by mass detection: A chromatogram, showing the analysis of some hydrocarbons between $n-C_{16}$ and $n-C_{20}$ is shown in figure 5:7: Retention distances, obtained from the alkane mixtures listed in table 5.19 were plotted against carbon number, and a straight line relationship was obtained embracing the normal alkanes dodecane and tetracosane, (figure 5.8):



Prom table 5.19, the mean value for the standard deviation of the results was $2.2 \%$, and the coefficient of variation 5.2\%: The bias of the results was $0.6 \%$ (about $2 \%$ absolute). The precision of the results is poorer than obtained under normal operating temperatures (tables 5.2 to 5:4), but nevertheless is still acceptable: bias values, on the other hand are identical with those obtained for normal boilin§ materials:

A list of the melting points and boiling points of the n-alkanes used in the above experiments is given below.

	Table 5:20		
Compound	Carbon No.	Meiting Point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$
n-inonane	9		150
n-Decane	10		174
n-Undecane	11	-27	196
n-Dodecane	12	-12	215
n-Tetradecane	14	+6	253
n-Hexadecane	16	20	288
n-Octadecane	18	28	317
n-Monadecane	19	32	330
n-Zicosane	20	38	$205(15 \mathrm{~mm})$
n-Docosane	22	44	$224(15 \mathrm{~mm})$
n-Tetracosane	24	52	$243(15 \mathrm{~mm})$

5:4 Low Boiling Materials:
The work on adsorption capacity (section 4.6.2) shows that the capacity of the detector decreases as the boiling point of the adsorbate anproaches that of the detecting element temperature: From table 4.37, the adsorption capacity of a typical detector is only about 4 mg when there is a $12^{\circ} \mathrm{C}$ temperature difference. It is therefore advisable to operate the mass detector below room temperature to obtain a reasonable adsorption capacity, and to decrease the frequency with which the detector must be regenerated:

An electrical cooling unit, manufactured by Frigistor Lta: ${ }^{3}$ was used, The unit comprised a block of aluminium, the centre of which was drilled, such that a detecting element fitted snugly, without touching
the sides: the block, which was faced with cooling modules, was designed to operate at any temperature between $+10^{\circ} \mathrm{C}$ and $-30^{\circ} \mathrm{C}$. Water cooling of the modules was essential. The cooling unit was lagged with expanded polystyrene and placed in a $3^{\prime \prime}$ cube perspex chamber, in place of the metal detector charaber used in previous work: The now detector chamber, and the balance cabinet were sealed to prevent moisture entering the system, and condensing on the cooler parts: The temperature of the cooling unit was monitored in the centre of the block; this being the temperature of the atmosphere within the detecting element. Noise measurements at various detecting elenent temperatures were taken and these are listed in table 5:21. Readings were taken both in the absence of carrier gas, and with a gas flow rate of $55 \mathrm{mI}_{\mathrm{min}^{-1}}$ :

Table 5.2I
Detector Noise Levels below Room Temperature

Detector ${ }_{C}$ Temperature	Flow Raje   ml min	Noise		Weight Increase $\mu \mathrm{g}$
25	-			-
10	-	0.25	12	500
$2 \frac{1}{2}$	-	0.36	18	205
$2 \frac{1}{2}$	55	0.25	12	-
$-5 \frac{7}{2}$	-	0.25	12	98
-15	-	0.25	12	continuous

No increase in noise with decreasing temperature was observed, and the introduction of carrier gas had no measurable effect. During each temperature decrease the mass detector gained weight due to adsorption of air, but reached a new equilibrium after several minutes: However, on cooling to $-15^{\circ} \mathrm{C}$ the uptake became continuous and was caused predominently by moisture condensing on the outside of the detectinc element. After several hours the ice thickness on the detectine element was such that there was no clearance between it and the cooling block sides: the temperature of the apparatus was raised and the apparatus dried, The experiment was repeated, at $-15^{\circ} \mathrm{C}$ with carrier gas flowing, but condensation again occurred and the system

Was clearly inadequate in its present form, ivo ice was observed on the inside of the detecting element, as a result of contiquous purging by dry :itrogen: Mo further experiments significantly below zero ( ${ }^{\circ} \mathrm{C}$ ) Were carried out, but it is proposed that in the first instance condensation on the detecting element could be eliminated if a colder surface was placed in the vicinity of the element. A more elaborate system is to place the complete detecting unit, including the balance, in a sealed slass envelope of the type used for weighing in vacuo.

Ail runs on low boiling materials were carried out with a detecting element temperature of $+2.5^{\circ} \mathrm{C}$, thus avoiding ice formation. ihis Iimited quantitative analysis to materials boiling in the region of $35^{\circ} \mathrm{C}$, to obtain reasonable adsorption capacity: However, the detection of some amines boiling at nuch lower temperatures was also accomplished. The following materials (boiling points in parenthesis) were detected by the mass detector, under the conditions given in table 5.22:
n-pentane $\left(36^{\circ} \mathrm{C}\right)$, methylene dichloride $\left(40^{\circ} \mathrm{C}\right)$, ethyl bromide $\left(38^{\circ} \mathrm{C}\right)$, methyl iodide $\left(43^{\circ} \mathrm{C}\right)$, ethylamine, in ethanol $\left(17^{\circ} \mathrm{C}\right)$, methylamine, in water $\left(-7^{\circ} \mathrm{C}\right)$.

$$
\text { Table } 5.22
$$

Apparatus	KG2
column	ApI H
Column temperature	$25^{\circ} \mathrm{C}$
Flow rate	55 ml min
Delivery tube temperature	$25^{\circ} \mathrm{C}$
Detecting element $\quad "$	$2 \frac{1}{2}^{\circ} \mathrm{C}$

The quantitative preparation of mixtures of low boiling materials is particularly difficult in view of their high volatility. 'lhe preparation of n-pentane and methylene dichloride mixtures was attempted, but :ieight loss during preparation was observed: three analyses of such a mixture, under the conditions quoted in table 5.22, yielded. the results given below (table 5.23)

Table 5:23

Compound	$\bar{x}$	$x_{0}$	Bias	\% Bias
n-pentane	17.53	16.95	+0.58	3.4
Nethylene dichloriae	82.47	83.05	-0.58	0.7

Whe limited number of experiments carried out on low boiling materials indicate that the mass detector will give satisfactory quantitative results. The conventional method for the preparation of mixtures of lenown composition is not satisfactory for low boiling materials: A system in which materials are vaporised prior to injection, and the percentage composition calculated from a lnowledge of vapour pressures may be suitable: considerable improvement in detector chanber design is essential for the successful operation of the mass detector below $0^{\circ} \mathrm{C}$ :
5.5: 'the Analysis of Gases:
the analysis of gases by the mass detector can be approached in two ways:
(i) an extension of the principle described in section 5:4, in which the detecting element is operated at say $-100^{\circ} \mathrm{C}$ for the quantitative adsorption oi propane and higher boiling materials (using nitrogen as carricr), and at $-200^{\circ} \mathrm{C}$ for the detection of methane, ethane and the inorganic gases, using helium as carrier.
(ii) operation of the detecting element at room temperature, and observing a combination of buoyancy and adsorption effects.

The first alternative clearly offers a more satisfactory basis from which to obtain quantitative results, but the technical difficulties are such that the system represents a research project in its own right. The effects of condensation have already been observed, and at very 10: temperatures the contribution of the carrier gas to the adsorption process may become significant. Detection at room temperature on the other hand, is now an established procedure, and extension to the detection of gases presents little difficulty: This system was therefore adapted with a view to examining its value, at least for the
qualitative detection of gases:
Detection will occur as a result of buoyancy changes and adsorption on to the charcoal when a component enters the detecting element. If the adsorption effect predominates, then quantitative estimation based on step heights may be satisfactory, even though the adsorption eificiency of the detector is low, since it may be of a similar order for all the components of a mixture: In practice it was observed that desorption was so rapid that peals rather than steps were observed: the peak height is a measure of the amount of material adsorbed. It may be possible to apply a correction to the peak height, for the rate of desorption, to obtain a true step height. Partial displaccment of carrier gas by sample gas may interfere with the quantitative assessment:

If buoyancy effects predominate then detector response is calculable from a mowledge of molecular weights. The peak height at any instant will represent the weight change due to the difference in density betwoen the carrier and sample gas, and hence the peak area will be a measure of the total amount af sample passing through the detector:

A combination of adsorption and buoyancy will result in an unpredictable response, but either effect on its own will enable quantitative estimations to be made: Measurements based on buoyancy will require a knowledge of the qualitative nature of the sample, but adsorption measurements will not:

Experiments uere designed to estimate the contribution of the two effects, by using a standard detecting element, and a cylinder of similar dimensions containing no adsorbent (see table 4.9) : Experimental conditions are given in table 5.24.

Table 5:24

Apparatus	Wilkens 1520
Column	ApL K
Column temperature	$80^{\circ} \mathrm{C}$
Carrier gas	Nitrogen
Flow rate	33 ml min
Detector range	$1 \mathrm{mg}, 10 \mathrm{mg}$
Detecting elements	$3 I \mathrm{~b} 32$
Detector temperature $20^{\circ} \mathrm{C}$	

The detecting elements were closed at the bottom end. Gas samples were injected via a stainless steel gas sample valve fitted with sample loops prepared from copper tubing: the volumes of the loops were neasured by filling with known weights of water, and checked by colculating the volume from the intermal diameter: Loops of capacities between $0.2 \mathrm{~cm}^{3}$ and $1.2 \mathrm{~cm}^{3}$ were made: The volumes do not include the contribution of the gas sampling valve itself, which was estimated from the results obtained (table 5.28): For each sample size in turn 5 injections of each gas were made, and the mean response values calculated, The gases used together with relevant physical data are listed in table 5.25:

Table 5.25

Gas	bp $\left({ }^{\circ} \mathrm{C}\right)$	Molecular Weight
Hydrocen	-253	2
Methane	-162	16
Argon	-186	40
Carbon Dioxide	-79	44
Dichlorodifluoromethane	-30	121

For each gas the weight injected was calculated from a knowledge of the sample loop volume, assuming ideal behaviour and injection at atmospheric pressure: This weight excludes any gas trapped in the sample valve itself which will add a constant amount to all sample injections. Care was taken to ensure that sample gases were supplied to the sample loop at the minimum pressure necessary to maintain a flow rate, to avoid errors due to compression: Using a detecting element containing adsorbent (3I) all samples gave peaks rather than steps

Encicatinc that if adsorption plays any part, it is accompanied by very rapid desorption, ihe introduction of hydrogen into the detecting element resulted in a weight loss, indicatins a predominance of buoyancy effects: the whole series of experiments was repeated using an unlined detecting element (32), and the same effects were observed. Eamples of chromatograms are given in figure 5.9.

For each series of runs, graphs were plotted of the weight of gas injected against the weight. detected, obtained from the peak heights: These are shown on figure 5.10 for hydrogen and metnane, and 5:11 for argon and carbon dioxide. straight line plots were obtained both with a lined and an unlined detectinc element, except for methane which gave curves, and distorted peals for high sample sizes.

Response factors, defined as the ratio of the detected weight change and the injected weight are given in table 5.26.

Table 5:26
Gas Hean hesponse Factor Lined detector Unlined detector

Hydrogen	-4.5	-3.5
Hethane	$(0.22)$	( 0.15 )
Argon	2.19	1.68
Carbon Dioxide	2.87	2.45
Iorodifluoromethane	0.47	0.29

In all cases the slopes of the graphs for each material converge and eive finite responses for zero injected weight, indicating that the sanple value volume is significant. For simple adsorption, a response factor cannot exceed unity and certainly cannot be negative: Response Factors, both for lined and unlined detectors were of the same order so that buoyancy must contribute predominantly to the detector response (but least for dichlorodifluoromethane): although detector response in teras of peals height cannot be predicted, the response is linear at least over the range investircated for all gases except methane, and could therefore be used as a basis for muantitative measurement with


Chromatograms showing the response of the Mass Dotector to
some Permanent Gases (see page 201): (
生
(
cai̇oration.
The response of the unlined detector, based on peak area reasurements ̇s sinc: in figures $5: 12$ to 5:14: A straight line was obtained in all cases: Scatter of points was greater than for the step. height plots, but this is to be expected, in view of the inherent difficulties in measurins peat areas: The sensitivities of the detector, i.e: the siones of the fraphs, have been reasured, and assuming a response based soicly on buoyancy have been corrected for the density differences of the diEferent gascs: The results are given in table 5.27: Table 5:27

こas	Figure	$\begin{aligned} & \text { Sensitiyity } \\ & \mathrm{cm}^{2} \mathrm{~m} \end{aligned}$	Correction factor	$\begin{aligned} & \text { Corrected }_{2} \text { Response } \\ & \mathrm{cm}^{2} \mathrm{mg}^{-1} \end{aligned}$
Iycorogen	5.12	$-34.7$	-0.077	2.67
Netinane	5:13	-3.15	-1.33	4.21
irson	5.13	2.50	3:33	8.35
Canjon Dioxide	$5: 13$	3:18	2.75	8.74
=ethane	5.14	7:12	I:30	9.27

whe corrected response values are not identical for all gases, but increase with increasing molecular weight. For those materials of molecular weight greater than the carrier gas, the values are very similar, and much greater than those for materials of lower molecular woicht than the carrier gas. This is to be expected, since the detcctinc element was closed at the base, rather than the top, thus ensuring more efficiont trapping of the heavier materials. iaterials Iichter than the carrier gas (and lighter than air) are not effectively trapped and therefore the detector cannot give a calculable resnonse: In cstimate of the sample valve dead volume was obtained from figures 5:12 to 5:14. the weicht of material detected at zero sample loop volume was calculated from the intercopt of the curves with the ordinates, and ascumine ideal bchaviour, the correspondine gas volumes found. the resulte are fiven below (table 5.28).



