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Abstract 

Abstract 

A newly developed one-step semisolid process by BCAST for semisolid processing of 

magnesium alloy was studied in this thesis - the Twin-Screw Rheo-Diecasting (RDC) of 
AZ91D Mg-alloy. The RDC process is an innovative process which combines the 
dispersive mixing power of the Twin-Screw Slurry Maker (TSSM) for creation of high 

quality semisolid slurry and the existing cold chamber High-Pressure Die-Casting 

(HPDC) process for component shaping. Magnesium alloys, due to their low density 

and superior strength/weight ratio, offer distinct advantages in weight savings, and are 

gaining increasing interests in applications. The research on the new RDC technology 

aimed to eliminate the limitations of the conventional HPDC and to meet the 

requirements from extensive application of Mg-alloys. In this thesis, the major tasks 

were to optimise of the RDC technology, to evaluate the microstructure and mechanical 

properties of RDC AZ91D Mg-alloy in both as-cast and heat treated conditions, and to 

understand the solidification process in the TSSM. 

The results of the RDC as-cast state indicated that the microstructure of primary a-Mg 

particles had a fine size (around 40µm), extremely spherical morphology and uniform 

distribution throughout the entire castings; the RDC AZ91D samples had extremely low 

levels of porosity. Due to the unique microstructure and much reduced level of defects, 

the RDC AZ91D alloy exhibited a substantial improvement in mechanical properties. In 

addition, a traditional full heat treatment was performed for RDC AZ91D alloy. 
Compared with HPDC alloy, the RDC AZ91D alloy was found to exhibit an accelerated 

dissolution of ß-Mg17A112 during solution treatment, and a faster age-hardening kinetics 

of the ß-phase during subsequent ageing. The microstructural investigations showed 

that under intensive forced convection, heterogeneous nucleation occurred continuously 

throughout the entire volume of the solidifying melt and the nuclei grew spherically. 
Ostwald ripening took place by dissolution of the smaller particles but at a very slow 

coarsening rate. Increasing the intensity of forced convection enhanced nucleation and 

reduced volume fraction of primary phase solidified in the slurry maker. This study has 

demonstrated that the novel RDC process possesses a number of advantages and it is 

suitable for production of high integrity Mg-alloy components. 
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11 ntroduction 

Chapter 1. Introduction 

1.1 Background 

With their low density, magnesium alloys have superior specific strength and stiffness 

compared to other engineering materials. They also offer a number of attractive 

properties such as a high damping capacity, electromagnetic shielding, dimensional 

stability, good machinability and recyclability. As a relatively new structural material, 

magnesium alloys have demonstrated significant potential for applications in many 

industries: transportation, power equipment, computer/communication products, and 

especially in the automotive industry. In recent years, research and application on 

magnesium has greatly expanded around the world. The increased use of magnesium 

castings requires the development of special casting technologies to produce castings 

with fine grain size, no porosity or cracks and further improved metallurgical quality. 

Currently, magnesium alloys are mainly manufactured by high-pressure die-casting 

(HPDC) for structural components in the automobile industry. HPDC is a well- 

established and efficient process. However, there are still a number of limitations in 

HPDC process. For example, it requires high cost dies with high levels of maintenance, 

large castings require large machining and, most importantly, it contains a substantial 

amount of porosity due to air entrapment during die filling and hot tearing during the 

solidification in the die cavity. Such porosity deteriorates mechanical properties and 

limits its applications to non-stress or low-stress components. One of the most promising 
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I Introduction 

technologies capable of producing high integrity magnesium components is semisolid 

metal (SSM) processing. 

SSM processes use a SSM slurry, with substantially increased viscosity, resulting in 

controlled die filling and close to zero porosity in the final components. Due to these 

different characteristics, semisolid processing of magnesium alloys is expected to exhibit 

a number of advantages and it is deemed that magnesium is an ideal material for 

semisolid processing. In recent years, SSM processes using both the Thixo and Rheo- 

route for magnesium alloys have been under investigation. The Rheo-route involves 

preparation of a SSM slurry from liquid alloys by shearing during solidification and 

transferring directly the slurry to a mould for component shaping; The Thixo-route is 

basically a two-step process, involving preparation of a feedstock material with 

thixotropic characteristics, then reheating the feedstock material to semisolid temperature 

for component shaping. 

However, the Thixo-processed microstructure has more rosette shaped primary particles, 

typical billets in MHD (Magnetohydrodynamic Stirring) stirred continuous castings have 

some degree of inhomogeneity from both structure and composition. More importantly, 

the greatest obstacle to the development of the two-step Thixo-route process is the high 

cost of pre-processed non-dendritic raw materials. In consideration of cost saving, overall 

energy efficiency in production, and process management, the Rhro-route seems more 

promising because it integrates slurry making with component shaping in one operation. 

The rheology of semisolid slurries suggests that an ideal semisolid slurry for semisolid 

metal processing should possess a suitable volume fraction of fine and spherical particles 
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I Introduction 

dispersed uniformly in a liquid matrix. Enhancing the effective nucleation and promoting 

spherical growth during solidification can benefit to obtain this ideal semisolid slurry. 

Based on this consideration for process creation, an innovative one-step SSM processing 

technology for metals, especially Mg-alloys, Rheo-Diecasting (RDC), has been 

developed by BCAST at Brunel University. 

The RDC process innovatively adapts the well-established, high shear dispersive mixing 

action of the twin-screw mechanism to the task of in situ creation of SSM slurry, with 

fine and spherical solid particles, followed by direct shaping of the SSM slurry into a 

near-net shape component using the existing cold chamber HPDC process. Although 

most magnesium alloys can potentially be rheo-diecast, the effort in this study is focused 

on the AZ91 D magnesium die-casting alloy. 

The objectives of this study are: 

" To optimize the Rheo-Diecasting process for fabrication of AZ91D Mg-alloy 

castings. 

" To study the unique microstructural characteristics and potential mechanical 

properties of the RDC AZ91D Mg-alloy in the as-cast condition. 

" To study the effects of Twin-Screw shearing parameters on the microstructure of 

RDC AZ91D Mg-alloy samples, and to understand the solidification behaviour of 

RDC AZ91D Mg-alloy under intensive forced convection in the Twin-Screw 

Slurry Maker. 
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" To investigate the microstructural evolution and mechanical response of the RDC 

AZ91 D Mg-alloy under different heat treatment conditions (T4, T5, T6, and TX). 

" To demonstrate the superior castability of the Rheo-Diecasting process for 

production of high integrity Mg-alloy automobile components. 

1.2 Outline of Thesis 

After a sincere acknowledgement and an introduction of the study background, the 

literature is reviewed in Chapter 2 beginning with a brief introduction to the development 

of semisolid processing of magnesium alloys. Followed by more detailed overview of the 

semisolid metal slurry, rheology of semisolid slurries, technologies for semisolid metal 

processing, and alloys for semisolid processing. Finally, the semisolid processing of 

magnesium alloys are reviewed. Chapter 3 describes the experimental techniques that 

were used in the production and characterisation of the Rheo-diecast AZ91D Mg-alloy 

samples and also the methods used to evaluate their properties. In Chapter 4 the results of 

the RDC process optimisation, microstructure characterisation and mechanical 

properties, effects of the Twin-Screw shearing on the RDC microstructures, and the 

responses to heat treatment, are presented. Chapter 5 offers discussions on the 

solidification behaviour of AZ91D Mg-alloy in the RDC process and the advantages of 

RDC process. The main conclusions of the study and suggestions for further work are 

presented in Chapter 6 and Chapter 7, respectively. 
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Chapter 2. Literature Review 

2.1 Introduction 

Semisolid metal (SSM) processing is a relatively new method for forming alloys in the 

semisolid state, to near net shaped products [FAN02a]. It relies on the behaviour of 

semisolid slurries, in which the solid exists in the form of spherical particles and 

suspended in a liquid matrix. Such slurries are stiff if left undisturbed and may be 

handled, but flow like a liquid once sheared. The semisolid alloy slurries may therefore 

be injected into a die to produce components with good surface finish, fine and uniform 

microstructures and lower porosity. The semisolid processed components can also be 

heat treated to give superior mechanical properties. 

Initial interest in the mechanical properties and rheology of semisolid slurries, which led 

to semisolid metal processing can be traced back to the work of Flemings and his co- 

workers at MIT in the early 1970s [SPE72]. This work was originally directed at the 

problem of hot tearing in alloy castings, but it was quickly realised that a potential 

technology for near net shaping of quality components was emerging, initiating the 

development of semisolid processing [FLEOO]. 

Conventionally, the primary solidified phases are of dendrite morphology in metals. With 

a limit of vigorous convection and slow cooling during dendritic solidification of metals, 

grains become non-dendritic or spheroidal. To obtain this particular microstructure, there 

are a number of preparation techniques investigated and developed, e. g. the earliest 

method of Mechanical Stirring [FLE91], followed by Magnetohydrodynamic Stirring 
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[KEN88], Strain Induced Melt Activation process [Y0U83], and the Ultrasonic 

Vibration process [ESK02] to name but a few. 

Historically, research on SSM processing has been mainly concentrated on technological 

development of casting techniques, with very little research on nucleation and growth 

under forced convection [FLE91 ] [KIR94] [FAN02a]. Only a limited understanding of 

nucleation rate, growth morphology and the mechanisms for the formation of the 

globular structures has been achieved [BOEOO]. The conventional belief [FLE91] is that 

under forced convection the initial dendrites would fragment through either the bending 

of dendrite arms followed by liquid penetration of the high angle grain boundaries 

[D0H84], or through re-melting at the root of dendrite arms due to solute enrichment and 

thermal-solutal convection [HEL96]. The detached dendrite arms then undergo a 

coarsening process to provide the observed globular particles. More recently, it is 

believed that the globular structure is more likely to be a result of spherical growth under 

forced convection, rather than a consequence of dendrite arm detachment 

[FAN02a] [DAS02] [QIN00]. 

It is known, however, that alloys with a non-dendritic microstructure possess improved 

rheological properties in the semisolid state, quite different from those of dendritic alloys 

that behave thixotropically and pseudoplastically [FLE91]. Intensive experimental 

investigations [FLE91 ] [KIR94] [CHE02] [LEH85] have confirmed the effects of the 

particle morphology on the flow behaviour of semisolid slurries. The rheology of 

semisolid slurries suggests that an ideal semisolid slurry for semisolid metal processing is 

one in which a suitable volume fraction of fine and spherical particles are dispersed 

uniformly in a liquid matrix [FAN02a]. Enhancing the effective nucleation and 
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promoting spherical growth during solidification can obtain such ideal semisolid slurry. 

The Twin-Screw Slurry Maker (TSSM) is described as providing such enhancements 

[FAN02b]. 

Based on the alternative thixotropic and pseudoplastic rheological properties, semisolid 

alloys can be successfully formed into components by way of thixo-forming or rheo- 

forming; they are broadly termed ' semisolid metal forming processing '(SSP) 

[FAN02a][KIR94]. Following from Flemings's work, a number of researchers have 

investigated and tested both the MIT processes and other newly developed processes 

[KEN88]. The primary driving force for development of semisolid forming has been the 

energy efficient automobile and the possible weight savings produced by these 

techniques [FLEOO][CHIOO]. Initially, the major commercial semisolid processing 

activity was in the semisolid forging of a variety of aluminium parts, including military, 

aerospace and automotive applications [KEN88]. Further, semisolid processing 

technologies have been demonstrated to be applicable to most engineering alloys, 

including copper [SOHO2], zinc [LEH85], steel [BRA02], titanium [SUNO4], and 

magnesium [AVE99]. 

Magnesium, with its rich reserves in the earth, is an important engineering material. 

More importantly, with its low density, magnesium alloys have a higher specific strength 

and stiffness than most engineering materials, i. e., aluminium, steel and polymer-based 

composites [KE04]. Magnesium alloys also offer other attractive properties such as a 

high damping capacity, electromagnetic shielding, dimensional stability, good 

machinability and recyclability [AGH04]. As relatively new structural materials, 

magnesium alloys have demonstrated significant potential for applications in many 
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industries, , i. e., transportation, power tool/equipment, and computer/communication 

products [AGH04] [COL03][SCH03]. In the automobile industry, we have seen an 

average annual increase of 15% in the usage of Mg over the past few years and it is 

predicted that this growth trend will continue well into the first decade of the 2 1St century 

and beyond [FRI00]. In recent years, research and development on magnesium has 

greatly expanded around the world, significant progress has been made on its extraction 

and the casting and forming processes used, as well as in alloy development and product 

applications. However, magnesium alloys have not yet fully realised their potential, more 

research in alloy development and processing technologies is still required 

[SCH05][FRI01]. 

Currently, semisolid processing of magnesium has become its own industrial field 

[FLE91][P0L95][AGU04][IVA04]. Based on the consideration for process creation, an 

innovative one-step SSM processing technology for metals and especially Mg-alloys, 

Rheo-Diecasting, has been developed at Brunel University [FAN99]. 

In the 35 years since the original work, a great deal of effort and scientific research has 

been applied to semisolid processing, with eight international conferences since 1990 

devoted to the topic. The significance of Mg-alloys to extensive applications is clear and 

semisolid processing is a developing technique to assist this. 

8 



2 Literature Review 

2.2 Semisolid metal slurry 

2.2.1 Dendritic growth during solidification of metals 

Solidification phenomena play an important role in many of the liquid metal forming 

processes, and even more so in semisolid metal processing as its basis is solidification 

control. 

There are essentially two basic growth morphologies during alloy solidification: dendritic 

and eutectic morphologies [KUR86]. Generally, a mixture of both morphologies will be 

present. In this section, only the first stage of equilibrium solidification (the temperature 

reduction from liquidus to solidus) for a binary alloy will be summarised, it can be 

further applied to other alloys. 

Shown in Figure 2.1 is a principle binary alloy phase diagram [P0R92]. The liquidus 

line and solidus line of the phase diagram are illustrated in Figure 2.1, where the 

chemical composition of the considered alloy is `Xo'. During cooling of metal alloys, 

there are a number of processes that take place within the semisolid region. When the 

temperature of the melt is just below T1, the alloy Xo begins to solidify with the formation 

of a small amount of solid phase. As the temperature is lowered more, e. g., T2, solid 

forms with a composition of Xs, and the relative amounts of solid and liquid at the 

temperature T2 in equilibrium can be calculated by employing the lever rule [FLE74]: 

f= (XL-XO) / (X-4 Equation 2.2.1 

Meanwhile, the liquid is solute concentrated with a composition of XL. 
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Figure 2.1 A principle binary alloy phase diagram, K XS/XL is constant [POR92]. 

As the solidification process continues, the alloy is supercooled either by thermal 

supercooling or compositional (constitutional) surpercooling [POR92]. Figure 2.2, the 

compositional supercooling, the redistribution of solute in an alloy liquid, results in a 

varying solute concentration ahead of the solidification front (from Xo/k to Xo), the solute 

distribution in liquid is shown in Figure 2.2 as XL. Therefore, the corresponding liquidus 

temperature of the alloy increases with distance from the interface, as shown 

schematically in Fig 2.2, given by the line T, If the actual temperature gradient is less 

than a critical value, e. g. TL, the liquid is supercooled in front of the solidification. 

From nucleus formation, the growth front of the solidification is considered planar, and 

eventually, the supercooling in front of the solid area drives the growth. If a supercooling 

exists ahead of an initially planar solid/liquid interface a protrusion forms. The formation 

of the first protrusion causes solute to be rejected laterally and pile up at the root of the 
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protrusion. This also lowers the equilibrium solidification temperature causing recesses, 

which in turn triggers the formation of other secondary protrusions or arms. At 

sufficiently low temperature gradients primary, secondary and even tertiary arms develop 

[POR92]. 

Therefore, the solidification morphologies of the solid phase in alloys are generally 

dendritic in profile [KUR86]. With an external forced convection applied, the 

solidification phenomenon can be controlled to create other morphologies. 

Solid v Liquid 
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w TL 
riticol gradient 
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Constitutionnl 
°: '' supercooling 
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Solid -+-Liquid 
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Figure 2.2 The origin of constitutional supercooling ahead of a planar solidification 
front [POR921. 
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2.2.2 Technologies for producing semisolid slurries 

As discussed, in conventional solidification, nearly all alloys of commercial importance 

solidify dendritically, with either a columnar or an equiaxed dendritic structure [POR92]. 

Whereas, the solidification under melt stirring or a forced external field generates special 

solidification phenomena and produces non-dendritic structures [BAR95], i. e., the 

SemiSolid Metal slurry. The semisolid alloy is characterized as a two-phase mixture in 

which the spherical primary phase is uniformly distributed in a liquid matrix. All 

semisolid metal processing are based on such a unique microstructural material 

[FAN02a]. There are various production techniques for semisolid metal slurries, which 

are at different stages of research and development. 

Mechanical stirring 

The technologies for producing non-dendritic slurries originating at MIT were based on 

mechanical stirring [FLE91]. Melt agitation is commonly generated by means of 

impellers or multi-paddle agitators mounted on a central rotating shaft. For example, a 

simple `batch rheocaster' or the developed `continuous rheocaster' (Figure 2.3a, b) 

[FLE91 ], in which superheated liquid flows down into an annulus, between the stirring 

rod and an outer cylinder, where it is simultaneously stirred and cooled. During 

mechanical stirring, shear rate can be roughly estimated by the ratio of the velocity of the 

impeller extremity, to the clearance between the impeller tip and the mould wall 

[FAN02a]. The shear offered by the stirrer during solidification promotes the formation 

of non-dendritic structure. The limitations of the mechanical stirring is the contamination 

of the slurry, low productivity, and the difficulty in process control. 
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Ma ng etohydrodynamic (MHD) stirring 

MHD process was developed by MIT in the USA and first employed at Alumax Inc 

[KEN88]. In this technique, local shear is generated by rotating electromagnetic fields 

within the continuous casting mould, and continuous billets of solidified semisolid alloy 

can be produced, as sketch illustrated in Figure 2.3c. [ZHA03]. Electromagnetic stirring 

can be achieved through three different modes: vertical flow, horizontal flow, and helical 

flow [NIE98]. The helical mode is ultimately a combination of the vertical and horizontal 

modes. In the horizontal flow mode, the motion of the solid particles takes place in a 

quasi-isothermal plane so that mechanical shearing is probably the dominant mechanism 

for spheroidisation [FAN02a]. In the vertical flow mode, the dendrites located near the 

solidification front are re-circulated to the hotter zone of the stirring chamber and 

partially re-melted, and therefore, thermal processing is dominant over mechanical 

stirring. As the stirring is deep in the sump of the liquid, contamination is virtually 

eliminated. Since then the birth of the MHD technology for thixotropic feedstock 

production, it has been subject to intensive research [BLA96][JUNO 1][VIV93]. 

Strain Induced Melt Activation (SIMA) process 

The SIMA process was originally developed by Young et al. [YOU83]. An alloy billet or 

bar is cold worked a critical amount, so that a sufficient strain is induced. On reheating 

the bar into the semisolid zone, the desired fine and spheroidal structure is obtained. This 

process is based on the scientific understanding that high angle grain boundaries induced 

by plastic deformation and recrystallisation grain will be wetted by liquid metal at the 

semisolid temperature. However, the SIMA process requires plastic deformation and 

recrystallisation, that are energy and processing intensive, making it cost approximately 
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Figure 2.3 Preparation techniques for semisolid metal slurries. (a) and (b) Mechanical 

Stirring process [FLE91], (c) Continuous casting with Magnetohydrodynamic Stirring 

[ZHA03J, (d) Cooling Roll process [K1U92], (e) Rapid Slug Cooling process [AGUO4] 

and (f) Seed process [LAN04]. 
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3-5 times more than the MHD stirring [BR099], Therefore, it is only effective for 

production of small diameter (under a few centimetres) feedstock. 

Liquidus casting 

In liquidus casting, melt with a uniform temperature just above its liquidus is poured into 

a mould for solidification [BIL68]. The resulting microstructure is usually fine and non- 

dendritic. Upon reheating, the liquidus cast microstructure spheroidises rapidly to 

produce non-dendritic microstructure suitable for thixoforming operations [TAU98]. 

Liquidus casting in particular is gaining more attention as a simple and cost effective 

technique for feedstock production [FAN02a]. 

Other methods 

A number of other techniques have also been proposed and investigated for the 

preparation of semisolid metal slurries. Such as Spray casting [BLA96], Ultrasonic 

treatment [LIU98], Chemical grain refinement [BRUOO], Cooling Roll process (Figure 

2.3d)[KIU92], and more recently, the Melt Mixing approach [FINO2], the Cooling Slope 

process [HAGOO], the Rapid Slug Cooling process (Figure 2.3e) [AGU04], and the Seed 

process (Figure 2.3f) [LAN04], as well as the newly developed Twin-Screw slurry 

maker studied in this thesis. 

2.2.3 Microstructure evolution during melt shearing 

The primary goal of slurry preparation is to create an ideal Semisolid microstructure to 

ensure the favourable rheological characteristics (as described in next section 2-3) to 

facilitate the subsequent component forming process [FAN02a]. Therefore, the 
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understanding of microstructural evolution during slurry preparation is very important 

and hence subjected to a number of investigations. 

Microstructure evolution during continuous cooling and shearing 

For Al-Cu alloys, Vogel et al [VOG79] observed that with applied shear the primary 

particles grow as rosettes until a certain limit, beyond which further growth does not 

occur, but subsequent solidification takes place by formation of new particles. Smith et 

al. [SMI91] studied the microstructural evolution during solidification of a stirred Al- 

19wt%Si alloy. They found that with increasing shear rate the average particle diameter 

decreases, while the particle density increases. Zhang et al. [ZHA03] investigated the 

structural evolution under the condition of continuous -casting with electromagnetic 

stirring. They concluded that, longer stirring time and lower cooling rate produce a 

microstructure with a higher degree of sphericity at the billet centre. When the shearing 

intensity is large enough, the particle size of the primary a phase is mainly dependent on 

the cooling rate during solidification. The higher the cooling rate, the finer the particle 

size. Ji and Fan [JIOO] studied the effect of turbulent flow on the solidification 

morphology of Sn-15Pb alloy using a laboratory scale twin-screw rheomoulding (TSRM) 

machine, developed recently. They found that under intensive turbulent flow, the 

solidification morphology is spherical even at the very early stage of solidification. 

Microstructural evolution during isothermal shearing 

The early work by Spencer et al. [SPE72] on the Sn-Pb system using rotational 

rheometers observed that, with prolonged stirring time, particles change to almost 

spherical morphology containing entrapped liquid, by a ripening process. Increasing the 

shear rate accelerates this morphological transition and reduces the amount of entrapped 
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liquid inside the solid particles. Ryoo and Kim [RY094] in their isothermal shearing 

experiments for Mg-AI-Zn-Si alloys found that the particle size and shape factor of the 

solid particles are almost constant with increasing isothermal shearing time. Ji et al. 

[JI02a] found for Sn-15wt%Pb alloy that in the low shear rate region: increasing shear 

rate increases particle density and decreases particle size, while in the high shear rate 

region both particle size and density reach a plateau. Flemings [KLE91] has concluded 

earlier that the more vigorous the stirring and the longer the time spent in the semisolid 

state, the greater the tendency to form equiaxed dendrites, rosettes, and eventually, by a 

coarsening process, dense spheroids. The microstructure evolution of the primary 

particles is later related to the rheological behaviour of SSM slurries. 

2.2.4 Mechanisms for formation of non-dendritic structure 

During dendritic solidification of castings, a number of processes take place within the 

semisolid region. These include crystallisation, interdendritic fluid flow, solute diffusion 

and solid growth resulting in a dendritic microstructure [FLE74]. To explain the observed 

non-dendritic morphology of solid particles under forced convection, several 

mechanisms have been proposed. These include: dendrite arm fragmentation, dendrite 

arm root remelting, and growth controlled mechanisms. 

Kirkwood [KIR94] suspected that fragmentation mechanisms are likely responsible for 

the formation of the spheroidal grains in stirred slurries. The early growth of the initial 

dendritic fragment continues dendritically. With continuing shear and time during 

solidification, the dendrite morphology becomes that of a ̀ rosette' as a result of shear and 

collision and abrasion with other grains. Ripening proceeds during further cooling. Vogel 
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et al. [VOG79] have proposed a dendrite arm fragmentation mechanism to account for 

grain multiplication, as schematically illustrated in Figure 2.4 [DOH84]. They suggested 

that dendrite arms bend plastically under the shear force created by melt stirring. The 

plastic strain is accommodated by dislocation generation. At the melting temperature, the 

dislocations can climb and coalesce to form high angle grain boundaries through 

recrystallisation. Any grain boundary with an energy greater than twice the solid/liquid 

interfacial energy is then wetted (penetrated) by liquid metal, resulting in the detachment 

of dendrite arms. 
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Figure 2.4 Schematic illustration of dendrite arm fragmentation mechanism [DOH841 

18 



2 Literature Review 

However, a question remaining to be answered is whether melt shearing can impose such 

a high bending moment on small dendrite arms to fracture them [FAN02a]. Flemings 

[FLE91] earlier suggested that it was possible to melt off or break off dendrite arms at 

their roots due to shear forces. Following the early proposal by Flemings, Hellawell 

[HEL96] suggested that secondary dendrite arms could detach at their roots because of 

remelting due to solute enrichment and thermal-solutal convection. 

