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Abstract

Abstract

A newly developed one-step semisolid process by BCAST for semisolid processing of
magnesium alloy was studied in this thesis - the Twin-Screw Rheo-Diecasting (RDC) of
AZ91D Mg-alloy. The RDC process is an innovative process which combines the
dispersive mixing power of the Twin-Screw Slurry Maker (TSSM) for creation of high
quality semisolid slurry and the existing cold chamber High-Pressure Die-Casting
(HPDC) process for component shaping. Magnesium alloys, due to their low density
and superior strength/weight ratio, offer distinct advantages in weight savings, and are
gaining increasing interests in applications. The research on the new RDC technology
aimed to eliminate the limitations of the conventional HPDC and to meet the
requirements from extensive application of Mg-alloys. In this thesis, the major tasks
were to optimise of the RDC technology, to evaluate the microstructure and mechanical
properties of RDC AZ91D Mg-alloy in both as-cast and heat treated conditions, and to

understand the solidification process in the TSSM.

The results of the RDC as-cast state indicated that the microstructure of primary a-Mg

particles had a fine size (around 40pm), extremely spherical morphology and uniform

distribution throughout the entire castings; the RDC AZ91D samples had extremely low
levels of porosity. Due to the unique microstructure and much reduced level of defects,
the RDC AZ91D alloy exhibited a substantial improvement in mechanical properties. In
addition, a traditional full heat treatment was performed for RDC AZ91D alloy.
Compared with HPDC alloy, the RDC AZ91D alloy was found to exhibit an accelerated

dissolution of 3-Mg;7Al;j> during solution treatment, and a faster age-hardening kinetics

of the B-phase during subsequent ageing. The microstructural investigations showed
that under intensive forced convection, heterogeneous nucleation occurred continuously
throughout the entire volume of the solidifying melt and the nuclei grew spherically.
Ostwald ripening took place by dissolution of the smaller particles but at a very slow
coarsening rate. Increasing the intensity of forced convection enhanced nucleation and
reduced volume fraction of primary phase solidified in the slurry maker. This study has
demonstrated that the novel RDC process possesses a number of advantages and it is

suitable for production of high integrity Mg-alloy components.
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1 Introduction

Chapter 1. Introduction

1.1 Background

With their low density, magnesium alloys have superior specific strength and stiffness
compared to other engineering materials. They also offer a number of attractive
properties such as a high damping capacity, electromagnetic shielding, dimensional
stability, good machinability and recyclability. As a relatively new structural material,
magnesium alloys have demonstrated significant potential for applications in many
industries: transportation, power equipment, computer/communication products, and
especially in the automotive industry. In recent years, research and application on
magnesium has greatly expanded around the world. The increased use of magnesium

castings requires the development of special casting technologies to produce castings

with fine grain size, no porosity or cracks and further improved metallurgical quality.

Currently, magnesium alloys are mainly manufactured by high-pressure die-casting
(HPDC) for structural components in the automobile industry. HPDC is a well-

established and efficient process. However, there are still a number of limitations in

HPDC process. For example, it requires high cost dies with high levels of maintenance,
large castings require large machining and, most importantly, it contains a substantial
amount of porosity due to air entrapment during die filling and hot tearing during the
solidification in the die cavity. Such porosity deteriorates mechanical properties and

limits its applications to non-stress or low-stress components. One of the most promising
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technologies capable of producing high integrity magnesium components is semisolid

metal (SSM) processing.

SSM processes use a SSM slurry, with substantially increased viscosity, resulting in
controlled die filling and close to zero porosity in the final components. Due to these

different characteristics, semisolid processing of magnesium alloys is expected to exhibit
a number of advantages and it 1s deemed that magnesium is an ideal material for
semisolid processing. In recent years, SSM processes using both the Thixo and Rheo-
route for magnesium alloys have been under investigation. The Rheo-route involves
pfeparation of a SSM slurry from liquid alloys by shearing during solidification and
transferring directly the slurry to a mould for component shaping; The Thixo-route is
basically a two-step process, involving preparation of a feedstock material with
thixotropic characteristics, then reheating the feedstock material to semisolid temperature

for component shaping.

