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Abstract 

The thermal behaviour was investigated of three offices positioned in three buildings 

built in different periods, one academic institute built in 1920 and two modem 

commercial buildings in London. The buildings chosen for this study are the 

Rockefeller Building, which is part of University College London (UCL), Portman 

House in Oxford Street and the Visa Building in Paddington. Due to the lack of 

specific information related to the structure of the buildings such as windows, doors, 

building dimensions and other information that would allow the use of physical 

models, in this project black-box linear and non-linear mathematical models were 

used. Data relating to room temperature, hot and chilled water temperature, air flow 

and temperature from air handling units and outside temperature were collected for one 

year, from the actual building management systems (BMSs) installed in these 

buildings. The main assumption of the model development in the three buildings was 

that although occupancy, computers, printers etc cause an additional internal heat gain, 

their impact is in part indirectly included in the model. 

The primary objective of the analysis was to identify the inputs (independent variables) 
that gave good models for the prediction of room temperature for a certain period. 
Consequently, the process of input selection and period of validity in obtaining models 
that give good thermal prediction (within the same period) were the key points in 

season subdivision. The first part of the analysis applied the following linear 

parametric mathematical models to the three office buildings selected: Box Jenkins 

(BJ), autoregressive moving average with exogenous input (ARMAX) and output error 
(OE) structure. The project then deals with non-linear mathematical models. The same 
inputs selected and assumptions made with linear analysis were used to build, in turn, 

models with feedforward backpropagation (FFBP), non-linear autoregressive 
mathematical models with parallel arrangement (NARX) and series-parallel 

arrangement (NARXSP). 

The research presented in this project is related to developing models for three real 
offices positioned in three different buildings whereas previous researchers have 

applied these models mainly to experimental rooms and HVAC plants, with the 

purpose of fault detection and diagnostics. 
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Furthermore, in the past, research on thermal model development has been related to 

one office or HVAC plant, and for a limited period of time (a few weeks or months). In 

contrast, this study undertakes an overall analysis of thermal model development for 

three offices and for a period of one year, where the process of input selection is given 

priority to obtain good models. Thus, previous studies have not utilized these two 

types of models for such a long period of data collection nor related them to three 
different buildings. 

Finally, model development and then validation were pursued utilizing the same week, 
different weeks and different days (where the first part of the data in each case was 

used for model estimation and the following part for model validation). This was done 

within the period that the models gave good results for the prediction of room 

temperature. The best mathematical models (linear and non-linear) that predict the 

room temperature, in terms of the inputs selected, has been determined for each 

season. The procedures for how to choose the best models are based on the following 

techniques: final prediction error (FPE for linear models), mean squared error (mse for 

non-linear models), and model fits and errors between measurements and simulated 

model output. Overall, the results related for the prediction of room temperature with 

non-linear models, are better than those obtained with linear models, as a result of 

comparison between models' errors, FPE and mse obtained with linear and non-linear 

models. 
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Chapter 1 

CHAPTER 1 Introduction 

1.1 Background 

A Building Management System (BMS) is a "stand-alone" computer system that can 

calculate the pre-set requirements of a building and control the connected plant to meet 

those needs. Its inputs, such as temperature sensors, and outputs, like on/off signals, 

are connected to outstations around the building. Programs within these outstations use 

this information to decide the necessary level of applied control. The outstations are 
linked together and information can be passed from one to another. In addition, a 

modem is connected to the system to allow remote access. 

Conventionally, in almost all BMSs, a cascaded, multi-loop proportional-integral- 
differential (PID) control structure is used to control the internal air temperature in the 

heating ventilating and air conditioning (HVAC) system of the building. The 

underlying principle is the closed loop feedback control of the setting and operating 

schedules of the HVAC system. In fact, PID control is considered a successful 
implementation in HVAC control since this conventional approach is employed by 

most practical systems available nowadays. Albert et al. (1995) have shown that a PID 

controller is favourable only on the assumption that the system model parameters do 

not change much, but, in practice, the system parameters do change over time. 
Consequently, the PID controller response becomes poor and energy consumption 
increases unless the parameters are re-commissioned from time to time. 

Increased energy cost and strict environmental standards mean that more intelligent 

control over HVAC systems is required based on self-adaptive and predictive methods. 
To enable intelligence control, a model is needed and the system model is dependent 

not only on internal changes but also external conditions. 

A model is the way we describe the salient features of the system under study. 
Modelling requires mathematical description to be created, for example, of the 

physical and chemical phenomena that appear in reality. 
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The essence of modelling is to select only those characteristics, from among the many 

available that are necessary and sufficient to describe the process accurately enough to 

suit the objective of the modeller (inputs and outputs). An important decision in 

deriving models is the selection of the system's boundaries. These determine which 

parts of reality, that is, the process, will be taken into account (Bosch and van den 

Klauw, 1994). 

Much effort has been devoted to model buildings' thermal response (Penman, 1990; 

Jian et al., 2004; Gaudaa et al., 2002; Gilles et al., 2002; Andersen et al., 2000; Madsen 

and Holst, 1993; Dewson et al., 1993). Some very detailed computer simulations have 

emerged to describe the dynamics of the temperature and heat supply in buildings. Yet, 

relatively low-order linear systems can capture the essential elements of observed 
behaviour. Simplified or reduced order thermal models are, therefore, of interest. 

There are a number of techniques available for researchers to model the thermal 

response of a building. One such technique is physical modelling in which the 

properties of the system are broken down into subsystems whose behaviours are 
known. For technical systems this means that the laws of nature that describe the sub- 
systems are used in general. What happens when the capacitor and resistor are 
connected follows Ohm's law and the relationship between charge and current for a 
capacitor. Most researchers (Goudaa et al., 2002; Gilles et al., 2002) have used this 

analogy to model buildings' thermal response. 

Another technique is identification in which the observations of the system are used to 
fit the model's properties to those of the system. For technical systems the laws of 
nature themselves are mathematical models, which are based on observations of small 
systems. This is sound, since models of systems ultimately have to be based on 
experience. 

A building is a collection of different objects, such as walls, windows, internal fabrics 

and occupants. Therefore, a building is a system in which variables of different kinds 
interact and produce observable signals. The observable signals of interest to us are the 
air temperature inside the building, CO2 and humidity. 
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Kontoleon et al. (2002) have shown the influence of the glazed openings percentage 

and type of glazing on the maximum and minimum indoor temperatures, during and 

after solar hours. Andresen et al. (2000) also consider that the most important heat 

transfer, which influences the room's air temperature, is the heat input from solar 

radiation. Therefore, based on the above-mentioned literature, it is clear that the solar 
heat gained through glazed windows directly contributes to the variation of internal air 

temperature. An accurate modelling approach for predicting the behaviour of the 

internal air temperature, therefore, requires consideration of parameters that influence 

its behaviour. 

1.2 Objectives of the Research 

In this project, the thermal behaviour of three different buildings built in different 

periods, one academic institute built in 1920 and two modern commercial buildings in 

London are investigated. The buildings chosen for this study are the Rockefeller 

Building that is part of University College London (UCL), Portman House in Oxford 

Street and the Visa Building in Paddington. Black-box linear (parametric mathematical 

models) and non-linear mathematical models (neural networks) are used to obtain the 

models from the data collected. 
The main objectives of this research are: 
1) To identify the most important variables (inputs and outputs) that can be used in 

the mathematical models. 
2) To apply different modelling techniques to the three selected buildings and to 
identify the most efficient models for each building. 

3) To arrange the data elaborately so that the model can be built without additional 
sensors or other units. 
4) Finally, if changes are detected inside the buildings the models should be 

sufficiently flexible to predict their new thermal behaviour. As a result they will be 

useful and reliable in the long term. 

3 



Chapter 1 

1.3 Contributions 

" The modelling of three real offices 
The research presented in this project is related to developing models of three real 

offices positioned in three different buildings in London. This is achieved, by 

applying black box parametric mathematical models and neural networks to the data 

collected. Previous researchers have applied these models mainly to experimental 

rooms (many sensors are installed) and HVAC plants, with the purpose of fault 

detection and diagnostics. 

Comparison between the models for the three buildings 

In the past, research on thermal model development was related to one office or 

HVAC plant. In contrast, this study undertakes an overall analysis of thermal model 

development for three offices positioned in three different buildings in London. The 

thermal behaviour of the three buildings, one academic institute built in 1920 and 

two modem commercial buildings are very different, consequently, comparisons are 

made between them. 

" Modelling with an extended period of data (one year) 
Previous research has been related to the study of thermal behaviour for a limited 

period of time, from a few weeks to a few months. The relatively short periods of 
data collection and widespread use of experimental rooms resulted in thermal 

models being developed for the same inputs throughout the analyses. In contrast, in 

this work, the thermal behaviour of real offices is examined for a period of one 

year, and the process of input selection is given priority to obtain good models. 

" Modelling with black-box linear parametric and non-linear models 
This research is also unique in its model development for the three offices, is that it 

applies two different mathematical models, parametric mathematical models 
(linear-models) and neural networks (non-linear models). A comparison of these 

models is also provided. Conversely, previous studies have not utilized of these 

two types of models for such a long period of data collection nor related them to 

three different buildings. 
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1.4 Achievements 

The achievements of this project were: 

" It identified the most important inputs affecting thermal behaviour, throughout one 

year for three different offices based in three different buildings in London. It was 

found that some inputs gave good models for a limited period of time (several 

weeks). Consequently, the process of input selection and the period of validity for 

the models obtained that gave good thermal prediction (within the same period) 

were the reasons for the subdivision of each season into three parts: beginning, 

middle and end. 

" It developed thermal models utilizing black box linear and non-linear mathematical 

models based on inputs selected throughout the seasons for the different offices. For 

parametric linear models the general choices were ARX, OE, ARMAX and BJ, 

while for non-linear models the FFBP, NARXSP and NARX were the general 

choices. 

" It compared linear parametric mathematical models (through the final prediction 

error criteria, model errors and fits between measurements and simulated model 

output) developed throughout the seasons within the selected office for each 
building. From the analysis of the results obtained with linear models, the BJ 

models (bj [1 111 2], bj [1 111 3], bj [1 111 4] and bj [1 111 5]), OE models 
(oe [1 12], oe [1 13], oe [1 14] and oe [1 15]) and ARMAX models (amx [2 22 

1], amx [2 22 2], amx [2 22 3], amx [2 22 4] and amx [2 22 5]) gave good results 
for periods, ranging from four to twelve weeks. 

" It compared non-linear models (through the mean squared error criteria and model 
errors between measurements and simulated model output) developed throughout 

the seasons within the selected office for each building. NARX, FFBP and 
NARXSP networks were applied to the three buildings for one year. NARX, FFBP 

and NARXSP networks, with the same properties (section 7.3), gave good results 
for Portman House and the Visa building throughout the year. However, in the 
Rockefeller building due to the lack of data collected by the BMS, only the 
NARXSP network produced good results. The NARXSP network had better fits 

than the FFBP and NARX networks throughout the entire analysis. 
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" Finally, it compared the linear and non-linear results obtained. The advantages of 

applying neural networks instead of linear models were: 

o The same networks with the same properties could be used throughout the 

entire year and for the three buildings, with good results obtained for predicting 

room temperature. 

o There was no limit on the number of outputs that could be used for model 
development with non-linear networks. 

o With neural networks, the amount of time required for model development and 

validation throughout the year was less than that for linear models. 
o The results obtained with non-linear models are better than those obtained with 

linear models. 

1.5 Thesis Outline 

This thesis is organized as follows: 

Chapter 2 presents the literature review for thermal modelling of buildings and HVAC 

plants. Black-box, white-box and grey box methods are presented with their 

advantages and disadvantages. 

Chapter 3 provides a detailed description of linear parametric mathematical models 

and an overview of the methodology used to obtain the results. Furthermore, for 

parameters estimation, the prediction error estimation method is presented. 

Chapters 4,5 and 6 discuss the results obtained using the linear parametric models for 

the Visa Building, Portman House and Rockefeller building respectively. A discussion 

and comparison of the results are also included for one year. 

Chapter 7 provides a description of the neural network method used in this study and 
its application to the three buildings. A comparison of results with the linear models is 

also undertaken. 

Finally, chapter 8 presents the conclusions of the study along with recommendations. 
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CHAPTER 2 Literature Survey 

It is generally accepted that the performance of heating, ventilating, and air- 

conditioning (HVAC) systems often falls short of expectation. Thus, modelling the 

thermal behaviour of buildings and plants is very important, because models can be 

used for control purposes (faults detection and diagnostics). In this chapter is given an 

overview of the main techniques used for building the thermal behaviour of buildings 

and HVAC plants. 

The first part of this chapter deals with process history based methods which includes 

black box models as linear and nonlinear mathematical models. The black box models 

reflect the fact that no knowledge of the process is used, in which the parameters must 

all be estimated from measurements of inputs and outputs using an estimating 

procedure. Finally, fuzzy logic design methodology is presented which allows 

modelling complex systems using a higher level of abstraction originating from our 

knowledge and experience. 

The second part deals with white-box, grey-box and statistical based methods. White- 

box assumes complete knowledge of the process (derivation of models from physical 
knowledge). The grey box modelling derives from the physical models but also use 
black-box modelling for obtaining the values of some parameters. 

The main techniques for modelling the thermal behaviour are: 

1. Black- box based methods 

" Linear Parametric Mathematical Models 

" Artificial Neural Networks 

" Fuzzy Logic 

2. Other methods 

" White Box Physical-Based Methods 

" Grey Box Methods 

" Statistical Based Methods 
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2.1 Black-Box Based Models 

When a model's features or parameters have no physical significance, it is referred to 

as a black box model. Black box models often require less time and effort to develop 

and apply them compared to grey box approaches. However, the prediction accuracy is 

generally lower than for grey box models, and they cannot be used to extrapolate 

beyond the data range for which they were developed (Srinivas and Brambley, 2005). 

In contrast to the model-based approaches where a priori knowledge (either 

quantitative or qualitative) about the process is needed, in process black-box based 

methods, only the availability of a large amount of historical process data is required. 

There are different ways in which this data can be transformed and presented as a 

priori knowledge to a diagnostic system. This is known as feature extraction and it can 

be either qualitative or quantitative in nature. Two of the major methods that extract 

qualitative history information are the expert systems and trend modelling methods. 

Methods that extract quantitative information can be broadly divided into non- 

statistical and statistical methods. Neural networks are an important class of non- 

statistical classifiers. Principal component analysis (PCA)/ least squares (LS) and 

statistical pattern classifiers form a major component of statistical feature extraction 

methods (Venkatasubramanian et al., 2003c). 

In a black-box base (data-driven) model, both inputs and outputs are known and 

measured. The main objective of a data-driven model is to mathematically relate 

measured inputs to measured outputs. The input/output data can be transformed and 

used as a priori knowledge a number of ways in a diagnostic system. This process of 

transformation is also known as feature extraction or parameter extraction (Srinivas 

and Brambley, 2005). 

The methods based on process history have several advantages and disadvantages are 
(Srinivas and Brambley, 2005 and Harunori et al., 2001). 

Advantages of process history-based models 

" These methods are well suited to problems for which theoretical models of behaviour 

are poorly developed or inadequate to explain observed performance. 
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" They are suited to situations where training data are plentiful or inexpensive to create 

or collect. 

" Black box models are easy to develop and do not require an understanding of the 

physics of the system being modelled. 

" Computational requirements vary, but they are generally manageable. 

" There is a wealth of documented information available on the underlying 

mathematical methods. 
Disadvantages of process history-based models 

" Most models cannot be used to extrapolate beyond the range of the training data. 

"A large amount of training data is needed, representing both normal and "faulty" 

operations. 

" The models are specific to the system for which they are trained and can rarely be 

used for other systems of the same class. 

2.1.1 Overview of Modelling with Linear Parametric Mathematical Models 

The System Identification Toolbox contains different linear parametric mathematical 
models, and some of these have been used by many researchers. No knowledge of the 

systems inside structure is considered in these models; namely, the model is 

categorized as a black box type (Liddament, 1999). The purpose of system 
identification techniques is to mathematically describe the behaviour between the 
inputs and outputs of a process. There are numerous techniques available to describe a 
dynamic process with a mathematical model (Peitsman and Bakker, 1996). 

Choosing an appropriate model type and incorporating a good parameter identification 

method is important. A model that represents the system dynamics well can be used to 

effective and reliable fault detection (Liddament, 1999). 

The procedure to determine a proper linear parametric mathematical model from 

observed input-output data involves three basic elements (Peitsman and Bakker, 1996): 
1. Measurement of input-output data 

2. Selection of model structure and estimation of parameters 
3. Validation of selected model 
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Application of the black-box linear parametric mathematical models for model 

building is widely used technique by many researchers. Penman (1990) used it to 

model the thermal response in a working school while Dewson et al. (1993) used it to 

model the thermal response of an experimental building. However, individual 

researchers have used different techniques such as least squares and maximum 
likelihood to identify the parameters of their models. 

The autoregressive mathematical models, ARMAX and ARX, with both single- 
input/single-output (SISO) and multi-input/single-output (MISO) will be examined in 

chapter 3. Furthermore, ARMAX and ARX models have been used for fault detection 

and diagnostics (Lee et al., 1996). 

Peitsman and Soethout (1997) used several different ARX models to predict the 

performance of an AHU and compared the prediction with measured values to detect 

faults. The research shows that ARX modelling of the system in combination with a 

model-based diagnostic tool was able to detect most of the faults that were introduced 

inside the AHU. Furthermore, the diagnostic tool was able to give a correct indication 

in these situations of which component of the AHU was defective. Yoshida and Kumar 

(1999) evaluated the ARX model to identify abrupt faults in AHUs. 

Kumar et al. (2001) propose a method based on an autoregressive exogenous model 

and a recursive parameter estimation algorithm to detect faults in AHUs. Peitsman and 
Bakker (1996) used two types of black box models (artificial neural networks [ANNs] 

and auto regressive with exogenous inputs [ARX1]) to detect faults in the system and 

at the component level of a reciprocating chiller system. Lowry and Lee (2004) applied 
system identification to the thermal response of an office space using data collected 
from an existing building management system. 

Furthermore, Cunningham (2001) used system identification techniques to develop an 
autoregressive model (ARX) for allowing room or building ventilation and moisture 
release rates to be inferred from field psychometric data. 
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Albert et al. (1995) developed a new controller for a practical air handling system 
based on the system identification where the input and actuating variables are 
incorporated into a system identification model which can predict the new system 

status based on past records and suggest the optimal control action. 

In view of the above review literature, system identification is a very useful technique 

for developing linear parametric models in different fields of research. The System 

Identification Toolbox is used in this project to develop mathematical models for one 

year of data collection. Therefore, selection of the system identification method in this 

project to develop the dynamic thermal model is fully justified. 

2.1.2 Overview of Modelling with Artificial Neural Network Methods 

Artificial Neural Networks (ANNs) or commonly just Neural Networks (NN) can be 

viewed as a set of processing units (or neurons, cells or automatons) in which all of the 

units are in contact with one another or with the outside by means of axonal or 

synaptic ramifications (IEA Annex 25,1996). 

Guglielmi et al. (1995) state that ANN method is characterized by the following 

advantages: 

" It does not require the run-time use of a system's model, which is often onerous to 
develop and does not reflect the system's real behaviour accurately; 

" It does not exhibit the severe limitation of being based on a linear model. This 

limitation affects model-based methods due to the mathematical difficulties 

associated with non linearities which, for instance, prevent the design of effective 
non linear state estimators. 

" It does not require any representative signatures for single types of faults, a 
tolerance threshold, a hypothesis about the set point values of the plant, a 
simplifying hypothesis about noise, knowledge of non-parametric signal models, or 
parametric identification. 

The main disadvantages of using an ANN method are IEA (Annex 34,2001): 

" Neural networks require vast amount of training data to model complex processes 
effectively. 
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" It is difficult to gain any physical insight into the process being modelled from the 

parameters of the trained neural network. 

" Applying a neural network model to input data that are not well represented in the 

training data set can lead to erroneous output. 

The most popular NN techniques, for modelling the thermal behaviour of buildings 

and HVAC plants, are presented in the next sections. Successively are presented only 

the radial basic function, general regression and cerebellar model articulation 

controller. The network that have been used in this project as multilayer feedforward 

neural network and nonlinear autoregressive models with exogenous inputs (NARX) 

models are presented in chapter 7. 

Radial Basis Function Network 

The Radial Basis Function (RBF) network consists of three layers including input, 

hidden and output layer (see Fig. 2.1). Such a network is characterized by a set of 
inputs and a set of outputs. In between the inputs and outputs there is a layer of 

processing units called hidden units. Each one implements a radial basis function. The 

input into the RBF network is non linear while the output is linear (Samanta et al., 
2006). 

In contrast to training a feedforward neural network (FFNN), learning in an RBF 

network can be done in one, two or three stages (phase learning) (Schwenker et al., 
2001). In the one-phase learning procedure, only the output layer weights are adjusted 
through some kind of supervised optimization, e. g. minimizing the squared difference 
between the network's output and the desired output value. The two stages of an RBF 

network are learnt separately. First the parameters of the RBF layer, are adjusted the 
RBF layer is trained, including the adaptation of centres and scaling parameters, and 
second the weights of the output layer are adapted. The performance of RBF classifiers 
trained with two-phase learning has been improved through a third BP-like training 

phase of the RBF network, adapting the whole set of parameters (RBF centres, scaling 
parameters and output layer weights) simultaneously. 
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Figure 2.1 Architecture of a high-dimensional input and output RBF network (Samanta 

et al. 2006) 

Advantages of Radial Basis Function network: 

" RBF possesses good generalization capability with minimal network structure so 

that it offers a variety of application (approximation) problems and suits the 

requirements of the complicated systems (Wang et al., 2005). 

" Any continuous function can be uniformly approximated to within an arbitrary 

accuracy (Bechtler et al., 2001). 

" Compared to FFNN, RBF is fast, efficient and needs less computational effort 
(Bechtler et al., 2001). 

A generalised radial basis function (GRBF) network it was used by Swider et al. 
(2001) to predict chiller performance. Furthermore, Swider (2003) compared different 

types of black box models to predict chiller performance, while Bechtler et al. (2001) 

have used general radial basis function for modelling a heat pump under steady state 

conditions. Finally, Yu and Zhai (2007) used RBF to model the air/fuel ratio control of 

automotive engines. In this case the RBF network was adapted on-line to model engine 

parameter uncertainties and extreme non-linear dynamics in different operating 

regions. They found that RBF modelled the non-linearity of the engine dynamics with 
a high degree of precision. 
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General Regression Neural Networks (GRNN) 

GRNNs belong to the well-known nonparametric kernel regression models (Hardle, 

1989, Fan and Gijbels, 1997) and are theoretically based on the estimation of a 

probability density function from observed samples using Parzen window estimation 
(Specht, 1991). 

A GRNN is a four-layer feed-forward neural network based on non-linear regression 

theory consisting of an input layer; pattern layer, summation layer and output layer 

(see Fig. 2.2). There are no training parameters such as learning rate and momentum as 

there are in BP networks, but there is a smoothing factor that is applied after the 

network is trained. The smoothing factor determines how tightly the network matches 
its predictions to the data in the training patterns. The training of a GRNN is quite 
different from a training used in other neural networks. It is completed after one 

presentation of each input-output vector pair from the training data set to the GRNN 

input layer (Kalogirou et al., 2003). 
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Figure 2.2 Schematic diagram of GRNN architecture (Kalogirou et al., 2003) 

GRNN algorithms are characterized by the following advantages: 

" They are quick learning (Abdullatif and Mahmoud, 2004). 

" There is fast convergence to an optimal regression surface as the number of samples 
becomes large (Abdullatif and Mahmoud, 2004). 
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" GRNNs are capable of modelling non-linear relationships without a predetermined 
functional form (Kalogirou et al., 2003). 

" No mathematical model is needed to estimate the system (Lee et al., 2004). 

" The inherent one pass learning algorithm and parallel structure make it attractive for 

real time FDD (Lee et al., 2004). 

GRNN algorithms are characterized by the following disadvantages: 

" GRNNs require many training samples to adequately span the variation in the data, 

and require all training samples to be stored for future use (Karri, 2000). 

" GRNNs have trouble with irrelevant inputs and there is no intuitive method for 

selecting the optimal smoothing factor (Karri, 2000). 

Abdullatif and Mahmoud (2004) studied the feasibility of using GRNN to estimate the 

next day cooling load profile before weather conditions are known and Kalogirou et al. 
(2003) examined the use of GRNN for the prediction of air pressure coefficient across 

the openings in a light-weight single-sided naturally ventilated test room. 

Cerebellar Model Articulation Controller Neural Networks 

The Cerebellar Model Articulation Controller (CMAC) is essentially an adaptive, self- 

calibrating look-up table with continuous inputs and outputs. Unlike ANNs such as 
FFBP neural networks, the CMAC is based on a sequence of memory and data 

mappings rather than interconnected neurons. The mapping transforms a real, 

continuous input vector into a real, continuous output vector (Li et al., 2004). 

Fig. 2.3 shows a schematic diagram for CMAC neural network. The CMAC algorithm 

consists of two mappings and one output computation for determining the value of a 

complex function as shown in Fig. 2.3. 

Mapping S: X--+ A (2.1) 

Mapping T: A--> W (2.2) 

Output Computation: y=E wJ (2.3) 
Jacttvated 

Wong and Sideris (1992) show that the CMAC learning algorithm is a Gauss-Seidel 
iterative scheme for solving linear equations and that the CMAC output learns with an 
arbitrary accuracy. 
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CMAC networks are characterized by the following advantages over other types of 

neural networks: 

" CMAC has been adopted widely for the control of complex dynamic systems owing 

to its fast learning property, good generalization capability, and simple computation 

compared to the other neural networks (Chiang and Lin, 1996; Kim and Lewis, 

2000; Shiraishi et al., 1995). 