In recent years, to explain the crystal multiplication in semisolid processing, there has 

been an increasing belief that the evolution of particle morphology under forced 

convection is a growth phenomenon, rather than a consequence of dendrite arm 

detachment [FAN02a] [QIN00] [ZHA03]. 

Molenaar et al. [M0L86] in their work proposed that the growth is cellular, based on 

their experimental observations, they found the thermal boundary layer is hardly affected 

by stirring, while the hydrodynamic boundary layer is significantly reduced and mass 

transport is dominated by convection. Ji and Fan [JI02a] experimentally investigated the 

effect of turbulent flow on growth morphology and concluded that the globular structure 

is a direct result of spherical growth under intensive forced convection, and no dendrite 

or dendrite fragments were ever observed. Based on their experimental results, they 

proposed that the growth morphology changes from dendrite to sphere via rosette with 

the increasing shear rate and degree of turbulence. This is in good agreement with the 

theoretical analysis by Qin and Fan [QINOO] using stability analysis and a boundary 

element method. More recently, Das and Fan [DAS02] have developed a Monte Carlo 

technique to simulate the microstructural evolution under forced convection. They found 

that the morphological development of the solid would depend on the geometry of the 
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diffusion zone around the growing particles. The Monte Carlo simulation shows further 

that isolated particles rotating in a laminar flow grow with rosette type morphology. At a 

higher shear rate, where the nature of fluid flow is expected to be turbulent, it stabilises 

the solid/liquid interface and explains why spherical particles are normally observed 

when the melt is sheared at a very high intensity. 

However, despite uncertainties on structure formation mechanisms, a well known 

phenomenon is that alloys with the non-dendritic microstructure possess their own 

special rheological properties in the semisolid state, that are quite deferent from those of 

dendritic alloys. 
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2.3 Rheology of semisolid slurries 

2.3.1 Rheological behaviour of semisolid slurries 

Semisolid metal slurries with a solid fraction less than 0.6 and a globular solid 

morphology usually exhibit two unique rheological properties: thixotropy and 

pseudoplasticity [FAN02a]. Thixotropy describes the time dependence of transient state 

viscosity at a given shear rate, while pseudoplasticity refers to the shear rate dependence 

of steady state viscosity. All the SSM processing techniques rely on either or both of 

those properties in the same process. Therefore, it is important to have a good 

understanding of the rheological behaviour of semisolid slurries. 

The first investigation of the rheology of SSM slurries was conducted on the Sn-Pb 

system by Spencer et al at MIT [SPE72]. They showed that the stirred SSM slurry with a 

solid fraction higher than 0.2 behaves like a non-Newtonian fluid with an apparent 

viscosity an order of magnitude less than that of a unstirred dendritic slurry. This 

observation initiated numerous rheological studies on stirred SSM slurries. 

Rheological behaviour during continuous cooling and shearing 

During the early investigation into the hot tearing of alloys in 1972, Spencer et al 

[SPE72] measured the viscosity of Sn-15wt%Pb as a function of solid fraction while 

continuously shearing the alloy. These results were quite unexpected in that whereas 

unstirred melts began to stiffen when the solid fraction reached about 0.2, the stirred 

alloy continued to behave like a liquid beyond 0.4. Figure 2.5 shows an example of 

results obtained from the continuous cooling experiments on Sn-15wt%Pb alloy carried 
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out by Joly and Mehrabian [JOL76]. Following this work, similar studies were carried 

out on other alloy systems [LEH85][NAN90][KAT91]. The results showed that the 

viscosity of a semisolid metal slurry is found to be a strong function of cooling rate and 

shear rate during continuous cooling, low cooling rates and high shear rates decreases the 

viscosity for a given solid fraction. 
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Koren et. al [KOR02] examined the viscosity of both AZ91 and AM50 magnesium alloys, 

using a stirring unit with a cooling rate of 1 °C/min, stirrer rotation of 100rpm and 

crucible rotation of 30rpm. In the AZ91 alloy it was observed that there is a tendency 

toward a moderate rise in viscosity with decreasing temperature in the range of 595°C- 

575°C. A sharp acceleration in the viscosity rise was observed below that range. In the 

AM50 alloy it was observed that the range of the moderate rise in viscosity was limited 

to 620°C-614°C and a similar acceleration in the viscosity rise was exhibited. Therefore, 

they believed that the appropriate semisolid casting temperature was in the range of 

595°C-575°C for AZ91 alloy and 620°C-614°C for AM50 alloy. 

Generally, for a given cooling rate and shear rate, the measured apparent viscosity 

increases with increasing solid fraction, slowly at a low solid fraction and sharply at a 

high solid fraction. At a given solid fraction, the apparent viscosity decreases with 

increasing shear rate and decreasing cooling rate. This is because [FAN02a] both 

increasing shear rate and decreasing cooling rate promote a more spherical particle, 

which move more easily past one another, i. e., the more spherical and finer the particles, 

the easier the fluid flow. 

Rheological behaviour durinci isothermal shearing 

The isothermal experiments were defined as cooling the alloy at a given rate during 

stirring, to a predetermined solid fraction and then continuing to shear isothermally. As 

such, the isothermal shearing leads to a decrease in viscosity until an effectively steady 

state condition is achieved. The steady state viscosity is a function of solid fraction and 

shear rate for a given alloy system [FAN02a]. Where, the steady state is defined as a state 

at which the viscosity of a SSM slurry with a fixed solid fraction and shear rate does not 

vary with prolonged shearing time. 
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Turng and Wang [TUR91] showed on a Sn-15wt%Pb alloy that the behaviour is shear 

thinning (Figure 2.6), i. e., for a SSM slurry with a fixed solid fraction, the steady state 

viscosity decreases with increasing shear rate, approaching an asymptotic value when the 

shear rate becomes infinite. Such `pseudoplastic' behaviour has also been confirmed in 

many other systems [LEH85][FLE92]. It is now generally accepted that the steady state 

viscosity at a given shear rate depends on the degree of agglomeration between solid 

particles. 
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Joly and Mehrabian [J0L76] were the first to measure the extent of the ̀ thixotropy' by 

the area of the hysteresis loops during a cyclic shear test (Figure 2.7). The initial alloy 

slurry was in a `steady state' before being isothermally sheared at a solid fraction of 0.4 

under a shear rate of 115s'' and sheared isothermally for a total time of 5400 seconds, 

shearing was then stopped. After a rest time tr, shear rate was increased back to 

maximum over a time t,,, and then decreased to zero. From Figure 2.7a, the hysteresis 

loops showed that only a very short shearing time (2 seconds) requires for structural 

breakdown to reach the `steady state', for longer than 5 seconds, the thixotropy effect 

becomes negligible. From Figure 2.7b, the thixotropy continues to increase with 

increasing rest time (up to 120 seconds). Compared with breakdown process, the 

structural build-up requires apparently over quite long times. Recently, Fan and Chen 

[CHE02] have developed a model to study the transient state behaviour of SSM slurries 

under various shearing conditions. One of the results is a theoretical prediction of the 

hysteresis loops, which reveals that the physical origin of thixotropy lies in the fact that 

the deagglomeration kinetics is much faster than the agglomeration kinetics, with the 

former being a few seconds and the latter a few hundred seconds. 

A further study of the steady state viscosity was carried out by Moon (Figure 2.8) 

[FLE91] on A1-6.5wt%Si alloy at y= 900s" andfs = 0.4. The samples were at the steady 

state viscosity of 0.006 Pa. s at y= 900s'', shearing was then stopped and restarted at the 

same shear rate after resting time. The instantaneous viscosity is much higher at the start 

of shear, reflecting the agglomeration that builds up during the rest. With time, viscosity 

decreases to the steady state value as the structure breaks down. They found that, only 

quite short times are required for this breakdown, whereas the structure build-up requires 

much longer times. 
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Another steady state behaviour with a given solid fraction is the presence of yield stress, 

as has been discussed by Modigell et al [MOD00]'for Sn-15wt%Pb SSM slurries. Sannes 

et al [SAN94] reported that the yield stress for magnesium based SSM slurries is in the 

range of 102-104 Pa for solid fractions ranging from 0.3 to 0.6. The yield phenomenon is 

generally inherent to the thixotropy. 

For magnesium alloys, Ghosh and Schilt [GH094] have experimentally established the 

thixotropic characteristics of AZ91D and AM50 alloys; their studies confirm that 
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magnesium alloys exhibit pseudoplastic rheological behaviour comparable to that of the 

tin-lead system. 

2.3.2 Rheological modelling of semisolid slurries 

As mentioned above, plenty of experimental work has demonstrated a strong coupling 

between the slurry structure and the flow behaviour under various external flow 

conditions, and it has been well established that the semisolid metal slurries exhibit 

`pseudoplasticity' and `thixotropy'. The modelling of thixotropy is quite complex and 

also subjected to a number of simulations [MAD96][CHE02]. In this section, considering 

mainly the rheo-route processes, we contemplate the modelling of pseudoplasticity. 

In rheological terms, these semisolid slurries are deemed to exhibit `pseudoplasticity'. 

Empirical equations developed to describe the full range of viscosity of pseudoplastic 

metals require at least four parameters [FAN02a]. Following Brown [BRO90], the 

constitutive relations for semisolid alloys might be written: 

1=77(f, m, s) Equation 2.3.1 

Where i is viscosity, y is shear rate, f is solid fraction, m is a measure of particle 

morphology and s is a measure of degree of particle agglomeration. However, a simple 

and widely used relation that is often useful over wide ranges of shear rate is the well- 

known ̀ power-law' model [J0L76]: 

q_Ky" Equation 2.3.2 

Where n is called the `power-law' index, and K is the `consistency'. Both n and K are 

solid fraction dependent factors. The smaller the power-law index, the greater the 
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pseudoplasticity. We may use this simple model to understand the effects of process 

variables on viscosity of semisolid slurries. 

Recently, Chen and Fan [CHE02] developed a microstructural model that describes the 

flow behaviour of liquid-like SSM slurries under simple shearing. In this model, a liquid- 

like SSM slurry is considered as a suspension in which interacting spherical solid 

particles of low cohesion are dispersed in a liquid matrix. In a simple shear flow field, the 

dynamic interactions between solid particles result in the formation of agglomerates. 

Under the influence of viscous forces, collisions between agglomerates lead to new 

agglomerates of a larger size and, at the same time, larger agglomerates also break up 

giving rise to agglomerates of a smaller size. At a particular time, the state of 

agglomeration is described by a structure parameter n, which is defined as the average 

particle number in agglomerates. Based on such considerations, both viscosity i and 

shear stress r can be expressed through effective solid fraction (Pell , defined as the sum 

of the actual solid fraction and the entrapped liquid fraction) as a function of the structure 

parameter n: 

1J=770(1-ýef)-spa 

Pes'= ý1+ nn-1 A ýf 

Z=q(n, y)y 

Equation 2.3.3 

Equation 2.3.4 

Equation 2.3.5 

Where rio is the viscosity of the liquid matrix, A is another model parameter related to the 

packing mode. Equation 2.3.4 indicates that the viscosity of a semisolid slurry is a direct 

function of the viscosity of the liquid matrix and the effective solid fraction. The flow 

conditions affect viscosity only indirectly through changing the effective solid fraction. 
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2.3.3 Deformation behaviour of semisolid slurries 

Semisolid metal slurry can be roughly divided into two broad categories [FAN02a]: a 

`liquid-like' slurry contains dispersed solid particles and behaves like a fluid under 

external forces, while a `solid-like' slurry contains an interconnected solid phase and 

behaves like a solid, exhibiting a well defined yield strength. The deformation 

mechanisms for these two types of slurry are fundamentally different. 

The semisolid slurry with lower solid fraction (<40%) will be allowed to flow under a 

stress like a suspension in the two-phase region [CHE02]. Semisolid slurries with high 

solid fractions (40-60%) are usually treated as two phase systems in which a solid 

skeleton is saturated with a near-Newtonian liquid phase [GEBOO]. Such a slurry behaves 

thixotropically and viscosity can be varied over a wide range, from about 10'1 to 106 Pa. s, 

depending on the shear rate [FLE91]. In magnesium alloys, during the solidification 

process, the particles are interconnected by solid thin necks or light coalition in a 3D 

network, which will remain with low melting temperature liquid after the consequent 

heating to the semisolid state. The particle boundaries in these solid necks are not 

associated with any preferred orientation relationship [SAN94]. When stress is applied to 

a semisolid fluid, the fluid shows a solid-like behaviour as long as the applied stress is 

below the material yield stress (as discussed previously). If the applied stress exceeds the 

material yield stress, the fluid will flow and display a liquid-like behaviour. 
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2.4 Technologies for semisolid metal processing 

The fluid like behaviour of semisolid metal slurry under a high stress has prompted 

several new technologies for semisolid metals forming processing. Generally, the 

technologies for forming the partially melted non-dendritic alloy slurries into a near net 

component can be divided into two basic routes [FLE00][FAN02a]: rheo-route and thixo- 

route. The rheo-route involves preparation of a SSM slurry from liquid alloys by shearing 

during solidification and transferring the prepared SSM slurry directly to a die or mould 

for component shaping e. g., Rheo-Moulding process [FAN00][JI02b], Rheo-Mixing 

process [FANO1], and New Rheocasting process [POTOO] etc. The thixo-route is 

basically a two-step process, involving preparation of a feedstock material with 

appropriate non-dendritic structure, reheating the thixotropic material to a semisolid 

temperature and subsequently shaping within a die, e. g., Thixomoulding process 

[POL95], Thixocasting process [SAH98], Thixoforging process [KOP98] etc. The 

deformation and flow of the semisolid alloy within the die is different from that of pure 

liquid or pure solid in either process. 

Thixocasting 

In principle, a variety of reheating methods for raw semisolid materials were used, for 

instance, radiation and convective heat transfer within an electric resistance furnace 

[ZHA03]. However, induction heating by the uniform heating performance is generally 

the preferred approach [HIR98]. When the alloy is known to be in the correct softened 

condition, the partially melted SSM alloy may be transferred to the die or shot chamber 

by robot handling, it is then forged (Thixoforging) or injected into the die (Thixocasting), 

as in Figure 2.9a [FAN02a]. In Thixocasting, a reheated billet is transferred to the shot 
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chamber, under the pressure of the moving shot piston; the viscosity of the metal is 

reduced prior to die filling due to the high shear rate at the gate. Thixocasting is now a 

firmly established processing technology for aluminium; trials have shown that the 

method also works for magnesium alloys [NAD98]. Due to its high productivity and 

superior mechanical properties, Thixocasting process covers most applications, including 

automobile wheels, brake cylinders, valve bodies, and various covers and housings, etc. 

[KEN88][GIO00]. 

Thixomoulding 

Thixomoulding was developed by Dow Chemicals and is currently marketed by 

Thixomat [PAS92]. It is based on using magnesium alloy granules as thixotropic 

feedstock in a casting machine, which shows many similarities to a plastic injection- 

moulding machine. In the Thixomoulding process, shown in Figure 2.9b [P0L95], the 

magnesium alloy granules are fed into an electrically heated chamber where they are 

reheated before transfer by a single reciprocating screw. Finally, the slurry is injected 

into a die by rapid movement of the screw. Thixomolding combines die casting with 

injection moulding and has been increasingly used for making near-net-shape Mg-alloy 

components [CZEO I] 

Rheo-Moulding 

Similar to the Thixomoulding process, Rheo-moulding is a technology adopted from the 

polymer-processing field using screw mechanism. In last few years, the single screw 

Rheo-moulding process has been extended from vertical injection to a horizontal 

injection for moulding magnesium alloy parts [FAN02a]. Recently, Fan [FANOO] has 

developed a Twin-Screw Rheo-moulding process for use with low melting point alloys or 
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magnesium alloys. More recently, the TSRM system has been extended to the Rheo- 

mixing [FANO1] and Rheo-diecasting [FAN05b] processes. 

New Rheocasting (NRC) 

The NRC process (Figure 2.9c) [POTOO] starts with a conventional light metal alloys 

and transforms the melt into the rheocasting billet in a steel permanent mould, by 

controlled cooling, where the desired globular microstructure is produced. During 

investigation, the NRC process has reported an overall cost reduction of approximately 

20% over the classical Thixocasting process [HALOO]. 

Furthermore, other SSM technologies including the SSR process developed by MIT 

[YUR02], the Cooling slope plus Twin-Roll Caster process (Figure 2.9d) developed by 

Osaka Institute of Technology [HAG04], and the Rheo-Container Process (RCP) 

developed by RWTH [AGU04], are under investigation. 

Currently, SSM processing is dominated by Thixocasting using the feedstock produced 

by MHD continuous casting, which is a two-step process, and the industrial acceptance 

has been very slow after 30 years of research and development [FAN02a]. As time has 

progressed, the disadvantages of the Thixocasting route are becoming apparent [FLEOO]. 

However, in consideration of cost saving, overall energy efficiency in production, and 

process management, it appears that the integration of slurry making and component 

shaping operation into one single process seems more promising 

[FLE00] [YUR02] [GI002]. 
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2.5 Alloys for semisolid processing 

2.5.1 The SSM alloys 

Traditionally Al-Si alloys have been frequently studied in the field of semisolid metals, 

but this has now been extended to a wide range of other metal alloys, e. g. low melting 

point alloys, such as Sn-Pb binary alloys; Zn-Al alloys [LEH85]; aluminium based 

alloys, including Al-Cu binary alloys [ROV99], Al-Mg alloys [PIT98], Al-Ge alloys 

[ANT96]; copper-base alloys [BAUOO]; high melting point alloys including ferrous 

[KIM98] and titanium alloys [SUNO4]; and other specifically designed alloys systems for 

semisolid processing [BUHO4]. For wrought alloys, only a limited number of trials have 

been carried out. This is due to the very strong temperature dependence of the liquid 

volume fraction [FAN02a], i. e., a small variation in temperature induces a large change 

in solid fraction, resulting in a microstructure not favourable to semisolid processing. 

However it is worth noting the great potential of semisolid processing as a technique to 

produce metal matrix composites. Early work in composites processing trials recognised 

that the higher viscosity prevented settling or floating, and allowed wetting and good 

bonding between ceramic particle and matrix during mixing process [KIR94]. 

More recently, as the increasing interest in the application of Mg-alloys has developed 

encouraging investigation of these alloys, the benefits in the semisolid processing of 

Magnesium alloys have been recognised. 
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2.5.2 Magnesium alloy selections for semisolid processing 

The growing use of magnesium alloys requires the selections of Mg-alloys that can take 

advantage of SSM processing. In this area, computational thermodynamics is a useful 

tool for the alloy development for SSM processing [LIU02]. Based on thermodynamic 

calculations, the effects of alloy composition variation on the factors that influence SSM 

processability and mechanical properties of the final components can be analysed. These 

factors include SSM processing temperature, the limitation on temperature sensitivity of 

solid fraction I dfs / d7'l , restriction on solidification range ATS-L, potential for age 

hardening, limitation on proportion of different phases during solidification processing 

and the stability to composition tolerance. The alloys that offer potential improvement to 

both processability and mechanical properties can be selected. 

Liu and Fan [LIU02] carried out thermodynamic calculations using Thermo-Calc System 

in combination with the MG-DATA database to evaluate Mg-alloy selections for 

semisolid processing. They found that for commercial magnesium alloys with a given 

composition, several Mg-alloys satisfy 
(df, / dTl S 0.015 for good processability in the 

Rheo-route (f < 0.6) (Figure 2.10); for SSM alloy selections in the Mg-AI-Zn and Mg- 

Al-Mn systems, projections of these calculated equilibrium compositions that satisfy 

I df, / d7I 5 0.015 at f=0.3 in the Mg-rich corner of both systems as shown in Figure 

2.11. Currently, alloy design for semisolid processing is gaining more attention. 
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2.6 Semisolid processing of magnesium alloys 

2.6.1 Magnesium and magnesium alloys 

Magnesium has a hexagonal close-packed (hcp) crystal structure, with lattice parameters 

of a=0.3202nm and c=0.5199nm [AGH04]. This structure is essentially different to other 

commercial metals, for instance, Al (fcc), Cu (fcc) and Fe (bec) [ROB92]. At 

temperatures below 498K, plastic deformation of Mg crystal occurs mainly by slip on the 

basal planes in the close-packed <1 12 0> directions and by twinning on the pyramidal 

{1 0 12) planes. Thus, the magnesium crystal has only 3 geometrical and 2 independent 

slip systems, much less than in aluminium crystal (Figure 2-12)[P0L95]. At 

temperatures above about 498K, additional pyramidal (101 1) slip planes become 

operative so that deformation becomes much easier and twinning is less important. For 

this reason, magnesium alloys show limited cold formability but are readily hot worked 

in various ways. Contrarily, magnesium has excellent castability [AGH04], it allows 

casting of parts with very complicated shapes. 
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However, pure magnesium is rarely used for engineering applications and it is commonly 

alloyed with other metals to improve the alloy properties significantly [GRE72]. 

Conventional Mg alloys are strengthened by solid solution hardening and/or by 

precipitation hardening. Extensive solid solutions form if the atomic radii of the solute 

and the solvent do not differ by more than about 15% [CAH96]. Additional factors 

governing extensive solid solution include: type of crystal structure, equivalent valencies, 

and electrochemical factors. Several practically important elements such as Al, Zn, Mn, 

Y, etc. have relatively high solid solubility in magnesium and the solubility always 

decreases with increasing temperature [LY096]. So far, most magnesium alloys can be 

classified into Mg-Al system, Mg-Mn system, Mg-Zn system, Mg-RE system and Mg-Th 

system [POL95]. 

The Mg-Al system has been the basis of the most widely used magnesium casting alloys 

[AVE99]. Most alloys contain 3%-9% aluminium with small amounts of zinc, which 

gives some increase in tensile properties, and manganese, which improves corrosion 

resistance. The AM series of Mg-alloys with reduced aluminium content, have improved 

properties because of a reduction in the amount of Mg17A112 around grain boundaries. 

Conversely, the high zinc Mg-alloys also have been investigated recently for die-castings 

and shown that they also have sufficient fluidity and attractive die-casting characteristics 

[POL94]. In 1937, Sauerwald, in Germany, discovered that zirconium had an intense 

grain-refining effect on magnesium [POL95]. Since then, the Mg-Zr alloys (no Al) have 

become of significant interest. Furthermore, efforts to improve the creep strength of 

magnesium die-casting alloys at temperatures exceeding 120°C have resulted in the 

introduction of alloys containing silicon or rare earth metals [BUC04]. These alloying 

elements form intermetallic constituents that stabilise the grain boundaries. However, 
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other newly designed alloys for high temperature properties and grain refinement 

[NISOO], or for semisolid processing [LIU04] are in application and still developing. 

2.6.2 Processing of magnesium alloys 

Melt processing of magnesium alloys 

Unlike aluminium and its alloys, the presence of an oxide film on molten magnesium 

does not protect it and magnesium alloys tend to oxidise or bum in air rapidly [AVE99]. 

Due to the strong oxidation nature, suitable fluxes or atmospheres must be used during 

melting for Mg-alloys. Suitable fluxes include those containing MgCl2, KCI, BaC12, CaF2 

and MgO [RIC03]. Protecting the melt in this way, results in retention of the flux in the 

melt, which can further decrease the corrosion resistance of the Mg-alloys. The fluxless 

method has proved to be more acceptable [AVE99], this comprises either of a single gas 

(e. g. SO2 or Ar) or a mixture of a diluting gas (e. g. C02, N2 or air) and an active gas, e. g. 

SF6 is currently considered the most efficient [CAH96]. However, in order to eliminate 

the greenhouse gas emissions, several attempts were reported to replace the use of SF6 

[RIC03][GAL03]. 

Processing of magnesium alloys 

Magnesium alloy products can be produced by nearly all of the conventional casting 

methods, namely, sand, investment, permanent mould, pressure die-casting and other hot 

working processes [AVE99]. The choice of a casting method for a particular part 

depends upon factors such as the application, the properties required or the total number 

of castings required [BAK92]. 
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Magnesium alloy sand castings generally weigh from a few grams to as much as 

1400kg[KEN88]. Successful production of sand castings becomes possible only when 

the metal-mould reactions are prevented from occurring. However, sand cast components 

do not provide high complexity. Also [AGH04], it is not capable of producing castings 

that satisfy the level of dimensional accuracy currently being demanded for many Mg- 

alloy applications. 

