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Abstract 
The two-dimensional problem of hydrdynamic interaction of the horizontal 

circular cylinders with a free-surface is investigated both analytically and nu- 

merically. The fully nonlinear initial boundary-value problem is described and 

a numerical solution for it is presented. 

The free motion of a cylinder rising towards, or moving away from the 

free-surface or moving horizontally is studied. The numerical calculations 

are compared with a simple analytic theory in which we take the low- and 
high-frequency limit of the added mass, and the constant added mass of the 

submerged cylinder in the coefficients of the equation of motion. Further nu- 

merical calculations of an initially displaced, spring-loaded cylinder undergoing 

slow motions are compared with a simple analytic theory in which we also take 

the low-frequency limit of the added mass of the submerged cylinder. The aim 

is to provide a useful approximate method for simulation of various offshore 

operations. 

Fully nonlinear calculations of the free-surface deformations of the initially 

calm water caused by forced constant velocity motion of a totally sumerged 

circular cylinder are compared with small-time asymptotics due to Tyvand & 

Miloh (1995). Their analytic results, which are taken to third order5 when 

gravity terms first appear in the expansion, are in excellent agreement with 

the numerical calculations for small times, beyond which only the numerical 

method will give accurate results, valid until the free-surface breaks. The 

breaking of the surface as a result of vertical downward motion is further 

investigated with the aim of establishing when and how this happens, since 

the phenomena causes the breakdown of the numerical calculations. 

V 



The free motion of a cylinder entering a free-surface, initially half-submerged 

in calm water and having specific gravity of 1.2, is also investigated. This mo- 

tion is pursued beyond the complete submergence stage, giving rise to interest- 

ing free-surface deformations and body dynamics. This study is complemented 

by a further investigation involving impulsively started and forced constant 

motion of a cylinder entering a free-surface at various angles and Froude num- 

bers, and is also taken beyond the complete engulfment stage. Hydrodynamic 

forces on the cylinder obtained for various angles at the same Froude num- 

ber are compared. Also, the hydrodynamic forces for the motion in the same 

direction at various Froude numbers are compared. 

vi 



Introduction 

Introduction 

1 

0.1 A brief history of cylinder interactions with 
water 

The two-dimensional problem of hydrodynamic interaction of horizontal cir- 

cular cylinders with a free surface is one of the most well-studied and widely 

applied in ocean and coastal engineering, since two-dimensional flow usually 

represents worst-case design loading. An engineering example might be the 

cross-members of an oil rig comprising horizontal circular cylinders and other 

cross-sections. The fluid loading and motions of such cylinders are therefore 

important in a wide variety of applications, for example wave loading on float- 

ing ocean structures for offshore petroleum drilling, marine operations where 

objects are lowered from a crane ship through the free-surface, earthquake 

and other extreme loading on floating bridges and dams, interaction of waves 

with other fixed structures such as wave energy devices, impact of waves with 

pipelines, impact of steep waves on breakwaters, ship slamming and extreme 

ship motions. For a wide variety of application, in the above situations, the 

offshore engineers have used and continue to use the linear theory to predict 

wave effects on offshore structures, but practical engineering problems remain 

unsolved where nonlinear effects are important. In general, we require the 

ability to analyse the wave conditions for the structure when submerged close 

to the free-surface or entering or exiting it. Accurate nonlinear theories are 

required for the extreme situations described above. 

The usual problem for most experimental researchers in this field, is the 

sensitivity to the initial conditions and repeatability for the early stages, and 
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scaling for all stages of the fluid-structure interaction. It is well known that at 

infinite depth the added mass coefficients are constant and the wave damping 

is not present, but the body's close proximity to the fluid boundary makes 

it vulnerable to rapid increase in added mass and damping effects on it due 

to motion of the free-surface, see Bassett (1888) and Greenhow & Lin (1983). 

The physical and mathematical modelling of many of the situations above 

is complex and, involves such variables as air/water mixture compressibility 

effects, body elasiticity, at least in the early stages of impact, and viscous 

shedding causing vortex shedding in the later stages. 

It is widely accepted that for an unbounded inviscid fluid with irrotational 

flow, the energy in the fluid can be expressed in terms of the added-mass, 

and hence the hydrodynamic force and moment acting on a rigid body can 

be represented in terms of added-mass coefficients. The derivations of these 

added-mass coefficients can be found in Lamb (1932) and Newman (1977). 

In agreement with theoretical approaches the experimental results of Chung 

(1976) show that the added mass and wave damping coefficients are strongly 

influenced by the free-surface motion. His experimental results of the added 

mass and wave-damping coefficients were found to be in good agreement with 

the analytical results by Frank (1967) and, McIver and Evans (1984) gave simi- 

lar results of those coefficients. For a cylinder in the proximity of a free-surface, 

the energy in the fluid will strongly depend on how close to the free-surface 

the body is, giving rise to hydrodynamic forces proportional to the square of 

the body velocity, see Bassett (1888) and Greenhow and Lin (1983). These 

then act like viscous drag forces, and since the scaling of viscous loading and 

inviscid loading cannot be done at the same time, model-scale results are diffi- 
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cult to interpret and use. We propose here to study only the inviscid loading, 

meaning that the initial boundary-value problem needs to be simplified before 

an attempt to solve it, either analytically or numerically, is made. In prin- 

ciple, subject to boundary conditions on the boundary surface of the fluid, 

one can solve the Navier-Stokes equations for a fluid with stress relations and 

obtain arbitrary values of the Reynolds number and Froude number, which 

are respectively scales for viscous fluid loading and inviscid fluid loading. In 

practise, such a programme lies beyond present numerical techniques. 

For simplicity, we here consider only the inviscid fluid loading due to fluid 

motion around a submerged horizontal circular cylinder moving in an infinite 

fluid. Further linearisation of the free-surface or body boundary condition is 

not made. In particular, we study the free-motion of the cylinder below the 

free-surface, the general motion of a spring-loaded cylinder below the free- 

surface and, water-entry and -exit of the body. In some way the exit phase 

is less amenable to theoretical appproaches (gravity can not be neglected for 

example), but is nevertheless important since it can give rise to appreciable 

hydrodynamic effects which may affect the body motion (and therefore the 

subsequent slamming forces and pressures upon re-entry in the case of ship 

slamming in extreme ship motions, see Barringer (1996)). 

The problem of fixed and moving submerged cylinders under a free-surface 

has a long history. Early researchers looked at various problems of cylinder 

and water interactions using linear steady state theory, whereas others used 

the unsteady but linear theory. A theoretical approach to the solution of 

the problems of submerged bodies, which seems to run parallel to the one of 

unsteady theory discussed below, with linearised free-surface was adopted by 
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a number of reseachers namely, Dean (1948), Ursell (1950), Ogilvie (1963), 

Evans et al (1979) and many others. Dean (1948) concluded that a submerged 

cylinder does not reflect waves, but that the transimitted waves suffer a phase 

shift when they pass over a submerged cylinder. Ursell (1949) had initiated 

" multipole expansion method which he used to solve a linearised problem of 

" semi-circular cylinder floating in water. Ursell (1950), then extended his 

studies to the problem of a submerged cylinder and produced a solution for 

this linearised potential problem of water waves. This approach was then 

adopted and extended to other problems by Ogilvie (1963), where his basic 

interest was to obtain first-order oscillatory force and the second-order steady 

force for cylinder motions below the free-surface. Grue (1984), also studied the 

defraction problem of waves above the cylinder, treating the velocity potential 

as a distribution of vortices on the free-surface and a distribution of sources on 

the cylinder, and obtained Dean, Ursell and Ogilvie's results in a less tedious 

manner. Evans & Linton (1989) and Wu & Eatock Taylor (1990) have also 

used the multipole expansion technique in the investigation of the reduction 

of wave (profile) intensity and the second-order wave diffraction force on a 

submerged cylinder in finite water depth. 

The first approximation of wave motion in the case of a flow past a cylinder 

seems to have been given by Lamb (1913, see Lamb 1932, pp. 410). Using 

his method, one simply replaces the cylinder by a dipole potential, which 

is chosen to satisfy the linearised free-surface condition (i. e equal to zero). 

The second approximation was obtained in 1928 by Havelock and, eight years 

later in 1936 he gave a complete solution to the linear problem. Following 

his remarkable achievements, Havelock (1948) then started on a problem of 
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a submerged cylinder assuming an unsteady (i. e transient) state for the free- 

surface of the fluid. The main thrust of his work was to present some theoretical 

results for the wave resistance of a submerged cylinder below a time-dependent 

free-surface, when it is initially given an impulsive start and made to move at 

that velocity. Havelock linearises the free surface and treats the cylinder as 

a dipole moving below the free surface, which gives rise to an image dipole 

above the free surface. Having obtained the velocity potential, using Fourier 

integral method, of the ensuing motion of the fluid, he then derived the complex 

potential from which the wave resistance is found. Applying Blasius's theorem 

he found the resistance to be the real part of 

1 
(dw)2 dz 

dz 

where the contour is taken around the origin, p is fluid density, z=x+ iy is 

complex with x and y being horizontal and vertical dispacements from the cen- 

tre of the cylinder (the origin) respectively and w the complex potential. This 

gives the required horizontal force on the cylinder. In a similar way Havelock 

(1949) derived an expression for wave resistance for a cylinder moving with 

linearly varying velocity. In a follow up of Havelock's work, Hepworth (1991) 

and Greenhow (1992) compared his results with those of a nonlinear numerical 

method of Vinje and Brevig (1981). Havelock's results, which showed the pres- 

ence of steady forces and transient oscillatory forces on the body, were shown 

to be qualitatively similar to the numerical calculations, especially when a 

body is deeply submerged and moving slowly. Lui and Yue (1996) have also 

reported the presence of oscillatory forces similar to the ones discussed above. 

Following Lamb and Havelock's work, Tuck (1964) also studied the unsteady 

theory of fluid motion due to the presence of bodies below the free-surface but 
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without assuming the free surface to be linear. Tuck revealed the inadequacies 

of Havelock's second approximation results, obtained by the dipole method 

(which assumes linear free-surface even for higher order approximations), ar- 

guing that the most accurate way of calculating the wave resistance is not 

through successive approximations in the way of Havelock, but that nonlinear 

second-order terms are more important. Tuck wholly agreed with Ifflehausen's 

(Wehausen & Laitone 1960, p. 574) approach which could be extended to treat 

the nonlinear case by adding the Wehausen & Laitone (1960, p. 601) potential 

due to the pressure distribution on the free-surface to the part of the potential 

that satisfies the homogeneous free-surface condition as well as the cylinder 

condition. The forces were then obtained in the form of infinite series, under 

the conditions where the Wehausen scheme converges, giving, in the case of 

linear free-surface, the same result of the wave resistance force as obtained 

by Havelock (1936). Bessho (1957) carried out investigations of the nonlin- 

ear second-order approximations and obtained the results (for the potential) 

which were in good agreement with those of Tuck. However, he then used 

Havelock's formula, only valid in the linearised approximation, to derive the 

forces involving amplitude far downstream, instead of using the Blasius the- 

orem. This forced Bessho to make wrong conclusions about the second-order 

nonlinearity effects on the potential and he claimed that they only contributed 

to the third-order term of the forces. 

Haussling and Coleman (1979) use the finite-element approach to solve, nu- 

merically, the problem initiated by successive authors mentioned above, namely 

that of determining the wave resistance force on an accelerated submerged cir- 

cular cylinder. They then considered the unsteady nonlinear free-surface prob- 
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lem. Comparing with their results, we see that the linear steady-state solution 

proves quite inaccurate, because of the approximation of both the dynamic 

pressure distrubution on the body and the subsequent free-surface elevations. 

The theories requiring the simplification of boundary conditions, have of late 

been a subject of criticism by some recent research studies carried out on prob- 

lems similar to those discussed above, see Tuck (1964), and Brevig, Greenhow 

& Vinje (1981), and Lin, Newman & Yue (1984), Cointe (1989), Greenhow 

(1983,1987,1988,1993), Telste (1987), Wu (1993), Tynand & Miloh (1995) 

and many others. 

It is common knowledge now that the above solutions, although still hold- 

ing for a considerable range of applicability under normal conditions, will fail 

to predict accurately the hydrodynamic forces and free-surface motions for 

extreme situations considered here. In order to advance the study of fluid 

loading on offshore structures and response mechanisms of those structures for 

extreme situations, it is essential to account correctly for the nonlinearity of 

the free-surface boundary conditions, and the fact that the body condition, 

while appearing to be linear, must be applied not on the "mean" position of 

the body surface, but on its actual position (which for free motion will not 

be known a priori). This second requirement means that series expansion 

methods, which apply boundary conditions on the initial body surface posi- 

tion, will only be valid for small times after the motion has started. Peregrine 

(1972) developed a series expansion method valid except close to a free-surface 

which was then adopted by King and Needham (1994) to study the problem 

of an impulsively-started constant velocity or constantly accelerated motion 

of a vertical wavemaker. This was followed by the application of the same 
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approach, by Tyvand & Miloh (1995), to a problem of the forced motion with 

constant velocity or acceleration of a submerged cylinder under an unsteady 

nonlinear free-surface. Tyvand & Miloh's expansions are taken as far as the 

leading-order gravitational effects, with surface elevations and hydrodynamic 

forces calculated to each order. The results of Tyvand & Miloh are further 

discussed in chapter 4 of this thesis. 

Tyvand & Miloh's (1995) results lay a foundation for comparison of the 

free-surface deflections produced by their method with those of a numerical 

method based on the potential theory and described in the works of Vinje & 

Brevig (1981a and b), followed by Brevig et al (1981), Telste (1987), Greenhow 

(1987), Terent'ev (1991), Hepworth (1991) and Greenhow (1993). Firstly, Bre- 

vig, Greenhow & Vinje (1981) extended the numerical work of Longuet-Higgins 

(1976), using a nonlinear time-stepping procedure to evaluate the hydrody- 

namic force on moving and fixed cylinders. Actually, their work entails solving 

the Cauchy's equation for the fluid in a physical plane which contains a body 

in the fluid. Works on completely submerged bodies include those of Hep- 

worth (1991) who studied the forced horizontal motion of a cylinder at various 

depths below the free-surface using the Brevig, Greenhow & Vinje approach. 

Other works have concentrated on motion of bodies in the free-surface with the 

main aim being that of solving the intersection problem. These include Lin, 

Newman & Yue (1984) and Greenhow & Lin (1985). Telste (1986) avoided the 

problem involving the free-surface and body intersection, and used the vortex 

method of Baker, Meiron & Orszag (1981,1982) to solve the unsteady state 

nonlinear free-surface potential flow problem about a cylinder forced to move 

upwards towards a free-surface. From his numerical calculations, he came to 
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one conclusion that the low-speed approach to a free-surface is similar to the 

approach to a fixed wall, whereas the high-speed approach is similar to motion 

in an infinite fluid. 

Greenhow (1987) also utilises the method of Vinje & Brevig to simulate 

flows about a surface-piercing wedge and later-on about a cylinder entering 

a free-surface. In his work, Greenhow (1987), considers the time-dependent 

motions of wedges of various angles with both gravity and the nonlinearity of 

the boundary conditions on the body and the free-surface correctly described. 

To make progress, in simulating the flows when a jet has formed, Greenhow 

modified the numerical scheme and allowed the jet to leave the wedge. This 

proved very successful as the result showed good agreement with experiments 

by Greenhow and Lin (1983). He also discovered the appearance of negative 

pressures above the wetted part of the wedge around the region of jet formation 

when implementing the intersection point treatment method of Lin, Newman 

& Yue (1984). This was followed by a paper in 1989 about cylinders entering 

and exiting a free-surface at various Froude numbers. In this paper Greenhow, 

uses a modified method for surface-piercing bodies of Vinje & Brevig (1981a) 

for the treatment of the jet. The assumption of full nonlinearity of boundary 

conditions is unchanged and the resulting flow features were quite promising 

from the viewpoint of solving the complete engulfment problem in the case 

of surface entry. Some complimentary studies on free-surface entry by either 

blunt or sharp objects have been carried out by several authors. These include 

works of Garabedian (1953), Korobkin (1984), Greenhow (1987,1988,1993), 

and Howison, Ockendon & Wilson (1990) and Fraenkel (1992). Their major 

aim, apart from the usual problem of establishing wave resistance force and 
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free-surface motion, is that of the treatment of the intersection point, since the 

potential is known to be potentially singular there and the numerical schemes 

tend to fail at that point. 

For wedge entry at high enough Froude numbers for gravity to be ignored, 

the flow is known to be self-similar, see Wagner (1932) and Howison et al 

(1990) who give a modern approach. The arc length between free-surface 

Lagrangian marker particles is conserved, see also Carabedian (1953). This 

provides a stringent test on the accuracy of the present numerical method, see 

Greenhow (1987). It was shown that the numerical method for surface-piercing 

bodies of Vinje & Brevig (1981a) gives accurate results if the deadrise angle 

(between the fluid and the immediate body surface extending away from the 

fluid) is not smaller than 45 degrees, and we do not violate this condition in the 

present calculations. In the case of small deadrise angles, see Fig. 0.1, Zhao 

and Faltinsen (1993) have implemented a scheme whereby the jets are cut-off 

and the calculations are allowed to continue. Their approach does not seem to 

affect the energy and fluid conservation of the system. In general, these jets are 

thin and have almost atmospheric pressure throughout and subsequently would 

only affect the stability/robustness of the numerical scheme. We therefore feel 

justified in adopting this approach of pursuing the numerical calculations of the 

surface-piercing problem beyond complete engulfment stage when otherwise 

the jet formation would have inhibited this. 

0.2 A brief synopsis of this work 

This thesis seeks to extend the above Nvork. Our main task revolves around 

accurate determination of hydrodynamic forces and pressures around a hori- 
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zontal circular cylinder moving in or near a free surface. To be able to do that, 

the motion of the unsteady nonlinear free-surface has also to be determined 

correctly, without which the main objective can not be achieved. The method 

of Brevig et al (1981) is used extensively in this work, both as a check of our 

analytical methods and as the only means available to solve some problems 

lacking theoretical solutions. Their code, which has a provision for restart- 

ing previously stopped runs, could not be used in that form for calculations 

stopped due to complications at the free-surface. - The swapping of programs, 

one for partially-submerged bodies and the other for fully-submerged bodies, 

then takes place with alterations in the latter program to accept the data gen- 

erated by the former. A cylinder is initially at equilibrium position either below 

the free-surface completely or only half-submerged in water. The cylinder is 

then either forced, or is allowed to move freely in a number of specified direc- 

tions. The obtained numerical results are then compared to the approximate 

but analytical results in order to check the accuracy of the latter. 

In chapter 1 of this work we give the description of the the fully nonlinear 

initial boundary-value problem we wish to solve using both the analytical and 

numerical methods and the numerical method alone, in cases where no known 

theoretical approach is applicable. An outline of the numerical algorithm we 

use for solving our problems is also given. 

The second chapter of the thesis looks at the free motion of a cylinder mov- 

ing away from or towards a free-surface for different masses and initial depths 

of submergence of the body. The analytical methods used are based on added 

mass theory and to be able to obtain a solution we make a number of simpli- 

fications of the free-surface boundary condition. The problem is solved under 
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the assumption that the free-surface does not deflect much for a relatively 

large amount of time. Thus we apply a low-frequency free-surface boundary 

condition 2-0- =0 on z=O -a rigid wall condition, or high-frequency free-surface 8Z 
boundary condition 0 on z=O - equivalent infinite fluid condition, for mo- 

tion of the cylinder near the free-surface boundary, but not penetrating it. 

A case of constant added mass (equilibrium position added mass) is also in- 

cluded as a means of testing the importance of updating the added mass in 

contrast with the use of constant added mass. The impulsively started free 

horizontal motion with constant velocity is also investigated. A comparison of 

the three methods with the fully nonlinear numerical method show interesting 

results, with good agreement in some cases, which should prove very helpful 

in a number of practical situations. 

The added mass approach was also appplied to the problem of a spring- 

loaded cylinder oscillating below a free-surface in chapter 3. The cylinder is 

initially held at an equilibrium position before it is displaced through one radius 

upwards, to the side, upwards and to the side, downwards, and downwards and 

to the side of the equilibrium position. It is then allowed to oscillate. Initially 

motion without damping is investigated in order to determine the conservation 

of energy'and hence consistency of the system. For comparison with the fully 

nonlinear scheme, we then introduce damping into our analytical method. 

Good agreement was recorded in some cases and it is hoped that engineers will 

find our findings quite attractive in a number of practical ways; the method is 

less detailed in terms of complexity and computations using the method are 

quite inexpensive to handle. 

Chapter 4 is mainly concerned with the limitations of the small-time as- 
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ymptotic expansion method of Tyvand & Miloll (1995), and in particular the 

case of forced motion of a cylinder below a free-surface with constant velocity. 

A small-time expansion method as employed by Tyvand & Miloll is compared 

to the fully nonlinear method, so that we can establish how small time must 

be for their method to be accurate. A number of tests at different Froude 

numbers and cylinder sizes were carried out and eventually an interval within 

which, we think, the method is valid was established. This should be very 

useful information as the method proves to be very accurate for small times, 

especially for people wishing to apply the method in practical situations, and 

may also be quite useful in determining the accuracy of numerical schemes, 

albeit for small times only, i. e for those time intervals we have established. 

In chapter 5 we carry out some runs as a preparation for the study of a major 

part of this work, the motion of the cylinder beyond the stage of complete 

engulfment studied in chapter 6. Some preliminary work was done in order 

to understand the behaviour of the free-surface motion and the behaviour of 

pressure distribution for the motion of a cylinder started just below the free- 

surface. A number of new features of the free-surface were observed for a 

cylinder rising to, or moving away from, the free-surface at various Froude, 

numbers. 

Some of the features of the free-surface encountered in chapter 5 are re- 

peated, though in a slightily different manner, when motion is continued be- 

yond the total submergence stage in chapter 6 of this thesis. Some differences 

were expected, since in the former case the motion is initially started with the 

free-surface assumed flat, whereas in later problems the motion is continued 

with the free-surface already deformed. The problem of complete engulfment 
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is a difficult one and the situation is not helped by the fact that no theoretical 

solution exists for us to compare our findings with. There are new features 

appearing which we have not encountered before, including the formation of 

cavities, the collapse of fluid domains and jets. The flow is investigated for var- 

ious angles of penetration and velocities of free and forced motion. Free-surface 

profiles, pressure distribution on the cylinder, and the hydrodynamic force on 

the cylinder are compared for different entry-angles and approach speeds. The 

results of a simple hydrostatic model are compared with our results. 



Chapter 1 

The Mathematical Problem 

1.1 Problem description 

A problem of a horizontal circular cylinder of radius a which is either com- 

pletely submerged or surface-piercing is considered. The problem is two- 

dimensional and the fluid in the given domain, see Fig. 1.1, is assumed to 

be incompressible, inviscid, initially at rest and of infinite depth. We shall also 

assume that the fluid motion is irrotational and the surface tension is neglected. 

At i=0, where t is time, everything is at rest, and the cylinder centre is at a 

distance d below the free surface. A Cartesian rectangular coordinate system 

is defined so that the x-axis lies on the undisturbed free surface and the z-axis 

is positive upwards. The distance, d from the origin to the centre of the cylin- 

der is chosen arbitrarily, whereas the vertical and horizontal displacements y 

and x of the cylinder at time t below the free surface are given by the moving 

centre of the cylinder. Hence z in terms of y is given as z= -d + y. Initially 

t=0, x=0, y=0 and z= -d and there is no fluid motion. We denote the 

surface elevation by z= ((x, t). It is assumed that the free surface boundary 

OQj, is known at the start of the calculations and unknown immediately after 

that. In some cases we have used the term surface in place of a free surface, 

15 
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but a complete description is given in other situations with surfaces other than 

the free boundary surface of the fluid. The cylinder boundaryiS 09b and the 

position of its centre at any time t is (x-, y) = (x, (t), y, (t)) and is given by the 

prescribed or calculated motion of the cylinder. 

The variables involved in the calculations have all been non-dimensionalised. 

The lengths are either scaled by the radius, a, of the cylinder or the initial sub- 

mergence depth of the cylinder, d. Unless otherwise specified the dimensionless 

Froude number is 

Fr 
u 

Vg-a (1) 

where g is the gravitational acceleration and U is the velocity of the body. We 

introduce the units of the other dimensionless variables later as they may not 

be standard throughout the document. This should not cause any problems 

in as far as the generality of the results is concerned. 

The problem is formulated as an initial-value problem defined in Eulerian 

and Lagrangian coordinates. A velocity vector V(x, z, t) is defined as the 

velocity of the fluid particle at the point (x, z) in a Cartesian, rectangular 

coordinate system at any time t. u and v denote the horizontal and verti- 

cal components of this velocity in the rectangular coordinate system. Other 

quantities of measurement that will be used are the variable added mass of 

the body M,,, the specific gravity of the body Mb, the fluid density p (assumed 

constant) and the total force acting on the body F. Since the fluid is assumed 

incompressible and irrotational such that V-V=0 and VxV=0 respec- 

tively, it is possible to describe the motion of the fluid by a velocity potential 

O(x, y; t) with V= V0 satisfying the equation of continuity which gives the 
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Laplace's equation for 0 

, 
V20 

in Q the fluid domain. aQ is a closed contour consisting of the free surface 

OQf, the cylinder boundary aQb, the bottom where 2± = 0, and the vertical az 

rigid walls further away from the body. The kinematic free surface boundary 

condition is stated as 
Dz 

= U+iv Dt 

where ll is the convective derivativ e and is given in Eulerian terms as Dt 

Do 0() 
(4) T (VO) - Vo 

Dt t 

The dynamic boundary condition at the free surface is deduced from Bernoulli's 

equation: 

ao I PS = -- I VO F -g- al 2p 

on the surface z= ((x, t), where p, is an arbitrary pressure distribution app- 

plied at the free surface. Assuming U to be the velocity of the cylinder through 

the fluid and n=(ni, n3) to be the. normal unit vector drawn from any point 

of the surface of the cylinder, where nj is its horizontal component and n3 the 

vertical component, we have 

ao 
= U-n on 

Mb 
ýn 

Thus the contact between the fluid and the cylinder is preserved. 