" Its simple output and gradient-descent weight update calculations and its property 

of local generalization result in fast learning convergence in comparison to other 

neural networks for transient control applications (Li et al., 2004). 

" CMAC requires minimal a priori knowledge of the system and therefore can be 

applied to a set of arbitrary systems performing similar tasks (Shiraishi et al., 1995). 

" On-line adaptation adjusts CMAC to the unique characteristics of a particular 
system and likewise modifies the CMAC weights in the event that the system is 

altered in any way (Shiraishi et al., 1995). 

Disadvantages of CMAC Neural Networks compared to other types of neural 

networks: 

" Local generalization means that learning and weight adjustment in one region of the 
input space does not affect or disrupt what has already been learned in distant 

regions of the input space (Gordon and Campagna, 1990). 

CMAC has been applied primarly to complex robotic systems involving multiple 
feedback sensors and multiple command variables (Miller, 1989). This type of network 
has also been used for air-to-fuel ratio control of automotive fuel-injection systems 
(Majors et al., 1994). 
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Figure 2.3 CMAC network structure (Shiraishi et al., 1995). 

2.1.3 Fuzzy Logic Method 

A fuzzy model is a set of fuzzy rules that describe the relationship between a set of 

inputs and a set of outputs in qualitative terms. Fuzzy logic resembles human decision 

making with its ability to work from approximate data and find precise solutions (Earl. 

C., 1994). 

The main advantages of fuzzy schemes are (Klir et al., 1997). 

" Fuzzy models can take into account the highly uncertain, nonlinear behaviour of 

HVAC equipment. 

" Fuzzy FDD schemes are easier to commission because fuzzy rules are generic, to 

some extent. 

" Available expert knowledge about the symptoms of faults is easily combined with 

knowledge learnt from measured data. 

" Software implementation of fuzzy logic is computationally undemanding. 

The main disadvantages of fuzzy schemes are: 

" Less precise results are generated in comparison with other approaches. 

" Rule-based descriptions are often less concise than quantitative descriptions. 
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ANFIS method 

ANFIS stands for Adaptive Neuro-Fuzzy Inference System. It is a hybrid neuro-fuzzy 

technique that brings learning capabilities of neural networks to fuzzy inference 

systems. (Roger and Jang, 1993; Roger and Sun, 1995). 

Advantages (Roger and Jang, 1993; Roger and Sun, 1995): 

" The advantages over standard control theories, or the mathematical modelling 

method, are that any plant or problem can be modelled or described using the 

formal means of description equations. On the other hand fuzzy theory allows us to 

use human verbal description and this helps to overcome most of the uncertainties 

and instabilities the system could have. 

" It is very difficult to create an appropriate rule base using the aid of an expert. The 

Neuro-Fuzzy Controller system offers the possibility to create this rule base 

automatically through a learning phase, evaluating the error response of the system. 

" ANFIS is one of the best trade-off between neural and fuzzy systems, providing: 

- smoothness, due to the fuzzy control interpolation 

- adaptability, due to the neural network BP 

Disadvantages: 

" It has a single output. All output membership functions must be the same type and 
either be linear or constant. 

" There is no rule sharing. Different rules cannot share the same output membership 
function; namely, the number of output membership functions must be equal to the 

number of rules. 

The ANFIS model has been applied to the measured data in real office building in the 
Netherlands. The model output responded normally and during the faulty period, a big 
jump appeared. Finally, the model is shown to be a good candidate for energy 
diagnosis (Yu and Van Paassen, 2003). 
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2.2 Other Methods 

The following methods have been reviewed for the project but have been considered 

not appropriate for this study. 

2.2.1 White Box-Physical Based Methods 

Physics-based models follow from fundamental physical laws such as conservation of 

mass and energy and Newton's laws of motion. The biggest advantages of physics- 
based models are that they provide insight into the physical process in a manner that is 

more precise (because we start from universal conservation law), and the parameters in 

such models are measurable, often using available techniques Rosenberg and Karnopp 

(1983). 

The advantages and disadvantages of physical based models are listed below 

(Katipamula and Brambley, 2005). 

The advantages of physical based models are: 

" They are based on physical or engineering principles. 

" Detailed models based on first principles can model both normal and "faulty" 

operation. Therefore, "faulty" operation can be easily distinguished from normal 

operation. 

" The transient in a dynamic system can only be modelled with detailed physical 

models. 
The disadvantages of physical based models are: 

" They can be complex and computationally intensive and the effort required to 
develop a model is significant. 

" They generally require many inputs to describe the system, some for which values 
may not be readily available. In addition, extensive user input creates opportunities 
for poor judgment or input errors that can have significant impacts on results. 

Finally, in this project the physical based methods are not been used because of no 
possibility to extract the elements that are required for building physical based models. 
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2.2.2 Grey Box Method 

It is possible that the physical laws can be applied to arrive at a model, but that not all 

parameters in this model are known. This case, which is a combination of white box 

and black box modelling, is called grey box modelling. All combinations of black box 

modelling and some prior knowledge are called grey box modelling. Fig. 2.4 illustrates 

the data requirements for the development, validation and application of WB, BB and 

GB models. 
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Figure 2.4 Flow diagrams illustrating the development processes of "grey box" models 
(Flores et al., 2006). 

There are numerous applications of the Grey box method, some of which are presented 
below. A grey box model based method was used by Weyer et al. (2000) for fault 

detection of a heat exchanger. The model is based on a first principle model of the heat 

exchanger and on a grey box model of the fault, i. e. deterioration of the heat transfer 

surface due to aging. 
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Nielsen and Madsen (2006) present a model that links heat consumption to climate and 

calendar information. Theoretical relations known from the theory of heat transfer 

were used to select an initial model structure, and data on heat consumption and 

climate (temperature, wind speed and global radiation) were applied in combination 

with statistical methods to establish an actual mathematical grey box model of heat 

consumption. Deque et al. (2000) used grey box models to describe the thermal 

phenomena in building envelopes together with physical models, involving a large 

number of equations and parameters which must be entered to describe the building. 

Ghiaus et al. (2006) used the grey box approach for modelling and identifying the 

parameters of the elements of an AHU. A grey box model was also developed and 

described by De Moor and Berckmans (1996) in which a physical model is linked with 

a mathematical identification procedure to model the micro-environment (temperature 

and mass concentration) within an imperfectly mixed fluid (ventilated space). 

2.2.3 Statistical Methods 

Statistical methods have been used when systems are subject to random disturbances. 

The future state of these systems (stochastic systems) is not completely determined by 

the past and present states and future control actions. Since the systems are under 

random influences, it is reasonable or sometimes necessary to formulate the systems in 

a probabilistic setting. In general, probability distributions are characterized by their 

parameters when a parametric approach is used. For instance, if the underlying 
distribution of a monitored variable is normal, then the parameters of interest are the 

values of its mean or standard deviation (MacGregor and Kourti, 1995). 

The main statistical techniques for modelling are: 

" Principal component analysis (PCA) 

" Least square method (LS) 

" Maximum likehood method (ML) 

In this project LS and ML methods are used inside black box linear mathematical 
models for calculation of their parameters (see chapter 3). Finally, the maximum 
likelihood method is presented in chapter 3, section 3.7.3. 
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The maximum likelihood method was used by Madsen and Holst (1995) to estimate 

the parameters in a continuous time series model for the heat dynamics of a building, 

where the data from an experimental laboratory were recorded for a period of five days 

with a sampling interval of 10 minutes. 

Principal Component Analysis 

Principal component analysis is a statistical technique that linearly transforms an 

original set of variables into a substantially smaller set of uncorrelated variables that 

represents most of the information in the original set of variables. Its objective is to 

reduce the dimensionality of the original data set. 

This reduction is achieved by a linear transformation to a new set of variables, the 

principal component scores, which are uncorrelated, and ordered such that the first few 

retain most of the variation present in the original variables. The technique has been 

applied in many areas including chemical and industrial processes (Dunteman, 1989). 

There are numerous applications of the PCA method, some of which are presented 
below. Wang and Cui (2005) present a PCA-based strategy, which uses Q-statistics as 
indexes of fault detection, and use the Q-contribution to isolate faults in chillers. 
Measured data under normal operating conditions have been monitored to model 
HVAC systems using PCA method (Hau et al., 2005). The PCA model has been 

adopted for on-line automatic FDD and to reconstruct an assumed faulty sensor in 

building central chilling systems. The square prediction error (SPE) based on the 

model and the sensor validity index (SVI) based on the construction are employed, 

respectively, to detect the sensor fault and identify the faulty sensor (Wang and Chen, 

2004). Qin and Wang (2005), employed the PCA method to model and detect VAV 

terminal flow sensor biases and to reconstruct the faulty sensors. 
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Least Squares Method 

Least squares (LS) method is known as a regression method, since the latent 

components obtained may be used instead of the original variables in regression to 

overcome the dimensionality problem (the data contain typically more variables than 

observations). As a supervised approach, it uses the response variable of interest in the 

dimension reduction step, which often makes it more efficient in prediction problems 

than the unsupervised PCA approach (Nguyen and Rocke, 2002). 

The LS method is characterized by the following advantages (Boulesteix and 
Strimmer, 2005): 

41 High computational efficiency. 

" Great flexibility and versatility in terms of the addressed concrete problems. 

" The existence of a large variety of diverse algorithmic variants. 

The first two points render the LS method very attractive for the analysis of microarray 
data. There are numerous applications of the LS method, some of which are presented 
below. Applications of LS method to regression problems were first proposed in the 

early 1980s and focused on the analysis of high-dimensional chemometric data. LS 

regression was studied from the point of view of statisticians, for example, Stone and 
Brooks (1990) and Frank and Friedman (1993). Namburu et al. (2005) employed a LS 

based technique to model a centrifugal chiller (HVAC system) for predicting system 

response under new operating conditions. 

2.3 Conclusions 

In this project the models are created using the black-box methods. This is because of 
the lack of available specific information related to the structure of the buildings such 
as windows, doors and building dimensions and the complexity of such details for a 
real case. In this project have been used linear parametric mathematical models and 
non-linear models (artificial neural networks). 
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CHAPTER 3 Modelling with Linear Parametric Mathematical 

Models 

System identification deals with the problem of building mathematical models of 
dynamic systems based on observed data from the system. This chapter presents an 

overview of available systems identification methods, their properties, and how to use 

them. To obtain good prediction of real measurements, there are procedures for model 
development and validation, which are also presented in this chapter. In addition, a 

graphical user interface is presented, which can help us through the identification 

process and to apply advanced estimation techniques on multiple data sets and models. 
Finally, the chapter discusses a prediction error estimation method for model 
development. 

3.1 Models 

When we interact with a system, we need some concept of how its variables relate to 

each other. In broader terms, such an assumed relationship among observed signals is 

said to be a model of the system (Ljung, 1987). Models are very useful in forecasting 

or predicting the behaviour of the system. Therefore, we will find the relationship 
between different variables to model the thermal response of an office building. 

3.2 Different Types of Mathematical Models 

The mathematical models developed for different systems can have different 

characteristics depending on the properties of the system and the tools used. 

Models can be classified as static and dynamic. If there is a direct, instantaneous link 
between the systems variables, then models that represent such systems are termed 

static models. If the systems variables are changed as a result of the earlier applied 
signals, then models that represent such systems are called dynamic models. 

A mathematical model that describes the relationship between time-continuous signals 
is called a time-continuous model. A model that directly expresses the relationship 
between the values of signals at the sampling instants is called a discrete time model. 
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Differential equations are often used to describe time-continuous relationships whereas 
difference equations are used to describe discrete time relationships. Further 

classification can be made between parametric and non-parametric models. Parametric 

models depend on a finite number of real parameters. Any of the above models can be 

either single input single output (SISO), or multi-input single output, (MISO). 

3.3 System Identification Approach 

There are two modelling approach. The first is to analytically develop models based on 

physical principle, and the second use observations from the system operation in order 
to fit the models properties to those of the system (Ljung and Glad, 1994). Therefore, 

the system identification is the process by which mathematical representation of 
dynamic systems is obtained from data collected from the actual system in operation 
(Underwood, 1999). According to Kanjilal (1995), system identification is a 

prerequisite to adaptive prediction and control. It concerns the generation (for example, 
through specific experimentation) and collection of information, revealing the 

characteristic behaviour of the process, and development of a mathematical 
representation of it. 

3.4 Modelling with System Identification Toolbox 

3.4.1 Basic Entities 

According to Ljung (1987) construction of a model using the system identification 

technique involves three basic entities: 

" the data, 

"a set of candidate models, and a rule by which models can be assessed using the 
data. 

The data record 

The input-output data are recorded during the experiment, in which the user may 
determine which signals to measure, when to measure them and also choose the input 

signals. 
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The set of models and a rule by which candidate models can be assessed 

A set of candidate models is obtained by specifying within which collection of models 

we are going to look for a suitable one. In this case, prior knowledge and engineering 
intuition and insight have to be combined with formal properties of models. 
Sometimes the model set is obtained after careful physical modelling. Then, the model 

with some unknown physical parameters is constructed from basic physical laws and 

other well-established relationships. In other cases, standard linear models may be 

employed, without reference to the physical background. Finally, the assessment of 

model quality is typically based on the performance of models when they attempt to 

reproduce the measured data. 

3.4.2 System Identification Procedure 

System Identification involves three main stages: 

" Identification of a suitable model structure, 

" estimation of values of the model parameters, and 

" verifying the resulting model using, ideally, data that were not used in the model 

estimation. 

Identification of the Model Structure 

The first step in the modelling procedure is to select a model structure (which will be 

described in section 3.5). Information from both physics and measurements are used to 
identify a suitable model parameterisation. The most important variables can be 

recognized, and insight of the most important dynamics can be achieved by 

examination of measurements from the system. 

To model the impact from assumingly the most important variables, well-known 
thermodynamic relationships are used and formulated in terms of a system of ordinary 
differential equations. 
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Parameter Estimation 

After determining the type of model structure, the parameters need to be estimated. 

According to Kanjilal (1995), these concerns determinations of the numerical values of 

the parameters of the process model which best describe the dynamic of the process. 
Eykhoff (1974) defines, parameter estimation as the experimental determination of 

parameter's values that govern dynamics and/or non-linear behaviour, assuming that 

the structure of the process model is known. 

Model Validation 

After selecting a particular model the model validation stage ensures whether it is 

"good enough", that is whether it is valid for its purpose. 

Various procedures are involved to assess how the model relates to observed data, 

prior knowledge, and its intended use. Deficient model behaviour in these respects 
leads to rejection of the model, while good performance results in a certain confidence 
in the model. A model can never be accepted as a final and true description of the 

system. Rather, it can best be regarded as a good enough description of certain aspects 
that are of particular interest to us. 

The schematic flowchart shown in Fig. 3.1 summarises the system identification 

procedure. All stages of schematic flowchart procedure were adopted in the present 
investigation for the linear models and adapted for use in the non-linear models. 
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Figure 3.1 System identification procedures (Ljung, 1987) 

There_ are different tools with which to evaluate model qualities. The techniques that 

have been used to evaluate model qualities using the System Identification Toolbox 

(Ljung, 1987), are outlined below: 

Checking pole-zero cancellations 
The poles relate to the "output-side" and the zeros relate to the "input-side" of the 

equation. The number of poles (zeros) is equal to the number of sampling intervals 

between the most and least delayed output (input). Checking cancellations gives a 

good indication of which orders to choose from model structures like ARMAX, OE, 

and BJ. If the confidence regions of a zero and a pole overlap, we have to try lower 

model orders. 
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Residual analysis 
The criteria are that the residuals (prediction error `e') associated with the data and a 

given model, are ideally white and independent of the input for the model to correctly 

describe the system. When applied the function `Model Residuals' in the System 

Identification Toolbox is applied if the correlation functions go significantly outside 

these confidence intervals, the corresponding model is not accepted as a good 
description of the system. 

Consistency of model input-output behaviour 

The properties of the system that have been picked up by the models can be studied by 

Bode plots (frequency response), pole-zero plots, and model simulations (step 

response). Comparisons between spectral analysis estimates (see Ljung, 1987, Chapter 

6) and Bode plots derived from parametric models are useful because they give a good 
feel for whether the essential features of the dynamics have been captured. Finally, if 

several models of different characters give similar Bode plots in the frequency range of 
interest, we can be fairly confident that these must reflect features of the true, unknown 

system, and we can choose the simplest model among these. 

Comparing models with different structures: Cross - validation 
A very good way of comparing two different models obtained in two different model 

structures is to evaluate their performance when applied to a data set to which neither 

of them was adjusted. There are several approaches for this. Probably the best known 

technique is Akaike's Final Prediction Error (FPE) criterion. It simulates the cross- 

validation situation, where the model is tested on another data set (see Ljung, 1987, 

chapter 16). 

The FPE is formed as 

1+d 
FPE= 

dV 1=- 
N 

Where d is the total number of estimated parameters and Nis the length of the data 

record. V is the loss function for the structure in question (see section 3.7). 
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According to Akaike's theory, in a collection of different models, choose the one with 

the smallest FPE. The FPE values are displayed with the model parameters, by just 

typing the model name. 

Model fits and errors 
Another way in obtaining insight into the quality of a model is to simulate it with input 

from a fresh data set, and compare the simulated output with the measured one. This 

gives a good feel for which properties of the system have been picked up by the model, 

and which have not. This test is obtained by checking the Model View Model Output 

(signal plot and error plot). Then the data set currently in the validation box will be 

used for the comparison. The fit is computed as the percentage of the output variation 

that is reproduced by the model, while the errors is ploted as the measured minus 

simulated model output (Ljung, 1999). 

Model Fit =100 * (1- norm (yh - y) l norm (y - mean (y) ) 

Where, 

- yh the output that results when the model m is simulated with the input u 

-y corresponding measured output 

- mean(y) correspond to the mean value of the measured output 

- norm(yh - y) is the Euclidean length of a vector (yh -y) 

Transient Response 

Looking at the step response insight of the model provides a good insight into a 

model's dynamics. Furthermore, it is good practice to compare the transient response 

of a parametric model with the one that was estimated using correlation analysis. If 

there is good agreement between the two, we can be quite confident that some 

essentially correct features have been picked up. 

3.5 Description of the Matlab System Identification Toolbox 

The System Identification Toolbox (SIT) creates mathematical models of dynamic 

systems from measured input-output data. With it we can build and evaluate linear 

models of dynamic systems from measured input-output data. The toolbox supports 

virtually all polynomial (transfer function) and state-space model representations and 

model identification by non-parametric correlation and spectral analysis. 
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Toolbox functions can identify continuous or discrete-time models with an arbitrary 

number of input and output channels. 

We can import and pre-process measured data, generate parametric and non-parametric 

models, and validate estimated models against measured data. We can interface with 

the toolbox via a graphical user interface or the matlab command line and 

programming language. 

Fig. 3.2 shows the main graphical user interface (GUI), which can help us through the 

identification process and to apply advanced estimation techniques on multiple data 

sets and models. We can use this GUI to step through the identification process and 

apply advanced estimation techniques to multiple data sets and models (The 

MathWorks, 2003). 

The key features of the SIT are: 

" Loading and saving test data and identification sessions (import data) 

" Parametric model identification using time domain data 

" Specialized tools for identification of first, second and third order dynamic models 
(managing data sets and identified models graphically). 

" Advice functions for evaluating test data and identified models 

" Time domain data pre-processing tools, including offset removal, detrending 

(remove means), reconstructing missing data (preprocessing). 

" Comparing multiple estimated models against validation data 

" Tools for estimating time delays and frequency response 

The key features and main tools/methods will now be discussed in more detail (The 

MathWorks, 2003). 

Preprocessing measured data and choice of sampling interval 

Measured data often have offsets, outliers, periods of missing values and other 

anomalies. These anomalies may lead to an improperly identified system. We can 

preprocess the measured data to remove these sources of error by: 

" Detrending to remove data drift and offset 
" Resampling to increase estimation speed and accuracy. 
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In the experiment, data sampling intervals had to be selected carefully because some 

information about the physical parameters can be partially hidden if longer sampling 

intervals are selected. The choice of sampling interval was coupled to the time 

constants of the system. It was thus valuable to first obtain the step response of the 

system. In this project the choice of sampling interval was 5 minutes, so that it 

corresponded to 5-8 sampling points over the rise time of the system's step response 

(Ljung and Glad, 1994). 

Selecting data sets for identification and validation 
The toolbox allows us to select two data sets from the measured data, one for 

identifying the model and one for validating it. We can use frequency and time domain 

data interchangeably to identify and validate models. 

Estimating the models 
We can try different methods and model structures to estimate the linear dynamics of 

the system under investigation. The toolbox allows us to estimate models using several 

predefined structures, providing three methods for estimating models: 

" Parametric estimation 

" Process model estimation 

The method of parametric estimation will now be discussed. Parametric estimation 
allows us to select a model structure from predefined polynomial (transfer function) 

and state space forms. These are techniques to estimate parameters in given model 

structures. Basically, it is a matter of finding (by a numerical search) those numerical 

values of the parameters that give the best agreement between the model's (simulated 

or predicted) output and the measured one. After selecting the structure, we can edit 
the model order and choose a focus for the estimation, such as model stability or 
dynamic simulation. 

Validating Models 

The toolbox functions allows us to compare the estimated model output to an output 
data set to ensure that the estimated model output accurately represents the system 
dynamics. 
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The toolbox contains an advice function that suggests additional comparison tests and 

evaluates the model order, indicating when the order might be higher than needed. The 

toolbox provides five analysis tools to determine the fitness of the identified model: 

" Model output: indicates how well the model dynamics were captured by comparing 

the model output against the validation set. 

" Residual analysis: compares the outputs of the estimated models and the validation 

data. 

" Frequency response: displays the model's frequency response to show damping 

levels and resonance frequencies 

" Transient response: indicates the model's behaviour when excited by a step or 

impulse input 

" Zeros and poles: displays the poles and zeros of estimated models. 
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Figure 3.2 Graphical user interfaces (The MathWorks, 2003) 

3.6 Model Structures 

Selecting an appropriate model structure is the key step in the system identification 

procedure. Several model structures exist for the fitting of models to more detailed 

experimental data including the presence of disturbance or noise inputs. 
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In many cases, the nature of any known disturbances will determine the best model 

structure and it might often be desirable to test the results from a number of different 

model structures in order to find the best one. Verification will, therefore, determine 

whether the results obtained from a given model structure are adequate, or whether an 

alternative model structure should be investigated. It will also enable a choice to be 

made as to the best combination of parameters in a given model structure. 

A brief review of the relevant parts of model structures is given below. The basic 

relationship in the autoregressive mathematical models is the linear difference 

equation. Models describe relationships between measured signals. It is convenient to 

distinguish between input u(t) signals and output y(t) signals. The outputs are then 

partly determined by the inputs. In most cases, the outputs are also affected by more 

signals than the measured inputs. Such "unmeasured inputs" are called disturbance 

e(t) signals or noise. The output at time t is thus computed as a linear combination of 

past outputs and past inputs. It follows, for example, that the output at time t depends 

on the input signal at many previous time instants. Often, in the identification context, 

only discrete-time points are considered, since the measurement equipment typically 

records the signals only at discrete-time instants, often equally spread in time with a 

sampling interval of t time units. The modelling problem is then to describe how the 

three signals relate to each other. 
The general linear models can be described symbolically by: 

y(t) = G(q, O) u(t)+H(q, O) e(t) (3.1) 

Where, G(q, O) and H(q, O) depends on the type of the parametric models (see sections 
3.6.1,3.6.2,3.6.3,3.6.4 and 3.6.5). 

The (3.1) says that the measured output y(t) is a sum of one contribution that comes 
from the measured input u(t) and one contribution that comes from noise H(q, O)e(t). 

The symbol G denotes the dynamic properties of the system, that is, how the output is 

formed from the input. For linear systems it is called the transfer function from input 

to output. 
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The symbol H(q, O) refers to the noise properties, and is called the disturbance model. It 

describes how the disturbances in the output are formed from some standardized noise 

source e(t) (Ljung and Glad, 1994). 

There are several types of autoregressive mathematical models. Some of them are used 
in this project. The structures of these models are presented successively (Ljung, 

1987). 

3.6.1 The Autoregressive (AR) Structure 

The simplest model structure that relates a time series output y(t), to a noise or 
disturbance term e(t) is, as follows: 

Y(t) + a1Y(t -1) +..... +a�Y(t - n) = e(t) (3.2) 

Where y(t) refers to the measurements of the output at time t (sampling time). y(t-n), 

y(t-n+l), ... y(t-1) are measurements of the output at successive time instants in the 

past, for example quarter hourly temperature readings. The above model can be 

expressed as: 

Y(t) = 
e(t) (3.3) 
A(q) 

where, A(q)=l+alq"' +a2q"2 +...... +a,,. q''ý (3.4) 

This forms the autoregressive (AR) model structure and A is a polynomial in q with 

parameters a,, a2.... a,.. The shift operator, q is defined as: 

q-PY(t) = At 
- P}, p =1,2,.... na (3.5) 

The adjustable parameters to be determined are: 
T 3.6 

3.6.2 Autoregressive with Exogenous Input (ARX) Structure 

If we consider an input signal to the system as u(t), together with other disturbances 

e(t), then the input output relationship can be defined as: 

y(t)+a, y(t-1)+..... +a , y(t-na) =bou(t)+b, u(t-nk)+.... (3.7) 
+ bnbu(t - nk - nb) + e(t) 
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Which relates the current output y(t) to a finite number of past outputs y(t-k), inputs 

u(t-k) and disturbance signal e(t). 
The structure is thus entirely defined by three integers na, nb, nk, where na is equal to 

the number of poles and nb-1 is the number of zeros, while nk is the pure time delay 

(the dead time) in the system. For a system under sampled-data control, typically nk is 

equal to 1 if there is no dead-time. For multi-input systems, nb and nk are row vectors, 

where the i-th element gives the order/delay associated with the i-th input. 