The main technology for the casting of magnesium alloys is die-casting [FRIOO]. The die 

casting process is an economical method and ideally suited to high-volume production of 

cast magnesium components, with weight ranging from a few grams to more than 15 

kilograms [NAD98]. During the die-casting processing, the mould, which is clamped 

together by hydraulic force, is filled rapidly (5 to 100m/s) by forcing the molten metal 

through a narrow gate. The metal solidifies under high-pressure with a high cooling rate 

(100 to 1000°C/s), resulting in a fine structure material [GRE72]. The pressure die- 

casting process divided into two types of process, i. e., hot chamber die-casting and cold 

chamber die-casting (Figure 2.13) [NAD98]. In hot-chamber machines, the supplying 

container is immersed in the bath of a molten alloy, which is forced into the die by a 

piston or compressed air, thereby keeping it supplied at a stated pouring temperature, 

whereas, in cold-chamber machines, neither the metal chamber nor the plunger are 

heated. Normally, the cold-chamber machines are used to make large castings because of 

the higher injection pressure and faster piston movement. A large, growing application 

for magnesium die-castings is in the automotive industry [BAK92]. 

Table 2.1 summarises the mechanical properties of AZ91 Mg-alloys under various 

conditions from references [P0L95] [AST81 a] [AST81 b]. Among all of the Mg-alloy 
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processes, Mg-alloy sand castings are of normally uniform quality, while die-castings 

have improved structure soundness. Nevertheless, there are still a number of limitations 

existing in HPDC process [BALOI][AGU04], e. g., air entrapment or porosities, poor 

yield, high die costs and die maintenance work, large castings require large amounts of 

machining. A further development of mechanical properties for Mg-alloys depends on 

the advancement of processing technologies [FRIO I]. 

Hydraulic damp 

Figure 2.13 (a) Cold chamber, and (h) Hot chamber die-casting machines [NAD98]. 

Table 2.1 Typical room temperature mechanical properties of AZ91 Mg-alloy processed 
by different processing techniques. 

Processing condition UTS 

(MPa) 

Yield stress 

(MPa) 

Elongation 

(%) 

Reference 

As-sand cast 135 95 2 [POL95] 

As-chill cast 170 100 2 

As-permanent mould cast 160 76 [AST81 a] 

Permanent mould with T4 230 76 7 

Permanent mould with T5 160 83 2 

Permanent mould with T6 230 110 3 

As Die-cast 230 150 3 [AVE99] 
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2.6.3 Applications of magnesium alloys 

After almost three decades, magnesium alloys have reappeared as a structural material 

[AGH04]. The main driving forces for this are summarised as the following: 

(a) Environment and fuel economy. Due to increasing environmental concerns and 

tightening government regulations on CO2 emission, vehicle weight and fuel economy 

are becoming increasingly important in the automobile industry. For instance, the 

European and North American car producers are committed to reducing fuel 

consumption by 25% and thereby achieving a 30% reduction in CO2 emission by the year 

2010 [FRIOO]. It has been estimated that each 10% saving in the weight of a motor 

vehicle corresponds to an increase in fuel economy of 5.5%, which, in turn, means 

reduced exhaust emissions [AGH04]. The ecological and economic requirements of 

vehicles have to be met by components and, consequently, lightweight design is always a 

significant requirement. 

(b) Material costs. In recent years (from 1993), the price of magnesium has been 

decreasing as the price of aluminium has risen, i. e., the Mg/Al price ratio has at times 

ranged from 2.5/1 to just below 1.5/1 [POL95]. In the automotive industry it is estimated 

that if the price ratio between magnesium and aluminium is less than 1.7/1, then 

magnesium components will replace the aluminium ones on a one-to-one basis. If the 

ratio falls below 1.4/1, then magnesium usage will increase exponentially. 

(c) Mechanical Properties. Magnesium is the lightest of all structural metals [POL95], 

and as such has superior strength/weight ratios, low inertia and low density, this 
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combined with cost savings and reduced energy requirements makes magnesium alloys 

an appropriate choice in various structural parts. Excellent electromagnetic shielding and 

damping capabilities, very good castability, and recycling ability, make magnesium a 

very attractive structural material compared with not only metal alloys, but also plastics 

and composites [LANOO]. 

(d) Advanced technological research and development, is encouraging the growth of the 

magnesium industry as a new metal industry in many countries such as China, Israel, 

Canada and Australia, more applications are being developed around the globe [KE04]. 

The constructional uses of Mg-alloys are successfully practiced in a wide variety of 

applications. 

In earlier years, magnesium was employed extensively in aircraft engines, airframes, and 

landing wheels [EML66] [GRE72]. Currently magnesium is used in aircrafts as both 

castings and wrought products [AGH04]. Major structural pieces include transmission 

cases, undercarriage legs, and passenger seats, whilst wrought components include 

overhead compartments, folding tables, tubular frames and flooring. Other small 

magnesium pieces are also found in many accessories. 

Magnesium alloys have been used for many years in motor vehicles beginning in the 50's 

and 60's with Volkswagen's Beetle [EML66]. Current usage is growing continuously 

and more components of the vehicle structure are utilising magnesium, for example 

engine applications, interior applications (steering wheel, instrument panels, seats) and 

body applications (upper door frame, cross-car beam) [KEN88][POL95][SCH04]. In the 

past few years we have seen a 15% average annual increase in Mg usage in the 
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automobile industry [FRIO1] and it is deemed that this is the major area for the 

application of magnesium alloys in the future [SCH04). In October 2002, a project team 

comprising of General Motors, Ford, Daimler Chrysler and forty-one North American 

companies and organisations successfully took a substantial step towards the use of 

magnesium alloys in automotive power trains [POWO4]. The team selected an existing 

aluminium production engine and successfully redesigned that engine with several Mg- 

components, AJ52X, AS21X, AS31 and other magnesium alloys were cast and tested 

using HPDC process. 

The low-density characteristic of magnesium alloys is such that they are of interest in the 

manufacture of many portable pieces of equipment. Such as hand-operated power tools, 

office machinery and handling equipment [GRE72]. Another promising area in the use of 

magnesium die-castings are computer housings and mobile phone cases, where lightness 

and provision of electromagnetic shielding are special advantages [AVE99]. 

The expanded use of magnesium castings requires the development of special casting 

technologies to make castings of fine grain size, free of porosity or cracks and further 

improved metallurgical quality. For this to be achieved, extensive research efforts on 

effective alloying or new processing of magnesium alloys are still required 

[FRIG 1] [SCH04], in the long term, the unlimited quantities of magnesium available from 

the sea will ensure the steady growth in the utilisation of the metal. 

4a 



2 l., iterature Review 

2.6.4 Semisolid processing of magnesium alloys 

Currently, magnesium alloys are used mainly in high-pressure die-casting (HPDC) form 

for functional components in the automobile industry [AGU04]. HPDC is a well- 

established and efficient process. However, the conventional HPDC components contain 

a substantial amount of porosity due to gas entrapment during die filling and hot tearing 

during the solidification in the die cavity [BALG I] [AGU04]. Such porosity deteriorates 

mechanical properties and limits its applications to non-stress or low-stress components. 

One of the promising technologies by far capable of producing high integrity magnesium 

components is semisolid processing [FLE91][KIR94][FAN02b]. 

In conventional die casting processes the liquid metal is usually forced into a mould 

cavity at such a high speed that the flow becomes turbulent or even atomised, leading to 

high porosity in the final components. In contrast, SSM processing uses a SSM slurry 

with substantially increased viscosity, resulting in a controlled die filling and close to 

zero porosity in the final components. Due to the substantial differences to conventional 

processes, semisolid processing of magnesium alloys is expected to exhibit a number of 

advantages [FLE91 ] [KIR94] and it is deemed that magnesium is an ideal material for 

semisolid processing [AGU04]. In recent years, both the thixo and rheo-route for 

magnesium alloys have been investigated. 

Thixocasting of magnesium alloys has had success to some extent. CANMET [SHE02] 

did experimental work on the thixoforming of AZ91 D alloy. They experimentally 

produced a thixocasting of a box-like component, and thixoforging of a disk-like 

component, weighing approximately one kilogram each. The thixotropic feedstock was 
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prepared using a MTL casting simulator with electromagnetic stirring, where slugs of 

feedstock material having a rosette structure and the slugs were inductively heated to a 

semisolid state to obtain a globular structure. The need for specially prepared magnesium 

alloy bars in the thixoforming process has prevented its commercial application to date. 

There is a modification of the thixocasting route, which has become of commercial 

significance for semisolid forming of magnesium alloys: Thixomoulding. A large 

number of Thixomoulding machines are now in operation for producing magnesium 

castings, particularly for electronic components and thin-wall hardware components 

[FLEOO], where stiffness, electrical conductivity, heat dissipation and absorption of 

vibration are of importance. In addition, Thixomoulding has proved its capability for 

tight dimensional control of moulded features, e. g., the 22mm `Zero Draft' bearing bore 

was moulded consistently enough to eliminate the need for machining before pressing in 

the main bearing [MID04]. 

Ivanchev and Govender [IVA04] use a modified CSIRO rheocasting system to 

successfully process both AZ91D and AM60B Mg-alloys. The SSM temperature was 

found to have a more significant impact on the flow behaviour of AM60B compared to 

that of AZ91 D, but the microstructure of the casting biscuit showed a combination of 

round and rosette shaped primary grains. 

Aguilar et al. [AGU04] uses a meander sample to evaluate the flow properties of 

magnesium alloys between Thixocasting, Thixomoulding and RCP process. They found 

that the measured values are smaller with the RCP technology than in Thixocasting. 
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According to results they concluded that all three processes are very suitable for 

processing magnesium alloys in the semisolid state. 

The mechanical property data for SSM processed magnesium alloys is scarce compared 

with aluminium alloys. Some mechanical behaviour of semisolid processed magnesium 

alloys has been reported to exhibit improvements over die-cast counterparts, as cited in 

Table 2.2. In particular, they found that both the tensile strength and ductility of 

thixomoulded AZ91D alloy decreases with increasing solid fraction. Furthermore, they 

found the elongation exhibits a stronger dependence on the fraction of primary solid 

phase than that observed for tensile strength [CZEO1]. A study on corrosion behaviour of 

semisolid cast AZ91D alloy has shown that the semisolid cast alloy possesses a corrosion 

rate at least 35% below that of the die cast alloy [MAT02]. Koren et al. [KOR02] 

conducted mechanical testing on semisolid casting of AZ91 and AM50 magnesium 

alloys. It was shown that there was no significant difference of mechanical properties 

between thixocast and rheocast magnesium components. 

Table 2.2 Mechanical properties of semisolid processed magnesium alloys. 

Processing 

condition 

Mg-alloy UTS 

(MPa) 

Yield stress 
(MPa) 

Elongation 

(%) 

Reference 

Thixocasting AZ91D 240 140 3.6 [AGU04] 

AM50 269 140 20 [AVE99] 

Thixomolding AM60 278 150 18.8 [AVE99] 

AZ91D 230 160 6 [MID04] 

NRC AZ91D 230 5.5 [KAU00] 

RCP AZ91D 230 155 2.5 [AGU04] 
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Up until now, the only commercially available SSM process for magnesium is still the 

Thixomoulding process [IVA04]. The greatest obstacle for the further development of 

this two-step SSM process is the high cost of pre-processed non-dendritic raw materials. 

To overcome the technical and economical difficulties faced by the thixo-processing 

route, the rheo-route of SSM processing has become popular for research and 

development [FAN02a]. 

More recently, a Rheo-Diecasting (RDC) process has been developed by BCAST at 

Brunel University [FAN02b]. The RDC process is an innovative one-step SSM 

processing technique for manufacturing near-net shape components of high integrity 

directly from liquid Mg-alloys. The process innovatively adapts the well-established high 

shear dispersive mixing action of the twin-screw mechanism to the task of in situ creation 

of SSM slurry, with fine and spherical solid particles, followed by direct shaping of the 

SSM slurry into a near-net shape component using the existing cold chamber HPDC 

process. Although there are many magnesium alloys, which can potentially be rheo- 

diecast [FAN05c][JI05][DAS06], the effort in this research is focused mainly on the 

AZ91D Mg-alloy. 
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Chapter 3. Experimental Procedure 

3.1 Material processing 

3.1.1 AZ91D alloy and its melting 

The magnesium alloy investigated in the present study was AZ91 D provided by MEL 

(Magnesium Elektron, Manchester, UK). The chemical composition of the material as 

received is shown in Table 3.1, it is compared with the Standard Specification of AZ91D 

Mg-alloy. Table 3.2 offers some selected physical properties of the AZ91D Mg-alloy 

[AVE99], the liquidus and solidus temperature of the AZ91D alloy are 598°C and 468°C, 

respectively. 

Table 3.1 Chemical compositions and the Standard Specification of AZ91D Mg-alloy 
(wt%) 

Zn Al Si Cu Mn Fe Ni Be Others 

Each 

As received 0.67 8.8 0.03 <0.001 0.22 0.002 0.0005 0.0011 <0.01 

Specification 0.45- 8.5- 0.05 0.015 0.17 0.004 0.001 0.01 

[AVE99] 0.9 9.5 min 

Table 3.2 Selected physical properties ofAZ91D Mg-alloy [A VE99] 

Density 

g/cm3 

Liquidus 

Temp. °C 

Solidus 

Temp. °C 

Incipient-melt 

Temp. °C 

Casting 

Temp. °C 

Specific heat 

At 20°C. kJ/kg. K 

1.81 598 468 420 640-675 0.8 
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The AZ91 D alloy was melted in a Carbolite resistance furnace at a temperature of 675°C. 

To avoid oxidation of the molten Mg-alloy, a protective gas mixture of N2 containing 0.4 

vol% SF6 was used in both the melting furnace and the Twin-Screw Slurry Maker. 

3.1.2 The Rheo-Diecasting experiment and process 

The core of this study is the Twin-Screw Rheo-Diecasting (RDC) process. The RDC 

process is a newly developed SSM processing technology founded at Brunel University 

in 1999 for semisolid processing of Mg and Al alloys [FAN99]. Figure 3.1 schematically 

illustrates the Rheo-Diecasting process for manufacturing Mg-alloys components. The 

RDC equipment consists of two basic functional units: a Twin-Screw Slurry Maker and a 

standard cold chamber HPDC machine. 

III #% 

Figure 3.1 Schematic illustration of the Rheo-Diecasting (RDC) process 
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A unique feature of the RDC process is the utilisation of a specially designed Twin- 

Screw Slurry Maker (TSSM) for semisolid slurry production under high shear rate and 

high intensity of turbulence. Figure 3.2a shows the Twin-Screw Slurry Maker (TSSM) 

for magnesium alloys, the protective gas is supplied from a valve and a hopper. The 

detailed central control panel is shown in Figure 3.2b. In the TSSM, two closely 

intermeshing, self-wiping and co-rotating screws (436mm) rotate inside a steel barrel. 

Heating and cooling elements are dispersed along the axis of the barrel, to form 5 heating 

and cooling zones with temperature control accuracy of ± 1°C. At the other end of the 

barrel, a pneumatic valve is adapted to control the semisolid slurry feeding. The basic 

function of twin-screw slurry maker is to convert the liquid Mg-alloy into high quality 

semisolid slurry through solidification of the liquid alloy under intensive shearing. It 

works in a batch manner, providing magnesium slurry every 30 seconds. 

A standard 280-ton cold chamber HPDC machine (LK Machinery, Hong Kong) was used 

for casting the standard mechanical property test samples and the automobile component 

trials. No modification to the HPDC machine was conducted. Important HPDC 

parameters to be controlled are shot speed (Maximum 6.22m/s), shot distance (Maximum 

405mm), die temperature, intensity pressure and intensity speed (see Section 4-1-1). The 

die used for casting test samples has six cavities, of which two are Charpy test samples 

(labelled A-B) and four are tensile test samples (labelled C-F), as shown in Figure 3.3. 

The dimensions of the individual tensile test specimen and impact test specimens were 

made to the ASTM E8 and E23 [AST81a][AST81b], as shown in Figure 3.4 and Figure 

3.5 respectively. 
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Figure 3.2 (a) The Twin-Screw Slurry Maker for Mg-alloys and (b) The layout of 

central control unit. 
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Figure 3.3 A tensile test casting shows the geometry of the HPDC die 

\!? 

_75mm 

60 mm 

Figure 3.4 Standard tensile test specimen for die castings [AST81 aJ 

p 
6.25 ± 0.13mm 

6.35 ± 0.13mm 

152 mm 
T 

6.45 ± 0.13mm 

Figure 3.5 Simple beam impact test bar for die casting alloys [AST8]bJ 
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During the Rheo-Diecasting process, a predetermined dose of liquid AZ91D Mg-alloy 

from the melting furnace is fed into the steadily rotating Twin-Screw Slurry Maker. The 

liquid alloy is rapidly cooled to the SSM processing temperature while being intensively 

sheared by a pair of closely intermeshing screws converting the liquid into semisolid 

slurry. The solid fraction of the semisolid slurry is controlled by setting the barrel 

temperature Tshear" The shearing intensity upon the slurry is controlled by setting the 

Twin Screw rotating speed rrshear. The shear rate y can be roughly calculated by a simple 

equation described in reference [FANO1]: 

y= uuc(s -2) Equation 3.1.1 

Where D is the screw diameter, u7 is the screw rotation speed and 8 is the gap between 

the tip of a screw flight and the barrel surface. However, the fluid flow inside the slurry 

maker is characterised by high intensity of turbulence and a cyclic variation of shear rate, 

the shear rate in the twin-screw slurry maker is continuously changing. It is, therefore, 

rather complex and difficult to quantify. For simplicity, the screw rotation speed rrshea, is 

used in this investigation as a measure of the intensity of forced convection. After 

shearing for predetermined period of time, tshear, the semisolid slurry is then transferred to 

the shot chamber of the HPDC machine for component shaping. Accordingly, the 

shearing temperature, shearing time and shearing intensity are the most important 

parameters that affect the microstructures of RDC Mg-alloy. 

The RDC process is performed in a continuous cycle and can be controlled by a central 

control unit (as shown in Figure 3.2b). 
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3.1.3 Processing conditions 

In this study, the investigated RDC processing parameters including High Pressure Die- 

Casting (HPDC) parameters and Twin-Screw Slurry Maker (TSSM) parameters are listed 

Table 3.3 and Table 3.4. The varied parameters of Table 3.3 are given in Section 4.1 for 

process optimisation and those in Table 3.4 are given in Section 4.3 for solidification 

investigations. For general microstructure investigation (in Section 4.2.2) and heat 

treatment (in Section 4.4), the processing parameters are shown in Table 3.5. 

Table 3.3 The investigated High Pressure Die-Casting (HPDC) parameters 

Mould 220 230 235 240 250 260 

Temperature (°C) 

Shot 140 170 180 230 270 

Distance (mm) 

Shot 30 50 60 65 70 75 80 85 90 

Speed (%) 

Intensitying 70 80 90 100 105 120 

Pressure (bar) 

Intensitying 45 55 65 75 85 100 

Speed (%) 
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Table 3.4 The investigated Twin-Screw Slurry Maker (TSSM) parameters 

Shearing 3 10 13 16 20 35 70 150 200 

Time (second) 

Shearing 100 300 500 800 900 

Speed (rpm) 

Shearing 585 589 593 597 600 

Temperature (°C) 

Table 3.5 Parameters used for microstructure investigation and heat treatment 

Shearing Shearing Shearing Mould Shot Shot Intensitying Intensitying 

Temperature Speed Time Temperature Distance Speed Pressure Speed 

585-593°C 500rpm 35s 235°C 180mm 65% 90bar 65% 
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3.2 Heat treatment 

The resulting AZ91D Mg alloy tensile test samples, produced by both HPDC and RDC 

processes, were subjected to two series of heat treatments. 

A traditional heat treatment was carried out according to the ASM Speciality Handbook 

[AVE99]. The microstructure and hardness response of solution treatment and 

subsequent ageing for RDC AZ91D alloy were then investigated. The solution treatment 

was carried out in air with protection of carbon powder on the surface of the samples at 

413°C for up to 24 hours, the different length of solution times (hour) are listed in Table 

3.6 (A*). After different lengths of solution time, the samples were then quenched in 

water. The samples that had been subjected to solution treatment at 413°C for 24 hours 

were then aged at 216°C for different lengths of time up to 144 hours, the different length 

of ageing times (hour) are listed in Table 3.6 (B*). 

Table 3.6 The traditional heat treatment conditions for RDC AZ91 D Me-alloy 
A* 1 2 3 4 5 6 7 8 9 10 16 20 24 

B* 0.5 1 1.5 2 2.5 3.5 4 5 5.5 6 8.5 11 16 22 48 72 120 144 

A*: different length of solution time (hour) at 413"C. 
B*: different length of ageing time (hour) at 216°C. 

A T5 heat treatment was carried out at 216°C for 5 hours for the AZ91 D Mg-alloy. 

Additionally, a T4 and T6 optimised heat treatment (solution at 413°C for 5 hours, T4, 

and then aging at 216°C for 5.5 hours, T6), was carried out for evaluation of the 

mechanical properties for heat-treated RDC AZ91D alloy. Based on microstructure 

evolution investigations, a new heat treatment, Tx, specially developed for RDC AZ91D 

Mg-alloy was performed at 365°C for 2 hours [WAN05a]. 
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3.3 Microstructure characterisation 

3.3.1 Metallographic sample preparation 

For microstructure investigations, the metallographic samples were cut through the 

middle sections from bars labelled ̀ E' (see Figure 3.3), produced in different batches. 

For distribution investigations, the samples were cut from various locations in the final 

castings. 

The specimens for OM (Optical Microscope) and SEM (Scanning Electron Microscope) 

were prepared by the standard technique: mounting in a hot setting resin, grinding with 

SiC abrasive paper and polishing with an A1203 suspension solution, followed by etching 

in the relevant etchant. A solution of 5vol% HN03 in ethanol was used to etch the as-cast 

AZ91D Mg-alloy, and an aqueous solution of 60vol% ethylene glycol, 20vol% acetic 

acid, 1 vol% concentrated HNO3 for the heat-treated AZ91 D Mg-alloy. 

3.3.2 Microscopic observation and analysis 

A Zeiss Optical Microscope (OM) was utilised for the OM observations and the 

quantitative metallography. The images were taken with an AxioCam MRC digital 

camera and then downloaded onto a PC, shown in Figure 3.6. 

Quantitative characterisation of the microstructure was performed using an AxioVision 

image analysis system. Volume fraction, particle size, particle density and the shape 

factor of primary particles were quantitatively analysed. 
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The density of particles (p) was calculated by p=N/A, where N is number of particles in a 

frame and A is the frame area. The shape factor (F) was calculated using F=4, rA/P2, 

where A and P are the total area and the peripheral length of the primary particles, 

respectively. Therefore, higher values of the shape factor, F, indicate more spherical 

particles i. e., F is I for perfectly spherical particles. 

Figure 3.6 The Zeiss Optical Microscope with an AxioCam MRC digital camera 

3.3.3 SEM and TEM examination 

A Jeol JXA-840A scanning electron microscope, equipped with an energy dispersive 

spectroscopy (EDS) facility, was used to perform the SEM examinations. To obtain a 

better contrast between the granular a-Mg and ß-Mg17A112 phase, some of the SEM 
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samples were deep etched. The images of backscattered electrons (with an accelerating 

voltage of 20kV) and secondary electrons were taken. 

TEM thin foils were prepared as follows. The transverse slices of the 46mm tensile 

samples were mechanically ground and cut into 3mm discs which were then hand 

polished down to 80-90 µm thick. Final preparation of the TEM specimens utilised ion 

beam thinning on a Gatan precision ion polishing system under the conditions of 5.0kV 

and an incident angle of 4°-5°. TEM analysis was carried out on a JEOL FX2000 

transmission electron microscope equipped with energy dispersive spectrometry (EDS) 

system operated with an accelerating voltage of 200kV. 

3.3.4 X-ray Diffraction analysis 

In order to identify the phases present in the alloys, XRD analysis was conducted using a 

Philips 1700 X-ray diffractometer with CuKa radiation operated at a voltage of 36kV, 

with an anode current of 26mA and a scan rate of 0.2°/min. In the X-ray diffraction 

examination, a monochromatised radiation impinges on the flat face of al Ox 10mm 

square specimen. This specimen is rotated at precisely one-half of the angular speed of 

the receiving slit so that a constant angle between the incident and reflected beams is 

maintained. Meanwhile, the diffracted intensity at the various angles is recorded. It is 

further analysed to determine the phases present in the specimens. 
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3.3.5 Composition analysis 

Composition distribution measurements of the RDC component, and the analysis of the 

prepared material were obtained with a `Worldwide Analytical Systems AG, Foundry 

Master', shown in Figure 3.7. The `WAS Foundry Master' is an `Arc-spark Optical 

Emission Spectrometer' for routine analysis of metal alloys. The system comprises of a 

solid-state spark source, a vacuum system, an optical system, and an output system (PC). 