In the calculations the vertical boundaries are positioned at distances far 

away, to the right and left, from the vicinity of the cylinder to avoid imposing 

radiation conditions which are not clear for the nonlinear problem. Alter- 

natively, some authors e. g Cointe (1989), use ail "energy sponge" of linearly 
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decreasing ( and 0 far from the body, but this is unphysical and mathemat- 
ically inconsistent, thereby requiring careful checks on reflected energy from 

such sponges. 

1.2 Method of solution of Vinje and Brevig(1981) 

For the fluid described above, the flow can be fully defined by the velocity 

potential, 0, or the stream function, 0. Taking 0 and 0 to be the real and 
imaginary parts of a complex function P(z), where z=x+ iy, we have 

ao 00 
49X Oy 

V= 00 atp (7 
, 9y Ox 

the Cauchy-Riernann equations. These equations and the flow description 

given above imply the existence of a complex potential 

ß(z; t) = O(x, y; t) + io(x, 

The velocity potential 0 and the stream function V) satisfy Laplace's equation 

and so # is analytic in the fluid region. Application of Cauchy's integral 

theorem gives 
J. 0(2ý't)dz 

=0 a Z-ZO 

with zo outside Q. 

We split the contour of integration OQ to consist of 000 and OQp, where 

and 21ý are prescribed on aQO whereas 0 and 21-P are given on 990. The at at 
free surface belongs to ffl, ý where both the velocity potential and the surface 

elevation are zero at t=0, corresponding to no fluid flow initially. Of2o 

comprises the bottom where the stream function and its derivative are taken 
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to be zero and the body surface where 0 and its time derivative are specified 

by the body geometry and its velocity. On the vertical boundaries both 0 

and 0 and, their time derivatives are unknown. A periodicity, or rigid wall or 

wavernaker condition may be applied here. When periodicity is assumed we 

either take 0(and or 0(and ý2-0) to be known at the left-hand side vertical at at 

control surface and vice-versa on the right-hand side vertical control surface. 

Periodicity then closes the problem. In this way only 0 and its time derivative 

or 0 and its time derivative can be considered as unknown variables at every 

nodal point. The matrix equations are then formed for the calculation of the 

matrix coefficients, see Vinie & Brevig (1981) for details. 

We introduce a moving cylinder in the flow field described without violating 

the description of the problem, Le a branch cut is introduced to render the 

contour of integration singly connected (and closed). On the moving cylinder 

the exact body bondary condition gives 

-0 (X, Y; t) = MY - Y. ) + uy(x - X0 ( 10) 

where U., and U. are respectively the horizontal and vertical velocities of the 

cylinder. 

We take the real part of (1.9) for zo on agk and the imaginary part for zo 

on aQv, and obtain the following integral equations on M: 

7ro(xo, yo; t) + Re 10+ 
i-odz} 

=0 
fall 

Z- ZO 

for zo on OQ, ý and 

I 
7ro(xo, yo; 1) + Reli 

0+ 'V)dzl 
=0 (12 

asl Z- ZO 

for zo on DQp, where the value 7r in equations (1.11) and (1.12) signifies 

"smooth" surface. These are Fredholm's integral equations of the second kind 
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from which the complex potential #(z, t) can be found on aQ. We also note 

that Fredholm integral equations of the first kind could have been easily ob- 

taincd, see Vinje & Brevig (1981), but these do not, in general, have a unique 

solution leading to unstable numerical solutions. A similar set of equations to 

(1.11) and (1.12) is obtained by considering, in the same way as above, the 

equation 
fan 

Z- ZO 
dz =0( 13 ) 

In the equations derived from (1.3) the velocity potential and the stream func- 

tion in equations (L 11) and (L 12) are simply replaced by their time-derivatives 

and the derivative of the complex potential can then be calculated. When the 

complex potential 8 and its time derivative are known on ag, it is then an 

easy thing to find these two functions at any point of the domain Q enabling 

us to calculate fluid-particle accelerations in the fluid. It is also noted that 19Q 

maybe non-smooth at corners arising from the presence of a solid boundary or 

due to the numerical discretisation of &2. In that case the residue part of the 

left-hand side of equation (1.9) at z= zo is calculated and is different from 7r. 

To step forward in time we use the free surface conditions following a free 

surface particle as 
D. ý 

= u, _, v = w,, 
LP ( 14) 

Dt az 

which is equation(I. 3) and 

DO 
=i ww . -gy - 

PS 
Dt 2p 

the form of equation (1.5) in the Lagrangian description. We note that, on 

the cylinder the points are not Langrangian markers, Le they are fixed. These 

equations are used in the numerical (Runge Kutta) single-step method to start 
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the calculations to determine the subsequent position of the free surface parti- 

cles and the values of 0 corresponding to each Lagrangian free surface marker 

particle being followed. After three initial time steps this method is substituted 

by the Hamming's fourth-order predictor/corrector method. 

The body forces are derived through integrating the pressure on the body 

surface part of the contour which is obtainable from Bernoulli's equation: 

p(x, Z; i) 
- 

ao 
+1 ww* + gz ( 16 ) 

d9t 2 

Thus the forces on the body are obtained from integrating (1.16) around the 

body and resolving in vertical, horizontal and rotational directions. From the 

calculated force on the body we can easily find the acceleration and hence 

the velocity and the new position of the body. Further details on this can be 

obtained from Greenhow et al (1982). 

Vinje and Brevig(1981) show bow to solve the integral equations(l. 11) and 

(1.12) for P using the collocation method. Assuming 8 varies linearly in z 

between the collocation points then, 

E, A ßj ( 17 ) 
j=l j 

where the influence function Aj at nodal point zi is 

AN =, " for z on aQ between zi and zi+l 
zj - Zj+1 

=z 
zj-, for z on aQ between zi-i and zi 

zj - zj-, 
0 elsewhere on aS2 

consistent with "smooth" surface between the nodal points and the calculated 

residue, as explained above, in corners. 
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Substituting Aj into equation (1.17) gives the matrix form of the integral: 

f 
QO+iOdzý--El'k, jPjý::: O for k=l,.., N (18 

.9ý- Zk 

where zk is the collocation point and ]Pk, j is a logarithmic function arising from 

integrating the Aj(z) function, and is hence a function Of Zk. The derivation 

of the influence coefficients is given in detail in Vinje and Brevig(1981). 

In the case of surface-piercing cylinders, we note that the complex velocity 

potential P and its time derivatives are known to be singular in general at 

the intersections of the free and body surfaces. In the formulation of the 

problem, we have both 0 and 0 defined at these points which overspecifies the 

matrix equation. In order to step forward in time, Greenhow (1987) removes 

the intersection points from the matrix calculation and then treats them as 

ordinary regular free-surface points. Here we simply follow this approach, 

which has proved to be reasonably accurate for wedge entry and wavemaker 

problems, see Greenhow and Lin (1983) and Greenhow (1988), for initial stages 

of the cylinder entering the free-surface. We note nevertheless that the actual 

situation is more complicated in the region local to the intersection, see Roberts 

(1987) and King and Needham (1993) for the wavemaker problem, and Vinje 

(1989) for the half-submerged circular cylinder. 

For the engulfment problem, see Fig. 1.2(b) for initial phase, when the free- 

surface closes over the top of a downwards moving cylinder, the free surface 

coordinates and the corresponding velocity potentials of the last reliable step 

from the program for surface-piercing bodies are used as initial data for con- 

tinuation of the calculations using the program for totally submerged bodies. 

Around the region of disturbance, in the vicinity of the cylinder, an artificial 

boundary (a branch cut in general) is included which joins with the rest of the 
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free surface. 
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On restarting the calculations after engulfment jets will inevitably be cre- 

ated on the free surface, partly due to geometry of the cylinder which further 

complicates the already complex free surface motion. However, Zhao and 

Faltinsen (1991) suggest that, whenever a jet is created the problem is simpli- 

fied by redefining the fluid domain &2 so that it does not contain the whole jet. 

The part of the jet on which the pressure is almost atmospheric is truncated. 

The Zhao and Faltinsen (1991) approach, together with the theoretical 

analysis of Best (1991) in his thesis on troidal bubbles, give the basis for the 

engulfment problem which is studied here. Best, in his thesis acknowledges 

the discontinuity of the potential and its normal derivative when the flow do- 

main collapses and becomes doubly connected. This is the situation we have 

in two-dimensions when the cylinder totally submerges. Best then proved that 

discontinuity can not persist after impact, which paves the way for restarting 

the calculations after complete cylinder engulfment. The free surface condi- 

tion and the cylinder position in accordance with the above description of the 

problem are shown in Fig. 1.2(b). 

The problem of the intersection points does not arise for completely sub- 

merged bodies. In this case the integration contour involves a branch cut which 

may pose some problems when we integrate along it, see Fig. 1.2(a). Instead 

we treat the points I and N3 as neighbouring collocation points and integrate 

across the cut. When we integrate around the cylinder there arises a difference 

in the IP functions of equation (1.18) due to the jump from one surface to an- 

other and this is equal to 27ri, see Brevig, Greenhow & Vinie (1981) for further 

details. This value is added to r functions of the points of intersection between 
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the branch and the cylinder and subtracted from each of the r functions of the 

neighbouring points across the branch cut. In our case of moving cylinders, 

the variation of V) around the cylinder from the body boundary condition to 

within the unknown constant value is known and this proves to be sufficient 

to close the problem, see Brevig, Greenhow and Vinie (1981) for details. The 

unknown constant can be determined after the solution is known, if required 

(for example as a check on the accurracy of the calculations). 
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Fig. 1.2 Contours of integration 



Chapter 2 

Free motion of a cylinder 

2.1 Introduction 

The problem considered here is a result of past works which seem to have 

largely avoided free motion of a cylinder below a free surface. Previous ex- 

perimental work on a cylinder-entry and -exit problem was carried out by 

Greenhow & Lin (1983). This was followed by the work by Telste (1986) for a 

cylinder rising to a free surface. Initially, the cylinder is located at a prescribed 

position below the free surface before it is accelerated to a certain uniform ver- 

tical velocity and is allowed to move up to the free surface. Further studies 

for impulsively started constant velocity cylinder motions were carried out 

by Greenhow (1987) who first recognised the occurrence of negative presssure 

which results in spontaneous free surface breaking. Finally, Tyvand & Miloh 

(1995) have used a series expansion technique to study an impulsively started 

motion of a cylinder with a constant velocity/acceleration moving towards a 

free surface. In all the above works the free surface and body interaction is 

discussed. 

In this work we firstly consider analytically a horizontal circular cylinder 

which is freely but slowly rising to, or moving away from, a boundary on which 

27 
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we may apply approximate boundary conditions derived from the frequency 

dependent free-surface boundary condition 2ýý + KO = 0, where K is related to az 
2 

the frequency w by the dispersion relation K The boundary condition q 

a! 0 on z=0 corresponds to a fixed boundary or to the low-frequency limit 
2 
TZ_ 

(w 0) of the corresponding linear oscillatory case where the body moves with 

time dependence eiwt. The high-frequency oscillatory condition 0=0 on z=O, 

which is usually applied in ship slamming (high-speed entry) is also applied. 

The results are compared with the numerical'solution of the fully-nonlinear 

boundary-value problem described in chapter 1. The fully-nonlinear boundary- 

value problem includes the effect of the free surface motion on the motion of 

the cylinder as well as free surface/body interactions. The situation is also 

discussed (incorrectly) in a paper by Greenhow and Yanbao (1988), where 

they used the momentum added mass instead of the energy added mass. Free 

and impulsively started motion of a cylinder with initial horizontal velocity is 

also investigated using the nonlinear numerical method. 

A study of this kind has practical implications since many offshore struc- 

tures, pipe-bridges and pipelines are in the form of circular cylinders. In this 

work we have put more effort into the analytical model's ability to predict the 

free motion'of circular cylinders moving below a free surface. We thereby hope 

to provide a practical method of being able to analYse the seakeeping charac- 

teristics of submerged bodies in general, without excessive computation. 

2.2 The statement of the problem 

Below is a development of an analytic representation for free motion of a cylin- 

der rising to, or moving away from a free surface. The purpose of this work is 
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to describe simple analytic models for a freely-moving cylinder in tile vertical 

plane. To start the motion, a cylinder is placed at a prescribed initial depth d 

below the surface and freely allowed to rise to, or move away from, the surface. 

The predictions of these models are compared (in sections 2.4 and 2.5) with the 

results obtained from the numerical calculations of the fully-nonlinear bound- 

ary conditions scheme to determine the accuracy of the analytical models. 

The analytic models are built on the assumption that the free surface re- 

mains fixed during the motion and hence effects such as wave damping are 

neglected. In formulating the problem we consider the added mass of the 

cylinder as it moves through the fluid. The force acting on the body is then 

determined as the work done in moving the cylinder through the fluid. The 

depth-dependent added mass coefficients are calculated in the next section. It 

is then a relatively simple matter to incorporate it into the equation of motion. 

Generally, the motion is two-dimensional and hence the system can be spec- 

ified by the generalised co-ordinates yj (i = 1,2). We assume that F(x, y) is 

a conservative vector force field with a potential function ff (x, y). By 

definition the potential energy V= V(x, y) of the cylinder at 

is V(x, y) = -f (x, y). Thus 

F(x, y) = -VV(x, y) 

The work done by F in moving the body throu, 

to any point P is 

p 
W F-dy 

0 

-V(X, Y)Iop - 

since point O(x, y) = (0,0) and P(x, 
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mass of the cylinder. The kinetic energy for vertical motion only is then given 

as 
I 

(Mb + M"(y))(ý)2 2 

where m,, is the added mass and we explicitly note that it is a function of 

y alone. The mass mb + m,, (y) is sometimes called the, virtual mass of the 

cylinder. 

The equations of motion may be derived from Lagrange's equations, for a 

conservative holonomic dynamical system. Thus Langrange's equations for the 

generalised coordinates xi are 

OL d( aL 
) 0, (i 1,2), 

, 9xi dt 9ii 

where 

L= T-V 

1 
(Tnb + Ma(Y)) (ý)2 - (Mbg - PgV)Y 2 

is called the Lagrangian. Applying Lagrange's equations on (2.5) gives 

(Mb + Ma(Y))ý + 
dm,, (y) 

W2_I 
dm,, (y) 

W2 9Mb + P9V -": ": 
0 6) 

dy 2 dy 

the equation of the vertical motion of the cylinder. Forces acting horizontally 

are equal to zero. 

The dimensionless quantities of time, mass, displacement and the fixed dis- 

tance d are expressed as T=t21 Mb P7ra'Mb(Ma = p7ra 2M 
a 
), Y Y- and 

Val 
a 

D=1. From time, displacement and the radius of the cylinder we derive 
a 

dimensionless velocity and acceleration ratios and are given as 

Vg-a 
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and 

9 

respectively. Nondimensionalizing (3.6) gives 

1 dM,, (Y) 2 (Mb + Ma (y)) y+2 
--ý-y 

(Y) + 7-- 0 

It should be noted that this apparently simple second-order ordinary differen- 

tial equation lias variable coefficients JIL(Y) and 
dAf. (Y) 

dt 

2.3 Calculation of the Added Mass Coefficients 

For a problem of added mass calculation for a submerged circular cylinder 

undergoing translational or oscillatory motion below a fixed boundary we must 

simplify the free surface conditions rather drastically. Possibilities are 0=0 

or 2ýý =0 on z=O(or y=d). The second is more appropriate to the slow motion 8Z 

considered here, whereas ship slamming studies usually assume the former, 

which neglects gravity (amongst other simplifications). The accuracy of the 

2ý- -0 assumption will be examined by comparison with the nonlinear free- az - 

surface calculations later. We might also view the problem as the low-frequency 

limit of the sinusoidally oscillating cylinder below a linearised free surface. 

However it should be stressed that the primary motivation for this assumption 

is pragmatic, since the added mass of the cylinder for a fixed boundary problem 

is known from Greenhow and Yanbao (1987), Venkatesan (1985) and Walton 

(1986) who rederive Bassett's (1888) slightly incorrect expression. Thus the 

added mass m,, (y) per unit length is (note that in our two-dimensional case 

the length of the cylinder is zero); 

M-(Y) - q2)2 I+I 
(I + m') 

K2(rn) 

PV q2 
1 

12 3 72 
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E(m)K(m) ,I 
7r2 

to 

where V= 7a' is the displaced volume of the fluid due to the submerged cylin- 

der, and E(m) and K(m) are complete elliptic integrals as given in Abramowitz 

and Stegun (1970). In addition the relation m+ m' =I holds and 

exp(-r 
K(m) 
K(m) 

exp(-uo) 

where uO describes the cylinder position given by 

y2 -a 
2=a 

2(l 
_ 4q2)2 

4q2 

=a2 sinh 
2ao ( 12 ) 

With y and hence z, the distance of the cylinder from the fixed boundary, 

known at any time i, we then obtain o-o from (2.12) and in turn q is found 

from equation (2.11). Equation (2.12) assumes the form 

K(ml) + 
Inq 

K(m) =0 7r 

To find the value of m, equation (2.13) is written in the form f(m)=O with 

expressions. of K(m) and K(I -m) taken from Abramowitz and Stegun (1970). 

In finding the solution of this equation the bisection algorithm was used on 

the interval [a, b] where f(a) and f(b) have opposite signs. With the value of m 

known, equation (2.13) is solved for each time step, depending on the value of q, 

where q changes with the depth of the cylinder below the fixed boundary. Once 

the values of m and q are found, the complete elliptic integrals K(m), K(m') 

and E(m) are then computed and in turn the value of the added mass is 

given. Since the values of m and q are updated for every time step during 
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the cylinder motion, the algorithm must be able to give results with updated 

added mass coefficient as required in our problem. In particular we must be 

able to account for the significant change in added mass as thebody moves 

close to the free surface, as shown in Fig. 2.1(a). Here the full expression 

for added mass, tn,, (y), in equation (2.10) is plotted together with Walton's 

asymptotic expression for low-frequency limit problem 

rn. (y) I 7r 
2 

= (2cosh2o-o - 2)( + 14 
PV 12 l2a02 2oro 

where 

cro = In z ý)2 15 
a 

-ý 
ýa 

see Greenhow and Yanbac, (1987) for further details. The value of Ma(Y) when PV 
z=a below the surface is found to be finite and is equal to 21 2-1 whereas 3 

the gradient 
dMa(Y) 

is infinite. Certainly as the cylinder approaches a line dY 

on which 0 Le a wall the more than doubling of the added mass can az I 
have a significant effect on its motion. For example, even in the absence of 

damping, energy considerations show that a neutrally buoyant cylinder started 

with initial velocity (towards the fixed boundary) will strike the wall with 

velocity 06-k, as described in Greenhow and Yanbao (1987), and is similarly 

confirmed here by our time-stepped added mass scheme, see Fig. 2.1(c). The 

cylinder is started from a distance d=3a with a velocity of 5 (dimensionless) 

and hits the fixed boundary with a velocity of 3.9035. This underlies the fact 

that the cylinder decelerates as it approaches the wall and accelerates when 

moving in the opposite direction, see also Fig. 2.1(d) for downward motion. 

We note that the gradient of tile added mass dAf' is less than zero at all dY 

distances below the surface (wall) partially giving rise to the above observed 
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effects on the motion of the cylinder. In contrast with the constant added 

mass case where the term involving velocity squared 
dAf a (Y) ý, 2 is therefore dY 

absent in equation (2.9), the above demonstrates the importance of this term 

in conserving energy when added mass is position dependent. 

However, it is not very clear what the appropriate boundary condition on 

the free surface should be, as there is significant surface deflection in the case 

of vertical motion near the surface Le when the top of the cylinder is within one 

radius of the surface. Furthermore as the cylinder breaks such a surface the 

flow becomes source-like, which causes the added mass to diverge in the two- 

dimensional case, see eg Newman (1977). We will therefore consider applying 

the boundary condition at the equipotential line 0 == 0 in the case of vertical 

motion near the surface. The results may then be thought of as those of the 

problem of high-frequency oscillatory condition. For motion of the cylinder 

near the line of equipotential 0=0 on z=0 Greenhow and Yanbao (1987) 

give the added mass per unit length as 

M'(Y) (I -q 
2)2 11K2 (M) E(m)K(m) 

2-I-+ -(I + MI) 22 PV q 12 37 7C 

-1-2 (1 + ml)ý 
K2 (MI) 

+2 
E(rn1)K(mj) 

1 16 
63 7r2 72 

where the equation 
K(m') 1 K(ml) 
K(m) 2 K(mi) 

holds. This form of the added mass is exact but quite expensive to compute 

and we choose to use a polynomial approximation given as 

M'(Y) 
:=1+0.028053(-a _)2 _)3 )- 0-65986(a + 0.26728(a 18 

PV YYY 

which is accurate enough for our calculations, see Greenhow and Yanbao(1987). 

In their work they also calculated the limiting forms of the added mass and 
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the gradient of the added mass as 1 -+ 0 from the asymptotic expression of a 

equation(2.16) which are respectively; 

M, (Y) 72 
== - -1 

( 19 
PV 6 

and 
dm, (y) 7r 

22 

= pair(- (20 dy 93 
The added mass coefficients are calculated using the exact expression given 

by the low-frequency limit problem for, at least, z< -1.44a below the surface 

plus Walton's asymptotic expression near the free surface (-1.44a <z< -a) . 
The variation of the added mass with respect to vertical displacement is shown 

in Fig. 2.1(a). For the high-frequency approximation, equation (2.18) is used 

to obtain the added masses for values of z in the range -10a <z< -a, see 

Fig. 2.1 (b) for variation of the added mass with depth. With the added masses 

already known, (2.9) can then be treated simply as a second-order ordinary 

differential equation which is solved exactly at every stage of the calculations 

with new "constant" coefficients each time and the initial conditions given by 

the solution to the previous step. In other words for each time step one solves 

analytically a nonlinear differential equation with constant coefficients. The 

solution is then time stepped to give the required solutions for each distance 

for which added mass is calculated. The velocities and accelerations are found 

through differentiating the obtained solution once and twice respectively. This 

solution's accuracy is dependent on accurate calculation of the added mass, 

and serves as a check to the solution obtained numerically using the fourth- 

order Runge-Kutta algorithm. 

Thus 

AY + B(y)2 +C=0 
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where A= Alb + Al, B=I dAfa and C=I- Alb. Let U so that 2 dY 

AÜ - 
B(U2 +C)=0. ( 22 ) B 

Solving (2.22) gives 

fB-C 
, tan(V ýj-22 +E (23) 

r7B 

B 
CC 
i 

rw 

where E is a constant of integration and is found from the given initial condi- 

tions. Replacing U by ý' in (2.23) and integrating gives 

vfB C c 
YA lnfcos(--T + EFW)} +G (24 

BAB 

where G is the second constant of integration and is also determined by using 

the initial conditions. With initial conditions given the constants of integration 

are found and the motion is time stepped by assigning a value to Y, at distances 

for which we require solutions, in equation (2.24) so that the depth dependent 

added mass is calculated and in turn the velocity and acceleration, given by 

equations (2.23) and (2.25) respectively, are found at that time step, where 

the acceleration has been obtained from twice differentiating (2.24), i. e 

ý> =C sec 2(% 
7B-c 

T+E 
£) 

(25) 
AB 

C A 

The solution obtained this way is not quite exact as it is dependent on the 

accuracy of the calculations of the added mass. In order to calculate correctly 

the numerical values of Y, ý' and k we should choose Mb and the sign of B 

carefully i. e corresponding to the direction of motion. For a cylinder rising to 

the free surface, Mb <I and B is positive because Y is defined as positive 

upwards. The case of a sinking cylinder is the reverse of the above and the 

system is at equilibrium when Mb = 1.0. 
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For tinie-stepping the equation of motion, a fourth-order Runge-Kutta method 

with local truncation error of 0(h') is used. The results for complete numerical 

calculations using the Runge-Kutta method and the above "exact" method are 

compared in Fig. 2.2 for the case of Mb=0.8 starting at d=5a. The difference 

between the two methods is negligible and hence the results of the Runge- 

Kutta fourth-order algorithm are accurate. We latter on compare them with 

the numerical calculations of more general types of motion using the fully- 

nonlinear boundary conditions scheme for verification of the analytical model. 

To be able to carry out comparison tests we need to ensure that the pa- 

rameters in both methods are set equal. One such parameter is the mass of 

the cylinder. In the analytical method we use Mb = (pra 2M b) to represent 

the mass of the cylinder. In the case of the nonlinear free-surface numerical 

method the collocation point distribution on the cylinder contour is taken in 

parametric form in 0 (the angle between the radius vector and the real axis) 

such that Xbody(t) =a cos ý and Ybody(t) = Yvar(t) +a sin 0, where Yvar is the 

varying vertical position of the cylinder and (Xbody(t)iYbody(t)) the position of 

the point on the cylinder at any time t. The cylinder contour is then discretised 

to allow NBODY (denotes number of points on the body) points on it. The 

initial distribution of the points on the free surface is made comparable to the 

distribution on the body. Assuming the cylinder contour is an NBODY-sided 

polygon, the area of that figure is then found to be 

Area = 
(NBODY)a 2 

-sin 
(26) 

2 

and approximately equal to 7ra' for large values of NBODY, where in our case 

this value coincides with the displaced volume of the fluid. In that way the 

buoyancy force py 
(NBODY)a2 is correctly determined. 2 
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2.4 Rising cylinder 

38 

The cylinder is located at a prescribed position, D= Eý 
a, 

below the free surface 

and is allowed to rise freely to the surface. Firstly, we consider the results of 

the numerical scheme obtained under the stated conditions above. Of interest 

is the effect of the free surface motion on the cylinder forces. This, presumably 

will confirm the validity or otherwise of the simplified boundary conditions in 

the case of the analytical models. We shall consider below five cases of specific 

gravity of the cylinder, namely Mb= 0,0.2,0.6,0.8 and 0.9. 

