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A Area of absorber cloth or glass cover (M2) 

C Concentration of salt in the Input water by weight (%) 

C-P Specific heat (Jlkg. K) 

CP. & Specific heat of air (J/kg. K) 

CP. W Specific heat of water (J/kg. K) 

d Distillate mass production rate (kg/M2. S) 
D Distillate mass production rate (kg/M2. h) 

9 Gravitational constant (MIS2) 

H Spacing between absorber cloth and glass cover (m) 

hb Heat transfer coefficient from the absorber cloth to the 

ambient air through absorber insulation materials 

(W/M2. K) 

hc Convective heat transfer coefficient from the absorber 
cloth to the glass cover (W/M2. K) 

hca Convective heat transfer coefficient from the glass cover 

to the ambient air (WM2. K) 

hq Evaporative heat transfer coefficient from the absorber 

cloth to the glass cover (WIM2. K) 

hfg Latent heat of vaporization of water (J/kg) 

III Convective heat transfer coefficient from bottom of the 

Insulation to surroundings (WIM2. K) 

hr Radiative heat transfer coefficient from the absorber 

cloth to the glass cover (W/M2. K) 

hta - Radiative heat transfer coefficient from the glass cover 

to surroundings (W/M2. K) 

Hourly radiant energy incident on the glass cover per unit 

area (Insolation) (j/M2. h) 
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k& Thermal conductivity of the air (W/m. K) 
ki, Thermal conductivity of the masterclad (W/m. K) 

k12 Thermal conductivity of the polystyrene (W/m. K) 
k13 Thermal conductivity of the styrofoam (Wlm. K) 
1-11 Thickness of the masterclad (m) 

L12 Thickness of the polystyrene (m) 
L13 Thickness of the styrofoam (m) 

m Mass of the absorber support or the glass cover (kg) 
me Mass flow rate of input water (kg/M2. h) 
NuH Nusselt number 
Pabs Partial pressure of water vapour at absorber temperature 

(NIM2) 

PCOV Partial pressure of water vapour at cover temperature 
(N/M2) 

qc Convective heat transfer rate from the absorber cloth to 
the glass cover (W/M2) 

(Ica Convective heat transfer rate from the glass cover to the 
ambient air (W/M2) 

qD Heat transfer rate of produced distillate (W/M2) 

cle Evaporative heat transfer rate from the absorber cloth to 
the glass cover (W/M2) 

qk Heat transfer rate from the absorber cloth to the ambient 
air through bottom insulation material (W/M2) 

qr Radiative heat transfer rate from the absorber cloth to 
the glass cover (W/M2) 

qra Radiative heat transfer rate from the glass cover to 

surroundings (W/M2) 
qw. 1n Heat transfer rate of the input saline water (W/M2) 

qw. out Heat transfer rate of the output brine (W/m 2) 

RaH Rayleigh number 
S Incident solar irradiance (W/M2) 

t Time (s or h) 
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Tabs Temperature of the absorber cloth (OC or K) 
Tamb Temperature of ambient air (11C or K) 
TcOv Temperature of the glass cover (OC or K) 
Tsky Temperature of the sky (OC or K) 
Tw. In Temperature of input water (OC or K) 

Tw, 
Ou, 

Temperature of output brine (11C or K) 

V Wind speed (m/s) 

Greek 
- -Letters 

a. - 
ka 

Thermal diffusivity (M2/S) 
PaCp. a 

cc 
COV Absorptance of glass cover 

aw Absorptance of absorber wick 

a). Spectral absorptance 
P, Volumetric thermal expansion coefficient (I/K) 

Cab3 Emittance of absorber cloth 

CCOV Emittance of cover glass 

71 Instantaneous still efficiency 
0 Angle of inclination to horizontal (degree) 

Ila Viscosity of air (N S/M2) 

Va . 
Pa 

Kinematic viscosity of air (M2/S) 
Pa 

P Solar reflectance 

Pa . 
Density of air (kg/m3 

RX Spectral reflectance 
Stefan-Boltzmann constant (W/M2K4) 

Ir Transmittance of glass cover 
*rx Spectral transmittance 
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ABSTRACT 

Solar distillation using a wick-type solar still was Investigated theoretically and 

experimentally. A tilled flat plate wick-type solar still was designed and constructed. 

Charcoal cloth was used as an absorber/evaporator material and for saline water 
transport. 

A theoretical model for the performance of the wick-lype solar still has been 

developed and analysed. It Investigates the effect of various factors on the still 

productivity. A Fortran computer program has been developed and a finite difference 

technique was used to solve the main equations and to determine related parameters. 
Indoor experimental testing was carried out to Investigate the effect of input 

water flow rate and salinity on the still productivity together with the variation of the 

solar still efficiency with absorber temperature. The tests were conducted using the 

irradiance from a lamp array. 

Outdoor testing was carried out with and without a V-Irough solar concentrator on 

clear days In summer and winter. Representative daily efficiencies of the still with and 

without the solar concentrator were about 60% and 50% respectively on clear days In 

summer. 
The solar absorptances of samples of charcoal cloth and blackened hessian cloth 

were determined before and after environmental exposure. The solar relleclances of 

samples of 3M Scotchcal Films and aluminised plastic (as potential reflecting materials 
for the concentrator mirrors) were Investigated before and after environmental exposure 

and also exposure to elevated temperatures and humidities. 

It has been concluded that: charcoal cloth Is a good material for use as an 

absorberlevaporator and also as a water transport medium. Increase of the Input water 

mass flow rate leads to a reduction In the efficiency of the wick-type solar still. The still 

efficiency decreased linearly with Increase of salinity of the Input saline water. The 

productivity of the still Increases linearly with absorber temperature. The best 

absorber-cover separation Is found to be in the range 20-25 mm. Wind speed has no 

significant effect (up to about 10 m/s) on the performance of a well sealed still. The 

transmidance of the glass cover has a strong influence on the still efficiency. Use of the 

solar concentrator with the Inclined wick-type solar still leads to a greater fractional 

increase In still productivity on clear days in winter than on clear days in summer. 
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1.1 DISTILLATION 

1.1.1 The sun and water desalination 

The sun is a renewable source of energy. Its surface 

temperature is approximately 5700 K and it emits radiant 

energy at the rate of 380 X 105 GW. The solar constant i. e. the 

solar irradiance normal to the solar rays at the average Sun- 

Earth distance of 149.6 X 106 km is 1353 ± 1.5% W/M2. 

Simonson (1984). Solar energy Is an effectively inexhaustible 

form of energy that can be used indirectly and directly. Indirect 

forms of solar energy include biomass, ocean thermal and wind 

energies. Sayigh (1977). Direct use of solar energy includes 

heating of buildings and water and desalination of water. 

Water is essential to sustain human life. It is abundant, 

but not infinite in quantity. Man is dependent on rivers, lakes, 

and underground water to get fresh water, but these sources are 

not always clean. Salts and organisms will be present. The 

ocean covers some 70.8 percent of the earth's surface 
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containing about 1350 million cubic kilometers of saline water 

with 35000 ppm impurities. However the maximum salt level in 

fresh water for human consumption is only 550 ppm, Garg 

(1991). With the present rise of world population, intensified 

agriculture, possible climate change and industrial growth in 

certain parts of the world, the available annual water supply 

will probably be insufficient on a world basis. The growth of 

the world's population may require expansion into relatively 

isolated and and zones which are characterised by shortage of 

fresh water. Unfortunately a major portion of the fresh water 

supply is not available where it is needed. The problem can be 

partially solved by transporting potable water to some of these 

communities, but the costs involved are of such magnitude that 

this proposition is not feasible. Some other way of obtaining 

potable water will have to be found. 

One of the promising options to solve this problem of 

water shortage appears to be desalination. Desalination 

methods are already mitigating water shortages in parts of the 

world adjacent to the sea or saline bodies of water by 

desalination plants. These plants use fossil fuels which have 

finite reserve and contribute to environmental pollution. 

Therefore, it is natural to look at some other methods of 

desalination using renewable sources of energy like solar, wind 

and biomass. Solar desalination can be used to purify either 

seawater or brackish water in areas which lack potable water 

and have abundant solar radiation such as some of those located 

in the Middle East, Sayigh (1977). 
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1.1.2 Solar distillation 

Solar distillation has been long known and the earliest 
documented work is that of the Arab alchemists in ISS1, Malik 

et at (1982). It has been Investigated since the nineteenth 

century, buL used on a limited scale. Normally, two approaches 
have been taken in using solar energy. One is the direct 

absorption of energy in saline water and the other is indirect 

heating of water followed by evaporation in a centralised 
facility. 