Table 5.28

Cas	$\begin{gathered} \text { Intencent } \\ \left(\mathrm{cm}^{2}\right) \end{gathered}$		$\mathrm{m} . \mathrm{I}$
Erydrogen	-1.04	0.030	0.36
淮thane	-0.58	I. 85	0.28
Arcon	0.98	0.393	0.23
Carbon Dioxide	1.22	0.384	0.27
Dichlorodifluoromethane	10.4	I. 46	0.29

The dead volume of the sample valve is about 0.3 ml , which is Ianeer than the smallest sample loop used. An estimate of the sample valve volume, calculated from the dimensions of the valve, the ascociated tubinc and unions, is 0.22 ml :

A conventional lined detecting element can be used for the qualitative analysis of all gases of molecular weight different to that of the carrier cas, the response of the mass detector, at room tcmperature, to gases is predominantly a function of molecular weight, aid adsorytion effects are negligible. Using an unlined detecting elerent, the detector response based on peak area measurements was. Iincar ior all gases anaiysed, covering the mass range $15 \mu \mathrm{~g}$ to 6 mg , although the sensitivity of the detector was species dependent: For quantitative work, using the present systen a simple calibration proccáura is necessary, althouch sensitivity values were very sinilar for all matcrials denser than the carrier gas: Improvements in the detector design to ensure complete transient trapping of all materials may enable the quantitative analysis of gas mixtures to be carried out, without prior calibration. The detector would then function solely as a cis density detector with a response calculable from a knowledge of molecular weights.
5.6 Conclusions:

Ge mass detector will respond to all materials, ezcept the
 up to at least $350^{\circ} \mathrm{C}$, and will eive quantitative analyses without calibantion. The detector will quantitatively adsorb low boiling
materiais ( $\mathrm{bp}<40^{\circ} \mathrm{C}$ ) provided the detecting element is cooled sufficiently to prevent desorption. The apparatus can be used at roon temperature for the analysis of gases, incluaing the permanent ino:çanic gases, provided the detector is caliorated: a linear response, based on buoyancy changes is normally observed. the detector will respond quantitatively to water, and gives satisfactory results for aqueous solutions.

No comercially available detector combines all these properties, which are the minimum requirements for a satisfactory quantitative Cevice:
5.7 ReŻerences:

I: Hollis, O.I. Anal: Chem: 38309 1966. Hollis, O:H: Hayes, W:V: J: Gas Chromatos: 4235 1966. Hollis, O:I:, Hayes, W.V: Gas Chromatorraphy 1966.
2. Porapals, manuiactured by Naters Associates Inc. Mass.

3: De La Rue rrigistor Ltd., Langley, Bucks:
6.I Discussion:

Based on the information presented in Chapters 4 and 5, it is citablished that the response of the mass detector is species indevendent, and that its response is lincar over a wide operating range: The detector thus offers an excellent, rapid and reliable means of calibrating other detectors. It is not necessary to prepare carefully weighed out mixtures, and the amount of material injected into the chromatograph need not be accurately known. Calibration errons arising from effects such as irreversible adsorption on the column are eliminated, the only precaution necessary is to ensure that there is no leakage or condensation of material between the detector undergoing calibration, and the mass detector:. A detector may be calibrated using either a single substance, or a number of components simultaneously: A detector may be calibrated absolutely, since the absolute adsorption efficiency of the mass detector at any flow rate is readily determined, or it may be calibrated relative to a pure standard material.

Several detectors have been calibrated with the aid of the mass detector: the Low-Mac and Nartin gas density balances were calibrated to confirm that response is a function of molecular weight: A katharometer was calibrated to demonstrate the value of the technique for use with a detector of completely unpredictable response. Destructive detectors must be operated in parallel with the mass detcctor: the flame thermocouple detector was calibrated by this means. Detectors, such as the flame ionisation detector, whose sensitivities diffor significantly from that of the mass detector must also be calibrated in parallel, the major portion of the split eluent stream being fed to the less sensitive detector:

The mass detector is of value in the determination of limits of detection, since the amount of material present in the region of the detection linits is readily obtained from the mass detector response. 6.2 Calibration of the Gow-lac Gas Density Balance (type 091): The response of a gas density balance to different chemical species is calculable provided that the molecular weight of the species is known (section 3.10): The Gow-Nac gas density balance should therefore have a predictable and linear response over a wide concentration range: the gas density balance was operated under the conditions for optimium behaviour given by the manufacturers, and the mass detector was operated within the range known to give a linear response (section 4.6.3):

The mass detector was placed in series with, and following the gas density balance: The operating conditions are given in table 6.1: Table 6.1

Apparatus	Shandon KG2
Colum	PEGA E
Column l'emperature	$101^{\circ} \mathrm{C}$
Carrier gas	Nitrogen
Analytical gas flow rate	$45 \mathrm{mI} \mathrm{min}{ }^{-1}$
Reference gas flow rate	$60 \mathrm{ml} \mathrm{min}{ }^{-1}$
Sample sizes	$0.1 \mu \mathrm{l}$ to $5 \mu \mathrm{I}$
Gas density belance filament current	125 mA
sensitivity	$\times 500$ to $\times 50$
temperature	$101{ }^{\circ} \mathrm{C}$
Mass detector - ranges	100 RE to 5 mg
elements	27, 30
temperatu	$24^{\circ} \mathrm{C}$

The response of the gas density balance to a wide varicty of materials covering the mass range $10 \mu \mathrm{H}$ to 1 rg was measured. The samples used were identical with those listed in table 5:4 and the two sets of experiments were carricd out simultancously.
6.2a The Linearity of the Gas Density Balance:

The results are expressed graphically, by plotting tine weicht of each compound detected by the mass detector against the (corrected) peak area obtained from the gas density balance: Peak areas were in geneal moasured with a digital integrator, but for comparison some areas werc in addition calculated from peak height and width measurements; These results are discussed below, and a general discussion on peak arca measurement is to be found in Chapteri 7.

Although each compound formed part of a mixture the results are absolute in the sense that response is expressed in terms of detected Weicht and not percentage composition. The composition of the mixtures in no way affects the results, and all componentswre well resolved. Wach figure ( 6.1 to $6: 8$ ) shows the response of the detector to each of the components of a mixture: Since corrected peak areas were used, all curves on all figures should be coincident and linear, assuming an ideal detector response. In practice it is difficult to ensure complete reproducibility of operating conditions from day to day, so that it is only reasonable to expect concidence of the curves obtained from a single mixture, i:e: the curves on any one figure should be coincident, but not necesearily have the same slope as the remaining figures: the only compounds to give a linear response over the whole rance investigated were dichloroethylene, toluene, ethyl benzene, dio:an and butylene oxide. In general all compounds gave a linear response over a fairly limited range (about 10ㄱ) All response curves were virtually coincident at low sample sizes, but becane progressively divergent as the sample size increased. I-Ociene gave a significantly Iower response, attributed at least in part to the presence of partially resolvod impurities: All peaks in all determinations were reasonably cymetrical, so that deviations from Iinearity as a result of inaccurate area neasurement are unlikely. Several fiçures were constructed from disital integrator results, which were compared with









(1)

促



Chromatogram showine the Response of the Gow mac Gas Donsity salance and the Mass Detector to some Ketones (see page 208).

manual peals area measurements: identical response patterns emerged: It is reasonable to conclude therefore that deviations from linearity are a real effect: A sample chromatogram, which shows the analysis of a $1 \mu I$ sample of a ketone mixture, is shown in figure 6.9.

A linear gas density balance response is not a sufficient criterion for satisfactory quantitative performance. Un figure 6.5 for example, all components of the mixture give a linear response to about $500 \mu \mathrm{~g}$, but only the n-heptane and n-owtane curves coincided, i.e: only these two materials give identical absolute response, which differs from the remaining constituents: To obtain satisfactory quantitative results the detector must give a response linear with concentration and equal for all materials, at all sample sizes: even with heptane the absolute response decreases with sample size (see table 6:3):
6.2b Relative Composition Analysis using the Gas Density balance:

For each mixture, using the linear and coincident portion of the response curves, the mean values of the percentage weights detected by the gas density balance were calculated from the corrected peak areas ( $\bar{x}_{\mathrm{D}}$, valuea): These results are given in table 6.2: The mean percentage weights of the components in each mixture were also calculated from the mass detector results, ( $\bar{x}_{\mathrm{N}!}$ values) and using these as a standard, the response of the gas density balance with respect to the mass detector was found. the response factor was defined as:

$$
R_{D M}=\frac{\bar{x}_{D}}{\bar{x}_{M}}
$$

All mixtures were of known composition ( $x_{0}$ values), so that in this particular case, a check could be made on the response factors obtained using the mass detector as standard. the response factor was defined as:

$$
R_{D O}=\frac{\bar{x}_{D}}{x_{0}}
$$

The factors $K_{D M}$ should be the more reliable, since losses due to evaporation of sample before injection, and column adsorption effects, are eliminated:

Table 6.2

Compound	Composition			$\begin{aligned} & . \mathrm{Res} \\ & \mathrm{R}_{\mathrm{DO}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { onse } \\ & R_{\mathrm{DM}} \end{aligned}$	Fidg
$n-P e n t a n e^{\text {a }}$	22:50	22:30	21.62	0:96	0:97	6.1
n -Hexane	17:57	18.40	17:55	1.00	0.96	
$\mathrm{n}-\mathrm{Heptane}$	14.67 .	15.16	15.69	1.07	1.03	
n -Octane	16.45	16.46	16.81	1.02	1:02	
n-Honane	28.82	-27:69	28.3.2	0:99	1:02	
Benzene	41:33	41.35	40.56	0.98	$0: 98$	6.2
l'oluene	31.00	30.94	31.50	1.02	1.02	
Ethyl benzene	27:67	27.72	27:94	1.01	1:01	
Methyl Ethyl ketone	42.20	43.05	42.63	1.01	0.99	6.3
Methyl n-propyl ketone	25:69	25.75	. 25.67	1.00	1.00	
Methyl n-butyl ketone	32:10	31:20	31:70	0.99	1:00	
Methyl acetate	23:72	21.46	20.62	0.87	0.96	6.4
Ethyl acetate	23.47	25:50	24.16	1.03	0.95	
n-Propyl acetate	22:82'	23.03	23.58	1.03	1:02	
n-Butyl acetate	29:99	30.02	31.64	1:06	1.05	
n-Heptane	18:44	18.61	18.25	1:00	0.98	6.5
n-Octane	13.77	13.82	13.45	0.99	0.99	
Ethyl acetate	23.68	23.92	24.43	9.03	1.03	
Methyl ethyl ketone	16:49	16.28	16.29	0.99	1.00	
Benzene	27:63	27:37	27.59	1:00	1:00	
Cyclohexane	19:30	19.39	19.02	0.95	. 0.99	6.6
n-Octane	15:87	16.14	16.54	1.04	1.02	
Carbon tetrachloride	34:92.	34.79	33.80	0.97	0.97	
Dichloroethylene	29:92	29.68	30.63	I:02	1.03	
2,2,4-Trimethyl pentane	38.03	38.25	40.56	1.07	1:06	6.7
n-Octane	35:59	35:52	37.09	1.04	1.04	
1-Octene	26:38	26.23	22.35	0.85	0.85	
n-Octane	35.64	36:26	37.17	1.04	1.02	$6: 8$
Butylene oxide	35.71	36.20	33.81	0.95	0.94	
Dioxan	28.65	27:54	29:02	1.01	1.05	

$a=$ column and gas density balance at $66^{\circ} \mathrm{C}$.