For Mb = 0.8 and d= 5a the surface elevations are shown in Fig. 2.3 as 

the cylinder is progressively approaching the free surface. In Fig. 2.3(a) we 

can see that at the time when the cylinder is just below the position Z= 

the free surface has still not deflected much above z=0. Later stages are 

not comparable with the analytical model since we know that in reality the 

free surface will move up above the line z=0 together with the cylinder. In 

all other cases of A the free surface does seem to remain reasonably flat for 

z< -a, T<8.7 in the case of Alb= 0.8, prompting us to impose the rigid 

wall boundary condition, 2A =0 on z=0 (the low-frequency limit). In Figs. az 
2.67 7,9,10 we show surface profiles for cylinders of specific gravity 0,0.2, 

0.6 and 0.9. In the analytical model we then apply this simplified free-surface 

boundary condition for comparison with the nonlinear calculations. 

We have also experimented with an equipotential boundary condition 0=0 

on Z=0 (the bigh-frequency limit for the oscillatory case usually considered), 

whereby the effect of gravity is ignored. In Fig. 2.5 the displacement/time and 

velocity/time graphs of the equipotential condition motion are compared with 

those of rigid wall condition motion, the numerical scheme and constant added 
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mass method. On comparing the equipotential motion with the other motions 

we see that the effect of the forces for this motion on the cylinder is opposite 

of that of the numerical scheme, and low-frequency motion as expected. The 

constant added mass (=I) motion is included as a simple check on energy 

conservation of the numerical system. 

The imposition of the rigid wall type of the boundary. condition produces 

results which are qualitatively in good agreement with the results of the numer- 

ical method. The difference in times for the two methods can be attributed to 

the fact that in reality the free surface is nonlinear and hence the assumption 

that we have a fixed boundary is, to some degree, a misrepresentation of the 

real free surface deflection. On the other hand we find that the fact that the 

body slows down as it approaches the free surface is inherent in both methods 

which shows that the choice of rigid wall boundary condition is the best of the 

simple models. 

From the list of our chosen values of Mb it is worth noting that the agreement 

between the two methods is improved in the case of small values of Mb, see 

Fig. 2.8. In the case of a non-deformable bubble, Mb = 0, the agreement 

is excellent. The agreement is generally very good for 0< Mb :ý0.3. The 

agreement gets worse for values of Mb > 0.3, see also Fig. 2.5,2.11. There 

does not seem to be any way we can consistently improve on these results, nor 

others with many other values of the two parameters, Mb and D not shown 

here. On starting at d= 9a we got similar motion, with the primary difference 

being a time delay. See Fig. 2.4 for surface elevations and Fig. 2.5 for body 

kinematics. 

In conclusion we can point out the fact that the two methods are in good 
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agreement for values of Alb between 0 and 0.3. For values greater than 0.3 

the analytical model with the rigid wall condition is qualitatively correct, and 

there is good agreement in the behaviour of the forces as the cylinder ap- 

proaches the fixed wall/nonlinear free-surface. The cylinder slows down as it 

approaches the fixed wall/nonlinear free-surface in both cases, but at different 

rates. Calculations can only be taken to the point when Z= -E for the ana- a 
lytical model since the added mass term has a finite value and the gradient of 

the added mass term tends to infinity at this point. The numerical calculations 

can be continued until the thin fluid layer below the body breaks causing the 

breakdown of the calculations. We shall see more of the features of the free 

surface behaviour as the rising cylinder interacts with the surface, in chapter 

4 where the vertical motion of the cylinder with constant velocity is studied. 

The breaking of the free surface seems to be physical and is thought to be 

caused by the development of negative pressures on the sides of the cylinder, 

see also Greenhow(1987). This causes a pressure inversion across the free 

surface and consequently a Rayleigh-Taylor instability. This phenomenon is 

depicted on a number of cases investigated above. In Figs. 2.3(e) total pressure 

distribution around the cylinder is shown for indicated times that correspond to 

some positions of the body and the surface depicted in (a) -(d). In Fig. 2.6(b) 

we show pressure distribution at distances d=3.1a, 1.1a and a when its centre 

is still below or coincides with the equipotential line and d= -0.05a, -0.7a 

and -3.1a when the centre is now above the equipotential line. At early stages, 

Le d=3.19a the pressure is almost totally symmetrical about both the vertical 

and horizontal lines through the centre of the cylinder and is positive, see Fig. 

2.6(a) . This situation changes immensely as we approach the free surface with 
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pressure increasing sharply at the bottom of the cylinder, decreasing slightly 

at the top and dropping to below zero at the sides. This kind of behaviour of 

the pressure is also discussed in Telste's (1986) paper for motion of a cylinder 

with constant velocity near the free surface. As the cylinder completely pushes 

its way through and above the z=0 line, the pressures become positive again 

and still greatest at the bottom. Further similar pressure distribution plots for 

Mb=0.6 are shown in Fig. 2.9(g). 

2.5 Sinking cylinder 

For the motion of a cylinder moving away from the free surface, five cases of 

specific gravity Mb = 1.1,1.2,1.4,2 and 2.4 are considered. In Fig. 2.12 we 

have shown the surface and cylinder positions due to the motion of a cylinder 

of specific gravity 1.1 as it freely moves, from a prescribed position d=1.2a, 

away from the free surface. This motion continues for large number of time 

steps causing very little surface deflection. Eventually, these calculations break 

down immediately after a small jet has formed at the centre. Starting the 

motion at d=1.1a will cause the free surface to deflect and create waves of 

short wave length in the vicinity of a small area directly above the cylinder on 

the free surface. Looking closely in Fig. 2.13 one can see the features referred 

to above. Such jets and short waves cause numerical instability resulting in 

breakdown of the calculations, unless smoothed out artificially. As we increase 

the value of Alb the chances of the numerical calculations breaking down are 

also increased, see Figs. 2.16 and 2.17 for A=1.2 and 2. In Figs. 2-16(g) 

and 2.17(e) we show pressure distributions around the cylinder at given times 

corresponding to some given free/cylinder surface positions in Figs. 2.16(a)- 
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(f) and 2.17(a)-(d). Initially, the pressure distribution is largely hydrostatic 

increasing steadily on the cylinder top and bottom. In Fig. 2.16(c), where a 

mound has developed, the pressure graph representing pressure at the top of 

the cylinder is shown to be flattening. This phenomenon is quite unclear as 

regards cause and effects; either the mound causes pressure variations or vice 

versa. 

The results of the numerical calculations are then compared with tile pre- 

dictions of our analytical models in order to test the validity of the latter. For 

Mb = 1.1 and d=1.2a we have included four cases of the boundary condition 

considered in the case of a rising cylinder, namely the rigid wall with variable 

added mass, constant added mass, fully nonlinear and equipotential boundary 

conditions, see Fig. 2.14. The agreement between the case of constant added 

mass and the numerical results seems to be best. In the case of rigid wall 

with variable added mass, the agreement is poorer even though the general 

behaviour of the forces is comparable. At the start of the calculations (T < 2) 

the equipotential condition method is in good agreement with the numerical 

method. This is to be expected of course since the numerical method also 

starts with a flat free surface 0=0 on it. The two methods start to diverge 

later on the time interval T>2. The cylinder seems to be moving with con- 

stant velocity in all the cases, especially at later stages of the motion where 

we would expect this behaviour as added mass variation becomes less impor- 

tant. In Fig. 2.15 we show graphs for the motion of a cylinder with Mb = 1.1 

started from d=1.1a and 1.2a below the surface. The other cases of cylinders 

considered seem to resemble this case. For example cases for Mb =1.2,1.4 and 

2 have been considered, see Fig. 2.18. As in the case of the rising cylinder, 
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the delay of the motion for the rigid wall condition appears to be the main 

difference between the low-frequency and the numerical calculations. When 

comparing the numerical calculations with the equipotential calculations we 

notice a delay of the motion for the fully-nonlinear boundary condition. 

The calculations with the equipotential. boundary condition compare well 

with the numerical calculations for times T<2 after which the cylinder starts 

moving faster in the former case. This maybe so, because initially the free 

surface is almost flat which results in very little disturbance to the motion 

of the body due to the free-surface motion and hence all the methods are 

in quite good agreement within that interval. For times T>2 the high- 

frequency condition results in faster motion as oppossed. to the low-frequency 

case. To a less extent, this is partly due to added mass variation near the 

surface which increases downward for the high-frequency condition towards the 

upper limiting value (=1) and upward for the low-frequency condition away 

from the lower limiting value (=I). At later stages the added mass plays no 

role and the agreement between the three methods (rigid wall, numerical and 

equipotential) is understood. For cases of Mb in the range 1.1 <A<1.4 (see 

Figs 2.14,15 , 18), added mass effect is important, rigid wall condition seems to 

produce results which are a better approximation of the motion of the cylinder 

than the equipotential. method. However, for large values of Mb, added mass 

effect is relatively less important. The constant added mass method seems to 

be in good agreement with the numerical calculations for all the cases of Mb 

considered, but can not predict the behaviour of forces near the surface where 

variation of the added mass is important. 

To check on the divergence and convergence of the equipotential method and 
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the rigid wall method against the numerical method, the motion is started at 

a position further away from the free surface than d=1.2a to allow for better 

numerical calculations. The agreement between the rigid wall, equipotential 

and the numerical methods is improved for the motion of a cylinder started 

from a distance d= 2a for large values of Mb. In Fig. 2.19 we contrast tile 

results of the motion of a cylinder started from d= 2a with Mb = 1.1 to those 

started from the same position, but for Mb = 2.4. The three methods converge 

as expected, since the effect of the added mass is now minimal. 

The free surface does not deflect much when 1.1 < Mb < 1.4 and hence the 

use of the simplified boundary condition 80 =0 or 0=0 is justified in the case az 

of a sinking cylinder. For Mb > 1.4 it is hard to justify the use of the simplified 

conditions, especially near the surface, since the free surface is greatly distorted 

when the motion is started just below the surface, d=1.2a say. Unlike in the 

case of a rising cylinder, the application of the equipotential. condition(O = 0) 

in the case of a cylinder moving away from the free surface has proved to be 

qualitatively in good agreement with the numerical method for small time for 

all the cases considered. This is so, because at the start of the calculations, in 

the case of a rising cylinder, the body is far away from the surface and hence 

the surface -remains flat for some time before becoming quite disturbed. As a 

result when the body reaches the surface, the initial equipotential condition 

no longer apply and hence the method predicts the wrong direction of motion 

at the end. An improvement in predicting the motion accurately of the rigid 

wall and equipotential methods for a sinking cylinder can be achieved by using 

bigger values of Mb and starting the motion from far below the free surface, 

a distance below d =: 1.2a at least. Such results are not of any practical 
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significance since generally the added mass does not vary much for deeply 

submerged bodies and our primary need is a model of this problem near a free 

surface where the effect of the added masses is significant. 

2.6 aee horizontal motion 

In accordance with tile investigations discussed in Tyvand & Miloh(1995), also 

to be discussed in chapter 4 of this work, we comment on some of the results 

obtained in their work. The main results obtained in their work are for constant 

velocity and acceleration, but they also conlcude that the obtained results can 

easily be adapted to solve the problem for free motion with initial horizontal 

velocity. They claim that, if a cylinder is given an initial impulsive horizontal 

force and is allowed to move freely then it will continue with constant velocity 

initially, until the free surface effects begin to act causing the horizontal motion 

to slow down. However, the body also experiences a downward acceleration 

caused by zero-order forces from their expansions, see Tyvand & Miloh(1995). 

Therefore, the net force causes the body to move almost parabolically during 

the early stages of the motion. 

To check this claim, a neutrally buoyant cylinder is initially located at d= 

1.2a and is given an initial impulsive horizontal force before it is left to move 

freely. Here, we assume the dimensionless scales used in the work of Tyvand 

& Miloh(1995) as well as those used above, for example nondimensional time 

T= tlý, distance and velocity are obtained as above, whereas the pressure and d 

the hydrodynamic force are divided by pga and buoyancy respectively. We 

comment on those results in comparison with observed behaviour of the free 

motion of the cylinder produced by the nonlinear method described above. 
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In Fig. 2.20(a)-(b) we show free-surface deflections and cylinder positions, 

and (c)-(d) represent total pressure distributions around the cylinder corre- 

sponding to elevations in(a) and (b) respectively. The time in Figs. 2.20(e(i), 

f(i)) is nondimensionalised by and by -! 
ý in Figs. 2.20(c(ii), f(ii), h). The 
U R 

path followed by the cylinder between 0 and 0.55 along the horizontal or, in 

terms of nondimensional time as in Fig. 2.20(e(ii)), on the interval of time from 

0 to 0.085, is indeed parabolic and turns upwards immediately after that, see 

Fig. 2.20(g). The total hydrodynamic force on the cylinder seems to indicate 

that kind of behaviour, as it is almost constant at the start of the calculations 

and begins to rise just after a small interval of time before gradually decreasing, 

see Fig. 2.20(h). 

2.7 Conclusion 

In this chapter we have considered the free motion of the cylinder moving 

away or towards the free surface or horizontally. Results of low-frequency and 

high-frequency limit problems have been compared with those of the nonlinear 

numerical scheme. The low-frequency calculations with updated added mass 

were shown to be qualitatively in agreement with the numerical results for a 

cylinder moving away or towards the surface showing only a delay in time. 

The equipotential condition could only produce qualitatively correct results in 

the case of a sinking cylinder and for a rising cylinder when the body does not 

move near to the surface. The constant added mass model seems to be a better 

approximation of the numerical results than the two methods discussed above 

but fails to predict the direction of force at the end of the motion for a body 

moving towards the surface. However, for the low-frequency limit problem 
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the cylinder motion is retarded as it approaches the wall and accelerated as it 

moves away from it. This could only be achieved by the use of the variable 

added mass model using the low-frequency condition. An important result 

that has practical implications concerning offshore structures. It is essential to 

be able to determine correctly the size and direction of hydrodynamic forces 

on a structure for its safe and economic usage. In chapter 3 we investigate 

the effects of updating or not updating the added mass for a spring-loaded 

cylinder oscillating below the surface, where we also consider the effects of 

wave damping on the motion of the system. 

The results, due to the free motion of a cylinder which is initially given a 

horizontal impulsive force, predicted by the small-time asymptotic method of 

Tyvand & Miloh are in good agreement with the nonlinear method. The early 

path of the cylinder is indeed parabolic and starts horizontally on the region 

0<T<0.045 and curves downwards in the interval 0.045 <T<0.105 a 

region where the small-time asymptotic method is known to be very accurate. 



0 
U) 
U) 
*1) 

ft 

CC) 
C: 

U) 
CL 
x 

U) CL 

3. co 

1 C 4 ýu 

x 
(D 

L Q C4 tf) LO C 
C) 

D 4) 

C N 1-: ci i 

UO. 4BpeA SSEW PGPPB 

4-5 

'o 4-) 

4-3 
(1) 
lt%D 
S 

4 

0 
4 

04 

0 

00 ý -8 

C. ) CO 4-3 

10 

Cý 



1.2 
Cn Cn CU E 
-a 1- ------------------------------------------------------------------------------------------------------------------------------------------- (D 

CU 

8,0.8 - --------------- -------------------------------------------------------------------------------------------------------------------------- 

0.6 - -------------------------------------- ................... ........... ...................................................... ............. 

iE 
o. 4 

1234 
distance below a free surface 

Fig. 2.1(b) Added mass variation with depth below the free surface in the case of 
equipotential boundary condition- 



CN 
Nr 
C) 

Cj E NE 
73 

c; 

C) 1 0 to U') U) 
CN N r- 

U') U ') to LO LO (0 

cq "R Cd wi rl. ý 
Nr m I? 1 19 
40019A IeO. [PaA 14! OOIGA ILO. qJGA 

Uý 
cl (D 

0 
C'4 

E 
U) 4) 

NE E 
C: ) 

0 

Cl 

R 
) 

juaLueoeldslp J8O. lV9A 

N l 
04 Cl) 

juaLoejL P 180.419A 

i ý 

W0 
co 
if (D 

4-) 
w 

"o Cd 

S5 ci 

4-3 

9-1 
a) 

4-2 
r-4 

>1 r-4 
0 

do 

LO 4-4 
c) 

O's 
0 

'a) 4-4 we' 
4-1 

00 

0 
0 

ci 

,ý 



5- 

4- ---------------------------------------------- ............................................ ............. ... .............. E 

cu 3- -------------------------------------------------------------------------------------------------------- ---------------------------------- 
2 

"3 2- --------------------------------------------------------------- .................... ......... ......... ............................. 

CL) 1- ----------------------------------------------------------- ------------------------------------------------------------------------------- 

0 
02468 10 

T- time 

Fig. 2.2 Free motion of a cylinder rising to a free surface, d=5a and [1] 
represents approximation; [2]- exact solution. 



ty) 
Cl) 

C) X 
CD 

-- 
Ice 

Cl ) C) C ? C') Cl) 

UO. q8A@19 ac)ejjns UO. 4BA913 eoeiins 

Cl) 

C14 
, 

: 

M 

x CD 
: 

Cl) 

C14 C) Cý C l) C) C? 

uo. 4eAela aosims uo. 4eAele ooepns 

a) 
4-1 
OLD 
0 11 m 
0 C) 

C-1 

E-4 

00 
; L4 (D 00 

(D 
"o 11 

4 10 E--i 

-0 ;ý 
4--l 0) 

cn ýý T! 

0 oo 

V E-4 

.ý ýo 51 rl C. ) ol 10 00 Cq 
gl (=; tý- 
Iz 11 t, - a) 00 

C-) C-0 

CO L- 
cq 

i 
En 

co E- 

C-i 41ý 

. -4 
r14 4 



cf) 
C) 
04 

----------------------------- .... ........................ .... . .................. C) 

00 U) (3) (D (D 
c6 

0) H 
0 

...................... . ............................ ............ .... ...... . CO 

Q) 
0) 
r_ 
cc co 

0 

....... ........... ........ .............. ......................... 

C14 

C) 
CD 

U') ce) 
C? 

ebd/ainssaid jejol 
F61 



0X 
ox 

04 

uoqeAele eoepns uovAoie ooEyins 

OX 
OX 

I 
uoileAele eoepns 

uo! IeAele 9-oepns 

:C -X 
ox 

CIA W? 
uoil"o ooeiins uoiieAete ooeiins 

.ý00,0ý 

CO 
0 ci 

4--, 0 to CQ 
0 00 r-4 
0 -0 q 
0 'T (=) t-: cq 

c) 0U 0 

C-0 
(D L (D 6- 

ý 00 
-, I' C'I 
C'l 

CD 
Q 
to 

:j Cq 

0. cq 
4-5 00 

0 Kqý 4(6L- 00 Oo Go (m r! C'I 
, -0 00 L-: cl 4 

,ý iq c", W 

ý 
's -, I, OD 

crj CO 

an Cd 
424 

; -j cq 
Cd 'm M cfs 

8 

C, j bo 4-a r 

bb 0 C6 



-5 
r. - c 

1 2 . 

Q4 
3 

----------------------------------------------------------------- ........ 
1 

< ------------------------------------------- ----------------------- 

w 3 ............ ------------------------------------------------------- 
U- 0.8 3ý . .......... ....................... .............. 

I :E 
ý; 0.6 --- ----------------------- ----------------------- 

2 4) ........ .................... ------------------------------------------- :, Z, 
E li 0.4 2 - ---- ............. - ................................. -- ..... -.. 

.. .................. ............. 
. 
20.2 --------- ................................................................ 

0 0- i i.. ii 
. t: 

Q02468 10 
0 
> 02468 10 12 

>T- time T-fime 

Rol 

Fbýifl 10 
V8 
4) 

1.2 ---------------------------------------------------- ------ --------- 4 

E I ------------------------------------------ -- ---------------------------- 
6 

A 
---------------------------------------------------------- - ---------------- 0 (D U. 0 

2 --- -------- * ------ I --------- ------- 

*0 4 ---------------------------------------------- --------------------------- 00.6 A2 ------------------------- - ----------------------------------------------- 

> 0.4 ---------------- ................................................. * ------ 2 > -------------------------------- --- --------------------------------- 0.2 ......... ............................................... --------- 
o 1 - 0 

02468 10 12 14 02468 10 12 14 16 
T- time T- time 

Mg. 2.5 Free motion of a cylinder rising to a free surface. a)[1] NM- 
numerical method, [21 EQ-equipotential condition, [3] CAMD- constant 
added mass(for RW) and [4] RW- rigid wall condition, Mb=0.8 and d= 
5a; b) Mb=0.8 and d=9a. 



ce) 

C: ) X 

C) X 

e c ) 
a 

l 
10 CV 

C ) 
a 

I 

CO m UO. 4eA919 ooeiins 
uo4eAala a., mjlns 

cl 

X X 

c) 4 o - c 
m C) c IT Cý 

U0.4eA919 ooeiins U0.48A919 aoepns 

'0 b 

N 

4-4 cli 0 
4-: 1 
0 

cq 

0 
-4 Cl 

M LO 
-, -I Cj 

-0 
$L4 

, 

11 a) 

0ý Cl 
C', r-I 

r" 
I: dl 
4 

Cl 

0 cl, 

cli 

ý C'I 
(3) M 
0 C6 IJ 10 . cq E-1 

C) (3) r-" 
10 

11 00 "S! 

C11 00 
tq 

CY) 

a 

ce) 

48 
Oi bo 

MCI 

'r4l 
-+OJ C-ol 



8 

41r 
: F, ý( C: ý, X: g ........... ý, - 

. ý- -'I. . 00 
-------------- ...... 04 ------------------- 

M 

CL 

-8 
0 60 120 180 240 300 360 

Top angle(degrees) boftom 

1-d=3.19a d=a d=-0.05a d=-0.7 

8 

(D 

00........ ................... ...... ........... ............... -------- 

b 

Ab 

a 

_8 
0 60 120 HO 240 300 360 
Top angle(degrees) boftom 

I- d=i. la -- d=-O. 8 dýlla 

Fig. 2.6(b) total pressure distribution around the cylinder as it moves 
towards the surface. Negative d indicates that the cylinder is above the 
mean free surface position. 



cr) 

CN 04 

Cý 
Cý 

'I T 
, Nt Cl) N cl, 1ý1 C? !" 

UO. 4eA@lg aoeýns 
M C , Cý C? 

uo4eAala ooelins 

Cl) 
04 

CN 

CD X 

Cý 

-ý t Cf) 04 
" T 04 Cý 04 

. 
4CA819 eoepns UO uo4eAaja ooepns 

co 
r-i 

W 00 
Q) C-0 

4'11 -1 
w 

11 Cj 
E 00 0 C's 

0 
0) CO 0 

. 2100) +-3 11 r-! 
0 ro CO 

Nil 

0 C11 
4--) 

0 CO r-q 
--I C: ) 

-0 w L": C) 
C-1 
C6 

0 olom . 

-q cq 0 pq L-4 
r". OQ 

NI, 

m C. 0 

(D 
v4 

cq 10 
cq 

C; 

ci 

ci oq ci 

. 14 r--l 



Fa( 2ý P) 5 
.5 

4 ------------------- - - 
3 ---------------------- . ............................. --- 

E 
0) 

-- ----------- -------------------- --------- 
-52.5 ------------------------------------------ 

0 3 ---------------------------------------- ---- ----------- .......... 
>2 

L 

--------------------------------- -------------------- 

2 ---------------------------------------------- --------------------- 1.5 ------------------------- ---------------------------------------- 
1. ................ - ......... I --------- -- ....................... 

0.5 ------- ----------------------------------------------- 
0 0 

0 0.5 1 1.5 2 2.5 3 01234 
T- time T- time 

Fb- i ] R1 ( ) 5 2.5 

E4 ... Z4 -------------------------------------------------------- - ------ 
c 2 

2 
----------------------------------- ..... ............ ........... . .. E 

8 
3 ................ ---------------------------------------------------- 

E 
8 

1.5 ------------------------- ...................... -- ............ ........ 
.w '0 2 ------------------------------------------- ------- -. 11 ............. 

-0 

------------ ---------------- ................................................. 

L 

. (U ............. ......... - ... ...................................... ----- ---- --- ---------- 0.5 .................................... ------- ------------------------ 

0 0 
01234 0123456 

T- time T- time 

Fc(-i)] 5 2 5 . 

4) 4 
E --------------------------------------------------------------------- 2 ------------------------------------------- -------- 

3 
2 

---------------------------------------------------------- .... .. 
81.5 

------------------------------- ....... ...................... 

. SQ) 
2 ----------------------------------------------- ---------------- - -- 81 -------------------- --------------------------------------------- 

1 

V 
If 1. ci > ....................... ................................. -------------------- 0.5 --------- -------------------------------------------------------- 

0 1 0 I 
. !.. 

01234 0123456 
T- time T- time 

Fig. 2.8 Free motion of a cylinder rising to a free surface, d=5a, [1]- 
analytic method and [21- numerical method. a) Mb=O, b) Mb=0.2 and 
c) Mb=0.3. 



ý3 

c: 

CD 

-3 
-3 0 

x 
3 

. 

........... 
.................. 

- 30 
-3 x 

3 3 

2 ------------------------- .......... - 

0 ZP ............. .... ......... ..... .................... 

..... ............... ----------------------- .................. 