The first approach is more suitable for small capacities, 
(less than 50 M3/day) while the second approach is 

economically unfeasible for plants with a capacity of less than 
200 M3/day. because of the capital costs Howe and Tleimat 

(1977). 
Solar distillation has similarities to the natural 

hydrologic cycle, which consists of: (i) absorption of solar 

energy by the top layers of water in oceans, lakes and rivers, 
(ii) heating up these layers, (iii) evaporation of the water, (iv) 

transport of the resulting vapour to cooler regions and (v) 

condensation of the vapour leading to precipitation as e. g. rain 

or snow. 
Accordingly, since very early ages engineers have 

considered this process for supplying fresh water from saline 

water in the following conditions: 
1) Places lacking natural fresh water but where brackish 

water is abundant e. g. coasts, ships and deserts. 
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(2) Transport of water is expensive. 
(3) High levels of solar radiation are available. 
(4) Potable water is needed on a small scale. 
(5) The land is available. 
Water distillation is accomplished by exposing layers of 

saline water (usually in black trays or a basin) to solar 

radiation, and condensing the water vapour produced under a 
transparent sloping cover. The condensate runs down the sloping 

cover and is collected in a trough along the lower end of the 

cover and flows out of the enclosure to provide pure water. 
There are many solar stills which use the distillation process. 
All are aimed at optimising the efficiency and lowering the 

construction cost. They may differ from one another in shape 

and materials used, but all use the same principles and serve 

the same functions. 

The most commonly used type of solar still (i. e. the 

basin still) is sometimes called the greenhouse, roof, 

conventional or simple still. This type of solar still was 
designed and fabricated in 1872 near Las Salinas in Northern 

Chile by Carlos Wilson, a Swedish engineer. Since then until the 

present day numerous examples have been constructed and 
deployed both on large and small scales, as shown in Table 1.1.1, 

Garg (1991). 

Solar distillation has been combined with salt production 
in various investigations by many authors Kettani and Abdel-Aal 

(1973), Comkal and Datta (1973) and Abdel-Aal (1978). In this 

process the combined production of water, chlorine and 

magnesium from sea water by using the solar stills is the aim. 
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The concept is dependent on the development of solar energy 

systems for the segregated precipitation of ocean salts Kettani 

(1979). 

1.2 SOLAR STILLS 

In this work, the tilted wick-type solar still has been 

investigated and its literature is mentioned in subsections 
(1.2.2 and 1.2.3). Literature relatingto the basin-type solar still 
is briefly reviewed in the next subsection and in AppendixAl. 

1.2.1 Basin-type solar still 
This is the most commonly investigated type of solar 

still. As shown in Fig. 1.2.1. it contains a shallow layer of brine. 

it is sometimes constructed from galvanised steel sheet with a 

rectangular plan area (supplied either continuously or 

intermittently with brackish or saline water). Above the brine 

is a sloping transparent cover of glass or plastic sheet. The 

generated water vapour can condense on the lower surface of 
the cover. The cover is sloped to allow the distillate to trickle 

into troughs from where it is collected in an external reservoir. 
The incident solar radiation which penetrates the 

transparent cover is partially absorbed by the saline water, the 

major portion being absorbed in the basin bottom which is 

usually blackened by a high solar absorption material or lined 

with a black material. The base of the still radiates energy in 

the infra-red region which is partially absorbed and re-radiated 
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back into the still by the cover. Heat, from the still base, Is 

then transferred into the water, thereby increasing Its 

temperature and evaporation of the heated upper layers of the 

water is enhanced. This process increases the temperature of 

the air adjacent to the upper layers of the water. Convection 

currents inside the still carry this warm vapour-air mixture to 

the cooler transparent cover. Moisture condenses on the 

underside of this cover, the heat of condensation being 

conducted through it to the surrounding atmosphero and the 

partially dehumidified air drifts back to the water surface for 

further addition of moisture. The water film of condensate on 

the inner side of the cover flows down the surface into the 

collecting trough and is collected as distilled water. The output 

of the still varies with various atmospheric conditions e. g. 
insolation, wind speed, ambient temperature, and design 

parameters e. 6. blackness of basin liner, transmittance of cover 

materials etc. 
A very comprehensive review of the history, theory, 

applications and economics of solar stills has been prepared by 

Talbert et aL (1970). It describes the work done in various 

countries from 1872 to 1970. Large installations and small 

laboratory scale models are described. Malik et al. (1982) have 

reviewed, thoroughly, the work on solar distillation. They have 

described the design and performance of a wide range of solar 

stills. They also summarised several studies by various 

engineers of the effect of climatic and design parameters on 

the performance of a conventional type solar still. Many other 

reports and historical reviews of solar distillation are 
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available in the literature such as Telkes (1953): Kettani 

(1979) and Tiwari and Malik (1982). 

Dunkle (1961) analysed the basin-type still and the 

multiple effect diffusion still. He proposed and discussed the 

heat and mass transfer relationships and indicated the effect of 
temperature and pressure on the performance. 

Experimentally, Sayigh and EI-Salam (1977) tested 

several single sloped concrete basin-type solar stills In Ryadh, 

Saudi Arabia. The stills had various thicknesses and slopes of 

glass cover and their water trays were covered with different 

solar absorbent materials e. g. black and red sand, black stones, 

straw and charcoal. Various adhesive materials for sealing the 

glass cover to the stills were used. They found the optimum 
thickness and slope of the glass cover were 3 mm and 2011 

respectively, and the best adhesive was the silicon rubber, 

produced by the Dow Corning Corporation. The average 

efficiency In April was 58%. Rai et aL (1990) studied, 

experimentally. the effect of salinity of the input water on the 

performance of a single basin-type solar still connected with a 

solar collector. They also studied the still performance with 
blackened jute cloth floating over the water in the basin of the 

still. They observed that the rate of daily distillate decreases 

with salt concentration, as shown In Fig. 1.2.2, and Increases 

with the. use of jute cloth up to a maximum of 35 percent. 
Several attempts have been made to improve the 

efficiency of the basin-type solar still (some of them are 

mentioned in Appendix Al) e. g. using air flow through the still, 
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forced bubbling of ambient air Inside a solar still, using the 

latent heat of evaporation and dyes dissolved in the brine. 

The recommended design of the solar still has the 

following characteristics: 
(1) The cover should be thin and have excellent 

transparency to the solar wavelengths. 

(2) Salt crystals should not be allowed to form at the 

surface of the water. 

(3) The brackish layer should be as thin as possible. 

(4) The distance between the cover and the water surface 

should be as small as possible. 

(5) The basin floor should be insulated and its surface 

blackened. 

(6) It should be economic and weatherproof. 

1.2.2 Tilted solar still 
Except in the tropics, a horizontal surface Intercepts 

less solar radiation than one which is tilted toward the equator. 
The more nearly perpendicular a receiving surface to the sun's 

rays, the greater is the radiation intercept by a unit area , Lof 

(1980). Using an inclined solar still is a way to achieve this. 

However, a greater gain of solar radiation can be achieved with 

a high transmittance still cover and a high absorptance 

absorber/evaporator surface. These enhance a higher absorber 

temperature which, in turn. is a strong factor affecting the 

evaporation rate in inclined solar stills. Consequently, the 

production rate of the distillate is enhanced. 
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The tilted wick-type solar still is one among other sorts 

of inclined solar stills e. g. inclined plate, multiple-ledge and 
tilted tray solar stills. Tilted stills have been suggested to 

increase the incident solar energy on the absorber surface. An 

improvement to the inclined plate solar still can be made by 

using porous black wicks of cotton cloth (fabric) to make what 
is now called the Wick-Type solar still which is the still type 

of this research. 
For basin-type solar stills there have been many studies 

of the effects of climatic, design and operating parameters e. g. 

solar insolation, wind speed. presence of dye, insulation 

thickness. But, relatively. there is a lack of attention to the 

inclined wick solar still, although it has been recommended by 

many authors as a low cost, easily constructed still and has 

higher operating temperatures and higher efficiencies than 

those of basin still. The reason for the lack of attention is due 

to some disadvantages of this type of solar still. For example, 

when blackened jute is used the colour is subjected to fade, dry 

spots are created due to Insufficient flow rate, and 

consequently salts accumulate on the absorber surface and 
block the pores of the wick. Such problems, although they are 
inherent, could be overcome by giving a flow rate of input water 

3-4 times higher than the expected productivity, Moustafa et 

aL (1979), and by keeping the input water always flowing on 

and through the absorber cloth prevents salt accumulation and 

keeps the absorber always wet. 
I "I Low heat capacity of the evaporating water (thin layer 

flowing through the cloth) and the solar still makes a faster 
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response to the solar flux Intensity than occurs In basin solar 

stills (of a layer of certain depth). 