Relative composition analyses given by the gas density balance operating within its linear dynamic range are satisfactory, provided absolute corrected response factors are identical. The standard deviation of both sets af response factors have been calculated and are $4.8 \times 10^{-2}$ for $R_{D O}$, and $4.2 \times 10^{-2}$ for $R_{D M}$ : The effect of calculating the percentage composition of a mixture when response curves are not coincident is shown in the following example (table 6.3): The absolute response of the gas density balance is the ratio of the gas density balance and mass detector responses, i.e. is area per unit weight. The table gives the response for maximum sensitivity: The true percentage weight of the component (n-heptane) was $18.44 \%$ :

Table 6:3

Weight of Material   detected $(\mu \mathrm{E})$	$\mathrm{GDB}_{2}$ Response		
$\left(\mathrm{cm}_{2} \mathrm{HB}^{2}\right)$	\% Heptane detected   Mass Detector		GDB
129	0.779	18.71	18.54
143	0.768	18.93	18.35
259	0.695	18.29	17.98
400	0.657	18.65	17.20
523	0.651	18.70	16.69
670	0.597	18.77	16.31

The absolute response of the gas density balance to n-heptane decreases as sample size is increased: Similar effects occur for the remaining constituents of the mixture, but to different extents and balance hence the proportion of n-heptane detected by the gas density/changes with sample size: The repeatability of the detector response toward a fixed sample size of a material under constant operating conditions was determined in section 4.5:3a: The coefficient of variation of 45 results was $3.6 \%$ : for the same mixture the coefficient of variation of the mass detector response was 1:0\% (tables 4.20 and 4:21): 6.2c Limits of Detection and Response Time.

The lower limit of detection $Q_{0}$ of the gas density balance was calculated using the Young equation (Chapter 2, p 25):

$$
Q_{0}=\frac{2 R_{n} M}{P F} \quad 6: 3
$$

l'he noise level $\mathrm{k}_{\mathrm{n}}$ of the detector was measured on the maximum sensitivity: the response to very small amounts of n-octane (in terms of peak area, $P$ ) was measured, and the absolute masses of the samples (in millimoles, $M$ ) were obtained from the mass detector: It is reasonable to assume that the response of the gas density balance is linear and predictable over a small range in the region of the limit of detection, and hence by using equation 6.3 a value for the lower limit of detection was calculated.

The lower limit of detection $=6: 4 \times 10^{-7} \mathrm{mMMI}{ }^{-1}$ : Under the conditions of the experiment, this represents a mass limit of detection of $0.6 \mu \mathrm{E}$ : The upper limit of detection exceeds that normally required for gas chromatography, and certainly exceeds the capacity of column $E$ :

The response time of the gas density balance was measured by the Schmauch procedure ${ }^{2}$, described in section $2.2 d$, using the apparatus shown in figure 4.10b: The value was determined at room temperature for benzene and ether, with an analytical gas flow rate of $51 \mathrm{ml} \mathrm{min}^{-1}$ and reference flow of $75 \mathrm{ml} \min ^{-1}$ : The response time was 11 sec: a value can be obtained from the equation:

$$
r=\frac{v_{d}}{F}
$$

where $V_{d}$ is the detector dead volume and $r$ the carrier gas flow rate: For the gas density balance $\mathrm{V}_{\mathrm{d}}=8 \mathrm{ml}$ and hence at $51 \mathrm{ml} \mathrm{min}^{-1}$, the response time is $9 \frac{1}{2}$ sec.

Literature values for limits of detection and response times are given in table $3: 10.1$, and agree well with those quoted above: 6:2d The Gow-Mac Gas Density Balance - Conclusions:

For all materials examined the detector gave a response close to the calculated value, over a small concentration range: Provided that the detector is used within this range, excellent quantitative results are obtained. It is however not obvious when this limit is exceeded. The linear dynamic range of the detector does not approach the dynamic range, and is species dependent. The detector is very stable and had
a reasonable lower limit of detection, but the response time is rather long, although satisfactory for most packed column analyses:
6.3 whe Fiartin Gas Density balance:

The response and linear dynanic range of the viartin gas density balance toward a number of compounds were determinea jinn a manner analogous to that described for the Gow-Mac gas density balance: Operating conditions are given in table 6.4, the remaining conditions being as quoted in table 6.1.

Table 6.4

Analytical gas flow rate	$50 \mathrm{ml} \mathrm{min}{ }^{-1}$
Reference gas flow rate	$50 \mathrm{ml} \mathrm{min}{ }^{-1}$
Sample sizes	$0.2 \mu \mathrm{l}$ to $5 \mu \mathrm{l}$
Gas density balance filament current	1.9 A
sensitivity	X1000 to X 500
Mass detector - ranges	1 mg to 5 mg

For most work the detector was operated on its maximum sensitivity $\left(X 10^{3}\right)$ to avoid the use of excessively large sample sizes which would overload the column, and give distorted peaks: A new series of mixtures, including the same compounds listed in tables $5: 4$ and $6: 2$ was prepared: l'he results of the analyses are expressed in the same way as the GowMac gas density balance results:
6.3a The Linearity of the Gas Density Balance:

For each component of a mixture, a graph was plotted of response of the gas density balance (corrected peak area) against the mass detector response (weight adsoribed): In all cases a straight line relationship was found, ie: the Martin gas density balance gives a Iinear response at least over the range investigated (about 10²): In addition the slopes of the lines were identical for all components of a mixture, they passed through the origin and the response per unit weight (the sensitivity) was identical at all sample sizes (see for example table 6.6): the response of the detector is predictable on a molecular weight basis: There were however small variations in response per unit weight from one mixture to another, but these can be attributed


吅									$\cdots$			+1!	1		1 B
		1	$1:$	1	7				8	1	1		$11:$	111	1111
			11	dit			In:	! ! !	: 1	\% $0^{1}$	16		! 11		



(
(

to the day to day fluction of conditions (temperature, flow rate etc):
This is borne out by the observation that a given compound analysed at different times, gave a slightly different response per unit weight. The results are shown on figures 6.10 to 6.15 for all the mixtures containing more than two components: The coefficients of variation of the absolute response factors $\left(\mathrm{cm}^{2} \mu \mathrm{~g}^{-1}\right)$ have been calculated. The overall variation for 137 determinations was 5:1\%: 6:3b Relative Composition Analysis:

The mean percentage weight of each component in the mixture $\bar{x}_{D}$, over a wide mass range, was found and compared with that obtained by the mass detector $\left(\bar{x}_{m}\right)$ : These values, together with the true percentage weight (at injection), $x_{0}$, are given in table 6:5: $\mathrm{R}_{\mathrm{DM}}$ and $R_{D O}$ have the same significance as in section $6: 2 \mathrm{~b}$.

Compound	Table 6:5			Response		Fis:
	Composition					
	$x_{0}$	$\mathrm{x}_{\mathrm{m}}$	$\bar{x}_{\text {D }}$	$\mathrm{R}_{\mathrm{DO}}$	$\mathrm{R}_{\mathrm{DM}}$	
Benzene	38.45	38.90	39.05	1.02	1.00	6.10
Toluene	33.22	33.14	33.11	1.00	1.00	
Ethyl benzene	28.33	27:96	27.84	0.98	1.00	
Methyl ethyl ketone	35.88	36.72	37.16	2.04	1.01	6.11
Methyl n-propyl ketone	38.21	38:93	38.30	2.00	0.98	
Methyl n-butyl ketone	25:92	24:34	24.54	0.95	1.01	
Ethyl acetate	39.33	39.71	40.34	1.03	1.02	$6: 12$
n-Bropyl acetate	31.32	31.18	30.54	0.98	0.98	
n-Butyl acetate	29.36	29:11	29:12	0.99	1.00	
n-Heptane	22.79	23.33	23.30	1.02	1:00	6.13
n -Octane	15.38	15.38	15.40	1:00	1.00	
Ethyl acetate	21.54	21:00	21.76	1.01	104	
Methyl ethyl ketone	16.10	15:74	15.47	0.96	0.98	
Benzene	24.19	24.55	24.07	1:00	0:98	
Cyclohexane	21.17	20:57	21.07	1:00	1.02	$6: 14$
n-Octane	16:65.	16.17	16:71	1.00	1.03	
Carbon tetrachloride	34.54	35:34	34.94	1.01	0.99	
Dichloroethylene	27.65	27:92	27.28	0.99	0.98	


Compound	Composition			Response		Fig:
	$\mathrm{x}_{0}$	$\bar{x}_{\text {m }}$	$\bar{x}_{\text {D }}$	$\mathrm{R}_{\mathrm{DO}}$	$\mathrm{R}_{\mathrm{DM}}$	
n-uctane	26.74	27.63	. 27.44	1:02	1:01	6.15
Butylene oxide	28.80	28.56	27.01	0:94	0.95	
Dioxan	44.45	43:81	45:55	1:03	1.04	
Benzene	52:51	52.31	52.02	0.99	0:99	
'ioluene	47:49	47:69	47:98	1.01	1.01	
ni-Butyraldehyde ${ }^{\text {a }}$	39.80	39.24	38.96	0.98	0.99	
Methyl ethyl ketone	60.20	60.76	61.05	1.02	1.01	
Isopropyl alcohol	40.12	42.40	42.18	1.06	1.00	
Nitromethane	59.88	57:60	57:82	0.94	1.00	
Water ${ }^{\text {b }}$	54.02	47:30	47:29	0.88	1.00	
Ethyl alcohol	45:98	52:70	52:71	1.12	1:00	
Ethyl alcohol ${ }^{\text {c }}$	53.63	54.25	53.68	1.00	0:99	
n-Propyl alcohol	46.37	47:75	46.32	1:00	1:01	
n-rropyl alcohol ${ }^{\text {c }}$	52:83	54.91	54.59	1.04	1.00	
n-sutyl alcohol	47.17	45:09	45:41	0.94	1.00	
n-Butyl alcohol ${ }^{\text {c }}$	52:95	53.42	51.74	0.98	0.97	
$n$-Amyl alcohol	47.05	46:58	48.26	1:02	1.03	
n-rropyl alcohol ${ }^{\text {c }}$	44.94	45:36	45:57	1.02	1.00	
Methyl n-propyl ketone	55:06	54.64	54.43	0.98	1.00	
$a=$ column temp. $66^{\circ} \mathrm{C}$						
$b=$ Porapak column D at	$70^{\circ} \mathrm{C}$					
$c=$ Porapak column D at	$140^{\circ} \mathrm{C}$,					

Excellent quantitative results were obtained for all samples: The standard deviations of the relative response factors are $2.2 \times 10^{-2}$ for $K_{D O}$ and $1: 8 \times 10^{-2}$ for $R_{D M}$ : It has been shown that the response of the detector is linear with respect to sample size. it is interesting to compare the absolute response of the detector, with the Gow-Mac detector for the same material analysed under the same conditions: Response values for n-heptane for a variety of sample sizes are given in table 6:6. The Gow-Mac detector results are given in table 6.3:

veight of Material detected ( $\mu \mathrm{S}$ )	Table 6:6		
	$\begin{aligned} & \mathrm{GDB}_{2} \text { Response } \\ & \left(\mathrm{cm}^{2 \mathrm{pg}}{ }^{2}\right) \end{aligned}$	$\%$ Heptane Mass detector	ted GDB
124	0.0241	22.95	23.78
175	0:0251	23.20	23:88
213	0.0239	23.38	23.59
254	0.0251	23.51	21.43
300	0.0246	23.50	23.74
338	0.0249	22.69	23:26
411	0.0235	23.57	24.29
436	0.0246	23.02	22.72
479	0.0240	23:47	22:95
$x_{0}=22.79$			

Comparison with table 6.3 reveals that the Martin gas density balance is less sensitive than the Gow-Mac version, by a factor of about 30: the absolute response of the Martin gas density balance is constant whereas the Gow-Mac detector response depends on sample size: the Martin detector will therefore give reliable relative composition data, over a.wide sample size range, but the Gow-Mac detector will only give accurate results within a limited range:

The repeatability of the relative composition results was determined over the whole sample size range used: the coefficient of variation of 165 determinations was $2.2 \%$. The same value was obtained for the mass detector repeatability: A similar calculation for the Gow-Mac detector is meaningless, since response is concentration dependent; even the result for single sample size was significantly greater, at 3.6\%: The overall bias of the Martin gas density balance results is $0.5 \%,($ i.e: $1.5 \%$ absolute bias) : Very similar values were obtained for the mass detector bias (see tables 5.2 and 5.4): Bias values for the Gow-Mac detector increase as sample size increases (see table 6.3): bias values for a single sample size are similar to the riartin and mass detector values, quoted above:

6:3c Limits of Detection of the Martin Gas Density Balance.
The lower limit of detection was determined by the procedure outlined in section 6. 2 c : The lower limit of detection $=6.3 \times 10^{-6}$
miml ${ }^{-1}$, representing a mass limit of detection of $8 \mu \mathrm{~g}$ : The Gow-Mac detector exceeds this value by a factor of 10 , although it is more sensitive by a factor of 30 : The discrepancy is a result of the lower noise level on the dartin detector: The upper limit of detection exceeds that normally required for gas chromatography:

Using equation 6: 4 the response time of the Martin detector, at a flow rate of $50 \mathrm{ml} \mathrm{min}^{-1}$ is $3 \frac{1}{2}$ seconds. The value determined by Schmauch ${ }^{2}$ was 3 seconds (see table 3:10:1):

6:3d The Martin Gas Density Balance - conclusions:
The Martin gas density balance gives excellent quantitative results over a wide range of sample sizes: No deviations from linearity were observed, and all responses were predictable on a molecular weight basis: Its performance is entirely satisfactory and it may be used with confidence. 6.4 Calibration of a Katharometer:

A Gow-Mac katharometer type 9285D fitted with tungsten-rhenium filaments was placed in series with the mass detector: The operating conditions are given in table 6.7:

$$
\text { Table } 6.7
$$

Apparatus	Shandon KG2
Column	PEGA E
Column temperature	$101{ }^{\circ} \mathrm{C}$
Carrier gas	Nitrogen
Analytical gas flow	$51 \mathrm{ml} \mathrm{min}{ }^{-1}$
Reference gas flow	$51 \mathrm{ml} \mathrm{min}{ }^{-1}$
Sample sizes	0.1 to 1 pl
Katharometer - filament current	150 mA
sensitivity temperature	$\begin{aligned} & \times 500 \text { to } \times 50 \\ & 101^{\circ} \mathrm{C} \end{aligned}$
Mass detector - ranges	$100 \mu \mathrm{~g}$ to 1 mg
elements	27, 30
temperature	$24^{\circ} \mathrm{C}$

A series of mixtures containing the same compounds listed in table 6.2 were analysed covering the mass range $10 \mu_{g}$ to $300 \mu \mathrm{~g}$ per
4-4











$\qquad$






component: Since the response of a katharometer is not predictable when nitrogen is used as carrier gas, the results are most satisfactorily expressed graphically: Response curves are shown as plots of peak area, obtained from the katharometer, against the weight of component, determined by the mass detector: Each figure shows the response of the detector to the constituents of each mixture, (figures 6.16 to 6.22): AII compounds, except carbon tetrachloride gave a response of similar pattern, namely a gradual fall off in sensitivity as sample size was increased: Carbon tetrachloride was the only material to give a response linear with concentration, but for all sample sizes the response was negative: A chromatogram of the mixture containing carbon tetrachloride is shown in figure 6.23.
n-Heptane was used as a reference standard, and the response of pure $n$-heptane ( $99.99 \%$ ) was measured over the mass range 50 to $170 \mu \mathrm{~g}:$ the response curve is shown on figure 6:24: The response of any other compound with respect to n-heptane can be calculated using the appropriate calibration curve: The following response factors have been calculated and are listed in table 6:8: response per unit weight of material $\left(\mathrm{cm}^{2} \mu g^{-1}\right.$ ), and response with respect to $n$-heptane (by weight and in molar proportions) for 100 fg of material. The alternative way of expressing molar response is to read directly from the response curve, the response per mole and express this value relative to one mole of the standard material ( $R_{M}$ values):

Compound	Table 6:8				Fig:
	Area/unit $\begin{aligned} & \text { weight } \\ & \left(\mathrm{cm}^{2} \mu_{\mathrm{g}}{ }^{-1}\right) \end{aligned}$	Weight response wrt heptane	nola   wrt   K	ponse   e $R_{m}$	
n-Heptane	0.79	1.00	1.00	1:00	6,24
benzene	1.11	1.41	1.81	1.24	6.16
Toluene	1:33	1.69	1.84	1. 62	
sthyl Benzene	1. 64	2.09	1:97	2.17	

-218-

Compound Ar	$\begin{aligned} & \text { ea/unit } \\ & \text { ight } \\ & m^{2} \mu G^{-1} \text { ) } \end{aligned}$	Weight response wre heptane	Mola wrt R	ponse ne $\mathrm{R}_{\mathrm{m}}$	Fig:
Methyl ethyl ketone	1. 28	1.63	2.27	1.38	6.17
Wiethyl n-propyl ketone	1.42	1.81	2.11	1.68	
Methyl n-butyl ketone	1:80	2.29	2:30	2.29	
Ethyl acetate	0:98	1.25	1.42	1.17	6.18
n-Propyl acetate	1.21	1. 54	1.51	1.55	
n-butyl acetate	1.43	1:82	1.5?	1:99	
n-Heptane	0.81	1:03	1.03	1.03	6.19
n-Octane	0.90	1.15	1.01	1.21	
sthyl acetate	1.01	1:29	1.46	1.21	
Methyl ethyl ketone	1.27	1:62	2.25	2.34	
Benzene	1.18	1:50	1:93	1.39	
Cyclohexane	1.07	1.36	1.62	1.26	6.20
n-Octane	0.96	1.22	1.07	2.30	
Carbon tetrachloride	-0.30	-0.38	-0.25	-0.62	
Dichloroethylene	0.38	$0: 48$	$0: 50$	0.47	
2,2,4-Trimethyl- pentane	0.77	0.98	0.86	1. 04	6.21
n-Octane	0.93	1.18	1.04	1.24	
1-Octene	0.93	2. 18	2.06	1.24	
n-Octane	0.91	1.16	1.02	1.20	6.22
Butylene oxide	1.13	2.44	2:00	1:31	
Dioxan	1:72	2.19	2.49	2:04	
Benzene	0.57	1:78	-	1:39	-
p-Cymene	1.53	3.60	-	2.04	

The weight response factors do not follow any trends. Molar response factors $R$, are about unity for simple paraffins; simple aromatics approach two, and halogenated compounds give very low values: The difference between benzene and $p-c y m e n e$ is striking:

Calibration of a katharometer by conventional techniques is very time-consuming: Calibration of the detector for a number of compounds, which can be contained in a single mixture, can be carried out quite
rapidly using the mass detector: The composition of the mixture does not have to be known, and a response curve covering a reasonable concentration range can be obtained from about twelve runs: 6:4a Limits of Detection and Response Time of the Katharometer: Since the response of the katharometer is not predictable, a response curve in the region of the detector limits is required, in addition to determinations of noise levels and the onset of peak splitting:

The response curve from which the lower limit of detection was estimated is shown in figure 6.25: The limit of detection in terms of peak area is estimated from the point at which the extrapolated response curve cuts the noise level of the detector: the weight, and hence the concentration of material represented by this peak area is estimated from the mass detector response: The lower limit of detection for n-heptane is $8 \times 10^{-8} \mathrm{mMmI} \mathrm{I}^{-1}(0.5 \mathrm{pg})$ : The upper limit of detection was estimated from figure 6:24, and is $1 \times 10^{-4}$ (150 $\mu \mathrm{g}$ ) :

Although the sensitivity of the detector $\left(\mathrm{cm}^{2} \mu g^{-1}\right)$ is species and concentration dependent, it is similar to, and a little greater than the Gow-Mac gas density balance, for many materials:

The response time of the detector at room temperature, determined by the schmauch procedure ${ }^{2}$, using benzene and ether was 30 seconds, at a flow rate of $50 \mathrm{ml} \mathrm{min}^{-1}$ : This is a particulariy high value, even for use with packed columns, and is a result of the design of the detector, which is a semi-diffusion type: The internal volume of the detector is 2 ml : Response times of semi-diffusion detectors, published by Schmauch are of the order of 11 seconds, at $50 \mathrm{ml} \mathrm{min}^{-1}$ : 6:4b The Katharometer - conclusions.

The katharometer must be calibrated for all materials at all concentrations when nitrogen is used as carrier gas: A convenient and rapid method is to use the mass detector placed in series with the katharometer:

6.5 Calibration of a Plame Thermocouple Detector:

The calibration of a destructive detector can be carried out by placing the detector in parallel with the mass detector: 'lhe flame thermocouple detector has a sensitivity of similar order to the mass detector, so that by splitting the column effluent in approximately equal proportions, a reasonable response will be obtained from each detector: Ideally the ratio of the amounts of material reaching the two detectors will be in the ratio of the flow rates at the detectors: However it may arise that the split ratio is dependent on gas viscosity and hence will be different for different materials: it may also depend on the concentration of material. Such variations in split ratio will interfere with the calibration curve of the detector if it is to be subsequently used in the absence of a stream splitter: Using approximately equal split streams, and small concentrations of material in the carrier gas, and for materials of a similar nature, variations in split ratio should be negligible compared with the errors resulting from peak area measurements. The linearity of a flame thermocouple detector was determined using a $2: 1$ splitter, and the quantitative analysis of, a two component mixture was carried out. 6:5a Experimental and results:
'lhe Pye Panchromatograph flame ionisation detector chamber was modified to take a flame thermocouple detector: The cold junction of the detector was maintained at room temperature, and placed in a large block of expanded polystyrene to minimise random temperature fluctuations. whe output of the detector was fed directly to a 10 mV potentiometric recorder, without amplification: The standing thermocouple emf was backed off with a simple potential divider driven by a $\frac{1}{2} \mathrm{~V}$ battery For a temperature difference of about $800^{\circ} \mathrm{C}$, the thermocouple emf is 8 mV : A 1 mV change in output represents a temperature change of $80^{\circ} \mathrm{C}$. A circuit diagram is shown in figure 6:26: Operating conditions are Eiven in table 6:9:

Control Unit for Flame Thermocouple Detector,


B $\quad$ ithr ory battery
VR. - Attenuation - Ik $\Omega$
$\mathrm{VR}_{2}$ PKK.NG OFF -CORRSE - 100 n
VR3 Brecent ofrr - PINE - Iokn