----------------------------------------------------------------- 

-2 - ----------------------------------------------------------------- 

3 - -3 
03 -3 
x x 

Fig. 2.9 Free-surface and cylinder positions due to the motion of a cylinder rising to a free 
surface. Mb=0.6 and initially the cylinder is located at d=5a below the surface. [a] T--3.362 

3.571,3.782; - [b] T--3.992,4.202,4.412; [c] T=4.833,5.043,5.253,5.463; [d] T--5.678,5.883 
6.093,6.303; [e] T=6.513,6.723,6.9334,7.144; [f] T--7.354,7.564. 



total pressure/pga 

b 01 01 
C) 

CF) (A) -4 -- --- ------------- .......................... -- - ----- - ----- ------ ----- C) 
C) 00 0) 

(D 

............ ...................... r .L 
CO 

CD C: ý 
cc 

(D 

(. 0 
.................... C) . ........ ...... .. 

cn 

0) (3) 

C) 



Cf) 

C) X 

r c y 3 c . 
C N 

uoileAela eoepns 
uo! ieAala eoeiins 

CY) 

0X 

C1 4 Cf) 0 Cf ) 

uoi Aele eoepns Re uoi P-Aale ooeiins .4 

Cf) (Y) 

C) X 

C1 4 0 C? 

uoileA" ooeiins UOIJeAaJ9 eoeiins 

bD au) c; 

ý. ý . 60 OQ 
4-') 
a) 

5 r4ri 
0ý 

^ 

00 cq 
Cj 4 

pi 4 1121, 

0o El 
LO -C 04 u0 

:0': ý C6 
0 4ý M 
0 cq 

0 
GQ 

a) 
00 

to 
J-4 

ci 

0 

CO E-4 
A4 ,, 

ru 

(1) L-i 
00 

t- 00 
-Tý 

C'l 

0 

-4 
W 

"I'T 

0 

p4 --4 E-i 
; -4 , (1) rc$ 

Id CQ Lq 
to 

q C6 t-: 
C) OD cq CD 
11 00 m E'ý 

L6 (=; Nil 
T--[ 

C6 11 

'ý4, F, ý- 0 CD 
LO 

C4 cq Ljý 
CD C'I C: ) 
r-I C's LO oo 

ci 11 6 cl 
w L6 

-4 -00 E- 



5 ý A 

o4 ------------------------------------------------------------------- 
1.2 ................................................ . .......... I 

-------------------------------------- ---------------------------------- 
3 ----------------------------------------------------------------- ........... 0 

0) U 0 CL 
A2 . 2 
'o 2 ----------------------------------------------------- ------------------------ 00.6 ---------------------- --------------------------------------------------- cu 0 . t: 
4) 1 ------------------------------------ ---------------------------------------- 

0.4 -------------- ----------------------------------------------------------- 
> 0.2 ------ .................. ............................................... 

0 
0123456 02468 

T-fime T-fime 

F60) 1 K10 6 5 . 
'EQ 4 0.5 

2 
...... ............. --------------------------------- --- ..... ... 

E 
0 
0 

0 

0.4 ------------------------------------ ... .......... 3 ------------------------------------------------------------ - ------ 
20.3 

------------------ 
--------------------------- -- ............................................. 

'o 2- -------------------------------------------------- - ------------------------- 
m 
.0 z 
t! 0.2 - ----------------- ý --------------------------------------------------- 

---------------------------------- ----------------------------------------- 
> 

0.1 ........ ....................................... ................... - ...... 
0 0 

02468 10 12 14 02468 10 12 14 16 
T-fime T-fime 

Fig. 2.11 Free motion of a cylinder rising to a free surface, d=5a. a) 
Mb=0.6, b) Mb=0.9, [1]- analytic method and [2]- numerical method. 



CA 

0X 

Cý 

uoiieAala a3epns 
uollpAaia 93eiins 

OX 
ox 

C ý 
CA 0 

uotleAale 93epns 
uoileAale aoeiins 

N 04 

00 

X 0x 

Cý 
(? 

uolleAajo a3euns uolleAela ooepns 

I 
E 

C, 

ci 
Q) E- 
(1) 

9 

o6 
C'I Lq 

0 C-1 
E- 

cl - 

bb t- 
t-: 
t- 

o 

f 
E- 
1 
.1 E- 

Cý 
0 

. (2 ý tý: 
0 

4-a 

0E 
.02; 3 

LO 
4 00 

1 00 

C's 
rid to 

.0 
C) 14 

C6 
IL4 

ci 

(D E-4 

6i 
10 cli 

ýý Id cli 

C-1 
9 

, -, " C's 
ci cq- 
bb to 

rlý cy) 



N 
C*4 

OX 0X 

C ý 0 40C 
.4 

uoileAala aoelins uoileAala ooepns R l id 

C14 
cli 

OX OX 

CN C, 4 C14 0 
C NN 

uoileAela aoepns 
W uoileAele ooepns 

04 

N 

X 

X 

C C? ý 
C N 04 04 

uo 
R 

uot eAela a-3eiins 

11 
E- 

co LO Ci 

C'i C'ý jl 
C11 CD 

o 'ZI, 0 

cq 

0 0) CO 
bi) 00 CO 

0 
cli 

a 

CS 
C+-4 

0 as Cl 
0 
cl 

0 

0 C) 
F-I 

4-0 a) 
6i 

0) 10 

o 
4-D 

00 

4--) 

"d 
0) 

0 Soo 
-4 0 cli 

00 
of 
C. 0 

-tj X4 CYD 

.5 

a) 11 

- 
70 E-4 

LO 

C, 
$ 

Cd 

cd ci 

cq 

ýjw ro r-I CYD 
3: 4 

L6 
Cý r-4 -Z C6 

rxq cq Lo 



-(a) 
o 

-0.5 - ----------------------------------------- . ... ................................................. E 

CL ...... .......................... 
4 

ýE -1.5 - ------------------------------------------------------------------------ Q) 2 ---------------- 
>3 

-2 
02468 10 

T- time 

M(b) 0- 

--------------- -0.1 - ----------------- -- -------------------------------------------------------------------------- 
.0 

------------------ Z -0.2 ----------------------------------- ... ..... ................. - .............................. 1 7v 

-0.3 - --------------------------------------------------------- .... ... .... .......................... 4 

-0.4 .................................... ....... 23.............. ---------- -------- 

-0.51 

.... .... 

02468 10 
T- fime 

Mg. 2.14 Free motion of a cylinder moving away from the surf- 
ace d=1.2a and Mb-1.1. [1]- numerical method, [21- equipotential 
condition, [3] - constant added mass method and [4] - rigid wall 
condition. 



E. 2 0 
E .......... ...................... ............. 

15 -0 - 
E 

----------------------- ....... ............................ 

--------------------------- ------- . .... ... ---------------- 

C, -0.8 JQ 
10 

----------- ------------------------- - ----------------------- a -0.6 -! c 
1 

---- ---------------- ---- ----- ... ...... ........... 
ru 

------------------------------------- .... ........... 

\ 

3 
10 -0.8 

21 

------------------------------------------------- ...... 

> 91 W > 
3 

---------------------------------------- ---------- ... ..... 
2 

-1.6 -1.2 
02468 10 01234567 

T- time T-Ume 

o - 0 Ný 

zý -0.1 
.2 

---------- . .............. ............ ..... , --------- «««« ----------------------- 
--------------- ---- --------------------------------------- 

-0-2 -------------------------- ............... 

-0 3- ---------------------------------------- .... .... ........... ---------- -------------------------- -- ----- -0.2 --------------------------------- --- ---- --- - -------- 
. 32 

2 

1 
3 

-0.4 -0.3 
02468 10 01234567 

T- time T-tme 

EJ 
o i 

12-0.02 
---------------- ------------------- - ------------------------- 

-------------------------- 

0 ............... ------- .................................. 

. 2-0.04 --- - --- ... ..... ... .. --------------- 
--------------------- - -------- 

_OM 
02468 10 01234567 

T- time T- tirne 

Fig. 2.15 Free motion of a cylinder moving away from the surface and 
initially located at a) d=1.2a and b) d=1.1a. [11 - rigid wall condition, [2] 
numerical method, [3] - constant added mass method and [4] - equipoten- 
tial condition. Mb=l. l for all cases. 



C14 

0 

CN 

uo4eAele eoelins uo geAele eoepns 

C%j CV 

om 

0x 0 

1 C14 C 4 
C ? C) 

uo. 4eAele soejjns uoileAele eoepns 

1 C 4 

0 ox 

1 C 4 

C ) 

UO. 48A91ý ooejjns uop-Aajý eoepns 

6 11 w 

E--i 

00 

to 

4 

co 

bO cq cq C: ) 
-4 cq 

to C'f 

C6 E-4 
ý 

, cq 
w 00 

00 cli 
t- 
LO 

0 
-4 to CO 

0 

cq 

o cl 
cq 
LO 

M 

cql 

.2 0) "114 

."ý 
0) 

-P 
4 

w ') 00 -1 co 
t- 

cq 

6T 

r4 

ul Cý crs 
cq 

'd Lo 

to ý '-I as r--j cq N CO 

Cý OR 

bb -ýý oq Cf pr4 r--l " 



91 5 

cu CD CL .................. ................................... ------------------------------ ............ - ------- 

cn 2.5 . ...... . ........ ...... .............................. ......................... 
CL El 

. ...................... ...... . ............................ 

0 

-360 -270 -180 -90 0 
angle(in degrees) 

H T=1.68 T=2.521 Eq T=3.362 

e T=4.202 T=4.412--T=5.043 



- - 55-1 r( g) ] 

..................... 

.2 

:3 

--------------------- ---------------------- 

4 
03 
x 

- 
-3 

2 - (d)1 

c: 
-2 
e 

-------------------------------------------------------------------- 
42 
U) 

A 
................................................................ 

42 

-4 
03 
x 

-4 
-3 

Mg. 2.17 Free-surface and cylinder positions due to the free motion of a 
cylinder moving away from the surface. Mb=2 and initially the cylinder 
is located at d=1.2a below the surface. [a] T=1.001,1.219,1.429; [b] T 
1.639,1.849,2.059; [c] T--2.269,2.395,2.521; [d] T--2.647. 



L2-1 
total pressurelpga 

CD 
C: ) 

- ------- - ------------------------- ........... ......... 

r-L CO -- --------------------------- -- ----------- , ........... ----------------------------- 

. ................ . ......... ............. CD 

c3 



0 Foui 1 0 
------------- ---------- -- ---------------------------- - -- ------- -- ------------ 1.1. -1- ..................... 

1: L -0 8 32 '0 
---------------- ------------- -- ------- , .-1. -- ..... 

0 
0 > 

- -FO 0.3 ...... .................... -- -- --------------------- 
.2 t: 1 

---------------------------------------------- -- --- -- ... .. . > --------------------------------------- 3. 

3 6 -0 . 
012345 6 012345 

T-time T-Ume 

r ---] 0 b(i) 

.............................. ......................... 

o 

................................ ............... 

-0.75 ------------------------- 
,v - 0.35 ------------- ............. - .... .. ---------------- 

LI 

.................................................... .... > .............. .......................... ....... 

-1.5 -0.7 - 
01234 023 

T- üme T-bme 

Mo al 0 

CL 
.D V 

............... 

------------- --------------- 

............. . ........................................... 

m 
..................... ....................... > ............................................ .... 

lo - 
. 0 2468 0246 

T- trne T- time 

Fig. 2.18 Free motion of a cylinder moving away from the surface 
and initiaRy located at d=1.2a, where a) Mb=1.2, b)Mb=1.4 and c) 
Mb=2. [11 - rigid waH condition, [21 - numerical method, [31 - cons- 
tant added mass method and [4] - equipotential condition. 



KI 0 
E ------- --------------- .... .......... - ---------------- 0-0.5 

o 
E ............................ .......... ------- ----------------- 

CL ......................................... ................ -8 ............................ ............ ------ ............... .............. 
N 

3 
'E -1.5 --------------------------------------------- ---- 3 ------------ 

ro 

(U 
................ ................ .. 

-2 -16 
02468 10 02468 10 

T-tme T- time 

0 D 

.6 .............. - ............................................ z 
--------------- -------------------------------------------------- 

-0-25 to ------------------------------- . ............... ---------- 
1-2 
M -------------------------------- --------------------------------- 

t: 
.......... ............................. 

2 > --------------------------------------------- 3 ........ 

-0.5 -4 
02468 10 02468 10 

T- time T -time 

o o 

................................................................ -0 

0-0.05 10 ------- -mýý ---------- -0.3 .......... ..................................... - ............... 

........... -------------------------------------------- 
A2 

-0.1 ...... -0.6 .... 
02468 10 02468 10 

T- time T- time 

Fig. 2.19 Free motion of a cylinder moving away from the surface and 
initially located at d=2a. [11 - rigid wall condition, [21 - numerical met- 
hod and [3] - equipotential method. a) Mb=l. l and b) Mb=2.4. 



co 

. . ................. ................. .............. .......... .. 

............... .................. ................. ----------- . -I . 00 

....................... ....... --------------------- - 

. 

00 
................. ................. 

C) 
. 

C3 
ED 

Cl) Cli C D 

C N 
0 04 4 

uo . 4eAalg ooeiins eBd/ainssaid jejol 

Ui 

.................. ............................. .......... ---- - CY) 

C3 CD 
.................. . ............... .............. --------------- -- - CO 

................ ...... ........... .................... C) X 

ca 

......... ------ - ------------------------------------ ................. 

C14 

06 
to 
C? 

C N 
C% 

uo. qeA@lg ooejjns C) e6d/ainssaid jejol 
F--l I ýL I I F--l 

x 

P4 

o bo 'd 
0 

0 
P. 

-4 

-4-D 

P-1 

> 
4 

-4-D U) 

X4 

to -ý 
4ý vi 
M 
0 P4 

04 

>1 
P4 

05 

UI -ý co --4 0 
W0 

4-ý 

00 
0 

$4 
-4-ý- 0 

0 

o> 
4-ý 

0 

ci 
0 

*1 

0 



N 
1 

C*4 
1 7 

C) 
7 

------ --- ----------------- -- ................ . ................. E 
.......... ................. ................. .E 

! ý2 CN 
C) C; CC! Iq Cli C 5 C5 

C) a0 14! OOIGA IeIUOZPOq 
juatuaoeldslp leluoz! jo4 

cli 

.......... ..... ........... ....... ........... ----------------- - 
.............. . 

C ! C14 Cl 
0 

Cý 
C D 4 0019A IeIUOZU04 

juawooeldsp leluozpoq Fg] . 



C\l 

................ . ............ ...... ........ - ---- ------ cý E 
CD 

-@ E 
E2 

CD co C) 

-Aoncyaoiol 

CR 

------------- ........................... .... ....... ..................... . C) 

.................................... ------ ......... .................... 

.................... ------------- ...... ..................... . Ui 
C) 

............ ................. .............. ------- --------------------- - , z3: x 

.................. ------------- ............. ....... ..................... . cq 
C) 

.............................. ......... ....... ..................... . N 
C) 

................................ -------- ....... ......... ........... . 
CD 

C) 
tr) 

(X)Z 



Chapter 3 

Constrained motion of a 
cylinder 

3.1 Introduction 

This chapter studies the constrained, but large, motions of a submerged cylin- 

der, subject to external linear springs. Such a situation could arise for example 

on the pontoon of a semi-submersible oil rig, the springs being given by rig 

buoyancy and mooring, on a wave energy device, the springs being given by 

the power take-off machinery, or on a floating pipe-bridge, the springs being 

given by the bridge stiffness and moorings. We therefore consider a spring- 

loaded totally submerged horizontal circular cylinder near a free-surface which 

is given an initial displacement r=xi+yj from its equilibrium position and is 

allowed to oscillate at various fundamental frequencies depending on the spring 

coefficients. Constrained motion of the submerged cylinder under a fully non- 

linear free surface is explored by simple oscillation numerical experiments with 

the cylinder mounted on equal vertically- and horizontally- acting springs of 

modulus k. We choose initial displacement of one radius either downward, or 

upward, or to the side, or downward and to the side, or upward and to the side 

from the equilibrium position with the body remaining fully submerged. The 

77 



Constrained motion of a cylinder 78 

motion of the cylinder described with these five initial positions is considered 

to be fairly general, especially since they have a vertical (but not horizontal) 

axis of symmetry. 

To make progress analytically we assume the free-surface deflections are 

generally small and slow enough for us to regard the free surface as a fixed line 

az on which the low-frequency boundary condition is applicable (i. e 2-1-'=O) and Z 

use of the added mass formula (2.10) is therefore possible. Furthermore the 

wave damping coefficients due to radiation are prescribed from a low-frequency 

asymptotic form and included in the equations of motion in the horizontal and 

vertical directions. The equations of motion are derived from Lagrange's equa- 

tions (2.5) with the depth-depended added mass coefficient appearing in the 

equations. In addition, wave damping is calculated approximately from these 

added mass coefficients as shown in section 3.1, and then incorporated into the 

equations of motion. In all the results presented, the coefficients and equations 

used have been non-dimensionalised. For time-stepping the equations of mo- 

tion, a fourth-order Runge-Kutta method with local truncation error of 0(h') 

was found to be suitable in approximating the difference equations of section 

2.2. 

In this investigation of the general motion of the submerged cylinder, a 

comparison of the results of the modelled nonlinear problem with those of 

the fully nonlinear numerical scheme of Brevig, Greenhow and Vinje (1980) is 

carried out. In this way, a check on the validity of the assumptions underlying 

the analytical model may be made. 
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3.2 Damping coefficient 

We here follow the derivation of Greenhow and Alin (1988), see also McIver 

(1994). Since low-frequency form of damping is assumed for slow oscillatory 

motions which are predominantly sinusoidal we shall therefore use the relative 

motion hypothesis which is given in Newman's (1977) notation as 

X, -- coBil + iw'(All + pV) as w 

in sway and 

X2 ; z-- pgS + iwB22- w(A22 + pV) as w -ý 0 (2) 

2) 2 
in heave correct to O(w or O(Ka) since K= ýý! for deep water. In the above 9 

equations S is the waterplane area, X, and X2 are sway and heave forces, Aii 

and Bij are added mass and damping coefficients and V is the displaced volume 

of the fluid. 

An asymptotically correct low-frequency damping is obtained by considering 

leading order terms of equations (3.1) and (3.2) in combination with Haskind 

relations, see Newman (1977). The Haskind relations, in two dimensions, are 

expressed in the form 

Bij = 
wl X' j2 

(3) 
P9 

2 

It is worth noting that this relation is valid for all frequencies of oscillation. 

For the circular cylinder the dimensionless added mass and damping coef- 

ficients are identical in both heave and sway at all frequencies, as proved by 

Ogilvie (1963) and Evans et al (1979). Since also S=O, the case of a submerged 

cylinder, then 

XI ý-- X2 
- 

iW 2(M 
a 

(0) + 
V)p 

V4 
v 
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where V= 7ra 2 
and AI,, (O) is dimensionless added mass at equilibrium. 

Substituting (3.4) into (3.3) gives 

W1 ZW2(M. (O) + 1ý)PV 12 

Bil = 
B22 

P9 2 (5) 

as the dimensional damping coefficient of the low-frequency motion. In our 

case the cylinder is always totally submerged so that V=V= ra'. This 

damping factor is then incorporated into the equations of motion, which are 

in turn nondimensionalised. 

3.3 Coupled motion of a cylinder 

Here we change some general definitions and adopt notations with subscripts 

for better presentation of the equations. x, and X2 become respectively the 

horizontal and vertical displacements below the surface. When the mass is 

displaced a distance x, horizontally and x2 vertically, the extension of the 

spring produced in either direction is proportional to the tension in the spring. 

If I is the natural length of the spring and x, or X2 is its extension in the 

horizontal or vertical direction, then the force of tension in the spring is VL 

horizontally or Vý, ' vertically, where k the component of the restoring force due 

to the springs attached to the cylinder is the same in both directions. Thus 

the total energy stored in the spring is 

W, = 
XI (01) dx 1=1 k(xlý Jo 

T21 

horizontally and 
W2 = 

X2 

(k 
X2 

)dX2 =1k 
(X2Y Jo 

121 

vertically. The net sum of the potential energy of the system is 

2 
W, + W2 = RE = 

kx2, 

+ 
kX2 

8) 
22 
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The kinetic energy of the fluid is given from the definitions of the depth- 

dependent added mass and velocity U of the the body as: 

K. E =I Ma(X2)(: ýl 2+ 
-ý2 

2) 

2 

since tile added mass is equal in both x, andX2 directions (We here see the 

remarkable result that for this particular geometry, -the energy of the fluid is 

independent of the direction of motion. This result is not true for any other 

known geometry or for a circular cylinder in finite depth of water). Taking into 

account the mass of the cylinder, the total kinetic energy of the fluid and the 

cylinder becomes 

K. E =- 
1 (Mb + rna(-'172)) U2 10 
2 

The equations of motion may be derived from Lagrange's equations (2.4), 

for the generalised co-ordinates xi, where 

L=K. E - RE 
1*21»2 
-(Mb + rna(X2»(X1) - (Mb + Ma(X2»(X2) 
22 

-1 (k (x)2 
+ k(x2y) ( 11 ) 

Substituting (3.11) into (2.4) gives 

(? 'nb + rna(X2))aFl + ili2 
drn,, (X2) 

+k 
(x'ý 

=0 12 dX2 1 

for motion of the body in sway and 

I. 
2 

dm,, (X2) 1 
2dm,, 

(X2) x 
(Mb + Ma(X2))3F2 - XI --+ -252 + kL-2)2 0 13 

2 dX2 2 dX2 I 

for motion of the body in heave. 
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3.3.1 Non-dimensionalisation of the equations 

Non-diniensional quantities T, Xj, )ýj, )ýj, AL and Alb corresponding to, tp- 

time, xi-displacement, ii -velocity, ; ii-acceleration, m,, -added mass and Mb 

mass of the cylinder may be defined as 
3 

T' 2"ý. p7ra IAIb 4pr aAfbbýi fiý Ma T =: 2AIb IaakkI 
Ma 

= 
p7ra2 p7ra" 

Xi 

A= Mb 
pira2 

The equations of motion above are non-dimensionalised. Equations (3.12) and 

(3.13) then become 

dM,, (mb + Ma))ýl + XIX2 -+ 47r2 MbXl : -- 0 14 ýX-2 

and 
, dMll 

2_I dX )ý 2 
7r2M X (Mb + M. )ýt +- ýk2 1 +4 b2 

2 dX2 2 dX2 

respectively. 

This motion is not damped. By adding the nondimensional wave damping 

term 6, ki given, in dimensional form, by equations (3.5), equations (3.14) and 

(3.15) then assume the form 

M, 
+ 8, ki + 47r2M X, (Mb + Ma)-, kl + 

dX2 
b 

and 

(Mb + Ma)X2 41 
dMa 

.21 
dM,,, 

kl2 + 6ýk2 + 47r2M bX2=0 (17 X2 
2 wx, 

) 2 dX2 
2 

respectively, where 
27ra 2R 2(M 

a 
(0)+ 1)2 

18 
12 J( Mb +Ma )3 

and R, the coefficient of the restoring force which determines the strength 

of the spring, arises here because of the way the equations have been made 

dimensionless. 
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In order to compute the numerical solutions for equations (3.16) and (3.17), 

we need to represent each one of them in the form of a system of two first-order 

ordinary differential equations. Let U, = X, and U2 = X, then 

01 
--": 

U2 

(12 U, V2 dM,, 47r'Mb U, b U2 
19 M,, + Mb dV, M,, + Mb M,, + Mb 

For the second equation we take V, = 
X2 V2 = 'ý2 so that 

ý "I : --: V2 

I dM,, I dM,, 
-V2 + -(UI)2 

2MbV 

ý+Mbj 
WV 2- 47r 

22 dVi 
6 V2 

20 Ma + Mb 

To determine the solution of the above initial-value problems, a fortran 

program based on the fourth-order Runge-Kutta method was used. The al- 

gorithm requires that we give the initial values i. e displacements, velocities, 

number of time steps, equilibrium position, length of each time step, mass 

of the body and the value of R, a constant which we choose to specify the 

spring coefficient required. Explictly R is the ratio of the spring force at one 

radius displacement from equilibrium to the buoyancy force. Calculations for 

displacements, velocities, added mass and damping (and for other parameters 

if neccessary) at each time step can therefore be obtained as required. The 

results calculated are interesting and a comparison of these results with those 

of the fully nonlinear model of Brevig et al (1981) will help us to determine 

the regions of validity of the low-frequency assumption made to calculate the 

added mass. The tests are discussed in section 3.5. 
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3.4 Added mass and damping effects on the 
motion 

The undamped and damped motions of the cylinder are investigated in the 

following sections with the effect of added mass variation being highlighted. 

Firstly, let us consider the effect of added mass variation on the motion of the 

cylinder when damping is not included. Considering equation (3.20) for tile 

vertical motion of the cylinder, since for horizontal motion the added mass 

coefficient is a constant, we wish to study the effects of various parameters 

of the system on its motion. We expect that the movement of the cylinder 

will depend on its mass, on changes in equilibrium position and on starting 

positions. 

3.4.1 Undamped motion of the cylinder 

The actual period tp for the motion of a spring-loaded cylinder oscillating 

under a linearised free-surface is given as a function of the virtual mass of 

the cylinder, Ma + Mb, and the spring coefficient, k. For example, we may 
;; T -"1 write this as tP 

== 
27r -a+-b 1. Here we use the equilibrium value for rn,,. 

V _LP 

Non- dimensionali sing the period of the cylinder by the natural period of the 

cylinder inair t,, = 27r 1 gives the non dimensional period as 
VEF 

M, + M6 M. +A 

b 
(21 ) 

The calculations that follow in this section will be for equilibrium position at 

2.2a below the surface and all parameters used are non-dimensional. 

Since Mb is a constant, the change in the period of the motion of the sytem 

can only be due to change in added mass. We gave a graphical illustration in 

Fig. 2.1, of how the added mass varies with depth below the surface. Clearly, 
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we can tell from (3.21) that by assuming the mass of the body Mb > 1, the 

period is increased from that of a neutrally buoyant cylinder, and vice versa. 

Furthermore, we let the mass of the cylinder vary, then the velocity of the 

cylinder changes, increasing as Alb is reduced. This leads to reduced period 

of the system as expected from equation (3.21), see Figs. 3.1(a)-3(a). The 

increasing velocity of the system is shown in Figs. 3.1(b)-3(b) for decreasing 

values of Mb. 