A multivariable ARX model with nu inputs and ny outputs can be represented in 

general form as follows: 

Y(t) = 
B(R) 

u(t - nk) +l e(t) (3.8) 
A(q) A(q) 

where, A(q) =Iny +A, q-' +...... +Anaq-"° (3.9) 

as well as the matrix 

all (q) a12 (q) 
..... alny (q) 

A(q) = 
a2i (q) a22 (q) 

...... a2ny (q) 
(3.10) 

any (q) any2 (q) 
...... anyny (q) 

where the entries akj are polynomials in the delay operator q'1: 

a,, (q) = S, ý +a' q-' +...... +ana"q-n°" (3.11) 

This polynomial describes how old values of output number j affect output number k. 

Here bkj is the Kronecker-delta; it equals 1 when k=j, otherwise, it is 0. Similarly, 

B(q) is an ny-by-nu matrix 

B(q)=Bo +Blq-' +.......... +Bnbq-n6-1 (3.12) 

or b, I (q) b12 (q) ...... b1nu (q) 

B(q) = 
b21(q) b22 (q) ...... b2nu (q) 

with bnyj (q) bny2 (q) ...... bnynu (q) 

bý(q)=b; q-nkr +... +b; "«q-nkI-nbp-1 (3.13a) 

The delay from input number j to output number k is nkkj. 
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G(q, 0) and H(q, 0) are given in (3.13b) 

G(q, O) = 
B(q) 

, H(q, e) =l (3.13b) 
(R') A(q) 

and the adjustable parameters to be determined are: 

0= [al, a2..... a, ýb,, 
b2.... bn6]T (3.13c) 

3.6.3 Autoregressive Moving Average with Exogenous Input (ARMAX) Structure 

A further refinement for situations where noise or disturbance can be measured is to 

introduce a time-series disturbance parameter, which results in the autoregressive 

moving average with exogenous input structure: 

Y(t) = 
B(q) 

u(t - nk) + 
C(q) 

e(t) A(q) A(q) 

Where, A(q) =1 +alq-' +........ a, q-"° 

B(q) = b, +b2q-' +..... bnbq-nb-1 

C(q)=1+C1q-' +C2q-2 -1 .............. +Cncq -nc 

G(q, e) _ 
B(q) 

H(q, e) = 
C(R) 

A(q)' A(q) 

and the adjustable parameters to be determined are: 
e= al , a2 ..... a, bl, b2 

..... 
bnbClC2 

..... Cnc 
lT 
J 

(3.14) 

(3.15) 

(3.16) 

The parameters na, nb and nc are the orders of the ARMAX model, and nk is the 

delay. For multi-input systems, nb and nk are row vectors, such that k-th corresponds 
to the order and delay associated with the k-th input. The term A(q)y(t) represents an 

auto regression and C(q)e(t) a moving average of white noise, while B(q)u(t) 

represents an extra input (an exogenous variable). 

3.6.4 Output Error (OE) Structure 

In the structure, the disturbance is treated as white measurements of noise and e(t) is 

regarded as an error with respect to the undisturbed output. The model structure is 

presented as: 

y(t) = 
B(q) 

u(t - nk) + e(t) F(q) (3.17) 
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Where, B(q) = b, + b2q-' ...... bnbq-nb-1 

F(q) =1+ fiq'-1 +f2q-2 +......... + f"fq-"f 

G(q, B) _ 
B(4) 

, H(q, e) =1 F (4) 

The parameters nb and of are the orders of the output-error model and nk is the delay. 

The parameter vector 0 of the output-error is estimated using a prediction error 

method. 
LLT 0' llil 

ý U2...... 
bnbf1, f2...... fin 

3.6.5 Box-Jenkins (BJ) Structure 

Further generalisation of the OE model structure is the BJ structure that gives: 

Y(t) = 
B(q) 

u(t - nk) + 
C(q) 

e(t) F(q) D(q) 

B(q) = b1 +b2q-' +...... +bnbq-nb-1 
C(q) =1+clq-' +...... +cncq nc 

Where, 
D(q) =I+ dlq-' +..... + dnaq-nd 

F(q) =1+ flq-' +...... + f"fq-"f 

G(q, e) _ 
B(q) 

, H(q, e) = 
C(q) 

F(q) D(q) 

(3.18) 

Where nb, nc, nd and of are the orders of the Box-Jenkins model, and nk is the delay. 

The parameter vector 0 of the Box-Jenkins model is estimated using a prediction error 

method. 
B= [b, b T 

2... b�bclcZ..... c, ýd, 
d2..... d�dAAA 

.... 
fnf I (3.19) 
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Finally, in chapters 4,5,6,7 and 8 the orders and delays in ARMAR, OE and BJ 

models are presented with the following abbreviations: 

" ARMAX models 

o amx [na nb nc nk], where the parameters na, nb, nc and nk are the orders and 

the delay (see section 3.6.3). In addition, na, nb and nk contain elements 

equal to the number of `Common poles', `Zeros +1' and `Delay' respectively 

(The MathWorks, 2003; Appendixes 1B, 2B and 3B; section 3.4.2, pg. 28). 

" OE models 

o oe [nb of nk], where the parameters nb, of and nk are the orders and the 

delay (see section 3.6.4). In addition, nb, of and nk contain elements equal 

to the number of `Poles', `Zeros +1' and `Delay' respectively (The 

MathWorks, 2003; Appendixes 1B, 2B and 3B; section 3.4.2, pg. 28). 

" BJ models 

o bj [nb nc nd of nk], where the parameters nb, nc, nd, of and nk are the orders 

and the delay (see section 3.6.5). In addition, nb, of and nk contain elements 

equal to the number of `Poles', `Zeros +1' and `Delay' respectively (The 

MathWorks, 2003; Appendixes 1B, 2B and 3B; section 3.4.2, pg. 28). 

3.7 Parameter Estimation Methods 

Ljung, (1987) have analysed the problem of parameter estimation by considering a 

collected batch of data e (3.21) and also a set of candidate models M"(9) (3.20) 

parameterized, then the search for the best model within the set becomes a problem of 

determining or estimating parameter vector 0 (3.19). 

} M' ={M (9)\9EDm 

Where, 

(3.20) 

9M is a certain model structure with particular models M(O) parametrized using the 

parameter vector 9E DM c Rd 

ZN _ [y(l), u(1), y(2). u(2)......, y(n), u(n)]) (3.21) 

The most important aspect of the model is its prediction which judges its performance 
in this respect. 
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Thus let the prediction error c given for a certain model M(O) be presented by 

e(t, 9) = Y(t) - 
Y(t \ 0) (3.22) 

where, 

- y(t) is the system description (see (3.1)), and 

A 
- y(t \ 0) predicted output at time t using a model M (6) (3.23). 

y(t \0)= [1- H-'(q, 0) ] y(t) + H-'(q, 9)G(q, 6)u(t) (3.23) 

When the data set e is known, these errors can be computed for t=1,2,..., N. 

A "good" model, we say, is one that is good at predicting, that is, one that produces 

small prediction errors when applied to the observed data. A guiding principle for 

parameter estimation thus is based on Z we can compute the prediction error c(t9) 

using (3.22). At time t=N, select ON so that the prediction errors c(t, ON), t=1,2,..., N, 

become as small as possible. 

There are two general procedures for estimating the parameter vector 0, and both deal 

with the sequence of prediction errors (c(t, 0)) (explained successively) computed from 

the respective models using the observed data, and both could be said to aim at making 

this sequence "small". The first method is the prediction-error identification approach 
(PEM), which contains several procedures, such as the least-squares (LS) method and 

the maximum-likelihood (ML) method, and second is correlation approach, which 

contains the instrumental-variables (IV) technique. Correlation approach is not 

presented successively, because throughout analysis of the data only PEM has been 

used as parameter estimation method. 

3.7.1 Prediction Error Identification Methods 

Least square method (LS) and maximum likelihood (ML) methods are used for 

parameter estimation in PEM (successively presented). The prediction-error sequence 
in (3.22) is a vector in e and this leaves a substantial amount of choices. To minimize 
this amount of choices it has been presented the prediction-error approach in which a 

certain function VN (0, ZN) given by (3.24) is minimized with respect to 0. 
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Then the estimate ON is then defined by (3.25) (see Ljung, 1987, chapter 7): 

N 

VN = (e, Z N) =-2 l (E f (t, e)) (3.24) 
N _, 

ON =BN(ZN)=argOEDM fhifVN(0)ZN) (3.25) 

Where, 

-1(- ) is a scalar-valued (typically positive) function (see Ljung. 1987, chapter 7) 

- VN (0, ZN) is, for given ZN ,a well defined scalar-valued function of the model 

parameter 0. 

-ef (t, 0) = L(q)E(t, 0) (where L(q) =1, since the option of prefiltering L(q) is taken 

care of by the freedom in selecting H(q, 6) (see Ljung, 1987, chapter 7). In the next 

sections are presented the two methods for the determination of VN (0, ZN). 

Furthermore, an important aspect of this method is its properties (Ljung, 1987): 

" Convergence 

" consistency and 

" Asymptotic distribution of parameter estimates. 

Convergence 

The convergence of 9N has been analysed in the way that for N -ý oo the desired 

properties of ON would be that it converge to 00 (true value). It can be noted that if 

vo (t) is small compared to p(t) then the error term [R(N)]-' 
NE JP(t)V" (t) (see 

N 

3.30b) will be small, and thus ON will be close to 00. 

As results of this analysis: 
N 

" R(N) = ýý0(t)rpT (t) -ý R* and 

1N 
N 

h* 

Consequently for N --> oo, eN --> 90 + F' y' h' 

41 



Chapter 3 

Consistency 

For PEM method to be consistent, that is, for ON to converge to 00, it is requires: 

" Matrix R(N) --> R'as N -> oo and R' is non-singular matrix. This will typically be 

the case, for example, if {u(t)}and {v,, (t) } are independent and the mx in matrix, 

whose i, j entry is R. (i - j) , is non-singular. In this case the input is said to be 

persistently exciting of order nb. 

" h* = 0. This will be the case if either 

a) { vo (t) } is a sequence of independent random variables with zero mean values 

(white noise). Then vo (t) does not depend on what was happened up to time t-1, and 

hence Eq(t)v,, (t) = 0. The input sequence u(t) is independent of the zero-mean noise 

sequence vo (t) (white noise) and the (see 3.30b for R(N)) or 

b) The input sequence {u(t)} is independent of the zero mean noise sequence {v0(t) } 

and na =0 in (3.27). Then ap(t) contain only u terms and hence Eq(t)vo(t) = 0. 

Asymptotic distribution of parameter estimates 

In addition to the convergences properties of9N, Ljung, (1987) have presented the 

asymptotic distribution of 9N (how fast the estimate ON approaches the limit) by the 

covariance matrix Cov 9N and the assumptions: 

- That the model structure is capable of giving a correct description of the system and 

- the models that contains a disturbance model (H is estimated), will produce white 

residuals. 

COVON -N [EV(t, 6o)VT (t, 0,, )]-' 

Where, 

- A. is the variance of -(t, 00) = eo (t) independent random variables with zero mean 

and 
da 

- 0,00 
dB 

0(t, 0) 1,9=0. = d8 y(t \ 0) 1e-e° is the gradient of y 
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3.7.2 Least Squares Method 

The least-squares method is a special case of the prediction-error identification 

A 
method. For linear regression model structures the predictor y(t / 9) given by the 

equation (3.23) can also be presented as in (3.26). 

A 
Y(t 10) = coT (t)8 (3.26) 

Where p (t) contains old values of observed inputs and outputs (3.27), 

q, (t) = [-y(t -1) - y(t - 2)....... - y(t - na)u(t -1)...... u(t - nb )] T (3.27) 

With (3.26) the prediction error becomes 

e(t, 9) = y(t) - rpT (t)9 (3.28) 

The criterion function resulting from ef (t, 0) = L(q)E(t, 9) and (3.24), with L(q) =1 

and 1(8) =1 E2 (see Ljung, 1987, chapter 7), is 

N 

VN (e, ZN) =N [Y(t) - coT (t)O]2 
tl 2 

(3.29) 

This is the least-squares criterion for the linear regression (3.28). The unique feature of 

this criterion, developed from the linear parameterization and the quadratic criterion is 

that it is a quadratic function in 0. Therefore, it can be minimized analytically, which 

gives, provided the indicated inverse exists, the least-squares estimate (3.30a) (chapter 

7, Ljung, 1987). 

A 
LS 

ON =arg min VN (6, Z N) =L1E SO(t)coT (t)j-' 1 
SD(t)Y(t) (3.30a) 

Nt=1 N 

or in the other way the formula (3.30a) can be presented as (3.30b) if we suppose that 

the observed data have been generated by y(t) = rpT (t)00 + vo (t). Where 00 is the true 

value of 0 and vo(t) includes the disturbances. 

^ LS Ar 

ON = 90 +[R(N)]-' 
4jýo(t)v0(t) (3.30b) 

1 
Where R(N) is the dxd matrix given as 

N 

R(N) = 
N'So(t)SPT 

(t) 
t=l 
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3.7.3 Maximum Likelihood Method for Parameter Estimation 

Ljung an d Glad (1994) have presented maximum likelihood method as that of system 
identification and parameter estimation, deals with the problem of extracting 
information from observations that themselves could be unreliable. The observations 

are then described as realizations of stochastic variables. It has been supposed that the 

observations are presented by the random variable yN = (y(1), y(2),....., y(N)) that 

takes values in R'. The maximum likelihood method defines 0 as: 

OML(yN) 
= arg min 

1 Z1(e(t, 0), 0, t) (3.31) 
N t_, 

Where, 

I (C' t, 9) = -log fe (6, t; 9) (3.32) 

The formula (3.31) is valid under the following assumptions (Ljung and Glad (1994) : 

- The errors are independent and have the probability density function (PDF) 

ft(x, t; 0) (this means that fe does not depend on Z' = (y(1), u(1).... y(t), u(t)) 

-0 is considered to be a random vector with a certain prior distribution (Bayesian 

maximum a posteriori approach) 

- The probabilities density functions between the true system and from the 

observations Z' are minimized (Akaike's information criteria AIC). 

Generally, the probability density function (PDF) of yN is given in (3.32), (Ljung. 

1987) 

P(yN E A) = Jfy(e; xN)dXN (3.33) 
xN eA 

Ao; x� x, , ... 1 XN) = fy(0; XN) 
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CHAPTER 4 Data Analysis and Model Development for the Visa 

Building 

In this chapter the system identification toolbox and, in particular, the autoregressive 

mathematical models discussed in chapter 3 are applied to the Visa building to build 

the thermal behaviour of a room positioned on the seventh floor. The model structures 

ARX, OE, ARMAX and BJ are the general choices. Chapter starts with a brief 

description of the Visa building and the room examined for model estimation and 

validation, followed by a detailed analysis of the inputs and the most appropriate 

models for building the thermal modelling of the room throughout the year. 

After careful analysis of all the variables affecting the room temperature, several inputs 

and outputs were collected through the BMS for the entire year. Then, the SIT with 

autoregressive mathematical models, presented in chapter 3, was applied to the data 

collected for the year and the models chosen were those that best fit the real data. 

The room's thermal behaviour in zone 1 and 2 was taken for model development and 

validation (Figs. 4.2 and 4.3). This room is a large open plan office and there are no 

significant differences in temperature between the two zones. The linear parametric 

mathematical models (apart from ARX models) cannot perform data analysis with two 

outputs, and for this reason analysis of these zones was performed separately. Because 

of the similarities of results obtained between the two zones, in this chapter only the 

results related to zone 2 are presented. Differently from linear parametric mathematical 

models, neural networks do not have any restriction when analysing data with more 

than one output. As a result, Chapter 7 presents data analysis and model development 

for the entire room. 

Finally, the following sections explore the inputs and the models in terms of best fit 

with the real measurements of room temperature for the year 2005. However, because 

BMS behaviour differs between weekdays and weekends to begin the modelling 

process, the weekdays model was first developed. 
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4.1 Visa Building Description 

The Visa Building (see Fig. 4.1) is located in Sheldon Square, London, close to 

Paddington Central Station. The BMS installed for monitoring and operation of the 

plant/building services is Invensys. The data were analysed by dividing them into 

weekdays (Monday Time 01: 20 to Friday Time 19: 00) and weekends (the latter is not 

presented because the HVAC plants are switched off on Saturday and Sunday). 

To identify the parameters of the model describing the thermal response of a real 

building a time series of the relevant data was collected. The data collected had a 

sampling interval of 5 minutes and the collection consisted of- 

" Room temperature zone 1 and 2, second floor (Output) in degrees Celsius (degC) 

" Outside temperature in degrees Celsius (degC) 

" Supply air flow rate AHU2 (air that is coming from the air handling unit 2 

supplying zone 2, positioned on the roof of the building and flowing through the 

FCUs positioned in zone 2) in m3/sec 

" Supply air temperature AHU2 (air temperature that is coming from the air handling 

unit 2 supplying zone 2, positioned on the roof of the building and flowing through 

the FCUs positioned in zone 2) in degrees Celsius (degC) 

" Chilled water temperature (chilled water that flows inside the fan coil units and 

comes from the chillers positioned on the roof) in degrees Celsius (degC). 

" Hot water temperature (hot water that flows inside the fan coil units and comes 
from the boilers positioned on the roof) in degrees Celsius (degC). 

The fan coil units (FCUs) are distributed throughout the room in zones 1 and 2 (see Fig 

4.2) on the seventh floor (the fan coil units are numbered consecutively and there are 
60 in total), while Fig. 4.3 shows a picture of a fan coil unit. The FCUs are composed 

of the following parts: 

" Supply air: air with a determined temperature that is supplied to the room (air that is 

coming from the air handling unit 1 or 2 and flowing through the FCU). 

" Heating coils: the hot water that comes from the boiler plants, situated on the roof 

of the building, circulates through the coils and heats up the air. 

" Cooling coils: the chilled water that comes from the chiller plants, situated on the 

roof of the building, circulates through the coils and cools down the air. 
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9 The fan that supplies air to the room 

9 The damper: Depending on its position the amount of air transferred can be 

controlled by the position of the damper, thereby enabling temperature to be 

increased or decreased as desired. 
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Figure 4.2 Layout of zone I and 2, seventh floor 
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Figure 4.3 Picture of a fan coil unit 

4.2 Data Collection Description 

-ý 

The data from the Visa building were collected for one year, and the choice of 

sampling interval was coupled to the time constants of the system. It was thus valuable 

to first obtain the step response of the system. In the Visa building the choice of 

sampling interval was 5 minutes, so that it corresponded to 5-8 sampling points over 

the rise time of the system's step response (Ljung and Glad, 1994). The data collected 

were stored in the BMS and downloaded every two weeks. The inputs and outputs 

detailed in section 4.1 were collected for a period of one year (2005) through the 

existing sensors of the BMS and Invensys data logger. Invensys was the software used 

to log and download the data collected every two weeks for model development and 

validation. The down-loaded data were then converted to Microsoft Excel file format, 

which can be used in system identification for model development and validation. 

The primary assumption of the model development was that the internal temperature 

variation is directly influenced by the variations of external temperature and the 

internal air coming from the fan coil units. Although occupancy, computers, printers 

etc cause an additional internal heat gain, their impact is strongly correlated with the 

internal energy exchanged between the incoming air, that flows inside the room from 

fan coil units, and the circulating water (flows inside fan coil units and AHU) that is 

heated up and cooled down from the boiler and chiller plants respectively. 

Fan Condition 
FCU On Day 
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This assumption is verified by the analysis of the results, where the inputs included for 

model development in black box systems are sufficient to describe the thermal 

behaviour of the building. As such, the effects of occupancy, computers, printers etc 

are indirectly in part included in the model. 

4.3 Input Selection 

Input selection (independent variables) for each season was one of the main objectives 

of this project. Not all the inputs detailed in section 4.1 have the same effect on room 
temperature throughout the year. From the analysis of the results obtained from the 

SIT compared with the real measurements obtained from two sensors (placed in two 

zones which define the temperature for zones 1 and 2, see fig. 4.2), it was sufficient to 

include five inputs for model development for the entire year (zone 1 or 2). 

In the Visa building, the models were developed for different seasons and each season 

was subdivided into three parts; beginning, middle and end of the season. Some inputs 

gave good models for a limited period of time (several weeks). Consequently, as 

reported below, the process of input selection and period of validity in obtaining 

models that give good thermal prediction (within the same period) were the key points 
in season subdivision. Although the same inputs can be used throughout the season this 
is not the case with the models because some of them are not valid throughout the 

season. This is other reason for dividing the season into beginning, middle and end 
(see section 4.4.4). In addition, obtaining a good model depends on the inputs used in 

the SIT for model development. If we include more inputs than required for 

developing models then the model performance does not improve or can even get 

worse. Generally, the procedure for input selections for each season was as follows: 

" It began by including all the inputs in the process of model development 

" The next stage was model development with the SIT. 

" The process of input selection started by removing the first input and analysing if 

there was any improvement in the model's performance and how long (in weeks) it 

took. The procedure was based on sections 3.4,3.5 and 3.6 (chapter 3), related to 

model estimation and validation. 

" Finally, the process of removing the inputs stopped when the model's performance 
deteriorated by removing further inputs. 
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In this chapter, the models developed with the selected inputs have the following 

properties: 

" The models can predict the thermal behaviour of the room for several weeks ( four 

to nine weeks) 

" Within the period of input validation, the change in models' performance is very 

small from one week to another (model validation procedure). 

In the following sections the inputs selected for each season will be examined with the 

models that give the best thermal behaviour of the room. 

4.4 Weekdays' Model Development and Validation 

Model estimation and validation were carried out using the data for one week of 

working days (Monday Time 01: 20 to Friday Time 19: 00) called weekdays. The first 

part of the data was used for model estimation and the remainder for model validation. 
Finally, for each season, due to the similarities of the results, not all the graphs relating 
to weekdays are presented. 

Different models were found to be most appropriate for different periods of the year. 
Thus, different models will be used for winter, spring, summer and autumn. In the 

following sections the best models in terms of best fits for each of these seasons are 

presented. 

Finally, in relation to this building, the data were logged every 5 minutes, and model 

estimation and validation were analysed for four cases: 

a) 213 Sampled-data model estimation (18 hours in day 1- Time 01: 20-19: 00) and 
213 sampled-data model validation (18 hours in day 2- Time 01: 20-19: 00) 

b) 900 Sampled-data model estimation (75 hours) and 465 sampled-data model 

validation (39 hours) 

c) 800 Sampled-data model estimation (67 hours) and 565 sampled-data model 

validation (47 hours) 

d) 1365 sampled-data model estimation (113.5 hours, weekdays) and 1365 sampled- 
data model validation in following weekdays (see Appendix 1 A). 
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4.4.1 Model Development and Validation for the Spring Season 

Different weeks of spring were examined for model estimation and validation. The 

results are divided into the middle and end of the spring season. The data related to the 

weeks 21-25 March 2005,04-08 April 2005 and 11-15 April 2005 were lost due to 

sensor faults. 

Middle and end of the spring season 
The weeks between 18 April and 10 June 2005 were investigated and the results are 

given in Table 4.1. In addition, the week 25-29 April 2005 is shown in Figs. 4.4 and 

4.6, and the errors between model output and measurements are presented in Figs. 4.5 

and 4.7. Five inputs (outside temperature, hot water temperature, chilled water 

temperature, supply air temperature AHU2 and supply air flow rate AHU2) affects the 

results for the determination of the best model. 

Throughout the spring season, the BJ models (bj [1 111 4] and bj [1 111 5]) give 

good results (see FPE and model fits in Table 4.1) for the prediction of room 
temperature. In conclusion, the FPE is of order 10-3 and the maximum model error is 

0.6 degrees Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

Middle and end of spring 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU2 

Outside temp 

Supply air temp AHU2 

FPEz0.001 

bj [1 111 4]: 50-60 

bj [1 111 5]: 50-60 

Model estimation 900 sampled data 25 Al 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU2 

Outside temp 

Supply air temp AHU2 

FPEz0.0012 

bj [1 111 4]: 55-60 

bj [1 111 5]: 55-60 

Table 4.1 Spring weekdays 

26 

25. 
U 
rn 
13 25. 
C 
CD 25 

t 
c 25. a a> 
0 

N2 
a) 
C 

24. 

24 
CL 

"°-' 24 
E 
0 

24 

1-900 Data Estimation 

901-1365 Data Validation 

1-800 Data Estimation 

801-1365 Data Validation 

Middle and end of spring I Middle and end of spring 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU2 

Outside temp 

Supply air temp AHU2 

FPEz0.0015 

bj [1 111 4]: 47-57 

bj [1 111 5]: 52-58 

Measured and simulated model output 

Five Inputs 
Outside temp 

Supply air temp AHU2 
Supply air flow rate AHU2 

Hot water temp 
Chilled water temp 

ie 04: 15) 

- bi [1 111 4]: 54 

- Measurements 

- bj [1 111 5]: 55 

Thursday 28 April 05 Friday 29 April 05 

Figure 4.4 Model validation, weekdays 28-29 April 2005 
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Model estimation 213 sampled data 25 April 2005 (Time 01: 20 - 19: 00) 
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25 2 Outside temp 
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25 Hot water temp 
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Figure 4.6 Model validation, 26 April 2005 
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Figure 4.7 Model errors, 26 April 2005 

bj [1 111 5] 
bj[11114] 

17: 30 

4.4.2 Model Development and Validation for the Summer Season 

21: 00 

Different weeks of the summer season were examined for model estimation and 

validation. The weeks related to August and September is not shown because of faults 

throughout these months. The inputs, outside temperature, supply air temperature 

AHU2, supply air flow rate AHU2 and chilled water temperature were required to get 

good results in relation to the thermal behaviour of the room throughout the summer 

season. 