However, the Thixo-processed microstructure has more rosette shaped primary particles,
typical billets in MHD (Magnetohydrodynamic Stirring) stirred continuous castings have
some degree of inhomogeneity from both structure and composition. More importantly,
the greatest obstacle to the development of the two-step Thixo-route process is the high
cost of pre-processed non-dendritic raw materials. In consideration of cost saving, overall

energy efficiency in production, and process management, the Rhro-route seems more

promising because it integrates slurry making with component shaping in one operation.

The rheology of semisolid slurries suggests that an ideal semisolid slurry for semisolid

metal processing should possess a suitable volume fraction of fine and spherical particles
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dispersed uniformly in a liquid matrix. Enhancing the effective nucleation and promoting

spherical growth during solidification can benefit to obtain this ideal semisolid slurry.

Based on this consideration for process creation, an innovative one-step SSM processing

technology for metals, especially Mg-alloys, Rheo-Diecasting (RDC), has been

developed by BCAST at Brunel University.

The RDC process innovatively adapts the well-established, high shear dispersive mixing
action of the twin-screw mechanism to the task of in situ creation of SSM slurry, with
fine and spherical solid particles, followed by direct shaping of the SSM slurry into a
neé.r-net shape component using the existing cold chamber HPDC process. Although
most magnesium alloys can potentially be rheo-diecast, the effort in this study is focused

on the AZ91D magnesium die-casting alloy.

The objectives of this study are:

e To optimize the Rheo-Diecasting process for fabrication of AZ91D Mg-alloy

castings.

e To study the unique microstructural characteristics and potential mechanical

properties of the RDC AZ91D Mg-alloy in the as-cast condition.

e To study the effects of Twin-Screw shearing parameters on the microstructure of
RDC AZ91D Mg-alloy samples, and to understand the solidification behaviour of
RDC AZ91D Mg-alloy under intensive forced convection in the Twin-Screw

Slurry Maker.
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e To investigate the microstructural evolution and mechanical response of the RDC

AZ91D Mg-alloy under different heat treatment conditions (T4, TS, T6, and Ty).

® To demonstrate the superior castability of the Rheo-Diecasting process for

production of high integrity Mg-alloy automobile components.

1.2 Outline of Thesis

After a sincere acknowledgement and an introduction of the study background, the

literature is reviewed in Chapter 2 beginning with a brief introduction to the development

of semisolid processing of magnesium alloys. Followed by more detailed overview of the
semisolid metal slurry, rheology of semisolid slurries, technologies for semisolid metal
processing, and alloys for semisolid processing. Finally, the semisolid processing of
magnesium alloys are reviewed. Chapter 3 describes the experimental techniques that
were used 1n the production and characterisation of the Rheo-diecast AZ91D Mg-alloy
samples and also the methods used to evaluate their properties. In Chapter 4 the results of
the RDC process optimisation, microstructure characterisation and mechanical
properties, effects of the Twin-Screw shearing on the RDC microstructures, and the

responses to heat treatment, are presented. Chapter 5 offers discussions on the
solidification behaviour of AZ91D Mg-alloy in the RDC process and the advantages of

RDC process. The main conclusions of the study and suggestions for further work are

presented in Chapter 6 and Chapter 7, respectively.
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Chapter 2. Literature Review

2.1 Introduction

Semisolid metal (SSM) processing is a relatively new method for forming alloys in the
semisolid state, to near net shaped products [FANO2a]. It relies on the behaviour of
semisolid slurries, in which the solid exists in the form of spherical particles and
suspended in a liquid matrix. Such slurries are stiff if left undisturbed and may be

handled, but flow like a liquid once sheared. The semisolid alloy slurries may therefore
be injected into a die to produce components with good surface finish, fine and uniform
microstructures and lower porosity. The semisolid processed components can also be

heat treated to give superior mechanical properties.