Changing the position of the cylinder, to either above or below the equilib- 

rium position, is not likely to cause any difference in the global effect of the 

varying added mass (see Fig. 2.1) on the motion. This is discussed in detail 

below. In the case of constant added mass we simply have a harmonic type of 

motion in a conservative force field. 

In the absence of damping the forces acting on this system are conservative 

and hence the total energy of the body and the fluid is conserved. This is 

shown in Figs. 3.1(a)-3(a) (i. e di splacemcnt- time graphs) where the magni- 

tude of the maximum upward displacement is equal to the magnitude of the 

maximum downward displacement. It is also important to consider and ver- 

ify the neccessity of updating the added mass as opposed to using constant 

mass (equilibrium mass) in our computations. The phase diagrams of Figs. 

3.1(c)-3.2(c)-(d) and 3.3(c) show the effect of updating or not updating the 

added mass. These features turn out to be more pronounced in the case of 

smaller values of A16, with the phase diagrams for variable mass being symmet- 

rical only about the horizontal line through zero and that of constant added 

mass being symmetrical about both the horizontal and vertical lines through 

zero. In the case of small values of Mb, especially Mb = 0, a non-deformable 
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bubble, the phase diagrams for both constant and variable added mass meth- 

ods coincide but the actual motions around the orbit do not coincide in time, 

as shown in the displacement/time and velocity/time graphs. 

To illustrate the importance of the term, '9"" V22, in energy conservation aX2 

we include this term in the system of equations (3.20) in the case of constant 

added mass(knowing very well that it should equal zero rather than taking its 

instantaneous value fromrna(X2)). From Fig. 3.3(d) observe that energy is not 

conserved since the displacements at zero velocity are not equal in amplitude 

meaning a different amount of potential energy is stored in the springs in the 

upward and downward strokes, whereas without that term the motion is simple 

harmonic with energy fully conserved. Again, if in the case of variable added 

mass we exclude, in system (3.20), the term O"a V. 2, the system tends to gain &X2 

in energy forcing the body to accelerate to a new maximum value above the 

equilibrium position greater than its absolute minimum value. The model is 

such that changing the direction of the initial displacement for a given mode 

of motion has no effect on the period of the system. 

From the above studies we see that this model is in good agreement with the 

linearised (i. e no V2 terms in the equation of motion) and equilibrium position 

added mass theories. The period for variable added mass is found to be almost 

in agreement but slightly longer. Differences exist in motion, but the variable 

added mass theory is consistent, a conclusion drawn from the fact that energy 

is conserved. Reduced Mb leads to an increased effect of the variability of M,,, 

as expected. We conclude that the variable added mass analytical theory is 

correct, and we feel justified in extending it to include damping which will be 

important for comparison with the numerical studies. 
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3.4.2 Damped motion of the cylinder 

For damped motion of a cylinder dimensionless systems of equations (3.19) 

and (3.20) are considered. The derived damping coefficient depends on the 

dimensional frequency of the motion of the cylinder, 

kk 
FM Wa+ Mb)l 

Rgo- 
A4 Mb)l (22) 

where w is the dimensional frequency of the cylinder in water. Since the 

frequency in (3.22) is small, then our damping which is depended on W4, see 

(3.5), is also going to be small. Increase in spring coefficient, k, will lead to 

increased damping of the motion, but this case is not desirable since it would 

violate the assumed low-frequency motion needed for added mass calculation. 

We investigate how large k can be later. 

With damping it remains to be seen to what extent the added mass updat- 

ing is worthwhile considering, rather than simply taking the equilibrium added 

mass. For undamped motion this proved to be of little significance (see Figs. 

3.1(a), 3.2(a) and 3.3(a)). In section 3.6 we revisit this, with a view to com- 

paring the variable and constant added mass cases with the fully non-linear 

free-surface method of Brevig et al (1981). This will give us a clear picture 

of the three cases put together. We shall also be looking at the question of 

the accuracy of the motion of the system for variable added mass case and the 

fully nonlinear case. 
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3.5 Computations using the nonlinear method 

Running the nonlinear scheme for long periods, for comparison with the an- 

alytical model to be made, gives problems. When the cylinder was displaced 

through a distance a above the equilibrium position, of 2.2a below the sur- 

face so that the top of the cylinder was submerged only 0.2a below the free 

surface, disturbances were observed on the free surface which lead to break 

down in the calculations. A number of different 
-combinations of At (small 

increment in time), the number of free surface points, the points around the 

body, the length of the control volume, the free surface point distribution ratio 

(which allows closer distribution of points in the region around the cylinder 

and wider spacing for points further away from the body towards the verti- 

cal boundaries) and the equilibrium position were tried, but the calculations 

always broke down. Next, the body was displaced through a below the same 

equilibrium position of 2.2a and allowed to move upward. The body could 

only go up to the maximum displacement above the equilibrium mark and 

down to a distance a little below the equilibrium position before the process 

broke down again. Diagrams of the above features are shown in Figs. 3.4- 5. 

When the cylinder is initially above the 2.2a mark and moving downwards, the 

free surface is drawn down following the body (see Fig. 3.4(a)) until it starts 

moving upwards into the trough created, as shown in Fig. 3.4(b) which also 

includes the last profile of Fig. 3.4(a), and eventually forming jets on both 

sides of the body as in Fig. 3.4(c). These jets appear to be physical, in which 

case continuing the calculations would require very fine resolution of the jet 

flow, and could only be continued until jet re-entry as in similar breaking wave 

calculations, see Longuet-Higgins and Cokelet (1976). 
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When the body starts from below the equilibrium position it accelerates 

with a volume of fluid, and as it starts to go down from its peak, some of 

the fluid continues to move in the upward direction. As the cylinder gains 

momentum in the downward direction the mound of fluid initially created 

above it begins to collapse following the cylinder. All this happens too quickly 

for the scheme to be able to correctly resolve the free surface points. The 

process gradually comes to an end with unphysical cracklike developments on 

the free surface around the centre (see Fig. 3.5(c)). The sudden slumping 

down of the free surface which begins in Fig. 3.5(b) and continues in Fig. 

3.5(c) ensures the development of cracks responsible for the breaking down 

in calculations. It would, probably, be possible to continue these calculations 

with a finer free surface discretisation, but we have not attempted this. 

As a further study we consider motion with constant velocity. A similar 

study was carried out by Greenhow (1988), but for bodies entering the free 

surface at a constant velocity. That case can be likened to ours when only 

considering the motion of already fully submerged cylinder. His calculations 

seemed not to have gone very far. We now shall consider the motion of a 

cylinder started impulsively with a downwards velocity at Froude number, 

Fr = U-=0.082, and the resulting surface profile due to this motion is shown 
V/dg 

in Fig. 3.6. The features of this profile resemble those for variable acceleration 

in Fig. 3.4, indicating that for this case the breakdown of the calculations is 

physical rather than numerical. 

It is worth mentioning that we have no problems with the numerical calcu- 

lations as far as horizontal motion is concerned, since free surface deflections 

are much smaller (see also Hepworth, 1991). Hence most of the effort is spent 



Constrained motion of a cylinder 90 

on resolving problems encountered only with the vertical and oblique motions 

of the cylinder. 

Starting the motion from 0.8a above the equilibrium position of 2.2a below 

the surface changed the motion dramatically. For example, the calculations 

took longer to break down than in previous cases and this allowed comparisons 

with the analytical model to be made (see Fig. 3.7). This is primarily due to 

smaller amplitudes of motion. Although we cannot make general conclusions 

on the causes of the breakdown in numerical calculations, the results above 

point to physical reasons like the overturning of the free surface in the case 

of large amplitudes when the cylinder starts at greater than 0.8a above the 

2.2a-equilibrium position. Obviously the calculations for equilibrium position 

below 2.2a can be continued for a larger number of time steps, but eventually 

these calculations are disrupted because of radiated waves being reflected back 

from the distant vertical boundaries which form the far-field closure of the 

fluid domain. Thus Figs. 3.10-11 show sudden distortions of the oscillatory 

motion, when calculations are allowed to run for these longer times in the case 

of motion about 3a-equilibrium position below the surface. 

Numerical computations for fully non-linear free surface model have been 

carried out in accordance with our desire to test the results of the analytical 

scheme with linear damping obtained from low-frequency motion. In the sec- 

tion that follows we compare the results of the two models as far as possible 

so as to make recomendations on validity of the analytical model. 
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3.6 Comparison of the results between the non- 

0 linear numerical method and the analytic 
method 

Some of these results have been outlined in Sections 3.4 and 3.5 and we here 

are simply presenting those predictions of the analytical model in comparison 

with the results of the fully nonlinear scheme. All the obtained results using 

the nonlinear method have been non-dimensionalised in accordance with the 

parameters introduced earlier on for the analytical model. 

3.6.1 Example calculations of the motion of the cylinder 
displaced from 2.2a- equilibrium position 

Consider the cylinder displaced through 0.8a upwards and is allowed to move 

downwards under the constraints described earlier, attached to springs of mod- 

ulus k horizontally and vertically. The computed results of this motion are 

shown in Fig. 3.7 where the displacement-time and velocity-time graphs for 

variable and constant added mass are shown together with those of the fully- 

nonlinear model. Here the effect of the added mass is not very pronounced, 

and as a result it is difficult to say whether it is better to update the added 

mass or not, but nevertheless the variable added mass graph seems to be a 

better approximation of the fully-nonlinear model when considering the pe- 

riod only. The amplitudes for both variable and constant added mass models 

coincide and are slightly greater than that of the fully nonlinear scheme, see 

Fig. 3.7(a). An attempt to improve on the period and the amplitude empiri- 

cally from the known numerical results and assuming that the amplitude for 

the fully-nonlinear scheme decreases exponentially, was abandoned since one 



Constrained motion of a cylinder 92 

would need to alter parameters in the expression for period (i. e M,, ) in order 

to reduce or increase the period and the amplitude simulteneously. Introduc- 

ing a factor, calculated by comparing the two results, to increase the damping 

coefficient would only reduce the amplitude of the motion. 

3.6.2 Example calculations of the motion of the cylinder 
displaced from 3a-equilibrium position 

In this case we carry out further computations for a more deeply submerged 

cylinder and observe that the period of the motion of the analytical model has 

improved slightly in agreement with that of fully nonlinear model (see Figs. 

3.8-12). This observation is in agreement with the fact that as the depth of 

submergence increases, the effect of added mass diminishes and the period 

becomes insensitive to the initial displacement. 

For the motion of the cylinder initially displaced through a to the side and 

a down, the period, for the numerical calculations, of the horizontal motion 

seems to be in agreement with the period for vertical motion. When the 

two methods are compared, the amplitude for the analytical model is in closer 

agreement with the numerical calculations (i. e. better) for vertical motion than 

for horizontal motion. In all other remaining cases the amplitude for vertical 

motion is either better than, or the same as, the horizontal motions. In the case 

of the numerical scheme, the vertical motion for vertically constrained motion 

of the cylinder decays much slower than the vertical component of the motion 

for oblique case. This is also true for horizontal motion constrained in the 

horizontal plane compared to the horizontal component of the oblique motion. 

Also, for only the vertically constrained motion, the one started from below 

decays faster than the motion started from above. Overall observation is that 
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the periods for the two methods in vertical and horizontal modes of the motion 
differ only slightly, whereas the agreement in amplitudes is not good. Here, 

again we see that it is not possible to improve the amplitude for the horizontal 

and vertical motions at the same time as the periods, by simply changing the 

damping parameter empirically, or by using finite frequency damping from 

linear theory. However, we note that the added mass coefficient is a constant 
in the case of horizontal motion. 

However, all the above calculations were obtained using the value of R 

We conclude that the cylinder motion for the analytical model (see Figs. 3.8- 

12) is generally underdamped since the motion for the nonlinear model decays 

more rapidly than for the analytical scheme. In an effort to improve the validity 

of the low-frequency assumptions of the analytical model we have carried out 

experiments with a weaker spring, i. e reduced the value of k. In the results 

that follow the value of R has been halved. 

3.6.3 Example calculatiOns with R= -1 30 

No new features were achieved in the case of a cylinder displaced through 

a above 2.2a-equilibrium position even though the calculations were extended 

slightly before breaking down in a similar manner as above. Similarly, displace- 

ment through 0.8a above the 2.2a did not yield any meaningful results for us to 

be able to carry out comparison tests with the numerical calculations. In Fig. 

3.13 we show the surface elevations for this run. The calculations breakdown as 

the scheme fails to handle what looks like waves of short wave-length that have 

formed in the region above the cylinder. However, a displacement downwards 

through 0.8a produced the required results which are shown in Fig. 3.14(i). 
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The motion for the analytical method about 2.2a seems to be overdamped 

when considering the period only, but it is hard to draw conclusions about the 

amplitudes of the two methods. The initial displacements for the analytical 

method are greater than for the nonlinear method, but the motion seems to 

decay faster than for the nonlinear model. We observe that the downward 

displacement for the nonlinear model at T=3 is now greater than that of the 

analytical model. Surface profiles for these results are shown in Figs. 3.14(ii). 

Also, the calculations were carried out for the horizontal motion about 2.2a. 

The motion of the cylinder obtained in this case is depicted in Fig. 3.15 and 

Fig. 3.16 shows the surface elevations. The disturbance at the free surface 

is minimal and these calculations can be continued until the smooth flow is 

interupted by reflected radiated waves. 

Here the period of the analytical model is about 97% of the period of the 

numerical scheme. However, it is not possible to determine how the amplitude 

of the analytical model relates to the numerical one in general since further 

relaxation of the spring produces an undamped motion for the analytical model 

and underdamped and unpredictable motion for the numerical model. In the 

case of the numerical scheme, we notice that the amplitude of motion varies 

depending*on the starting positions of the motion and time for individual 

situations. If, for example, the motion is started from below the equilibrium 

position, the downward maximum displacement on the second period of the 

motion, is the greatest absolute displacement for the number of oscillations 

considered here, see Fig. 14(i(a)) and Fig. 3.18(a). The reverse is also true, 

as shown for the motion started from above the equilibrium position of 3a, 

see Fig. 3.21(a). In general, it appears the greatest absolute displacement 
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is achieved on the the second period as well as on the side from where the 

motion was started. This includes the case of horizontal motion , see Figs. 

3.15(a) and 3.19(a). This analysis seems to be insufficient in the description of 

the oblique motion. In this case the horizontal motion is in agreement with the 

above observations (see Figs. 3.17(b) and 3.20(b)) whereas the vertical motion 

seems to be overdamped on its downward rather than on its upward stroke. 

This also varies with starting positions, with the motion started from above 

the equilibrium position being more damped than the one started from below, 

see Figs. 3.17(a) and 3.20(a). Strengthening of the spring leads to increased 

damping, resulting in reduced amplitude. Hence this value maybe assumed to 

be, approximately, critical. The absolute value of the displacement, in the case 

of the fully-nonlinear model, seems to be greatest at around T=3 after which 

the motion seems to be decaying uniformly. Again, motions for variable and 

constant added mass in the analytical scheme seem to be in good agreement. 

To be able to carry out further investigations of the motion with the new 

value of R we consider the cases for a deeply submerged cylinder which were 

discussed above for the value of R= -! -. In Figs. 3.17-21 we show the extended 15 

calculations for oblique, vertical and horizontal motions. Here, also the period 

of the analytical scheme appears to be less than that of the numerical scheme 

by about 3%. The results for the oblique, vertical and horizontal motions, 

when the body is started from (a, 4a), (0,4a) and (a, 3a) respectively away from 

3a-equilibrium position appear to indicate that the respective vertical motions 

for the first two cases and horizontal motions for the first and the last cases 

attain their greatest absolute displacement values at around T=3. When the 

motion is started from above for the oblique and the vertical cases we notice 
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that the decay in motion is quite smooth. Because of non-uniformity in the 

decay of the motion, there is therefore hardly anything we can do to improve on 

the analytical results so that they can be closer to the numerical results. Also, 

we have no rationale for determining the change of the value of the equilibrium 

added mass in the analytical model, which would reduce both the amplitude 

and the period at the same time to give us very close results to the numerical 

calculations. 

Summing up the above, we point out that no further reduction of the value 

of R produces closer numerical results to the analytical ones. Generally, the 

analytical model is still underdamped when compared to fully-nonlinear model, 

but the approximation of equation (3.5) is known to be overdamped when 

compared to linear time-domain theories, which makes it impossible for us to 

further reduce or increase the damping in any rational and consistent fashion. 

3.7 Precession of the motion of the cylinder 

The study of the motion of a circular cylinder, carried out above in which the 

acceleration is variable throughout the motion has also revealed some inter- 

esting features pertaining to the movement of the body. There seems to be 

something peculiar in the orientation of the motion. The results in Fig. 3.22 

are for a circular cylinder oscillating about an equilibrium position below a 

fixed wall. 

Fig. 3.22 shows the paths followed by the cylinder as it oscillates about 2.2a- 

equilibrium position for an undamped motion of the analytical model. The 

oscillatory nature of this motion for a large time becomes unsteady, seemingly 

due to involvement of drag and lift forces arising from nonlinear interaction 
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with the free surface (rather than those due to vortex shedding which is absent 

in our inviscid model). The body passes below the equilibrium position as it 

moves obliquely downwards and passes above this position on its way upwards, 

see also Fig. 3.22(b-f). Because it is not clear why the path described by this 

motion is not a straight line we therefore further investigate the behaviour 

of this system for cylinder slightly displaced from the direction it is intended 

to follow. In Fig. 3.23 we see similar features, as above, but this time for a 

cylinder initial displaced to (0.1a, 1.2a) from 2.2a-equilibrium position. 

Since in the two above examples the motion is undamped it is worthwhile 

studying the damped motion. In this case also, the most visible feature of the 

body motion is its persitence in following two distinct paths on going through 

each cycle of the motion, see Figs. 3.24-26. As far as the few cases considered 

are concerned we observe that, generally the behaviour of the cylinder motion 

is the same. Thus, the problem of the motion not following a straight line 

remains unresolved and we attempt to further understand this problem by 

changing the equilibrium position. 

With the equilibrium position moved to 3a below the surface we managed 

to observe some big changes in the movement of the cylinder. As illustrated in 

Fig. 3.27 the cylinder now moves in a straight line, as we have been expecting. 

Knowing that increasing the depth of the cylinder below the free surface results 

in reduction in added mass variation we therefore conclude that the instability 

is caused by the rapidly changing added mass coefficient near the free surface. 

In all the examples so far examined, the orientation of the motion is the same, 

Le the motion of the system turns in a clockwise sense. To prove the validity of 

the model from the standpoint of unsteadiness of the motion, we compare our 
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findings through this model with the results computed from the fully-nonlinear 

model. 

The results illustrated in Fig. 3.28 show that the motion is generally un- 

steady as the cylinder moves upwards and downwards to the sides of its in- 

tended path (i. e at an angle 211 to the horizontal axis). This is not due to 4 

some forces acting on the body which were not explicitly accounted for in the 

description of the analytical problem, but rather arise because the coefficients 

in the equations of motion are continuously changing, Le horizontal period is 

less since the added mass coefficient is constant for motion in the horizontal 

direction. Results of the fully nonlinear method are fairly in good agreement 

with our results of then analytical model. 

Similarly the velocity vector of the cylinder in the numerical scheme seems 

to be turning clockwise when the body is going up and anticlockwise when it 

is going down, see Fig. 3.28. The numerical evidence thus also points to the 

presence of forces which make the axis of motion precess the body clockwise, 

and this is a strong justification of the validity of the analytical scheme which 

predicts the same effect. However, the numerical results also indicate an overall 

downwards drift which is missing in the analytical results. 

3.8 Conclusion 

The problem of a cylinder oscillating about an equilibrium position below 

a nonlinear free surface has been solved analytically after having simplified 

the free surface conditions. A comparison with the calculations'of the fully 

nonlinear free surface scheme to test the efficiency of the analytical model have 

also been carried out. In concluding this chapter we allude to the four major 
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agreements of the two models as has been described in preceding sections; 

(a) the periods of the models are in close agreement, though that of the fully- 

nonlinear free surface scheme are slightly longer 

(b) it has been, more or less, shown that with a weaker spring the two models 

have comparable damping, the analytical model being slightly underdamped 

(c) in both models, the cylinder experiences downward force as it nears the 

free surface 

(d) botb models predict precession of the direction axis for the oblique motions. 

Also, we observed a number of new features through using the nonlinear 

numerical scheme which we could not achieve by the simplified method. These 

were; 

(a) the motion of the free surface resulting in formation of 

(i)sharp wave breakers 

(ii) waves of short wave-length. 

(b) breakdown of the calculations due to due to features in (a) 

(c) reflected waves from the far field eventually affecting the motion of the 

cylinder, which might also be encountered in physical experiments in small 

tanks. 
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Chapter 4 

Small-time asymptotic solution 

4.1 Introduction 

In a series of papers, Havelock (1909-1949) introduced the problem of the im- 

pulsively started motion of a cylinder, with constant velocity or constant ac- 

celeration. The solution of the linear, but time-dependent, free surface/body 

interaction contains explicit memory terms resulting from radiated waves. This 

work was later on extended to cover nonlinear problems, for example the prob- 

lem of a submerged dipole based on nonlinear theory was done by Tuck (1965) 

as a continuation of Havelock's work to second order in the expansion of the 

free surface boundary condition with wave steepness as the parameter. 

In a separate approach, Tyvand & Miloh (1995) applied a method of small- 

time expansions, valid only for a short time. We consider this approach here, 

together with the numerical scheme for the fully nonlinear initial boundary 

value problem, studied earlier analytically by Peregrine (1972), and numeri- 

cally by Vinje & Brevig (1981), and Greenhow and Lin (1983) . Work of Brevig 

et al (1981), Greenhow (1987), Telste (1986), Hepworth (1991) and Greenhow 

(1994) is extended and improved with a view to compare the results obtained 

through this method with the results of the small time asymptotic method. 

130 
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The discussions that follow are concerned with the behaviour of the un- 

steady free surface caused by the forced motion of a cylinder in vertical, hor- 

izontal and sideways directions. The results obtained using the small time 

expansion method of Tyvand & Miloh, are verified by the results of the fully 

nonlinear numerical scheme of Brevig et al (1981). A range of surface eleva- 

tions for cylinders of different sizes and different Froude numbers are shown for 

the two methods. The time duration and Froude numbers for which the two 

methods agree are highlighted, giving useful information on how small time 

has to be in the small time expansion method. Beyond this time significant dif- 

ferences appear; indeed the small time expansion method ultimately becomes 

topologically impossible, whereas the nonlinear numerical method may be con- 

tinued until the free surface breaks, a physical phenomenon first explained by 

Greenhow (1987), and photographed by Greenhow & Lin (1983). 

4.2 The method of Tyvand & Miloh (1995) 

In developing the small-time asymtotic method, Tyvand and Miloh consider 

a solid circular cylinder of radius a submerged in an inviscid fluid of infinite 

depth. This section describes their work, and is here included for completeness. 

Initially the cylinder is at rest and is located at a distance d below the free 

surface of the fluid. We obtain the surface elevations C using the formulae of 

Tyvand & Miloh, and compare them with those of the nonlinear numerical 

method. The dimensionless time and cylinder radius are given as T= ! ýt and d 

c=ý respectively. pU' is the unit of dimensionless pressure. d 

Based on the assumptions of the potential theory, the continuity equation 
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implies that the fluid motion is governed by Laplace's equation 

V2, CD =0(I) 

where ýD is the dimensionless velocity potential. The dimensionless boundary 

conditions are prescribed as 

-, 
D 

(yp - C(xp, t)) =0 Dt 

or 

+ yp = C(xp, 0 at axp axp ayp 
the kinematic condition on the free surface, 

04) 
+1 (Vtp)2 + Fr -2( = 0, yp = ((Xp, t) 

at 2 

the dynamic boundary condition based on Bernoulli's equation on the free 

surface, 

I V(D 1= 0, rp -4 00 (5) 

on the far field and 

(-- rr-). (V 4) - 0,1 r- - r- I= c(6 rp p 

on the body surface, where - =: xpi + ypj is the position vector of a fluid rp 

particle, r- = xi+yj is the position vector of the centre of the cylinder prescribed 

by the motion of the cylinder and, i and j are unit vectors in x- and y-directions. 

Initially(t=O) 

«XPI 0) =0( 

ýD(XP, 0,0) =0(8) 
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The hydrodynamic pressure P can be obtained from the Bernoulli's equation. 

Thus in conjunction with the dynamic boundary condition 

p= _(a4) +11V, ýD 12 +Fr -2 y P) 9 
C91 2 

The units of dimensionless mass, force and momentum are pd, pdU' and pd'U 

respectively. 

The equations (4.1)-(4.8) are therefore solved analytically using a small-time 

expansion technique. The following results are obtained 

(D = II(t)[q)o + tjD, + t2 4)2 + t3 4P3 + 
......... 

II- oo <t< 00) ( 10 ) 

the velocity potential at the free surface 

C (xp 
, 
T) == 11 (t) [Co (x,, T) +t (I (x,,, T) + t2 (2 (Xp 

, T) + t3(3 (xp, 

the free surface elevation and 

qX 
7 Y) ý ro (Xo, YO) +H (t) ft (X 

1, yj + t2 - (X21 Y2) +t3 - (X37 Y3) + 12) ri r2 r3 

for the position of the centre of the cylinder, where ý% and (,, are unknown 

functions, H(t) is the Heaviside unit step function defined as H(t) = 01 t<0 

and H(t) = 1, t>0 and r-,, (x,,, y,, )=x,, i + yj (n=0,1,2,3 ...... 
) is the 

instantaneous position of the cylinder centre. In particular ro = (0, d). 