Table 6.9

Apparatus	Pye Pa
Column	ApL A
Column temperature	$50^{\circ} \mathrm{C}$
Carrier gas	Nitroge
Flow rate - major stream minor stream	$\begin{aligned} & 60 \mathrm{ml} \mathrm{~min}^{-1} \\ & 33 \mathrm{ml} \mathrm{~min}^{-1} \end{aligned}$
Sample sizes	$0.2 \mu \mathrm{I}$ to $3 \frac{7}{2} \mu \mathrm{I}$
Flame thermocouple thermocouples cold junction	$\begin{aligned} & \mathrm{Pt}-\mathrm{Ft} / \mathrm{Rh} \\ & 23^{\circ} \mathrm{C} \end{aligned}$
Hydrogen flow rate Air flow rate	$\begin{aligned} & 50 \mathrm{ml} \min ^{-1} \\ & 250 \mathrm{ml} \min ^{-1} \end{aligned}$
```Mass detector - rang element temperature```	$\begin{aligned} & \text { es } 1 \mathrm{mg} \text { to } 5 \mathrm{mg} \\ & 3 \mathrm{Ib} \\ & 23^{\circ} \mathrm{C} \end{aligned}$

A two component mixture was prepared (table 6.11) and analysed several times covering the mass range $200 \mu \mathrm{~g}$ to 2 mg per component, firstly with the major stream, and then with the minor stream to the flame thermocouple detector: For each set of runs a response curve of peak area against weight detected by the mass detector, was plotted (figure 6.27): In all cases the response of the flame thermocouple detector varied linearly with sample size: The response of the detector should be predictable on the basis of heats of combustion (section 3:3): For the materials analysed the heats of combustion were for practical purposes identical. The response curves for the two materials at each split ratio should thereforercoincide if response is based solely on heats of combustion. Heats of combustion, and the slopes of the response curves, obtained from figure 6.27, are given in table 6.10:

Table 6.10

Compound	Heat of Combustion (Kcal g^{-1})	Response Major stream	$\begin{aligned} & { }_{2}^{2} \mu E^{-1} \text {) } \\ & \text { Minor stream } \end{aligned}$
Benzene	10.02	0.013	0.032
Toluene	10.15	0.014	0.036

Since the streams were split, the slopes of the response curves do not represent absolute sensitivities: An estimate of the split

ratio is given by the ratio of the flow rates at the two detectors and is 60/33, iee: 1.82:1. The split ratio can be calculated from the ratio of the weight of injected material and the weight of material detected by the mass detector: A $1 \mu I$ sample of the mixture will contain 0.30 mg of benzene. With the major stream to the mass detector 0.20 g of benzene was detected, $\mathrm{i}_{\mathrm{g}} \mathrm{e}$: the split ratio is $2: 1$: The same value was obtained for toluene. This method relies on injection of a known amount of sample and no loss of material within the column: Since the detector gives a linear response with respect to concentration, an estimate of the split ratio for each material can be obtained from the response curves: Using figure 6:27, the response of the flame thermocouple detector for each material at the $500 \mu g$ level was found, and the split ratio calculated from the differences in response when the major and minor streams were interchanged: e.g. for $500 \mu_{g}$ of benzene detected by the mass detector, with the major stream to the mass detector, and with a split ratio of $n: 1$,

$$
\frac{500(n+1)}{n}=1.6(n+1) K
$$

where K is a proportionality constant.
For the minor stream to the mass detector:

$$
500(n+1)=6: 25(n+1) K
$$

from which $n=1: 98$ i.e: the split ratio is 1.98:1.
For toluene $n=1.97$ ige: the split ratio is 1.97:1: Thus the absolute sensitivity of the detector is $0.0065 \mathrm{~cm}^{2} \mu g^{-1}$ for benzene and $0,0070 \mathrm{~cm}^{2} \mu^{-1}$ for toluene. The limit of detection (without amplification of the thermocouple output) is 5.9×10^{-5} $m M^{-1}$ for benzene:

The percentage composition of the mixture of benzene and toluene was calculated directly from the ratios of the peak areas (corrected for heats of combustion) (\bar{x} values): The composition of the mixture
was also estimated using the experimentally determined response factors ($\overline{\mathrm{x}}_{\mathrm{E}}$ values): The results are. given in table 6.11.

Table 6:11

Compound	Mass Detector			$\frac{\text { Flame }}{\text { x }}$	I'hermocouple Detector $\bar{x}_{\mathrm{E}} \quad \mathrm{V}(\%)$	
	x_{0}	$\overline{\mathrm{x}}$	V (\%)			
Benzone	37):48	37:86	0.8	35.38	36.76	2:9
Toluene	62:52	62.14	-	64.62	63.24	-

More accurate results were obtained using the experimentally determined response factors rather than those based on heats of combustion: I'he coefficient of variation of the results was significantly greater than the mass detector results; and similar to the value obtained using the Martin gas density balance: 6:6 Calibration of A Flame Ionisation Detector:
'i'he use of the mass detector for calibration purposes is not restricted to detectors of comparable sensitivity: it is possible, using a stream splitting device, to calibrate detectors of much greater sensitivity: TO demonstrate this, a flame ionisation detector was calibrated. 'ine conditions of operation are given in table 6.12:

Table 6.12

Appartus	Pye Panchromatograph
Column	Car: 20M B
Column temperature	$100^{\circ} \mathrm{C}$
Carrier gas	Nitrogen
column flow rate	$48 \mathrm{ml} \mathrm{min}{ }^{-1}$
rlame ionisation detector:	
Voltage	50V
Hydrogen flow rate	$50 \mathrm{ml} \mathrm{min}{ }^{-1}$
Air flow rate	$250 \mathrm{ml} \mathrm{min}{ }^{-1}$
Sensitivity	$10^{-9}, 10^{-8}$
Mass detector:	
Element	316
temperature	$23^{\circ} \mathrm{C}$.

The response of the detector toward methyl propionate toluene and chlorobenzene was determined: the results are illustrated on figure 6.28 as plots of peak area against weight detected by the mass detector: The response of the detector was linear over the whole range

investigated: from the slopes of the response curves, the response per unit weight for each material was found, and hence the response relative to one component as standard can be calculated. ihese values, together with the coefficients of variation (V) of the response factors are given in table 6:14.

The response factors must be corrected for the contribution of the stream splits if the detector is to be used in the absence of the splitter: Since the response for each material was linear, it follows that the splitting ratio remained constant over the concentration range covered, but was not necessarily the same for all the components in the mixture: The split ratio was determined for each compound individually, under conditions as near as possible to those used in the linearity experiment: The mass detector was connected firstly to the minor stream, and a number of injections of identical size made: The detector was then attached to the major stream and the experiment repeated: The split ratio was calculated from the mean value of the step heights in each experiment: The results are given in table 6.13:

Table 6.13

| Compound | $\begin{array}{c}\text { Mean detected weight (mg) } \\ \text { Major stream }\end{array}$ | | Ninor stream |
| :--- | :---: | :---: | :---: |$]$ Ratio

The response per unit weight obtained from the calibration curves (figure 6.28) can be corrected using the values given in table 6.13: The values are given below, and are compared with published response data (table 6.14):

Table 6:14

Compound $\begin{array}{r}\text { Re } \\ \hline\end{array}$	Response per unit$\left(\mathrm{cm}^{2} \mu_{\mathrm{g}}{ }^{\text {weight }}\right) V(\%)$		Relative Response	Corrected Response	Published Response
ilethyl propionate	0.108	4.2	0.44	0.44	0.40
Toluene	0.247	3.8	1.00	- 1.00	1.00
chlorobenzene	0.192	5.1	0.78	0.72	0.69

Comparison of the response factors with those quoted by Mases ${ }^{3}$ shows excellent agreement, especially since neither the detector nor the operating conditions were identical:

Using the response factors obtained from the calibration curves, the mean percentage composition of the mixture was calculated (\bar{x}_{F} values) and compared with the results obtained from the mass detector (\bar{X}_{M} values, see table 5:3) :
Table 6:15

Compound	x_{0}	\bar{x}_{M}	\bar{x}_{F}	σ	$V(\%)$	Bias
Hethyl propionate	33.51	33.05	33.09	0.81	2.45	-0.42
Toluene	30.41	30.35	30.35	0.44	1.45	-0.06
Chlorobenzene	36.08	36.60	36.56	0.66	1.81	+0.48

The coefficient of variation of the absolute response (area per jinit weight) for 45 determinations was 4.4%, and the coefficient of variation of the percentage composition was 1:9\%: Very similar values were obtained with the Martin gas density balance (section 6:3a): 6.7 Conclusions:

The response of the Gow-Mac gas density balance, although predominantly a function of molecular weight, varies with chemical species and sample size. However the response of the Martin gas density balance is completely predictable on the basis of molecular weight chances, and has a wide linear dynamic range. The mass detector can be used as a rapid means of calibrating detectors of completely unpredictable response, and as an example a katharometer was calibrated. Although the responses of the flame thermocouple and flame ionisation detectors are linear over a wide concentration range, both detectors require calibration with respect to chemical species, and this can be conveniently carried out using the mass detector:
6.8 References:

1: Gow-Mac Bulletin No: GADE 3-63-2M:
2: Schmauch, L:J: Anal. Chem: 31225 1959:
3: Mages, R.J: Column 1 (2) 2 1966.

7:1 Discussion:
An ideal procedure for the determination of the molecular weights of the constituents of a mixture would comprise the separation of the constituents by gas chromatography, and at the same time, the use of the detector response to determine the molecular weight of each component as it emerged: Present methods require pure and isolated materials: ebullioscopic and cryoscopic methods are straightforward, but give only moderate accuracy: Mass spectrometry gives very accurate results but demandsexpensive equipment: Using a gas chromatographic detector whose response depends solely on molecular weight, the accuracy of the method will depend on the accuracy to which peak areas can be measured (section 7.4): The response of several detectors is a function of molecular weight; namely the gas density balance, the jet stream detector (section 3.10), and the ultrasonic detector (section 3.15): The gas density balance has been used by several workers for molecular weight determinations ${ }^{1-5,12}$ but no data have been publisher, using the remaining detectors:

The response of the gas density balance is given by the equation:

$$
A=k \frac{q M_{x}-M_{c}}{M_{x}}
$$

where, $q=$ amount of component $x, \quad M_{x}=$ molecular weight of x

$$
A=\text { peak area } \quad M_{c}=\text { molecular weight of carrier gas }:
$$

The proportionality constant k, can be found by measuring the response to a known amount of a pure material of known molecular weight: By injecting under identical conditions a known amount of an unknown material, its molecular weight can be calculated, using equation 7 : 1 . In practice this method is open to a number of serious objections. It is not possible merely to separate the constituents of a mixture in the Gas chromatographic column, and to determine the molecular weight of
each component as it emerges; since values for q for each component are not known. Both the standard material and the unknowns are required in the pure isolated state: In addition it is particularly difficult to inject a known amount of material into the apparatus, and to ensure that no fraction is lost before reaching the detector It is difficult to maintain precisely the same experimental conditions over the period of time required for calibration and subsequent analysis of unknowns: A satisfactory practical procedure for the determination of molecular weights using a gas density balance was first carried out by Liberti ${ }^{2}$: To an unknown material (possibly a mixture whose constituents can be resolved), is added a material of known molecular weight, M_{s}, and the mixture analysed in the conventional manner: For a two component mixture, two peaks of areas A_{x} and A_{s}, for the unknown and standard respectively, are obtained:

$$
A_{x I}=k q_{x 1} \frac{M_{x}-M_{1}}{M_{x}}
$$

and

$$
A_{s l}=k q_{s l} \frac{M_{x}-M_{1}}{M_{s}}
$$

where $M_{I}=$ molecular weight of carrier gas I_{2} The experiment is repeated using a carrier gas of different molecular weight, M_{2}, to give:

$$
A_{x 2}=k q_{x 2} \frac{M_{x}-M_{2}}{M_{x}}
$$

and

$$
A_{s 2}=k q_{s 2} \frac{M_{s}-M_{2}}{M_{5}}
$$

It is not essential to inject precisely the same quantity of the mixture in each series of runs since the ratio:

$$
\frac{q_{x 1}}{q_{s 1}}=\frac{q_{x 2}}{q_{s 2}}
$$

so that by combining equations 7.2 to 7:5:

$$
\frac{A_{x 1}\left(M_{s}-M_{1}\right)}{A_{s 1}\left(M_{x}-M_{1}\right)}=\frac{A_{x 2}\left(M_{s}-M_{2}\right)}{A_{s 2}\left(M_{x}-M_{2}\right)}
$$

The A values are obtained directly from the peak areas of the chromatograms, and all molecular weights are known except M_{x}, which can be calculated: Using nitrogen and hydrogen as the two carrier gaser, molecular weights to about 4% of the true values were obtained for materials of molecular weight about $150^{(2)}$: Similar results were obtained by Revel'skii ${ }^{3}$ using nitrogen and argon. In an attempt to improve upon the accuracy of the results, parsons ${ }^{4}$ used one carrier gas of molecular weight lower than the unknown, and the other carrier gas of molecular weight higher than the unknown, (e:g: nitrogen and dichlorodifluoromethane): Errors the order of l-2\% are quoted in the published data ${ }^{4}$: Molecular weight dterminations based on the Liberti scheme, although giving acceptable results suffer from the disadvantage that column conditions must remain constant for the duration of the two sets of runs, although it is no longer necessary to know the amount of sample injected, or to work with pure isolated materials: the need to change the carrier gas is tiresome, but is not regarded as a very serious disadvantage.