Initial interest in the mechanical properties and rheology of semisolid slurries, which led
to semisolid metal processing can be traced back to the work of Flemings and his co-
workers at MIT in the early 1970s [SPE72]. This work was originally directed at the
problem of hot tearing in alloy castings, but it was quickly realised that a potential
technology for near net shaping of quality components was emerging, initiating the

development of semisolid processing [FLEOO].

Conventionally, the primary solidified phases are of dendrite morphology in metals. With
a limit of vigorous convection and slow cooling during dendritic solidification of metals,
grains become non-dendritic or spheroidal. To obtain this particular microstructure, there
are a number of preparation techniques investigated and developed, e.g. the earliest

method of Mechanical Stirring [FLE91], followed by Magnetohydrodynamic Stirring

h
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[KEN88], Strain Induced Melt Activation process [YOUS83], and the Ultrasonic

Vibration process [ESK02] to name but a few.

Historically, research on SSM processing has been mainly concentrated on technological

development of casting techniques, with very little research on nucleation and growth

under forced convection [FLE91][KIR94][FANO2a]. Only a limited understanding of
nucleation rate, growth morphology and the mechanisms for the formation of the
globular structures has been achieved [BOE0O]. The conventional belief [FLE91] 1s that
under Jforced convection the initial dendrites would fragment through either the bending

of dendrite arms followed by liquid penetration of the high angle grain boundaries
[DOHB84], or through re-melting at the root of dendrite arms due to solute enrichment and
thermal-solutal convection [HEL96]. The detached dendrite arms then undergo a
coarsening process to provide the observed globular particles. More recently, it 1s

believed that the globular structure is more likely to be a result of spherical growth under

forced convection, rather than a consequence of dendrite arm detachment

[FAN02a][DAS02][QINO0O].

It is known, however, that alloys with a non-dendritic microstructure possess improved

rheological properties in the semisolid state, quite different from those of dendritic alloys
that behave thixotropically and pseudoplastically [FLE91]. Intensive experimental
investigations [FLE91][KIR94][CHEO2][LEH85] have confirmed the effects of the
particle morphology on the flow behaviour of semisolid slurries. The rheology of
semisolid slurries suggests that an ideal semisolid slurry for semisolid metal processing is
one in which a suitable volume fraction of fine and spherical particles are dispersed

uniformly in a liquid matrix [FANO2a). Enhancing the effective nucleation and
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promoting spherical growth during solidification can obtain such ideal semisolid slurry.

The Twin-Screw Slurry Maker (TSSM) is described as providing such enhancements

[FANO2b].

Based on the alternative thixotropic and pseudoplastic rheological properties, semisolid

alloys can be successfully formed into components by way of thixo-forming or rheo-
forming; they are broadly termed ¢ semisolid metal forming processing ’(SSP)
[FAN02a][KIR94]. Following from Flemings’s work, a number of researchers have
investigated and tested both the MIT processes and other newly developed processes
[KEN88]. The primary driving force for development of semisolid forming has been the
energy efficient automobile and the possible weight savings produced by these
techniques [FLEOO]J[CHIO0]. Initially, the major commercial semisolid processing
activity was in the semisolid forging of a variety of aluminium parts, including military,
aecrospace and automotive applications [KEN88]. Further, semisolid processing

technologies have been demonstrated to be applicable to most engineering alloys,
including copper [SOHO02], zinc [LEH85], steel [BRA02], titanium [SUNO04], and

magnesium [AVE99].