The above expansions of the velocity potential give Laplace's equation in 

the form 

, ý. f2 V24)n = 0, (XP)2 )2., 
y <0 and + (y -d( 13 

i. e the potental to each order in the initial fluid domain and the corresponding 

far-field conditions in the form 

1V (D� 1 -ý 0, (xp)2 + (yp)' -ý oo (n = 0,1,2,3, **** *) 
( 14 ) 
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The total time differential operator 

d=0+ a( a( 
dt C91 at 9y, 

is then applied recursively on equations (4.3) and (4.4) at I=0 (see Tyvand 

and Miloh(1995) for details of the application of this operator) to give the 

following dynamic conditions 

(Do 0 )yp 0 16 
1(2 

'y =: o 4), 
21p 17 

4ý2 = -(1(2(2 + 
Fr-2 

yp =0 18 
2 

at the dynamic free surface. The corresponding kinematic conditions are: 

(1 = 
04)0 

7 UP 
0 19 ay 

(2 =I a-P, 0 20 
2 ayp 

(3 =1 
a4)2 

+IC, 2(, "(xp, T) + ((, '(xp, T) )2 YP 0 (21 
3 fiyp 63 

To expand the the exact boundary condition at the body surface the polar 

coordinates (-r, 0) are introduced such that (xp, yp - d)=7-(sin 0, cos 0), where 

-7r <0< 7r. Applying the total time differential operator 

da% 
dt = at + r. V (22 

and substituting the expansion (2.3) for 4) when t=0 produces the required 

boundary condition at each order, Le 

a4)0 
-, 

aT = ri. i, ,T=c 
23 

the zeroth order, 

a7 - 
2r-2-Z', 

- 
i,. V(ri. V4)o) T=c 24 
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the first order, 
(9 4ý 

2(Fr) 
-0 'T =f (25 

the second order and 

O(P3 2- 
5T = -3 

i-r-V(7'2-V4)1) C 26 

the third order which has a gravity dependent right-hand side, where 

isinO+jcosO 

is the radial unit vector. 

The potential is split and given as 

(DA == o" + 0,, (n = 1,2,3 . ...... 
)( 27 ) 

where 0,, is due to non-homogeneous condition at the free surface with zero 

normal derivative on the body, and 0,, is due to non-homogeneous condition 

on the body and homogeneous at the free surface. The hydrodynamic force is 

derived from Bernoulli's equation (4.9) by integrating pressure integral 

ej 
7r 

P(c, O)Zý',, dO (28 

which gives 

2t2 + 
o+FIl+F . ...... 

)H(t) (29) = F. 16(t) + (F, 

where 6(t) is Dirac's delta function. 

Finally, the bipolar coordinates ý and 0 are introduced in which the trans- 

formation equations from Cartesian are 

XP 
asinO 7r <0< 7r, 0<ý< ýo 30 

cosh 6+ cos 0 

yp 
a sinli ýT<0< 

7r, 0<6< 60 (31 
cosh 6+ cos 0 
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wliere a is a dirriensionless lengtli, such that (x, y) = (0, ±a). 

Through bipolar coordinates, the first order elevation, (1, can be expressed 

as 
1) 00 

4cos(') E(- I)"' ne-'ý"sech(nýo)sin(nO +a) 32 
2 

n=l 

where 0=2 arctan( ý. ýh2 ), yp =0 and 6o= arcsech(c). tanh Co 

The second-order free-surface elevation due to the free-surface nonlinearity 

is expressed as a contribution of the first-order potential, 01, in the form: 

(0, -I ao, 22 ayp 
COS(02 ýo CO 

2 (-1)'+'nme-('+')ýOsechnýosechmýo 
16 tanh ýo 

2 
E (24 - 9k 2+k 4) 

k=-2 

tanh(n + mq + k)ýo 

I 
E q(n + qm + k) cos((n + qm + k)O + (q + 

q=-l 

I yp :: ý ( 33 ) 

The second-order free-surface elevation due to geometric nonlinearity at the 

cylinder contour is given as a contribution of the first-order potential, 7PI, and 

is expressed as: 

alp, 

2 49y, 

co 
sin(a) j: (-I)'ne-ncOsech(nýo((n - 1) sin((n - 1)0 - a) tanh(Q =, 

tanh(n - 1)ýo + 2n sin(nO + a) tanh(n6o) + (n + 1) sin((n + 1)0 + a) 
2 cos (a) 00 

-nýo tanh(n + 1)ýo) - tanh(ýo) + (. TP)2 
E(-I)'ne sech(n6o) 
n=l 

0 
[sin(O) sin(nO + a) - 2n cos (-) cos(nO + a)] (34 

2 

The third-order free-surface elevation due to the leading order gravitational 

effects is given as a contribution of the second-order potential, 'ýD 2, and is 
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expressed as: 

137 

Fr Cos 2(ý 

32 
2) -[(n - 1) siii((n - 1)0 + a) tanli(n - 1)ýo + Fr tanh(Q,, 

=j cosh(nýo) 
2n sin ((nO +a) tanli(nýo) + (n +I) sin ((n + 1)0+ ce)tanh(n + 1)ýoj ( 35 ) 

The total free surface elevation, up to and including the third order eleva- 

tion, is therefore expressed as: 

(=(+1 (1 + t2 «2(bi + ('ki )+ 13 F7, 
36 023 

The free-surface elevations are thereby computed using a Fortran program, in 

double precision, at dimensionless time intervals AT = 

4.3 Small-time asymptotic results compared 
to those of the nonlinear numerical sch- 
eme 

Calculations for the unsteady nonlinear free-surface flows due to the forced 

motion of a circular cylinder impulsively started from rest have been carried 

out using the small time expansion method and the fully nonlinear numerical 

scheme. We have considered the forced motion with constant velocity for vari- 

ous cylinder sizes and in each case have varied the Froude number to determine 

its effect on the motion of the free-surface. The initial submergence depth (d), 

the velocity (U) and the cylinder radius (c) are chosen arbitrarily. 

In Figs. 4.1,4.7 and 4.10 we show profiles for vertical motion at times 

T, = 0.1 to Tio = 1.0, where AT=T,, -T,, -l = 0.1, n=1,2,.., 10, with C=0.8 and 

Froude numbers 0.39,0.78 and 0.1955 respectively. There is good agreement 

between the two methods for T=T, to T=T, 5 in the case when Fr=0.78 and 

0.39. The two solutions continue to be in good agreement for larger values of 
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time, i. e up to T8, in the case when Fr = 0.78. This behaviour is demonstrated 

in Fig. 4.7. As the Froude number is reduced, Le to 0.1955, the two methods 

only agree for shorter times than for larger Froude numbers. Fig. 4.10 shows 

agreement for up to T= T3. 

Similar behaviour in the comparison of the profiles due to the motion of 

the cylinder moving obliquely upwards was observed. The comparisons were 

carried out for the cylinder of the same radius, c=0.8, and same Froude 

numbers. For this case the solutions appear to be in good agreement for 

Fr=0.78 and 0.39 between To and T5 (see Fig. 4.8 and Fig. 4.2). The results 

diverge earlier for Fr = 0.1955 than for the other two Froude numbers, Le even 

at T3=0.3 there is a visible difference between the two methods (see Fig. 4.11). 

In this case there is an early breaking of the free surface behind the cylinder 

as according to the numerical scheme (see Fig. 4.2.11(c)). The breaking of the 

free surface seems purely physical as there is a negative pressure build up, see 

Figs. 4.1-3 , resulting in a Rayleigh-Taylor instability. This is a similar effect 

to that observed by Greenhow (1987). 

The oblique motion is qualitatively resembled by the horizontal motion for 

Fr=0.78 and 0.39 between To and T3. Within the given limits there is good 

agreement between the two methods. At times greater than 0.3 and less than 

0.5 the two methods begin to vary as shown in Fig. 4.3(b) and Fig. 4.9(b). 

Calculations of the numerical scheme break down for values of time greater 

than 0.6 in this case as well. 

In general the small time series expansion method and the fully nonlinear 

numerical scheme are in good agreement for values of Fr > 0.4 and f=0.8. 

The third-order elevation represents the radiation of wave energy out from 
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tile first-order elevation and hence increasing or decreasing the Froude number 

will inevitably influence the outcome of tile summation of the elevations. This 

influence tends to worsen the comparison with the numerical scheme when 

small Froude numbers (see Fig. 4.10) are considered, and improve it when Fr 

is greater than approximately 0.4. We have shown, in F ig. 4.1, good agreement 

between the two methods for large values of time, Le up to T8. 

In order to further understand this problem we look at cylinders of smaller 

radii. Cylinders of radii E<0.8 were considered and the two solutions seem 

generally to be in good agreement in specified ranges of time. In particular we 

analyse the results with c =0.4 for the same Froude numbers as for E =0.8. 

For vertical motion with large Froude numbers see Fig. 4.13. There is very 

good agreement for times less than 0.6 whereas for greater T the results are 

simply not comparable. Of interest is the fact that the free-surface elevations 

for small cylinders produced by the asymptotic method seem to be lying above 

those of the fully nonlinear scheme contrary to the case of larger cylinders. Ac- 

cording to Tyvand & Miloh (1994) the geometric nonlinearity effects dominate 

over the free surface nonlinearity effects especially for smaller cylinders. Now, 

since the geometric nonlinearity, at the cylinder contour, gives rise to the up- 

ward steady force then the above observations may be justified in the sense 

that the effect of this force depends on the size of the cylinder. 

Results for oblique and horizontal motions were also analysed for the smaller 

cylinder. The ranges of agreement in terms of time and Froude numbers are 

similar to those of the vertical motion. In Figs. 4.5,4.14,4.17 we show the 

profiles for the same Froude numbers as for the vertical motion. In Fig. 4.6, 

4.15,4.18 elevations for horizontal motion with the same Froude numbers are 
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also shown. 
I 
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Good agreement between the two methods has also been shown for cylinders 

of radii greater than 0.8 and smaller than 0.4. In particular we show in Fig. 

4.19 and Fig. 4.20 the elevations for vertical motions of cylinders of radii 0.95 

and 0.2 respectively with Fr=0.78. 

We now make some comments about the forces and pressures on the cylinder 

for one case in each of the directions discussed above at Fr= 0.39. In Fig. 

4.1(g) we show total pressure distribution on the cylinder as it is forced to 

move upwards towards the surface at times indicated in the diagram which 

correspond to some free/cylinder surface positions. Since the body is moving 

vertically upwards, where initially pressure is hydrostatic, pressure around the 

body should decrease. The pressure around the bottom of the cylinder seems 

to be decreasing at a constant rate, but almost stays the same at the top of 

the cylinder. This phenomenon is physical as also is shown in the experiments 

photographed by Greenhow and Lin (1983). Figs. 4.1(h)-(i) show vertical 

hydrodynamic force on the cylinder as a function of time and distance below 

the surface respectively. The force decreases as the cylinder nears the surface 

and eventually the calculations breakdown due to negative pressure on the sides 

of the body as shown in Fig. 4.1(g). The situation is much more complicated 

for oblique motion. The pressures at the bottom of the cylinder behave in a 

similar way as above, but vary for the region at the top of the cylinder. In 

this case negative pressure develops forward of the cylinder and immediately 

after T=0.7, Le at T=0.75, see Fi. 4.2(c). The horizontal force increases 

steadily up to T=1.05 and then drops whereas the vertical force decreeases 

and then picks up at the same time as the horizontal force, see Fig. 4.2(f)- 
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(g). The horizontal forces are as discussed in Hepworth (1991) though our 

case has stronger free/cylinder surface interactions (d=1.2a). Total pressure 

distributions and forces are shown in Figs. 4.3(e) and (f)-(g) respectively. 

4.4 Conclusion 

A fairly complete study has been carried out to evaluate the behaviour of the 

free-surface due to the motion of a submerged circular cylinder with constant 

velocity and compare calculations of the small-time expansion method and the 

fully-nonlinear numerical scheme. The results obtained indicate that for good 

agreement to be achieved for dimensionless time less than 0.8, we must restrict 

our calculations to cylinders of radii less than 0.9 and Froude number greater 

than 0.4. This gives approximate bounds for the validity of the small-time 

expansion to third-order, Le as far as Tyvand and Miloh(1994) have taken it. 

Beyond a certain time, the small-time expansion method becomes inreasingly 

inaccurate, and ultimately topologically impossible with the free-surface mov- 

ing inside the cylinder. The numerical scheme is, however, not subject to any 

such restrictions and remains valid and accurate until the breaking of the free- 

surface caused by a pressure inversion across it in the cases presented here, or 

the generation of a breaking wave (see Greenhow (1994)). 
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Chapter 5 

Impulsively-started downward 
-motion 

In the preceding chapters, the investigations of the motion of a cylinder below 

a free surface did not cover the problem of strong interaction between the free 

surface and the body in the case of downward motion. Greenhow (1987) has 

usýd the method of Vinie & Brevig (1981) to simulate flow about a cylinder 

moving below and entering a free surface. Greenhow's paper discusses the 

problem of jet formation, cavity formation and the early stages of inflow over 

the cylinder. For initially half submerged body, he treats the intersection point 

in a manner discribed by Lin, Newman & Yue (1984), Greenhow & Lin (1985) 

and Yirn (1985). 

This chapter extends the results of Greenhow to the case of a cylinder al- 

ready fully submerged, and gives the implications of this study for the engulf- 

ment problem of chapter 6. Tyvand & Miloh (1995) considered the small-time 

asmpytotic method to calculate flows with strong free/body surface interac- 

tion. As their method is not reliable for times greater than TIO = 1.0, we 

simply compare our results using the method of Brevig, Greenhow and Vinje 

(1981) for small times (T,, < 1.0). However, as-discussed in chapter 3, for the 

169 
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fully-submerged cylinder there arises a problem of high-frequency waves with 

short wavelength and small amplitude, as expected from consideration of the 

related Cauchy-Poisson problem, see Lamb (1932, pp. 384-391). These waves, 

whilst physical, trigger numerical instability causing the numerical scheme to 

break down. This happens when the cylinder reaches a greater depth than in 

calculations which break down because of breaking waves. The details of this 

new feature are discussed below in section 3. 

In this chapter it is also shown that the calculations can be continued indef- 

initely if coarse discretisation of the free surface were effected. Details of the 

trial run are in section 3 of this chapter. This avoids the high-frequency waves 

but may lead to incorrect surface elevations. Since the body forces for this case 

are largely hydrostatic, or given by added mass theory for accelerated motion, 

our primary interest is the free-surface. This means that coarse discretisation 

is not acceptable and is therefore not examined in great detail. 

5.1 Comparison between Tyvand & Miloh method 
and the numerical scheme 

Assume that a neutrally buoyant circular cylinder is at a distance d below the 

free surface. The motion is then started impulsively at various Froude numbers 

using the nonlinear numerical scheme and the Tyvand & Miloh method. In 

the case of the numerical method, calculations are pursued until the scheme 

fails due to either breaking waves or high-frequency waves. On the other hand, 

the small-time asymptotics of Tyvand & Miloh method are carried out only 

up Tjo = 1, since beyond that time the method is known to be unreliable as 

noted by the authors. 
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As in previous chapters all the variables have been non-dimensionalised. 

In particular the dimensionless variables in this chapter are calculated as in 

chapter 4 to allow for comparison with the results obtained using the Tyvand 

& Miloh (1995) method. The lengths are scaled by the initial submergence 

depth of the cylinder, d; and time, by d 
U, 

Fig. 5.1-3 represent surface deflections for the downward vertical motion 

(i. e. at angle a= 270 lying between the velocity vector and the positive x-axis) 

which varies depending on Froude number. In chapter 4 we considered cases of 

cylinder motion when a= 45,90,180. Comparison tests between the Tyvand 

& Miloh method, and the fully-nonlinear numerical scheme, of the ensuing free 

surface response to impulsively started motion of the cylinder were made. In 

this chapter only calculations with .6=s=0.8 are discussed. It suffices to d 

consider only this case since results for the time regions of agreement for vari- 

ous Froude numbers agree with the overall scheme outlined in chapter 4. Also, 

we note that the vertical cylinder motion, according to Tyvand & Miloh, gives 

a second-order elevation due to nonlinearity of the free and body surfaces for 

any given c. This means that the second- order free-surface elevation remains 

unchanged, except for sign, when motion is vertically downwards or upwards. 

This implies that an asymmetry between upward and downward motion takes 

place after a finite time due to the so-called geometric nonlinearity of the cylin- 

der since eventually the surface mound above the cylinder in upward motion 

is larger than the depth of the surface trough above the same cylinder in the 

event of downward motion, see Tyvand & Miloh (1995) for details. 

In Fig. 5.1 we compare the two methods for a cylinder initially located 

at d=1.25a below the free surface and moving at Fr=0.13. For time less 
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than 0.2, the agreement is very good. When time is equal to 0.2, the depth 

of the surface trough above the cylinder for the two methods is the same, but 

noticeable differences begin to emerge over the regions -1.38 <x< -0.24 and 

0.24 <x<1.38. This region increases with time until the surface elevations 

due to the two methods are completely separated, i. e at T6 =: 0.3 in Fig. 

5.1(f). The numerical scheme calculations are pursued further until they break 

down. The formation of bigh-frequency waves is thought to have played a vital 

role in triggering numerical instability, after which the calculations stop. In 

exaggerated scales, Fig. 5.1(g), the higb-frequency waves are clearly seen in 

between the left and right wave-fronts. 

The agreement is greatly improved when the Fronde number is increased. 

In Fig. 5.2 we demonstrate this with Fr = 0.38 and initial depth remaining 

unchanged. We observe that the two curves completely coincide for times up 

to and including 0.25. The agreement is still quite good for further time steps 

of up to T8 = 0.4 even though the regions of separation are easily noticeable as 

early as T7 = 0.35. Later on the depth of the trough above the cylinder for the 

nonlinear method is decreasing rapidly, while that due to the Tyvand & Miloh 

method decreases less rapidly and hence this increases the difference between 

the two methods. During later times the surface profiles representing the Ty- 

vand & Miloh method are shown in Fig. 5.2(g) and the nonlinear numerical 

method in Fig. 5.2(h). The numerical calculations have been extended up to 

the time when they break down because of the trough closing up ana outward 

splashes being formed, see also Fig. 5.3(f). Such splashes are physical but dif- 

ficult to follow with the discretisation chosen here; in any case the calculations 

must break down at jet touch down shortly after the last step shown here. 
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In Fig. 5.3 the free-surface profiles for Fr=0.64 are depicted. The profiles 

are qualitatively the same a-, those in Fig. 5.2 except for the region where the 

two methods disagree. Here for T7 = 0.35 the distance between the curves on 

the approximate interval -0.6 <x<0.6 is fairly constant and persists until 

T8 = 0.8. Thus the qualitative agreement between the two methods is close in 

this case, both being physically reasonable. This agrees with the previous ob- 

servations in chapter 4 that the agreement is greatly enhanced by the increase 

in the Froude number. The widening difference at larger times is as expected, 

since the Tyvand & Miloh method is for small time only. The accurate non- 

linear numerical calculations are continued until the scheme breaks down as 

before. The breakdown of the calculations is further investigated in the next 

section. I 

5.2 Breakdown of the calculations 

In this section we discuss the causes of the breakdown in numerical calcula- 

tions using the Brevig, Lin & Greenhow algorithm. There are two situations 

of breakdown of calculations observed, both physical, due to a) breaking waves 

when the motion is started very close to the free surface, d=1.25a say, and b) 

formation of high-frequency waves with short wavelength and small amplitude 

when the motion is started further away from the surface, d=1.35a say, or 

with low constant velocity as in the case of Fr = 0.13, see Fig. 5.1(g). The 

later causes effects consistant with those of localised disturbance studied by 

Cauchy and Poisson(see Lamb 1932, p. 387, for detailed explanation). The 

analysis presented below seeks to demonstrate that the breaking down of the 

numerical calculations for motion in specified regions arises from physical ef- 
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fects and is not purely numerical. An understanding of this kind will inevitably 

assist in understanding the complexity of the engulfment problem looked at in 

chapter 6. In other words this analysis sets limits within which the algorithm 

is efficient; otherwise changes in the numerical treatment (i. e smoothing) could 

be made to suppress the arising complications of the free surface, leading to 

more robust, but less accurate, calculations which could be continued for larger 

times. In this section the lengths are scaled by the radius a of the cylinder; 

time by -ý-; and the Froude number, is defined by U 

Fr (1) 

Mass is scaled by p 
(NBODY)a' 

sin( 
2r ) -4 p7ra 

2 
as NBODY -4 oo; and 2 NBODY 

pressure by pU'. 

5.2.1 Examples with breaking waves 

Now we consider the impulsively-started motion of a cylinder initially posi- 

tioned at d=1.25a below the free surface. The cylinder is forced to move 

downwards at various Froude numbers and the distance at which calculations 

breakdown is noted for each run. In the first case the cylinder is forced down- 

wards at Fr = 0.14, time step AT = 0.02 with 44 points on the body and fine 

free surface resolution (points are more densely spaced around the origin). The 

calculations break down immediately after the submergence depth is d=1.3a. 

The breakdown of the calculations is believed to be caused by failure of the 

scheme to resolve the free surface accurately enough to avoid triggering numer- 

ical instability. We have no reason to believe that the breakdown is physical 

and hence we pursue this further. This suggests that the time-stepping in- 

terval is too large, and this was changed. The time step was then reduced 
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to AT = 0.008. The situation is also greatly improved by a slight increase in 

velocity of the body while keeping the time step, number of points on the body 

and free surface, and spacing of the free surface points unchanged. Calcula- 

tions at Fr = 0.14 were extended to at least d=1.8a before breaking down. 

Free-surface elevations for later stages of this case are shown in Fig. 5.1 (g)-(h). 

After several other trials of spatial resolutions and time intervals failed to pro- 

duce better results, the set of initial conditions with fine free-surface gridding, 

44 points on the body and AT = 0.008 were then assumed standard for similar 

motions of the cylinder below the surface depending on Froude number. In 

the computations that follow, the standard initial conditions have been used. 

We look at the cases when Fr = 0.43,0.71,0.29 below. 

Here we have considered motion at Fr = 0.43 while the initial submergence 

depth has remained unchanged. These calculations break down at submer- 

gence depth d=2.56a compared with d=1.8a for the previous case. Also, we 

notice a change in the way the calculations have broken down. In Fig. 5.2(h) 

a steep wave is clearly seen developing, on both sides of the origin, up to the 

point when the spilling breaker is fully formed. At this stage a volume of fluid 

is elevated above the mean water level in the area directly above the body. 

This is caused by the collision of the left and right inflowing fluid above the 

cylinder, forcing a volume of fluid to be projected upwards. The behaviour 

of the free surface of this nature increases the steepness of the wave, with the 

displaced mound of fluid flattening at the top and hence enhancing the ten- 

dency to surface breaking. The jets must arise and be accelerated outwards 

because of the increasingly high pressure below the flat free surface. At this 

point a breaking wave is fully developed and there is clearly no possibility 
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of continuing the calculations; they immediately break down. The reason for 

this is certainly physical and lience there is no point in trying to continue the 

calculations. Coarse spacing of the points along the free surface could possibly 

suppress the problem, but this would result in incorrect surface coordinates be- 

ing calculated. A similar breaking effect as at Fr = 0.43 is observed with runs 

at Fr = 0.29,0.71. Surface profiles for Fr = 0.71 are shown in Fig. 5.3(f). The 

free surface deflects similarly and a spilling breaker is formed which inevitably 

leads to the breakdown of the calculations. 

The free surface deflections for the motion of the cylinder at Fr = 0.29 are 

shown in Fig. 5.4 with corresponding total pressure distribution and graphs 

for separate hydrostatic and hydrodynamic pressure distributions around the 

cylinder. Much of the pressure profiles is as expected, for example total pres- 

sure distribution increases with time at every point of the cylinder. This 

pressure (largely hydrostatic) is greatest at the bottom (0 = 2700) and small- 

est at the top (0 = 900) of the cylinder. At later times the pressure at the 

bottom of the cylinder, on the interval 18011 <0< 3600, has increased steadily 

and symmetrically about 0= 270' achieving its greatest maximum at time 

T=1.088, a step before the calculations fail. On the other hand around the 

top part of the cylinder, pressure has increased steadily but is fairly constant 

in interval 60' <0< 120' and is symmetric about 0= 900. The total pressure 

distribution is effectively increasing equally on the interval 60' <0< 120' for 

more than 30 time steps. Tile hydrostatic pressure distribution around a cir- 

cular cylinder is sinusoidal with amplitude P2 - PI 7 where p, is the hydrostatic 

pressure at the top of the cylinder and P2 is the hydrostatic pressure at the 

bottom of the cylinder. Sinusoidal curves representing hydrostatic pressure 
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are shown in Fig. 5.4(c)&(f). The tendency of flattening of the total pressure 

distribution curve, around 0= 90', is therefore due to hydrodynamic pressure. 

Total vertical force, non-dimensionalised by the buoyancy force 

BQDY 2 27r 

.2 ga S'n(NBODY 

on the cylinder computed using the numerical scheme is now compared to that 

obtained by the analytical model using added mms theory in Fig. 5.7. The 

latter is based on the assumption that the free surface remains wall-like during 

the motion. The total force, in the case of the numerical scheme, increases 

slightly at the start of the motion before gradually diminishing and stabilises 

around I at larger times. Vertical force, F(T), according to analytical method 

is calculated using the equation (2.9) in the form 

I M, ý, 2 +I = F(T) 
2 dY 

since acceleration is zero. Buoyancy plus the term involving the rate of change 

of the added mass give us the required vertical force, which is slightily greater 

than 1 at the start of the motion. This force gradually decreases and tends to 

I at larger times. 