In the last two decades, the tilted wick-type solar still 
has gained the interest of many solar engineers in solar 
distillation research and Is being developed to enhance Its 

efficiency and reduce its cost, which are the most important 

aims. 

1.2.3 Wick-type solar still 
A schematic cross section of a tilted wick-type solar 

still Is shown in Fig. 1.2.3. It consists of a porous black 

material, either supported by a tray or stretched on a frame, 

covered by a sheet of transparent material to make an airtight 

enclosure. The still can be inclined to be perpendicular to the 
direction of the beam solar radiation at a given time of day and 
to avoid dripping back the distillate into the wick. It can either 
be insulated or uninsulated, Jundi (1982). The saline water feed 

is distributed along the upper edge of the porous material which 
is usually a blackened cloth. This cloth serves as the absorption 

and evaporation surface. The transparent cover acts as a 

condenser. On its inside surface the condensate flows down to 

be collected in a trough at the lower edge of the cover. A drain 

for the excess saline water can be fixed along the lower edge of 
the cloth. 

The blackened cloth used in this type of solar still has 

some advantages: 
(1) It increases the evaporating surface area of the brine. 

(2) It provides the still with a low thermal capacity and 

consequently faster response to incident solar radiation 
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(compared with basin-type stills) and higher evaporator (brine) 

temperatures are achieved, which, in turn, yield higher 

evaporation rates. 
(3) The still can be oriented to intercept the maximum 

solar radiation. 
(4) The glass cover Is parallel to the water surface to 

minimise reflection losses. 

(5) The brine-cover distance can be reduced to a few 

millimetres to make the still a diffusion-type still, Elsayed 

(1983). and to eliminate shadowing of the bottom due to the 

side walls. 
(6) The tilted-wick stills have relatively high 

productivity during the winter months. In comparison with 
basin solar stills, Lof (1980). 

These are all advantages of wick-type stills but they 

also have some problems e. g. development of dry spots, 
difficulties in precise control of brine flow, deterioration of 

the wick material and clogging of its pores with salt when jute 

is used as the wick. 
Hirschmann (1975) presented a product comparison 

between different designs of wick-type and basin-type solar 

stills. He suggested a linear relation between daily production 

rate for each design and daily solar radiation over the 

horizontal surface. In addition he concluded that wick-type 

solar stills have higher production rates than basin stills. 

Moustafa etaL (1979) have demonstrated experimentally the 

enhanced performance of the wick-type solar still, in comparison 

with the basin-type still. They used a black synthetic wettable 
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mat of 2.5 cm thickness and area 0.182 M2. The flow of water in 

the wick was controlled using a flow regulator and shut-off 

valve operated with a photocell. They observed that it had a 
faster response to Incident solar radiation, higher operating 

temperatures and higher efficiency than a basin-type solar 

still. 
Frick and Sommerfeld (1973) suggested the use of jute 

cloth along the width of the still dipped in saline water trays. 

The aim was that the jute cloth should remain wet due to 

capillary action therefore avoiding the use of a water 
distribution system. Efficiencies as high as 40 to 50 percent 

were reported. However, the wick-type solar still developed by 

Frick and Sommerfeld (1973), suffered from the limitation of 
having part of the inclined evaporating cloth dry at times. Sodha 

etaL (1981) have presented a design, analysis and performance 
investigation of a multiple-wick solar still, in which the wet 

surface is created by a series of jute cloth pieces of increasing 

length separated by thin black polythene sheets. Their results 

were based on Dunkle's (1961) relation. They claimed that the 

cost of their wick-type still was less than half that of a basin- 

type still of same area. Tanaka et A (1981) compared 

experimentally the hourly and daily productivity of a tilted 

wick-type solar still with that of a conventional single roofed 

basin-type solar still, under the same insolation (Fig. 1.2.4) and 

indoor simulated conditions. The measured performance was 
then compared with the results obtained by the theoretical 

analysis of the wick solar still. Their results have proved the 
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superiority of the tilted wick-type solar still to the basin-type 

and a productivity increase of (20 - 50) percent has been 

confirmed. Yeh and Chen (1986) investigated experimentally the 

effects of climate, design and operating conditions on the 

performance of wick-type solar stills using blackened lute 

cloth and an artificial radiation source. Their results show an 
insignificant effect of the wind speed and a minor effect of the 

ambient temperature on the productivity of the still as shown 

in Figs. 1.2.5 and 1.2.6 respectively. They also show that the 

productivity decreases with increase of the input water flow 

rate as shown in Fig. 1.2.7. However their results are limited. 

Dual purposes of the wick-type solar stills have been 

studied theoretically by Gandhidasan (1983). They are to be 

applied for solar distillation and as a regenerator for liquid 

desiccants. 

In 1984, Tiwarl et aL published a paper dealing with a 
double condensing multiple-wick solar still. This kind of still 
has been proposed to overcome the high temperature of the 

glass cover during hot days. by Introducing an additional 

galvanised iron sheet just below the blackened wet jute cloth 

with a slight spacing around the absorbing surface. Tiwari 

(1984). Tiwari and Yadav (1985) have studied the galvanised 

iron sheet multiwick solar distillation plant economically and 

by a Oerformance analysis. They proposed fibre reinforced 

plastic instead of the galvanised sheet for a longer lifetime of 

(15-20) years. Tiwari and Rao (1985) have also discussed in 

detail the design and performance of fibre reinforced plastic 

multiwick solar distillation plant. 
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Recently an analytical model of a multiwick solar still 

with water flowing over the glass cover has been presented by 

Dhiman and Tiwari (1990). Different expressions for various 

still parameters have been obtained. They found a slight 
improvement in the output of the still and an increase with the 

water flow rate over the glass cover. Very recently double 

effect distillation in a mult1wick solar still has been developed 

by Singh and Tiwari (1992). They showed a higher efficiency can 
be obtained by reuse of the latent heat of evaporation. The 

efficiency increases as the flow rate in the still decreases. 

1.2.3.1 Analysis of heat transfer modes of a tilted wick-type 

solar still 
A brief analysis of the wick-type solar still is given 

below. A more detailed analysis is presented in Ch. 4. 

The modes of heat transfer inside and outside a tilted 

wick-type solar still are shown in Fig. 1.2.8. They can be 

classified as follows: 

1) Modes inside the still 

a) From the absorber/evaporator surface to the glass 

cover the evaporative heat transfer (q. ) is the most effective 

mode. It should be as large as possible compared with the other 
heat transfer modes. That is because theoretically the 

distillate output of any solar still is linearly proportional to it. 

The other internal heat transfer rates are convection (q, ) and 

radiation (qr)- 

b) From the absorber/evaporator to the back of the still 
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conductive heat transfer rate (qb) occurs and to the exterior the 

brine heat content(qw. o,, t). 
2) Modes outside the still 

a) From the glass cover to the ambient are the convective 

(qca) and radiative (qra) heat transfer modes, and that with the 

distillate (qD)* 

b) From the back of the solar still to the ambient air 
through the insulation material is the heat flow rate (qk)* 

Assuming the wick surface behaves as a very thin layer 

of water the energy balance on the absorber/evaporator surface 
is written as: 

q.. In + ctw'[S . q. + qc + qr + qk + q,.. Out + (MOP) 
dTabs 

A abs dt 

Where A, Cp. m are area. specific heat and mass of the absorber 

support board respectively. 
On the assumption of a negligible heat capacity of the distillate 

on the glass cover the energy balance of the glass cover is 

expressed as: 

mc dT 
ct. S+qg+qc+qr. qca+qra+qD+( !: P-) 

A cov dt 

Here A. CP, m are the area, specific heat and mass of the glass 

cover respectively. For the whole still, energy balance equations 

are given as: 
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are given as: 
(a,, +cew'[)S+qw. in qca+qra+qD+qk+qw, out 

+ (MCP) dTco, 
+ (mCp) dTabs 

(1.2.3) 
A cov dtA abs dt 

Where 

aw is the absorptance of the absorber wick, 

acov is the absorptance of the glass cover, 
is the transmittance of the glass cover 

Under the assumption of steady state conditions, the last two 

terms in eq. (1.2.3) go to zero. Hence 

(cc,, +aw't)S+qw. in qca+qra+qD+qk+qw. oul 

The instantaneous distillate rate (d) is: 

qjj 
hIg (1.2.5) 

I 
ý- and the instantaneous still efficiency (ij) is expressed as: 

q. 
. 

dhfg 

ss 
(1.2.6) 

where hfg is the latent heat of vaporization of water and S is the 

incident solar irradiance. 
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1.2.3.2 Other types of wick solar still 
Use of vertical wick solar stills may minimise the cost of 

land which Is very expensive in cities. In 1987 Kiatsiriroat ot 

at. analysed the transient performance of the vertical-type 

solar still, and the mass transfer in it has been estimated. 