Magnesium, with its rich reserves in the earth, is an important engineering matenal.
More importantly, with its low density, magnesium alloys have a higher specific strength
and stiffness than most engineering materials, i.e., aluminium, steel and polymer-based
composites [KE04]. Magnesium alloys also offer other attractive properties such as a
high damping capacity, electromagnetic shielding, dimensional stability, good
machinability and recyclability [AGHO04]. As relatively new structural maternals,

magnesium alloys have demonstrated significant potential for applications in many
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industries, ‘i.e., transportation, power tool/equipment, and computer/communication

products [AGHO04] [COLO3]{SCHO03]. In the automobile industry, we have seen an
average annual increase of 15% in the usage of Mg over the past few years and it is
predicted that this growth trend will continue well into the first decade of the 21* century
and beyond [FRIO0]. In recent years, research and development on magnesium has
greatly expanded around the world, significant progress has been made on its extraction
and the casting and forming processes used, as well as in alloy development and product
applications. However, magnesium alloys have not yet fully realised their potential, more

rescarch in alloy development and processing technologies is still required

[SCHOS5][FRIO1].

Currently, semisolid processing of magnesium has become its own industrial field

[FLE91][POL95][AGUO04][IVAO04]. Based on the consideration for process creation, an

innovative one-step SSM processing technology for metals and especially Mg-alloys,

Rheo-Diecasting, has been developed at Brunel University [FAN99].

In the 35 years since the original work, a great deal of effort and scientific research has
been applied to semisolid processing, with eight international conferences since 1990

devoted to the topic. The significance of Mg-alloys to extensive applications is clear and

semisolid processing is a developing technique to assist this.
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2.2 Semisolid metal slurry

2.2.1 Dendritic growth during solidification of metals

Solidification phenomena play an important role in many of the liquid metal forming
processes, and even more so in semisolid metal processing as its basis is solidification

control.

There are essentially two basic growth morphologies during alloy solidification: dendritic
and eutectic morphologies [KUR86]. Generally, a mixture of both morphologies will be
present. In this section, only the first stage of equilibrium solidification (the temperature
reduction from liquidus to solidus) for a binary alloy will be summarised, it can be

further applied to other alloys.

Shown in Figure 2.1 is a principle binary alloy phase diagram [POR92]. The liquidus
line and solidus line of the phase diagram are illustrated in Figure 2.1, where the
chemical composition of the considered alloy is ‘Xp’. During cooling of metal alloys,
there are a number of processes that take place within the semisolid region. When the
temperature of the melt is just below T}, the alloy Xj begins to solidify with the formation
of a small amount of solid phase. As the temperature is lowered more, e.g., T3, solid
forms with a composition of Xs, and the relative amounts of solid and liquid at the
temperature 75 in equilibrium can be calculated by employing the lever rule [FLE74]:

fs = (X1-Xp) / (X1-X3) Equation 2.2.1

Meanwhile, the liquid is solute concentrated with a composition of Xj.

9
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Figure 2.1 A principle binary alloy phase diagram, K=Xgy/X} is constant [POR92].

As the solidification process continues, the alloy is supercooled either by thermal
supercooling or compositional (constitutional) surpercooling [POR92]. Figure 2.2, the

compositional supercooling, the redistribution of solute in an alloy liquid, results in a
varying solute concentration ahead of the solidification front (from Xy/k to Xp), the solute
distribution 1n liquid is shown in Figure 2.2 as X;. Therefore, the corresponding liquidus
temperature of the alloy increases with distance from the interface, as shown

schematically in Fig 2.2, given by the line T.. If the actual temperature gradient is less

than a critical value, e.g. T, the liquid is supercooled in front of the solidification.

From nucleus formation, the growth front of the solidification is considered planar, and
eventually, the supercooling in front of the solid area drives the growth. If a supercooling
exists ahead of an initially planar solid/liquid interface a protrusion forms. The formation

of the first protrusion causes solute to be rejected laterally and pile up at the root of the

10
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protrusion. This also lowers the equilibrium solidification temperature causing recesses,

which in turn triggers the formation of other secondary protrusions or arms. At

sufficiently low temperature gradients primary, secondary and even tertiary arms develop

[POR92].

Therefore, the solidification morphologies of the solid phase in alloys are generally

dendritic in profile [KUR86]. With an external forced convection applied, the

solidification phenomenon can be controlled to create other morphologies.
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Figure 2.2 The origin of constitutional supercooling ahead of a planar solidification
front [POR92].
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2.2.2 Technologies for producing semisolid slurries

As discussed, in conventional solidification, nearly all alloys of commercial importance
solidify dendritically, with either a columnar or an equiaxed dendritic structure [POR92].