The initial increase in vertical force, in the case of the numerical method, 

is believed to be due to free surface disturbance. At the start of the motion, 

the cylinder has to do work on the fluid to create surface movements, which 

therefore retards the motion. Further down the effect of the free surface move- 

ments becomes weaker. The hydrodynamic force is also gradually reducing as 

hydrodynamic pressures are reduced, see Fig. 5.4(k). On the other hand the 

vertical force according to the analytical method diminishes with depth mo- 
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tonically because of the depth- dep en dent added mass. As Y --ý -oo, 
d"- 

-ý 0 
dY 

and hence F(T) -ý 1. The force is not expected to increase initially since the 

model is contructed on the assumption that 2ý- =0 on Z=0. ay 
The above free-surface profiles indicate that there is a limit for the initial 

submergence depth at some Froude numbers, for which motion below the sur- 

face can be started, and which end when a spilling breaker is formed. It is clear 

that the motion of the cylinder below a free surface can be started from very 

close to the surface, say d=1.25a, and continued up to a certain distance, 

d=2.32a in the case of Fr = 0.29, a distance by which a spilling breaker is 

fully formed. Greenhow (1988) presents results for water-entry of a horizontal 

circular cylinder where a surface-piercing code was used. The "submerged" 

cylinder in fact had a slender vertical wall piercing the surface, which has no 

hydrodynamic effect. The present results show it is therefore possible to extend 

Greenhow's (1988) calculations up to the distance recorded in the above runs, 

and perhaps even further, since the method follows the jetting fluid. This is 

discussed in detail in sections below, where we also establish another limit for 

initial submergence depth at suitable Fr number for which we again encounter 

breakdown of calculations due to different behaviour of the free surface. 

5.2.2 Examples with high-frequency waves 

The motion of the cylinder is started from an initial submergence depth of 

d=1.35a at Fr = 0.29. At first, fine surface spacing around the region directly 

above the body, with a standard time step size and number of points on the 

body and free surface, is used. The calculations broke down at d=3.6a due 

to behaviour of the free surface analogous to the physical instability discussed 
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by Cauchy and Poisson (see Lamb 1932, pp. 384-394) in their study of localised 

disturbance. Fig. 5.5 shows the sequence of physical response of the free 

surface to this motion. 

If a sinusoidal travelling wave is sought, then the free surface equation is 

y= ij(x, t) 

=A cos(kx - wt) (3) 

where A is the amplitude of the surface elevation, k is the wave number, and w 

is the frequency. Linear water wave theory then gives the dispersion relation 

w2= gk 

where we have assumed deep water. 

(4) 

The cylinder creates localised disturbance of the free surface around the 

origin, and we therefore have a dispersive system with group velocity which 

depends on k. Initially the free surface seems to be collapsing behind the 

cylinder, before it performs a very complicated motion, or rather, responds to 

the motion of the cylinder in a very complicated way. After a short time there is 

then a well-developed wavetrain which is approximately sinusoidal locally with 

a wavenumber k(X, T) and frequency w(X, T) which change with X and T. As 

expected in our case of surface waves on deep water, the wavelength A increases 

with X in the outward direction on both sides of the origin. The calculations 

indicate that the disturbance propagates outwards from the origin in the form 

of individual waves. A transient wave-front starts from around x= ±0.6a. 

In Figs. 5.5-6 we show waves of long wavelengths and bigger amplitude for- 

ward of the wavetrain. The wavetrain actually occurs over a distance of several 

individual waves, due to dispersion. For a typical group at time 7' = 1.76 we 
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found A=0.19a and amplitude A=0.008a for an individual wave immediately 

behind the wave-front and A=0.042a and A=0.004a for the wave at the origin. 

During the later stages of the calculations the wavelengths and wave ampli- 

tudes increase. As T increases, the distance between the crests in the region of 

the wavetrain becomes comparable with, even though smaller than, the length 

of the wavetrain itself. However, the contributions from the whole region of 

disturbance are no longer meaningfully in the same phase, and the required 

fine resolution of the free surface seems to cause numerical instabilities leading 

to break down of the calculations. Experiments with several surface discretisa- 

tion and time steps were fruitless as the scheme always failed at approximately 

the same region of the free-surface and at the same time. 

To further understand this problem we have included total pressure distrib- 

ution profiles calculated at the same times as the surface elevations presented, 

see Fig. 5.7. In this case the total pressure distribution profiles are quali- 

tatively the same as in Fig. 5.4, even though here the distribution is more 

hydrostatic than the previous one. This is as expected since the cylinder is 

now moving at greater depth than in the other case. The total pressure re- 

mained positive throughout the calculations. The total vertical force increases 

at first and then decreases slightly to about I during later times (as was the 

case with the previous case, d=1.25a). 

To test further the reliability of these results, the program used by Green- 

how(1988) for a partially submerged body was used; calculations were carried 

out using both codes for motion starting from d=1.35a at Fr = 0.29. The 

results obtained by the two codes compare very well. The profiles using the 

code for a submerged cylinder with a vertical wall or spike in the vertical plane 
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of symmetry (which plays no part in the hydrodynamics), are shown in Fig. 

5.8. Development of high-frequency waves responsible for triggering numerical 

instability is clearly seen in Figs. 5.8(c-d). 

Since the instability does not seem to be triggered by the time-stepping 

procedure, we can conclude that this instability is caused by the spatial res- 

olution ( free-surface discretisation) used. A check on initial distribution of 

points on the waves followed by regridding later on at a finer scale could post- 

pone the breakdown, but is not attempted here. In reality the free surface 

profiles around the region of disturbance will also involve surface tension, un- 

accounted for in the present discription of the problem. On the other hand, 

coarse discretisation of the free surface avoids the problem by simply inhibiting 

the high-frequency wave formation, but this may lead to incorrect free surface 

coordinates being computed. An example run was done for motion starting 

from d= Ma below the surface at Fr = 0.29, see Fig. 5.9. The calcula- 

tions showed no signs of numerical instabilty for 400 time steps and could be 

continued for larger time steps without any foreseable problem. The pressure 

distribution and total vertical force (both largely hydrostatic) are virtually un- 

affected by this procedure. This means that at equal distance below the free 

surface, for the two cases, the pressure distribution and total force are equal. 
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Fig. 5.9 Free-surface elevation due to forced motion of a cylinder initially 
located at d=1.4a below the free surface and moving downwards at Fr=0.29. 
Coarse spacing of the free surface points is used. 
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Chapter 6 

The Engulfment problem 

6.1 Introduction 

Consider a cylinder partially immersed in water as shown in Fig. 6.1. The 

objective is to move the cylinder into the water and to be able to follow this 

motion beyond total submergence. The application of the method of Vinje 

and Brevig plays a crucial role in this problem. The method has been further 

developed to handle the dynamics of the intersection point of the free surface 

and the body by Lin, Newman and Yue (1984), Greenhow and Lin (1985) and 

Yim (1985). Generally, depending on the initial position of the cylinder and 

the Froude number, there will be additional problems of resolving splashes 

when the two inflows (from the right and the left) meet above the submerging 

cylinder giving rise to jets when the body is moving at high Froude numbers. 

The surface-piercing problem is firstly discussed and results presented which 

extend the work of Greenhow (1988). 

We consider the free and forced motion of the cylinder as it enters the free 

surface. The later is investigated for various Froude numbers in accordance 

with the discussion in chapter 5 and the work by Greenhow (1988). In his 

work he notes that at low Froude numbers the fluid simply flows in over the 

201 
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submerging cylinder until the inflows impact on each other causing splashes, 

which his program is unable to resolve. At high Froude numbers he identifies 

two significant problems associated with the breakdown of the calculations. 

Firstly, a jet is formed as the body plunges into water and this problem is 

solved by slightly altering the program to allow the jet to leave the body. In 

this study we follow the closure of the free surface over the top of the cylinder 

in a less complicated case when the motion is started with the cylinder half- 

submerged in an initially calm water. Photographs of Greenhow and Lin (1983) 

for high-speed entry of a cylinder, also shown in Faltinsen (1990), confirm the 

jet formation. The second problem involves the jump in the velocity potential, 

and its directional derivative, 2-1', in the direction of the normal to the an 

body. The second problem causes the contour of integration to collapse into a 

doubly- connected contour which poses problems, as far as the integral method 

used to solve this problem is concerned. 

In Fig. 6.2(a) we show how the domain of integration looks just before 

removing the vertical plate along the plane of symmetry. We note that the 

use of a thin vertical plate is only possible in the case of vertical motion where 

there is symmetry, and not for oblique motion. The values of the potential 

on the left and right free surfaces do not match immediately before impact 

for oblique motion, and its directional derivative does not match even for 

symmetric vertical entry. This is caused by the fact that the impacting surfaces 

are moving torwards each other. We seek to continue the calculations beyond 

this point where the flow domain becomes doubly connected. The calculations 

obtained by this approach do not exactly describe the process of the impacting 

inrushing flows, since compressibility effects may be needed. It is concievable 
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that impact will occur at a point only, rather than across a surface, and the 

immediate resulting flow is unknown. However, we can take the calculations 

further by replacing the two intersection points from the body by the average 

of coordinates representing nearest points in that neighbourhood and velocity 

potentials. We also put additional points in the region of expected disturbances 

(above the top of the cylinder for vertical motion and behind the cylinder for 

oblique motion) for good resolution of jets when they eventually form. Figs. 

6.2(b) show what the initially singly-connected flow domain might look like 

after impact. 

In his thesis, Best (1991) alluded to the fact that the jump in the potential 

and its normal derivative cannot persist after the impact in the case of a 

toroidal bubble when a jet threads the bubble and impinges upon the far side 

of it. Zhang, Duncan & Chahine (1993) have also investigated the dynamics 

of a bubble near a rigid wall, as the re-entrant jet forms in the same way as in 

Best's description. This phenomenon, also discussed in Best (1992), appears 

to be very similar to the one of two inflows following a submerging cylinder 

and finally impacting on each other either on the surface of the cylinder (see 

also Fig. 6.2(b)) thereby pinching off a bubble connected to the cylinder. Most 

importantly he proves, theoretically, that the potential on the free-surface other 

than at the impact point does not change as a result of the impact, and hence 

the normal derivative of the potential on the bubble can be found without any 

problems. He shows that the value of the potential is insensitive to impact 

by proving that for an infinitely small time of impact the pressure elsewhere 

around the bubble remains unchanged. It is known that the collapse of the 

contour of integration (flow domain) into a doubly-connected geometry gives 
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rise to flow with circulation, across the region of impact in this case. Now at 

the point of impact the potential function is discontinous but may be found by 

calculating the value of the circulation, r, around a closed curve. Integrating 

the fluid velocity about the closed curve gives the value of the circulation; 

F=Ju. ds=i_o. (1) 

where 01 and Oo are potentials on the left and right impact surfaces respec- 

tivelY. Best suggests that in order to continue the calculations after the impact 

using the integral method we need to reintroduce the branch cut. He argues 

that " since the surface over which the impact occurs is a point and the value 

of the integral (6.1) is uniform over this surface there is no vortex sheet created 

by the impact ". The flow obtained after the impact can then be described by 

the integral method through re-introduction of a branch cut in the domain so 

that the contour of integration is once again singly connected. This is explic- 

itly included in the submerged program which we use for further calculations 

after complete engulfment. 

Best also admits that lack of analytic solution for the motion of the free sur- 

face for the early stages of the calculations poses problems. However, because 

of the geometry of the body surface, with high curvature, the fluid velocity is 

predictably very high in the region of the origin which implies formation of jets 

of high speed and hence he suggests immediate smoothing of the free surface. 

In our case, we exploit the above analysis and will continue the calcula- 

tions using the integral method of Vinic and Brevig et al. Initially we trace 

the motion of the balf-submerged cylinder using the modified program as ex- 

plained in chapter 5, see also Greenbow (1988). We note that, the potential 

on the cylinder was checked and found to be continous. Vertical boundaries 
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are placed at distances far away from the origin so that the transient motion 

is undisturbed by waves which would have been reflected by these boundaries. 

Several free and body surface point distributions are tried for free motion and 

motion at high or low Froude numbers. The discretisation of best runs are 

assumed as standards for either free motion or motion at high or low Froude 

numbers. When the calculations breakdown, after the engulfment phenom- 

enon described earlier, the results of the last reliable time-step are stored, to 

be used as initial values for the program for completely submerged bodies. At 

this stage the process of surface smoothing (removing points representing the 

jets) begins. 

Zhao and Faltisen (1994) have recently advanced a numerical scheme dealing 

with intersection points and the jets that form in that region following the 

motion of a body entering the free surface and the ensuing free surface motion. 

They avoid including the jet flow containing fast moving free surface particles 

with a lot of energy. They call this process " smoothing" and it is applied 

wherever the jets occur. Most importantly, they have shown that fluid mass, 

energy and momentum are still approximately conserved when the ejected free 

surface fluid particles, also known as spray jets, are cut off and an arbitrarily 

chosen free surface portion cutting off the jets is effected before restarting the 

calculations. We use this approach in continuing the calculations in situations 

described below, which we assume are similar to the one described by Zhao 

and Faltinsen. The smoothing process involves removal of some points of the 

free surface, and as a result mass and energy may not be exactly conserved. 

We show below how we have, in fact, smoothed the free surface in a manner 

that approximately satisfies conservation of fluid mass. A simple hydrostatic 
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model is compared to our results to ascertain the accuracy of conservation of 

energy of the system. In general for a body in a conservative field of force 

the sum of the kinetic energy and potential energies is constant. In the fluid 

domain Q the conservation of energy, consisting of kinetic energy only, can be 

checked by comparing the rate of change of the energy of the system 

dE pd 
= --(I dt 2 dt 

J)VO 
- VOdS (2) 

to the rate of change of work on the body; 

dW 
=_ (f - PO) 

n3dS 
s 

1) (p 
dt p 

where po is the applied pressure at the free surface, n3 the vertical component 

of unit normal vector to the body and p is the pressure in the fluid and is 

obtainable from the Bernoulli's equation (see Newman 1977, page 260-263). 

For conservation of momentum of the system to be satisfied we demand that 

the total external force acting on the cylinder should be equal to the rate of 

change of the cylinder and fluid momentum. 

In the calculations that follow, time is scaled by VF2. such that T=t 

We then obtain nondimensional velocity as and nondimensional ac- -ga 

. ga celeration is The dimensionless Froude number is Fr Force is q 

nondimensionalised by buoyancy force as in previous chapters and pressure by 

pga. Before complete engulfment the force is nondimensionalised by linearised 

buoyancy. This means that the buoyancy force is updated for each position 

of the body until complete submergence when the buoyancy force becomes 

constant. Linearisation of buoyancy is necessary for continuity purposes since 

we wish to compare the motion of thye cylinder before and after complete 

engulfment. The buoyancy force calculated as a function of depth y is given 
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as 

Buoyancy 
I 

pg((NBODI'*)a 2 sin( 
27r 

)+ ya sin( 
X, )-a2 arccos(y)) 2 NBODY 2a 

(4 

where, x= 2arccos(2) is the angle subtended at the centre of the c linder by ay 

the arc of the part of the cylinder not yet under the still water level, see Fig. 

6.1. 

6.2 Surface-piercing case 

We shall consider in this section the water-entry problem of a cylinder which 

is initally half-submerged in an undisturbed free surface, see Fig. 6.1. Two 

types of motion of a cylinder entering an initially calm water are investigated. 

,, The free motion of a cylinder of specific gravity 1.2, and forced motion of 

a cylinder at various Froude numbers and directions, give rise to extremely 

interesting free-surface deflections and body dynamics. The modified program 

was implemented in Chapter 5 for motion of submerged cylinders and we shall 

use it here for the initial phases of our calculations (surface-piercing). Firstly, 

we study the free motion of a cylinder having specific gravity of 1.2, a value 

that was chosen arbitrarily, but consistent with the sinking required, and not 

so large that the body dynamics are dominated by gravity acting on the body. 

6.2.1 Example of free motion 

We use fine point spacing on the free and body surfaces and small nondi- 

mensional time steps, AT = 0.042. Fig. 6.3 shows surface elevations, total 

pressure distribution and forces during the initial stages of the entry until the 

inrushing water reaches the centre (its maximum depth) and collides with the 
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plane of symmetry resulting in upward movement. After touching the inserted 

plate introduced on the plane of symmetry, the fluid is repositioned in the 

next time step before impacting on the plate again slightly above the cylinder. 

Eventually the calculations break down. Attempts to continue the calculations 

beyond this point failed, even after many trials with different point distribu- 

tion on free and body surfaces. When the calculations break down the cylinder 

centre is located at d=1.528a implying that the whole body is now under the 

mean water level. In principle the jet should be able to rise up the thin plate 

but that does not happen as the scheme breaks down. This is thought to be 

caused by the zero condition, when viewed in the cylinder's frame of reference, 

of the vertical and horizontal velocities that the particle at intersection has to 

satisfy and hence it is unable to rise. This point, at the intersection of the 

cylinder and the thin vertical plate, can then be understood as a stagnation 

point which simply has to be removed for the calculations to continue. 

The kinematics of the body are shown in Figs. 6.3(c)-(g); displacement- 

time, velocity-time and acceleration-time graphs for the initial phase. The 

body accelerates, initially at 0.41g, to maximum speed and maintains that 

speed for some time before decelerating. Initially the hydrodynamic force 

increases slightly and is unchanged for a period lasting about T =: 0.4. It 

eventually falls steadily to almost a constant value. This seems reasonable, 

since initially a lot of energy is needed to generate the free-surface flows and is 

therefore not available to increase the body's kinetic energy. For the last stages 

before complete engulfment, the velocity of the cylinder is essentially constant, 

and this persists until the cylinder is well submerged. This zero-acceleration 

phase is a purely hydrodynamic effect, since, after total submergence, hydro- 
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static terms and body plus added mass terms would predict accelerated motion 

downwards of 0.09g. We may conclude that the potential energy lost by the 

body is predominantly fed into the kinetic and potential energy of the fluid 

rather than the kinetic of the body itself. It is not known how general this effect 

might be, but it could be of practical importance, for example to the design 

of heave compensators on shipboard cranes. The calculations later breakdown 

after a few time steps as the speed begins to drop. 

At this stage the obtained results of the free surface coordinates, velocity 

potential on the free surface, body position and velocity are stored to be used 

as initial data in a program for completely submerged bodies. The rest of 

the initial data is unchanged, except for time step interval which we change 

depending on the velocities of jets. 

6.2.2 Forced inotion of a cylinder 

The initial phases for the forced vertical motion are qualitatively similar to 

those discussed above for free motion. For low Froude number, Fr=0.19, the 

inrushing fluid flows over the cylinder top as it submerges. There is an ini- 

tial increase in hydrodynamic force up to about the depth d=0.3a and then a 

slight fall and finally acts upwards as the cylinder submerges, see Fig. 6.4(a) 

for free/cylinder surface positions and Fig. 6.4(b) for the vertical force. The 

behaviour of the hydrodynamic force in the cases of Fr=0.46 and 0.31 look 

quite similar; it acts upwards throughout the inital phases, though remaining 

remarkably constant for a long time after a rapid increase at the start of the 

motion. As before, during the last stages of submergence for this phase of 

these two cases the force increases rapidily, see Fig. 6.5(c) and Fig. 6.6(f). In 
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Figs. 6.5(a) and 6.6(a)-(c) we show surface elevations up to complete submer- 

gence after which the results are stored for use with the program for complete 

submerged bodies. We also show total pressure distributions for these runs in 

Figs. 6.5(c) and 6.6(d)-(e). 

The situation changes drarnmatically in the case of oblique motion where 

we have no plane of symmetry. Here, the term oblique motion refers to the 

motion of the cylinder restricted to move along a path making an acute angle 

t, see Fig. 6.1, with the downward vertical line, here referred to as a 90' angle 

or t= 0', emanating from the origin. As explained above the potential and 

its directional derivative do not match immediately before and after impact 

rendering the problem more difficult to solve. For vertical motion we placed a 

thin plate along the line of symmetry in order to be able to pursue further the 

symmetric motion of the body and fluid. However, this is not applicable here, 

and we simply force the cylinder through the free-surface, without the plate 

but with the intersection points constrained to remain on the cylinder. We 

start with a slight shift from the vertical of t= 30' and consider the motion 

of the cylinder entering the free-surface at Fr=0.31. The results of the ensuing 

motion of the cylinder and the free-surface are depicted in Fig. 6.7(a)-(c). 

The inflow from the right closes in behind the cylinder whereas the one from 

the left projects forward past the cylinder. At this point the calculations are 

inevitably going to breakdown as the two inflows eventually impact on each 

other. These results, as before, are stored for further use with the program for 

submerged bodies. Total pressure distribution graphs are also shown, see Fig. 

6.7(d)-(e). 

The upward vertical and horizontal hydrodynamic forces are shown in Fig. 
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6.7(f). We observe similar behaviour in the pattern of surface deformations for 

the angle of 45' at Fr=0.19,0.31, Fig. 6.8(a)-(c) and 6.9(a)-(b). The forces 

acting on the body when it is moving at 17, r=0.31 are comparable to those for 

motion at 30-degrees whereas at Fr=0.19 the forces are more oscillatory, see 

Fig. 6.9(e)(where F, and rh represent vertical and horizontal components of 

the hydrodynamic force on the cylinder). The vertical forces are largely hydro- 

static and are shown, by these calculations, to be smaller than the horizontal 

ones. It is possible that this is due to "sloshing" of fluid from right to left. 

This somewhat surprising result could be important for marine structures and 

operations. The case of a 60-dogree angle at Fr=0.31 is also considered and 

resembles the other two cases of oblique motion discussed above, see Fig. 6.10. 

The force magnitudes for all the four angles at Fr=0.31 are also compared 

in Fig. 6.11. At 45 degrees the force magnitude is initially greater than the 

forces for the other three cases and becomes smaller than the other forces at 

later time corresponding to an equal distance moved along four different paths. 

At 90 degrees the force magnitude is smallest at the start of the calculations 

but picks up after some time to match that of 30- and 60-degree angles for 

the same distance as above. The distances moved, before breakdown of the 

calculations, vary with t and are greater for greater values of t. The 30- and 

60-degree angles seem to represent the average force between that of 90- and 

45-degree angles for the same distance moved in all directions. As t increases 

beyond the value of 301 we begin to see negative vertical hydrodynamic forces, 

see Figs. 6.9(e) and 6.10(g). This downward hydrodynamic effect happens 

much earlier at high Froude numbers and for large values of t. 
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6.3 Motion after complete engulfment 

Following the discussions above we shall now implement our findings in follow- 

ing the motion of a cylinder beyond the complete engulfment stage. After car- 

rying out the initial stages of surface-piercing we then proceed to redefine the 

free-surface at the site of impact. Since, when viewed in the cylinder's frame 

of reference, the fluid had stagnated around the intersection point and the jet 

failed to rise up the vertical plate, we had to abandon the "plate" method 

described above for vertical motion. The removal of the vertical plate, in the 

case of the symmetric situation, means that the flow domain has re-connected 

and has become doubly connected, in which case the original integral method 

is no longer applicable. To solve this problem the results of the last time step 

of the above run are transfered to the program for the fully-submerged bodies. 

This implies the introduction of a branch cut needed to transform the doubly 

connected domain into a singly connected one again. Basing our argument on 

Best's (1991) thesis, we assume that the potential elsewhere on the free surface 

remains unchanged at the instant of impact, a fact that is verified by results 

showing that the potential elsewhere on the free-surface is unaffected. We also 

are confident that the potential on the body is continuous during the impact 

stage, as our results revealed that. The rate of change of the potential at the 

intersection points and a few neighbouring points a number of steps before and 

up to impact was compared to the change at the same points on the body after 

impact, showing reasonable agreement. This enables us to restart the calcu- 

lations with only local changes in the potential and free surface coordinates 

around the site of impact, as described above. 
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6.3.1 Continuation of free motion calculations 

Because of the steepness of the cavity formed behind the cylinder (see also Fig. 

6.3(b)) we decided, arbitrarily, to slightly move upwards the point of stagnation 

shown in Fig. 6.3(b) to a new position above its original position. Tile effect 

of this on the motion of the cylinder should be determined by the behaviour of 

the forces on the body at the instant of swapping programs (see later). In order 

to achieve better resolution of the jet, we also added some more points around 

the region of the cylinder. This was done by simply averaging neighbouring 

points. We ended up with N= 129. The same process is followed in calculating 

the corresponding potentials. In the case of jet formation we employ the jet 

removal technique described in section 6.1 to replace the coordinates of points 

representing tips of the jets. In this way we succeed in minimizing loss in 

fluid mass. When the jet is removed without replacement, the situation is 

compensated by the initial dense point distribution around the jet region. 

This results in slight loss of resolution of the free surface with minimal loss 

in fluid mass. We later show that these jets are not important as far as the 

motion of the cylinder is concerned, but they simply have a slight tendency to 

accelerate or decelerate it. 

At later stages when the effect of the jet on the pressure around the cylinder 

becomes insignificant, the jets are removed and the cavity is widened to allow 

outward propagation of waves from the centre. This allows the fluid to flow 

in from regions far away from the vicinity of the cylinder and hence maintain 

reasonable pressure levels(which are consistent with those before jet removal) 

throughout the calculations, though good free surface resolution and overall 

fluid mass conservation might be compromised. Hence, the removal of jets is 
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purely for numerical reasons, i. e in order to be able to continue the calculations. 

In order to cope with the speed of the jets the dimensionless time interval is 

reduced to AT = 0.007, one sixth of the original interval. The position and 

velocity of the cylinder remain as they were at the last step of the previous 

run. 

Fig. 6.12.2 shows the surface elevations and total and hydrodynamic pres- 

sure distributions of the first stage of restarted calculations. At first there is a 

draw down of the fluid particles around the origin creating a small downward 

jet. This jet does not last long as it immediately reverses and the calculations 

breakdown at the instant of its re-emergence in an upward direction. At the 

instant of the jet formation the hydrodynamic pressure at the top of the cylin- 

der increases rapidly and as a result the total pressure also increases. Here we 

compare the motion of the cylinder obtained by the numerical scheme with 

that due to a simple hydrostatic model. The latter is a model of a conser- 

vative force, and a comparison with the numerical scheme will roughly tell 

us about the energy conservation of our system. In Fig. 6.12.2(i) we see 

that our displacement-time curve is quite close to the one of a conservative 

force. The velocity of the cylinder is now fairly constant because the accelera- 

tion of the system is now almost zero but increases, in the negative direction, 

slightly towards the end of the run, see Figs. 6.12.2(i-k) for velocity-time and 

acceleration- time graphs. The increase in negative acceleration results from a 

decrease in total vertical force on the cylinder, as illustrated in Fig. 6.12.12(l), 

while the pressure on top and bottom of the cylinder is slightly increased. 