Earlier Coffey (1975) suggested, briefly In a technical note, 

different designs of vertical wick solar stills e. g. floating 

vertical still, ground suction vertical solar still and vertical 

solar still with basin of feed water at its base. 

An inclined stepped solar still has been developed by 

Akhtamov et aL (1978). It has a housing with double glazing 

with Inclined blackened trays divided by baffles. Water passes 
through the double glazing gap from its bottom to the top to 

feed the still. The latent heat of evaporation released by 

condensation passes through the glass to the water. Its average 

efficiency was around 65 percent 

A diffusion-type solar still has been suggested by Dunkle 

(1961). He pointed out the advantages of a multiple effect 
diffusion still and indicated the effect of different parameters 

on the still performance. Elsayed (1983) compared the predicted 

transient performance of a solar operated diffusion-type still 

with a roof-type still. He concluded that the diffusion still is 

superior to the roof-type still In both production rate and 

operating efficiency. 
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1.3 USE OF SOLAR CONCENTRATORS TO ENHANCE SOLAR 

DISTILLATION 

Solar concentrators have a wide variety of applications. 

They are used to improve the overall collector efficiency, to 

enhance the aperture-to-cost ratio for a flat collector Broman 

(1984). They increase the incident solar energy on smaller 

absorber surfaces where a relatively high temperature is 

reouired. 

A V-trough reflector (flat booster mirrors) has been used 

with different designs of solar collectors such as vacuum tube 

collector Selcuk (1979) and In improving solar cell performance 

by an east-west groove alignment which has been proposed by 

Hollands (1971). The optical and thermal analyses of this type 

of concentrator has been studied by Meyer ef aL (1982) and 

Dang et aL (1983). Various geometries and designs of the 

booster mirrors have been studied by several authors e. g. Rabi 

(1976), Bannerot and Howell (1977). Mannan and Bannerot 

(1978), Chiam (1982) and Broman (1984). 

Mousa et aL (1978) described a double exposure solar 

still. The water basin evaporator was exposed to the solar 

radiation at both its upper and lower surfaces using inner 

reflectors on the left and right side walls of the still as well 

as underneath the tray. Experimentally they obtained a yield 

improvement of 26 percent due to the presence of the reflectors 

with a solar intensity difference of 7 percent. Their main 
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conclusions were that the effect of double exposure is more 

effective in the first half of the day and the idea of double 

exposure is a successful technique. Its disadvantage Is the rapid 

spoiling (degradation) of the mirrors. Tamimi (1987) confirmed 

that the Installation of reflectors on the Inside walls of a 
basin-type solar still enhances the still production of distilled 

water. A comparison of results using the reflectors and black 

dye has been shown, from which it is indicated the yield 

increase due to the reflectors is more than that due to the black 

dye. Recently. Zabeltitz (1990) has investigated four different 

distillation systems, in a basin still, black parallel cloths hang 

vertically in the water of the basin with their upper parts above 

the water surface. Its north inner vertical wall was'covered 

with a reflecting aluminiurn film. In another basin still, black 

irrigation pad is hanging at the vertical north wall. Salt water 

is pumped u p to the upper end of the wetted pad. The 

productivity of the former still was less than that of the latter. 

However, the paper is short and gives little informa tion, being 

only a limited experimental investigation. 

In this work, the effect of intensification of the solar 

radiation incident on the wick-type solar still is investigated. 

A V-trough concentrator-solar still combination was used. The 

concentrator has an apex angle of 300 with flat mirrors and 

fixed on the glass cover of a flat wick solar still. 
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1.4 OBJECTIVES OF THE PRESENT WORK 

The objectives of the present work are as follows: 

(1) Investigation of the suitability of charcoal cloth for use 

as a standard solar absorber and water transport medium in 

wick-type solar stills. 

(2) Investigation of the effect of a V-trough solar 

concentrator (with 3011 apex angle) fixed on the glass cover of 

the still in relation to the performance of the solar still, and 

still material durabilities under enhanced solar insolation. 

(3) Investigation of the performance of the wick-type solar 

still using the charcoal cloth and the V-trough solar 

concentrator with various saline water flow rates and water 

with various salinities. Some of these investigations have been 

carried out indoors after construction of an experimental lamp 

array. 
(4) Investigation of the durability of the charcoal cloth 

including maintenance of solar absorptance after environmental 

treatment and solar still conditions for different periods of 

time. 

(5) Investigation of the durability of reflective materials in 

relation to use as mirrors on the walls of the solar 

concentrator. This objective has been carried out through the 

following tests: 

(1) Environmental exposure for various times. 

(I I) Ageing in air at various temperatures and times. 

(iii) Temperature and humidity cycling at various 

temperatures, relative humidities and periods of time. 



Table 1.1.1. Major solar stills of the world. (After Garg (1991)). 

Country Place WaterYield Area Year Feed Water Remarks 
m'13/day m'12 

Australia Muresk 1 0.83 372 1963 Brackish Rebuilt 
Muresk 11 0.83 372 1966 Brackish Operating 
Coober Pedy 6.3S 3160 1966 Brackish Operating 
Caiguna 0.78 372 1966 Brackish Operating 
Hamelin Pool 1.21 SS7 1066 Brackish Operating 
Griffith 0.91 413 1967 Brackish Operating 

Cape Verde 
Islands Santa Maria 2.12 743 1965 Seawater Abandoned 
Chile Las Salinas 14.76 4460 1872 Brackish Operating 

Quillaqua 0.4 100 1968 Seawater Operating 
Quallaqua 0.4 103 1969 Seawater Operating 

China WuzhI 385 1976 
Zhunqiian 50 1979 

Greece Symi 1 7.56 268S 1964 Seawater Rebuilt 
Symi 11 2600 1968 Seawater Dismantled 
Aegina 1 4.24 1490 196S Seawater Rebuilt 
Aegina 11 1486 1968 Seawater Abandoned 
Salamis 1.1 388 196S Seawater Abandoned 
Patmas 26.11 8600 19G7 Seawater Operating 
Kimolos 7. S7 2S08 1968 Seawater Operating 
Nisyros 6.06 200S 1979 Seawater Operating 
Fiskardo 2200 1971 Seawater Operating 
Kionion 2400 1971 Seawater Operating 
Megistl 2S28 1973 Seawater Operating 

India Bhavnagar 0.83 377 1965 Seawater Operating 
Awania 1866 1978 Brackish Operating 
Bitra 2 - 1980 Brackish Operating 
Kulmis 3 - 1980 Brackish Operating 

Pakistan Gwadar 1 306 1969 Seawater Operating 
Gwadar 11 7 9072 1972 Seawater Operating 

Spain Las Marinas 2.57 868 1966 Seawater Operating 
Tunisia Chakmou 0.53 440 1967 Brackish Operating 

Mahdia 4.16 1300 1968 Brackish Operating 
U. S. A. Daytona Beach 0.53 228 1959 Seawater Rebuilt 

Daytona Beach 0.57 246 1961 Seawater Dismantled 
Daytona Beach 0.38 216 1961 Seawater Dismantled 
Daytona Beach 0.61 148 1963 Seawater Dismantled 
Balcharden 1.62 600 1969 Brackish Operating 

W. Indies Petit St. Vincent 4.92 1710 1967 Seawater Operating 
Haiti 0.76 223 1969 Seawater Operating 
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ONA p TER, mMia, 

EXPER- HMELITAL EQ AIND 
PFIG0- ED-Ul MES 

This chapter is concerned with the construction and 

operation of an experimental wick-type solar still. together with 

the ageing treatment of absorbing and reflecting materials and 
Instrumentation adopted for this work. 