A sample of minimum surface size 100mm2 was taken from the castings or ingots, 

surface ground using a SiC 1200 paper to produce a flat surface and washed with 

methanol, then being blow dried. The sample was then placed on the spark stand for 

composition testing. 
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Figure 3.7 The Worldwide Analytical Systems AG Foundry Master 
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3.4 Mechanical properties testing 

3.4.1 Tensile testing 

The mechanical properties of the alloy under as-cast and heat treated states were 

characterised with tensile tests using standard tensile samples, carried out at room 

temperature on a Lloyd Instrument EZ50 tensile test machine (see Figure 3.8), with a 

crosshead tension speed of 1 mm/min. 

ý-- ,: _.. 

Figure 3.8 The Lloyd Instrument EZ50 tensile test machine 
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Before tensile testing, the rough casting edges of the samples were cleaned thoroughly 

and polished giving smooth surfaces. The tensile test samples were then clamped at both 

ends and measured with an Epsilon extensometer, with gauge length of 50mm. During 

tensile testing, the Stress-Strain Curve is plotted for observation, on a PC screen, until 

fracture occurs and the curve is finalised. 

3.4.2 Vickers hardness measurements 

The solution and age-hardening response of the AZ91D alloy was determined by the 

Vickers diamond pyramid indentation technique, using a VHTS-100 Vickers machine 

with a load of 98 N. 

The preparation procedure for the Vickers hardness measurements is similar to that 

described for optical specimens in section 3.4.1. The prepared samples were placed 

carefully on the measuring platform in relation to the machine's microscope. The pedal 

was depressed to load the diamond pyramid and make an indentation point, in the 

selected area. The lengths of the indentation diagonals were measured using the 

microscope and their average calculated. The lengths can be converted to a measurement 

of hardness using a Vickers Hardness Table. No fewer than 6 indentations were 

measured for each sample. 

3.4.3 Impact testing 

As described in section 3.1.2, the RDC Charpy specimens were made to ASTM E23 for 

impact three point bend testing. A CEAST Torino 6546/000 impact machine with a 
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support interval of 40mm and a 15J standard pendulum were used to fracture the 

specimen. The measurement of absorbed fracture energy is indicated on the panel of the 

machine. 
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Chapter 4. Results 

4.1 Optimisation of the Rheo-Diecasting process 

4.1.1 The basic function and injection parameters in the RUC process 

As described in the Rheo-Diecasting experiment and process, the RUC process is a 

combination of the innovatively established twin-screw slurry maker and a conventional 

high-pressure die-casting machine. Therefore, the quality of RDC castings is related, to a 

certain degree, with the performance of the injection system. The hydraulic cylinder and 

shot cylinder in this injection system is sketch illustrated in Figure 4.1.1. During die- 

casting, pressure is applied to `side 1', which causes the piston to move the Mg-alloy 

slurry through the shot sleeve and make the casting. Pressure on `side 2' is avoided by 

the opening of a valve. When pressure is applied to the side 2, the piston returns to the 

original position. 

X1 

Shot sleeve Piston 

Valve 

Figure 4.1.1 Sketch of the injection system and the injection stages. 
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In this experiment, the movement of the piston during injection has three stages of 

performance, the changeover points being controlled by a displacement transducer. The 

first stage of injection is a slow approach. The second stage starts at the piston 

displacement X2 (shot distance), and the velocity of second stage (shot speed, V2) can be 

controlled by flow of the valves in the hydraulic system. Therefore, the measure of shot 

speed V2, is described by a valve opening percentage, a higher value of valve opening 

percentage resulting a higher injection speed (maximum is 6.22 m/s), for example, the 

shot speed from 30% to 90% was investigated in this study. 

The third, `intensification stage', is applied when the piston moves just past a pre- 

assigned point (intensify distance X3). The intensification can be obtained with control 

over the intensifying speed, V3, and intensifying pressure, P3. 

During process optimisation of the RDC Mg-alloys, the parameters of mould temperature 

Tm, shot distance X2, shot speed V2, intensifying pressure P3, and the intensifying speed 

V3 were investigated (see Table 3.3). 

4.1.2 RDC processing optimisation 

In this study, castability, microstructural investigation and mechanical testing were 

utilised as the criteria to optimise RDC processing conditions. 

Mould temperature 

Temperature of the mould is a noteworthy factor in conventional HPDC process, 

therefore, it was the first parameter considered for process optimisation. The effects of 
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mould temperature on the mechanical properties of RDC process are presented in Figure 

4.1.2. The RDC processing was performed with a shearing temperature of 589°C, shot 

distance of 200mm, shot speed of 70%, intensifying speed of 55%, and the intensifying 

pressure of 90bar. The mould temperature, T, �, was varied between 220°C and 260°C; the 

results show that T. has only a minor effect on the tensile properties of RDC AZ91D 

alloy, with the yield stress only fluctuating between 145MPa and 147MPa. Higher die 

temperatures do, however, improve surface finish of the castings. 

From experimental results, a moderate die temperature of between 230-235°C was 

selected for the RDC process. For RDC AZ91D alloy, this is 15-20°C lower than the 

suggested temperature range in HPDC process [AVE99]. 
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Figure 4.1.2 The effect of mould temperature on the tensile properties of RDC AZ91D 

alloy. 
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Figure 4.1.3 The effect of shot distance on the tensile properties of RDC AZ91 D alloy. 

Shot distance 

In this experiment, the injection adopts a three-stage shot profile, it uses injection piston 

position to control the shot speed. Figure 4.1.3 shows the effect of shot distance on the 

mechanical properties of RDC AZ91D alloy. The RDC process used a shearing 

temperature of 589 °C, a mould temperature of 230 °C, a shot speed of 70%, an 

intensifying speed of 55%, and an intensifying pressure of 80bar. It can be seen from 

Figure 4.1.3 that, a peak value occurs at the shot distance of 170mm. 

According to conventional die casting process, the short distance corresponds to the 

filling ratio of cavity before shot. Normally, the filling ratio should be kept in the range 

of 40-50% or more. The filling ratio will decide the content of gas that can possibly be 
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trapped into the slurry during the die-casting process. The higher the filling ratio is, the 

lower the porosity is. However, the feeding mechanism of semisolid slurries in RDC is 

different to that of conventional HPDC, the filling ratio has less importance for semisolid 

slurries. As illustrated in Figure 4.1.4, Due to the relatively high viscosity of the 

semisolid slurry, the slurry at the shot sleeve does not spread evenly over the sleeve 

surface. Furthermore, the mould filling of the piled high viscous slurry is characterised to 

be more stable and, as such, the gas or splash can be much reduced. On the other hand, 

length of the shot distance will increase residence time of slurry in the shot sleeve which 

in turn increases the amount of solidification in the shot sleeve, reducing the formability 

of RDC castings, see Table 4.1.1. 

Liquid Semisolid 

Figure 4.1.4 The liquid and semisolid alloy feeding in the shot sleeve. 

70 



4.1 Optimisation of the Rhco-1)iccasting process 

Table 4.1.1 Microstructure and castability examination results of RDC castings under 

various shot parameters. 

Structure 
Parameters 

Castability Microstructure 

Shot Speed Shot Distance 
(mm) 

(optical examination) (metallogaphy examination) 

30 Normal Segregation 
50 Good Segregation 
70 140 Good Uniform 
80 Good Uniform 
90 Good Uniform 

140 Good Uniform 
70 220 Good Uniform 

300 Normal Uniform 

Intensifying Pressure 

Following the experimental results above, another experiment was carried out by 

adjusting the intensifying pressure, P3. Table 4.1.2 summarises these results. 

Table 4.1.2 Microstructure examination results of RDC castings obtained under varied 

intensifying pressure 

Shearing 
Temp. 
(°C) 

Shot 
Speed 
(%) 

Shot 
Distance 
(mm) 

Intensify 
Distance 
(mm) 

Mould 
Temp. 
(°C) 

Intensifying 
Pressure 
(Bar) 

Shoulder 
Crack 

220-240 70 No 
70 No 

593 80 140 200 80 No 
250 90 No 

100 Yes 
120 Yes 
90 No 

65 180 180 220 100 Yes 
105 Yes 
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The parameter of intensifying pressure P3 was varied from 70bar to 120har. One 

noticeable defect termed `shoulder crack' appeared and disappeared regularly at the `near 

gate shoulder' area, the position and morphology of the defect is shown in Figure 4.1.5. 

Further microstructure observations revealed that the `crack' was `welded' with a low 

melting point liquid and it only appeared when the intensifying pressure is above 100bar 

(Table 4.1.2), no such crack was found at the opposite shoulder. Therefore, an 

intensifying pressure of 80-90bar was optimised in RDC processing of Mg-alloys. 

Gate 

Figure 4.1.5 A shoulder crack observed during processing optimisation. 

Intensifying Speed 

Figure 4.1.6 shows the effects of intensifying speed V3 on the mechanical properties of 

RDC AZ91 D alloy. The RDC process was performed with a shearing temperature of 
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593°C, mould temperature of 235°C, shot distance of 170mm, shot speed of 60%, and the 

intensifying pressure of 80bar. It can be seen from Figure 4.1.6 that, faster intensifying 

speed improves tensile properties. 
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Figure 4.1.6 The effects of intensifying speed on the mechanical properties of RDC 

AZ91 D alloy. 

Shot speed 

During the Rheo-Diecasting process optimisation, it was found that one of the most 

important factors that affect the microstructure and mechanical properties is the shot 

speed (V2). At a very low shot speed of 30%, significant particle segregation was 

observed, as shown in Figure 4.1.7a. With increasing shot speed, the microstructure 

73 



4.1 Optimisation of the T2ttco-Uiccasting process 

segregation was much reduced but could still be observed at a shot speed of 50% (Figure 

4.1.7b). The microstructure investigations further revealed that the segregation was fully 

eliminated when shot speed increased above 60% during the RDC process. A perfect 

structure distribution was produced when processed at a shot speed of 70% is shown in 

Figure 4.1.7c. Figure 4.1.8 shows the effect of shot speed on the mechanical properties 

of RDC AZ91D alloy. The graphs in figure 4.1.8 have three different series of data; 

Series 1 was under the conditions of shearing temperature of 589 °C, mould temperature 

of 230°C, shot distance of 170mm, intensifying speed of 65%, and the intensifying 

pressure of 90bar; Series 2 was under the conditions of shearing temperature of 585 °C, 

mould temperature of 230°C, shot distance of 140mm, intensifying speed of 65%, and 

the intensifying pressure of 90bar respectively. Table 4.1.1 lists the microstructural 

analysis results obtained from series 2. At very low shot speed (e. g., 30%), die filling of 

magnesium slurry may be incomplete as a result of premature freezing. On the other 

hand, due to the very low heat content, the required die filling time is very short for 

magnesium alloys [NAD98], especially in the semisolid state. Therefore, the shot speed 

should be relatively higher for RDC Mg-alloys. 

In addition, it is well known that the die design will affect metal flow conditions to a 

certain extent. By American magnesium alloy die casting experience [EML66], gates 

should be thin, not normally exceeding 2mm, but wide, aiming to quick filling of the die 

whilst permitting evacuation of air through the vent holes. Contrarily, in semisolid Mg- 

alloy die-casting cases, the mode of slurry filling of the die may tends to be reversed to 

that of liquid filling, i. e. from the back towards the gates. To encourage this reversed 

filling pattern in the RDC process, the gates should be larger. 
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(a) 

(h) 

(c) 

Figure 4.1.7 The effect of shot speed on the microstructure of RDC AZ91 D alloy. 

(a) Shot speed 30%, (b) shot speed 50% and (c) shot speed 70%. 
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Figure 4.1.8 The effect of shot speed on the (a) Tensile stress and (b) Elongation 
properties of RDC AZ91D alloy. Where Series 1 is under the conditions of shearing 
temperature of 589 `C, mould temperature of 230 CC, shot distance of 170mm, 
intensifying speed of 65% and the intensifying pressure of 90bar; Series 2 is under the 
conditions of shearing temperature of 585 `C, mould temperature of 230'C, shot 
distance of 140mm, intensifying speed of 65%, and the intensifying pressure of 90bar; 
Series 3 is under an optimised processing condition (refer to Table 4.1.3). 
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4.1 Optimisation of the Rtien-1)iecasting process 

4.1.3 The selected processing parameters 

Based on the above understanding and conclusions, an optimised processing condition 

can be obtained for Rheo-Diecasting of AZ91D Mg-alloy, as summarised in Table 4.1.3. 

Table 4.1.3 The optimised processing parameter for Rheo-Diecasting of AZ91 D Mg- 
allov 
Die 

Temperature 

Shot Distance Shot Speed Intensifying 

Speed 

Intensifying 

Pressure 

235°C 180 mm 75% 75% 90 bar 

In'Rheo-Diecasting, one of the most important mechanisms to get a good microstructure 

is to achieve laminar die filling. To check this the die cavity was deliberately' filled half 

way so the conditions at the flow front could be examined. The photograph of the half 

filled sample produced under the selected processing parameter, and the microstructure at 

the flow front are presented in Figure 4.1.9. Figure 4.1.9 revealed that the flow front 

during the mould filling was parabolic and smooth, indicating that the mould filling was 

a viscous laminar flow and the body structure was an uniform fine and spherical under 

the optimised processing conditions. In addition the sample surface was sharp and tidy 

indicating a very good surface finish produced by the RDC process. 

Afterwards, The optimised processing parameters were selected with a mould 

modification for Rheo-Diecasting of AZ91D Mg-alloy. Series 3 in Figure 4.1.8 was 

obtained under the selected processing condition (in Table 4.1.3) with four different shot 

speeds and shows that under these conditions, the optimised tensile strength is 246 MPa, 

and the elongation is up to 7.4 %. 
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Figure 4.1.9 Micrographs taken from the relevant positions on a deliberately produced 

RDC bar showing that the semisolid flow front during the mould filling was parabolic 

and smooth. 
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4.2 Microstructure and mechanical properties of RDC AZ91I) alloy 

4.2 Microstructure and mechanical properties of Rheo-Diecast 

AZ91D Mg-alloy 

4.2.1 Characteristics of AZ91D Mg-alloy 

AZ91 D alloy is the most widely used die-cast Mg-alloy. It contains around 9wt% Al, less 

than lwt% Zn and other minor alloying elements such as Mn, Si and Be. Al increases 

fluidity and therefore increases castability, but decreases ductility and creep resistance 

due to the formation of the Mg17AI12 (ß-phase); Zn addition assists strengthening but 

increases the susceptibility to hot tearing. The composition of AZ91D maintains a good 

balance between castability and a reasonable combination of mechanical strength and 

ductility in the as-cast condition. In addition, AZ91D alloy is heat treatable due to the 

precipitation of the ß-phase from the supersaturated a-Mg solid solution. 

Thermo-Calc and MG-DATA (a Mg-database developed by Thermo-Tech Ltd, 

Guildford, UK) were used to assess the thermodynamic properties of the AZ91D alloy. 

Figure 4.2.1 shows a vertical section of the ternary Mg-AI-Zn system at constant Zn 

content (0.67wt%). This vertical section resembles a binary eutectic alloy, as the 3-phase 

region (L+ a+ 1) is very narrow. The calculated liquidus and solidus for AZ91D alloy 

are 602°C and 468°C, respectively. Under equilibrium conditions, AZ91D alloy should 

solidify as a single-phase a-Mg solid solution, and further cooling should lead to the 

solid-state precipitation of the Mg17A112 ß-phase. However, the solidification structure of 

Mg-Al alloys in the as cast condition differs significantly from this prediction. Non- 

equilibrium eutectic is always present in the as-cast microstructure in Mg-Al alloy 
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containing more than about 2wt% Al [POL95]. The maximum equilibrium solubility of 

Al and Zn in Mg are 11.7wt% and 0.67wt% at 428°C, respectively. The predicted solid 

fractions in the liquid-solid region are presented in Figure 4.2.2 as a function of 

temperature. Both Figure 4.2.1 and Figure 4.2.2 will be used to guide the selection of 

processing parameters and heat treatment conditions in this work. 
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Figure 4.2.1 Vertical section of the ternary Mg-AI-Zn system phase diagram. The Zn 
content is fixed at 0.67wt%. 
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Figure 4.2.2 Calculated solid fraction of the AZ91D Mg-alloy as a function of 
temperature 
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4.2 Microstructure and mechanical properties of RDC AZ91. I) alloy 

4.2.2 Microstructures of RDC AZ91D Mg-alloy 

General microstructures of RDC AZ91 D Mg alloy 

The general microstructure of RDC AZ91D Mg-alloy is dominated by the primary 

solidification in the Twin-Screw slurry maker. In order to understand the microstructural 

characteristics of the RDC process, and for comparison purposes, a microstructure of 

AZ91D alloy produced by conventional HPDC process is introduced first. 

Figure 4.2.3 represents the typical microstructure of HPDC AZ91D alloy through a cross 

section of a ý6mm bar. There is a chilled zone near the sample surface, which has a fine 

structure and is enriched with Al compared with the rest of the sample. This chilled zone, 

sometimes referred as the surface layer in the literature, is believed to have a strong 

influence on the mechanical properties of die cast samples [SEQ96]. The sample centre is 

densely populated with dendrite fregments, as shown in Figure 4.2.4a taken from sample 

centre under higher magnification. The porosity is concentrated in the centre of the 

sample and consists of both entrapped gas bubbles and cracks caused by hot tearing. In 

addition, there is a dark circular region observed on the cross section, as arrow marked in 

Figure 4.2.3. Detailed microstructure analysis indicates that this region was concentrated 

with hot cracks and enriched with the ß -phase. This `defect band' is a typical feature of 

HPDC Mg-alloy castings, as has been investigated in detail by Bowles et al. [BOWOl]. 

In addition, the formation of large dendritic primary a-phase was an important feature of 

HPDC AZ91D alloy, as shown in Figure 4.2.4b. It is believed that such dendritic 

particles were formed in the shot sleeve prior to mould filling. The large shear rate the 

melt experienced at the gate (estimated to be as high as 105s" by Sequeira et al [SEQ96]), 

fragmented the dendrites resulting in the morphology of the primary phase observed in 
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4.2 Microstructure and mechanical properties of RDC AZ91 D alloy 

Figure 4.2.3 and 4.2.4. It is also evident from Figure 4.2.3 that some of the dendrites 

formed in the shot sleeve had survived after the high shear at the gate and were present in 

the final solidified microstructure. 

Figure 4.2.3 Montage of optical micrographs showing the as-cast microstructure 

through the cross-section of a 06mm AZ91 D alloy bar produced by the HPDC process. 
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(a) 

(b) 

Figure 4.2.4 Optical micrograph showing the detailed microstructure in a 06mm AZ91 D 

alloy bar produced by the HPDC process. (a) Densely populated dendrites with porosity 

and (h) large primary dendrites are presented in the HPDC sample. 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

Figure 4.2.5 presents the micrographs showing the as-cast microstructure through the 

entire cross-section of a 46mm AZ91D alloy bar produced by the optimised RDC 

process. Figure 4.2.5a shows a lower solid fraction of 19.1% (produced at a shearing 

temperature of 593°C), and Figure 4.2.5b, a higher solid fraction of 31.5% (produced at 

a shearing temperature of 585°C). 

(a) 

(b) 

Figure 4.2.5 The micrographs showing the as-cast microstructure through the entire 

cross-section of a 06mm AZ91D Mg-alloy bar produced by the RDC process. (a) Lower 

solid fraction, 19.1 % (produced at the shearing temperature of 593 °C), and (b) higher 

solid, fraction, 31.5% (produced at the shearing temperature of 585 °C) 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

In contrast to Figure 4.2.3 (microstructure of HPDC samples), the structure of RDC 

AZ91 D is unique and essentially different from that generated by conventional die- 

casting technologies. The primary particles in the RDC samples are very fine and 

spherical. There is no entrapped gas porosity, only very fine micro-shrinkage (a few 

micron in size) could be observed occasionally, the micro-shrinkage defects as shown in 

Figure 4.2.6. The total porosity measured was much less between 0.3% and 0.5% in 

comparison to the 2% of conventional HPDC. 

Figure 4.2.6 Detailed micrographs showing the very fine micro-shrinkage (circled) 

found in the RDC AZ91 D Mg-alloy samples. 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

Quantitative metallography was used to quantify the distribution of the primary particles 

in the samples with different solid fractions; the results are presented in Figure 4.2.7. 

Figure 4.2.7 indicates that the primary solid phase had a uniform distribution throughout 

the entire cross section of the RDC samples. Only a slightly lower solid fraction was 

observed at the sample surface, which coincides with a slight enrichment of Al at the 

surface region. The uniformity of RDC microstructures was also demonstrated by 

microstructure examinations at different cross sections, as show in Figure 4.2.8. 
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Figure 4.2.7 Variation of volume fraction of the primary a-Mg particles in the cross 

section of' 06mm RDC AZ91 D Mg-alloy bars processed at different shearing 

temperatures (585 <7,589 °C and 593 9Q. The three relatively flat lines show that the 

distributions of the primary a-Mg particles through the cross sections are very uniform. 
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4.2 Microstructure and mechanical properties of RDC AZ91 D alloy 

Near gate section Middle section Near overflow section 

Figure 4.2.8 The microstructures observed at different cross sections of a RDC sample. 

The solidification process in RDC process is clearly identified as two distinct stages, the 

primary solidification and the secondary solidification (see the discussion in section 

5.2.1). Figure 4.2.9 shows a typical microstructure of the RDC AZ91 D Mg-alloy under 

higher magnification. The relatively large and spherical particles are primary a-Mg 

particles (a, ) produced inside the twin-screw slurry maker under high shear rate and high 

intensity of turbulence. Secondary solidification began when the semisolid slurry was 

transferred to the shot sleeve. A partial volume fraction of the primary a-Mg phase was 

produced in the remaining liquid. Such particles usually have a dendritic morphology. 

The semisolid slurry is then delivered to the die cavity with a controlled shot speed and 

pressure. The dendrites formed in the shot sleeve are fragmented when they pass through 

the narrow gate, resulting in the dendrite fragments observed in the final microstructure, 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

it is denoted here as a2. The remaining liquid in the semisolid slurry then solidified in the 

die cavity under high cooling rate, and the resulting microstructure is fine a-Mg particles 

(a3) mixed with the Mg17Al12 ß-phase. It should be pointed out here that no entrapped 

liquid was observed inside a-Mg solid particles, which is evident in thixomoulding 

microstructures [CZEOI]. 

(X1 

(J_, 

(J-z 

Figure 4.2.9 A typical microstructure of the RDC AZ91 D Mg-alloy in a higher 

magnification showing the primary phases of a, , a2 and aj generated in different 

solidification stages in RDC process. 

The X-ray diffraction traces of AZ91D alloy produced by both RDC and HPDC 

processes are presented in Figure 4.2.10. The results indicate that only the a-Mg solid 

solution and the intermetallic compound ß-M91 7Al12 phase were present in both samples. 
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4.2 Microstructure and mechanical properties of RDC AZ9II) alloy 

No evidence for the presence of any other phases was detected by the X-ray analysis. For 

the ß phase, it is reported that some of the Al atoms are substituted by Zn, resulting in the 

possibility of forming Mg17 (Al, Zn)12 [CZE01]. In this study, we simplify the form as 

just Mg17A112 . 
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Figure 4.2.10 X-ray diffraction traces showing the phases present in the AZ91 D Mg- 

alloy processed by both HPDC and RDC processes. 

In order to check the effects of melting and Rheo-Diecasting on the chemical 

composition of the AZ91D Mg-alloy, chemical analysis was carried out on samples taken 

from the melting furnace and the RDC sample. The results are presented in Table 4.2.1 

in comparison with the chemical compositions of the AZ91 D ingot. There was very little 

change in the composition of the alloying elements. Perhaps more importantly, there was 
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4.2 Microstructure and rnechanical properties of RDC AZ91I) alloy 

little change in Fe contents after both melting and Rheo-Diecasting, with the Fe content 

in the RDC sample being well within the specification of AZ91 D Mg-alloy. 

Table 4.2.1 The chemical compositions of AZ91 D Mg-alloy at different processing stages 
(in wt%). 