The lines shown as "numerical scheme" refer to motion with nonlinear free- 

surface and "hydrostatic model" refer to the motion calculated using a simple 
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hydrostatic model that assumes pressures in the fluid to be simply hydrostatic. 

As mentioned above, the cylinder pressures, forces and dynamics are quite 

insensitive to the complex motion of the free surface, especially the downward 

jet described above and those to be discussed below. Nevertheless, it is still 

important to obtain accurate free surface calculations since fast moving jets 

appear, which, if not properly resolved, can lead to breakdown of the calcu- 

lations. In our early stages, shown in Fig. 6.12.2(a, b, e, f), the situation is 

qualitatively similar to the calculations of the collision of two solitary waves 

calculated by Cooker and Peregrine (1992). In their case the plane of sym- 

metry represented a seawall, whereas in ours, the top of the cylinder might 

be thought of as giving locally horizontal seabed. However, the two situations 

are not exactly comparable since, in our case, the problem is considered in the 

moving reference frame of the cylinder surface which would correspond to a 

downwards moving seabed for Cooker and Peregrine's situation. At the next 

stage, after suppressing the jet by replacing that point and the potential by the 

averages as described above, the calculations broke down after a few steps due 

to jet formation, two at corners of the base of the trough and one in the centre, 

see Fig. 6.12.3(b). After this run it became clear that we needed to remove 

the jets completely as they persistently led to breakdown of the calculations, 

and an unphysical increase in pressure around the body. This seemed to be 

due to the numerical scheme becoming unstable as a result of those jets. 

Six points, two at the base of the trough, two from the sides of the trough 

and two at the tips of what looks like "sharp" breakers were removed. The 

resulting calculations are depicted in Fig. 6.12.4 with a single jet forming 

up in the middle, see Fig. 6.12.4(b). Cooker and Pregrine's (1991) calcula- 
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tions also show cavity-like depressions at the the seawall which rapidly "flip 

through" to give a fast moving upwards jet of the type we see here, see Fig. 

6.12.4(b) and (c). These calculations break down also, due to a jet that has 

re-emerged at the origin. Nevertheless the hydrodynamic pressure around the 

body does not respond much to this relatively distant jet any longer, see also 

Figs. 6.12.4(g-h), which show further pressure distributions beyond the instant 

of jet formation. The body kinematics confirm this observation. We see that 

the body is now moving with fairly constant velocity but declining slightly 

due to slight overall upward trend for the acceleration of the body from below 

-0.05 to slightly above it. Actually, the cylinder periodically accelerates and 

decelerates slightly over smaller intervals of time. The hydrodynamic pressure 

on the region above the cylinder is reduced slightly from almost zero to just 

below zero and increased at the bottom by less than 0.1, see Figs. 6.12.4(c, d, g 

and h). Thus the total vertical force also is increased positive upwards, see Fig. 

6.12.4(l). Nevertheless, this has no significant effect on the overall motion of 

the system, see also Fig. 6.12.4(i) which shows an approximately constant rate 

of change of the displacement of the cylinder. The full description of the body 

kinematics for this run are shown in Fig. 6.12.4(ij, k); Le displacement-time, 

velocity-time and acccleration-time graphs. The computations are continued 

until the stage when the hydrostatic pressure is clearly dominating, Le the 

hydrodynamic pressure is small compared to hydrostatic pressure. 

An attempt to remove the middle point and four more points which were 

part of the previous jet did not help much. The calculations broke down due to 

similar central jet formation to that of the calculations in Fig. 6.12.4(f). This 

phenomenon seemed to be due to high pressure which had already accumulated 
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below the free surface as a result of the inflow following the jet. We stress, 

however, that these jets have no effect on the already distant cylinder. 

Finally the last results are combined with further smoothing attempts aimed 

at initiating outward wave propagation from the origin. We start the next 

stage of the smoothing procedure with the point at the tip of the jet not 

represented in the coordinate system as in the aborted run, but coinciding with 

the tip of the jet in Fig. 6.12.4(f). To evade the problem mentioned above 

we preserved the cavity depth created but arbitrarily made it slightly wider 

so that the jet would behave like a wave and be able to propagate outwards. 

This was achieved by removing a total of ten points around the region of the 

jet. The time interval AT was also reduced to 0.0014, one thirtieth of the 

initial interval (AT = 0.042) in order to cope with the fast moving jet. Fig. 

6.12.5 shows the outcome of the calculations following that smoothing of the 

free surface around the jet area. Because of the cavity, there seems to be 

fluid uprush towards the origin in order to fill up the gap created, forcing 

the jet a further distance upwards. This jet reaches its peak and its height 

is unchanged for a few time steps before starting to recede. The calculations 

eventually breakdown because the scheme cannot resolve the fluid particles 

around the jet area correctly. At this stage pressure distribution around the 

cylinder seems to be quite stable, increasing hydrostatically as expected as 

the body is displaced further down, showing that it is increasingly becoming 

insensitive to free surface disturbances. 

Because our interest is to know what happens next to the calculations if 

the procedure is continued we feel compelled to continue the calculations a 

little further. The effect of free surface motion on the cylinder motion has 
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been steadily decreasing to the level for which it can be ignored, but it is 

still interesting to know how the free surface will continue to behave. The 

total vertical force for the following calculations will confirm our observation 

that the cylinder is effectively distant from the free-surface. Also, it does not 

appear as if tempering with the free-surface particles of jets can distort the 

overall motion of the free-surface because the pressure throughout the jet is 

almost zero. Indeed Zhao and Faltisen(1994) also remove jet flows with sucess, 

giving the overall fluid flow for wedge entry correctly. The sequence of the free 

surface profiles, before and after effecting the smoothing technique, seem quite 

believable and the pressures on the body are now quite insensitive to such 

smoothing. In fact, when you remove the jet before it has fully developed, and 

the calculations are restarted, a new jet forms at the same or approximately 

the same place. This process can continue until the jet has developed fully 

or otherwise we would not make any progress. To continue the computations 

in time we did not allow the inflows to meet below the jet, as shown in Fig. 

6.12.5(c), by substituting that point by the average of the neighbouring points. 

The results are shown in Fig. 6.12.6. 

The calculations for the figures shown in Fig. 6.12.6 break down as soon as 

the new jets form in front of the inflows below the jet at the centre. Before 

continuing with the study of the motion of the free surface, we finally show 

that the effect of the motion of the free surface on the motion of the cylinder 

is indeed negligible. Firstly, the rate of displacement is constant as is shown 

in Fig. 6.12.6(e) which also shows a comparison with that of motion due 

hydrostatic pressures only. Secondly, the acceleration, though not zero, is 

constant and small, see Fig. 6.12.6(g). Thus the corresponding rate of change 
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of the cylinder and fluid momentum is also constant, see Fig. 6.12.6(h). This 

proves the fact that the effect of the free surface disturbances can now be 

ignored without losing correct body dynamics. We further examine the free 

surface motion in the calculations that follow. 

An attempt with the same number of points on the free surface as before and 

small alterations, produced results similar to those above. These calculations 

broke down in a similar way. This happens as the jet height is droping rapidly 

and is expected to be unstable. Taking the averages to represent the points 

where new jets have formed for the third time proved fruitful as we were able 

to continue the calculations for a long time enabling us to observe some of 

the complex behaviour of the free surface of a disturbed fluid. The mound 

at the origin is now clearly propagating waves outwards as dipicted in Fig. 

6.12.7(a, b) and is flattening quite fast. This, causes some more jets to form 

and the program again breaks down. Nevertheless, the pressure on the body 

does not show any response to what is happening on the free surface. 

After using the averages technique to represent the points where the jets had 

formed we managed to continue the calculations for about thirty time steps 

with At = 0.014 he the time intervals had been increased to ten times the ones 

for the preceding runs and equalled three times the steps of the entry phase. 

This is done in accordance with the decrease in fluid particle velocities in the 

region of greatest disturbance, and as a result computation time is reduced. 

A drawdown at the origin and a "sharp" breaker have formed in Fig. 6.12.8 

leading to program stoppage. Fig. 6.12.9 10,11 show further attempts to get 

the calculations going forward in time with the number of the points reduced 

to 99,97 and 93 respectively. The "sharp" breakers we see here are similar to 
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the ones described earlier on in chapter 5 where the calculations broke down 

because of breaking waves. The condition of the free surface in, i. e Fig. 6.11 

seem to be similar to the one of high-frequency waves discussed in chapter 5. 

With proper resolution of the free surface in the region of disturbance we may 

be able to follow these high-frequency waves further but this is outside the 

objective of this work which aims at solving the engulfment problem. 

Lastly, we show the whole life history of the hydrodynamic force on the 

cylinder from being balf-submerged to just after d=2.25a, see Fig. 6.12.12. 

Beyond that point the hydrodynamic force is fast approaching zero as ex- 

pected. At the point of swapping the programs we see a good matching of 

the hydrodynamic forces between d=1.199a and the next stage of the calcula- 

tions after complete engulfment. However, some problems arise, as mentioned 

above, due to the formation of jets which result in small errors in the calcula- 

tion of the forces as the calculations are temporarily adjusted by altering the 

free surface discretisation. 

6.3.2, Sulumary 

The results show significant progress in solving, numerically, the engulfment 

problem. This has been achieved through the smoothing procedure of the free 

surface at various stages of the calculations. It was important to show that the 

calculations could be continued using the above technique without significantly 

affecting the motion of the body. Admittedly, the initial jet formation had 

proved difficult to deal with, especially for the reason that it was difficult to 

follow the motion of the cylinder further than the instant of jet formation. To 

overcome this problem the smoothing technique proved helpful. Because of 
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the sudden rise in fluid pressure at the initial phases of the calculations, the 

results obtained after the jet has formed become inaccurate. For that reason 

we removed the jet before restarting the calculations. This was done in such a 

way that the fluid mass was reasonably conserved. The energy carried by jets 

is lost when jets are completely cut off. This energy is contained in very small 

volumes of fluid and consequentially loss of it does not result in significant 

energy loss for the whole system. 

At later stages the formation of jets does not necessarily result in inaccurate 

calculations subsequently, mainly because the free/cylinder surface interaction 

is no longer strong. In that case the calculations are allowed to go beyond jet 

formation for as long as the scheme can still handle accuratetlY the free sur- 

face points. The next calculations are then restarted after the jet has formed, 

depending on suitability of the initial data. What remains to be shown is 

what the motion would look like if the specific gravity of the cylinder were in- 

creased or reduced. The motion could also have been started with the cylinder 

just touching the free surface or a little bit submerged. These cases could be 

examined in a similar way to that presented here. Finally, with the conser- 

vation of fluid mass, energy and momentum approximately satisfied we have 

been able to follow the motion of the cylinder entering the free surface and 

beyond. The overall motion of the cylinder was shown to be little affected by 

the details of the free surface disturbance even when the cylinder/free surface 

interaction was still great. In the next section we consider the forced motion 

of the cylinder which is initially half-submerged, as in this case. The motion 

of the cylinder at different Froude numbers will be investigated and the effect 

of the motion of the fluid is also followed. 
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6.3.3 Continuation of forced motion after complete en- 
guUment 

In this subsection we continue with the calculations of the forced motion for 

the values of t considered above. The forced motion of the cylinder is investi- 

gated for the following situations; 

(a) vertical motion for t= 0' at Fr=0.19,0.31 and 0.46 

(b) oblique motion for t= 30' at Fr=0.31 

(c) oblique motion for t= 45' at Fr=0.19 and 0.31 

(d) oblique motion for t= 60' at Fr=0.31. 

For vertical motion we simply have to move the point in the centre as the 

inflows impact in a similar way as described above for free motion and the cal- 

culations are restarted. As already mentioned above the situation is different 

for oblique motion. Here, we simply remove two intersection points to create 

a smoothed boundary around the neighbourhood of the impact site by aver- 

aging nearest points to replace the one directly above ýhe top of the cylinder. 

Additional points are then put in the regions of high and low curvature for 

high resolution of jets. 

We now consider the vertical motion of a cylinder moving at Fr=0.19 im- 

mediately after complete engulfment, see Fig. 6.13.1. The scheme fails when 

the body is at a distance d=1.22a below the free surface. This case is very 

similar to the one studied above in the sense that we have slow motion in both 

cases. The initial calculations break down in a similar way as above. The 

ensuing motion in this case of either the free surface or the body, after altering 

the boundary conditions, can obviously be compared to that of the free mo- 
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tion. At low Froude numbers jets on the sides of the body are not well enough 

developed to be cut off to ensure smooth transition from this initial phase, half- 

submerged, to the second phase without loss of fluid mass through smoothing. 

This is not the case when the body entered the fluid at a high speed as then 

thin jets were formed, see Fig. 6.5. The results of last reliable step were then 

transfered to the program for tot ally- submerged bodies after using smoothed 

free-surface coordinates and corresponding potentials around the impact site. 

It has to be remembered that, in order to step forwards in time, the distance 

between the free surface and the cylinder has to be similar to or greater than 

that between the points on the body. The results of the restarted calculations 

are shown in Fig. 6.13.1. At the start of the calculations the free surface is 

reasonably flat before it is visibly drawn down around the origin forming a 

cavity. The downward moving particles suddenly change direction to upward 

movement, and at the same time they form waves propagating away from the 

origin. Fig. 6.13.1(i(e, f)) show fully- developed waves which have formed in 

the region of disturbance. These look like standing waves, the outward propa- 

gating disturbance being strongly reflected by the sudden increase in effective 

water depth beyond the cylinder. The effect may be similar to radiationless 

trapped waves in the steady state linear problem, see Ursell (1990). The dis- 

turbance around the impact region, eventually, causes a sudden rise in pressure 

distribution around the top of the cylinder. 

An attempt to carry on with the calculations by smoothing of the free 

surface was not sucessful. A number of trials were made but the calculations 

broke down each time only after a few time steps. The best results achieved 

after the initial break down with the program for completely submerged bodies 
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are shown in Fig. 6.13(ii). Further processing of these results did not produce 

any meaningful results as the upward jet around the origin continually re- 

appears, leading to failure of the scheme. 

The above difficulties highlight the obvious need to investigate the motion 

at high Froude numbers. This was done with Fr == 0.46 and slightly coarser 

discretisation of the free surface and body in agreement with previous ob- 

servations in chapter 5, as well as those discussed in Greenhow(1988). The 

calculations for initially half-submerged cylinder are then started and the re- 

sults were discussed in section I of this chapter. The scheme fails at d =-- 1.38 

in this case, which is a distance equal to 0.16a deeper than in the previous cal- 

culations, since the increased speed of the body opens up a larger and deeper 

cavity behind it. 

After resolving the free surface around the region of impact and calculation 

of corresponding potentials, the calculations were restarted. The results of the 

free-surface behaviour and pressure distributions around the body before and 

at the time of the breakdown of the calculations are shown in Fig. 6.13.2. As 

in the previous cases, there is initial draw down of the fluid at the centre and 

a break down of the calculations, due to the upward jet which has just formed. 

To proceed with the calculations a few points clustered around the centre were 

removed and an average was used for the centre coordinate. This led to two 

downward jets at the corners of the base of the trough leading to very high 

pressures around the body. At the next stage the computations are taken at 

the step when the jets appeared and we removed them. These were disrupted 

by the formation of the "sharp" breakers which at this stage are fully developed 

as seen in Fig. 6.13.2(ii). Fig. 6.13.2(iii) shows our calculations after removing 
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the "sharp" breakers again and using the averaging technique to represent tile 

corners at the base of the trough shown in Fig. 6.13.2(ii)(a-b). We see that 

the free surface has started moving upwards around the centre and possibly an 

upward jet will form if these calculations are continued, see Fig. 6.13.2(iii)(a)- 

(b). The formation of jets poses problems encountered previously in the tile 

case of the free motion of the cylinder. 

For the motion of the cylinder at Fr=0.31 we found no new features other 

than those which have already been discussed for the motion at Fr=0.46. How- 

ever, the calculations were done and recorded as shown in Fig. 6.13.3. For 

the motion at Fr=0.31 and 0.46 there is qualitative resemblance of our free 

surfaces to those of Cooker and Peregrine (1991) as mentioned before in the 

case of free motion ( see also Figs. 6.13.2(i(e, f, i, j) and 6.13.2(ii(a-b)). 

The hydrodynamic forces on the cylinder for the three cases considered are 

compared in Fig. 6.13.4. As in the case of free motion there is smooth change in 

forces at the stage of swapping programs, but there are some small disturbances 

later on as the jets begin to form. The forces show similar behaviour for all 

Froude numbers. High Froude number results in low hydrodynamic forces and 

vice versa, and these forces tend to zero as the depth of submergence increases 

as expected. 

We now look at the case of oblique motion for all the cases considered above. 

Firstly, the calculations at t= 30' at Fr=0.31 are continued as described above. 

The resulting free surface deformations and cylinder positions are shown in 

Fig. 6.14(i(a-d)). The pressures are also shown, see Fig. 6.14(i(e-f)). These 

calculations break down because of the jets forming behind the cylinder which 

are smoothed to give the results in Fig. 6.14(ii), but we have not pursued them 
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any further. 
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The calculations at Pr=0.19,0.31 for t= 45' were also carried out. In this 

case of low speed, Fr=0-19, the free surface stays fairly flat except for the very 

thin jet caused by the impacting fluid layers, associated with a high pressure 

region on the cylinder surface immediately below it. We do not claim the 

calculation of the jet itself is accurate here. In reality the jet will quickly break 

up under the action of surface tension, but we again note that its details have 

no significance for the rest of the flow. The calculations are shown in Fig. 6.15.1 

with the jets being occasionally removed to allow the calculations to continue. 
These calculations were stopped after the the re-emergence of the jet from 

below the free surface. At high speed, Fr=0.31, the situation is similar to that 

of Fr=0.19 at the start of the calculations, see Fig. 6.15.2(i)-(ii). After the first 

two initial smoothing stages the flow becomes very unstable causing numerical 

instabilites which inhibit further progress, see Figs. 6.15.2(iii)-(v). These 

calculations were then abandoned. The hydrodynamic forces seem to respond 

to this unstable situation starting from the moment of complete engulfment 

which makes it hard for us to continue these calculations. 

At 600 and Fr=0.31 we obtained encouraging results with a thin jet forming 

behind the cylinder like in the initial stages of the case of 45-degree angle. 

However, these calculations do not show any unsteadiness and can be continued 

without any forceable problems, see Fig. 6.16(i(a-d)) for free surface plots, (e- 

f) for total pressure traces and (g-h) for hydrodynamic forces. 

In general these calcualtions can be continued for as long as we wish by 

further application of the above method except in a few cases like the one of 

the angle of 45-degrees at Fr=0.31 which seemed to be unstable right from 



The Engulfinent problem 227 

the initial complete engulfment stage. However, what is clear is that these 

calculations resemble those of the free motion case in many respects. The 

only difference between them is that the formation of jets on the free surface 

happens in a slightly different manner for symmetrical situation and in a com- 

pletely different way for oblique motion, but with more or less the same effect 

on the motion of the body, Le cutting off the jets reduces the chances of getting 

unstable numerical results during the initial phases. 

6.4 Summary 

The problem of engulfment has been numerically solved in the case of the free 

motion of a horizontal circular cylinder which is initially half-submerged in an 

undisturbed fluid. Firstly, the problem of a discontinous potential function 

and its normal derivative at the impact site is solved by giving a value for 

the potential at that point(s) corresponding to given free surface coordinate(s) 

and the normal derivative is automatically calculated by the program. Thus 

a doubly- connected flow domain is once again singly connected with a branch 

cut and hence the calculations are continued. Secondly, the break down of the 

calculations in the ensuing motion of the cylinder results from complex free- 

surface jet motion which in turn causes, in some cases, the breakdown of the 

scheme. Problems were overcome through smoothing of the free surface when- 

ever the jets occured. Apart from causing breakdown of the calculations, the 

jets were found to be main agents of, or effects from, sudden slight acceleration 

or decceleration of the motion of the cylinder at small times. Nevertheless, this 

had little effect on overall motion of the cylinder. 

The calculations for forced vertical motion at low Froude number- Fr=0.19 
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were terminated after we had failed to resolve the free surface correctly, for 

the program to handle what seems like unstable overdriven standing waves. 

The forces and pressures seemed to be unaffected. At 45 degrees the body 

re-emerges from the free surface, but forces and pressures on the body seem 

to be slightly affected. In the case of the problem at high and medium Froude 

numbers, we managed to proceed further than in the case of low Froude num- 

ber. The calculations for vertical motion were stopped prematurely because 

they are qualitatively the same as those of the free motion. The oblique cases 

for 30- and 60-degree angles at Fr=0.31 are quite stable and those calculations 

can be continued without any problems except for continued formation of jets. 

At 45 degrees, Fr=0.31, the motion of the fluid became unstable causing nu- 

merical breakdown and global features such as the cylinder forces to become 

significantly affected. 

The engulfment problem being investigated here avoids the initial stages 

of interaction between the body and the free surface as this would present us 

with a difficult problem of calculating accurately the large slamming forces 

involved during the time of impact. As noted in Greenhow's (1987) work, 

the numerical calculations can only be guaranteed to be accurate when the 

deadrise angle is large; the complete slamming, entry and engulfment of the 

cylinder is therefore made extremely difficult by the large, unstable and fast 

moving spray jets formed during the slamming phase, see photos in Faltinsen 

(1990). 
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Chapter 7 

Summary of the thesis 

A fairly complete study of the hydrodynamics interaction of horizontal circular 

cylinders with a free-surface has been carried out. We have constructed a 

numerical model and presented results for the problem of cylinder motions 

below a free-surface and entering it, assuming that surface tension and viscous 

effects can be ignored. We use the added mass theory to develop an analytical 

model, which is then checked for accuracy using the nonlinear method. The 

fully nonlinear numerical method has also been used extensively to validate the 

small-time expansion method of Tyvand & Miloh, and is also used to pursue 

the solution for the engulfment problem. The results are interesting and of 

varied nature since we have treated more than three interelated problems. 

The results of chapter 2, where our analytical methods are compared with 

the fully nonlinear method, show good agreement in some situations. For the 

free motion of the cylinder rising to a free-surface, the rigid wall method is 

in good agreement with the nonlinear method, though the former experiences 

a slight delay in time. The infinite fluid method is in good agreement at the 

start of the calculations, but fails to agree with the nonlinear method at the 

end of the motion. It predicts that the total force on the cylinder increases as 
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the approaches the free-surface. The constant added mass method is also in 

good agreement with the numerics until near to the free-surface, where it fails 

to predict the fall in total force. In the case of the horizontal free motion, we 

used the numerical method to check whether the predictions of the small-time 

asymptotic method, Le that under this kind of motion the path followed by 

the body, for a small time, is a parabola. The interval of time, within which 

this happens, was found to be 0<T<0.105. Some interesting features of 

the free-surface were also observed, for example the thin layer on top of the 

cylinder as it emerged from the free-surface and the flattening of the mound 

that builds up behind the sinking cylinder. 

For motion of a spring-loaded cylinder moving horizontally, vertically and 

obliquely, we carried out some comparisons with the numerics for different 

strengths of the springs. The analytical method is underdamped, and the 

period of the motion is slightily longer than that of the numerical method, in 

the case of the larger springs. The two methods became more comparable after 

halving the springs' strengths. Also, the motion was found to be directionally 

unstable, with both methods predicting the precession of the direction axis for 

the oblique motion. On the free-surface we calculated some "sharp" breakers 

and waves of short wavelength. 

The comparison between the small-time asymptotic method and the nonlin- 

ear method showed very good agreement for the time interval of 0<T<0.3 

for all cases of Fr number and direction of motion. At later stages the mo- 

tion at high Fr number remains in better agreement than for other cases of 

small Fr number. Comparing these comparisons for vertical, horizontal and 

oblique motions we found that the agreement last longer for vertical motion, at 
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least up to T=0.6 in some cases, than for the other two cases. Beyond T=0.6 

the small-time method completely fails to produce any reasonably motion of 

the free-surface, whereas the numerical method continues to give good predic- 

tion of the free-surface movement until breakdown of the calculations with a 

features also seeii on photographs by Greenhow and Lin (1983) in Fig. 6.17. 

During the early calculations, we ignored the situations that developed 

immediately after the breakdown of the calculations. When these were in- 

vestigated in detail, especially for motion started near the free-surface, we 

discovered two interesting phenomena of breakdown of the calculations; the 

formation of "sharp" breakers when the motion is started quite close to the 

surface, and high-frequency waves when the motion is started slightly further 

away from the surface. Similar features were seen in the case of the motion 

of the cylinder after complete engulfment. Forced or free motion of initially 

half-submerged cylinder ends with the breakdown of the calculations when the 

fluid domain collapses into a doubly- connected domain. We swap programs, 

after resolving the problem of the impacted inflows, and continue the calcula- 

tions beyond complete submergence. When the jets appear they are smoothed 

and hydrodynamic force and pressure distribution on the cylinder showed no 

sensitivity to smoothing. These results should serve as the beggining of a rig- 

orous search for theoretical justification of the approach adopted here. Clearly, 

we lack a theoretical solution for the stage between the collapse of the domain 

and the next step of the calculations. Nevertheless, the potential on the free- 

surface and the body away from the impact region seems to be unaffected by 

the the restarting process of the calculations. The studied motions could also 

be extended to cover other cases of Fr number for forced motion and cylinders 
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of different specific gravities for the free motion. 
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