Summer season 

The weeks between 13 June and 29 July 2005 were analysed and the results are given 
in Table 4.2. In addition, the week 13-17 June 2005 is shown in Figs. 4.8 and 4.10, and 

the errors between model output and measurements are presented in Figs. 4.9 and 4.11. 

The OE models (oe [1 1 2], oe [1 1 3], oe [1 1 4] and oe [1 1 5]) and ARMAX model 
(amx [2 221 ]) have good fits (see FPE and model fits in Table 4.2) with real 

measurements. Finally, the FPE is between 10-2 and 10-3 and the maximum model 

error is 0.8 degrees Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

Summer season 
Four Inputs 

Chilled water temp 

Supply air flow rate AHU2 

Outside temp 

Supply air temp AHU2 

FPEý0.002 

amx [2 22 1]: 50-65 

FPE, z 0.04 

oe [1 12]: 75-85 

oe [1 1 3]: 70-80 

oe [1 14]: 70-80 

oe [1 1 5]: 65-77 

1-900 Data Estimation 

901-1365 Data Validation 

1-800 Data Estimation 

801-1365 Data Validation 

Summer season I Summer season 

Four Inputs 

Chilled water temp 

Supply air flow rate AHU2 

Outside temp 

Supply air temp AHU2 

FPEz0.001 

amx [2 22 1]: 45-50 

FPEz0.06 

oe [1 1 2]: 65-78 

oe [1 1 3]: 65-77 

oe [1 1 4]: 65-72 

oe [1 1 5] : 60-70 

oe [1 12]: 73-83 

oe [1 1 3]: 74-85 

oe [1 1 4]: 70-80 

oe [1 1 5]: 70-80 

Table 4.2 Summer weekdays 
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Figure 4.11 Model errors, 14 June 2005 

17: 30 

4.4.3 Model Development and Validation for the Autumn Season 

21: 00 

Different weeks of the autumn season have been examined for model estimation and 

validation. The results related to the beginning of autumn are not presented due to 

faults (September to 09 October 2005). The results for the middle and end of this 

season are presented respectively. 

Middle of the autumn season 

The results for model estimation and validation obtained from five inputs (chilled 

water temp, hot water temperature, outside temperature, supply air temperature AHU2 

and supply air flow rate AHU2) are given in Table 4.3. The weeks between 10 October 

and 28 October 2005 were assessed and the OE model (oe [1 1 2]) give goods fits (see 

FPE and model fits in Table 4.3) for the prediction of room temperature. In addition, 

the week 17-21 Oct 2005 is shown in Figs. 4.12 and 4.14, and the errors between 

model output and measurements are presented in Figs. 4.13 and 4.15. 

End of the autumn season 
The results for model estimation and validation obtained from four inputs (hot water 

temp, outside temperature, supply air flow rate AHU2 and supply air temperature 

AHU2) are presented. 
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The weeks between 31 October and 09 December 2005 were investigated and the 

results related to the best models are given in Table 4.3. Analysing the results the BJ 

models (bj [1 111 2] and bj [1 111 3]) and ARMAX model (amx [2 22 1]) have 

goods fits (see FPE and model fits in Table 4.3) with real measurements throughout 

end of the autumn season. Finally, throughout the autumn season the FPE is between 

10"2 and 10-3 and the maximum model error is 0.6 degrees Celsius. 

1-213 Data Estimation 

289-501 Data Validation 

1-900 Data Estimation 

901-1365 Data Validation 

1-800 Data Estimation 

801-1365 Data Validation 

Middle of autumn 

Five Inputs 

Outside temp 

Supply air flow rate AHU2 

Supply air temp AHU2 

Hot water temp 

Chilled water temp 

FPE = 0.05 
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Outside temp 

Supply air flow rate AHU2 

Supply air temp AHU2 

Hot water temp 
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FPE = 0.001 

amx [2 22 1]: 30-40 

Table 4.3 Autumn weekdays 
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4.4.4 Model Development and Validation for the Winter Season 

Different weeks of the winter season were examined for model estimation and 

validation. The inputs, hot water temperature, outside temperature, supply air 

temperature AHU2 and supply air flow rate AHU2 were chosen for building the 

models throughout this season. As a result of the model analysis, the beginning and 

middle winter are presented together (the same models can be used), while the end is 

presented in a separate section. 

Beginning and middle of the winter season 
The weeks between 12 December and 18 February 2005 were investigated and the 

results are shown in Table 4.4. In addition, the week 10-14 January 2005 is shown in 

Figs. 4.16 and 4.18, and the errors between model output and measurements are 

presented in Figs. 4.17 and 4.19. 

End of the winter season 
The weeks between 21 February and 18 March 2005 were assessed and the results are 

shown in Table 4.4. 

Analysing the results related to the winter season the BJ models (bj [1 111 3], bj [1 1 

1 14] and bj [1 111 5]) and OE model (oe [1 1 2]) have good fits for the beginning 

and middle of the season, while the BJ models (bj [1 111 2], bj [1 111 3], bj [1 1 11 

4] and bj [1 111 5]) can be used for the end of the season (see FPE and model fits in 

Table 4.4). Finally, throughout winter season the FPE is between 10"1 and 10"3 and the 

maximum model error is 0.8 degrees Celsius. 
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1-213 Data Estimation 1-900 Data Estimation 1-800 Data Estimation 

289-501 Data Validation 901-1365 Data Validation 801-1365 Data Validation 

Four Inputs Four Inputs Four Inputs 

Outside temp Outside temp Outside temp 

Supply air flow rate AHU2 Supply air flow rate AHU2 Supply air flow rate AHU2 

Supply air temp AHU2 Supply air temp AHU2 Supply air temp AHU2 

Hot water temp Hot water temp Hot water temp 

Beginning and middle of Beginning and middle of Beginning and middle of 

winter winter winter 

FPEz0.001 FPEz0.0015 FPEz0.0012 

bj11113: 80-85 FPE 0.001 bj [1 111 3]: 60-65 bj [1 111 3]: 50-60 

bj 11114: 80-88 FPE 0.001 bj 11114: 40-50 bj 11114: 55-65 

bj 11115: 75-80 FPE 0.001 bj 11115: 55-65 bj 11115: 55-65 
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Figure 4.18 Model validation, 11 January 2005 
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Conclusions of Model Development and Validation for the Visa Building 

This chapter has analysed the thermal behaviour of a room situated on the 7 ̀h floor of 

the Visa building for one year. 

In the Visa building, the process of model development and validation throughout the 

year required a large amount of analysis of input selection. The process of input 

selection was very important to obtain good linear parametric mathematical models for 

predicting the thermal behaviour of the building. As a result of the analysis, for a 

certain type of input it was possible to obtain good thermal behaviour prediction only 

for a limited number of weekdays. Consequently, going from one season to another 

and/or within the same season it was necessary to change the types and number of 

inputs if we wanted to obtain a good prediction of the thermal behaviour of the 

building. 
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The strength of linear parametric mathematical models is based on the criteria of 

model validation (chapter 3) and in this chapter, the validity of the developed models 

was verified by one piece of data, which was different from the data used for model 

estimation. Furthermore, the data used for model validation were within the period of 

the validity of these models. 

In the Visa building, the models developed for each season preserved their properties 
in predicting the thermal behaviour of the room not only within the same week 
(utilizing different sampled data for model estimation and validation), but also utilizing 

one week of data for model estimation and another week in which inputs and model 

validation were the same. In addition, the number of inputs required to get a good 

prediction of the room's thermal behaviour was not very high. 

Like previous research, one of the main disadvantages of linear parametric 

mathematical models reflected in this analysis is the limited period of the validity of 
these models which is related to the period of validity of the inputs (Black-box 

models). Furthermore, these mathematical models are linear and this is another 
disadvantage, which can affect the period of validity of some of them. Although the 

same inputs can be used throughout the season this is not the case with the models 
because some of them are not valid throughout the season (see sections 4.4.1,4.4.3 and 
4.4.4). 

Contrary to linear models, the period of validity of non-linear mathematical models is 

the same as that related to the inputs selected (see results related to neural networks, 
section 7.3). In the Visa building, some of the inputs of less importance, including the 
internal gain of the buildings (where in part they are included within the inputs 

selected), were not provided by the BMS and this is a disadvantage. Finally, the 

prediction of the room's thermal behaviour decreased slightly if we changed from 

using the same week to different weeks for model estimation and validation (see 
Appendix IA). This is another limitation of using a linear parametric mathematical 
model with a large amount of data. 

The results related to inputs selected and mathematical models appropriate for each 
season will now be summarized in turn. 
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For middle and end of the spring season five inputs, (outside temperature, supply air 

flow rate AHU2, supply air temperature AHU2, hot water temperature and chilled 

water temperature) can be used for the predictions of room temperature. The BJ 

models (bj [1 11 14] and bj [1 111 5]) give good fits for spring. 

The OE models (oe [1 12], oe [1 13], oe [1 14] and oe [1 1 5]) and ARMAX model 

(amx [2 22 1]) have goods fits for the summer season where there are four inputs 

(outside temperature, supply air temperature AHU2, supply air flow rate AHU2 and 

chilled water temperature). 

Throughout the middle of the autumn season the OE model (oe [1 12]) has a good fit 

when the inputs are outside temperature, supply air temperature AHU2, supply air flow 

rate AHU2, chilled water temperature and hot water temperature. The inputs outside 

temperature, supply air temperature AHU2, supply air flow rate AHU2 and hot water 

temperature were used for the end of the autumn season, where the BJ models (bj [1 1 

1 12] and bj [1 111 3]) and ARMAX model (amx [2 22 1]) have good fits with real 

measurements. 

For the winter season, the BJ models (bj [1 11 13], bj [1 111 4] and bj [1 111 5]) 

and OE model (oe [1 12]) have good fits for the beginning and middle of the season, 

while for the end of this season the BJ models (bj [1 111 2], bj [1 111 3], bj [1 111 

4] and bj [1 111 5]) can be used. For the winter, four inputs (outside temperature, 

supply air flow rate AHU2, supply air temperature AHU2 and hot water temperature) 

can be used for the predictions of room temperature. 

In addition to the previous analysis, one week was investigated for model estimation 

and another week was used for model validation. This analysis was done for the whole 

year (2005) and the results are given in Appendix IA. 
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The contributions of the analysis presented in this chapter are: 

" Previous researchers have applied parametric mathematical models in experimental 
rooms (many sensors are installed). On the contrary, in this chapter the analysis of 

the room's thermal behaviour was executed in a real office with no additional 

sensors. For example, the office examined on the second floor had only two sensors 

to measure the room temperature placed in the same position at each end of the 

room (see fig. 4.2) 

" In this work, the thermal behaviour of the office was examined for a period of one 

year while, in the past, similar studies have analysed only a few weeks to a few 

months of collected data. 

" In the past, thermal modelling of buildings was mainly concentrated on developing 

models for HVAC plants, with the purpose of fault detection and diagnostics. In 

contrast, this work presents an overall study of the thermal behaviour of the room in 

terms of inputs selected and the subsequent development of different models. 

" Due to the short periods of data collection in previous researches, thermal models 
have been developed for the same inputs throughout their analysis. In this study, the 
inputs used for the development of models were different from one season to 

another. 

Finally, the results obtained for appropriate models throughout the year have similar 
fits with those for the previous analysis (using the same week's data for model 
estimation and validation). This means that linear parametric mathematical models' 
structures are suitable for thermal behaviour prediction for not more than one week. In 

addition, in the Visa building throughout the year FPE varied between 10'1 and 10'3, 

while model errors varied between 0.6 and 0.8 degrees Celsius. Appendix 1B details 

some of the mathematical models in terms of their parameters. 
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CHAPTER 5 Data Analysis and Model Development for Portman 

House 

The process of model development in this chapter is similar to the Visa building 

analysis presented in the previous chapter. The model structures ARX, OE, ARMAX 

and BJ are the general choices for model development in Portman House. The data are 

analysed by dividing them into weekdays (Monday Time 01: 20 to Friday Time 19: 00) 

and weekends (the latter is not presented because the HVAC plants are switched off on 

Saturday and Sunday). 

This chapter starts with a brief description of Portman House and the room examined 
for model development and validation. The following sections present a detailed 

analysis of the inputs and the most appropriate models for building the thermal 

modelling of the room for the four seasons. 

After careful analysis of all the variables affecting room temperature, several inputs 

and outputs were collected through the BMS for the entire year. Then, the SIT with 

parametric models presented in chapter 3 was applied to the data collected for one year 

(13 June 2005 - 09 June 2006) and the models chosen were those that best fit the real 
data. 

The room's thermal behaviour in zones 1 and 2 was taken for model development and 

validation in this building (Fig. 5.2). This room is a large open plan office and there 

are no significant differences in temperature between the two zones. As for the Visa 

building, in this chapter only the results related to zone 1 are presented (positioned on 
the left hand side of Fig. 5.2). 

Finally, the following sections explore the inputs and the models in terms of best fit 

with the real measurements of room temperature throughout the four seasons. 
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5.1 Portman House Description 

Portman House (see Fig. 5.1) is located in the centre of London in Oxford Street, close 

to Marble Arch tube station. Invensys is the BMS installed in the building for the 

monitoring and operation of plant/building services. It enables the user to monitor the 

plant/building services, and make changes to the way the building is controlled using 

colour graphics displays. 

Zone 1, which is on the left-hand side of the second floor, was used for model 

estimation and validation (see Fig. 5.2). 

To identify the parameters of the models describing the thermal response of a real 
building a time series of the relevant data was collected. The data were collected every 
5 minutes and the collection consisted of. 

" Room temperature zones 1 and 2, second floor (Output) in degrees Celsius (degC) 

" Outside temperature in degrees Celsius (degC) 

" Supply air flow rate AHU1 (air that is coming from the air handling unit 1, 

supplying zone 1, positioned on the roof of the building and flowing through the 

FCUs positioned in zone 1) in m3/sec 

" Supply air temperature AHU1 (air temperature that is coming from the air handling 

unit 1 supplying zone 1, positioned on the roof of the building and flowing through 

the FCUs positioned in zone 1) in degrees Celsius (degC) 

" Chilled water temperature (chilled water that flows inside the fan coil units and 

comes from the chillers positioned on the roof) in degrees Celsius (degC). 

" Hot water temperature (hot water that flows inside the fan coil units and comes 
from the boilers positioned on the roof) in degrees Celsius (degC). 

Fan coil units (FCUs) are distributed throughout the room (zones 1 and 2) on the 

second floor (see Fig. 4.3, chapter 4). 
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Figure 5.1 Portman House Site Plan 

Figure 5.2 Portman House Building, second floor - Layout 
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5.2 Data Collection Description 

In the experiment, data sampling intervals had to be selected carefully because some 

information about the physical parameters can be partially hidden if longer sampling 

intervals are selected. In Portman House the choice of sampling interval was 5 

minutes, so that it corresponded to 5-8 sampling points over the rise time of the 

system's step response (Ljung and Glad, 1994). 

Before analysis, all the data collected through the BMS and data logging machine were 

processed. The recorded data were downloaded every 15 days. The downloading 

format was then transferred to Microsoft Excel so that the data file could be used 

directly with slight adjustments. Finally, these data were transferred to Matlab and 

elaborated inside the SIT. 

As for the Visa building, in Portman House the primary assumption of the model 

development was that the internal temperature variation is directly influenced by the 

variations of external temperature and the internal air coming from the fan coil units. 

Consequently, the effects of occupancy, computers, printers etc are indirectly in part 

included in the model. 

5.3 Input Selection 

The process of input selections (independent variables) for this building was very 

similar to that for the Visa building. Not all the inputs detailed in section 5.1 have the 

same effect on room temperature throughout the year. From the analysis of the results 

obtained from the SIT compared with the real measurements obtained from two 

sensors (placed in two zones which define the temperature for zones I and 2, see Fig. 

5.2), it was sufficient to include supply air temperature AHU 1, supply air flow rate 

AHU 1 (AHU 1 supplies zone 1) and supply air temperature AHU2, supply air flow rate 

AHU2 (AHU2 supplies zone 2) as inputs for model development for the entire year. 

As for the Visa building, the models in this chapter were developed for different 

seasons and each season was subdivided into three parts: beginning, middle and end. 
Some inputs gave good models for a limited period of time (several weeks). 
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Consequently, as reported below, the process of input selection and the period of 

validity of models obtained that can give good thermal prediction (within the same 

period) were the key points in deciding season subdivision. In addition, obtaining a 

good model depends on the inputs used in the SIT for model development. If we 

include more inputs than required for developing models then the model's performance 

does not improve and it may get worse. 

For Portman House, the procedure of input selection is not presented because it was 

similar to that presented for the Visa building (see section 4.3). 

In conclusion, the following sections will examine the inputs selected for each season 

with the models that give the best thermal behaviour of the room. 

5.4 Weekdays' Model Development and Validation 

Model estimation and validation were carried out using one set of weekdays data 

(Monday Time 01: 20 to Friday Time 19: 00). The first part of the data was used for 

model estimation and the remaining part was used for model validation. Finally, as for 

Visa in Portman House building for each season, due to the similarities of the results, 

not all the graphs relating to weekdays are presented. 

Model estimation and validation were analysed respectively for four cases: 

a) 213 Sampled-data model estimation (18 hours in day I- Time 01: 20-19: 00) and 

213 sampled-data model validation (18 hours in day 2- Time 01: 20-19: 00) 

b) 900 Sampled-data model estimation (75 hours) and 465 sampled-data model 

validation (39 hours) 

c) 800 Sampled-data model estimation (67 hours) and 565 sampled-data model 

validation (47 hours) 

d) 1365 sampled-data model estimation (113.5 hours, weekdays) and 1365 sampled- 
data model validation in following weekdays (see Appendix 2A). 
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Different models were found to be most appropriate for different periods of the year. 

Thus different models will be used for winter, spring, summer and autumn. In the 

following sections the best models in terms of best fit for each of these weather 

conditions are investigated. 

5.4.1 Model Development and Validation for the Winter Season 

Different weeks of the winter season were examined for model estimation and 

validation and the weeks presented represent the middle and end of the winter season. 

The beginning of the winter season is not presented due to faults in the recording 

system. 

Winter and beginning of the spring season 

This period means from the beginning of January up to middle of April. The weeks 

between 09 January and 14 April 2006 have been taken to represent this period and the 

models that give good fits are shown in Table 5.1. In addition, the week 09-13 January 

2006 is shown in Figs. 5.3 and 5.5, and the errors between model output and 

measurements are presented in Figs. 5.4 and 5.6. As a result of the analysis during 

these weeks, the inputs that affect the results (room temperature zone 1) are: hot water 

temperature, outside temperature, supply air temperature AHU 1 and supply air flow 

rate AHU I. 

In conclusion, throughout winter season six inputs are required to obtain good results 

and the BJ models (bj [1 111 2], bj [1 111 3] and bj [1 111 4]) can predict the room 

temperature very well (see FPE and model fits in Table 5.1). Throughout the winter 

season the FPE is of the order 10-3 and the maximum model error is 0.6 degrees 

Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

1-900 Data Estimation 

901-1365 Data Validation 

1-800 Data Estimation 

801-1365 Data Validation 

Winter season 

Four Inputs 

Outside temp 

Hot water temp 

Supply air temp AHU 1 

Supply air flow rate AHU 1 

FPE z 0.0035 

bj [1 111 2]: 80-90 

bj [I 111 3] : 80-90 

bj [1 111 4]: 70-80 

Winter season 

Four Inputs 

Outside temp 

Hot water temp 

Supply air temp AHU 1 

Supply air flow rate AHU 1 

FPE, zý 0.004 

bj [1 111 2]: 40-50 

bj [1 111 3]: 45-55 

bj [1 111 4]: 50-60 

Winter season 

Four Inputs 

Outside temp 

Hot water temp 

Supply air temp AHU 1 

Supply air flow rate AHU 1 

FPEz0.004 

bj [1 111 2]: 52-65 

bj [1 111 3]: 45-55 

bj [1 111 4]: 35-45 

Table 5.1 Winter weekdays 

2 

Model estimation 900 sampled data 09 January (Time 01: 20)- 12 January 2006 (Time 04: 15) 
Model validation 465 sampled data 12 January (Time 04: 20)-13 January 2006 (Time 19: 00) 

4 
Measured and simulated model output - 

rn 

23.8 

23.6 
ö 

23.4 
M ö `I -- 
U 23.2 bj 11 111 41: 56 

23 
bj1111131.51 

Four Inputs Measurements 
Outside temp bj 11 111 2]: 45 

22 8 Hot water temp 
Supply air temp AHU1 

CL Supply air flow rate AHU1 
6 22.6 

E 22.4 

22.2 
Thursday 12 January 06 Friday 13 January 06 

08: 20 12: 20 16: 20 20: 20 00: 20 04: 20 08: 20 12: 20 17: 20 21: 00 

Time (hours) model validation 

Figure 5.3 Model validation, weekdays 12-13 January 2006 
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Figure 5.5 Model validation, 10 January 2006 
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Measured minus simulated model 
0.5 

ä0.4 
- bj [1 111 4] 

0.3 bj[11113] 
ri: 

i 
bj [1 111 2] 

10 0.2 

0.1 
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d 

-0.2 

. -0.3 
E 

-0.4 Tuesday 10 January 06 

-0.5 00: 
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Figure 5.6 Model errors, 10 January 2006 

5.4.2 Model Development and Validation for the Spring Season 

Different weeks of the spring season were examined for model estimation and 

validation. The weeks representing the middle and end of the spring season were 

investigated. The same inputs (chilled water temperature, hot water temperature, 

outside temperature, supply air flow rate AHUI and supply air temperature AHU 1) 

were used throughout this season. 

Middle and end of the spring season 

The weeks between 17 April and 09 June 2006 were investigated and the best models 

for these are shown in Table. 5.2. In addition, the week 17-21 April 2006 is shown in 

Figs. 5.7 and 5.9, and the errors between model output and measurements are plotted 

in Figs. 5.8 and 5.10. Analysing the results, the BJ models (bj [1111 2], bj [1111 31 

and bj[1111 4]) have good fits for 213,900 and 800 sampled data model estimations 
(see FPE and model fits in Table 5.2). Throughout the spring season the FPE is of the 

order 10-3 and the maximum model error is 0.6 degrees Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

Spring season 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPE z 0.003 

bj [1 111 2]: 85-95 

bj [1 111 3]: 85-93 

bj [1 111 4]: 85-95 

1-900 Data Estimation 1-800 Data Estimation 

901-1365 Data Validation 801-1365 Data Validation 

Spring season 

Five Inputs 

Chilled water temp 

Spring season 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPEz0.004 

bj [1 111 2]: 56-65 

bj [1 111 3]: 55-63 

bj [1 111 4]: 45-55 

Hot water temp 

Supply air flow rate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPEz0.004 

bj[1111 2] : 50-55 

bj [1 111 3]: 40-50 

bj [1 111 4]: 35-45 

Table 5.2 Spring weekdays 

Model estimation 900 sampled data week 17 April (Time 01: 20) -20 April 2006 (Time 04: 15) 

26 Model validation 465 sampled data week 20 April (Time 04: 20) 21 April 2006 (Time 19: 00) 

Measured and simulated model output 
0 
a) 
m 

24.5 - Five Inputs 
Outside temp 

24 

Chilled water temp 
Supply air temp AHU1 

Supply air flow rate AHU1 
CA Hot water temp bj [1 111 4]: 50 

bj [1 111 3]: 58 
N 

- Measurements 
23.5 bj [1 111 2]. 60 

is 
ä 
CL 

r' 

E 23 
G 

0 M 
Thursday 20 April 06 Friday 21April 06 

00: 20 04: 20 08: 20 12: 20 17: 20 21: 00 
Time (hours) model validation 

Figure 5.7 Model validation, weekdays 20-21 April 2006 
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Figure 5.9 Model validation, 18 April 2006 
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Figure 5.8 Model errors, weekdays 20-21 April 2006 
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Figure 5.10 Model errors, 18 April 2006 

5.4.3 Model Development and Validation for the Summer Season 

: 00 

Different weeks of the summer season were examined for model estimation and 

validation. The weeks that represent the beginning and middle of the summer season 

are presented. The end of the summer season is not presented due to faults in the 

recording system. Four inputs (chilled water temperature, outside temperature, supply 

air temperature AHU 1 and supply air flow rate AHU 1) were sufficient to obtain good 

results throughout summer season. 