AZ91 D Zn Al Si Cu Mn Fe Ni Be Others 

Each 

Ingot 0.67 8.76 0.047 0.014 0.25 0.0038 0.0015 0.0011 < 0.01 

After 0.66 8.55 0.046 0.012 0.21 0.0039 0.0011 0.0008 < 0.01 
Melting 
After 0.63 8.52 0.048 0.014 0.18 0.0040 0.0011 0.0007 < 0.01 
RDC 

Detailed microstructures of RDC AZ91D Mg-alloy 

The solidification of the remaining liquid in the semisolid slurry inside the die cavity 

without shearing is referred to as a secondary solidification. It is important to point out 

that the remaining liquid has previously been intensively sheared inside the slurry maker. 

Figure 4.2.11 presents the SEM micrographs showing the detailed microstructures 

produced by secondary solidification. The solidification of the remaining liquid produces 

further volume fraction of primary cc-Mg particles (Figure 4.2.11a, the dark area), with a 

fine size and a nearly spherical morphology, followed by the formation of a 

discontinuous eutectic network (the bright area). The nominal particle size of the a3- 

phase from the secondary solidification was quantified and found to be around 5-10µm. 

The detailed microstructure of the eutectic network is shown in Figure 4.2.11b. It is 

interesting to see that the eutectic is completely divorced. The 3-phase formed its own 

network and it is difficult to distinguish the eutectic cc-phase and the primary a-phase 

produced by the secondary solidification. 
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(b) 

Figure 4.2.11 SEM micrographs showing (a) the detailed microstructure of a3 and 

(h) the eutectic network produced by secondary solidification in RDC process. 
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Figure 4.2.12 is a typical TEM bight field image of the RDC AZ91 D Mg-alloy, showing 

more details of the ß-Mg17Al12 phase and the fine cr-Mg grains, from the secondary 

solidification region. The (3-Mg17Al12 phase was found to he located along the a-Mg 

grain boundaries and virtually free of dislocations. A relatively high dislocation density 

was observed inside some of the a-Mg grains close to grain boundaries and the [3-phase 

particles. EDS analysis performed on the ß-phase showed that it contains 66.43at%Mg, 

32.22at%Al and 1.35at%Zn. The measured Mg/Al ratio, 2.06, is higher than the 

stoichiometric ratio, 1.42 (17/12), attributed to the contribution from the excessive Mg in 

the cc-Mg solid solution matrix. In addition, the high zinc content appears to be 

concentrated in the secondary solidification stage, with more solution into the ß- 

Mg17A112 phases. 

Figure 4.2.12 TEM bright field images showing morphology of the /Mg»A/12 phase in 

secondary solidification region. The insert is the [001] selected area electron diffraction 

pattern taken from the labelled ß Mgi7Al12 phase. 
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Figure 4.2.13 presents a SEM micrograph and the EDS line scanning of Mg and Al 

elements, showing the compositional variation across a primary a-Mg particle. It can be 

seen that concentrations of Mg and Al inside the primary a-Mg particle were constant, 

and that a sharp increase in Al content was found when the line was crossing the eutectic 

ß-Mg17A112 phase. This is in contrast to the usual observation of micro-segregation in 

conventional casting, due to the coring effect, which leads to a lower Al concentration in 

the middle of the particle and increased concentration towards the outer region of the 

particle. Similar to the Thixomoulding process, Czerwinstki et al [CZE01] also detected 

an obvious increase in Al concentration when the electron beam moved from the centre 

towards the primary a-Mg particle boundary, indicating the coring effects. Further EDS 

analysis of the chemical composition of the primary particles, and the regions produced 

by secondary solidification, offered the composition of the solid and liquid phases at the 

semisolid temperature (593°C), which are summarised in Table 4.2.2. 

Table 4.2.2 Comparison between chemical compositions of the liquid and solid phases at 

the semisolid temperature (593°C) obtained by EDS analysis and thermodynamic 

predictions (in wt%). 

Alloying element Mg Al Zn 

Liquid Phase EDS Analysis 89.25±0.22 9.66±0.19 1.09±0.03 

Thermo-Calc 89.82 9.35 0.83 

Solid Phase EDS Analysis 97.17±0.21 2.74±0.20 0.09±0.01 

Thermo-Calc 96.95 2.98 0.07 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

Figure 4.2.13 EDS line scan results showing the compositional variation across a 

primary a-Mg particle. 
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4.2 Microstructure and mechanical properties of RDC; Al9. l I) alloy 

The comparison between EDS analysis and thermodynamic prediction in Table 4.2.2 

indicates that the solidification process inside the twin-screw slurry maker was very close 

to equilibrium. However, the presence of the eutectic structure in Figure 4.2.11 shows 

that the secondary solidification was highly non-equilibrium. According to the 

equilibrium phase diagram in Figure 4.2.1, the equilibrium solidification structure of 

AZ91 D alloy should be a single a-phase. Therefore, it can be concluded that in the RDC 

process the primary solidification, under intensive forced convection, is fairly close to 

equilibrium, while the secondary solidification, inside the die without shearing, is highly 

non-equilibrium. 

Oxide inclusions, due to mixing with the dross and the inclusion of oxide skin of the 

ingots, are always detrimental to the quality of castings produced by any casting process 

[WAN03]. This detrimental effect is particularly severe for Mg castings. Mg has a high 

affinity to oxygen and any improper protection during melting and casting can cause 

excessive oxidation. In addition, the density of magnesium oxide is nearly twice as high 

as that of liquid Mg alloy. There is a continuous sedimentation of oxides from the dross 

layer to the melt. Detailed microstructure examination confirmed that with the 

appropriate protection, the RDC process does not increase the oxide content in the RDC 

samples. In order to examine the behaviour of oxide in the RDC samples, dross from the 

melting furnace was deliberately added to the Mg melt. Figure 4.2.14(a) is a 

backscattered SEM micrograph showing the morphology of oxide particles in the RDC 

sample with the added dross. The oxide particles, as identified by EDS analysis in Figure 

4.2.14(b), are fine in size (less than 3µm), spherical in morphology and uniform in 

distribution. No clusters of oxide particles and no evidence of any oxide skin were found 

in the RDC samples even with the extra dross. This is attributed to the high dispersive 
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4.2 Microstructure and mechanical properties of RDC AZ91D alloy 

mixing power of the twin-screw slurry maker. Agglomerates of oxide particles and oxide 

skin film, if any, would be pulverised, spheroidised and dispersed by the intensive forced 

convection in the slurry maker. 

Figure 4.2.14 (a) SEM back-scattered electron image and (b) correspondent EDS 

spectrum, showing the morphology of the dispersed oxide particles (arrowed) in the as- 

cast RDC sample with extra dross. 
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4.2.3 Mechanical properties of RDC AZ91D Mg-alloy 

The mechanical properties of RDC AZ91D Mg-alloy in the as-cast condition are 

presented in Table 4.2.3, and compared to those of the same alloy produced by other 

processes in the literature [AVE99][AGU04][MID04][KAU00]. The RDC samples show 

improved ultimate tensile strength (UTS) and a moderate increase of yield strength in 

comparison to those obtained from both HPDC process and any other semisolid 

processing techniques. More importantly, the RDC process offers a substantial increase 

in tensile elongation (7.2 %). This is a significant progress. Mg-alloys, particularly 

AZ91D Mg-alloy, usually suffer from low ductility in the as-cast condition. The 

substantially improved ductility provided by the RDC process can promote wider 

applications of Mg-alloys. In this work, the significant improvement in mechanical 

properties of RDC AZ91D Mg-alloy is contributed to the fine and uniform 

microstructures and much reduced casting defects. 

Table 4.2.3 Mechanical properties of the RDC AZ91 D Mg-alloy in comparison with those 

of the same alloy produced by different processing technologies. 

Processes Yield strength 

(MPa) 

Tensile Strength 

(MPa) 

Elongation 

(%) 

Impact 

(J) 

Reference 

HPDC 150 230 3 3 [AVE99] 

Thixocasting 140 240 3.6 [AGU04] 

Thixomoulding 160 230 6 [MID04] 

New Rheocasting -- 230 5.5 [KAUOO] 

Rheo-Diecasting 

(RDC) 
146±2 246±4 7.2±0.4 4.6±0.7 This work 
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4.2Microstructure and mechanical properties of RDC; AZ9. II) alloy 

Porosity is a well-known problem in any casting process, especially for the Mg-Al 

system in this study, as it is deemed to be prone to micro shrinkage and orientated 

porosity [POL95]. Semisolid processing is capable of eliminating it, for instance, 

Thixomoulding process assures a 50% reduction of porosity [CZE01]. In this work, the 

RDC samples produced during process optimisation were selected to investigate the 

relationships between mechanical properties and defect levels; the results are plotted in 

Figure 4.2.16. From Figure 4.2.16, it is evident that the mechanical properties appear to 

be dependent on the porosity level, increased number of defects, results in lower UTS 

and elongation. After a primary optimisation, the defects were significantly reduced to a 

level of 0.3% - 0.5% in RDC AZ91D Mg-alloy samples. 
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Figure 4.2.15 The tensile properties versus volume percentage of defects in RDC AZ91 D 

Mg-alloy samples. 
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4.3 'Effects of the shearing parameters on the microstructure of RDC AZ9I I) alloy 

4.3 Effects of the Twin-Screw shearing parameters on the 

microstructure of RDC AZ91D Mg-alloy 

4.3.1 Effects of shearing time 

To investigate the effects of shearing time on the microstructure of RDC AZ91D alloy, 

the shearing time was varied between 3 seconds to 200 seconds with a constant shearing 

temperature of 593°C. Figure 4.3.1 and Figure 4.3.2 present the microstructures 

produced at different shearing times under the shearing speed of 300rpm and 800rpm, 

respectively. Table 4.3.1 summarises the average values, for microstructural 

characteristics of different shearing times, obtained by quantitative analysis. 

Table 4.3.1 Summary of the quantitative metallography results for RDC AZ91 D samples 
produced at different shearing times under the shearing speed of 300 and 800 rpm. 

Shearing 3 10 13 16 20 35 70 150 200 
'me(s) 

Items 
Vol. Fraction 7.90 13.75 15.33 20.27 20.70 20.45 21.25 22.79 
of a, % 
Vol. Fraction 17.43 13.62 14.09 8.78 7.78 7.56 8.00 7.73 
of a2 (0/6) 
Vol. Fraction 25.33 27.38 29.42 29.05 28.47 28.01 29.25 30.52 
of a, +a2 

o Density of 87 107 111.6 129.7 127.2 109.3 103 85.5 C) a, mm' 
Particle Size 33.68 39.23 40.22 41.87 42.21 47.30 48.89 54.30 
of a, m 
Shape Factor 0.79 0.79 0.795 0.806 0.827 0.817 0.83 0.838 
of a, 
Vol. Fraction 8.43 12.93 17.19 17.72 17.39 17.57 17.23 18.85 18.01 
of at 
Vol. Fraction 18.96 16.50 11.88 11.80 15.20 15.03 16.31 10.25 15.23 
of a2 
Vol. Fraction 27.39 29.43 29.06 29.52 32.59 32.60 33.55 29.10 33.25 
of a, +a2 
Density of 98 112 125 121.5 117.3 111.8 83.5 83.2 82.0 00 a, mm 
Particle Size 37.38 39.60 39.81 41.50 41.60 42.38 47.85 51.26 49.29 
of a, m 
Shape Factor 0.79TT 0.785 0.813 0.807 0.803 0.80 0.80 0.836 0.805 
of a, 
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(a) 

(b) 

Figure 4.3.1 Microstructures produced with the shearing speed of 300rpm at shearing 
times (a) 3s, (b) 20s, (c) 35s, (d) 150s 



(c) 

(d) 
Figure 4.3.1 (continued) Microstructures produced with the shearing speed of 300rpm at 
shearing limes (a) 3s, (b) 20s, (c) 35s, (d) 150s 



(a) 

(b) 

Figure 4.3.2 Microstructures produced with a shearing speed of 800rpm at shearing 
times (a) 3s, (b) 16s, (c) 35s, (d) 200s 
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Figure 4.3.2 (continued) Microstructures produced with a shearing speed of 800rpm at 
shearing times (a) 3s, (b) 16s, (c) 35s, (d) 200s 
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4.3 Effects of the shearing parameters on the microstructure of RI)C AZ9II) alloy 

The measured volume fraction of the primary a-phase is plotted in Figure 4.3.3, as a 

function of shearing time and screw rotation speed. Figure 4.3.3 indicates that 

solidification inside the twin-screw slurry maker occurred in two stages. The first stage is 

a continuous cooling process, where the initially superheated melt was cooled 

continuously to the semisolid processing temperature, producing the desired volume 

fraction of the solid particles. This stage lasted about 15 seconds, and solid volume 

fraction increased with the increase of shearing time. Once the melt reached the 

semisolid temperature, it experienced an isothermal shearing process, where solid 

volume fraction was fairly constant. At the continuous cooling stage, screw rotation 

speed had little effect on the solid volume fraction, but it did affect the final solid fraction 

before the isothermal shearing started. Higher screw rotation speed led to a smaller solid 

fraction, suggesting that intensive shearing partially suppresses the formation of the 

primary phase. 

Figure 4.3.4 and Figure 4.3.5 present the particle size and shape factor of the primary 

phase as a function of shearing time, under two different screw rotation speeds, 

respectively. At the early stages of shearing, less than 3 seconds, the primary particles 

were fairly spherical, as indicated by the shape factor in Figure 4.3.5. Further increase in 

shearing time and screw rotation speed only slightly improved the shape factor. 

However, the primary particle size increases with the increase in shearing time, and the 

particle growth rate appeared to be higher at a lower screw rotation speed (see Figure 

4.3.4). The solid lines in Figure 4.3.4 represent the power law fit to the experimental 

data. 

104 



4.3 Effects of the shearing parameters on the ificrOstructurc of RDC AT9I I) alloy 
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Figure 4.3.3 Volume fraction of the primary particles (al) formed in the twin-screw 

slurry maker as a function of shearing time and screw rotation speed. The shearing 

temperature was 593°C. The solid lines represent the best fit to the experimental data. 

Also marked in the figure is the boundary between continuous cooling and isothermal 

shearing during the primary solidification. 
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4.3 Effects of the shearing, parameters on the microstructure of IU)C A191. I) alloy 
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Figure 4.3.4 Size of the primary particles (al) formed in the twin-screw slurry maker as 

a function of shearing time and screw rotation speed. The shearing temperature was 

593°C. The solid lines represent the bestfit to the experimental data. 
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4.3 Effects of the shearing, parameters on the microstructure of RI)C AZ91I) alloy 
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Figure 4.3.5 Shape factor of the primary particles (al) formed in the twin-screw slurry 

maker as a function of shearing time and screw rotation speed. The shearing temperature 

was 593°C. The solid lines represent the bestfit to the experimental data. 
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4.3 Effects of the shearing parameters on the microstructure of RDC AZ91I) alloy 

The measured density of the primary particles formed in the twin-screw slurry maker is 

plotted in Figure 4.3.6, as a function of shearing time and screw rotation speed. At the 

continuous cooling stage, particle density increased with the increase of shearing time, 

while at the isothermal shearing stage it decreased with further increase in shearing time. 

There is a maximum in the density-time curve, which coincides with the transition 

between the continuous cooling and isothermal shearing. The increase in particle density 

implied that there was a continuous nucleation during the continuous cooling stage, while 

the decrease in particle density suggested that Ostwald ripening took place, through 

dissolution of smaller particles, during the isothermal shearing stage. 

Shearing in the twin-screw slurry maker also had an effect on the formation of the 

primary phase in the shot sleeve. The measured volume fraction of the dendrite 

fragments formed during the secondary solidification is given in Figure 4.3.7, as a 

function of shearing time and screw rotation speed. Generally, at the continuous cooling 

stage, volume fraction of a2 decreased with the increase of shearing time, while it is 

almost constant with prolonged shearing time at the isothermal shearing stage. Figure 

4.3.7 also revealed that high screw rotation speed promoted the formation of the a2 

particles, suggesting that increasing the intensity of forced convection enhances 

secondary solidification in the shot sleeve. 

Figure 4.3.8 shows the measured total volume fraction of al and a2 as a function of 

shearing time and the screw rotation speed. The total volume fraction of al and a2 

increased with the increase in shearing time at the continuous cooling stage, while it 

became almost constant at the isothermal shearing stage. A comparison between Figure 

4.3.7 and Figure 4.3.8 indicated that the formation of the primary phase in the shot sleeve 
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4.3 Effects of the shearing parameters sau the inicrostructure of RDC: AZ9II) alloy 
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Figure 4.3.6 Density of the primary particles (a, ) formed in the twin-screw slurry maker 

as a function of shearing time and screw rotation speed. The shearing temperature was 

593°C. The solid lines represent the bestfit to the experimental data. 
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4.3 Effects of the shearing parameters on the microstructure of RDC AZ91I) alloy 
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Figure 4.3.7 Volume fraction of the primary phase (az) formed in the shot sleeve as a 

function of shearing time and screw rotation speed. The shearing temperature was 
593°C. The solid lines represent the bestfit to the experimental data. 
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4.31E: ffects of the shearing parameters on the microstructure of RDC AZ91. I) alloy 
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Figure 4.3.8 Total volume fraction of the primary particles (aj+ a2) as a function of 

shearing time and screw rotation speed. The shearing temperature was 593°C. The solid 

lines represent the bestfit to the experimental data. 
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4.3 Effects of the shearing parameters on the inicrostructure of RI)(.; AZ91I) alloy 

is a temperature-controlled process. At a given shearing temperature, if the shearing in 

the twin-screw slurry maker produced less solid phase (smaller volume fraction of a, ), 

the volume fraction of a2 would increase to keep the total solid fraction fairly constant. 

Therefore, it can be concluded that both increase in the shearing intensity and prolonged 

shearing time, promote the formation of the primary phase in the shot sleeve. 

Higher magnification investigations (Figure 4.3.9) indicate that the shearing time and 

shearing speed produce no distinct changes to the detailed microstructure of a3. 
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Figure 4.3.9 The detailed optical microstructure of a3 shows no distinct changes caused 

by erfecls of'the shearing lime and shearing speed. 
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4.3 Effects of the shearing parameters on the inicrostructure of RDC AZ911) alloy 

4.3.2 Effects of shearing intensity 

Experiments were conducted at a shearing temperature of 593°C and a shearing time of 

35 seconds to investigate the shearing speed effects. The shearing intensity was varied 

between 100rpm to 900rpm. Figure 4.3.10 shows the effect of shearing intensity on the 

microstructure of RDC AZ91D alloy. Table 4.3.2 summarises the average values, for 

microstructural characteristics of different shearing intensity, obtained by quantitative 

analysis. 

Table 4.3.2 Summary of the quantitative metallography results for RDC AZ9ID samples 

produced at different shearing speed 

Shr. Rate 100 300 500 800 900 
NS, (rpm) 

Items 

vol. Fraction 18.92 20.45 17.30 17.57 13.70 
of a, (%) 

vol. Fraction 11.58 7.56 15.30 15.03 15.70 
of a2 (%) 

vol. Fraction 30.49 28.01 32.63 32.60 29.40 
of al+a2 (/0) 

Density of 95 109.3 97.5 111.8 77.0 
a, (mm") 

Density of 206.6 165.7 362.5 320.2 450.7 
a2 (mm 2) 

Density of 301.6 275.1 460 432 527.6 
a, +a2 (mm 2) 

Particle Size of 47.31 47.3 43.89 42.38 43.9 
a, (µm) 

Shape Factor 0.798 0.817 0.821 0.80 0.827 
of a, 
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4.3 1"Ife tN of the shearing parameters on the microstructure of RUC . 17911) alloy 

(a) 

(b) 

Figure 4.3.10 The effect of shearing speed on the microstructure of RDC AZ91 D alloy, 

at (a) 100 rpm, (b) 300 rpm, (c) 500 rpm, (d) 900 rpm. 
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4.3 E'f'; cts rº1* the shearing parameters on the micro strutiure of R1)C ,, Z; 91 0 alloN 

(c) 

(d) 

Figure 4.3.10 (continued) The effect of shearing speed on the microstructure of RDC 

AZ91 D alloy, at (a) 100 rpm, (b) 300 rpm, (c) 500 rpm, (d) 900 rpm. 
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4.3 Effects of the shearing parameters on the microstructure of RDC AZ9.1I) alloy 

The measured particle size and shape factor of the primary particles formed during the 

primary solidification are presented in Figure 4.3.11. The primary particle size decreased 

slightly with an increase in the screw rotation speed, while the shape factor of the 

primary particles increased only slightly with the increase in screw rotation speed. 

The measured volume fraction and particle density of the primary phase formed in the 

twin-screw slurry maker are plotted in Figure 4.3.12, as a function of the screw rotation 

speed. Figure 4.3.12 revealed that solid fraction decreased with the increase in screw 

rotation speed, indicating that intensive shearing suppressed, to some degree, the 

formation of the primary phase in the twin-screw slurry maker. However, intensive 

shearing did not promote nucleation in the twin-screw slurry maker, as indicated by the 

constant particle density in Figure 4.3.12. It is necessary to point out that all the samples 

have been sheared for 35 seconds; some particles are already dissolved, due to Ostwald 

ripening, during this time. 

In contrast to the results presented in Figure 4.3.11 and Figure 4.3.12 for the primary 

solidification, intensive shearing promoted the formation of a2, as indicated by the 

increase in a2 volume fraction with screw rotation speed in Figure 4.3.13. However, 

intensive shearing did not change the total volume fraction of the primary phase (al+a2). 

This is consistent with the experimental results presented in the previous section 4.3.1. 

Therefore, it can be concluded that intensive shearing partially suppresses the formation 

of primary phase during primary solidification, promotes the formation of primary phase 

in the shot sleeve, but does not affect the total volume fraction of the primary phase. 
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4.3 Effects of the shearing parameters on the microstructure of RDC AZ91I) alloy 

The effects of shearing intensity on the formation of a2 are presented in Figure 4.3.14, in 

which the density of a2 and total density of a1 and a2, are plotted against the screw 

rotation speed. It is interesting to note that the particle density of a2 and the total density 

of al and a2 increased with the increase in screw rotation speed. It is necessary to point 

out that particles of a2 refer to the fragments formed during the mould filling, from the 

original dendrites formed in the shot sleeve, and therefore the density of a2 is 

considerably higher than the density of dendrites. However, since the die casting 

conditions have been kept constant for all the experiments, the increase in density of 

dendrite fragments corresponds to the increase in the density of dendrites. Hence, we can 

conclude that intensive shearing promotes nucleation of the primary particles in the shot 

sleeve at the secondary solidification stage. The increase in the total particle density in 

Figure 4.3.14 is mostly due to the increase of a2 density, since intensive shearing had 

very little effect on the density of at (see Figure 4.3.12). 
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4.3 Effects of the shearing parameters on the microstructure of RDC: AZ91I) alloy 
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Figure 4.3.11 Size and shape factor of the primary particles (al) formed in the twin- 

screw slurry maker, as a junction of screw rotation speed. The shearing temperature was 

593°C and shearing time was 35 seconds. The solid lines represent the best fit to the 

experimental data. 
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4.3 Effects of the shearing parameters on the microstructure of ROC; A. 191 D alloy 
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Figure 4.3.12 Volume fraction and particle density of the primary particles (a, ) formed 

in the twin-screw slurry maker, as a function of screw rotation speed. The shearing 

temperature was 593°C and shearing time was 35 seconds. The solid lines represent the 

bestfit to the experimental data. 
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4.3 [Ifects of the shearing parameters on the microstructure of RI)C Al91I) alloy 
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Figure 4.3.13 Volume fraction of the primary particles formed in the shot sleeve (a2) and 

the total volume fraction of ai+ a2, as a function of screw rotation speed. The shearing 

temperature was 593°C and shearing time was 35 seconds. The solid lines represent the 

bestfit to the experimental data. 
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4.3. Effects of the shearing parameters on the microstructure of RUC AZ911) alloy 
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Figure 4.3.14 Density of primary particles formed in the shot sleeve (a2) and the total 

particle density as a function of screw rotation speed. The shearing temperature was 

593°C and shearing time was 35 seconds. The solid lines represent the best fit to the 

experimental data. 
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4.3 Effects of the shearing parameters on the microstructure of RI)C AZ91I) alloy 

4.3.3 Effects of shearing temperature 

All the experiments in this section were conducted with a screw rotation speed of 300rpm 

and shearing time of 35 seconds; the Twin-Screw shearing temperature was varied 

between 585°C and 600°C. Figure 4.3.15 shows the microstructure of RDC AZ91D alloy 

processed at different temperatures. Table 4.3.3 summarises the average values, for 

microstructural characteristics of different shearing temperatures, obtained by 

quantitative analysis. 

Table 4.3.3 Summary of the quantitative metallography results for RDC AZ91D samples 

produced at different shearing temperatures. 