Whereas, the solidification under melt stirring or a forced external field generates special

solidification phenomena and produces non-dendritic structures [BAR9S5], 1.e., the
SemiSolid Metal slurry. The semisolid alloy is characterized as a two-phase mixture in
which the spherical primary phase is uniformly distributed in a liquid matrix. All
semisolid metal processing are based on such a unique microstructural material
[FANO2a]. There are various production techniques for semisolid metal slurries, which

are at different stages of research and development.

Mechanical stirring

The technologies for producing non-dendritic slurries originating at MIT were based on
mechanical stirring [FLE91]. Melt agitation is commonly generated by means of
impellers or multi-paddle agitators mounted on a central rotating shaft. For example, a
simple ‘batch rheocaster’ or the developed ‘continuous rheocaster’ (Figure 2.3a,b)
[FLE91], in which superheated liquid flows down into an annulus, between the stirring
rod and an outer cylinder, where 1t is simﬁltaneously stirred and cooled. During
mechanical stirring, shear rate can be roughly estimated by the ratio of the velocity of the
impeller extremity, to the clearance between the impeller tip and the mould wall
[FANO02a]. The shear offered by the stirrer during solidification promotes the formation
of non-dendritic structure. The limitations of the mechanical stirring is the contamination

of the slurry, low productivity, and the difficulty in process control.

12



2 Literature Review

Magnetohydrodynamic (MHD) stirring
MHD process was developed by MIT in the USA and first employed at Alumax Inc

[KENS88]. In this technique, local shear is generated by rotating electromagnetic fields
within the continuous casting mould, and continuous billets of solidified semisolid alloy

can be produced, as sketch illustrated in Figure 2.3c. [ZHAO03]. Electromagnetic stirring

can be achieved through three different modes: vertical flow, horizontal flow, and helical
flow [NIE98]. The helical mode is ultimately a combination of the vertical and horizontal
modes. In the horizontal flow mode, the motion of the solid particles takes place in a
quasi-isothermal plane so that mechanical shearing is probably the dominant mechanism
for spheroidisation [FANO2a]. In the vertical flow mode, the dendrites located near the
solidification front are re-circulated to the hotter zone of the stirring chamber and
partially re-melted, and therefore, thermal processing is dominant over mechanical
stirring. As the stirring is deep in the sump of the liquid, contamination is virtually
eliminated. Since then the birth of the MHD technology for thixotropic feedstock

production, it has been subject to intensive research [BLA96][JUNO1][VIV93].

Strain Induced Melt Activation (SIMA) process
The SIMA process was originally developed by Young et al. [YOU83]. An alloy billet or

bar is cold worked a critical amount, so that a sufficient strain is induced. On reheating
the bar into the semisolid zone, the desired fine and spheroidal structure is obtained. This
process is based on the scientific understanding that high angle grain boundaries induced
by plastic deformation and recrystallisation grain will be wetted by liquid metal at the
semisolid temperature. However, the SIMA process requires plastic deformation and

recrystallisation, that are energy and processing intensive, making it cost approximately

13
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3-5 times more than the MHD stirring [BR0O99], Therefore, it is only effective for

production of small diameter (under a few centimetres) feedstock.

Liquidus casting

In liquidus casting, melt with a uniform temperature just above its liquidus is poured into
a mould for solidification [BIL68]. The resulting microstructure is usually fine and non-
dendritic. Upon reheating, the liquidus cast microstructure spheroidises rapidly to
produce non-dendritic microstructure suitable for thixoforming operations [TAU93].
Liquidus casting in particular is gaining more attention as a simple and cost effective

technique for feedstock production [FANO2a].