Summer season 

The weeks between 13 June and 05 August 2005 were analysed and the results are 

shown in Table 5.3 (see FPE and model fits). In addition, the week 13-17 June 2005 is 

shown in Figs. 5.11 and 5.13, and the errors between model output and measurements 

are plotted in Figs. 5.12 and 5.14. Finally, analysing the results the BJ models (bj [1 1 

11 2] and bj[1111 3]) and OE model (oe [1 1 2]) have good fits throughout these 

weeks. Throughout the summer season the FPE is between the orders 10-2 and 10-3 and 

the maximumu model error is 0.7 degrees Celsius. 

bj111112] 
- bj111113] 
- bj[111141 
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1-213 Data Estimation 

289-501 Data Validation 

Summer season 

Four Inputs 

Chilled water temp 

Supply air flow rate AHU I 

Outside temp 

Supply air temp AHU 1 

FPE z 0.003 

bj [1 111 2]: 80-90 

bj [1 111 3]: 80-85 

FPE z 0.007 

oe [1 1 2]: 80-88 

1-900 Data Estimation 

901-1365 Data Validation 

Summer season 

Four Inputs 

Chilled water temp 

Supply air flow rate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPE z 0.004 

bj [1 111 2]: 65-75 

bj [1 111 3]: 45-55 

FPE z 0.035 

oe [1 1 2] : 65-75 

Four Inputs 
Outside temp 

Chilled water temp 
Supply air temp AHU1 
Supply air flow rate AHU1 

Table 5.3 Summer weekdays 

Model estimation 900 sampled data week 13 

U 
rn 
0) 

24.5 
O 
O 

ß 

O 
U 

N 24 

d C 0 N 

d 
23.5 

o) CL E 
d 
E 
0 

23 

Measured and simulated model output 

Thursday 16 June 05 

1-800 Data Estimation 

801-1365 Data Validation 

Summer season 

Four Inputs 

Chilled water temp 

Supply air flow rate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPE z 0.004 

bj [1 111 2]: 65-75 

bj [1 111 3]: 30-35 

FPE, z 0.035 

oe [1 1 2]: 60-65 

04: 15) 

oe[1121: 70 
bj[11113] 51 

- Measurements 
bj [1 111 21: 70 

Friday 17 June 05 1 

08: 20 12: 20 16: 20 20: 20 00: 20 04: 20 08: 20 12: 20 17: 20 21: 00 

Time (hours) model validation 

Figure 5.11 Model validation, weekdays 16-17 June 2005 
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Figure 5.12 Model errors, weekdays 16-17 June 2005 
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Figure 5.13 Model validation, 14 June 2005 
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Figure 5.14 Model errors, 14 June 2005 

5.4.4 Model Development and Validation for Autumn Season 

Different weeks of the autumn season were examined for model estimation and 

validation. The weeks representing the beginning, middle and end of the autumn 

season are presented. 

Beginning and middle of the autumn season 

The weeks between 12 September and 28 October 2005 were investigated and the best 

models are shown in Table 5.4. In addition, the week 24-28 October 2005 is shown in 

Figs. 5.15 and 5.17, and the errors between model output and measurements are 

plotted in Figs. 5.16 and 5.18. The inputs, outside temperature, supply air temperature 

AHU 1, supply air flowrate AHU 1, chilled water temperature and hot water 

temperature can predict room temperature very well throughout the beginning and 

middle of the autumn. 
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Finally, analysing the results, the ARMAX model (amx [2 22 1]), BJ models (bj [1 11 

1 3], bj [1 111 4] and bj [1 111 5]) and OE models (oe [1 1 2] and oe [1 13]) have 

good fits throughout these weeks (see FPE and model fits in Table 2). 

End of the autumn season 
The weeks between 31 October and 02 December 2005 were taken to analyse this 

period and the results are shown in Table 3. The inputs, outside temperature, supply air 

temperature AHU1, supply air flowrate AHU1 and hot water temperature can affect 

room temperature throughout the end of the autumn. In conclusion, throughout end of 

the autumn, the BJ model (bj [1 111 8]) give better fits (see FPE and model fits in 

Table 5.4). 

In conclusion, throughout the autumn season the FPE is between 10-2 and 10-3 and the 

maximum model error is 0.8 degrees celsius. 
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1-213 Data Estimation 1-900 Data Estimation 

289-501 Data Validation 901-1365 Data Validation 

Beginning and middle of I Beginning and middle of 

autumn 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU1 

autumn 

Five Inputs 

Chilled water temp 

Hot water temp 

Supply air flow rate AHU1 

Outside temp 

Supply air temp AHU1 

FPE 0.003 

bj [1 111 3]: 68-78 

bj [1 11 14]: 68-78 

bj [1 111 5]: 40-50 

FPE=0.035 

oe [1 12]: 55-60 

oe [1 13]: 55-65 

End of autumn 

Four Inputs , 
Hot water temp 

Supply air flowrate AHU 1 

Outside temp 

Supply air temp AHU 1 

FPE -- 0.002 

bj [1 111 8]: 45-55 

Outside temp 

Supply air temp AHU1 

FPE = 0.005 

bj [11 11 3]: 65-70 

bj [1 11 14]: 65-75 

bj [1 111 5]: 65-75 

FPE = 0.04 

oe [1 12]: 65-75 

oe [1 13]: 65-75 

End of autumn 

Four Inputs 

Hot water temp 

1-800 Data Estimation 

801-1365 Data Validation 

Beginning and middle of 

autumn 

Five Inputs 

Chilled water temp 

Hot water temperature 

Supply air flow rate AHUI 

Outside temp 

Supply air temp AHUI 

FPE = 0.005 

bj [1 111 3]: 65-75 

bj [1 111 4]: 70-75 

bj [1 111 5]: 65-75 

FPE=0.04 

oe [1 12]: 70-75 

oe [1 13]: 70-75 

End of autumn 
Four Inputs 

Hot water temp 

Supply air flow rate AHU1 I Supply air flow rate AHU1 

Outside temp 

Supply air temp AHU1 

FPE = 0.004 

bj [1 1118]: 45-55 

Outside temp 

Supply air temp AHUI 

FPE = 0.005 

bj [1 111 8]: 15-20 

Table 5.4 Autumn weekdays 
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Figure 5.15 Model validation, weekdays 27-28 October 2005 
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Figure 5.16 Model errors, weekdays 27-28 October 2005 
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Figure 5.17 Model validation, 25 October 2005 
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5.5 Conclusions of Model Development and Validation for Portman House 

In this chapter the thermal behaviour of the room, situated on the 2'" floor in Portman 

House was analysed for one year (13 June 2005 - 09 June 2006). 

As for the Visa building, model development and validation for Portman House was a 

long process that required a large amount of analysis for the input selection. The 

process of input selection is very important to obtain good parametric models (ARX, 

BJ, OE, ARMAX) for predicting the thermal behaviour of the building. As a result of 

the analysis, for a certain number of inputs it was possible to obtain good thermal 

behaviour prediction only for a limited number of weekdays. Consequently, going 

from one season to another and/or within the same season it was necessary to change 

the types and number of inputs if we wanted to obtain a good prediction of the thermal 

behaviour of the building. Throughout this chapter the procedures of input selection 

are the same as those presented in the previous chapter for the Visa building (see 

section 4.3). For the weekdays' analysis, like in the Visa building, supply air 

temperature AHUI, supply air flow rate AHU1 and outside temperature were the 

inputs affecting room temperature throughout the year, while the inputs related to hot 

and chilled water had different effects from one season to another. 

In Portman House, the models were developed by utilizing different sampled data for 

model estimation and validation, and it is was demonstrated that they preserve their 

properties in predicting the thermal behaviour of the room not only within the same 

week (utilizing different sampled data for model estimation and validation), but also 

utilizing one week of data for model estimation and another week for model validation. 

The results related to the inputs selected and mathematical models appropriate for each 
season will now be summarized in turn. 

In the winter and beginning of the spring season, four inputs (outside temperature, hot 

water temperature, supply air temperature AHU1 and supply air flow rate AHU1) are 

required to obtain good results and the BJ models (bj [1 111 2], bj [1 111 3] and bj 

[1 111 4]) offer the best fits. 
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The same inputs (outside temperature, chilled water temperature, hot water 

temperature, chilled water temperature, supply air flow rate AHU1 and supply air 

temperature AHUI) are required for different periods of the year (as shown below) and 

the models that offer good fits are: 

" Middle and end of Spring: BJ models (bj [1 111 2], bj [1 111 3] and bj [1 111 

4]) 

" Beginning and middle of autumn: BJ models (bj [1 111 3], bj [1 111 4] and bj [1 

I11 5]) and OE models (oe [1 12] and oe [1 13]). 

For the end of autumn the BJ model (bj [1 111 8]) predicts the thermal behaviour of 

the building very well for four inputs (hot water temperature, outside temperature, 

supply air flow rate AHU1 and supply air temperature AHU1). 

The inputs (outside temperature, chilled water temperature, outside temperature, 

supply air flow rate AHU1 and supply air temperature AHU1) were selected for the 

summer season and for this period the BJ models (bj. [1 111 2] and bj [1 111 3]) and 

OE model (oe [1 12]) have good fits. 

In addition to the previous analysis one week was investigated for model estimation 

and another week was used for model validation. This analysis was done for one year 
(13 June 2005 - 09 June 2006) and the results are given in Appendix 2A. As in the 

Visa building, the prediction of the room's thermal behaviour in Portman House 

decreased slightly when we changed from using the same week to different weeks for 

model estimation and validation (see Appendix 2A). Consequently, to obtain good 

thermal prediction for the room the amount of data should not be more than one week 
for model estimation and validation. 

As for the Visa building, one of the main disadvantages of linear parametric 

mathematical models reflected in this analysis is the limited period of the validity of 
these models, which is related to the period of validity of the inputs (Black - box 

models). Although the same inputs can be used throughout the season this is not the 

case with the models because some of them are not valid throughout the season (see 

sections 5.4.1,5.4.2 and 5.4.4). 

88 



Chapter 5 

As for the Visa building, some of the inputs of less importance, including the internal 

gain of the building (where in part they were included within the main inputs), were 

not been provided by the BMS and this is a further disadvantage. The results obtained 
for appropriate models throughout the year have similar fits to those for the previous 

analysis (using the same week's data for model estimation and validation). This means 
that linear parametric mathematical models are suitable for thermal behaviour 

prediction for the maximum period of one week. 

The contributions of the analysis in this chapter are the same as those in the previous 

chapter (see section 4.5). However, in addition, in Portman House the mathematical 

models required were different throughout the year, because it is a different type of 
building and consequently, BMS behaviour is different. Furthermore in Portman 

House over the course of the year FPE varied between 10"2 and 10"3, while model 

errors varied between 0.6 and 0.8 degrees Celsius. Compared to the Visa building, 

overall, Portman House has higher values of FPE. 

Finally, an overview of the weekday results obtained for the Visa building and 
Portman House is given in Tables 5.5,5.6,5.7 and 5.8, including a comparison of the 

results and inputs selected for each season. Appendix 2B details some of the 

mathematical models in terms of their parameters. 
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Spring Visa building Portman House 
Season (Year 2005) (13 June 2005 - 09 June 2006 

Beginning 
15/03 
15/04 

Faults 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU1 
4) Supply air flow rate AHU1 

Middle 
15/04 
15/05 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU2 

5) Supply air flow rate AHU2 

BJ (bj [1 11 14] and 
bj[11115]) 

End 
15/05 
15/06 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU2 

5) Supply air flow rate AHU2 

BJ (bj [I 11 14] and 
bj[11115]) 

BJ (bj [1 111 2], bj [1 11 13] and 
bj[11114]) 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU1 

5) Supply air flow rate AHU 1 

BJ (bj [1 111 2], bj [1 11 13] and 
bj[11114]) 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU1 

5) Supply air flow rate AHU1 

BJ (bj [1 111 2], bj [1 11 13] and 
bj[11114]) 

Table 5.5 Visa and Portman House buildings comparison spring season weekdays 
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Summer Visa building Portman House 
Season (Year 2005) (13 June 2005 - 09 June 2006) 

1) Chilled water temperature 1) Chilled water temperature 
Beginning 2) Outside temperature 2) Outside temperature 

15/06 3) Supply air temperature AHU2 3) Supply air temperature AHU1 
15/07 4) Supply air flow rate AHU2 4) Supply air flow rate AHU1 

OE (oe [1 12], oe [1 13], oe [1 14] BJ (bj [1 11 12] and 
and oe [1 15]) bj [1 111 3]) 

ARMAX (amx [2 22 1]) OE (oe [1 12]) 

1) Chilled water temperature 1) Chilled water temperature 
Middle 2) Outside temperature 2) Outside temperature 
15/07 3) Supply air temperature AHU2 3) Supply air temperature AHU1 
15/08 4) Supply air flow rate AHU2 4) Supply air flow rate AHU 1 

OE (oe [1 12], oe [1 13], oe [1 14] BJ (bj [1 11 12] and 
and oe [1 15]) bj [1 111 3]) 

ARMAX (amx [2 22 1]) OE (oe [1 12]) 

End 
15/08 Faults Faults 
15/09 

Table 5.6 Visa and Portman House buildings comparison summer season weekdays 
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Autumn Visa building Portman House 
Season (Year 2005) (13 June 2005 - 09 June 200 

Beginning 
15/09 
15/10 

Middle 
15/10 
28/10 

Faults 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU2 

5) Supply air flow rate AHU2 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU1 

5) Supply air flow rate AHU1 

BJ (bj [1 11 13], bj [1 11 14] and 
bj[11115]) 

OE (oe [1 12) and oe [1 13]) 

1) Chilled water temperature 
2) Outside temperature 

3) Hot water temperature 
4) Supply air temperature AHU1 

5) Supply air flow rate AHU 1 

OE (oe [1 1 2]) BJ (bj [1 11 13], bj [1 111 4] and 
bj[11115]) 

OE(oe[1 12] andoe[1 13]) 

End 
31/10 
15/12 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU2 
4) Supply air flow rate AHU2 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU1 
4) Supply air flow rate AHU1 

BJ (bj [1 111 2] and bj [1 11 13]) 
ARMAX (amx [2 2 21]) 

BJ (bj [1 111 8]) 

Table 5.7 Visa and Portman House buildings comparison autumn season weekdays 
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Winter 
Season 

Visa building 
(Year 2005) 

Portman House 
(13 June 2005 - 09 June 2006) 

Beginning 
15/12 
15/01 

Middle 
15/01 
15/02 

End 
15/02 
15/03 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU2 
4) Supply air flow rate AHU2 

Faults 

BJ (bj [1 111 3], bj [1 111 4] 
and bj [1 11 15]) 

and OE (oe [1 12]) 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU2 
4) Supply air flow rate AHU2 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU1 
4) Supply air flow rate AHU1 

BJ (bj [1 1113], bj [1 11 14] 
and bj [1 11 15)) and 

OE (oe rl 121) 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU2 
4) Supply air flow rate AHU2 

BJ (bj [1 111 2], bj [1 111 3] 
bj [111 14] and bj [1 111 5]) 

BJ (bj [1 111 2], bj [1 11 13] 
and bj [1 111 4]) 

1) Outside temperature 
2) Hot water temperature 

3) Supply air temperature AHU1 
4) Supply air flow rate AHU1 

BJ (bj [1 11 12], bj [1 11 131 
and bj [1 11 14]) 

Table 5.8 Visa and Portman House buildings comparison winter season weekdays 
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CHAPTER 6 Data Analysis and Model Development for the Rockefeller 

Building 

This chapter gives a brief description of the Rockefeller building and the room that is 

examined for model estimation and validation. The data collected are for one year (2006) 

and the models chosen are those that best fit the real data. Different models and inputs 

have been found to be most appropriate for winter, spring, summer and autumn. The 

following sections explore the models in terms of best fit for each of the seasons. The 

model structures ARX, OE, ARMAX and BJ are the general choices for model 

development in the Thomas Lewis Room (Rockefeller building). 

6.1 Rockefeller Building Description 

Rockefeller Building (see Fig. 6.1) is located in London and is part of University College 

London. Rockefeller is an old construction (1920) and its thermal behaviour is different to 

the Visa and Portman House Buildings. In addition, the room examined only has a heating 

system, provided by radiators, and this is another difference compared to the other two 

buildings. There is no air conditioning system in this room. The data collected were from 

the Thomas Lewis room (see Fig. 6.2 left hand side) located on the ground floor of the 

Rockefeller Building. Invensys is the building management system installed in the 

Rockefeller Building for the monitoring and operation of plant/building services. 
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6.2 Data Collection Description 

The data from the Rockefeller building were collected for one year, with a sampling 

interval of 5 minutes. The data collected, were stored in the BMS and downloaded every 

two weeks. The inputs and output are presented in section 6.1 were collected for a period 

of one year (2006) through the existing sensors of the BMS and Invensys data logger. 

Invensys is software used to log and download the data collected every two weeks for 

model development and validation. The down-loaded data was then converted to Microsoft 

Excel file format, which were used in system identification for model development and 

validation. 

The primary assumption of the model development was that the internal temperature 

variation is directly influenced by the variations of external temperature and the internal 

heating water that flows through the radiators. Thomas Lewis Room is a large office and 

approximately five persons work in it. The effects of additional internal heat gain caused 

by occupancy, computers and printers were assumed to be small. Consequently, their effect 

is small compared to the external temperature and hot water temperature circulating 

throughout the cold season. 

6.3 Input Selection 

Differently from the Visa and Portman House buildings, input (independent variables) and 

output selection for this building consisted only of outside temperature and hot water 
temperature across the radiators and room temperature (output). There was only one sensor 
for measuring the room temperature, and it was positioned in the centre. 

As for the Visa and Portman house buildings, the models were developed for different 

seasons and each season was subdivided into three parts; beginning, middle and end. In 

this building, differently from Portman house and Visa buildings, this subdivision 
depended principally on the limited period that different linear parametric models could 

give good results related to room prediction temperature. 

In this chapter, the models developed have the following properties: 

" The models can predict the thermal behaviour of the room for several weeks four to 

nine weeks 
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9 Within the period of models validation, the change in models' performance is very 

small from one week to another. 

Finally, in the following sections the models that give the best thermal behaviour of the 

room for each season are examined. 
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Figure 6.2 Thomas Lewis room (Ground floor, Rockefeller building) 
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6.4 Weekdays Model Development and Validation 

Listed below are the inputs and output, logged every five minutes, collected for the 

Thomas Lewis Room. This room only has a heating system and as a result only two inputs 

(outside temperature and hot water temperature) and one output (Thomas Lewis room 

temperature) can be used for model estimation. The data are analysed by dividing them 

into weekdays (Monday Time 01: 20 to Friday Time 19: 00) and weekends (the latter is not 

presented). Finally, for each season, due to the similarities of the results, not all the graphs 

relating to weekdays are presented. 

Thomas Lewis Room 

" Thomas Lewis Room temperature (output) in degrees Celsius (degC) 

" Outside temperature (input) in degrees Celsius (degC) 

" Hot water temperature (input) in degrees Celsius (degC) 

Finally, model development and validation are analysed respectively for four cases: 

a) 213 Sampled-data model estimation (18 hours in day 1- Time 01: 20-19: 00) and 213 

sampled-data model validation (18 hours in day 2- Time 01: 20-19: 00) 

b) 900 Sampled-data model estimation (75 hours) and 465 sampled-data model validation 
(39 hours) 

c) 800 Sampled-data model estimation (67 hours) and 565 sampled-data model validation 
(47 hours) 

d) 1365 sampled-data model estimation (113.5 hours, weekdays) and 1365 sampled-data 

model validation in following weekdays (see Appendix 3A). 

In the following sections the model fits for each season are analysed. 

6.4.1 Model Development and Validation for the Summer Season 

Different weeks working days (Monday Time 01: 20 to Friday Time 19: 00) of the summer 

season were examined for model estimation and validation. During summer time the heater 

is off and the outside temperature is the input that affects room temperature. The results, 
for model estimation and validation, obtained for one input and one output (Thomas Lewis 

room temperature) are presented respectively for the beginning, middle and end of the 

summer season. 
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Beginning of the summer season 

The weeks 12-16 June 2006,19-23 June 2006 and 26-30 June 2006 were analysed. It can 

be noted that the bj [1 111 2] and bj [2 222 5] models are very flexible and can predict 

the room temperature respectively for 213,900 and 800 sampled-data model estimations. 
Finally, the bj[1111 2] and bj [2 222 5] models can be used for the three weeks for 

different ranges of sampled-data model estimations (see FPE and model fits in Table 6.1). 

Middle of the summer season 

The weeks between 10 July and 18 August 2006 were analysed. The results related to the 

week 10-14 July 2006 are shown in Figs. 6.3 and 6.5, and the errors between model output 

and measurements are presented in Figs. 6.4 and 6.6. Finally, none of the models gave 

good fits, so the best model to use even though it has a poor fit, is the amx [1 11 2] model 
(see FPE and model fits in Table 6.1). 

End of the summer season 

To analyse this season the weeks 21-25 August 2006,28 August-01 September 2006 and 
04-08 September 2006 were taken for model estimation. The results are shown in Table 

6.1. Analysing the results, the ARMAX model (amx [2 22 1]) and BJ model (bj [2 222 

1]) offers a good fits (see FPE and model fits in Table 6.1). 

In conclusion, throughout the autumn season the FPE is between 10-2 and 10'3 and the 

maximum model error is 0.8 degrees Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

One Input 

Outside temperature 

Beginning of summer 

FPE -z 0.001 

bj [2 222 5]: 85-90 

bj [1 111 2]: 65-70 

Middle of summer 

FPEz0.001 

amx [1 11 2]: 70-80 

End of summer 

FPE z 0.001 

amx [2 22 1]: 50-60 

bj [2 222 1]: 50-55 

1-900 Data Estimation 1 1-800 Data Estimation 

901-1365 Data Validation 1801-1365 Data Validation 

One Input 

Outside temperature 

Beginning of summer 

FPE, z 0.005 

bj [2 222 5]: 70-80 

bj [1 111 2]: 35-45 

Middle of summer 

FPE, z 0.01 

One Input 

Outside temperature 

Beginning of summer 

FPE z 0.005 

bj [2 222 5]: 75-80 

bj [1 111 2]: 60-65 

Middle of summer 

FPE z 0.01 

amx [1 11 2]: 25-30 

End of summer 

FPE z 0.01 

amx [2 22 1]: 25-30 

bj [2 222 1]: 15-20 

amx [1 11 2]: 25-35 

End of summer 

FPE z 0.01 

amx [2 22 1]: 40-50 

bj [2 222 1]: 15-25 

Table 6.1 Summer weekdays 
Model estimation 900 sampled data 10 July (Time 01: 20)-13 July 2006 (Time 04: 15) 

26 5 Model validation 465 sampled data 13 July (Time 04: 20)-14 July 2006 (Time 19: 00) 

Measured and simulated model output 
- Measurements 
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U 
a) 
a) 

? 25. 
to 
a) 
CL 
E 
a) 
ö 25 
O 
N 
lß 

E 
O 

1- 24.5 

One Input 
Outside temp 

Thursday 13 July 06 Friday 14 July 06 
-ý4 

24' 11. IIII11 
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Figure 6.3 Model validation, weekdays 13 -14 July 2006 
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Figure 6.5 Model validation, 11 July 2006 
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Figure 6.4 Model errors, weekdays 13 -14 July 2006 
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Figure 6.6 Model errors, 11 July 2006 

6.4.2 Model Development and Validation for the Autumn Season 

As for summer, the autumn can be divided into the beginning, middle and end. The results 

for these parts are presented in succession. 

Beginning of the autumn season 

The weeks 11-15 September 2006,18-22 September 2006 and 25-29 September2006 were 

analysed for model estimation. Table 6.2 shows the fits and FPE for these three weeks. 

Finally, the bj [2 222 4] model can be used for these three weeks and they provide good 

fits for 213,900 and 800 sampled-data model estimations (see Table 6.2). 

Middle of the autumn season 

This season includes October and the results for the weeks between 02 October and 20 

October 2006 are presented successively in Table 6.2 (see FPE and model fits). The results 

related to the week 09-13 October 2006 are shown in Figs. 6.7 and 6.9, and the errors 

between model output and measurements are presented in Figs. 6.8 and 6.10. Outside 

temperature is the only input that affects room temperature. 
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Analysing the results, the bj [2 222 1] and bj [1 111 2] mathematical models offer good 

fits for 213,900 and 800 sampled-data model estimations (see Table 6.2). 

End of the autumn season 

Because of a fault in the recording system the data for November and December 2006 are 

not included. Consequently, only the weeks 23-27 October 2006 and 30 October-03 

November 2006, have been analysed and the results are shown in Table 6.2 (see FPE and 

model fits). During this period the heater is on and the inputs (outside temperature and hot 

water temperature) affect the results for room temperature. In these weeks, the bj [2 222 

4] model offer good fits for 213,900 and 800 sampled-data model estimation. 

In conclusion, throughout the autumn season the FPE is between 10-2 and 10"3 and the 

maximum model error is 1.2 degrees Celsius. 

1-213 Data Estimation 1-900 Data Estimation 1-800 Data Estimation 

289-501 Data Validation 1 901-1365 Data Validation 1 801-1365 Data Validation 

One Input 

Outside temperature 

Beginning of autumn 

FPE = 0.005 

bj [2 222 4]: 40-45 

Middle of autumn 

FPE = 0.001 

bj [2 222 1]: 55-60 

bj [1 111 2]: 50-55 

End of autumn 
Two Inputs 

Outside temperature 

Hot water temperature 

FPE = 0.001 

bj [2 222 4]: 75-85 

One Input 

Outside temperature 

Beginning of autumn 

FPE = 0.003 

bj [22224]: 40-50 

Middle of autumn 

FPE = 0.015 

bj [2 222 1]: 5-10 

bj [11112]: 15-20 

End of autumn 
Two Inputs 

Outside temperature 

Hot water temperature 

FPE = 0.002 

bj [2 222 4]: 75-85 

One Input 

Outside temperature 

Beginning of autumn 

FPE = 0.003 

bj [2 222 4]: 60-65 

Middle of autumn 
FPE = 0.01 

bj [2 222 1]: 15-20 

bj [11112]: 20-25 

End of autumn 
Two Inputs 

Outside temperature 

Hot water temperature 

FPE = 0.002 

bj [2 222 4]: 70-80 

Table 6.2 Autumn weekdays 
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04: 15) 
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Figure 6.7 Model validation, weekdays 12-13 October 2006 
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Figure 6.8 Model errors, weekdays 12-13 October 2006 
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Model estimation 213 sampled data 09 October 2006 (Time 01: 20-19: 00) 
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Figure 6.9 Model validation, 10 October 2006 
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Figure 6.10 Model errors, 10 October 2006 
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6.4.3 Model Development and Validation for the Winter Season 

During the winter season, data are missing from the beginning of November 2006 up to the 

end of the year. In addition, data are missing from the beginning of January 2006 to the 

middle of February 2006. The results related to the middle and end of the winter season are 

discussed below. In this period the heater is on and the inputs outside temperature and hot 

water temperature were used for model estimation and validation. 