2.1 SOLAR DISTILLATION SYSTEM 

The distillation system consists of five main parts as 

shown in Fig. 2.1.1 and Plate No. 1. The still (1) is led by saline 

water from the main reservoir (2) through the constant head 

device (3) which controls the input flow rate. The distillate Is 

collected In a distillate bottle (4) below the still. The excess 

brine drains away to a Mine reservoir (5) which is also below the 

still. The Instrumentation system Is described In section (2.2). 
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2.1.1 Wick-type still: construction and materials 
The wick-type solar still is as shown in Fig. 2.1.2. A sheet 

of galvanized steel with rectangular dimensions 1000 mm x 700 

mm was folded to make a 52 mm deep rectangular tray (1) with a 
U-shape section at the top of the lower edge and a right-angled 

section at the top of the upper one. The cover glass sheet (2) was 
fitted between these two sections. The sides of the tray are 

wooden battens of 25 mm thickness. One layer of 9 mm thickness 

moisture (and fire) resistant board (Masterclad. Cape Insulation) 

(3) is fixed Inside the tray to support the absorber cloth. A sheet 

of 12.5 mm thickness polystyrene (4) Is positioned underneath the 

support board to insulate the bottom of the tray. The absorber 

wick (5) Is made of charcoal cloth. Freeman et A (1986). which 
is commercially available (Charcoal Cloth Umited). Its upper edge 
is Immersed in the brine in a rectangular cross section aluminium 

channel (6) in which a constant water level ran be maintained by 

a constant head device arrangement. The upper part of the 

charcoal cloth goes over the lower edge of the aluminiurn channel. 

The tray is covered by a sheet of 4 mm thickness glass with a 

rubber gasket (7). A sponge rubber gasket between the glass and 

the tray helps to ensure there are no gaps between the glass pane 

and the tray walls. The glass cover Is pressed an the Inner walls 

of the still to make the enclosure airfight. The upper edge of the 

cover Is pressed by a steel strip (8) of 5 mm thickness and 25 mm 

width having the same length as the cover by means of two steel 

clamps. and the lower edge is Inserted in the U-shape section at 

the lower edge of the tray. 
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The tray Is Insulated from the ambient conditions by 

boards of styroloam (9) of thickness 35 mm. It Is fixed on a 
dexion frame by which the system can be oriented towards the 

south. The inclination of the still can be adjusted according to the 

solar altitude anglo at noon. A drain (10) for the excess saline 

water has been fixed along the lower edge of the support board. It 

is an aluminium gutter. commercially available with rectangular 

cross section 15 mm x 20 mm. Another shorter aluminium channel 
(11) with rectangular cross section 10 mm x 12 mm Is fixed on 
the inner surface of the glass cover to collect the distillate. The 

glass cover width exceeds the length of this aluminium channel 
by about 60 mm so that distillate can pass to a second channel 
(12) with square cross section 15 mm side. This is connected to 

the distillate reservoir. The geometrical drawing of the still Is 

shown in Fig. 2.1-3. 

2.1.2 Flow rate system 
Obtaining a uniform and controllable saline water flow 

rate through the absorber cloth of the still Is an Important 

requirement of the present work. The flow rate Is small and In 

the range of (2-6) kg/M2. h. A flow rate control system has been 

developed and consisting of four main parts as shown In Fig. 2.1.4. 
(a) A plastic tank of 15 liters maximum capacity with 

water*surface area 400 mm x 400 mm. This Is the saline water 

main reservoir connected to the constant head device. The outlet 
flow rate is always more than that to the solar still and Is 

controlled by means of a stop-cock valve. This replaced a 
(previously used) 4 litto plastic bag reservoir which Is 
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commercially available for horticultural drip feeding of plants 
Mahdi of al. (1990). This arrangement was not adequate for long 

runs. 
(b) A constant head device (CHD) as shown In Fig. 2.1.4. 

maintains the water level constant In the aluminiurn channel. A 
flexible connection tube, 12 mm inner diameter. connects the CHD 

and the aluminium channel. 
(c) An adjustable platform controls the level of the CHD 

and consequently the saline water level in the aluminiurn channel. 
(d) A dial gauge device by which one can monitor the 

vertical level of the CHD relative to a fixed level. 

2.1.3 Controlling the saline water flow rate 
The plastic main reservoir Is fixed an a frame at a level 

higher than the CHD by a distance of about one meter. The saline 
water Is fed from the main reservoir through a 12 mm inner 
diameter flexible tube Into the CHD. The stop-cock valve is fixed 

at the outlet of this tube and clamped at a constant level relative 
to the main reservoir to keep the head difference constant. 

The overflow saline water goes via pipe (1) In Fig. 2.1.4 to 

a bottle from which it Is sent back to the reservoir using a 
peristaltic pump. The water Is fed to the still through pipe (2) by 

a 12 mm inner diameter tube to the aluminum channel. The water 
level in this channel Is the same as In the CHD. The charcoal 

cloth. with its upper edge. Is immersed in the saline water In the 

channel. The water rises upwards to pass over the edge of the 

channel by capillary action of the charcoal cloth (Fig. 2.1.2). The 

water passes down the cloth on the inclined surface. 
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The flow rate of the saline water can be controlled by 

moving the adjustable platform up and down and monitoring the 
dial gauge. This action affects the water level In the CHD and 
consequently in the aluminium channel Inside the still. So. the 

upward distance, which the water has to be raised by suction due 

to the capillary property of the charcoal cloth. Is variable. The 

flow rate of the saline water Is highly dependent on the water 
level in the aluminum channel. 

2.1.4 Solar concentrator 
The solar concentrator used In this work Is of the V- 

trough type. Its sides are made of two flat boards of Dow Corning 

Styrofoarn ( Le. extruded polystyrene ) of 1000 mm x 610 mm x, 35 

mm dimensions. These are lined with a solf adhesive 3M 

Scotchcal Film S30 to form the mirrors of the concentrator. The 

boards are fixed at their ends by a truncated V-shape area, of the 

same styrofoarn material, with a fixed apex angle of 300. The 

cross section of the trough Is shown In Fig. 2.1.5. The height of 
the concentrator Is 542 mm. It can be fixed on the still glass 

cover using four wires. one from each top corner to the framo of 

the solar still. 

2.1.5 Camp array 
A radiant energy source has been constructed. It has two 

rows of three lamps and one row of four lamps with 2S cm 

separation distance between adjacent lamp centres. The rows are 

separated by a distance of 21.6 cm. Eight Osrarn 120 watt PAR 
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(Parabolic Aluminised Reflector) lamps with 301 beam width are 

used. These are positioned around two 275 watt Infrared lamps 

(Thorn EMI) as shown In Fig. 2.1.6. No attempt was made to obtain 

parallel radiation. The aim was to achieve a reasonable uniform 
Irradiance. 

The lamp spectrum will have about 70% Infrared radiation 

while solar radiation has about 47.3%. The radiant energy source 

can produce an average radiant energy flux of about 420 W/m2 on 

a surface area of 50 cm x, 100 cm located 125 cm; from the front 

plane of the lamps. The lamps are fixed on wooden battens. These 

are connected to each other and to a dexion frame to allow for 

tilting, parallel to the plane of the solar still as shown in Fig. 

2.1.7. 

2.2 INSTRUMENTATION 

Various parameters have to be measured simultaneously 

and periodically In order to Investigate the performance of a 

wick-type solar still e. g. absorber and cover temperatures. solar 
insolation and wind speed. 

In this work the emphasis has been on temperature and 

solar Insolation measurements. These were collected and stored 
by a Delta-T Devices data logger In nineteen individually 

configured channels. Temperatures were measured In various 

positions of the still using thermocouples. The solar Insolation 

was measured by Kipp and Zonen solarimeters. 
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2.2.1 Temperature measurements 
In order to measure the temperature of the welled 

charcoal cloth, four metal sheathed thermocouples from Comark 

Electronics Limited are fixed underneath the cloth and distributed 

In a suitable arrangement. Five solf-adhosivo patch thermocouples 

supplied by TC Ltd. are attached at different locations on the 

outer surface of the glass cover to measure the cover 

temperatures. Another two patch thermocouples are fixed on the 

back surface of the galvanized steel tray to monitor the 

temperature at the Interface of the styrofoam with the tray. 

These patch thermocouples are standard. typo K. suitable for 

operating up to 2SO OC. They were supplied with a lead length of 

two meters. Also. another metal sheathed thermocouple Is 

inserted between the support board and the polystyrene sheet. 
This is used as an Indicator of the thermal Insulation of the 

support board and to monitor the temperature there. The Inlet and 
the outlet saline water temperatures were also measured by 

means of sheathed thermocouples. One patch thermocouple was 

attached in a shaded point somewhere underneath the Inclined 

support board of the solarlmeters to measure the ambient 

temperature. All these thermocouples are connected to the data 

logger which records the temperatures each minute and stores 

the average values of the temperature over five minutes. These 

thermodouples were calibrated. together with the temperature 

measurement data logger, against a mercury thermometer at 
temperatures between the ice point and the water boiling point. 