Other methods

A number of other techniques have also been proposed and investigated for the
preparation of semisolid metal slurries. Such as Spray casting [BLA96], Ultrasonic
treatment [LIU98], Chemical grain refinement [BRUO0O], Cooling Roll process (Figure
2.3d)[KIU92], and more recently, the Melt Mixing approach [FIN02], the Cooling Slope
process [HAGOO], the Rapid Slug Cooling process (Figure 2.3¢) [AGU04], and the Seed
process (Figure 2.3f) [LANO4], as well as the newly developed Twin-Screw slurry

maker studied in this thesis.

2.2.3 Microstructure evolution during melt shearing

The primary goal of slurry preparation is to create an ideal Semisolid microstructure to

ensure the favourable rheological characteristics (as described in next section 2-3) to

facilitate the subsequent component forming process [FANO2a]. Therefore, the
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understanding of microstructural evolution during slurry preparation is very important

and hence subjected to a number of investigations.

Microstructure evolution during continuous cooling and shearing

For Al-Cu alloys, Vogel et al [VOG79] observed that with applied shear the primary
particles grow as rosettes until a certain limit, beyond which further growth does not
occur, but subsequent solidification takes place by formation of new particles. Smith et
al. [SMI91] studied the microstructural evolution during solidification of a stirred Al-
19wt%Si alloy. They found that with increasing shear rate the average particle diameter
decreases, while the particle density increases. Zhang et al. [ZHAO03] investigated the
structural evolution under the condition of continuous: casting with electromagnetic
stirring. They concluded that, longer stirring time and lower cooling rate produce a
microstructure with a higher degree of sphericity at the billet centre. When the shearing
intensity is large enough, the particle size of the primary a phase is mainly dependent on
the cooling rate during solidification. The higher the cooling rate, the finer the particle
size. J1 and Fan [JIO0] studied the effect of turbulent flow on the solidification

morphology of Sn-15Pb alloy using a laboratory scale twin-screw rheomoulding (TSRM)

machine, developed recently. They found that under intensive turbulent flow, the

solidification morphology is spherical even at the very early stage of solidification.

Microstructural evolution during isothermal shearing

The early work by Spencer et al. [SPE72] on the Sn-Pb system using rotational

rheometers observed that, with prolonged stirring time, particles change to almost
spherical morphology containing entrapped liquid, by a ripening process. Increasing the

shear rate accelerates this morphological transition and reduces the amount of entrapped

16
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liquid inside the solid particles. Ryoo and Kim [RYO94] in their isothermal shearing
experiments for Mg-Al-Zn-Si alloys found that the particle size and shape factor of the
solid particles are almost constant with increasing isothermal shearing time. Ji et al.
[JI02a] found for Sn-15wt%Pb alloy that in the low shear rate region: increasing shear
rate increases particle density and decreases particle size, while in the high shear rate
region both particle size and density reach a plateau. Flemings [KLE91] has concluded
earlier that the more vigorous the stirring and the longer the time spent in the semisolid
state, the greater the tendency to form equiaxed dendrites, rosettes, and eventually, by a
coarsening process, dense spheroids. The microstructure evolution of the primary

particles is later related to the rheological behaviour of SSM slurries.

2.2.4 Mechanisms for formation of non-dendritic structure

During dendritic solidification of castings, a number of processes take place within the
semisolid region. These include crystallisation, interdendritic fluid flow, solute diffusion
and solid growth resulting in a dendritic microstructure [FLE74]. To explain the observed
non-dendritic morphology of solid particles under forced convection, several
mechanisms have been proposed. These include: dendrite arm fragmentation, dendrite

arm root remelting, and growth controlled mechanisms.

Kirkwood [KIR94] suspected that fragmentation mechanisms are likely responsible for
the formation of the spheroidal grains in stirred slurries. The early growth of the initial
dendritic fragment continues dendritically. With continuing shear and time during

solidification, the dendrite morphology becomes that of a ‘rosette’ as a result of shear and

collision and abrasion with other grains. Ripening proceeds during further cooling. Vogel

17
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et al. [VOG79] have proposed a dendrite arm fragmentation mechanism to account for
grain multiplication, as schematically illustrated in Figure 2.4 [DOH84]. They suggested
that dendrite arms bend plastically under the shear force created by melt stirring. The
plastic strain is accommodated by dislocation generation. At the melting temperature, the
dislocations can climb and coalesce to form high angle grain boundaries through
recrystallisation. Any grain boundary with an energy greater than twice the solid/liquid
interfacial energy is then wetted (penetrated) by liquid metal, resulting in the detachment

of dendrite arms.