An alternative method for determining molecular weights using the gas density balance was devised by Phillips and Timms ${ }^{5}$: Equation 7:1 is rearranged and rewritten:

$$
P V=\frac{K A}{M_{x}-M_{c}}
$$

where P and V are the pressure and volume of a vapour x, and K a constant: Pressure -volume measurements are made on the vapour, which is then passed into a gas density balance. K is found using a material of known molecular weight. the method gives molecular weights, in general to within 1% of the true values, for materials of boiling point up to about $200^{\circ} \mathrm{C}$. The $\mathrm{P}-\mathrm{V}$ equipment requires considerable skill to operate and the determination of a single molecular weight is
fairly time consuming: Pure isolated materials are required. reparative chromatography or other methods of purification must therefore be employed before molecular weight determindtions can be carried out.

A chromatographic method for the determination of molecular weights based on the measurement of the increase in flow rate which occurs as a component emerges from a column was proposed by scott ${ }^{6}$: The gas volume ΔV, occupied by m grams of solute vapour is given by the equation:

$$
\Delta V=m \frac{K}{K+1}: \frac{22.4 \times 10^{3}}{m}: \frac{11}{273} \quad 7: 9
$$

where $K=$ partition coefficient

$$
M=\text { molecular weight of solute }
$$

For a two component mixture, containing one material of known molecular weight, M_{s} :

$$
\frac{\Delta V_{s}}{\Delta V_{x}}=\frac{M_{x} m_{s}}{M_{s} m_{x}}
$$

provided that $K=K+1$:
If the detector responds solely to flow rate changes:

$$
\frac{\Delta V_{s}}{\Delta V_{x}}=\frac{A_{s}}{A_{x}}
$$

where A_{s} and A_{x} are peak areas representing the standard and the unknown respectively: The molecular weight of the unknown is given by:

$$
M_{x}=\frac{A_{s} m_{x} M_{s}}{A_{x} m_{s}}
$$

It is essential to know the weights of the injected materials, which using syringe injection implies that the densities of the standard and unknown must be known. The assumption that $K \gg 1$ will give rise to negligible errors provided that retention times are long and similar for standard and unknown:

The flame thermocouple detector (section 3.3) is sensitive to
both flow rate changes and changes in temperature caused by the presence of an eluted material. These two effects can be isolated by preventing the material from reaching the detector: The detector will then respond only to flow rate changes. Scott used the following system to accomplish this effect: The exit of a normal partition column was attached to a length of empty tubing which itself was attached to a column containing activated charcoal. A substance on emerging from the partition column, produced a flow rate change which was detected as a positive peak by the flame thermocouple detector: On entering the adsorption column the material was totally adsorbed, resulting in a flow rate decrease, which was detected as a negative peak: By using the adsorption peak area rather than the partition peak area, the assumption that $K \gg 1$ is removed, Using the results quoted by Scott 6, the molecular weights of a number of materials determined by this method have been calculated, and are quoted in table 7:1:

Table 7:1

Compound	Detector Response (area/unit weight)	Molecular Calculated	Weight True	Bias
n-Hexane (standard)	5.8	86.2	$86: 2$	standard
Carbon tetra- chloride	3.2	156.2	153.8	+2.4
Chloroform	4.1	122.0	$119: 5$	+2.5
Dichloroethylene	5.3	94.4	$97: 0$	-2.6
n-Butyl chloride	5.3	94.4	92.7	+1.7
Ethyl acetate	5.6	89.3	88.1	+1.2
Ether	6.8	73.5	74.2	-0.7
Acetone	8.6	58.2	58.1	+0.1

Errors the order of 2% are encountered. On the assumption that the detector is responding only to flow rate changes, the major errors arise from the difficulty of injecting known weights of each material, and of measuring the resulting peak areas.

The requirement that the amount of injected material must be known (and hence densities known) is common to all of the detectors which can
be used for molecular weight determinations, and constitutes the major limitation and error source in the determination of molecular weights by gas chromatography:

It has been established that the mass detector will give. reliable quantitative analyses over a wide range of operating conditions, and that response is proportional to mass. If the mass detector is operated in conjunction with a detector resnonding to molecular weight changes; then the amount of material present is obtained directly from the mass detector response. A knowledge of the amount of material injected, its density, and the percentage composition of the mixture is not required, and losses of material within the column do not affect the results. It was demonstrated by Bevan and Thorburn ${ }^{1}$ that by using a gas density balance and the mass detector in series, the molecular weights of the constituents of an unknown mixture could be found in a single run. Two chromatograms are obtained: the mass detector will give values of q (equation $7: 1$) for each material, and the gas density balance the corresponding values of $A: k$ is found by adding to the mixture a material of known molecular weight. It is not necessary to add a precisely measured amount of standard. The only requirement is the same for any conventional quantitative analysis, namely that resolution of the components should be complete. It would appear that the use of the mass detector in conjunction with the gas density balance offers an ideal method for the determination of molecular weights: there are however two factors which limit the versatility of the method:
(i) the calculation of a molecular weight depends on the accuracy with which a peak area and a step height can be measured, as with any other method involving gas chromatography detectors,
(ii) the change in response of the gas density balance for species of different molecular weight is a maximum when values of M_{c} and M_{x} (equation 7:1) are of the same order: but the absolute response of
the detector is a minimum when M_{c} and M_{x} are similar, and zero when they are equal. As the values of M_{c} and M_{x} diverge it becomes more and more difficult to distinguish between the responses of compounds of similar molecular weight; in the limiting case $\left(M_{x}-M_{c}\right) M_{x}=1$, and the molecular weight term disappears: The effect is shown graphically for a number of carrier gases covering the molecular weight range 4 to 121, on figure 7:1. It will not be possible to determine the molecular weight of a material with certainty if its molecular weight is at a point on or approaching the plateau of the curve: Consider the curve for nitrogen: It should be possible to determine the molecular weight of any material up to about 120 , including values below that of nitrogen, but with decreasing certainty as the molecular weight increases: uver about 120 , even a small discrapancy in the measurement of A, will result in an error in the value of $\left(M_{x}-M_{c}\right) / M_{x}$, and the error in M_{x} itself will be grossly magnified: Consider a peak area measured to within 6% of its true value: For a standard of molecular weight 80 , the values obtained for an unknown of molecular weight 61, will lie between 57 and 65: Using the same standard and an unknown of molecular weight 150 the experimentally determined values will lie between 121 and 200, clearly an unacceptably wide variation. nowever if a carrier gas of comparable molecular weight is used (e.g: dichlorodifluoromethane, 121) the molecular weight of the unknown will lie between 149 and 154 , which is a significant improvement:

For a detector to be of value for molecular weight determinations it is essential that the response depende only on molecular weight changes. It was established that the Gow-Mac gas density balance rarely gave a linear response over a wide concentration range, and even for a specific sample size, response was not wholly predictable on a molecular weight basis (section 6.2): On the other hand the Sartin gas density balance was found to give a response predictable on a molecular weight basis over a wide concentration range for all

materials investigated (section 6.3): The Martin gas density balance was therefore used in the present work.

The fall off in precision as molecular weight is increased, limits the value of the gas density balance - mass detector combination: Combination of the mass detector with the flame thermocouple detector operated as an anemometer overcomes this limitation, since although the response of the flame thermocouple decreases as molecular weight increases, it does so linearly and hence a marked fall off in precision does not occur: Using a combination of partition and adsorption to create flow rate changes, it would appear to be necessary to operate the two detectors in parallel. However the incorporation of a stream splitting device may interfere with the flow rate pattern as a material is eluted. Preferably, the two detectors should be operated without the need for a stream splitter: This could be accomplished by replacine the adsorption column with a second short partition column: Elution from the main partition column will give a positive detector response; the material tisethen partitioned on the second column, after which the gas stream is deflected to the mass detector, by means of a two-way tap. Such a procedure could only deal with widely separated components, and the condition that $K \geqslant 1$ must be satisfied:

An alternative method which would be satisfactory for multicomponent mixtures is to trap all components on the adsorption column, and after completion of the run, place this column in front of the partition column, in a chamber sufficiently hot to quantitatively desorb all material; the run is repeated using the mass detector in place of the flame thermocouple detector:

A detector which functions solely as an anemometer would overcome these difficulties, and it is proposed that a Gow-Mac gas density balance, operated in the horizontal position would function as such a device: The mass detector could then be placed in series with the anemometer, using a single partition column to create a flow rate
change: Multicomponent mixtures could be analysed without difficulty: 7:2a Molecular Height Determinations using the Martin Gas Density Balance:
rihe molecular weights of a number of materials have been determined using the liartin gas density balance in series with the mass detector: Operating conditions are given in table 7:2:

Table $7: 2$

Apparatus	Shandon KG2
Column	see table $7: 3$
Carrier gas	Nitrogen
Analytical gas flow rate $51 \mathrm{ml} \mathrm{min}^{-1}$	
Reference gas flow rate	51 ml min
Gas density balance -	
\quad filament current	1.9 A
sensitivity	$\times 10^{3}$
Mass detector - ranges	1 mg 5 mg
	elements 27,30

The linearity of response of the gas density balance toward each sample was checked by covering a reasonable concentration range and plotting graphs of detector response (peak area) against the mass detector response (weight adsorbed): The molecular weight can be calculated from the slopes of the curves; since the slope gives M/q (equation 7:I) directly: However more precise values can be obtained by calculating the mean value of A / q :

Jeveral two component mixtures were analysed, and the molecular weight of each component calculated assuming that the remaining component was the standard: The molecular weight values given in table 7:3 are the mean of about 10 determinations: Bias values are given in terms of molecular weight, and not as percentage error:

Table 7:3

Compound Mean	Molecular ight	Std Deviation	True Molecular Veight	Bias
Water ${ }^{\text {a }}$	17:5	-	18.0	-0:5
Ethyl alcohol	43.8	-	46.1	-2:3
Water ${ }^{\text {a }}$	18.0	0.13	18:0	zero
Ethyl alcohol	46.1	0.63	46.1	zero
Kethyl alcohol ${ }^{\text {b }}$	>28		32.0	$\overline{\bar{c}}-2$
Ethyl alcohol	$52: 9$		46.1	+5:8
Ethyl alcohol ${ }^{\text {c }}$	45.2	0.61	46.1	-0.9
n-Propyl alchhol	62:3	1.70	60.1	+2.2
n-Hropyl alcohol ${ }^{\text {c }}$	59:1	3.27	60:1	-1:0
n-Butyl alcohol	75:9	6.06	74.1	+1.8
Iso-propyl alcohol ${ }^{\text {d }}$	59:4	4.67	60.1	-0:7
Nitro-methane	61:8	5.22	61.0	+0:8
n-Hropyl alcohol ${ }^{\text {c }}$	59:7	3.03	60.1	-0.4
Methyl n-propyl ketone	87:1	6:35	86.1	+1.0
n-butyraldehyde ${ }^{\text {e }}$	70.8	7:29	72:1	-1:3
Methyl ethyl ketone	73:4	4.65	72.1	+1.3
Iso-ppopyl alcohol ${ }^{\text {d }}$	60.4		60.1	+0.3
n-yropyl alcohol	59:8		60.1	-0.3
benzene ${ }^{\text {d }}$	76:5	2:41	78:1	-1.6
toluene	94.7	4.57	92:1	+2.6
$n-H e p t a n e{ }^{\text {f }}$	90:9	15:23	100.2	-9:3
n-Octane	128:4	24.25	124.2	$+14: 2$
$n-H e p t a n e{ }^{\text {d }}$	107:6		100.2	+7:4
n-Nonane	144.2		128:5	+15:7
n-Octane ${ }^{\text {f }}$	98:6	23.24	114:2	-15:6
n-Nonane	159.8	29:75	128:5	+31.3
a column D at $70^{\circ} \mathrm{C}$ b column E at $70^{\circ} \mathrm{C}$ c column D at $140^{\circ} \mathrm{C}$		column E at column E at 68 column H at	$\begin{aligned} & 01^{\circ} \mathrm{C} \\ & \mathrm{C} \\ & 06^{\circ} \mathrm{C} . \end{aligned}$	

The variations of bias and standard deviation with molecular weight are shown on figures $7: 2$ and $7: 3$ respectively: Clearly accuracy and precision are inadequate over a molecular weight of about 100: In the region of 100 , values are as good as those obtained by Liberti ${ }^{2}$, and become progressively better as molecular weight decreases.

For a relative composition analysis using the gas density balance, the molecular weight of the components of the mixture must be known: The analysis of mixtures containing free fatty acids cannot be carried out using correction factors based on simple molecular weights, since the lower members of the series dimerise. The degree of dimerisation is dependent on temperature and pressure, so that the correction factors will depend on the conditions under which the analysis is carried out. The molecular weight of formic acid was estimated using water as a standard, and under the same conditions the percentage composition of a formic acid - acetic acid mixture was calculated. The results are given in table 7:4:

Table 7:4

Compound	Observed Molecular Weight	Monomer Mol. Weight	x_{0}	\bar{x}_{M}	\bar{x}_{D}
Water (standard)	18.0	18.0	-	-	-
Formic acid	54.8	46.0	-	-	-
Formic acid	54.8	66.0	62.04	60.79	56.74
Acetic acid	82.2	60.0	37.96	39.21	43.26

The mass detector gives excellent quantitative results, but the gas density balance results are only fair:

Molecular Weight Determinations of Multicomponent Mixtures:
An advantage of the determination of molecular weights by gas chromatography is that pure isolated materials are not required. The analysis of multicomponent mixtures therefore represents a more realistic situation than the analysis of a two component mixture in which one material is the added standard.

For the multicomponent mixtures, listed in table 7.5, each component in turn was taken as the standard, and the mean molecular weight of all the remaining constituents calculated. Thus for an n component mixture, there will be n standards and $n-1$ values for the mean molecular weight of each component. It is not valid to calculate the mean of the $(n-1)$ molecular weights, to give a sincle value, since the different standards used to calculate the values, all have different molecular weights themselves, and hence fall on different parts of the curve shown in ficure $7: 1.1$

Table 7.5.

Compound Tr	True Molecular Height	Nean Detected	$\begin{gathered} \text { Molecular Weight } \\ 4 \\ \hline \end{gathered}$
Cyclohexane I	84:2	82:9 86:7	105:6
Dichloroethylene 2	97:0	98.9 - 102.7	132:9
n-Octane 3	114:2	109.3 106.9 -	154:8
Carbon tetrachloride 4	153:8	108.9 106.5 113.6	-
Benzene	78.1	-78.9 79.2	
Toluene	92.1	$91.0-92.5$	
Ethyl benzene	106:2	103.7 105.1	
Hethyl ethyl ketone	72.1	-77.0 72.6	
lethyl n-propyl ketone	86.1	$79.8-80.5$	
Hethyl n-butyl ketone	100:2	99.1110 .4	
Wethyl ethyl ketone	72.1	- 71.2 65.7	68.1. 69.1
Benzene	78.1	$79.3-71.2$	$74.3 \quad 75.6$
Ethyl acetate	88.1	102.7 100.5	$93.5 \quad 75.8$
n-ileptane	100.2	111.3.108:7.94.0	- 103.0
n-Octane	114i2	125:0 121.6 102.9	110.8
Ethyl acetate	88.1	- 93.890 .5	
n-Propyl acetate	102.1	95.3 - 98.2	
n-Butyl acetate	116:2	111.9 122.0	
Ethyl acetate	88.1	- 82.1 79.8	
n-Propyl acetate	102.1	112.8 - 98.3	
$n-B u t y l$ acetate	116:2	138.6122 .0	

Compound				$\begin{gathered} 1 \\ \text { Weight } \\ 5 \end{gathered}$
	True Molecular Veight	$\begin{aligned} & \text { Mean Det } \\ & 1 \\ & \hline \end{aligned}$	ted Molecular	
Butylene oxide	72.1	- 63:4	66.1	
Dioxan	88.1	110.8	94.8	
n-Octane	114.2	140.: 4104.1	-	

The variation of bias with molecular weight is shown on figure 7.2: For all materials of molecular weight below 100 , the results are reasonably satisfactory: The method does not yield sufficiently accurate results over this value; e:g: the results for carbon tetrachloride, (row 4), and using carbon tetrachloride as standard (column 4) are completely unsatisfactory:

There is no significant decrease in the precision and accuracy of the molecular weights of the multicomponent mixturescompared with the two component mixtures:

7:2b High Molecular weight Carrier Gases:
It was established in the preceding section that the use of nitrogen as a carrier gas can only yield satisfactory molecular weight values up to about 100, and above this a carrier gas of significantly higher molecular weight must be used: Any gas should be suitable provided it is chemically inert and non-toxic: It must also be readily available and not expensive: Several gases, listed in table 7:6 fulfil at least some of these conditions:

> 1able 7:6

Compound	bp_{C}	mp_{C}	Uritical ${ }_{C}$ mp:	Molecular Height
Dichlorodifluoromethane	-30	-158	112	120.9
Chlorotrifluoromethane	-81	-181	29	104:5
Chlorodifluoromethane	-41	-160	96	86.5
Sulphur hexafluoride		limes	46	146:1

for satisfactory operation in conjunction with the mass detector, additional conditions must be fulfilled:
(i) physical adsorption must predominate,
(ii) the boiling point must be very low, compared with the boiling points of the materials under analysis.
(iii) the carrier gas must not interfere with the adsorption of the eluted materials:

A satisfactory gas would appear to be dichlorodifluoromethane, which is readily available as a liquified gas ${ }^{9}$:

The amount of dichlorodifluoromethane adsorbed by active charcoal at $15^{\circ} \mathrm{C}$, was estimated, from published data ${ }^{10}$, to be $513 \mathrm{mg} \mathrm{g} \mathrm{g}^{-1}$: A similar estimation for nitrogen at $15{ }^{\circ} \mathrm{C}$ gave $6 \mathrm{~ms} \mathrm{~g} \mathrm{~g}^{-1}$: The uptake of dichlorodifluoromethane by the charcoal used for mass detecting elements was $600 \mathrm{mg} \mathrm{g}^{-1}$: Since this is significantly greater than nitrogen, and is the same order as the materials under analysis, it is likely that the presence of dichlorodifluoromethane as a carrier, may interfere with the adsorption process.

Prior to entering the chromatograph, the dichlorodifluoromethane was dried by passing through a 4 A molecular sieve. Dichlorodifluoromethane is slightly toxic and precautions were taken to prevent the gas entering the atmosphere on leaving the mass detector: the outlet from the detector chamber was fed to a cold trap at $-70^{\circ} \mathrm{C}$, attached to a water pump.

Experiments to establish satisfactory operating conditions using the Martin gas density balance in the absence of the mass detector, were carried out: Using a mixture of n-heptane and n-octane, peak splitting readily occured, but satisfactory response was obtained by a suitable choice of conditions: The mass detector was incorporated into the system. air was swept from the detector chamber by a continuous flow of the gas, in addition to that reaching the chamber as carrier gas: The analysis of the two component alkane mixture produced a most unexpected result: the elution of each component was detected as a weight decrease, indicating displacement of adsorbed carrier cas by the new adsorbate. If simple displacement occurs, the use of an adsorbate of higher molecular weight than the carrier, should result in a weight increase: The analysis of n-nonane and n-decane, also resulted in a weight decrease, so that the displacement cannot be
a simnle function of molecular weight: Several other compounds were analysed, and the results compared with the weight increases observed when nitrogen was used as carrier gas (table 7.7):

Table 7:7

Comnound	Molecular Height.	$\begin{aligned} & \text { Weight } \\ & \mathrm{CCl}_{2} \mathrm{~F}_{2} \end{aligned}$	$\begin{array}{r} \text { Change }\left(\mu_{5}\right) \\ N_{2} \\ \hline \end{array}$
n-Pentane	72.2	-227.7	-
n-Hexane	86.2	-226.1	$+420.2$
n-Heptane	100.2	-201.2	+451:9
n-Octane	114.2	-197:4	+489.4
n-Nonane	128:3	-77.6	+515:4
n-Decane	142.2	-157.8	+551.6
Benzene	78.1	-1.30.4	+549:2
Toluene	92:1	+100:0	+59.1
o-Xylene	106:?	$+64.3$	-
p-Xylene	106.2	+71.4	-
Chlorobenzene	112.6	+175:7	+714:7
Iodobenzene	204.0	+398.2	+975.0
Carbon tetrachloride	153.8	+238.0	+762.0

Although the basic mechanism is that of displacement, it is a function not only of molecular weiçt, but of the area occupied by the adsorbate and the critical temperature of the adsorbate; in relation to these values for the carrier gas. Consider an adsorbate of lower molecular weight than the carrier, and having a similar critical temperature: A weight decrease will occur if the crosssectional areas of the two molecules are similar, since one molecule of carrier will be replaced by one molecule of the new adsorbate. However if the area of the molecule is greater than a carrier cas molecule, then several carrier molecules will be replaced by one new adsorbate molecule, again resulting in a weight decrease: If on the other hand, the molecular cross-sectional area of the new adsorbate is smaller than the carrier, then several adsorbate molecules will renlace one carrier molecule, and there may be a weight increase: To predict response on the basis of such a mechanism, requires an extensive knowledge of the nature of the adsorbates: A calculation of the expected response of the detector to carbon tetrachloride,
neglecting the critical temperature contribution, gives the value of $163 \mu \mathrm{E}$: the experimental value was $238 \mu \mathrm{E}$: The use of dichlorodifluoromethane as a carrier gas for molecular weight determinations is clearly unsatisfactory: However by using a mixture of dichlorodifluoromethane and nitrogen as carrier, response based solely on the waight of eluted material may occur if the dichlorodifluoromethane is in a sufficiently small proportion. The advantages of using a high molecular weight carrier gas for the gas density balance are maintained by introducing the nitrogen supply at the gas density balance outlet. The effects of such a combined carrier pas, on the mass detector were investigated: Buoyancy effects were separated from adsorption effects by running two series of experiments, one with a conventional lined detecting element and the other with an unlined element. The detecting element was saturated with dichlorodifluoromethane, after which nitrogen was introduced in varying proportions: The continuous passage of nitrogen resulted in a weight decrease (see table 7:8) in all cases, indicating that nitrogen was adsorbed in preference to dichlorodifluoromethane. Adsorption sites should therefore be available for adsorption of other materials without the need to displace dichlorodifluorome thane:

Table 7:8

Flow kate $\mathrm{CCl}_{2} \mathrm{~F}_{2}$	$\left.\mathrm{~min}^{-1}\right)$	Katio	Weight change mg
28	-	-	(20.9)
28	28	$1: 1$	-2.54
28	60	$1: 2.1$	-3.48
28	122	$1: 4.4$	-4.73
28	288	$1: 10.3$	-6.82
-	288	-	-8.50

A mixture of n-nonane and n-decane of known composition was analysed using the carrier gases mixed in various proportions. The results are given in table 7:9:

Table 7:9

$\begin{aligned} & \text { Flow Rate (ml } \\ & \mathrm{CCl}_{2} \mathrm{H}_{2} \end{aligned}$	$\begin{gathered} \left.\mathrm{in}^{-1}\right) \\ \mathrm{N}_{2} \\ \hline \end{gathered}$	katio	\% Weight of n-nonane	Bias
29	54	1:1:9	23:12	-9.5
29	107	1:3:7	29.92	-2:7
29	154	1:5:3	31.92	-0.7
True value \longrightarrow			32:58	

A satisfactory response based predominently on the weight increase due to adsorption of the alkanes is obtained when nitrogen forms the major proportion of the gas mixture: Such a system may therefore be satisfactory for molecular weight determinations, although no experiments were carried out to confirm this.
7.3 nolecular weight Determinations using the rlame thermocouple vetector:
the work was limited to a number of preliminary experiments of an exploratory nature to determine suitable conditions for molecular weight determinations:

A Pye Panchromatograph was fitted with a Pt-Pt/Rh flame thermocouple detector (see section 6:5a) and the output fed directly to a 10 mV potentiometric recorder. The chromatograph was fitted with a partition column (ApI ref: G) and an adsorption column (charcoal ref: I) after the method described by Scott^{6} : An empty column ($8 \mathrm{~m} \times 1 \frac{1}{2} \mathrm{~mm}$) was placed between these two columns to induce a time lag between partition and adsorption. Using $20 \mu \mathrm{l}$ samples of n-hexane, well defined partition and adsorption peaks were observed, but they were insufficiently large for accurate peak area measurements: The sample size could not be increased without overloading the partition column: ivo significant improvement in sensitivity resulted by changing the thermocouple position with respect to the flame, or by changing the hydrogen and air flow rates. An amplifier with a maximum gain of about 50 was constructed and used in conjunction with the thermocouples: Noise was excessive at all amplifications, and peak area measurement could not be attempted.

Chromatogram showing the kesponse of the wlame Thermocouple Detector (see pago 244):

The thermocouples were replaced by iron-constantan thermocoupies, which will give a sensitivity increase of 5 mV per ${ }^{\circ} \mathrm{C}$, at about $800^{\circ} \mathrm{C}$: Reasonable peak heights were observed for $5 \mu \mathrm{l}$ charges of n-hexane and n-heptane, but the detector was noisy, and accurate peak area estimation was not possible (figure 7:4):

It was concluded that the detector will respond to flow rate changes most satisfactorily when a Pt-Pt/Rh thermocouple is used, without amplification, provided that a partition column of high capacity is used. The method offers promise, but a considerable amount of work is necessary before it can be regarded as better than the gas density balance, or gas density balance/mass detector methods for molecular weight determination.

Mention has been made previously of the possibility of operating the Gow-Mac gas density balance in the horizontal position to obtain a response dependent solely on flow rate: The Pye Panchromatograph was fitted with a gas density balance in the horizontal position and $10 \mu \mathrm{l}$ samples of n -hexane were injected: A very small response was observed which may be attributed at least in part to inaccurate levelling of the detector: However, by changing the reference or analytical flow rate by even a few $\mathrm{ml} \mathrm{min}^{-1}$, significant response was obtained. Further amplification of the detector output, or the use of larger sample sizes may produce a measurable response. 7:4 The Measurement of Peak Areas and Step Heights:

In Chapter 1 the measurement of the peak areas obtained from a differential detector was discussed. A number of different methods of determining peak areas were described, and the limitations of the various methods noted: For quantitative analysis it is essential to measure peak areas with good accuracy and precision. In the present chapter it has been established that the value of the technique of determining molecular weichts using the gas density balance and mass detector relies to a greater and greater extent on the ability to
measure peak areas accurately as molecular weight increases.
A study was undertaken to compare the reliability of measurement of peak areas by the methods commonly regarded as the most satisfactory, namely peak weight, and peal height x width at $\frac{1}{2}$ height measurements: in addition the results using a digital and mechanical integrator are assessed. Since the main purpose of the experiment was to select the most satisfactory method for use in molecular weight determirations, the study was limited to completely resolved peaks, and peaks where only a small amount of distortion was observed: It is necessary to separate effects not caused by errors in area measurement. The results must be independent of errors caused by syringe delivery etc. Whis can be accomplished by injecting nominally the same amount of material of a two component mixture several times, and expressing peak areas as percentage composition. The true composition of the mixture is not required to calculate the standard deviation of the results (precision), but it is required to find the bias (accuracy): The accuracy and precision of step height measurements, using the mass detector were measured using the same procedure: 7:4a Experimental.

A sample was prepared of composition $44: 94 \%$ by weicht of n-propyl alcohol and 55.06\% methyl n-propyl ketone: The Martin gas density balance was used, the output of which was connected to a potentiometric recorder in the usual manner, and in addition to a digital integrator ${ }^{l l}$: A total of 31 runs were performed, each using a nominal sample size of
$3 \mu 1$: The peak areas of all these runs were calculated from peak height and width measurements, and. the results are given in table 7:12: Peak heights, and step heights were of the order of 5 cm : The areas of 14 of the runs were measured by the digital integrator used in the conventional manner: In this mode the integrator cannot begin counting until there is a finite baseline shift, which was set for this experiment at 0:5\% fsd. The integrator will not take into account any fraction
of the peak area below this value. This is insignificant for symmetrical peaks, but could lead to a substantial error in the case of a peals exhibiting a long tail: Ihis mode also relies on a completely stable baseline throughout a run, and any drift in baseline above the 0.5% level will contribute to the peak areas: 15 of the runs were carried out using the integrator in a different mode: Ihe integrator was set above the zero count position when no signal was received from the gas density balance, and by means of a micro-switch printed out the number of counts at fixed intervals of time: $1 t$ is thus possible to follow any drift in baseline by observing the change in count rate when no components are being eluted. On elution of a component the count rate of the integrator will change in the normal manner, but it will continue to print out at the same time interval. The peak area is obtained from the sum of the counts, above the zero signal count rate. The method has several advantages over the conventional operating procedure:
(i) detector baseline drift and integrator zero drift can be talsen into account in peak area calculations,
(ii) there is no threshold below which the integrator does not count,
(iii) the integrator will count negative peaks without the need for a signal polarity reversal switch, provided that the zero count rate is set sufficiently high. In the conventional operating mode the integrator will not count negative peaks, and a polarity reversing switch can only be used satisfactorily if peaks are well separated: The device used to trip the print-out mechanism of the integrator at fixed time intervals was made in the laboratory. To the shaft of a synchromous motor, geared to give a speed of rotation of 2 r.p.m. at 50 cycles $\sec ^{-1}$, was attached a Meccano wheel of $2 \frac{1}{2}$ " diameter: ilear the circumference of the wheel was attached at equal distances apart, small protrusions made from 4 BA screw heads. A wiping contact was positioned such that each screw head in turn was tounher ho tho
wiper as the wheel rotated, thus momentarily completing an electrical circuit and causing the integrator to print. With 4 contacts spaced at intervals of 90°, print out will occur every $7 \frac{1}{2}$ sec. Provision was made for print out at other time intervals by changing the number of contacts, and by using a 1 r.p.m. motor. For the device to be satisfactory the following conditions must be fulfilled:
(i) mains frequency must not fluctuate significantly,
(ii) the distance between each contact must be identical,
(iii) the wiper must always make contact at the same point on each head:

The performance of the device was checked by timinc 10 contacts starting at each contact point in turn. The results are given in table 7:10:

Table 7:10

Contact No:	Time for 10 contacts (sec)	Time per contact (sec)
1	$74: 8$	$7: 48$
2	$74: 9$	$7: 49$
3	$75: 0$	$7: 50$
4	$75: 0$	$7: 50$
1	$75: 1$	$7: 51$
2	75.1	$7: 51$

the performance was regarded as satisfactory.
The neak areas of 15 of the runs were obtained by cutting out the peaks and weighing them on an ordinary laboratory 4 -place balance: The repeatability of weighing a single peak was measured: no variation of results measured to 0.1 mg (1% of the total weight) was observed. The variation of weight of the chart paper over the length containing the runs was measured, by cutting out small squares of equal size, about the weicht of a typical peals. The results are given in table 7.11:
-248-
Table 7.11

No : of Squares	Mean Neight	σ $m g$	mg
6	12.00	0.36	3.0
6	11.62	0.21	1.8

Variations in chart speed during a run will affect peak areas obtained by all methods except the digital integrator: no measurahle variations in chart speed were observed, and the accuracy of the sipeed on each setting was excellent.

The performance of a ball and disc integrator ${ }^{7}$ was assessed. rhe integrator was attached to a potentiometric recorder, and a similar mixture to that used above was analysed using a Pye 104 chromatograph fitted with a flame ionisation detector: The results are given in table 7:12.

Data published by scott and Grant ${ }^{8}$ have been recalculated in the form used in the present work and are given at the foot of table 7:12:

Table 7:12

Nethod of Area Measurement	n	\bar{x}	σ	V	\% Bias
Peak width and height	31	43:41	1:4	2.9	3.4
Peak weight	15	44.90	2.1	$4: 7$	0.1
DiEital integrator conventional mode	14	45.12	1.2	2.5	0.4
fixed interwal print out	15	46.20	1.1	3.0	2.8
Step height (mass detector)	8	$45: 36$	0.9	2.0	1.0
Disc integrator	18	45:54	1.0	2.2	$3.0{ }^{\text {a }}$
Peak width and height ${ }^{8}$	20	23:37	0.28	1.2	
Triangulation ${ }^{8}$	20	22.56	0.60	2.7	
Planimetry ${ }^{8}$	16	23.49	1.23	$5: 2$	

$n=N O:$ of determinations:
$\bar{x}=$ mean $\%$ weight of $n-p r o p y l$ alcohol.
$a=$ assumes equal detector response for both constituents of the mixture:
7:4b Peak Area Neasurements - Conclusions.
The most satisfactory peals area measurements were obtained using the digital integrator, but contrary to expectations, better results
were obtained using the integrator in the conventional mode: 'Ihe peak areas under study were "typical" rather than ideal peaks. For a very broad and low peak it would be expected that the results obtained using the integrator conventionally would become poorer, but that the performance of the integrator using the fixed interval print-out technique would be unaffected: A similar result would occur for a peak with a long tail, irrespective of its height. The precision of the results obtained using the ball and disc integrator was equally satisfactory: Peak weight determinations gave a very accurate result, but the coefficient of variation was high due in part to variations in paper weight (table 7.II): The mass detector gave results as good as the best peals area results: 7:5 Conclusions:

The mass detector can be used in conjunction with a liartin gas density balance to obtain the molecular weights of the components of a mixture in a single run, but the method is only satisfactory for molecular weights up to about 100, when nitrogen is used as carrier: To increase this limit, dichlorodifluoromethane was used as carrier, but the response of the mass detector was not a simple function of
the weight of material eluted: Preliminary experiments with a flame thermocouple detector indicated that combination with the mass detector would enable molecular weights to be determined without the limitations: of the gas density balance/mass detector combination, provided a sufficiently large sample could be used. whe determination of molecular weights relies on accurate peak area determination. The most satisfactory results were obtained using digital and ball and disc integrators:
7.6 References.

I: Bevan, S:C:, Thorburn, S: Chem. Brit. 2206 1966,
2: Liberti, $\dot{A}:$ et al. Nature 1781067 1956:
3. Revel'skii, I.A. et al. Neftekhimiya (Pergamon Press translation) $4 \dot{2} 96$ 1965.
4. Parsons, J.S: Anal: Chem: 361849 1964:

5: Phillips, C.G.S:, Timms, P:L: J: Chromatog: 5131 1961:
6: Scott, R:P:W: Anal: Chem: 36 1455 1964:
7: Series 200 Disc Integrator, Disc Instruments Ltd., Hemel Hempstead.
8: Scott, ReP.W:, Grant, D.W: Analyst 89179 1964:
9: e.G: available in cylinders at $\bar{c} 60 \mathrm{Ib} \mathrm{in}^{-2}$ from I.C.I. Itd.
10. . Purnell, J.H: Gas Chromatography p 14 published by Wiley 1962:

11: Honeywell Precision Integrator, Honeywell Controls Ltd., London:
12: Walsh, J.T., Rosie, D.M. J: Gas Chromatog: $\underline{5} 232$ 1967:

APDENDIX.

The mass detector has been used on several post graduate courses in chromatographic techniques: Quantitative analysis of synthetic mixtures using the mass detector has been compared with the results obtained from conventional detectors using the same mixtures, by the participants of these courses. The results are summarised in the tables below. Each analysis was only carried out once, and the tables are composed of the results of 12 operators:

Percentase Composition

n-Nonane	33.2	33.0	33.5	34.1	32.6	32.3
n-Decane	27.3	27.9	27.5	28.2	27.9	27.6
n-Undecane	39.5	39.1	39.0	37.7	39.5	40.7

		Mass Pan Step ht:	$\begin{aligned} & F / I \\ & 1520^{f} \\ & \text { Dicit. } \end{aligned}$	$\begin{aligned} & F / I \\ & 104 \\ & \text { Disc } \end{aligned}$	
n-Heptane	24.46	27:8	27.55	24.3	
n -Octane	70:00	68.8	60.30	70.0	
n-lvonane	5:42	6.3	12.40	5.5	
n-Heptane	5:06	5:30	7.69	5.03	
$n-O c t a n e$	37.30	37.60	34.20	37:0	
n-ionane	57.70	57.20	58.30	58.0	

	Detector Apparatus He thod	$\begin{aligned} & \text { Mass } \\ & \text { Pan } \\ & \text { Sten ht. } \end{aligned}$	$\begin{aligned} & F / I \\ & 1520 \\ & \text { Digit. } \end{aligned}$	$\begin{aligned} & F / I \\ & 104 \\ & \text { Dise } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F/I } \\ & \text { PV4000 } \\ & \text { Triang. } \end{aligned}$	
Comnound	'Irue comp:					
n-Heptane	34.9	32.4	26.55			
n-Octane	42.0	43.2	39.75			
n-Nonane	23:1	24:4	33.70			
n-ifeptane	57:2	55.2	33.85	56.5		
n-Octane	7.15	7.2	7.28	6.8		
n-wonane	35.65	37.7	53:5	36:5		
n-Heptane	41.4	40.7				
n-Octane	28.5	29.4				
n-itonane	30.1	30:1				
n-Heptane	24.76	24.85				
n-Octane	70:00	68.80				
n-Monane	$5: 42$	6.30				
n-Heptane	39:4	39.6			38.9	
n-Octane	25.0	25:4			24.6	
n-Monane	35.6	35:0			36.3	
		$\begin{aligned} & \text { Nass } \\ & \text { Pan } \\ & \text { Step ht: } \end{aligned}$	$\begin{aligned} & F / I \\ & 104 \\ & \text { Triang } \end{aligned}$	GDB Pan Digit.	Kath: 104 Peak wt:	Kath: 104 friang
Benzene	24.0	23.4	26.5	23.8	23.5	23.7
Toluene	23.2	23.4	26:2	22.2	22.8	22.4
Chlorobenzene	52.8	53.3	47:3	54.0	53:7	54.0
		F / I 104 Digit.	$\begin{aligned} & F / I \\ & 104 \\ & \text { Area } \end{aligned}$	$\begin{aligned} & F / I \\ & 104 \\ & \text { Peak wt: } \end{aligned}$	$\begin{aligned} & F / I \\ & \text { IO4 } \\ & \text { Triang } \end{aligned}$	$\begin{aligned} & F / I \\ & \text { lO4 } \\ & \text { Planim. } \end{aligned}$
n-Yentane	22.5	18:4	16.6	20.2	16.1	17:4
n-Hexane	17.6	16.6	15:4	17:4	16.4	16:5
n-Heptane	14.6	15.6	14.1	16.2	15.4	15:4
n-Octane	16.5	17:6	18.8	16:8	18.8	17.9
n-Nonane	28.8	31:3	33.6	29:8	33.4	$33: 2$

a peak area from peak height x width at half height
b Pye Panchromatograph
c Pye 104
d Pericin Elmer Fill
e Philins PV4000
f wilkens 1520

The mass detector gave satisfactory quantitative analysis for all mixtures. Results using the disc integrator were excellent, but the digital integrator results were rather variable: manual peak area results were acceptable for all runs.

The mass detector is in use at the Laboratory of the Government Cherlist and is discussed in the Laboratory report for 1964 (pp 72/3):

The mass detector forms the subject of patent No: B. P.982,500, and other patents are pending:

ACKNO:ILEDGEMENTS.
The Autnor would like to thank Philips chromatography Ltd for a generous award, enabling him to undertake this work:

The author expresses his gratitude to his Supervisors, Dr: S.c: Bevan and dr: S: Thorburn for their help and encouragement: also to Mr: ل. Carruthers for carrying out the surface area determinations by nitrogen adsorption.
rhe author is grateful for the part played by his wife, not only in typing the work, but for her patience and understanding throughout the work. Thanks are also due to Hiss J:K: Gough for her help in proof readinc the typescript.

[^0]: Fig: 5.3 ApI stationary phase Fig: 5.4 Parapak column.