The accuracy of their measurement was in the range of ± 0.2 OC. 
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2.2.2 Insolation measurements 

The solar insolation data were measured by two Kipp and 
Zonen dome solarimeters of serial Nos. 774038 (called Kipp and 
Zonen No. 1) and 752429 ( called Kipp and Zonen No. 2) and one tube 

solarimeter supplied by Delta-T Devices serial No. T6M 6640. Kipp 

and Zonen No. 2 is shaded by G cm width semicircular ring to 

measure the diffuse irradiance. The tube solarimeter was used on 
different occasions when the solar concentrator was in use and it 

was centred on the base of the solar concentrator parallel to the 

long edge. The specifications of these solarimeters are in 

Appendix A2. The two dome solarimeters were calibrated on 
22-/3/1989 by the U. K. Meteorological Office. The certificates are 

shown in Appendix A2. The dome solarimeters were fixed on an 
inclined board in the same plane of the solar still. They were 

connected to the data logger which measured the solar irradiance 

every 10 seconds. The live minute average irradianco was stored 
by the data logger during the experiment running time. 

2.2.3 Wind speed measurement 

The wind speed passing over the still was measured by a 

propeller type anemometer (battery operated) supplied by Air 

Flow Developments. The propeller is fixed 50 cm above the mean 
level of the solar still. The anemometer measurement was 

calibrated against an electronic TSI model 1650 air velocity 

meter using the wind tunnel in the aerodynamic laboratory at the 

department. Wind speed was recorded manually every 30 minutes 
during the course of the experimental test. 
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2.2.4 Data logger 

This Is a Delta-T Devices data logger with a serial No. 

DL6902. It is a battery operated electronic device for taking and 

storing readings from sensors. Up to 62 Input channels. using four 

input/output cards. are available and the logger can accept Input 

In the form of voltages, resistances, counts, frequencies or 
digital levels. In this work nineteen channels were used and their 

input was in the form of voltages from the solarimeters and the 

thermocouples. Their labels. sensors type and functions are 

shown in Table 2.2.1. 

Recording of the data by the logger Is completely 

automatic. Recorded data are stored In the ioggees memory and 

can be displayed by a printer or transferred to a computer for 

storage on a disc. Instructions are given to the data logger via a 
BBC computer by using computer software. Seven software files 

are used to deal with the logger. These are as follows: (1) 

EDITLIB, (2) EDITLOG, (3) COMMS. (4) COLLECT. (5) UTILITY. (6) 

LOGDAT3, (7) SENSORS. The main stages and more detailed 

instructions are shown In the flow charts in Figs. 2.2.2 and 2.2.3 

respectively. A sample of the printout of the logger Is shown In 

Fig. 2.2.4. 

. 
Standard sensor Information Is contained In the SENSORS 

file. e. g. thermocouples types available are J. K. and T. The 

temperatures are measured by thermocouples relative to a cold 
junction channel usually channel No. 1. This Is a two kn cold 
junction thermistor. Its maximum error Is 0.18 OC when the 
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logger works In an ambient temperature range of -20 to +80 *C. 

Delta-T Devices Manual (1987). 

2.2.5 Other Instruments 

(a) Spirit level to fix the horizontal level of the still. 
(b) Inclinometer to fix the still inclination angle relative 

to the horizontal. 

(c) Stop watch to measure the amount of the saline water 

flow rate with the help of a measuring cylinder. 

(d) Electronic balance to weigh the distilled water 

produced every 30 minutes. 

2.3 EXPERIMENTAL PROCEDURE 

Outdoor and Indoor tests of the solar distillation system 

were carried out with various variables. There were some similar 

and other different steps achieved for the both tests. Those steps 
have been classified according to their time relative to the data 

collection I. e. before, during and after data collection by the data 

logger. 

2.3.1 Outdoor tests 
Tests of the solar still were conducted with and without 

the V-1rough solar concentrator on various sunny days by varying 
the saline water salt concentration and the Input water flow rate. 
The following steps were needed for each experiment. 
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2.3.1.1 Before data collection 

(I) The data logger was configured and its start logging 

time was set then connected to the various sensors. 
(ii) The top and lower edges of the still were set 

horizontally using the adjustable platform and spirit level. 

(iii) The Inclination angle of the still was set in rolation 
to the solar altitude at noon with the aid of the inclinometer. 

(iv) Sufficient of the food water of a certain salt 
concentration was prepared. 

(v) The absorber was rinsed with tap or distilled water by 
letting a high flow pass through the charcoal cloth for (10-15) 

minutes. 
(vi) The required flow rate of the feed water was adjusted 

by measuring the over-flow rate and the total flow rate leaving 

the main reservoir, with the aid of a stop watch, measuring 

cylinder and the adjustable platform. 

2.3.1.2 During data collection 
(i) The data logger recorded the temperatures and solar 

Insolation. 
(ii) The weight of distillate produced each 30 minutes 

was determined. 

(iii) The wind speed was determined using the propeller 

connected to the digital meter. every 30 minutes. 
(iv) The over-flow feed water was periodically returned 

to the main reservoir by using the peristaltic pump. 
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(v) Step (vi) of the above subsection (2.3.1.1) was 

repeated once per hour. 

(vi) The volume of the excess brine was measured every 30 

minutes. 

2.3.1.3 After the data collection 
(i) The data logger was disconnected from the sensors and 

connected to a BBC computer. 
(ii) The data was converted to a readable form using the 

computer and then printed. 

2.3.2 Indoor tests 

Tests were carried out by using the lamp array as a source 

of energy. The parameters which have been studied indoor are 
input water flow rate and its salinity. The steps required in these 

tests are mostly the same as mentioned in section (2.3.1) with 

some exceptions. 

2.3.2.1 Before the data collection 

(i) The lamp array was switched on and left about 30 

minutes to reach a steady state by checking the lamps surface 

temperature. 

(ii) Steps (i). (ii) and (iv-vi) as in subsection (2.3.1.1). 

(iiij The Inclination angle required of the solar still and 

the lamp array was fixed. 
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2.3.2.2 During the data collection 

(i) As In subsection (2.3.1.2). 
(ii) To vary the Input water flow rate the CHD level was 

varied by means of the adjustable platform relative to a fixed 

level by monitoring the dial gauge. 

2.3.2.3 After the data collection 

As In subsection (2.3.1.3). 

2.4 INVESTIGATION OF MATERIALS 

2.4.1 Introduction 
The absorber of a solar still is one of the most important 

components Influencing the performance of a solar still because 

of its direct effect on the fraction of Incident solar energy which 
is absorbed. Therefore the absorber material should have high 

absorptance and good durability. Reflecting materials for solar 

concentrators should have high spectral reflectance and 
durability to withstand the environmental conditions. 

Charcoal cloth has been selected as the absorber material 

and the self adhesive 3M Scotchcal Film 530 as the reflecting 

material In the present work. The durability and optical 

properties of these and some other materials have been 

investigated by determination of solar reflectance of the samples 

using an Integrating sphere reflectance spectrometer and an 
infrared spectrometer. 
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2.4.2 Charcoal cloth as a solar still absorber and capillary wick 

water transport material 
In the construction of a wick-typo solar still, the absorber 

should be a porous black material which serves as the solar 

radiation absorber and brine transport medium. Many 

Investigators. e. g. Sodha et aL (1981) and Tiwarl of aL (1984. 

1985), Yeh and Chen (198G) and riwarl and Yadav (1987) have 

used blackened lute as an absorber material. This suffers from 

blockage of pores and lading. It needs frequent replacement 

and/or black dye Injections. Charcoal cloth has been used in this 

work Instead of the lute. since it Is inherently black, no dye Is 

required and exhibits no contraction after being soaked by water. 

Charcoal cloth is a textile form of activated carbon. It Is a 
highly porous adsorbent used for a wide variety of purposes 
Including air purification, pollution control and medical 

applications. It Is produced In the U. K. by Charcoal Cloth Limited 

from viscose rayon cloth (regenerated cellulose) In a knitted or 

woven form. It Is therefore more costly than conventional 

powdered or granular activated carbons. Hitchcock otal. (1983). 