Figure 2.4 Schematic illustration of dendrite arm fragmentation mechanism [DOH84]

18
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However, a question remaining to be answered is whether melt shearing can impose such
a high bending moment on small dendrite arms to fracture them [FANO2a]. Flemings
[FLE91] earlier suggested that it was possible to melt off or break off dendrite arms at
their roots due to shear forces. Following the early proposal by Flemings, Hellawell

[HEL96] suggested that secondary dendrite arms could detach at their roots because of

remelting due to solute enrichment and thermal-solutal convection.

In recent years, to explain the crystal multiplication in semisolid processing, there has
been an increasing belief that the evolution of particle morphology under forced

convection is a growth phenomenon, rather than a consequence of dendrite arm

detachment [FANO02a][QINOO}{ZHAO03].

Molenaar et al. [MOLS86] in their work proposed that the growth is cellular, based on
their experimental observations, they found the thermal boundary layer is hardly affected
by stirring, while the hydrodynamic boundary layer is significantly reduced and mass
transport is dominated by convection. Ji and Fan [J102a] experimentally investigated the
effect of turbulent flow on growth morphology and concluded that the globular structure
is a direct result of spherical growth under intensive forced convection, and no dendrite
or dendrite fragments were ever observed. Based on their experimental results, they
proposed that the growth morphology changes from dendrite to sphere via rosette with
the increasing shear rate and degree of turbulence. This is in good agreement with the
theoretical analysis by Qin and Fan [QINOO] using stability analysis and a boundary
element method. More recently, Das and Fan [DAS02] have developed a Monte Carlo

technique to simulate the microstructural evolution under forced convection. They found

that the morphological development of the solid would depend on the geometry of the
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diffusion zone around the growing particles. The Monte Carlo simulation shows further
that isolated particles rotating in a laminar flow grow with rosette type morphology. Ata
higher shear rate, where the nature of fluid flow is expected to be turbulent, it stabilises
the solid/liquid interface and explains why spherical particles are normally observed

when the melt is sheared at a very high intensity.

However, despite uncertainties on structure formation mechanisms, a well known
phenomenon is that alloys with the non-dendritic microstructure possess their own
special rheological properties in the semisolid state, that are quite deferent from those of

dendritic alloys.

20)
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2.3 Rheology of semisolid slurries

2.3.1 Rheological behaviour of semisolid slurries

Semisolid metal slurries with a solid fraction less than 0.6 and a globular solid
morphology usually exhibit two unique rheological properties: thixotropy and
pseudoplasticity [FANO2a]. Thixotropy describes the time dependence of transient state
viscosity at a given shear rate, while pseudoplasticity refers to the shear rate dependence
of steady state viscosity. All the SSM processing techniques rely on either or both of
those properties in the same process. Therefore, it is important to have a good

understanding of the rheological behaviour of semisolid slurries.

The first investigation of the rheology of SSM slurries was conducted on the Sn-Pb
system by Spencer et al at MIT [SPE72]. They showed that the stirred SSM slurry with a
solid fraction higher than 0.2 behaves like a non-Newtonian fluid with an apparent
viscosity an order of magnitude less than that of a unstirred dendritic slurry. This

observation initiated numerous rheological studies on stirred SSM slurries.