Middle of the winter season 

Since data collection started in the middle of February, only the weeks 13-17 February 

2006 and 20-24 February 2006 were used for model estimation and validation. The results 

related to the week 13-17 February 2006 are shown in Figs. 6.11 and 6.13, and the errors 
between model output and measurements are presented in Figs. 6.12 and 6.14. In 

conclusion, the ARMAX models (amx [2 22 6], amx [2 22 7] and amx [2 22 8]) have 

good fits and can be used for 213,900 and 800 sampled-data model estimations with very 

good results. 

End of the winter season 
The weeks between 27 February and 17 March 2006 were analysed and the results are 

shown in Table 6.3 (see FPE and model fits). The BJ models (bj [1 111 7] and bj [1 111 

8]) have good fits for different ranges of sampled data (213,900 and 800 sampled-data 

model estimations). 

In conclusion, throughout the winter season the FPE is of the order 10"3 and the maximum 

model error is 2.5 degrees Celsius. 
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1-213 Data Estimation 

289-501 Data Validation 

Two Inputs 

Outside temperature 

Hot water temperature 

Middle of winter 

FPE z 0.002 

amx [2 22 6]: 20-25 

amx [2 22 7]: 15-25 

amx [2 22 8]: 15-25 

End of winter 

FPE z 0.002 

bj [1 111 7]: 25-35 

bj [1 111 8]: 20-25 

23 

1-800 Data Estimation 

801-1365 Data Validation 

Two Inputs 

Outside temperature 

Hot water temperature 

Middle of winter 

FPE z 0.001 

amx [2 22 6]: 45-55 

amx [2 22 7]: 60-65 

amx [2 22 81: 55-65 

End of winter 

FPE, z5 0.001 

bj [1 111 7]: 55-65 

bj [1 111 8]: 55-65 

Table 6.3 Winter weekdays 

22 

1-900 Data Estimation 

901-1365 Data Validation 

Two Inputs 

Outside temperature 

Hot water temperature 

Middle of winter 

FPE z 0.001 

amx [2 22 6]: 45-50 

amx [2 22 7]: 50-55 

amx [2 22 8]: 50-55 

End of winter 

FPE z 0.001 

bj [1 111 7]: 45-50 

bj[1111 8] : 45-50 

Measured and simulated model output 

0 
C 21 
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E 
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E 18 
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Outside temp 

Hot water temp 

Friday 17 February 06 
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- Measurements 
amx 12 22 6]: 49 

: 00 
Time (hours) model validation 

Figure 6.11 Model validation, weekdays 16-17 February 2006 
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Figure 6.13 Model validation, 14 February 2006 
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Figure 6.14 Model errors, 14 February 2006 

6.4.4 Model Development and Validation for the Spring Season 

21: 00 

The results for the beginning, middle and end of the spring season are shown successively. 

The heater is on up to the middle of March and as a result of this, the inputs outside 

temperature and hot water temperature can affect the room temperature up to the middle of 

the spring season. During the end of the spring season only the outside temperature affects 

the results. 

Beginning of the spring season 

The weeks between 20 March and 14 April 2006 were analysed for model estimation and 

validation. The results for these weeks are shown in Table 6.4 (see FPE and model fits). 

The results related to the week 27-31 March 2006 are shown in Figs. 6.15 and 6.17, and 

the errors between model output and measurements are presented in Figs. 6.16 and 6.18. 

Finally, the BJ models (bj [1111 2] and bj[1111 3]) and ARMAX model (amx [2 22 

8]) have good fits during these four weeks and for different ranges of sampled-data model 

estimations. 
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Middle of the spring season 

The weeks 17 April and 12 May 2006 were taken to represent this part of the season and 

the results were shown in Table 6.4 (see FPE and model fits). Analysing the results, the BJ 

models (bj [1 111 2], bj [1 111 3], bj [1 111 4] and bj [1 111 5]) have good fits for 

different ranges of sampled-data model estimations. 

End of the sring season 
The weeks 15 May and 09 June 2006, were taken to represent this part of the season and 

the results are shown in Table 6.4 (see FPE and model fits). Finally, the BJ models (bj[11 

1 15], bj [1 111 6], bj [1 111 7] and bj [1 111 8]) have good fits for different ranges of 

sampled-data model estimations. 

Throughout spring season the FPE is of order 10"3 and the maximum model error is 0.8 

degrees Celsius. 
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1-213 Data Estimation 1-900 Data Estimation 1-800 Data Estimation 

289-501 Data Validation 1 901-1365 Data Validation 1 801-1365 Data Validation 

Two Inputs Two Inputs Two Inputs 

Outside temperature Outside temperature Outside temperature 

Hot water temperature Hot water temperature Hot water temperature 

Beginning of spring Beginning of spring Beginning of spring 
FPE = 0.001 FPE = 0.002 FPE = 0.002 

amx [2 22 8]: 50-55 amx [2 22 8]: 50-55 amx [2 22 8]: 55-60 

bj [1 111 2]: 80-90 bj [1 111 2]: 60-65 bj [1 111 2]: 55-60 

bj [1 111 3]: 85-95 bj [1 111 3]: 60-65 bj [1 111 3]: 55-65 

Middle of spring Middle of spring Middle of spring 

FPE -- 0.001 FPE 0.002 FPE = 0.002 

bj [1 1112]: 55-65 bj [1 111 2]: 40-50 bj [1 111 2]: 40-45 

bj [111 1 3]: 55-65 bj [1 111 3]: 40-50 bj [1 111 3]: 40-45 

bj [1 111 4]: 50-60 bj [1 11 14]: 40-50 bj [1 111 4]: 40-45 

bj [1 111 5]: 55-65 bj [1 111 5]: 45-50 bj [1 111 5]: 35-45 

End of spring End of spring End of spring 
One Input One Input One Input 

Outside temperature Outside temperature Outside temperature 

FPE = 0.001 FPE = 0.002 FPE = 0.002 

bj [1 1 115]: 50-60 bj [1 111 5]: 40-45 bj [1 111 5]: 50-55 

bj [1 1 116]: 50-55 bj [1 1116]: 45-50 bj [1 111 6]: 50-55 

bj [1 1117]: 55-60 bj [1 111 7]: 40-45 bj [1 111 7]: 50-55 

bj [1 1118]: 55-60 bj [1 111 8]: 40-45 bj [1 111 8]: 45-55 

Table 6.4 Spring weekdays 
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Figure 6.15 Model validation, weekdays 30-31 March 2006 
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Figure 6.16 Model errors, weekdays 30-31 March 2006 
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Model estimation 213 sampled data 27 March 2006 (Time 01: 20-19: 00) 
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Figure 6.17 Model validation, 28 March 2006 
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6.5 Conclusions of Model Development and Validation for the Rockefeller Building 

In this chapter the thermal behaviour of the Thomas room, situated on the ground floor of 

the Rockefeller building (UCL), was analysed for one year (2006). The analysis of the data 

was divided into weekdays. 

In the Rockefeller building, differently from the previous buildings, outside temperature 

and hot water temperature were the principal inputs selected for weekdays and weekends 

throughout the year. This is because there is no air conditioning system in this room apart 

from the radiators that are on throughout the cold season. The strength of linear parametric 

mathematical models is based on the criteria of model validation (chapter 3) and in this 

chapter, the validity of developed models was verified by one piece of data, which had to 

be different from the data used for model estimation. Furthermore, subdivision of the 

seasons for model development was due mainly to the validity of these models. The BJ 

models have good fits throughout the year, but ARMAX models have good fits mainly 

throughout the winter season. 

Details of the overall findings of the linear parametric mathematical models for each 

season will now be given in turn. The procedures followed for model development for 

weekdays were the same as those presented in chapters 4 and 5 (see sections 4.4 and 5.4). 

In this chapter, the models developed for each season preserve their properties in 

predicting the thermal behaviour of the room not only within the same week (utilizing 

different sampled data for model estimation and validation), but also utilizing one week of 
data for model estimation and another week for model validation. In conclusion, for the 

Rockefeller building the FPE is between 10-2 and 10-3 and model errors are within 0.8 and 
2.5 degrees Celsius. 

These models are linear and this is a disadvantage that can affect the period of validity of 

some models. Sometimes it can be even lower than that of the validity of the inputs 

selected for that period. The Thomas Lewis room is an office and five people usually work 
in it. 
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Because of the room's large dimensions, the effects of additional internal heat gain caused 

by occupancy, computers and printers were assumed to be small throughout the weekdays 

compared to the external temperature and hot water temperature circulating throughout the 

cold season. 

In addition to the first three contributions stated in relation to the Visa building (section 

4.5) which are the same for the Rockefeller building, other contributions of the analysis 

developed for the Thomas Lewis room are: 

" The Visa building and Portman House are new buildings, while the Rockefeller building 

is an old heavy concrete building. Consequently, its thermal behaviour is very different 

from the previous two buildings. 

" The Thomas Lewis room only has a heating system while the Visa and Portman House 

buildings have an air conditioning system. 

" In this building, the results obtained throughout the hot season for weekdays have lower 

fits compared to those obtained for Portman House and the Visa building. 

" In the Rockefeller building the models' errors are bigger than those obtained in the other 

two buildings. 

For the autumn season the fits related to weekdays are low except when we use 213 

sampled data for model estimation (the bj [1 111 2] and bj [2 222 4] models fit are good 

from September to October). 

The results obtained throughout the spring season are good and the BJ models (bj [1 111 

2], bj [1 111 3], bj [1 111 4], bj [1 111 5], bj [1 111 6], bj [1 111 7] and bj [1 111 

8]) have good fits for weekdays. In contrast to the previous seasons, for winter the 

ARMAX models (amx [2 22 6], amx [2 22 7] and amx [2 22 8]) and BJ models (bj [1 11 

1 7] and bj[1111 8]) have good fits. 

The input, outside temperature, was selected for the summer season and for this period the 

BJ models (bj [2 222 1], bj [2 222 5] and bj [1 11 12]) and ARMAX models (amx [2 2 

2 1] and amx [1 1 12]) have good fits. Finally, in the Rockefeller building due to the lack 

of data collected by the BMS, the fits were lower than those obtained in the Visa building 

and Portman House. However, the fits get worse if we want to predict more than seven 
days. Appendix 3B details some of the mathematical models in terms of their parameters. 
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Chapter 7 Model Development and Validation with Artificial Neural 
Networks 

The previous chapters presented an analysis of the results related to linear models for the 

three buildings for one year. In this chapter, the model development and validation for 

the same rooms and year are analysed using neural networks. 

The first part of this chapter reviews the theoretical framework for neural networks, 

focusing in the second part on three types of networks, feedforward backpropagation 

(FFBP), nonlinear autoregressive mathematical models with series-parallel arrangement 

(NARXSP) and parallel arrangement (NARX). The third part presents the results 

obtained in applying these three types of networks to the three buildings. The weeks for 

the beginning, middle and end of each season are the same as those reported throughout 

chapters 4,5 and 6. 

7.1 Neural Networks' Background 

A neural is a network capable of information processing, in which a large number of 

relatively simple information processing units are connected together and in which these 

units communicate with each other by relatively simple signals. Therefore, the important 

components of neural networks are "neurons" and "connections". 

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. The three basic elements of neuron models, as depicted in Fig. 7.1 are: 

"A set of connecting links, each of which is characterized by a weight or strength of its 

own. 

" An adder for slimming the input signals, weighted by the respective connecting links 

of the neuron; the operation described here constitutes a linear combiner. 

" An activation function for limiting the amplitude of the output of a neuron. This 

limits the permissible amplitude range of the output signal to some finite value. 
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Figure 7.1 A neuron with a single R-element input vector (Laurene, 1994 and Patterson, 

1996) 

Nonlinear Neuron Model 

The neuron in Fig. 7.1 can be described by the input Uk and output yk. 
P 

ew, fxj -°k 

Yk = fk 1 

where, 

- Xi are input signals 

- WkI, wem, ....., wAp are synaptic weights of the neuron k 

-e linear combiner input 

- Ok threshold or bias and 

- fk transfer function (presented successively). 

(7.1) 

(7.2) 

The transfer function denoted by fk defines the output of a neuron in terms of activity 
level at its input. We may identify three basic types of transfer functions, used 
throughout the project (Hassoun, 1995): 
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1-Linear function. For the piecewise-linear function, shown in Fig. 7.2 we have: 

fk(e) = purelin (e) (7.3) 

Where, the amplification factor inside the linear region of operation is assumed to be 

unity. This transfer function is used on the second layer (corresponding to the output 
layer) in this project. 

k(eO 

............ 
+1 ..... ..... 

o e 
-- - i........ ---- - / -- -- 

Figure 7.2 Linear transfer function 

2-Continuous Log-Sigmoid Function. This is the most common form of transfer 

function used in the construction of artificial neural networks (see Fig. 7.3). It is defined 

as a strictly increasing function that exhibits smoothness and asymptotic properties 
(used in this project for the first layer). An example of this function is defined as: 

fk(e) 
1-exp( -a -e) 

o. 

-o. s o o. s 

Figure 7.3 Log sigmoid transfer function 

(7.4) 

117 



Chapter 7 

3- Hyperbolic tangent function. The transfer function tanh may be more accurate and 

is recommended for applications requiring the hyperbolic tangent (see 7.5): 

fk (e )= tank (e )= 1- exp (-e ) 
21+ exp (-e 

(7.5) 

Backpropagation (BP) is a learning algorithm (procedure) proposed for feedforward 

neural network and is the algorithm that has been used for data analysis in this project. 

Feedforward neural network, BP, NARXSP and NARX are presented in the following 

sections. 

7.2 Feedforward Multilayer Neural Networks (FFNN) 

Feedforward neural networks are the most popular and widely used models in many 

practical applications. A feedforward multilayer neural network (FFNN) consists of a 

number of layers of neurons, with the output from each neuron propagating to the 

input of each neuron of the next layer (Fig. 7.4). It has been proved that an FFNN with 

only one hidden layer of neurons and a specific type of activation function (e. g. 

sigmoidal function and hyperbolic tangent) can approximate well any functional 

relation arbitrarily, provided that enough hidden neurons are available (Hornik et al., 

1989, Hornik, 1991). FFNNs are typically trained with BP algorithms. In an FFNN 

network all parameters are usually adapted simultaneously by an optimization 

procedure. Learning proceeds as follows: a pattern is presented at the inputs. This is 

transformed in its passage through the layers of the network until it reaches the output 

layer. The units in the output layer all belong to a different category. The outputs of the 

network as they are now are compared with the outputs as they ideally would have 

been if this pattern were correctly classified. In the latter case the unit with the correct 

category would have the largest output values while the other output units would be 

very small. On the basis of this comparison all the connections' weights are modified a 

little bit to guarantee that the next time this same pattern is presented at the inputs, the 

value of the output unit with the correct category is a little bit higher than it is now and 

that, at the same time, the output values of all the other incorrect outputs are a little bit 

lower than they are now. This training procedure is supervised since it minimizes an 

error function measuring the difference between the network output and the teacher 

signal that provides the correct output (Schwenker et al., 2001). 
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Figure 7.4 Feedforward multilayer neural network architecture (Schwenker et al., 

2001) 

The advantage of FFNNs is that any continuous function can be uniformly 

approximated to within an arbitrary accuracy (Bechtler et al., 2001). 

Schwenker et al. (2001) found that RBF networks and FFNN networks with one 

hidden layer have the following similarities: 

" Both are based on a universal approximation scheme, where the network 

complexity simply increases with the number of hidden FFNNs or RBF. 

9 In both cases, there is the statistical problem of choosing the right model complexity 

They also identified the folowing differences: 

" Supervised optimization, usually implemented as BP or one of its variants, is 

essentially the only resource for training an FFNN network. 

" In FFNN networks there is no option for training the two network layers separately 

and there is no opportunity for network initialization as in RBF networks. 

" FFNN units in the hidden layer can be viewed as soft decision hyperplanes defining 

certain composite features that are then used to separate the data as in a decision 

tree. 
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" The RBF units, on the other hand, can be viewed as smoothed typical data points. 

" Given a new data point, the RBF network essentially makes a decision based on the 

similarity to known data points, whereas the FFNN network makes a decision based 

on other factors. 

" It seems that decisions made by FFNN networks are more rule-based, whereas those 

made by RBF networks are more case-based. 

There are numerous applications of FFNN neural networks, and some of them are 

presented below. 

Kukolj et al. (2001) presented the results of research into the possibilities of applying a 

multilayer perceptron type of neural network for fault diagnosis, state estimation, and 

prediction in a gas pipeline transmission network. The FFNN neural network was 

trained using the error BP method. Experiments have shown that among the factors 

considered, the sampling period and the number of inputs might be the most effective 
in decreasing the error of the neural network based supervisory functions. Datta and 

Tassou (1997) used FFNN and RBF networks for prediction of the electrical load in 

supermarkets. They found that the simple FFNN network performed better than the 

RBF. Mahdi and Araabi (2004) studied the dynamics of a heat exchanger pilot plant, 

using an FFNN neural network while Parlos et al. (1994) developed a non-linear 
dynamic model for a heat exchanger using a recurrent FFNN neural network. 

7.2.1 Backpropagation Batch Gradient Descent Algorithm 

Backpropagation (BP) is a gradient descent algorithm in which the network weights 

are moved along the negative of the gradient of the performance function. The purpose 

of BP is to adjust the internal state (weights and biases) of the FFNN so that the FFNN 

produces the desired output for the specific input. 

To teach the neural network we need a training data set. This consists of input signals 
(xi and x2) assigned a corresponding target (desired output) z. As seen in Figs. 7.5,7.6, 

7.7,7.8,7.9 and 7.10 the network training is an iterative process. 
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In each iteration coefficients of weights of nodes are modified using new data from the 

training data set. Modification is calculated using algorithm described below 

(Rumelhart et al., 1986; Rojas, 1996): 

First Step: Each teaching step starts by forcing both input signals from the training 

set. After this stage we can determine the output signal value for each neuron in each 

network layer. The figures below illustrate how a signal propagates through the 

network. The w(x, n)� symbols represent weights of connections between network input 

xn and neuron n in the input layer. y� The symbols represent the output signal of 

neuron n. 

Xl 

y 

x2 

Figure 7.5 First step: Propagation of data from inputs to hidden layer 

Second Step: Propagation of signals through the hidden layer. The w, n� symbols 

represent weights of connections between the output of neuron m and the input of 

neuron n in the next layer. 

xl 

y 

x2 

Figure 7.6 Second step: Propagation of data through the hidden layer 
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Third Step: Propagation of signals through the output layer. 

X1 

X2 

11461'4 ± 115615 

rf6%J Y 

Figure 7.7 Third step: Propagation of data through the output layer 

Fourth Step: In the next algorithm step the output signal of the network y is compared 

with the desired output value z (the actual output), which is found in the training data 

set. The difference is called the error signal 6 of the output layer neuron. 

xi 

Z 

y 

X2 

Figure 7.8 Fourth step: Calculation of the error for all the outputs 

Fifth Step: It is impossible to compute error signals for internal neurons directly, 

because the output values of these neurons are unknown. The idea is to propagate error 

signal S (computed in a single teaching step) back to all neurons, whith output signals 

input for the neuron discussed. The weights' coefficients w, n� used to propagate errors 
back are equal to those used during computational of the output value. Only the 

direction of data flow is changed (signals are propagated from outputs to inputs one 

after the other). This technique is used for all network layers. If propagated errors 

come from few neurons they are added, as illustrated below: 
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Figure 7.9 Fifth step: Propagation of the error signal back to all neurons 

Sixth Step: When the error signal for each neuron is computed, the weights' 

coefficients of each neuron input node may be modified. In the formulas below 

df(e)/de represents the derivative of the neuron activation function (whose weights are 

modified). 

xi 

v 

X2 
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Figure 7.10 Sixth step: Weights coefficients of each neuron input node may be 

modified 

'5 

v 

Coefficient il affects the network teaching speed. There are a few techniques to select 

this parameter. 

The first method is to start the teaching process with a large value for the parameter. 

While weights' coefficients are being established the parameter is being decreased 

gradually. The second, more complicated, method starts teaching with small parameter 

value. During the teaching process the parameter is increased when the teaching is 

advanced and then decreased again in the final stage. Starting teaching process with a 

low parameter value enables the weights' coefficients signs, to be determined. 
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Braun and Li (2001) state that the advantage of a BP algorithm it is very good at 

interpolating performance. 

However, Bechtler et al. (2001) point out that its disadvantages are those: 

41 The BP's algorithm might converge very slowly. 

9 Its extrapolating performance is poor. 

Feedforward with backpropagation (FFBP) network have been broadly applied in 

many areas of industry, especially those where recognition and control of samples are 

required. Kuo et al. (2002) applied FFBP to fault diagnosis of a marine propulsion 

shaft system. By applying a combination of the FFBP and fuzzy logic methods, an 

optimal propagation neural network and an optimal learning coefficient for the neural 

network were obtained. When faults occurred, the vibration signals were collected as 

inputs of the FFBP, which recalled and judged what type of fault they belonged to. 

Lee et al. (1996) describe the application of FFBP algorithm to the problem of fault 

diagnosis in an air-handling unit. The approach used relies on the ability of an ANN to 

identify patterns of residuals that can be used as signatures for various faults. 

A FFBP algorithm with Levenberg-Marquardt approximation has been used as a 

training algorithm for ANNs for FDD in a variable volume air handling unit. Here, the 

model method consists of comparing the real behaviour of the AHU plant with the 

normal behaviour given by the ANN trained during a preliminary phase. By this means 
Morisot and Marchio (1999) detected faults in the residual variation of temperature 

and relative humidity. Li et al. (1996) applied an ANN for fault diagnosis in a complex 
heating system. Here, a two-level ANN was constructed and simulated data were used 
to train and test it. 

Furthermore, Li et al. (1997) developed an ANN prototype using the simulation data of 

a reference heating system. The ANN was trained using commercial software with an 
improved BP algorithm. They demonstrated the feasibility of using ANNs for 

detecting and diagnosing faults in heating systems. 
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7.2.2 Nonlinear Autoregressive Network with Exogenous Inputs NARX 

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent 

dynamic network, with feedback connections enclosing several layers of the network. 

The NARX model is based on the linear ARX model, which is commonly used in 

time-series modelling. The defining equation for the NARX model is (7.6) (Ljung, 

1999): 

Y(n)=. f(Y(t-1), v(t-2),......., (t-ny), u(t-1), u(t-2),...... u(t-nu)) (7.6) 

Two types of NARX networks, NARX parallel and series-parallel arrangements will 

now be discussed in turn. 

NARX parallel arrangement 

An NARX parallel arrangement is where the next value of the dependent signal y(n) 
(equation 7.6) is regressed on previous values of the output signal and previous values 

of an independent (exogenous) input signal. Consequently, the output of the NARX 

network is an estimate of the output of some linear dynamic system that we are trying 

to model. The NARX model can be implemented, using a feedforward neural network 

to approximate the function f in equation 7.6. Fig. 7.11 show a schematic 

representation of the NARX parallel arrangement. Equation (7.6) can be represented in 

detail by (7.7) (Ljung, 1999): 

PQPPQQ 

y(n) =La(i)u(n-i)+Zb(l) (n-J)+IG. Q(i, J)u(n-i)u(n-J)+E»(i, J)y(n-i»(n-J)+ 
rý J=t 1.0 j'0 1=1 j=I 

PQ 
(%. %) 

j: Ec(i, J)n-z)j (n-J)+.... +e(n) 
1=1 j=1 
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where y(t) is the system output signal; u(t) is the input signal; e(t) is the error; P and Q 

represent the model order of the exogenous (linear and nonlinear) and the 

autoregressive terms, respectively; a(i) and a(ij) are the coefficients of the linear and 

nonlinear exogenous terms; b(i) and b(i, j) are the coefficients of the linear and 

nonlinear autoregressive terms; and c(ij) are the coefficients of the non linear cross in 

term. 

If all the coefficients of the nonlinear terms are zero, equation (7.7) will give a linear 

ARX model. 
Defining of the components of (7.7): 

U= [u(t) u(t -1) ...... u(t - P) 1T ;y= [y(t -1) y(t - 2) ...... y(t - Q) ]T 

a= [a(1) a(2) ...... a(P)]T ;b= [b(1) b(2) ...... (Q)]T 

a(o, o) a(0,1) ...... a(o, F) 
a(1, O) a(1,1) ....... a(1, P) 

A=; BNN 
NN 

a(PI) a(P, 2)...... a(P, P) L 

C(0,0) C(0,1) ...... C(O, Q) 

CUP c(1,1) ........ c(1, Q) 
CNN 

c(Q, 1) c(Q, 2)....... c(Q, P) 

b(0,0) b(0,1) ...... b(0, Q) 

b(1,0) b(1,1) ........ b(1, Q) 

b(Q, 1) b(Q, 2)....... (Q, P) 

Thus, equation (7.7) can be expressed as follows: 

Y(n)=äTu+bT y+UTANNU+YTBNNY+UTCNNY......... +e(t) (7.8) 

The main advantage of a NARX parallel arrangement network is that they perform 
better than conventional recurrent neural networks in long term dependency problems 
(Tsungnan et al., 1998; Benign et al., 1994 and Lin et al., 1996). 
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Figure 7.11 NARX with parallel architecture (Demuth et al., 2008) 

NARX series-parallel arrangement 

Unlike an NARX parallel arrangement, where the output estimated is fed back to the 

input of the feedforward network, an NARX series-parallel arrangement uses true 

output instead of estimated output (see Fig. 7.12). 