The rayon Is first pro-treated with a mixture of Inorganic 

chlorides In aqueous solution and dried. The Impregnated cloth Is 

then carbonized In an Inert atmosphere and activated in carbon 
dioxide -gas In a furnace at temperatures up to 880 11C. Freeman 

of A (1986). The material currently produced on a commercial 
basis In the U. K. is highly microporous (pore widths <2 nm) with 
0.55 mm thickness. Fig. 2.4.1 shows a scanning electron 
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micrograph of a specimen of charcoal cloth which has boon used 

at this work at two magnifications using a Cambridge Storeoscan 

250 MK-2 scanning electron microscope. 

The solar absorptance of the charcoal cloth has been 

measured as received and after environmental treatment using a 
Lambda-9 Perkin-Elmer spectrometer. for the visible (VIS) and 

near infrared (NIR) radiation. and 683 Perkin-Elmer Infrared (IR) 

spectrometer for the IR radiation. 

Samples of charcoal cloth were compared with others of 
blackened hessian supplied by B. Brown (Holborn) Ltd. They had 

been exposed to the outdoor conditions for different periods of 

time. They were fixed in a shallow box covered by a transparent 

thin plastic sheet to prevent direct rainfall, dust accumulation 

etc. This box was tilted facing the south. A monthly adjustment 

of angle was made in relation to the average solar altitude at 

noon. The solar reflectance of the samples was measured before 

and after such treatment. 

2.4.3 Reflecting materials for the solar concentrator 
Self adhesive 3M Scotchcal Film 530 has been used In the 

V-trough concentrator. (subsection 2.1.4). This material (together 

with others) has been Investigated before and after various 
treatments. The selection of the reflecting material Is based an 

relatively high spectral reflectance. low cost and good durability. 

Different samples were tested In high humidity and/or heated 

enclosures at various temperatures and periods of time. Outdoor 

exposure tests were conducted on different samples for different 

times with varying weathering conditions. 
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The heat treatment was done In an oven (Medical 
Electronics Ltd., Type M, P* C. ) Of size 0.3 x 0.3 x 0.3 m3 with 
adjustable temperature for periods up to hundreds of hours at 
temperatures between 80 OC and 180 OC. 

The cycling heat and humidity treatment was done In a 
humidity chamber ( Kelvinator. Model HCVH14, serial No. S04145 ) 

of size 0.72 x 0.72 x 0.68 M3 with monitoring relative humidity 
(R. H. ) and temperature which were S. 7 and 10 cycles 24 hours 

each cycle. 
Samples of reflecting materials were also fixed Inside a 

shallow box covered with transparent plastic sheet and then 

exposed to the outdoor environmental conditions. Some of the 

samples were exposed for up to one year. Analyses of the surface 
microstructures and composition of the reflecting samples were 
carried out using a Cambridge Stereoscan 250 MK-2 scanning 
electron microscope equipped with a solid state detector. 

2.4.4 Reflectance measurements using the Perkin-Elmer 

integrating sphere 
In this study the spectral reflectance px (for wavelengths 

throughout the solar spectrum) of every sample was measured 

using a 60 mm Perkin-Elmer integrating sphere serial no. 6125. 

connected to Lambda-9 Perkin-Elmer Spectrometer. This gives 
the spectral reflectance of a sample In the region (0.3 - 2.5) pm. 
This region of the spectrum has been divided into twenty equal 
increments of energy. (Appendix A3): each has a mean wavelength 

that divides the increment into two equal parts, Duffie and 
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Beckman (1980). According to selected ordinates for air mass 2 

and 23 km visibility. the spectral reflectance has been measured 

on a chart In each midpoint wavelength using a cursor key, by 

which the spectrum can be traced. connected to a digitizer which 
is connected to a main computer terminal. A sample of a traced 

spectrum and the corresponding numerical data after conversion 
by the digitizer are shown In Fig. 2.4.2. The average of the 

rellectances of the twenty midpoints were calculated using a 
simple program developed especially for this purpose. (Appendix 

A3). The calculated average represents the reflectance of the 

sample In the solar region. A sample of a calculated spectrum is 

shown In Fig. 2.4.3. 
The Perkin-Elmer spectrometer Is a double beam 

instrument and, In reflectance measurements. one beam falls on a 

reference plate of BaS04 powder, while the other strikes the 

sample. The Instrument measures the ratio of the radiation 

reflected from the sample to that reflected from the reference, 

and it would appear that the Instrument measures the reflectance 

of the sample relative to the reference. However. before 

recording the sample measurement. another reference sample 

needs to be put in the sample position so that the recorded 

sample reflectance on the chart would be on a (0 - 100)% scale in 

the wavelength region (0.3 - 2.5) Itm. This calibration Is 

memorized In the InstrumenCs computer for all other samples 

while the Instrument Is in the ON condition. 
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Fig. 2.1.4. Schematic diagram of the flow rate system. (i) over 
flow pipe. (2) Still feeding water pipe. 
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r, - g rg. 2.1. Z Schematic side view of tho still and the lamp array. 
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rig. 2.2.1. Distribution of thermocouples (a) on tho 
glass cover and (b) beneath tho absorber cloth. 
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Fig. 2.2.2. Flow-chart of the main stages of use of the data logger. 



ST 

I CONFIGURE THE LOGGER I 

YES 
I SETTHETIME I 

v HO NEW START LOGG-IN -1,14 
CONFIGURA 

; MIEDA' SET START TIME 

f YES 
READ DATA AND STORE DATA RtQUIRED 

I STOP LOGGING I 

COLLECT DATA 

ýATA 110. REQUIRED 
No 

ALL 
VES 

SAVE DATA ON DISCI 
f 

DISPLAV DATA 
I 

ERASE COL ECTED DATA 

YES 
CONTINUE 

STOP 

Fig. 12.3. Flow-chart for data logger instructions. 



..................................................................................................... 
$at&-mw 0.16-11PI-I 
T"itj 0#18 11111 NVI-lit 
t- inw-fla oftw 
6- 661 $1 efshol 

Vs lifits fislial 
VW-f&dblt (todi&I 

................................................................................................ 
Swid 
c6serie"ll KI 
Itarted Ujilsis lull 111131" 
US callocloil 26111 1123111.1 
obts Troll 11MES 

..................................................................................................... 
Dawl "of I If 

It 
---------------------------------- ---------------------------- ----- ------------ ------ - 

Stater Int 
--------------------------- III VLt VLI 

----------- ask --------- Ica ---------- 
M 

----------- 
Itz 

---------- 
let 

--------- 
Ice ----------- Io 

ICE ICL act Icy tCK T(K lei 10 act to 
CO) 901 Kit? ISA U10 act lei ICS 10 its 
lei lei US act lei$ tell let., tell tell Ice% 

del C Its-? 1114-2 Is (A-2 to# C del C off C off C its C Ott C 

. 
off C del C off C 

........................... 
its C 

.......... 
del C 

.......... 
dej C 

.......... 
dtf C 

......... 
get C 

.......... 
oil C 

.......... 
deft 

.. 
1112ifte fda If 1.11112-S . 161410 ILS 03 It. 11 I *- 1.0 111.1 111.1 

......... 
IS. 1 

21.11 1.0.1 '21 L1 . 11 10.1 11.1 16.1 163 It. I mo 
hsisins Islas 1.12 IIJ 0.1.2 1113 ?1 60.1 1.11. a 21.2 I'll. I '2'A 

26.1 21A if 
........................... 

26.6 
.......... 

00.6 
.......... 

24.4 
.......... 

21.1 
........... 

24.1 
.......... 

24.0 
...... 

21ill IIIISM I. Ir, 411 L ]W. % Lill Lm MSIL 
.... 

LM 
.......... 

1.414 
4vt lot 49t 40t 44t 491 tit 44 4wt 

lull aft. N. " 11.4 . 3711MC-2 . 1.11SX-2 NA. 1 11.11 4 .6 Is 16.1 IS. 1 16.1 
2"t N111. *. V, t 2-4-t VVI *. A a 121*1 24wi 1. "t 2"% 

: UII IISM116 It . "Iett-z AMSE-2 It. n 11.1 11.1 ISA 11.2 ISJ IsA 
M Mit 13.1t 1.1.41 11. )l lit 141.91 ". it lit *-% 

wal 1131,004 11.1 . 113643-1 . 1.1131-21 tt. n It. $ 11.1 IL! 10 10 1 11.6 
21.6 21.1 22.3 21.4. 19.1 I1. f I1 11.1 11.1 11.4% 

Wal 11313-34 111.11 JIM-1 1.6030 11.11 81.6 If. $ 111.1 16.1 11.1 16 
21.1 . 1. 