Shearing temperature 

(°C) 

Volume fraction of a, 
(%) 

Particle size of ai 
(µm) 

Shape factor of ai 

585 31.4 42.6 0.79 

589 25.1 40.9 0.78 

593 19.1 40.1 0.80 

597 9.1 39.2 0.79 
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(a) 

(b) 

Figure 4.3.15 Optical micrographs showing the microstructures produced at different 

temperatures in the RDC process (a) 597 °C, (b) 593 °C, (c) 589 °C, (d) 585 °C. 
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4 .3 Effects o the shearing parameters on the microstructure of RI)(: A191 1) allen 

(c) 

(d) 

Figure 4.3.15 (continued) Optical micrographs showing the microstructures produced at 

different temperatures in the RDC process (a) 597 °C, (b) 593 °C, (c) 589 °C, (d ) 

585 °C. 
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4.3 Effects of the shearing parameters an the microstructure of RDC AZ91I) alloy 

The measured volume fraction of the primary phase is presented in Figure 4.3.16, as a 

function of shearing temperature, in comparison with the equilibrium solid fraction for 

the same alloy predicted by the CALPHAD approach [FAN05b]. Solid fraction 

decreased with the increase in shearing temperature, and the experimental data was close 

to the thermodynamic predictions. In addition, it was also found that shearing 

temperature did not have a strong effect on particle size and morphology of the primary 

phase formed in the twin-screw slurry maker, the particle size being around 40µm and 

the shape factor being around 0.79, as shown by the experimental results presented in 

Figure 4.3.17. 
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Figure 4.3.16 Volume fraction of the primary particles (al) formed in the twin-screw 

slurry maker, as a function of shearing temperature (triangles) in comparison with the 

thermodynamic predictions by the CALPHAD approach (the solid line). The screw 

rotation speed was 3 00rpm and shearing time was 35 seconds. 
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4.3 Effects of the shearing parameters on the microstructure of RUC: AZ91I) alloy 
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Figure 4.3.17 Size and shape factor of the primary particles (al) formed in the twin- 

screw slurry maker, as a junction of shearing temperature. The screw rotation speed was 

300rpm and shearing time was 35 seconds. The solid lines represent the best fit to the 

experimental data. 
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4.3 Effects of the shearing parameters on the microstructure of' RI)(; r1/ 9l I) ºIlo, % 

In the RDC process the variation of solid fraction is achieved by changing the barrel 

temperature. Figure 4.3.18 shows the microstructure of RDC AZ91 D alloy processed at 

600°C, which more or less coincides with its liquidus. The primary particles are fine in 

size and less spherical in morphology. It is likely that such primary particles were formed 

in the shot sleeve, and fragmented by the intensive shear tow at the gate. I lowever, 

different from the non-uniform microstructure produced by I IPDC process (Figure 4.2.3), 

the microstructure here is extremely uniform throughout the entire sample. This is 

referred to as liquidus rheocasting [FAN02a]. By reducing the processing temperature 

below the liquidus, semisolid slurries with different solid fractions can be produced. 

Figure 4.3.18 Micrograph shows the microstructure of RD(' AZ91 D alloy processed tit a 

near liquidus temperature of 600°C. 
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4.3 Effects of the shearing parameters on the microstructure of RI)C AZ91I) alloy 

Detailed microstructural examination (Figure 4.3.19) indicates that there are no 

significant effects of shearing temperature on the size and morphology of a3 produced by 

secondary solidification. It was found that the effects of shearing intensity and shearing 

time on the formation of a3, presented in Figure 4.3.9, were very limited. The particle 

size of a3 is fine in size (around 5-10µm) and uniform in distribution. However, it should 

be pointed out that the fine and uniform microstructure of a3 is a result of the intensive 

forced convection in the RDC process, once the intensity of turbulence reaches a 

substantial level, further increase of the intensity of forced convection (the investigation 

range of shearing speed is below 900rpm in this study) does not improve the 

microstructure. 
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Figure 4.3.19 Detailed microstructures of a3 obtained under different shearing 

temperatures of (a) 597 °C, (h) 593 °C, (c) 589 °C and (d) 585 °C. 
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4.4 Microstructure and mechanical properties of heat treated RI)C AZ91I) alloy 

4.4 Microstructure and mechanical properties of heat treated 

Rheo-Diecast AZ91D Mg-alloy 

4.4.1 Solution treatment of RDC AZ91D Mg-alloy 

Figure 4.4.1 shows the variation of Vickers hardness for AZ91D Mg-alloy, produced by 

both the RDC and HPDC processes, against time at solution treatment temperature 

413°C. The first point on each of the curves corresponds to the as-cast state (no solution 

treatment) and it is always higher than those samples that are solution treated. It is 

interesting to note that the hardness value decreases faster for the RDC alloy than that 

produced by HPDC, indicating an accelerated dissolution of the ß-Mg17AII2 phase for the 

RDC alloy. As shown in Figure 4.4.1, the RDC alloy reached its minimum hardness 

value at 5 hours (18ks), compared to nearly 16 hours (57.6ks) for the HPDC alloy. The 

hardness value of the RDC AZ91D Mg-alloy reached a steady state with increasing 

solution time after 5 hours (18ks) exposure to the temperature. The alloys produced by 

both of the casting processes exhibited essentially the same hardness level after solution 

treatment for 16 hours (57.6 ks) or longer. Table 4.4.1 lists the important features during 

the solution treatment for the AZ91D alloy produced by both RDC and HPDC processes. 

Table 4.4.1 Important features of solution behaviour obtained for the AZ91 D Mg-alloy 

Process Initial Vickers Vickers hardness Time to minimum Average grain size 
hardness at Steady Level hardness (hour) after solution (µm) 

RDC 66.8 54.9 5 34.1 

HPDC 64.3 54.8 16 47.6 

131 



4.4 Microstructure and mechanical properties of Beat treated RDC 17491! ) alloy 
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Figure 4.4.1 Variation of Vickers hardness for AZ91D Mg-alloy produced by the RDC 

and HPDC process, against time at solution treatment (T4) temperature, 413, C, 

indicating a faster reduction of the hardness for the RDC AZ91 D alloy, compared with 

the HPDC alloy. 

Figure 4.4.2, the XRD analysis revealed that, in the alloy samples from both the HPDC 

and RDC processes, the ß-Mgt7Al12 phase has been completely dissolved into the a-Mg 

solid solution after 24 hours at 413°C and a single solid solution phase remains. Figure 

4.4.3 is an optical micrograph showing the typical microstructure of the RDC AZ91D 

Mg-alloy after solution treatment for 24 hours. 
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4.4 Microstructure and mechanical properties of heat treated RDC AZ91 D alloy 

1 Rheo die cast, as-cast 
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Figure 4.4.2 XRD spectra obtained from the AZ91D alloy before and after solution 

treatment (T4) at 413 'Cfor 24 hours. This indicates that the eutectic ßMgi7Al12 phase 

has been dissolved completely and a single a-Mg solid solution phase is present for the 

alloy produced by both RDC and HPDC process. 
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Figure 4.4.3 Optical micrograph showing the typical microstructure of the RDC AZ9ID 

Mg-alloy after solution treatment at 413 9C for 24 hours. 
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4.4 Microstructure and mechanical properties of treat treated RDC A19II) alloy 

In magnesium alloys that contain high levels of aluminium, e. g. > 3wt% Al, the grain 

boundaries are often obscured by the eutectic phase. The grain boundaries can be 

revealed very well during a solution heat treatment by dissolving the eutectic phase. 

Detailed observations by OM and SEM revealed that the microstructural evolution of the 

RDC AZ91D Mg-alloy during solution treatment (T4) can be described in terms of three 

stages, (i) dissolution of eutectic non-equilibrium ß-Mg17A112 phase into the a-Mg solid 

solution phase at the early stage, (ii) modification of the primary a-Mg globules, ( iii ) 

growth of a-Mg grains, with the first two stages occurring simultaneously in the 

secondary solidification region. 

The structure of the secondary solidification region was eventually replaced by new, fine 

a-Mg grains, which were well defined by the sharp grain boundaries, resulting from the 

dissolution of the ß-phase. Figure 4.4.4 shows the microstructure of the RDC AZ91D 

Mg-alloy treated at 413°C for 0.5 hours, revealing the partial dissolution of the ß-phase 

and those newly formed grains with sharp grain boundaries. 

During the dissolution process, the quantitative metallography revealed that the a-phase 

dissolves quite quickly at this solution temperature. Table 4.4.2 summarizes the 

quantitative analysis results of dissolving of ß-phase during solution treatment for both 

RDC and HPDC process. It can be seen that the ß-Mg17A112 phase needs one hour (3.6ks) 

or so to dissolve completely in the RDC alloy, compared to around 2 hours (6.3ks) in the 

HPDC alloy. The maximum difference in the dissolution kinetics of the ß-phase between 

the RDC and HPDC alloys was evident early in the solution treatment. For instance, in 

the first 15 minutes (0.9ks), the volume fraction of the ß-phase reduced from 14.8 vol % 

to 7.3 vol % at a dissolution rate of 8.33 vol%/ks for the RDC alloy, compared to a rate 

t34 



Table 4.4.2 Quantitative analysis results of dissolving of ß-phase (in Vol%) during 

solution treatment for both RDC and HPDC process. 

olution time 0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 ks) 
Process 

RDC 14.8 7.3 3.2 1.4 0.17 0.09 0 

HPDC 15.2 9.6 6.2 3.5 1.5 0.7 0.4 0 

of 6.2 vol%/ks from 15.2 vol % to 9.6 vol % for the HPDC alloy. The difference in the 

dissolution rate of the ß-phase decreased with increasing solution time. This accelerated 

dissolution kinetics of the ß-phase verifies the faster hardness reduction shown in Figure 

4.4.1 for the RDC AZ91 D Mg-alloy. 

Figure 4.4.4 SEM micrograph of the RDC AZ91 D Mg-alloy after solution treatment at 

413 `C for 0.5 hours. The partial dissolution of the ßMg17A112 phase (while area) and the 

formation of the new a-Mg fine grains well defined by the sharp boundaries can be 

observed. 
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4.4 Microstructure and mechanical properties of treat treated RDC AZ91I) alloy 

During solution treatment of RDC AZ91D Mg-alloy, the grain growth was 

experimentally measured from a starting solution time of 0.5 hours (1.8ks). At the 

solution time of 0.5 hours, the average size of the new a-Mg grains formed in the 

secondary solidification region was measured to be about 7.3 µm, growing to 34.1µm 

with an increase in time to 24 hours (86.4ks), as shown in Figure 4.4.5. 
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Figure 4.4.5 Plot of average grain size D (pm) against solution treatment time t (ks), 

showing grain growth kinetics for the RDC AZ91D Mg-alloy during solution treatment at 

413 ̀ C up to 24h hours (86.4kr). 

In Figure 4.4.5, power law was used to fit the experimental date to extract the growth 

constants. It is found that grain growth kinetics satisfies the following relationship: 

D2.6=82.6t Equation 4.4.1 

Where D is average grain size and t is solution time. In the present study, the coarsening 

exponent ̀n' was experimentally determined to be 2.6. 
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4.4.2 Aging of RDC AZ91D Mg-alloy 

Figure 4.4.6 is the age-hardening curve of the AZ91 D Mg-alloy samples aged at 216°C 

for different lengths of time, after being subject to the solution treatment. A log scale has 

been used in the curves so that the early stage of precipitation can be seen more clearly. It 

is a characteristic hardness curve for an aging process. In Figure 4.4.6, the hardness of 

the alloy increases linearly as a function of aging time, before reaching the peak hardness 

and then decreases slowly. The alloy produced by the RDC process reaches its peak 

hardness in 5.5 hours (19.8ks), compared to 11 hours (39.6ks) when produced by HPDC. 

This indicates an accelerated age-hardening response at this aging temperature for the 

RDC AZ91D Mg-alloy. Table 4.4.3 lists the important features of the age-hardening 

curves obtained for the AZ91D Mg-alloy, produced by RDC and HPDC processes. 
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Figure 4.4.6 Age-hardening curves for the AZ91D Mg-alloy produced by the RDC and 

HPDC processes, aged at 216'C after solution treatment for 24 hours at 413 ̀ C. 
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Table 4.4.3 Important features of aging behaviour obtained for the AZ91 D Mg-alloy* 

Process Vickers hardness Peak Vickers Incubation Time to Peak 

after T4 hardness Time (hour) Hardness (hour) 

RDC 55.3 81.7 <0.5 5.5 

HPDC 55.1 79.5 -1.0 11 

* Solution treated (T4) at 413`L for 24 hours followed by aging at 216°C for up to 144 hours 

During ageing at 216 °C for different length of time, the precipitation of the 3-phase from 

the super-saturated a-Mg solid solution occurs. Figure 4.4.7 shows SEM micrographs of 

the RDC AZ91D Mg-alloy microstructure under different ageing states: under-aged 

(Figure 4.4.7. a), peak-aged (Figure 4.4.7. b) and over-aged (Figure 4.4.7 c), as defined by 

the age hardening curve in Figure 4.4.6. 

Figure 4.4.7a shows the initial precipitation in the RDC AZ91D alloy, which had been 

solution treated at 413°C for 24 hours with subsequent aging at 216°C for 0.5 hours 

(1.8ks). The detailed observation of the early stage of precipitation by SEM indicated a 

lamellar growth of the precipitates from the grain boundaries into the grain interior, 

which is a typical morphology for the discontinuous precipitates of the ß-Mg17A112 phase. 

From Figure 4.4.7a, it is obvious that the discontinuous precipitation of the ß-Mgj7Al12 

phase in the RDC AZ91D Mg-alloy begins at an aging time as short as 0.5 hours, and 

that the precipitation preferentially initiated at some of the grain boundaries. In contrast, 

further microstructure examination has observed no precipitates for the same alloy 

produced by HPDC in the same aging period. In fact, an obvious increase in hardness has 

been observed at an aging time of 0.5 hours (1.8 ks) for the RDC alloy, compared to 1 
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4.4 Microstructure and mechanical properties of heat treated RDC AZT) l I) alloy 

hour (3.6 ks) for the HPDC alloy, as shown in Figure 4.4.6. This reduction in incubation 

period clearly demonstrates accelerated aging kinetics for the RDC AZ91 D Mg-alloy. 

With the increase of aging time, the discontinuous precipitation ceases and continuous 

precipitates of the ß-Mgi7Al12 were found to form in the remaining regions of the grains 

that have not been occupied by discontinuous precipitates. At the peak aging time (5.5 

hours), all of the grains contain the lamellar discontinuous precipitates along the grain 

boundaries and the platelet-shaped continuous precipitates inside the grains, as shown in 

Figure 4.4.7b. 

TEM micrographs of the RDC AZ91D alloy aged at 216°C for 5.5 hours (peak-aged) are 

shown in Figure 4.4.8. Two types of precipitates are clearly seen, with the coarse 

discontinuous lamellar precipitate growing initially from grain boundaries into the grain, 

Figure 4.4.8a, and the fine laths forming inside the a-Mg grains, Figure 4.4.8b. 

Figure 4.4.7c is a SEM micrograph showing the microstructure of the over-aged 

(solution for 24 hours at 413 °C followed by ageing at 216 °C for 120 hours) RDC 

AZ91D alloy. The microstructure of the over-aged condition was found to be essentially 

the same as the peak aged state, containing both types of precipitates of the ß-Mg17Al12 

phase. In Figure 4.4.7c, however, it reveals the precipitates of the ß-phase getting 

coarser. 
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Figure 4.4.7 SEM micrographs showing the microstructure ofthe RDC AZ91 D Mg-alloy 

solution treated at 413 °C for 24 hours followed by aging at 216 ` '. for (a) 30 min (1.8ks, 

under aged); (b) 5.5 hours (19.8ks, peak aged) and (c) 120 hours (432ks, over aged). 

40 



4.4 Microstructure and mechanical properties of heat treated RDC AZ91 D alloy 

.1 
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Figure 4.4.8 TEM bright field images showing the typical (a) discontinuous 

precipitation along the grain boundary, with a lamellar morphology and (b) continuous 

precipitation inside the grain, with a needle shaped morphology. The sample is 

processed by RDC, solution treated at 413 'C for 24 hours and followed by aging at 

216 °C, for 5.5 hours. 

1 ýý 
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4.4.3 Mechanical properties of heat-treated RDC AZ91D Mg-alloy 

In section 4.2.3, the Rheo-Diecasting process has been shown to improve the mechanical 

properties of as-cast RDC AZ91D Mg-alloy. A significant increase in elongation, up to 

7.4 % for the RDC AZ91D Mg-alloy in the as-cast condition, has been demonstrated and 

compared with conventional HPDC and other semisolid processes. Due to the low or 

even eliminated porosity in RDC AZ91D Mg-alloy samples, further improvement to 

mechanical properties with heat treatment is possible. 

The mechanical properties of RDC AZ91D Mg-alloy samples under different heat 

treatment conditions are tabulated in Table 4.4.4. Compared with the RDC as-cast 

condition, T4 (solution) heat treatment improves ductility substantially (the elongation is 

11.2 %), but decreases strength. In contrast, T6 (solution plus aging) heat treatment 

improves ultimate tensile strength (the UTS is increased up to 255 MPa), with a 

moderate elongation. T5 (artificial aging) heat treatment slightly reduces strength and 

ductility of the as-cast RDC alloy in the present study. 

Table 4.4.4 Mechanical properties of RDC AZ91 D Mg-alloy heat-treated under different 

conditions. 
Samples Conditions YS (MPa) UTS (MPa) Elongation (%) 

RDC As-cast 146±2 246±4 7.2±0.4 

RDC+T4 413°C, 5 hrs 95±7 230±9 11.2±1.0 

RDC+T5 2161C, 5 hrs 133±9 236±12 6.5±1.1 

RDC+T6 413°C, 5 hrs + 216°C, 5.5hrs 134±9 255±9 6.7±1.1 

RDC+Tx 365°C, 2hrs 132±8 249±11 9.1±1.0 
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In Table 4.4.4, a newly developed heat treatment for RDC AZ91D alloy, denoted as the 

T,, heat treatment, however, gives the as-cast RDC AZ91D Mg-alloy a further substantial 

improvement in tensile strength (with a UTS of 249 MPa) and ductility (the elongation is 

9.1 %). Due to the low heat treatment temperature and short treatment time, a promising 

advantage of the T. treatment is the economical in heat treatment cost. 
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4.5 Component production trials 

4.5 Component production trials 

Component production trials have been conducted to confirm the reliability of the slurry 

maker and consistency of the RDC process. An automotive component die, with two 

cavities and four sliding cores with complex geometry, was selected. The component die 

was originally designed for Al-alloys, and was used here for Rheo-Diecasting Mg 

component without any modification. The section thickness of the component varied 

between 2-6 mm, the runner had a thickness of 10mm and the biscuit was 60mm in 

diameter. 

Figure 4.5.1a is a Twin-Screw Rheo-Diecast AZ91D magnesium alloy component; 

photographs (Figure 4.5.1b and Figure 4.5.1c) are showing the details of the thin wall 

and complex component produced by RDC AZ91D alloy. It shows the outstanding filling 

capacity and surface finish. 

The structural examinations were performed by cutting 6 samples from different 

positions of the RDC AZ91D components, corresponding to the farthest position, the 

thickest section and thinnest section, as shown in Figure 4.5.2. Figure 4.5.2 presents a 

photograph of the casting, with micrographs showing the microstructures at different 

positions in the RDC AZ91D Mg-alloy component. Even though the magnesium alloy is 

more difficult to die cast, due to its low thermal capacity compared with aluminium alloy 

component, these successful trials indicate that the RDC AZ91D components have a very 

good surface finish, close to zero porosity and very fine and uniform microstructure 

throughout the entire casting, including the runners and biscuit. 
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Figure 4.5.1 (a) Photograph of a RDC AZ91D Mg-alloy component. (b) and (c) 

Photographs showing that RDC produced a complex and thin-wall component, 

exhibiting excellent filling capacity and surface, f nish. 
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4.5 Component production trials 

Figure 4.5.2 Optical micrographs showing the microstructures of the RDC AZ91D Mg- 

alloy component at different locations. 
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Figure 4.5.3b and Figure 4.5.3c show the chemical compositions (Alwt% and Znwt%, 

respectively) of the RDC AZ91 D Mg-alloy component, as a function of test positions 

(shown in Figure 4.5.3a). Position 1 is the biscuit, 2-3 are the runner and positions 4-6 

are located at various parts of the component. In Figure 4.5.3, Series A and Series B refer 

to two different cavities of component in one casting. Figure 4.5.3 indicates that the Al 

and Zn content in the RDC AZ91 D sample were consistent throughout the entire casting 

including the runner and biscuit. The Al content varied between 8.8-9.2wt%, and Zn 

content was between 0.6-0.7wt%. The uniform characteristics of RDC Mg-component 

suggest that the Rheo-Diecasting process is particularly suitable for production of high- 

integrity, airtight or highly stressed components in the automotive industry. 

(a) 

Figure 4.5.3 The chemical compositions of the RDC AZ91 D Mg-alloy component at 
different locations. (a) Photograph illustration the test positions. (b) and (c) are 

showing the composition uniformity of element Al (wt%) and Zn (wt%) in the RDC 

AZ91 D Mg-alloy component. 
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Figure 4.5.3 (continued) The chemical compositions of the RDC AZ91D Mg-alloy 

component at different locations. (a) Photograph illustration the test positions. (b) and 

(c) are showing the composition uniformity of element Al (wt%) and Zn (wt%) in the 

RDC AZ91 D Mg-alloy component. 
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Chapter 5. Discussion 

5.1 Flow characteristics of AZ91D Mg-alloy in the Twin-Screw 

slurry maker 

Research on the rheology of semisolid slurries suggests that an ideal semisolid slurry, for 

semisolid processing, can be described as a suitable volume fraction of solid particles, 

with fine particle size and spherical morphology, dispersed uniformly throughout a liquid 

matrix [FAN02a]. Enhancing the effective nucleation and promoting spherical growth 

can obtain semisolid slurry, with these characteristics. Such conditions can be created 

with uniform temperature and chemistry throughout the whole volume of liquid alloy, as 

produced by high shear rate and high intensity of turbulence during the solidification 

process. These conditions can be effectively achieved by the application of the Twin- 

Screw Slurry Maker, which is the key technology of the RDC process. 

The Twin-Screw Slurry Maker has a pair of screws rotating inside a barrel (see Figure 

3.1). The specially designed screws are co-rotating, fully intermeshing and self-wiping. 

During the slurry making process, the metal fluid flows in `figure of 8' motions around 

the profile of the screws, and the `figure of 8' moves from one pitch to the next, forming 

a `figure of 8' shaped helix and pushing the fluid along the axial direction of the screws, 

as schematically illustrated in Figure 5.1.1a [FANO1]. In this continuous flow field, the 

fluid undergoes cyclic stretching and folding processes. This is shown schematically in 

Figure 5.1.1b. Figure 5.1.1b also indicates that the elemental volume of alloy melt will 

experience a cyclic variation of shear rate due to the continuous change of the gap 
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between the screw and the barrel. The lowest shear rate is found at the gap between the 

screw root and the inner barrel surface, the highest is at the intermeshing regions. 

Therefore, all the material in the Twin-Screw Slurry Maker will undergo a shear 

deformation with cyclic variation of the shear rate. In consideration of the viscosity of 

liquid metals, or even semisolid slurries, the intensity of turbulence inside the barrel is 

expected to be very high. 

Liquid Alloy 

Figure S. 1.1 Schematic illustration of the flow pattern in the Twin-Screw slurry maker. 

(a) The figure of 8 pattern in twin-screw channels; (b) Stretching and folding processes 

during the movement of the slurry from one screw to the other. 

Although the exact shear rate cannot be calculated because of the complexity of the 

screw geometry, the intermediate shear rate can however be evaluated by a simple 

equation [FANO1]: 
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y= Equation 5.1.1 

Where D is the screw diameter, co is the screw rotation speed and 8 is the gap between 

the tip of a screw flight and the barrel surface. In this study, the specially designed Twin- 

Screw slurry maker has a maximum rotation speed of 1000 rev min', which corresponds 

to a shear rate of 3663 s'1 in the gap between the tip of the screw flight and the barrel. 

Therefore, the fluid flow in the Twin-Screw slurry maker is characterised by high shear 

rate, high intensity of turbulence and cyclic variation of shear rate. The characteristic of 

fluid flow in twin-screw maker is essential for promoting non-dendritic solidification 

behaviour and, furthermore, to achieve the ideal semisolid slurry. 
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5.2 Solidification behaviour of AZ91D Mg-alloy in the Rheo- 

Diecasting process 

5.2.1 The progression of solidification in the RDC process 

The progression of solidification in the RDC process can be mainly described in two 

stages, as illustrated schematically in Figure 5.2.1 [FAN05d]. Solidification inside the 

twin-screw slurry maker, under intensive forced convection to produce semisolid slurry, 

is referred to as primary solidification; while the solidification of the remaining liquid, 

during transfer to the shot sleeve and inside the die cavity without shearing, is referred, to 

as secondary solidification. The primary solidification can also be divided into two sub- 

stages, namely, continuous cooling, from the pouring temperature to the SSM processing 

temperature, and isothermal shearing, at the SSM processing temperature. The secondary 

solidification begins when the semisolid slurry is transferred to the shot sleeve. Due to 

the relatively low temperature of the shot sleeve (usually below 400°C), further volume 

fraction of the primary a-Mg phase is produced in the remaining liquid. However, the 

solidification process is continuing until all the remaining liquid finally solidifies in the 

die cavity, under a high pressure and high cooling rate. 