NARX series-parallel arrangements have two advantages over NARX parallel 

arrangements. 

The first is that the input to the feedforward network is more accurate. The second is 

that the resulting network has a purely feedforward architecture, and static BP 

algorithm can be used for training (Demuth et al., 2008). 

uýtý 
T 

Feedforward f rt) 

YN 
T Network 
D 
l 

Figure 7.12 NARR with series-parallel architecture (Demuth et al., 2008) 

The NARX series-parallel arrangements used in this project and from the results 

analysis it gives good approximation of the thermal behaviours in the three buildings 

throughout the year. 
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There are many applications for the NARX; some of which are reported successively. 

The NARX method is applied to model the three-way catalyst, based on measurements 

of the upstream and downstream air-fuel ratios. It is shown that the NARX models 

describe the process in great detail and they are valid over a very wide range of 

operating conditions. Thus, the efficiencies of exhaust gas conversion have been 

improved (Soumelidis and Stobart, 2006). Furthermore, NARX method is well suited 

for modelling non-linear systems such as heat exchanger (Chen et al., 1990), 

wastewater treatment plants, catalytic reforming systems in a petroleum refinery (Su 

and McAvoy, 1991 and Su et al., 1992). 

Finally, Yu et al. (2005) investigated the use of NARX networks for fault control in 

chemical and biological processes, where the control scheme is composed of two parts. 

In the first part, NARX was used to model the process, where the model was made 

adaptive on-line to catch the dynamic changes caused by faults, while the second part 

included auto-tuning the PID controller to be adapted to compensate for the 

degradation of the system's stability and performance. They demonstrated the 

applicability of the developed scheme to industrial processes. 

7.3 Neural Network Data Analysis and Model Development 

In this chapter, neural networks are applied to the data obtained from Portman House, 

Visa building and Rockefeller building with particular NARX networks (feedforward 

parallel and series-parallel arrangements) and feedforward backpropagation (FFBP) 

types being used throughout the project to build the models for one year (2005). In 

contrast to the linear analysis in chapters 4,5 and 6, the NARXSP, FFBP and NARX 

networks can have the same properties throughout the seasons. The schematic 
flowchart shown in Fig. 7.13 summarises the system identification procedure for the 

non-linear mathematical models. 
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Figure 7.13 Neural network modeling basic steps (Demuth et al., 2008) 

All stages of the schematic flowchart (Fig. 7.13) are listed below (Demuth et al., 

2008): 

Handling the data 

A set of input-output data is presented for model development with non-linear 

mathematical models. The inputs selected are the same as those for linear parametric 

mathematical analysis (see chapters 4,5 and 6). 

Structure selection 

A choice should be made between FFBP, NARX and NARXSP mathematical models 

that can be used to represent the system. The first step in structure selection is to create 

the network object. The function newff creates a feedforward network. It requires four 

inputs and returns the network object. The first input is the minimum and maximum of 

each row of the matrix which contains the inputs and outputs. The second input is an 

array containing the sizes of each layer. The third input is a cell array containing the 

sizes of the transfer functions to be used in each layer. The final input contains the 

name of the training function to be used 
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Training network 
The training process requires a set of examples of proper network behaviour with input 

u and actual output t. During training the weights and biases of the network are 

iteratively adjusted to minimize the network performance function net. perforFcn. The 

default performance function for feedforward networks is mean squared error mse (the 

average squared error between the network outputs yk and the target outputs t) (see 

equation 7.9). Levenberg Marquardt is the default training algorithm (trainlm) that is 

used in this project for feedforward network. This algorithm uses the gradient of the 

performance function to determine how to adjust the weights to minimize 

performance. The gradient is determined using the backpropagation technique, which 

involves performing computations backwards through the network. The least mean 

squared error algorithm adjusts the weights and biases of the linear network to 

minimize the mean squared error. 

N Ar 

mse =NL e2 (P) =N (t(P) - Yk (P))2 (7.9) 
p-1 p-1 

where, 

- Nis the number of input-target (output) pairs (u(l)t(l), u(2)t(2),..... u(N), t(N)) 

- yk(p) simulated model output at time t=p 

- t(p) actual output at time t=p (measurements) 

Finally, mse z2* FPE (final prediction error for linear parametric models, see section 
3.4.2) 

Simulation and model validation 
With a trained network, simulation is a way of testing the network to see if it meets our 

expectation. Simulation takes the network input u and the network object net. and 

returns the network output yk(p). Finally, for model validation a comparison is made 
between target and network output. 
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The next sections present the inputs and some of the results obtained for each season, 

while the properties of the networks used throughout the entire year and for each 
building are as follows: 

NARX series parallel arrangement (NARXSP) 

" Definition of the network: net = newnarxsp (minmax (m), ID, OD, [S I S2], 

{'TF 1', "TF2' }, BTF , PF); 

where, 

" minmax (m) is the minimum and maximum of each row of the matrix `m' which 

contains the inputs and outputs 

" ID and OD is the input and output delay vector respectively. The values of ID and 
OD that have been used throughout this analysis with good results are: 

" ID = [1: 1] - [1: 4] 

" OD = [1: 1] 

" S1 and S2 are the sizes of the first and second layer (number of neurons in the first 

and second layer), where their values are (see Fig. 7.6, pg. 119): 

" S1=3-20 

" S2 =2 (two outputs) 

" TF1 and TF2 are the transfer functions of the first and second layer respectively 
(networks with two layers are used throughout the project) 

" TF1= `tansig' (see section 7.1, pg. 118) 

" TF2 = `purelin' (see section 7.1, pg. 117) 

" BTF backpropagation network training function (default = `trainlm') (see section 
7.2.1, pgs. 120 - 125) 

" PF perfomance function (default = `mse') (see section 7.3, pg. 131) 

Feedforward backpropagation (FFBP) 

" Definition of the network: net = newff (minmax (p), [S I S2], {'TF1', 'TF2' }, BTF, 
PF); 

where, 

"p is the matrix that contains the inputs 

"t is the matrix that contains the outputs 
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" minmax (p) is the minimum and maximum of each row of the matrix that contains 

the inputs 

" Si and S2 are the sizes of the first and second layer (number of neurons in the first 

and second layer) 

" S1=3 

" S2 =2 (two outputs) 

" TFl and TF2 are the transfer functions of the first and second layer respectively 
(networks with two layers are used throughout the project) 

" TF 1= `tansig' 

" TF2 = `purelin' 

" BTF backpropagation network training function (default = `trainlm') 

" PF perfomance function (default = `mse') 

NARX parallel arrangement (NARX) 

" Definition of the network: net = newnarx (minmax (p), ID, OD, [S l S2], 

{'TF 1', "TF2' }, BTF, PF); 

where, 

"p is the matrix that contains the inputs 

"t is the matrix that contains the outputs 

" minmax (p) is the minimum and maximum of each row of the matrix that contains 

the inputs 

" ID and OD are the input and output delay vector respectively, where the values of 

ID and OD that are been used thruoghut this analysis with good results are: 

" ID = [1: 1] - [1: 4] 

" OD=[1: 1] 
" Si and S2 are the sizes of the first and second layer (number of neurons in the first 

and second layer) 

9 S1 =3 

" S2 =2 (two outputs) 

" TFl and TF2 are the transfer functions of the first and second layer respectively 
(networks with two layers are used throughout the project) 

" TF1= `tansig' 

" TF2 = `purelin' 
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9 BTF backpropagation network training function (default = `trainlm') 

" PF perfomance function (default = `mse') 

Finally, in the next sections the results of the analyses are: 

" For two weeks respectively: 

o Week one (Monday Time 01: 20 - Friday Time 19: 00) sampled-data model 

estimation and 

o The following week, week two (Monday Time 01: 20 to Friday Time 19: 00) 

sampled-data model validation or alternatively 

" The same week respectively for: 

o 900 sampled-data model estimation (75 hours) and 465 sampled-data model 

validation (39 hours) 

o 213 Sampled-data model estimation (18 hours in day 1- Time 01: 20-19: 00) 

and 213 sampled-data model validation (18 hours in day 2- Time 01: 20- 

19: 00) 

7.3.1 Neural Network Data Analysis and Model Development in Portman House 

In the following sections models with two layers are explored in terms of best fit with 

the real measurements of room temperature throughout the four seasons. The analysis 

in this section covers the entire room positioned on the second floor (zones 1 and 2). 

The inputs selected are the same as those for linear analysis (see chapter 5), but in 

addition, for analysing the entire room, supply air temperature AHU2 and supply air 

flow rate AHU1 are added as inputs and temperature zone 2 is added as an output (see 

Fig. 5.2). 

Model development and validation for winter weekdays 

Throughout the winter, the NARXSP model gave the best results for predicting room 

temperature for the second floor. Due to the similarities of the results for this season, 

only the weeks 16-20 January 2006 (model estimation) and 23-27 January 2006 (used 

to validate the model) are presented respectively in Figs. 7.14 and 7.15. Furthermore, 

the week 16-20 January 2006 was analysed with FFBP and NARXSP networks (Fig. 

7.16). 
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The inputs that affect the results (room temperature zone 1 and zone 2) are: hot water 

temperature, supply air temperature AHU 1, supply air flow rate AHU 1, supply air 

temperature AHU2, supply air flow rate AHU2 and outside temperature, which are the 

same to linear models. 

In addition, 16 and 17 January 2006 were analysed with NARXSP, FFBP and NARX 

networks and the model fits and errors are shown in Figs. 7.17 and 7.18. Throughout 

the winter NARXSP network (mse 10-4) gives better fits than the FFBP and NARX 

networks (not presented). In Fig 7.18 the maximum error between measurements and 

model outputs is 0.6 degrees Celsius. 

Finally, throughout the winter season mse ranged between 10-4 (NARXSP network for 

1365 and 900 sampled data) and 10-3 (NARXSP network for 213 sampled data), while 

the errors between measurements and model outputs ranged between 0.2 (NARXSP 

network for 1365 and 900 sampled data) and 0.6 (NARXSP network for 213 sampled 

data) degrees Celsius. 
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Model development and validation for spring weekdays 

As for the linear models analysis, the inputs affecting the results (Room temperature 

zone 1 and zone 2) were hot water temperature, chilled water temperature, supply air 

temperature AHU1, supply air flow rate AHU1, supply air temperature AHU2, supply 

air flow rate AHU2 and outside temperature, are required for the spring season. 

In this section, the results for NARXSP, FFBP and NARX networks are given for the 

weeks 15-19 May 2006 (for model validation, see Fig. 7.19) and Fig. 7.20 for model 

errors. In addition, the week 08-12 May 2006 was analysed with NARXSP, FFBP and 
NARX networks, and the model fits are shown in Figs. 7.21 ( only for NARXSP and 
NARX networks). 

In addition, 08 and 09 May 2006 were analysed with NARXSP, FFBP and NARX 

networks and the model fits and errors are shown in Figs. 7.22 and 7.23. Finally, 

throughout spring the NARXSP network (mse 10"3) gives better fits than the NARX 

network (mse 10"2) network and FFBP network (not presented). The maximum error 
between measurements and model outputs is 0.6 degrees Celsius. 

Finally, throughout the spring season mse ranged between 104 (NARXSP network for 

1365 and 900 sampled data) and 10-2 (NARX network for 900 and 213 sampled data, 

and NARXSP network for 213 sampled data), while the errors between measurements 
and model outputs ranged between 0.2 (NARXSP network for 1365 and 900 sampled 
data) and 0.6 (NARXSP network for 213 sampled data, and NARX networks for 900 

sampled data) degrees Celsius. 
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Measured and simulated model output 
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Figure 7.23 Model errors, 09 May 2006 

Model development and validation for summer weekdays 

This part of the data analysis deals with the middle of summer. The week, 18-22 July 

2005 was chosen for model estimation, and the following week, 25-29 July 2005 for 

model validation. Figs. 7.24 and 7.25 shows only the results related to the NARXSP, 

while FFBP and NARR networks are not presented (low fits). The inputs affecting the 

results (Room temperature zone I and zone 2) are chilled water temperature, supply air 

temperature AHU 1, supply air flow rate AHU 1, supply air temperature AHU2, supply 

air flow rate AHU2 and outside temperature. 

Furthermore, the week 18-22 July 2005 was analysed with the NARXSP, FFBB and 
NARX networks, with the first and second part of this week being used for model 

estimation (900 sampled data) and validation (465 sampled data) (see Fig 7.26). 
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In addition, 18 and 19 July 2005 were analysed with NARXSP, FFBP and NARR 

networks and the model fits and errors are shown in Figs. 7.27 and 7.28. Finally, 

throughout summer the FFBP network (mse 10-3) gives better fits than the NARX 

network (mse 10-2) and NARXSP network (mse 10-2). The maximum error between 

measurements and model outputs is 0.4 degrees Celsius. 

Finally, throughout the summer season mse ranged between 10-4 (NARXSP network 

for 1365 and 900 sampled data) and 10"2 (NARX and FFBP networks for 900 and 213 

sampled data, and NARXSP network for 213 sampled data), while the errors between 

measurements and model outputs ranged between 0.2 (NARXSP network for 1365 and 

900 sampled data) and 0.4 (NARX and FFBP network for 900 and 213 samped data, 

and NARXSP network for 213 sampled data) degrees Celsius. 
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Model development and validation for autumn weekdays 

Different weeks were analysed for model determination throughout the middle and end 

of the autumn season. 

Due to the similarities of the results only the week 17-21 October 2005 was used for 

model estimation and the following week (24-28 October 2005) for model validation 
(see results Figs. 7.29 and 7.30). 

The inputs chilled water temperature, hot water temperature, outside temperature, 

supply air temperature AHU1, supply air flow rate AHU1, supply air temperature 

AHU2 and supply air flow rate AHU2 were sufficient to obtain good results 

throughout beginning and middle of the autumn season. The NARXSP, FFBP and 
NARX networks gave good results throughout autumn. 

The week 17-21 October 2005 was analysed using the NARXSP, FFBP and NARX 

networks, with the first and second part of this week being used for model estimation 

and validation (see Fig 7.31). In addition, 17 and 18 October 2005 were analysed with 
NARXSP, FFBP and NARX networks. The model fits and errors are shown in Figs. 

7.32 and 7.33. Finally, throughout summer the NARXSP network (mse 10-3) gives 
better fits than the other networks (not presented). The maximum error between 

measurements and model outputs is 0.6 degrees Celsius. 

Finally, throughout the autumn season mse ranged between 10-4 (NARXSP network 
for 1365 and 900 sampled data) and 10"3 (NARX and FFBP networks for 900 sampled 
data, and NARXSP and FFBP networks for 213 sampled data), while the errors 
between measurements and model outputs ranged between 0.2 (NARXSP network for 

1365 and 900 sampled data) and 0.6 (FFBP network for 900 samped data, and 
NARXSP network for 213 sampled data) degrees Celsius. 
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7.3.2 Neural Network Data Analysis and Model Development in the Visa Building 

In this section the results obtained by applying neural networks to the Visa building are 

discussed. FFBP, NARXSP and NARR network types with the same properties 

outlined in section 7.3 were applied to a seventh floor room in zones I and 2 (see Fig. 

4.2), throughout the seasons. The analysis of results is done for the same models and 

conditions discussed in section 7.2.1. 

Model development and validation for spring weekdays 

Due to the similarities of the results obtained during this season, only the weeks 18-22 

April 2005 (used for model estimation) and 25-29 April 2005 (used for model 

validation) are presented respectively in Figs. 7.34 and 7.35. The analysis of results 

reveals that the inputs affecting the results (room temperature zone I and 2, seventh 
floor) are outside temperature, hot water temperature, chilled water temperature, 

supply air temperature AHU 1, supply air flow rate AHU 1, supply air temperature 

AHU2 and supply air flow rate AHU2. 
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Throughout the spring season, the NARXSP model with series-parallel arrangement 

gave the best results compared to FFBP and NARX in predicting room temperature for 

the 7th floor. 

The week 18-22 April 2005 was analysed using the NARXSP, FFBP and NARX 

networks, with the first and second part of this week being used for model estimation 

and validation (see Fig 7.36). 

In addition, 18 and 19 April 2005 were analysed with NARXSP, FFBP and NARX 

networks and the model fits and errors are shown in Figs. 7.37 and 7.38. Finally, 

throughout spring the NARXSP network (mse 10"3) gives better fits than the other 

networks (not presented). The maximum error between measurements and model 

outputs is 0.3 degrees Celsius. 

Finally, throughout the spring season mse ranged between 10"4 (NARXSP network for 

1365 and 900 sampled data) and 10-3 (NARX and FFBP networks for 900 sampled 
data, and NARXSP network for 213 sampled data), while the errors between 

measurements and model outputs ranged between 0.2 (NARXSP network for 1365 and 
900 sampled data) and 0.3 (NARX and FFBP networks for 900 samped data, and 
NARXSP network for 213 sampled data) degrees Celsius. 
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Model development and validation for summer weekdays 

The inputs affecting the results throughout the middle of summer were: outside 

temperature, chilled water temperature, supply air temperature AHU 1, supply air flow 

rate AHUI, supply air temperature AHU2 and supply air flow rate AHU2. 

In this section only the results for the week 18-22 July 2005 used for model estimation 

and the following week 25-29 July 2005 for model validation are shown in Figs. 7.39 

and 7.40. Furthermore, the NARX, NARXSP and FFBP networks were applied to the 

same week, 18-22 July 2005, where 900 and 465 sampled data were utilised for model 

estimation and validation respectively (see Fig. 7.41, model validation). From the 

analysis of the results obtained throughout the summer season, NARXSP produced 

better results than the FFBP and NARX networks. 

Finally, throughout the summer season mse ranged between 10-4 (NARXSP network 
for 1365 and 900 sampled data) and 10-3 (NARX and FFBP networks for 900 sampled 
data), while the errors between measurements and model outputs ranged between 0.8 

(NARXSP network for 1365 and 900 sampled data) and 1.5 (NARX and FFBP 

network for 900 samped data) degrees Celsius. 
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Model development and validation for autumn weekdays 

Throughout the middle of autumn, the inputs affecting the results were: chilled water 

temperature, hot water temperature, outside temperature, supply air temperature 

AHUI, supply air flow rate AHU 1, supply air temperature AHU2 and supply air flow 

rate AHU2. In this section, only the results for the week 10-14 October 2005 used for 

model estimation and the following week 17-21 October 2005 for model validation are 

shown (see Figs. 7.42 and 7.43). 

Furthermore, the same networks were applied to the same week, 10-14 October 2005, 

where 900 and 465 sampled data were utilised for model estimation and validation 

respectively (see Fig. 7.44, model validation). The NARXSP network gave better fits 

than the FFBP and NARX networks throughout the middle of the autumn season (1365 

and 900 sampled data model development). 
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In addition, 10 and 11 October 2005 were analysed with NARXSP, FFBP and NARX 

networks and the model fits and errors are shown in Figs. 7.45 and 7.46. Finally, 

throughout autumn the NARXSP and FFBP networks (mse 10-3) give good fits. The 

maximum error between measurements and model outputs is 0.6 degrees Celsius. 

Finally, throughout the autumn season mse ranged between 10-4 (NARXSP network 

for 1365 and 900 sampled data) and 10"3 (FFBP network for 900 sampled data, and 

NARXSP and FFBP networks for 213 sampled data), while the errors between 

measurements and model outputs ranged between 0.3 (NARXSP network for 1365 and 

900 sampled data) and 0.6 (FFBP network for 900 samped data, and NARXSP and 

FFBP networks for 213 sampled data) degrees Celsius. 
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Model development and validation for winter weekdays 

Throughout the middle of the winter season, the inputs outside temperature, hot water 

temperature, supply air temperature AHU1, supply air flow rate AHU1, supply air 

temperature AHU2 and supply air flow rate AHU2 were used in the NARSP, FFBP 

and NARX networks. The results for the week 10-14 January 2005 used for model 

estimation and the following week 17-21 January 2005 for model validation is shown 

(see Fig. 7.47 and 7.48). 

The NARXSP, FFBB and NARR networks were applied as above to the same week 

10-14 January 2005, where 900 and 465 sampled data were utilised respectively for 

model estimation and validation (see Fig. 7.49, model validation). Finally, for the 

winter season when the same week was used for model estimation and validation, then 

in addition to NARXSP, the FFBP and NARX networks had good fits. 

In addition, 10 and 11 January 2005 were analysed with NARXSP and FFBP networks 

and the model fits and errors are shown in Figs. 7.50 and 7.51. Finally, throughout 

winter season the NARXSP and FFBP networks (mse 10-3) gives better fits than the 

NARX network. The maximum error between measurements and model outputs is 1.5 

degrees Celsius. 

Finally, throughout the winter season mse ranged between 10-4 (NARXSP network for 

1365 and 900 sampled data) and 10'3 (NARX and FFBP networks for 900 sampled 
data, and NARXSP and FFBP networks for 213 sampled data), while the errors 
between measurements and model outputs ranged between 0.3 (NARXSP network for 

1365 and 900 sampled data) and 1.5 (NARX and FFBP networks for 900 samped data, 

and NARXSP and FFBP networks for 213 sampled data) degrees Celsius. 
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7.3.3 Neural Network Data Analysis and Model Development in Rockefeller 

Building (UCL) 

In the following section the results obtained by applying neural networks to the 

Rockefeller building are analysed. The NARXSP network was applied to the Thomas 

Lewis room in the Rockefeller building under the same conditions discussed in section 

7.2. The FFBP and NARX networks are not presented, because they gave low fits with 

real measurements. In addition, the properties of the NARXSP network used 

throughout the entire year are the same as discussed in section 7.2. 

Since model development throughout the year requires networks with the same 

properties, the analysis of results was based on inputs that mainly affected room 

temperature. The analysis of results for Thomas Lewis room is presented in two 

sections, the first one discussing present development models, for the end of spring 

and summer and the middle of autumn (where outside temperature is the input) and the 

second, giving the results for autumn, winter and the middle of spring (where the 
inputs are outside temperature and hot water temperature). 
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Model development and validation end of spring-summer- beginning of autumn 

Throughout the end of spring, summer, and up to the beginning of the autumn season 

outside temperature is usually the only input affecting room temperature. The 

NARXSP network was applied to the data obtained from this building, and the results 

related to NARXSP for the weeks 15-19 May 2006 (model estimation) and 22-26 

May 2006 (model validation) are shown in Figs. 7.52 and 7.53. 

The NARXSP network was applied as above to the same week 15-19 May 2006, 

where 900 and 465 sampled data were utilised respectively for model estimation and 

validation (see Fig. 7.54, model validation). 

In addition, 15 and 16 May 2006 were analysed with NARXSP network and the model 
fits and errors are shown in Figs. 7.55 and 7.56. Throughout the winter season 
NARXSP network (mse 10"3) gives good fits. The maximum error between 

measurements and model outputs is 0.5 degrees Celsius. 

Finally, throughout the end of spring-summer-beginning of autumn seasons mse 

ranged between 104 (NARXSP network for 1365 and 900 sampled data) and 10"3 

(NARXSP network for 213 sampled data), while the errors between measurements and 

model outputs ranged between 0.5 (NARXSP network for 1365 and 900 sampled data) 

and 0.3 (NARXSP network for 213 sampled data) degrees Celsius. 
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Model de-, elopment and validation middle of autumn-winter-middle of spring 

The inputs. outside temperature and hot water temperature affect the room temperature 

from the middle of autumn, throughout winter and up to the middle of the spring 

season. The results related to the NARXSP network for the weeks 13-17 February 

2006 (model estimation) and 20-24 February 2006 (model validation) are shown 

respectively in Figs. 7.57 and 7.58. 

The NARXSP network was applied as above to the same week 13-17 February 2006, 

where 900 and 465 sampled data were utilised respectively for model estimation and 

validation (see Fig. 7.59. model validation). 

In addition, 13 and 17 February 2006 were analysed with NARXSP network and the 

model fits and errors are shown in Figs. 7.60 and 7.61. Throughout the winter season 

the NARXSP network (mse 10-3) gives good fit. The maximum error between 

measurements and model outputs is 0.9 degrees Celsius. 
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Finally, throughout the middle of autumn - winter - middle of the spring seasons mse 

ranged between 104 (NARXSP network for 1365 and 900 sampled data) and 10-3 

(NARXSP network for 213 sampled data), while the errors between measurements and 

model outputs ranged between 0.1 (NARXSP network for 1365 and 900 sampled data) 

and 0.9 (NARXSP network for 213 sampled data) degrees Celsius. 
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7.4 Conclusions for Model Development and Validation with Neural Networks 

This chapter dealt with neural networks and, in particular, FFBP, NARXSP and 

NARR networks used for model development in the Visa building, Portman House 

and Rockefeller building. The networks were applied to the same inputs considered for 

the linear models throughout the four seasons (chapters 4,5 and 6). 