Rheological behaviour during continuous cooling and shearing

During the early investigation into the hot tearing of alloys in 1972, Spencer et al
[SPE72] measured the viscosity of Sn-15wt%Pb as a function of solid fraction while
continuously shearing the alloy. These results were quite unexpected in that whereas
unstirred melts began to stiffen when the solid fraction reached about 0.2, the stirred
alloy continued to behave like a liquid beyond 0.4. Figure 2.5 shows an example of

results obtained from the continuous cooling experiments on Sn-15wt%Pb alloy carried
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out by Joly and Mehrabian [JOL76]. Following this work, similar studies were carried
out on other alloy systems [LEH85][NAN90][KAT91]. The results showed that the
viscosity of a semisolid metal slurry is found to be a strong function of cooling rate and
shear rate during continuous cooling, low cooling rates and high shear rates decreases the

viscosity for a given solid fraction.
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Figure 2.5 Apparent viscosity versus solid fraction of Sn-15wt2%Pb alloy sheared
continuously and cooled at 0.33k/min at different shear rates yy [JOL76].
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Koren et.al [KOR02] examined the viscosity of both AZ91 and AMS50 magnesium alloys,

using a stirring unit with a cooling rate of 1°C/min, stirrer rotation of 100rpm and
crucible rotation of 30rpm. In the AZ91 alloy it was observed that there is a tendency
toward a moderate rise in viscosity with decreasing temperature in the range of 595°C-
575°C. A sharp acceleration in the viscosity rise was observed below that range. In the
AMS50 alloy 1t was observed that the range of the moderate rise in viscosity was limited
to 620°C-614°C and a similar acceleration in the viscosity rise was exhibited. Therefore,
they believed that the appropriate semisolid casting temperature was in the range of
595°C-575°C for AZ91 alloy and 620°C-614°C for AMS50 alloy.

Generally, for a given cooling rate and shear rate, the measured apparent viscosity
increases with increasing solid fraction, slowly at a low solid fraction and sharply at a
high solid fraction. At a given solid fraction, the apparent viscosity decreases with
increasing shear rate and decreasing cooling rate. This is because [FANO2a] both
increasing shear rate and decreasing cooling rate promote a more spherical particle,
which move more easily past one another, i.e., the more spherical and finer the particles,

the easier the fluid flow.

Rheological behaviour during isothermal shearing

The isothermal experiments were defined as cooling the alloy at a given rate during
stirring, to a predetermined solid fraction and then continuing to shear isothermally. As
such, the isothermal shearing leads to a decrease in viscosity until an effectively steady
state condition is achieved. The steady state viscosity is a function of solid fraction and
shear rate for a given alloy system [FANO2a]. Where, the steady state is defined as a state
at which the viscosity of a SSM slurry with a fixed solid fraction and shear rate does not

vary with prolonged shearing time.
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Turng and Wang [TUR91] showed on a Sn-15wt%Pb alloy that the behaviour is shear
thinning (Figure 2.6), i.c., for a SSM slurry with a fixed solid fraction, the steady state
viscosity decreases with increasing shear rate, approaching an asymptotic value when the
shear rate becomes infinite. Such ‘pseudoplastic’ behaviour has also been confirmed in

many other systems [LEH85][FLE92]. It is now generally accepted that the steady state

viscosity at a given shear rate depends on the degree of agglomeration between solid

particles.
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Figure 2.6 Steady state apparent viscosity versus shear rate in Sn-15wt%Pb alloy for
various solid fractions f; [TUR91].
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Joly and Mehrabian [JOL76] were the first to measure the extent of the ‘thixotropy’ by
the area of the hysteresis loops during a cyclic shear test (Figure 2.7). The initial alloy
slurry was in a ‘steady state’ before being isothermally sheared at a solid fraction of 0.4
under a shear rate of 115s™ and sheared isothermally for a total time of 5400 seconds,

shearing was then stopped. After a rest time t;, shear rate was increased back to

maximum over a time t,, and then decreased to zero. From Figure 2.7a, the hysteresis
loops showed that only a very short shearing time (2 seconds) requires for structural
breakdown to reach the ‘steady state’, for longer than 5 seconds, the thixotropy effect
becomes negligible. From Figure 2.7b, the thixotropy continues to increase with
increasing rest time (up to 120 seconds). Compared with breakdown process, the
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