5.2.2 Discussion on nucleation 

The experimental results presented in section 4.3 explained the nucleation behaviour of 

AZ91D Mg-alloy in the RDC process. During the continuous cooling stage of the 

primary solidification, volume fraction of ai increases with shearing time (Figure 4.3.3), 
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Figure 5.2.1 Schematic illustration for the progression of solidification during the RDC 

process. 

as expected according to the thermodynamic prediction. However, at the same time the 

particle density of al also increases continuously (Figure 4.3.6). The increased particle 

density during the continuous cooling stage can be explained by a continuous nucleation 

mechanism [FAN05d]. 

The continuous nucleation can be understood in terms of the competition between 

nucleation and growth under small undercooling. The average cooling rate during the 
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continuous cooling stage for AZ91D Mg-alloy in the Twin-Screw Slurry Maker is about 

4K/s, which is small compared with those achieved by most of the die casting processes. 

Low cooling rate, in combination with intensive melt stirring, makes a small 

undercooling more likely during the primary solidification, leading to a relatively small 

nucleation rate. However, under the intensive forced convection generated by the Twin- 

Screw the nuclei grow spherically with an extremely fast growth rate, as will be 

discussed in the following section. Nevertheless, once the spherical particles reach a 

critical size corresponding to the solid fraction for the melt temperature, the driving force 

for fast growth will diminish because spherical particles are energetically stable 

[WAN90]. In competition with the growth of the existing primary particles, further 

cooling favours the nucleation of new ones. Therefore, when the temperature of the melt 

is reduced below the liquidus of the alloy, heterogeneous nucleation takes place, and all 

the nuclei will grow very rapidly to a volume fraction corresponding to the melt 

temperature. Further cooling of the melt under intensive forced convection will repeat 

the above cooling-nucleation-growth-cooling process, until the melt reaches the 

semisolid processing temperature. 

A large nucleation rate is normally a necessary requirement for grain refinement, but not 

a sufficient one on it's own. The final effect of grain refinement is also dependant on the 

survival rate of the nuclei. In the conventional casting processes, overheated liquid metal 

is poured into the relatively cold mould. Heterogeneous nucleation takes place 

immediately in the undercooled liquid close to the mould wall. The majority of the nuclei 

are transferred, by the convection caused by mould filling, to the overheated liquid region 

and dissolved; only a small proportion of the nuclei survive and contribute to the final 

microstructure, resulting in a coarse and non-uniform microstructure. It is, therefore, 
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clear that an important step towards microstructural refinement is to make sure that every 

single nucleus formed during nucleation can survive and contribute to the final 

microstructure. 

A 100% nucleus survival rate can be achieved by creating the following conditions 

[FAN05d]: (1) uniform temperature and chemical composition throughout the entire 

volume of the liquid alloy; (2) well-dispersed heterogeneous nucleation agents; (3) rapid 

extraction of latent heat to prevent re-coalescence. Under such conditions, nucleation will 

occur throughout the entire volume of the liquid and each nucleus will survive and 

contribute to the final solidified microstructure, producing a fine and uniform 

microstructure. The nucleation under such conditions has been termed by Fan [FAN05c] 

as effective nucleation. 

As has been discussed previously in section 5.1, the melt flow inside the twin-screw 

slurry maker is characterised by high shear rate, high degree of turbulence and cyclic 

variation of shear rate. Such characteristics make the twin-screw mechanism very 

powerful for dispersive mixing. Consequently, the temperature and composition fields 

inside the slurry maker are extremely uniform throughout the entire alloy melt, during 

both the continuous cooling stage and the isothermal shearing stage. It is also likely that 

the dispersive mixing power of the twin-screw mechanism can disperse any potential 

agglomerates of nucleation agents, and hence increases their patency for heterogeneous 

nucleation. Therefore, the twin-screw mechanism is an important approach for achieving 

effective nucleation. This conclusion is well supported by the experimental results 

presented in the previous section (e. g., Figure 4.2.5 and Figure 4.3.4). 
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Based on the experimental results and discussion above, it can be concluded that 

nucleation under intensive forced convection in the Twin-Screw Slurry Maker is a 

continuous and an effective process. 

5.2.3 Discussion on nuclei growth 

The experimental results in Figure 4.3.4 imply that growth of the primary particles after 

the nucleation inside the twin-screw slurry maker is very fast. This is evident by the 

measured particle size at the early stages of solidification, which is already around 35µm 

after only 3 seconds of shearing. In addition, particle growth shows the same kinetics 

during both the continuous cooling and isothermal shearing stages. This is contrary to the 

normal case, where growth occurs until the solid fraction reaches an equilibrium value 

and then coarsening commences. This would show a distinct change in kinetics from 

growth stage to coarsening stage. 

The other fact established by the present experimental results is that solidification under 

intensive forced convection in Twin Screw Slurry Maker produces spherical particles 

during the primary solidification process (Figure4.2. S, Figure 4.2.9). This suggests that 

particle growth inside the twin-screw slurry maker is spherical growth, rather than 

dendrite fragmentation as suggested by the dendrite fragmentation theory [FLE91]. 

Therefore, it can be concluded that particle growth under high shear rate and high degree 

of turbulence is spherical and with a very fast growth rate. This conclusion is also well 

supported by the theoretical predictions by various techniques. Vogel et al [V0G79] 

theoretically investigated the effect of laminar flow on the stability of the solid-liquid 

interface based on the stagnant boundary layer approach, and concluded that laminar 
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flow enhances growth rate. More recent theoretical work has introduced turbulent flow 

into the solidification process. These include stability analysis using a boundary element 

method by Qin and Fan [QINOO], and Monte Carlo simulation by Das and Fan [DAS02]. 

All these studies conclude that intensive forced convection, in particular turbulent flow, 

during solidification promotes spherical growth with enhanced growth rate. A general 

agreement is that laminar flow reduces the stagnant boundary layer and causes particle 

rotation, resulting in a rosette type of morphology, while turbulent flow can penetrate the 

inter-dendritic arm space, and therefore suppress dendritic growth and promote spherical 

growth. 

In addition, the experimental results in Figure 4.3.3 and Figure 4.3.12 show that 

increasing the intensity of forced convection decreases the solid fraction produced by 

primary solidification. There are two possible mechanisms responsible for such results. 

One of the mechanism is friction heating caused by intensive forced convection in the 

semisolid slurry, resulting in an increased slurry temperature and therefore a decreased 

solid fraction. The other possibility is that intensive shearing in the semisolid state, 

particularly with a high degree of turbulence, may change the energy level or even 

change the arrangement of atomic clusters in the remaining liquid, in such a way that the 

liquidus of the alloy is displaced to a lower temperature, leading to a decreased solid 

fraction at the primary solidification stage. 

5.2.4 Discussion on particle coarsening 

The experimental results in Figure 4.3.4 reveal that solidification inside the twin-screw 

slurry maker is mainly characterised by particle coarsening, since the growth rate is 
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extremely fast. In addition, the solid particles have a fairly spherical morphology (with 

the shape factor being 0.8) in the very early stages of solidification, and prolonged 

shearing only slightly increases the shape factor (see Figure 4.3.5). A major change 

occurs at the isothermal shearing stage with a decrease in particle density observed (see 

Figure 4.3.6). Particle coarsening, under intensive forced convection, is mainly achieved 

by Ostwald ripening through the dissolution of the smaller particles, rather than through 

the diffusion of solid matters from areas with high curvature to areas with low curvature. 

Ostwald ripening is described by the classical LSM theory [WAG68], which predicts that 

particle size (d) increases with time (t) according to the following equation: 

d" - (d0) " =kt Equation 5.2.1 

Where do is the initial particle size, k is the coarsening rate constant, and n is the 

coarsening exponent. 

Power law was used in Figure 4.3.4 to extract the exponent n and the coefficient Ic, for 

different screw rotation speeds, from the experimental data. The results are presented in 

Table 5.2.1. It is interesting to note that the coarsening exponent n is much larger under 

intensive forced convection than that under static condition. The values for n are 8.2 and 

12.7 for screw rotation speeds of 300rpm and 800rpm, respectively. The values of n are 

much larger than the 7/3 predicted theoretically by Wan and Sahm [WAN90] for the case 

of laminar melt flow. In addition, the results in Table 5.2.1 suggest that both n and k are 

strongly dependent on the intensity of forced convection, and that they increase with the 

increase in the intensity of forced convection. Therefore, the coarsening process under 
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intensive forced convection in the twin-screw slurry maker can be described by the 

following equations: 

d 8.2 = 1.18x 1012 t (at 300rpm) Equation 5.2.2 

d 12 ,7=2.28 x 1019 t (at 800rpm) Equation 5.2.3 

Equations 5.2.2 and Equation 5.2.3 suggest that Ostwald ripening is extremely slow 

under intensive forced convection in comparison with coarsening under static conditions. 

This slow coarsening rate can be attributed to the unique solidification behaviour under 

intensive forced convection. As discussed previously, under intensive forced convection, 

crystals grow in a spherical manner with an extremely fast rate. Consequently, when the 

primary phase reaches the predetermined solid fraction, the solid particles have a 

morphology close to spherical (see Figure 4.3.5) and a particle size with a narrow 

distribution around the mean diameter. Under such conditions, the driving force for 

Ostwald ripening is substantially reduced, resulting in a much lower coarsening rate. 

Table 5.2.1 Summary of coarsening exponent (n) and coarsening coefficient (k) as a 

function of screw rotation speed. 

Screw rotation speed (rpm) n k 

300 8.2 1.18x10 

800 12.7 2.28x10 
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5.2.5 Solidification behavior of AZ91D Mg-alloy in the RDC process 

As illustrated in Figure 5.2.1, there are a total of 5 detailed solidification stages in the 

RDC process: continuous cooling, isothermal shearing, slurry transfer, mould filling, and 

in the die cavity. 

During continuous cooling, which lasts about 15 seconds, heterogeneous nucleation 

occurs continuously and effectively throughout the entire volume of the melt, with a 

small undercooling. Due to the extremely uniform temperature and composition in the 

melt, every single nucleus survives, achieving maximum nuclei survival rate, and growth 

rate at this stage is extremely fast. 

During the solidification, the interface morphology of the growing ai-phase, as well as 

the final grain structure of the castings, are decided by the thermal conditions [SMA99] 

and the solute diffusion conditions [DAS02], at the solid/liquid interface. Under intensive 

shearing generated by the twin-screw slurry maker, the fluid flow characteristic inside the 

machine can mainly be described by high intensity of turbulence. Generally, the growth 

of the initial solid is controlled by the nature of the diffusion field existing around the 

liquid/solid interface. Under a turbulent flow, mass transportation in the whole of the 

liquid takes place by convection and liquid penetration of the interdendritic regions of the 

growing solid is promoted, meanwhile the rejected solute is quickly transported away 

from the liquid/sold interface regions. The result is a relatively uniform solute 

concentration at the growing solid-liquid interface, the stable diffusion fields being 

destabilised or even eliminated, i. e., both the temperature and composition gradient, in 

the solid/liquid interface, is significantly evened. Therefore, the conditions in the Twin- 
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Screw slurry maker promote symmetrical growth of the initial solid, resulting in the 

growth of the nuclei in a spherical manner. The fast and spherical growth of the 

continuous cooling solidification stage leads to the formation of a fine and spherical 

microstructure. 

The isothermal shearing stage is basically a coarsening process. This is achieved through 

dissolution of the smaller particles. The large shape factor, achieved by spherical growth 

at the continuous cooling stage, limits the coarsening through mass transportation from 

high curvature region to the low curvature region in the same particle. 

The secondary solidification starts when the semisolid slurry is delivered to the shot 

sleeve. Due to the low heat capacity and relatively low temperature of the shot sleeve, 

heterogeneous nucleation occurs in the intensively sheared liquid, and nearly all the 

nuclei survive. However, the surviving nuclei grow dendritically in the shot sleeve due to 

the absence of shearing. Such dendrites can be further fragmented when they pass 

through the narrow gate during the mould filling. 

Inside the die cavity, the remaining liquid still has largely uniform temperature and 

composition fields, due to the previous intensive shearing in the slurry maker and later 

through the gate. Under the large cooling rate (about 103K/s) provided by the metallic die 

block, nucleation is expected to take place throughout the entire remaining liquid with a 

much higher nucleation rate, producing the very fine a3 particles. It is clear from the 

above discussion that, the uniformity of temperature and composition in the remaining 

liquid is crucial to the formation of a fine and uniform solidification microstructure. 
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5.3 Microstructural evolution during the heat treatment of 

RDC AZ91D Mg-alloy 

5.3.1 Traditional heat treatment of AZ91 Mg-alloy 

Conventionally, AZ91 alloy cast under traditional gravity and low-pressure conditions is 

usually subjected to a subsequent T6 heat treatment. T6 treatment involves two steps, 

solution treatment at -413°C for 16-24 hours and subsequent aging at -168°C for 16 

hours or alternatively 216°C for 6 hours [AVE99]. Solution treatment causes the ß phase 

to dissolve, and it might be expected that subsequent quenching and aging would induce 

precipitation hardening. However, aging results in transformation of the super-saturated 

solid solution directly to a coarsely dispersed equilibrium precipitate, ß phase, without 

the appearance of G. P zones or intermediate precipitates [CLA68]. Moreover, the ß 

phase usually forms by discontinuous precipitation, in which even coarser cells spread 

out from grain boundaries. Therefore the strengthening response to aging is relatively 

poor. 

5.3.2 Dissolution in RDC AZ91D Mg-alloy 

As shown in Figure 4.4.1, the faster reduction in hardness for the RDC AZ91D Mg-alloy 

during solution treatment can be attributed to a faster dissolution of the ß-Mg17A112i 

which has been verified by the microstructural observation and quantitative 

metallography (Table 4.4.2). The difference in dissolution rate of the n-phase between 

RDC and HPDC AZ91D alloy samples, can be explained in terms of the homogeneity of 
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size and morphology of the ß-Mg17A112 phase. In fact, microstructural examination of the 

HPDC samples revealed some coarse lumps of the ß-Mgi7Al12, for which it obviously 

takes much longer time to diffuse in order to dissolve completely. In other words, due to 

the presence of the coarse ß-phase and large primary dendrites (Figure 4.2.4), the 

interfacial area for the diffusion of Al from ß to a"phase decreases, resulting in a slow ß 

dissolution rate for the HPDC sample. A homogenous distribution and a much finer 

eutectic structure throughout the entire RDC sample (Figure 4.2.5, Figure 4.2.7 and 

Figure 4.2.11), reduce the diffusion distance and increase the diffusion area, so that the 

dissolution process for the RDC AZ91D sample is relatively faster. After solution 

treatment for 5 hours (18ks) at 413°C, the hardness of the RDC samples almost reached 

its minimum value and then the hardness was essentially constant with the solution time 

increasing up to 24 hours (see Figure 4.4.1). 

During the solution treatment, dissolution of the eutectic ß phase is accompanied with the 

redistribution of Al solute in the secondary a-Mg grains (5-10 µm in size) to the primary 

a-Mg globules (average 40µm in size, Table 4.3.3). This process is driven by the push 

towards the equilibrium structure. The dissolution of the ß"Mg17A112 phase corresponds 

to the reduction of the hardness. It was evident that the solution treatment significantly 

changed the microstructure of the alloys through the dissolution of the ß-MgiiA112 phase 

and redistribution of solute elements, as revealed by SEM shown in Figures 4.4.4. With 

the dissolution of the ß-Mg17A112 phase, the secondary a-Mg phase transformed its 

morphology and took the shape of classic grains, bounded by the sharp grain boundaries. 

The final grain size is dependent upon the solution temperature and the time at 

temperature for subsequent grain growth [CEL00]. 
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The relation for normal grain growth in pure metals and solid-solution alloys is generally 

accepted as described in Equation 5.2.1. Based on the experimental observations and 

models for grain coarsening, the coarsening exponent n can be varied within wide limits, 

depending on material and temperature [HU70]. Usually the value of n is larger than 2 

and only approaches 2 in very pure metals or at very high temperatures. The grain growth 

during solution treatment of the RDC AZ91 D Mg-alloy in the present study is continuous 

and obeys the grain growth law with the n value being found to be 2.6 (see Figure 4.4.5), 

in between 2 and 3. 

5.3.3 Precipitation in RDC AZ91D Mg-alloy 

During subsequent aging of the RDC AZ91D alloy, Figure 4.4.8 clearly shows that, the 

ß-phase precipitates out from the super-saturated a-Mg solid solution in forms of both 

discontinuous and continuous precipitation. 

In section 5.3.2, we have discussed a faster dissolution response of the RDC AZ91D Mg- 

alloy to solution treatment, that is, an accelerated dissolution of the ß-Mgi7A112 during 

solution treatment at 413°C. According to the age-hardening curves, Figure 4.4.6, the 

alloy produced by the RDC process also exhibited accelerated age-hardening kinetics 

compared to the HPDC alloy. Similar accelerated aging kinetics have been observed by 

Cerri et al [CER02] in their thixocast AZ91D alloy, which was subjected to 2 hours 

solution heat treatment at 415°C and subsequently aged at 220°C. They suggested that 

the faster ageing kinetics compared to HPDC alloy was probably attributed to the higher 

degree of super-saturation for the semisolid processed alloy. In the present study, 

however, such accelerated aging kinetics are not attributed to the higher degree of the 
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super-saturation, due to much longer solution treatment time (24 hours) at a similar 

temperature. Instead, the accelerated aging kinetics would be attributed to the finer and 

more uniform grain structure for the RDC AZ91 D Mg-alloy, compared to the HPDC 

alloy. Despite the grain growth after solution treatment at 413°C for 24 hours, the RDC 

AZ91D Mg-alloy exhibited average grain size of 34.1µm in diameter, which is finer than 

that of HPDC alloy after the same solution treatment, being measured to be 47.6µm (see 

Table 4.4.1). The finer grain structure provides more grain boundaries along which the 

discontinuous precipitation of the n-phase takes place (see Figure 4.4.7), and gives more 

opportunities for the continuous precipitation to occur under faster age-hardening 

kinetics. Nevertheless, there are some very coarse a-Mg grains found in the solution 

treated HPDC AZ91D alloy, a result of the inhomogeneity in its as-cast microstructure. It 

apparently needs a longer time for the precipitation reaction of the ß-Mgj7A112i either 

discontinuous or continuous. 

Furthermore, the microstructural observation in the present study confirmed the previous 

investigations [CEL00] [NIE02] for AZ91 alloy and revealed both the discontinuous and 

continuous precipitation reactions taking place during aging. The morphologies for 

discontinuous and continuous ß-Mg17A112 precipitates, along grain boundaries and inside 

grains, respectively, are coarse platelets and fine laths as revealed in Figure 4.4.7b, c and 

Figure 4.4.8. However, the most important aspect for the study of heat treatment is the 

revelation of the accelerated solution and ageing kinetics for the RDC AZ91D Mg-alloy. 

In fact, both the solution and aging period for the RDC AZ91D Mg-alloy can be much 

reduced compared to the conventional HPDC process, which is an essential potential in 

reducing heat treatment cost and promoting efficiency. 
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5.4 Improved mechanical properties of Rheo-Diecast AZ91D 

Mg-alloy 

Table 4.2.3 summarises a comparison of mechanical properties between RDC and other 

processes, for AZ91D Mg-alloy. From Table 4.2.3 it can be concluded that the 

mechanical properties of castings depend strongly on the varied fabricating route. The 

tensile properties of the investigated RDC AZ91D Mg-alloy are evidently higher than 

those of the same alloy produced by typical HPDC methods or other SSM casting 

processes. 

It is well known that the mechanical properties of cast alloys are strongly influenced by a 

variety of casting defects. A larger amount of defects produce a lower UTS and 

elongation. Conventional die-castings are especially prone to high levels of porosity due 

to the high velocity splash of molten metal during the die filling. Contrarily, due to the 

stable laminar flow of the semisolid slurry as it enters the die, the Rheo-Diecasting 

process results in low levels of porosity (reduced to 0.3%-0.5%), with a fine and uniform 

microstructure. This in turn will lead to higher strength and elongation compared with 

samples obtained by other processing techniques, as shown by the comparison in Table 

4.2.3. The UTS is 248 MPa and elongation is up to 7.4%, in the present study for RDC 

AZ91D Mg-alloy. In addition, the yield strength and other tensile properties of the Mg- 

alloys have a strong dependence on grain size [AND03]. For the RDC samples the 

microstructure is fairly constant in terms of grain structure (see Figure 4.2.5). It is 

reasonable to expect a fairly constant yield strength as measured around 146 MPa. 
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In the RDC microstructure, the divorced eutectic ß-phase forms a discontinuous network 

and fine distribution. The ß-phase in the RDC samples is a harder intermetallic 

compound, and in the form of a divorced eutectic with fine distribution, is expected to be 

beneficial mechanical properties. 

Under T4 heat treatment condition, the RDC AZ91D structure transforms into a single a- 

phase structure through solid solutioning, eliminating the relatively brittle ß-phase 

network (see Figure 4.4.3 and Figure 4.4.4). Consequently a much-improved elongation 

is expected (11.2 %), as confirmed by the experimental results presented in Table 4.4.4. 

Ageing of the RDC samples produces coarse laminar Mg17AI12 precipitates, through 

initially discontinuous precipitation at grain boundaries and then continuous precipitation 

in the grain interior, as shown in Figure 4.4.7. Due to the incoherent nature of the ß- 

precipitates in the a-Mg phase, the precipitation strengthening effect is relatively weak. 

This explains why only a moderate increase in strength of the RDC samples can be 

achieved by heat treatment under both T5 and T6 conditions, see Table 4.4.4. The 

investigations on heat treatment of RDC AZ91D Mg-alloy, indicate that the T4 is an 

effective heat treatment for improving the ductility of the as-cast RDC samples, and that 

both T5 and T6 slightly improve the tensile mechanical properties under the present 

experimental conditions. However, a newly developed, energy efficient heat treatment 

(denoted as TX) has exhibited a superior combination of tensile properties for RDC 

AZ91D Mg-alloy, as summarised in Table 4.4.4. The substantially improved ductility, 

together with the high level of strength, provided by the RDC process and the subsequent 

specially developed T. heat treatment, will provide the opportunities to promote wider 

applications of Mg-alloys. 
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5.5 Advantages of Rheo-Diecasting of magnesium alloy 

In summary to our comprehensive experiments and studies, a number of advantages for 

the Rheo-diecasting of Mg-alloy have been clearly revealed. 

(A) Fine and uniform microstructure 

The microstructure is extremely fine and uniform, resulting from enhanced nucleation 

and spherical growth during solidification, under high shear rate and high intensity of 

turbulence in the Twin-Screw slurry maker, as demonstrated in Figure 4.2.5, Figure 

4.2.7 and Figure 4.2.8. This uniformity gives rise to less chemical segregation or micro- 

segregation (see Figure 4.2.13 and Figure 4.5.3), superior structure integrity and 

isotropy (Figure 4.5.2). Additionally, magnesium oxides are also found to be fine, 

spherical and well-dispersed, reducing or eliminating any detrimental effects (Figure 

4.2.14). These characteristics of the RDC microstructure all contribute to further 

enhanced mechanical properties. 

7) Much reduced cast defects 

In the RDC process, tendencies to form solidification shrinkage and porosity are much 

reduced, as the feeding magnesium alloy has up to 40% free flowing solid at the time of 

injection, as demonstrated in Figure 4.1.9. 

In castings, volumetric shrinkage is a result of the much lower density of the liquid state 

compared to the solid state. The reported density of liquid magnesium is 1.59g/cm3, at its 

melting point [AVE99], in contrast to 1.74g/cm3 for the density of solid magnesium. 
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Clearly, the presence of solids during the Rheo-Diecasting process will reduce the 

volume shrinkage proportionally to the amount of solid fraction in the feeding slurry. 

In addition, a distinct feature of the semisolid slurry is the viscous flow. The vigorously 

agitated metals at 40%-50% solid have viscosities typically in the range of 0.1Pa. s to 10 

Pa. s, this is two to four orders of magnitude higher than the viscosities of fully liquid 

metals [CAH96]. Therefore, the presence of a volume fraction of solid particles, which 

are fine and spherical as controlled by the RDC process, not only results in reduced 

solidification shrinkage, but also ensures a viscous flow to achieve the subsequent stable 

laminar mould filling (see Figure 4.1.9), eliminating the tendency of air entrapment. The 

much lower porosity level has been introduced in this study, which is in the range of 

0.3%-0.5% for RDC AZ91D Mg-alloy. 