Data analysis was performed as described at the beginning of section 7.3, where two 

different weeks or the same week of data were used for model estimation and 

validation. The networks chosen for these buildings have only two layers. For the first 

layer three neurons were required (maximum 20 for NARXSP network), and for the 

second layer, which was the output layer (room temperature zone I and 2), two 

neurons were required. If the number of neurons in the first layer increased above three 

(or maximum 20 for NARXSP network), the model validation on the other piece of 

data did not improve and for values above twenty neurons the solution got worse (over 

parameterization). 
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Compared to the Visa building and Portman House the results obtained for the 

Rockefeller building have lower fits (model errors between measurements and 

simulated model output and mse), in particular for the model estimation for one week 

and model validation for the following week (FFBP and NARX networks). For the 

Rockefeller building, the NARXSP network offered better prediction of room 

temperature than the other networks (NARX and FFBP networks). 

For the Visa building and Portman House the models' errors are 0.05 - 1.5 degrees 

Celsius (NARXSP, NARX and FFBP networks) and for the Rockefeller building are 
0.05 - 0.9 degrees Celsius (NARXSP network). In the Visa building and Portman 

house mse is of the order 10.2 - 10'4 (FFBP, NARX and NARXSP networks), while for 

the Rockefeller building mse is of the order 10-3 - 10-4 (NARXSP network). In the 

Rockefeller building, the results obtained for 900 and 213 sampled data utilized for 

model development with the NARXSP model are better compare than those obtained 

with the same network and sampled data for the other two buildings. Finally, overall 

comparing the year of data obtained from the three buildings the results obtained with 
the NARXSP network are better than those obtained with the other networks (NARX 

and FFBP). As the number of sampled data for model development increased from 213 

to 1365 the NARXSP and NARX networks gave good results, because, the increased 

number of sampled data enabled the inclusion of past inputs and outputs. 

The advantages of applying neural networks instead of linear models were: 

9 The same networks with the same properties as presented in section 7.3 could be 

used throughout the entire year and for the three buildings, with good results 
obtained for predicting room temperature. 

" There was no limit on the number of outputs that could be used for model 
development with the FFBP, NARXSP and NARX networks 

" With neural networks, the amount of time required for model development and 
validation throughout the year was less than that for linear models. 

" The results obtained with non-linear models are better than those obtained with 
linear models because (see Table 7.1): 

o For non-linear models the values obtained for mse (10"2 - 10-4) are less than 
those obtained with FPE (10-1-10"3) with linear models (mse z2* FPE) and 
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o models' errors between measurements and simulated model output for non- 

linear models (0.05 - 1.5 degrees Celsius) are less than those obtained from 

linear models (0.1 - 2.5 degrees Celsius). 

From the analysis of the results with non-linear mathematical models, as the number of 

sampling data for model development increased from one day (213 sampled data) to 

one week (900 to 1365 sampled data). The performance of these models in predicting 

room temperature improved significantly. The above conclusion can be verified by 

comparing the models errors between measurements and simulated model output for 

these networks, where for 900 and 1365 sampled data, they are very small (within 0.05 

- 0.8 degrees Celsius), while for 213 sampled data, they increased to 1.5 degrees 

Celsius. This is because the non-linear mathematical models require vast amount of 
data to be included for model development to give good prediction of room 

temperature (Annex 34,2001). Contrary to non-linear models, the linear models 
improved their prediction of room temperature as the number of sampled data 

decreased from 1365 to 213 model development. This is because in physics the 

equations for energy conservation of the heat transfer are non-linear (Rosenberg and 
Kamopp, 1983). 

Sampled data model Linear parametric ANNs 

development (estimation) mathematical models (Non-linear models) 

Model errors (degC) 0.6-2.5 0.05-0.8 
1365 

FPE / mse FPE = 10'1-10"2 mse - 10"3-10-4 
Model errors (degC) 0.3 -1.0 0.1-0.8 

900 

FPE / mse FPE =10-2 - 10-3 mse _ 10"2 - 10-3 

Model errors (degC) 0.1-0.8 0.1-1.5 

213 

FPE / mse FPE z 10-2.10"3 mse =10-2 - 10-3 

Table 7.1 Model errors (Measured minus simulated model output) - FPE / mse 
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CHAPTER 8 Conclusions and Future Work 

8.1 Conclusions 

This study has investigated the thermal behaviour of three different buildings built in 

different periods, one academic institute built in 1920 and two modem commercial 

buildings in London. Black-box linear (parametric mathematical models) and non- 

linear mathematical models (neural networks) were used to obtain the models from the 

data collected. This is because of the lack of available specific information related to 

the structure of the buildings such as windows, doors and building dimensions and the 

complexity of such details for a real case. In the Visa building and Portman House the 

input selection for one year was a long process because the same inputs gave a good 

prediction of the room's temperature only for a number of weeks at a time. In contrast, 

in the Rockefeller building, outside temperature and hot water temperature were the 

only inputs and room temperature was the only output provided by the BMS 

throughout the year. 

In this project, the models were developed for different seasons and each season was 

subdivided into three parts: beginning, middle and end. The reasons for these 

subdivisions are listed below: 

" Some inputs gave good models for a limited period of time (several weeks). 

Consequently, as reported below, the process of input selection and the period of 

validity in obtaining models that gave good thermal prediction (within the same 

period) were the first reasons for the subdivision. This criterion was applied 

throughout the analysis with linear and non-linear mathematical models. 

" Another reason was that these models are linear and this was a disadvantage that 

affected the period of validity of some models. Sometimes it was even lower than 

that of the validity of the inputs selected for that period. 

The primary assumption of the model development in the Visa building and Portman 

House was that the internal temperature variation is directly in part influenced by 

variations in external temperature and the internal air coming from the air handling 

units. 
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Although occupancy, computers, printers etc cause an additional internal heat gain, 

their impact is strongly correlated with the internal energy exchanged between the 

incoming air from AHUs, that flows inside the room from the fan coil units, and the 

circulating water (flows inside fan coil units and AHU) that is heated up and cooled 

down by the boiler and chiller plants respectively. As such, the effects of occupancy, 

computers, printers etc were indirectly in part included in the model. Contrary to the 

Visa building and Portman House, in the Rockefeller building the effects of additional 

internal heat gain caused by occupancy, computers and printers were not included in 

part in the model because their effect was small compared to the external temperature 

and hot water temperature throughout the cold season. 

The model development and then validation using linear models followed the 

procedures discussed in chapter 3. Firstly, the same week or different days were 

utilized for model development and validation, where the first part (213,900 or 800 

sampled data) for model estimation and the second part (213,465 or 565 sampled data) 

were utilized for model validation. Secondly, two weeks were utilized, where the first 

week (1365 sampled data) was used for model estimation and the following week 
(1365 sampled data) was used for model validation. The analyses were pursued for 

sampled-data model validation for one of the following weekdays in which inputs and 

model validity remained unchanged. 

From the analysis of the results obtained with linear models (chapters 4,5 and 6), the 

BJ models (bj [1 111 2], bj [1 111 3], bj [1 111 4] and bj [1 111 5]), OE models 
(oe [1 12], oe [1 13], oe [1 14] and oe [1 15]) and ARMAX models (amx [2 22 11, 

amx [2 22 2], amx [2 22 3], amx[2 22 4] and amx [2 22 5]) gave good results for a 

certain period, ranging from four to twelve weeks. The period of validity changed from 

one season to another, and sometimes within the same season and from one building to 

another, depending on the BMS. Furthermore, in the Visa building and Portman House 

throughout the year FPE varied between 10"1 and 10"3, while model errors varied 
between 0.3 and 1.5 degrees Celsius. Finally, for the Rockefeller building the FPE is of 
the order 10"3 and model errors are within 0.6 and 2.5 degrees Celsius. 

Chapter 7 deals with non-linear mathematical models (neural networks). NARX, FFBP 

and NARXSP networks were applied to the three buildings for one year. 
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As for the linear analysis, the same inputs selected for each season were used for these 

networks. In contrast to 'applying linear models, NARX, FFBP and NARXSP 

networks, with the same properties (section 7.3), gave good results for Portman House 

and the Visa building throughout the year. 

Furthermore, for the Visa building and Portman House the models' errors are 0.05 - 
1.5 degrees Celsius (NARXSP, NARX and FFBP networks) and for the Rockefeller 

building are 0.05 - 0.9 degrees Celsius (NARXSP network). In the Visa building and 
Portman house mse is of the order 10-2 - 10-4 (FFBP, NARX and NARXSP networks), 

while for the Rockefeller building mse is of the order 10"3 - 10-4 (NARXSP network). 
In the Rockefeller building, the results obtained for 900 and 213 sampled data utilized 
for model development with the NARXSP model are better compare than those 

obtained with the same network and sampled data for the other two buildings. Finally, 

the results obtained with non-linear models are better than those obtained with linear 

models (section 7.4). 

8.2 Future Work 

The following recommendations are made for future work: 

First, this study could be extended to other offices in the three buildings to, obtain an 
overall analysis for each building. Modelling with black box linear and non-linear 

mathematical models and with the actual BMS could also be extended to 

Second, HVAC plants' thermal behaviour could be analysed for one year. This is very 
important, because it would allow us to use these models for control purposes of these 

plants. 

Third, the building's thermal models and HVAC plants could be installed together 

with the actual BMS detecting any changes in thermal behaviour, which use model and 
design advanced controller other than PI and PID. 

Finally, this study could be extended to the other types of buildings like hospitals, 

supermarkets, airports and schools. 
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Appendix 1A Weekdays Results - Visa Building 

" One week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 

estimation 

" Following week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 
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Appendix 1B Weekdays Results - Models Presentation Visa Building 

Backward shift operator q (q ^ -n * u(t) =u (t-n), for n=1,2,..... N, see Ljung, 1987) 

1 Spring season 

Weekdays 25-29 April 2005 

bi 11 111 51: y(t) = IB(q)/F(q)]u(t) + IC(q)/D(q)le(t) 

B1(q) = 0.002505 q^-5; B2(q) = 0.03758 q^-5; B3(q) = 0.002505 q^-5 
B4(q) = 0.02758 q^-5; B5(q) = 0.001505 q^-5; C(q) =I+0.09265 q^-1 
D(q) =I-0.9849 q^-1; F1(q) 1-0.9747 q^-1; F2(q) =I-0.8799 q^-1 
F3(q) =1-0.7747 q^-1; F4(q) =1-0.5799 q^-1; F5(q) =I-0.3799 q^-1 
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2 Summer season 

Weekdays 13-17 June 2005 

oe [113]: y(t) = [B(q)/F(q)]u(t) + e(t) 
B1(q) = 0.4079 q^-3; B2(q) = 0.001359 q^-3; B3(q) = 0.2079 q^-3 
B4(q) = 0.02359 q^-3; F1(q) =1 - 0.419 q^-1; F2(q) =1 - 0.9744 q^-1 
F3(q) =1 - 0.219 q^-1; F4(q) =1 - 0.744 q^-1 

3 Autumn season 

Weekdays 17-21 October 2005 

oe[112]: y(t) = [B(q)/F(q)]u(t) + e(t) 
B1(q) = 0.2275 q^-2; B2(q) = 0.01353 q^-2; B3(q) = 0.1071 q^-2 
B4(q) = 0.01356 q^-2; F1(q) =1 - 0.113 q^-1; F2(q) =1 - 0.7143 q^-1 
F3(q) =1 - 0.117 q^-1; F4(q) =1 - 0.324 q^-1 

Weekdays 14-18 November 2005 

bj [111131: y(t) = [B(q)IF(q)lu(t) + [C(q)ID(q)le(t) 

B1(q) = 0.0155 q^-3; B2(q) = 0.001297 q^-3; B3(q) = -0.01358 q^-3 
B3(q) = -0.01358 q^-3; C(q) =1 + 0.2044 q^-1; D(q) =1 - 0.9989 q^-1 
Fl(q) =1-0.9226 q^-1; F2(q) =1 - 0.01025 q^-1; F3(q) =1 - 1.009 q^-1 
F4(q) =1-0.03 q^-1 

amx [2 2 21]: A(q)y(t) = B(q)u(t) + C(q)e(t) 

A(q) =1 - 1.858 q^-1 + 0.8587 q^-2; 
B1(q) = 0.02581 q^-1 - 0.02576 q^-2; B2(q) = 0.0003755 q^-1 - 0.000354 q^-2 
B3(q) = 0.006878 q^-2 - 0.008425 q^-2; B4(q) = 0.001338 q^-2 - 0.002225 q^-2 
C(q) =1 - 0.7898 qA-1 + 0.1913 q^-2 
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4 Winter season 

Weekdays 10-14 January 2005 

bj [111141: y(t) = [B(9)JF(9)lu(t) + [C(9)ID(q)le(t) 

B1(q) = -0.0003127 q^-4; B2(q) = 0.002565 q^-4; B3(q) = 0.03768 q^-4 
B4(q) = 0.01057 q^-4; C(q) =1 + 0.1433 q^-1; D(q) =1 - 0.9989 q^-1 
F1(q) =1 - 1.001 q^-1; F2(q) =1 - 0.9706 q^-1 
F3(q) =1 - 0.4979 q^-1; F4(q) =1 - 0.9338 q^-1 

oe [1 121: y(t) = [B(q)/F(q)Ju(t) + e(t) 
B1(q) = 0.001889 q^-2; B2(q) = 0.01142 q^-2; B3(q) = 0.2938 q^-2 
B4(q) = 0.5032 q^-2; F1(q) =1 - 0.9609 q^-1; F2(q) =1 - 0.1532 q^-1 
F3(q) =1 + 0.5423 q^-1; F4(q) =1 + 0.03903 q^-1 

Weekdays 28 Februarv-04 March 2005 

bj 1111121: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B1(q) = 0.004019 q^-2; B2(q) = 0.0003863 q^-2; B3(q) = 0.0003626 q^-2 
B4(q) = -0.0249 q^-2; C(q) =1 + 0.2078 q^-1; D(q) =1 - 0.9995 q^-1 
F1(q) =1 - 0.976 q^-1; F2(q) =1 - 0.8594 q^-1; F3(q) =1 - 0.984 q^-1 
F4(q) =1-1.001 q^-1 
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Appendix 2A Weekdays Results - Portman House Building 

" One week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 

estimation 

" Following week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 

validation 
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Appendix 2B Weekdays Results - Models Presentation Portman House Building 

Weekdays Results 

1 Winter season 

Weekdays 09-13 January 2006 

bj [111131: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B1(q) = 0.0007315 q^-3; B2(q) = -0.002481 q^-3; B3(q) = 0.0008548 q^-3 
B4(q) = 0.0154 q^-3; C(q) =1-0.09478 q^-1; D(q) =1 - 0.9861 q^-1 
F1(q) =1 - 0.7781 q^-1; F2(q) =1 - 0.9942 q^-1; F3(q) =1 - 0.9793 q^-1 
F4(q) =1-0.9632 q^-1 

2 Spring season 

Weekdays 17-21 April 2006 

bj [111141: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B1(q) = -0.00569 q^-4; B2(q) = 0.0009799 q^-4; B3(q) = 0.006836 q^-4 
B4(q) = 0.006752 q^-4; B5(q) = 0.006752 q^-4; C(q) =1 - 0.08025 q^-1 
D(q) =1 - 0.9892 q^-1; F1(q) =1 - 0.8004 q^-1; F2(q) =1-0.5419 q^-1 
F3(q) =1 - 0.8806 q^-1; F4(q) =1 - 0.9859 q^-1; F5(q) =1 - 0.8806 q^-1 

Weekdays 15-19 May 2006 

bi [111151: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B1(q) _ -0.03887 q^-5; B2(q) = 0.07982 q^-5; B3(q) = 0.0005488 q^-5 
B4(q) = 0.002099 q^-5; B5(q) = 0.0 1052 q^-5; C(q) =1-0.2427 q^-1 
D(q) =1 - 0.9902 q^-1; F1(q) =1 - 0.7089 q^-1; F2(q) =1 - 0.9774 q^-1 
F3(q) =1-0.9869 q^-1; F4(q) =1 - 0.972 qA-1; F5(q) =1 - 0.9666 q^-1 
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3 Summer season 

Weekdays 13-17 June 2005 

bi [111121: y(t) = [B(q)/]F(q)]u(t) + [C(q)/D(q)]e(t) 

B1(q) = -0.03682 q^-2; B2(q) = -0.009268 q^-2; B3(q) = 6.073e-005 q^-2 
B4(q) = 0.007348 q^-2; C(q) =1 - 0.1457 q^-1; D(q) =1-0.996 q^-1 
F1(q) =1-0.9165 q^-1; F2(q) =1 - 1.001 q^-1 
F3(q) =1 - 1.007 q^-1; F4(q) =1-0.916 q^-1 

oe [1 121: y(t) = [B(q)/F(q)lu(t) + e(t) 
B1(q) = -0.02526 q^-2; B2(q) = 0.01979 q^-2; B3(q) _ -0.02455 q^-2 
B4(q) = 0.02721 q^-2; F1(q) =1 - 0.985 q^-1; F2(q) =1 + 0.8677 q^-1 
F3(q) =1 - 0.9152 q^-1; F4(q) =1 - 0.6921 q^-1 

4 Autumn season 

Weekdays 24-28 October 2005 

bi [111151: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B1(q) = 0.03861 q^-5; B2(q) = -0.0003461 q^-5 B3(q) _ -0.000928 q^-5 
B4(q) = -0.002189 q^-5; B5(q) = -0.00123 q^- 5; C(q) =1 - 0.06846 q^-1 
D(q) =1 - 0.995 q^-1; F1(q) =1 - 0.9842 q^-1 
F2(q) =1 - 0.9765 q^-1; F3(q) =1 - 0.9962 q^-1 
F4(q) =1 - 0.9975 q^-1; F5(q) =1 - 0.3572 q^-1 
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Appendix 3A Weekdays Results - Rockefeller Building 

" One week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 

estimation 

" Following week (Monday Time 01: 20 to Friday Time 19: 00) sampled-data model 

validation 
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Figure 6.20 Model validation, weekdays 11-15 September 06 and 09-13 October 06 
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Figure 6.23 Model validation, weekdays 27-31 March 2006 and 17-21 April 2006 
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Figure 6.24 Model validation, weekdays 22-26 May 2006 and 05-09 June 2006 
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Appendix 

Appendix 3B Weekdays Results - Models Presentation Rockefeller Building 

Weekdays Results 

1. Summer Season 

Weekdays 12-16 June 2006 

bj [2 222 51: y(t) = [B(q)/F(q)lu(t) + [C(q)/D(q)le(t) 

B(q) = -0.0004057 q^-5 + 0.0003773 q^-6 ; C(q) =1 - 1.303 q^-1 + 0.4238 q^-2 
D(q) =1 - 1.978 q^-1 + 0.9785 q^-2, F(q) =1-2.013 q^-1 + 1.013 q^-2 

bj [111121: y(t) = [B(9)IF(9)Ju(t) + [C(9)ID(9)le(t) 

B(q) = 0.001634 q^-2; C(q) =1-0.1154 q^-1 
D(q) =1 - 1.001 q^-1; F(q) =1 - 0.9877 q^-1 

2. Autumn Season 

Weekdays 11-15 September 2006 

bj [2 222 4]: y(t) = IB(9)IF(9)]u(t) + [C(9)fD(9)]e(t) 

B(q) = -4.227e-005 q^-3 + 3.683e-006 q^-4; C(q) =1 - 0.7625 q^-1 + 0.0427 q^-2 
D(q) =1 - 1.907 q^-1 + 0.9084 q^-2; F(q) =1 - 1.998 q^-1 + 0.9985 q^-2 

Weekdays 09-13 October 2006 

bi [111121: y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)le(t) 

B(q) = 0.01291 q^-2; C(q) =1 + 0.3015 q^-1 
D(q) =1 - 0.9976 q^-1; F(q) =1 - 0.9587 q^-1 

3. Winter Season 

Weekdays 13-17 February 2006 

amx [2 22 8]: A(q)y(t) = B(q)u(t) + C(q)e(t) 

A(q) =1 - 1.903 q^-1 + 0.9036 q^-2; B1(q) = 0.009897 q^-8 - 0.00979 q^-9 
B2(q) = 0.0008419 q^-8 - 0.0007356 q^-9; C(q) =1 - 0.5634 q^-1 + 0.03532 q^-2 
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4. Spring Season 

Weekdays 27-31 March 2006 

amx [2 22 81: A(q)y(t) = B(q)u(t) + C(q)e(t) 

A(q) =1 - 1.898 q^-1 + 0.899 q^-2; B1(q) = 0.003587 q^-8 - 0.003319 q^-9 
B2(q) = 0.001143 q^-8 - 0.001082 q^-9; C(q) =1 - 0.9978 q^-1 + 0.2371 q^-2 

bj [111131: y(t) = [B(q)/F(q)lu(t) + [C(q)/D(q)le(t) 

B1(q) = 0.00483 q^-3; B2(q) = 0.001389 q^-3 

C(q) =1 - 0.1261 q^-l; D(q) =1 - 0.9989 q^-l 
F1(q) =1 + 0.755 q^-l; F2(q) =1 - 0.992 q^-1 

Weekdays 01-05 May 2006 

bi 1111151: y(t) = [B(q)/]F(q)]u(t) + [C(q)/D(q)le(t) 

B 1(q) = 0.01129 q^-5; B2(q) = 0.002186 q^-5 

C(q) =1+0.2754 q^-1; D(q) =1 - 0.999 q^-1 
F1(q) =1 - 0.9445 q^-1; F2(q) =1 - 0.9708 q^-1 
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Black-box linear parametric mathematical models - orders and delays description 

ARMAX models 

" Four inputs 

o amx[2221]: na=2, nb=[2222], nc=2, nk=[1111] 

" Two inputs 

o amx2226: na = 2, nb = [2 2], nc = 2, nk = [6 6] 

o amx2227: na = 2, nb = [2 2], nc = 2, nk = [7 7] 

o amx2228: na = 2, nb = [2 2], nc = 2, nk = [8 8] 

" One input 

o amx[222 1]: na=2, nb=2, nc=2, nk= 1 

o amx[1 11 2]: na = 1, nb = 1, nc = 1, nk =2 

BJ models 

" Five inputs 

o bj[1 1 11 2]: nb=[1 111 1], nc= 1, nd= 1, nf=[1 111 1], nk= [2 222 2] 

o bj[1 1 1 13]: nb=[1 111 1], nc=1, nd=1, nf=[1 111 1], nk=[33333] 

o bj[1 1 11 4]: nb=[1 111 1], nc= 1, nd= 1, nf=[1 111 1], nk=[44444] 

o bj[1 1 11 5]: nb=[1 111 1], nc=1, nd=1, nf=[1 111 1], nk= [5 555 5] 

" Four inputs 

o bj[1 1 11 2]: nb=[1 11 1], nc= 1, nd= 1, nf=[1 11 1], nk=[2222] 

o bj[1 1 1 13]: nb=[1 11 1], nc=1, nd=1, nf=[1 11 1], nk=[3333] 

o bj[1 1 11 4]: nb=[1 11 1], nc= 1, nd= 1, of=[1 11 1], nk=[4444] 

o bj[1 1 1 15]: nb=[1 11 1], nc=1, nd=1, nf=[1 11 1], nk=[5555] 
o bj[1 1 1 18]: nb =[I 11 1], nc = 1, nd = 1, nf= [1 11 1], nk= [5 55 8] 

" Two inputs 

o bj[22 224]: nb=[2 2], nc=2, nd=2, nf=[22], nk=[44] 

o bj[1 1 11 2]: nb = [1 1], nc= 1, nd = 1, nf= [1 1], nk= [2 2] 

o bj[1 1 11 3]: nb=[1 1], nc=1, nd=1, nf=[1 1], nk=[33] 
o bj[1 1 11 4]: nb = [1 1], nc = 1, nd = 1, nf= [1 1], nk= [4 4] 

o bj[1 1 11 5]: nb = [1 1], nc = 1, nd = 1, nf= [1 11, nk= [5 5] 

o bj[1 1 1 17]: nb=[1 1], nc= 1, nd= 1, nf=[1 1], nk=[77] 
o bj[1 1 11 8]: nb=[1 1], nc= 1, nd= 1, nf=[1 1], nk=[88] 
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" One input 

o bj[22225]: nb=2, nc=2, nd=2, nf=2, nk=5 

o bj[22224]: nb=2, nc=2, nd=2, nf=2, nk=4 

o bj[2222 1]: nb=2, nc=2, nd=2, nf=2, nk= 1 

o bj[1 111 2]: nb = 1, nc = 1, nd = 1, of = 1, nk =2 
o bj[1 111 5]: nb=l, nc=l, nd=l, nf=l, nk=5 
o bj[1 11 16]: nb=l, nc=l, nd=l, nf=l, nk=6 
o bj[1 111 7]: nb = 1, nc = 1, nd = 1, nf= 1, nk= 7 

o bj[1 111 8]: nb=1, nc=1, nd=1, nf=1, nk=8 

OE models 

" Five inputs 

o oe[1 1 2]: nb=[1 111 1], nf=[1 111 1], nk = [2 222 2] 

o oe[1 1 3]: nb=[1 111 1], nf=[1 111 1], nk = [3 333 3] 

" Four inputs 

o oe[1 1 2]: nb=[1 11 1], nf=[1 11 1], nk=[2222] 
o oe[1 1 3]: nb=[1 11 1], nf=[1 11 1], nk=[3333] 
o oe[1 1 3]: nb=[1 11 1], nf=[1 11 1], nk=[33331 

o oe[ 1 14]: nb =[1 11 1], of=[111 1 ], nk = [4 44 4] 

o oe[1 1 5]: nb=[1 11 1], nf=[1 11 1], nk=[5 55 5] 
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