(C) Improvement to mechanical properties 

As discussed in section 5.4, the unique microstructure and much lower level of casting 

defects produced in the RDC AZ91D alloy samples, leads to higher strength and superior 

elongation compared with samples obtained by other processing techniques, see Table 

4.2.3. 

(D) Cost saving and high productivity 

RDC is an economic process, with production rates similar to high-pressure die-casting 

process. In the RDC process, the component shaping system and the slurry making 

system are parallel. Once the SSM slurry is transferred to the HPDC machine, the slurry 

supply system starts to prepare slurry for the next shot. The slurry making process is 

more efficient (around 30 seconds) than component shaping process, therefore, the cycle 
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time of the RDC process is determined by the component shaping process. Consequently, 

the RDC process has an equivalent or even shorter cycle time than the conventional 

HPDC process, since a SSM Mg-slurry feed has less heat to be removed than a fully 

liquid feed. The result of the low processing temperature and low heat capacity of 

magnesium, is a shortened production cycle time and hence a high productivity. 

In addition, the RDC process is suitable for use with conventional Mg-alloys, which are 

freely available in the market, eliminating the need for specially preparing of feedstock 

materials. Compared to Thixo-route, the associated cost saving from material preparation 

alone in the Rheo-route is considered up to 40% [HAL00]. 

(E) Tight dimensional control 

The RDC process has demonstrated that it is suitable for producing high quality 

magnesium components with varying section thickness, see Figure 4.5.1. The RDC 

process utilises semisolid metal slurries, which have close-to-ideal microstructure and 

outstanding flow behaviour, resulting in forming stresses much lower than for solid 

metals and comparable with liquid metals. This enables near-net forming of intricate and 

thin-walled Mg-alloy parts with less constriction and higher dimension precision. 

fF) Loner die life 

Another distinct feature for RDC process is the much-reduced casting temperature. 

Comparing the casting temperature of the melt in Mg die-casting and in the RDC 

process, the casting temperature is 50-100°C lower than that used in conventional die- 

casting, as tabulated in Table 5.5.1 (data is collected from references 
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[AVE99] [MEL] [DAS06]). It is clear that the semisolid magnesium slurry filling the die 

at a much lower temperature results in a lower thermal shock to the die and lower 

sticking tendency, compared with normal die-casting. Therefore, die life can be extended 

several times. 

Table 5.5.1 Typical casting temperatures of Mg alloys in RDC and HPDC process (data 

collected from references [A VE99][MEL][DAS06]). 

Alloy Solidus and Liquidus 

oC 

Casting Temperature 

oC 

RDC Temperature 

oC 

AZ91 468-598 640-675 580-598 

Electron2l 545-640 >680 620-640 

AM60 565-615 650-680 600-615 

AM20 543-630 670-705 610-630 

ZA105 450-585 650-680 550-585 

ZK60 450-636 >676 615-636 

LG) Other advantages 

Furthermore, the following advantages of RDC process have been identified in our 

studies: 

9 The RDC process can be achieved by simply attaching the slurry maker to a 

standard cold chamber HPDC machine, without any modification. 

" RDC components can be subjected to full heat treatment for enhancing 

mechanical performance without compromising the surface quality and 

dimensional control. 

. Well-dispersed oxide particles, with fine size and spherical morphology are 

achieved by the dispersive mixing power of the Twin-Screw mechanism. 

" Lower scrap rate of the RDC Mg-alloy, which is recyclable. 
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Chapter 6. Conclusions 

1. The primary particles in the RDC samples are very fine and spherical (mean size 

around 40µm); with the primary solid phase uniformly distributed throughout the 

entire cross section of the RDC samples. Concentrations of Mg and Al inside the 

primary a-Mg particle are fairly constant. 

2. The secondary solidification in the shot sleeve is usually of a dendritic 

morphology, and resulting microstructure from solidification in the die cavity is 

extremely fine a-Mg granules (nominal size of 5-10µm) mixed with the non- 

equilibrium eutectic network. The eutectic structure in RDC AZ91D alloy is 

completely divorced. 

3. Solidification inside the TSSM occurs in two stages: continuous cooling and 

isothermal shearing. The particle density increased with the increase of shearing 

time during continuous cooling stage, while at the isothermal shearing stage it 

decreased with further increase in shearing time. The increase in particle density 

implies that continuous nucleation occurs during the continuous cooling stage, 

while the decrease in particle density suggested that Ostwald ripening takes place 

with an extremely slow coarsening rate. 

4. Intensive shearing partially suppresses the formation of primary phase during 

primary solidification, promotes the formation of primary phase in the shot 

sleeve, but does not affect the total volume fraction of the primary phase. 
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5. The solution treated RDC AZ91D alloy demonstrates an important characteristics 

of accelerated dissolution of the ß-Mg17A112 phase compared to the HPDC 

sample. In subsequent ageing treatments, the RDC AZ91D alloy also exhibits an 

important attribute of accelerated age-hardening behaviour. 

6. The as-cast state of RDC AZ91D alloy has improved ultimate tensile strength and 

yield strength. More importantly, the RDC process offers a substantial increase in 

tensile elongation compared to that obtained from both HPDC process and other 

semisolid processing techniques. 

7. Due to the fine microstructure and improved mechanical properties, the RDC 

process has proved to be particularly suitable for production of Mg-alloy 

components of higher integrity and superior performance. 
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Chapter 7. Suggestions for further work 

This study has been focused on the optimisation of the RDC process for improved 

microstructure and mechanical properties of AZ91 D Mg-alloy under the laboratory 

conditions. It has identified a number of advantages of the RDC process over the 

conventional HPDC process and other SSM processing technologies. The scientific 

understanding has been concentrated on solidification behaviour of AZ91D alloy under 

intensive forced convection provided by a twin-screw mechanism. However, this study 

can only be treated as a starting point for further detailed studies on both technological 

development and scientific understanding. It has opened many new directions for future 

research. In this chapter, some of the major research directions identified as a direct 

consequence of the work presented in this thesis are presented as follows: 

9 Process development: To realise the full potential of the RDC process as a viable 

industrial technology, further technological development is required to test the 

technology in an industrial production environment. The research along this 

direction should be on the robustness of the twin-screw slurry maker, the 

reliability of the temperature control system and the interface between the slurry 

maker and the HPDC machine. 

" Rheo-Diecasting of other Mg-alloys: So far, the RDC process has only been 

applied to Mg-based cast alloys, such as AZ91 and AM50. The indication from 

this work is that the advantages of the RDC process identified for AZ91D alloy 

should be equally valid for other Mg-based alloys. To realise the full potential of 
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the RDC process, further processing research should be focused on wrought Mg- 

alloys (e. g., AZ3 1), creep resistance alloys (e. g., AJ62). 

" Mg-alloys specially designed for the RDC process: The current commercially 

available Mg-alloys were developed about 50 years ago for either HPDC process 

or other casting techniques. They are usually not suitable for heat treatment. 

Special alloys should be developed to exploit the full advantages of the RDC 

process, such as heat treatability, tolerance to freezing range, divorced eutectic 

structure and more compacted morphology of the intermetallic compounds. 

" Processing of metal matrix composites (MMCs): The dispersive mixing power 

of the twin-screw slurry maker can be utilised to produce MMCs under the 

semisolid conditions. Ceramic powders with a fine particle size can be introduced 

into a Mg-based semisolid slurry, and dispersed uniformly by the twin-screw 

mechanism. This will be followed by component shaping using the HPDC 

process. It is anticipated that the RDC MMC components should have much 

improved ductility and toughness compared with those produced through the 

conventional route. 

" Fatigue properties of the RDC Mg-alloys: The RDC Mg-alloys exhibit fine and 

uniform microstructure throughout the entire casting, much reduced (or even 

eliminated) casting defects. All these are expected to be beneficial to improved 

fatigue properties due to the elimination of the stress concentration points for 

fatigue crack initiation. Further research should be focused on testing of the RDC 

sample to establish such advantages. 
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" Corrosion resistance of the RDC Mg-alloys: The RDC process produces Mg- 

alloy components with extremely uniform chemical compositions through 

solidification under intensive forced convection. Therefore, the corrosion 

resistance of the RDC Mg-alloys is expected to be much better than those 

processed by the conventional casting routes. Research along this direction should 

be focused on establishing the corrosion behaviour of the RDC samples and 

understanding the mechanisms for improved corrosion resistance. 

9 Increased in-house recycling of Mg-scrap through the RDC process: It is 

demonstrated in this study that the oxide particles and intermetallic compounds in 

the RDC samples have a compact (usually spherical) morphology, find particle 

size and uniform distribution throughout the entire component. The implication of 

this result is that more scraps can be recycled in-house without sacrificing the 

mechanical and corrosion performance of the RDC components. Further research 

work is required to establish the advantages of the RDC process on direct 

recycling of scraps. 
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Appendix 

Table A-1 Volume fraction measurement for the primary cx-Mg particles in the cross 

section of ý6mm RDC AZ91D alloy bars processed at different shearing temperatures. 

The measurements ate conducted on 3 different crossing lines, 10 equidistant areas were 

performed on each measured line under a magnification of 100, as sketch illustrated in 

Figure A-1. 

Position 

(""") 0-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-6 
Vol. 

Fraction(% 

Linel 19.71 24.73 23.22 25.01 26.79 24.53 25.29 23.92 22.88 18.72 

v Line2 20.68 23.98 26.09 23.58 25.85 22.88 24.63 25.46 22.58 19.86 
0 

Line3 18.26 21.88 25.53 26.03 23.65 26.95 24.87 22.66 24.18 18.99 

Average 19.55 23.53 24.95 24.87 25.43 24.79 24.93 24.01 23.21 19.19 

Linel 24.22 28.53 28.25 29.66 31.00 30.17 30.08 29.53 28.35 22.83 

Line2 23.82 29.16 30.67 29.31 30.07 31.03 29.29 30.02 28.95 23.98 
a 00 Line3 23.03 29.38 30.13 30.26 29.55 29.73 30.63 30.61 29.21 24.57 

Average 23.69 29.02 29.68 29.75 30.21 30.31 30.00 30.05 28.85 23.80 

Linel 30.79 35.81 36.82 36.25 39.29 40.15 36.75 36.46 35.75 30.80 

v Line2 32.13 35.01 37.2 36.99 40.75 41.01 37.91 37.5 36.28 31.63 
0 

OC Line3 31.73 37.68 36.19 37.82 38.68 38.31 36.28 37.23 34.79 32.55 

Average 31.55 36.16 36.73 37.02 39.57 39.82 36.98 37.06 35.61 31.66 

Line1 

-------- ;; --------- Jine2 

line3 

Figure A-1 Sketch illustration of the measure lines on the ý6mm RDC AZ91 D alloy 

bars. 
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Appendix 

Table A-2 Defect measurement results for RDC AZ91 D alloy samples with different 

tensile properties. The samples were selected randomly from processing optimisation 

according to the relative tensile properties. 

Tensile Properties Volume fraction of defects (Vol%) 

UTS 

(MPa) 

Elongation 

(%) 

1 2 3 4 5 Average 

Sample! 246 7.20 0.27 0.30 0.44 0.23 0.36 0.32 

Sample2 247 7.05 0.58 0.49 0.65 0.62 0.31 0.53 

Sample3 238 6.69 0.78 0.81 0.52 0.85 0.59 0.71 

Sample4 235 6.49 0.88 1.08 0.70 1.10 0.99 0.95 

Sample5 233 6.03 1.21 0.96 0.67 1.12 1.25 1.04 
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Appendix 

Table A-3 Microstructure analysis results for RDC AZ91D alloy at different shearing 
time, under the shearing speed of 300rpm and shearing temperature of 593°C (Part I). 

All the metallographic samples were cut through the middle sections from bars labelled 

`E' (see Figure 3.2), produced in different batches, at least 5 areas were performed on 

each sample. In these Tables (from Table A-3 to Table A-9), Fsai is volume fraction of 

primary al-phase, Fsa2 is volume fraction of primary a2-phase, Denal is density of 

primary al-phase, Dena2 is density of primary a2-phase, di is mean diameter of primary 

al-phase. The minimum (Min. ), maximum (Max. ) and average (Ave. ) value were 

tabulated. 

Time 
(S) 3 10 13 16 20 35 70 150 

Vol. 
Fraction °o 

Min. 23.95 26.95 28.66 27.79 27.73 26.95 26.98 29.82 

Max. 27.04 27.63 30.69 30.30 28.87 29.19 31.80 31.08 

Ave. 25.33 27.38 29.42 29.05 28.47 28.01 29.25 30.52 

Min. 6.89 12.88 14.66 19.99 20.18 18.81 20.89 21.35 

a Max. 8.58 15.22 16.02 20.52 21.15 21.96 21.63 24.09 

Ave. 7.9 13.75 15.33 20.27 20.70 20.45 21.25 22.79 

Min. 16.43 12.33 12.89 7.80 7.55 5.45 5.76 6.99 

Max. 18.81 14.47 16.03 10.0 8.06 9.68 10.17 8.46 

Ave. 17.43 13.62 14.09 8.78 7.78 7.56 8.0 7.73 
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Table A-4 Microstructure analysis results for RDC AZ91D alloy at different shearing 
time, under the shearing speed of 300rpm and shearing temperature of 593°C (Part II). 

Time 
(S) 3 10 13 16 20 35 70 150 

Items 

Min. 416.5 286.3 332.8 320.9 278.8 251.7 301.5 304.3 

Max. 501.7 357.5 365.3 369 293.3 304 335 311.5 

Ave. 464.3 314.3 349.7 343.2 285 275.1 318 307 

Min. 84.3 95.9 109 115.7 120 106.7 95.1 76.2 

Max. 89.5 113.7 113.7 137 132 115 110.8 98 

Ave. 87 107 111.6 129.7 127.2 109.3 103 85.5 

Min. 327.5 188 223.6 183.7 146.6 136.7 190.7 213 

Max. 414 243.8 253.3 233.1 173 192.3 239.7 228.6 

Ave. 377.6 207.5 238 213.5 157.8 165.7 215 221.5 

Min. 33.56 37.83 39.3 40.73 40.93 46.05 46.65 51.7 

Max. 33.83 40.88 41.0 42.75 43.37 48.7 53.3 58.3 

Ave. 33.68 39.23 40.22 41.87 42.21 47.3 48.89 54.3 

Min. 0.78 0.78 0.78 0.79 0.82 0.80 0.818 0.82 

Max. 0.80 0.80 0.816 0.825 0.83 0.823 0.84 0.85 
w 

Ave. 0.79 0.79 0.795 0.806 0.827 0.817 0.83 0.838 
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Table A-5 Microstructure analysis results for RDC AZ91D alloy at different shearing 
time, under the shearing speed of 800rpm and shearing temperature of 593°C (Part I). 

Time 
(S> 3 10 13 16 20 35 70 150 200 

Vol. 
Fraction (o o 

Min. 23.87 27.27 28.31 28.13 31.20 28.50 31.42 27.26 31.17 
9 
P, Max. 30.17 30.76 29.93 31.82 34.13 36.22 37.83 31.25 34.71 

y Ave. 27.39 29.43 29.06 29.52 32.59 32.6 33.55 29.10 33.25 

Min. 5.10 10.88 16.69 16.78 16.55 15.31 16.18 17.87 16.80 

Max. 12.86 15.02 17.72 18.53 18.61 19.18 18.03 20.16 19.10 
w 

Ave. 8.43 12.93 17.19 17.72 17.39 17.57 17.23 18.85 18.01 

Min. 16.72 13.95 10.60 10.99 12.59 10.8 13.39 9.49 13.26 

Max. 23.05 18.23 13.04 13.29 17.16 17.08 20.27 11.09 16.53 
W w 

Ave. 18.96 16.50 11.88 11.80 15.20 15.03 16.31 10.25 15.23 
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Table A-6 Microstructure analysis results for RDC AZ91D alloy at different shearing 

time, under the shearing speed of 800rpm and shearing temperature of 593°C (Part II). 

Time 
(S) 3 10 13 16 20 35 70 150 200 

Items 

Min. 343.9 292 325.8 314.3 445.6 395 449.3 358.3 455.5 
Cd 

Q Max. 409 448.2 360.4 355 479 460.1 556.3 368.2 496.7 

A Ave. 381.8 395 340.1 330.9 467.7 432 487.3 361.6 471.6 

Min. 92.7 101 123 108.3 105.5 99.3 73.3 80.3 77.8 

Max. 105 127.7 127.7 133.1 130.2 135.5 99.7 86.6 86.9 

ca .. Ave. 98 112 125 121.5 117.3 111.8 83.5 83.2 82 

Min. 238.9 186 198 198.1 315.5 295.7 363.7 276 373.9 

00 Max. 315.5 334 233.8 221.5 373.2 335 465 282 419 

Ave. 283.8 283 215 209.3 350.3 320.2 403.8 278.5 389.6 

Min. 35.11 37.59 37.5 39.85 38.8 40.35 43.7 47.15 45.55 

Max. 39.25 41.95 40.91 43.17 43.96 45.2 52.16 53.6 52.32 

Ave. 37.38 39.6 39.81 41.50 41.6 42.38 47.85 51.26 49.29 

Min. 0.76 0.77 0.80 0.79 0.78 0.80 0.80 0.82 0.80 
w 

Max. 0.81 0.81 0.82 0.82 0.83 0.80 0.80 0.85 0.81 
U 

W 

Ave. 0.793 0.785 0.813 0.807 0.803 0.80 0.80 0.836 0.805 
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Table A-7 Microstructure analysis results for RDC AZ91D alloy at different shearing 

speed, under the shearing time of 35s and shearing temperature of 593°C (Part I). 

Shr. Rate 
(rpm) 100 300 500 800 900 

Vol. 
Fraction (%) 

Min. 28.75 26.95 29.27 28.50 26.99 

r4 Max. 32.61 29.19 37.58 36.22 33.39 

w Ave. 30.49 28.01 32.63 32.6 29.40 

Min. 18.20 18.81 16.87 15.31 12.91 

Max. 19.59 21.96 17.90 19.18 14.29 

Ave. 18.92 20.45 17.30 17.57 13.70 

Min. 10.55 5.45 12.17 10.8 13.09 

Max. 13.02 9.68 19.68 17.08 20.46 

Ave. 11.58 7.56 15.30 15.03 15.70 
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Table A-8 Microstructure analysis results for RDC AZ91D alloy at different shearing 

speed, under the shearing time of 35s and shearing temperature of 593°C (Part II). 

Shr. Rate 100 300 500 800 900 
(rpm) 

Items 
Min. 267.3 251.7 407 395 461 

N 

Max. 340.5 304 505 460.1 571 

q Ave. 301.6 275.1 460 432 527.6 

Min. 91.5 104.2 95.9 99.3 68.0 

Max. 98.5 115 99.3 135.5 81.6 
A .. 

Ave. 95 109.3 97.5 111.8 77.0 

Min. 176 136.7 311 295.7 380.2 

Max. 246 192.3 406.5 335 490.6 
A .. Ave. 206.6 165.7 362.5 320.2 450.7 

Min. 45.73 46.05 41.7 40.35 42.69 

Max. 49.65 48.7 47.3 45.2 45.46 

Ave. 47.31 47.3 43.89 42.38 43.9 

Min. 0.77 0.80 0.805 0.80 0.81 
to 

Max. 0.83 0.823 0.836 0.80 0.832 

Ave. 0.80 0.817 0.82 0.80 0.827 
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Appendix 

Table A-9 Microstructure analysis results for RDC AZ91D alloy at different shearing 

temperature, under shearing time of 35s and shearing speed of 300rpm. Measurements 

were under the optical magnification of 40. 

Shearing 
Temp. 585 589 593 597 600* 

Items 
Min. 29.8 24.5 18.8 7.10 29.0 

0 0 Max. 32.3 26.3 20.5 12.51 35.3 

Ave. 31.4 25.1 19.1 9.07 31.8 

Min. 40.2 39.2 37.9 38.1 22.8 

i Max. 45.8 43.7 43.2 39.8 36.0 

Ave. 42.6 40.9 40.1 39.2 29.3 

Min. 0.78 0.77 0.78 0.78 0.52 

Max. 0.81 0.81 0.83 0.80 0.61 

w Ave. 0.79 0.78 0.80 0.79 0.56 
V) 

* Quantitative analysis were intended on the primary particle of ai , except those 
samples obtained at the shearing temperature of 600°C were the primary phase of a2. 
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Table A-10 Vichers hardness measurement results for solution treated AZ91D alloy 
(T4, at 413 °C) on both HPDC and RDC samples at different solution time. 

HV 
HPDC RDC 

Time 
ks 

Min. Max. Ave. Min. Max. Ave. 

0 0 63.0 65.2 64.3 65.9 67.9 66.8 

1 3.6 59.8 61.5 60.6 59.4 62.2 60.3 

2 7.2 57.9 60.8 59.3 54.5 57.7 56.5 

3 10.8 56.4 58.6 57.4 54.3 56.5 55.2 

4 14.4 55.4 58.8 56.7 54.2 56.9 55.7 

5 18.0 55.8 58.1 56.9 53.7 55.6 54.8 

6 21.6 54.9 58.0 56.3 53.3 56.6 55.1 

7 25.2 55.7 58.5 56.7 53.0 55.3 54.3 

8 28.2 54.5 57.6 56.1 53.4 56.3 54.8 

9 32.4 54.5 57.9 56.0 52.8 56.5 55.1 

10 36.0 54.3 57.3 56.2 53.7 55.6 54.5 

16 57.6 52.6 56.1 54.1 53.5 56.8 54.8 

20 72.0 52.8 56.5 55.2 52.4 56.2 54.7 

24 86.4 54.0 56.6 55.1 54.2 56.2 55.3 
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Appendix 

Table A-11 Vichers hardness measurement results for aging treated AZ91D alloy (T6, 

at 216 °C) on both HPDC and RDC samples at different aging time. 

HV 
HPDC RDC 

Time 
(ks) 

Min. Max. Ave. Min. Max. Ave. 

0 0 54.1 56.0 55.1 54.5 56.5 55.3 

0.5 1.8 54.6 57.0 55.8 57.5 59.6 58.7 

1.0 3.6 62.5 65.3 63.9 61.2 64.4 62.5 

1.5 5.4 63.8 66.3 65.4 64.3 66.3 65.4 

2.0 7.2 65.6 67.8 66.5 66.7 71.0 68.9 

2.5 9.0 66.0 69.0 67.5 68.2 70.8 69.4 

3.5 12.6 69.1 73.1 71.2 72.3 74.0 73.1 

4.0 14.4 71.0 74.2 72.5 74.5 76.9 75.8 

5.0 18.0 72.5 75.9 74.0 78.7 80.9 79.8 

5.5 19.8 72.5 76.2 74.4 80.3 82.0 81.2 

6.0 21.6 72.5 77.0 74.9 80.4 82.9 81.7 

8.5 30.6 75.6 80.1 77.6 79.0 81.4 80.6 

11.0 39.6 76.0 82.6 79.5 77.8 81.0 80.1 

16.0 57.6 75.9 80.5 78.0 76.9 80.4 78.5 

22.0 79.2 74.7 79.0 76.9 75.5 78.9 77.2 

48.0 172.8 73.3 76.4 74.7 74.9 77.5 76.1 

72.0 259.2 72.0 76.1 74.2 74.2 76.7 75.1 

120 432 71.9 75.5 74.0 72.9 76.1 74.2 

144 518.4 71.5 75.3 73.3 71.6 75.5 73.1 
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Table A-12 Chemical composition measurement for a RDC AZ91D Mg-alloy 
component. 5 burns were performed on 3 different areas of the sample. 

position 
Al Zn 

"'t. %) 
Test 
Position 

Minimum 
Value 

Maximum 
Value 

Average Minimum 
Value 

Maximum 
Value 

Average 

1 8.886 9.134 8.99 0.614 0.682 0.635 

2 8.921 9.057 8.994 0.604 0.685 0.651 

3a 8.930 9.165 9.007 0.642 0.662 0.651 

3b 8.737 9.197 8.950 0.675 0.697 0.692 

4a 8.879 9.058 8.99 0.605 0.658 0.625 

4b 8.911 9.113 9.03 0.674 0.702 0.687 

5a 8.838 9.132 8.966 0.599 0.643 0.625 

5b 8.821 9.057 8.89 0.590 0.661 0.620 

6a 8.949 9.193 9.108 0.671 0.695 0.680 

6b 8.843 9.053 8.911 0.613 0.675 0.638 
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