; 
1.1.4 10.1 11.1 16.1 16.1 11.1 18.1 

11.4 . 411413-2 . 46SIN IM% 11.1 11.1 IS. # I&. $ Is, 14.2 
4.1.1 21.1 21.1.15 1.1.6 It 11.1 11-1 It I YJ 111.1 

ItSIO-of IM, JIM-? . 114*41-2 4. It 11.1 it. I to-! S 16.1 lmý 14.1 
11.1 U. I. ".. 6 4.1.1 IIA it 11.2, to to 6 

2ul I IISS430 11.1 Allit-2 . 10IM-2 14-6 14.9 16.6 Is. $ 
t .24.1.3 22.1 1.1.1 It.? 111.1 W., 11.4 to.., 16.4 

Unt ItO. S. " I1 . 7111*3 . 64r:, A-! P. SI, 111.1 1A IS. 11 11.1 16.6 16.1 
22.1 21.1 MA . 11.9 Mt 11.1 11.1 11.0. 16.4 18.1 

Ufa 11 #4 11 . 0"5ISE-2 AIMM %*. it IIJ 215. Z Ib 11.1 14.1 11 
22.2 2113 1.12.1 1.2 4.11 11.4 113 It.? Wil . 11.4 

21111 0: 41UH I1 . 1114*11 .61.0 644-2 %0.4t a1 34 ILI II. S I1 11.1 
22.2 21.6 . 11 *,.. % ILF 11.1 11.1, 11.6 21.0 

Wall 12SIts" Is . 40,14M N. it Ia $4.1 11.1 IL! 11.4 

. 12.1 21.1 23.1 31.11 11.1 11 11.1 11 111.1 
'. 11wil 1210164 It . 112iff-I . 21IM-2 19.1 IfA U. S is IP. 1 11.1 

- 22.3 21.1 21.2 . 1.1.3 13.6 11.1 Is., 11.4 ItA 1.1.4 
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Fig. 2.4.1. Scanning electron micrograph of an as-received 
sample of charcoal cloth, (a) low and (b) high magnifications. 
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Fig. 2.4. ý. Spectral reflectance of a sample. (a) before and (b) 
after tracing by a cursor and conversion by a digitizer. 
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Fig. 2.4.3. Sample of calculated solar reflectance of an as-received 

sample of W Scatchcal Film (530) measured by Lambda-9-Perkln 

Elmer Spectrometer. 
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3.1 SOLAR STILL PERFORMANCE 

The performance of solar stills Is usually expressed In 

terms of the operating efficiency (TI) which is defined as follows: 

(mass of distillate produced per unit area per unit time) 
(energy Incident on the st III cover per unit area per unit time) 

x (latent heat oI evaporation) (3.1) 

Dhig 
I (3.2) 

This definition of efficiency has been used throughout the present 

work. Other definitions are sometimes usedi e. g. Lot (1980). In 

Principles of Desalination edited by Spiegler and Laird. defined it 

as the condensed water actually produced divided by the water 

which could theoretically be evaporated by all the solar energy 

reaching the outer cover. 
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This Investigation has compared the still performance 

with and without a V-trough solar concentrator (of apex angle 
300) attached to the still. The combination of the still with the 

concentrator can be used to Investigate the performance of the 

still under a greater range of irradiance than Is possible without 
the concentrator. The still was of the flat wick-type. It was 
located at Brunei University at Uxbridge 510 33' north latitude. 00 
291 west longitude and 35 motor elevation above sea level. 

Ordnance Survey (1988). 

During the experimental tests of the solar still. the 

absorber and cover temperatures at selected positions were 

recorded every five minutes by means of thermocouples. The 

distribution of these thermocouples on the glass cover and 
beneath the absorber cloth Is shown In Fig. 2.2.1. The arithmetic 

means of these recorded values over longer periods of time were 

used in calculating the efficiency of the solar still. A sample of a 
detailed manual calculation of the still efficiency Is shown In 

Appendix A4. 

3.2 INDOOR RESULTS 

In order to maintain steady climatic conditions many 
investigators have used Indoor solar simulators. with basin-type 

solar stills Clark (1982,1990) and Clark et at (1983) and with 

wick-type solar stills Yoh and Chen (1986). 

In this work indoor experiments were carried out to 

Investigate the performance of the wick-type still. Lamps were 
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used as the radiant energy source. The still performances when 

using charcoal cloth and blackened jute as absorbers were 

compared. The Insolation and the temperatures were recorded by 

the data logger. The Input water flow rate and the distillate 

produced were measured frequently and manually. 

3.2.1 Lamp array Insolation data 

Before the commencement of the experimental tests two 

Kipp and Zonen dome solarimeters were calibrated by the U. K. 

Meteorological Office. The certificates are shown In Appendix A2. 

The calibration factor of dome solarimeter No. 1 is 12.677 ± 1.5 % 

mV/kW. M-2 and that of No. 2 Is 10.623 ± 1.5 % mV/kW. M-2. The 

tube solarlmeter was calibrated, outdoors. versus dome 

solarimeter No. l. Its calibration plot Is shown In Fig. 3.2.1 

together with the appropriate calibration linear relation between 

Irradiances determined using the two types of solarimoters. A 

digital irradiance meter (Gossen Mavolux- Digital) was used for 

some measurements where use of the other motors Is very 

difficult practically. It has also been calibrated, outdoors. using 

the dome solarimoter No. i. Its calibration curve Is shown in Fig. 

3.2.2. 

Under various itradiances of the lamp array. the Delta-T- 

Devices data logger and Solartron 7055 Microprocessor Voltmeter 

(serial No. 202134) were used simultaneously to compare their 

readings of the output voltage of each of the two dome 

solarimeters, No. 1 and No. 2 separately. Figs. 3.2.3 and 3.2.4 
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represont readings of the two solarimeters respectively and show 
their voltage outputs as functions of Irradiance determined by the 
data logger. They show calibration factors of 12.702 and 10.62G 

mV/kW. M*2 compared with those given by the U. K. Meteorological 

Office of 12.677 and 10.623 mV/kW. m, 2 respectively. 
The lamp array Insolation was measured on the solar still 

glass cover which was kept parallel to and located 1.25 m from 

the front plane of the lamps for Indoor still testing. The average 

radiation flux on the glass cover of the still was about 420 W/M2. 

The flux measurements was carried out by dividing the cover area 
into 36 identical squares of area 10 x 10 CM2 each. The irradiance 

distribution on each of these squares was measured using the 

digital irradiance motor. A typical Irradiance falling on the still 

glazing is shown In Fig. 3.2.5. 

3.2.2 Variation of Input saline water flow rate 
The saline water food flow rate was controlled manually 

by means of a stop-cock valve. constant head device (CHD), 

adjustable platform and a dial gauge as explained In subsections 
(2.1.2) and (2.1.3). Measurements of the saline water flow rate 
during the experiments were taken once per hour after the chosen 
flow rate was achieved. The flow rate could be adjusted by the 

vertical movement of the adjustable platform relative to a 

particular level which could be monitored using the dial gauge. 
Fig. 3.2.6 shows variations of flow rates of distilled water. 2.5% 

and 5% by weight of NaCl solution through the charcoal cloth as 
functions of their levels In the CHD. It shows that when the CHD 



Experknental Results page 42 

level Increases from 1 mm to 3 mm. with respect to a fixed 

reference or arbitrarily chosen level, the flow rate of the 

distilled water Increases from 8.5 ml/min to 81 ml/min while 

that of the 5% NaCl solution Increases from 26.5 ml/min to 57.5 

ml/min. However. more investigations need to be done In the 

future In relation to the effect of salinity as water uptake rate 

by charcoal cloth. 
From Fig. 3.2.7 it can be soon that, when the flow rate In 

the wick-type solar still Increases, the solar still efficiency 

decreases and. also, the absorber and the cover temperatures 

decrease as shown In Table 3.2.1. As the absorber temperature 

Increases the productivity of the still Increases (Fig. 3.2.8). 

These results were obtained indoors under simulated condition by 

using the electric lamp array and a small fan. The still Inclination 

angle was 4511, the average Incident Irradiance on the glass cover 

was 420 W/M2, the wind speed was 0.7 m/s and the average 

ambient temperature was 22.30C. 

3.2.3 Variation of salt concentration In saline water 
The performance of the solar still was studied with 

various salt concentrations of the input saline water. Sodium 

chloride (NaCI) as a standard salt was dissolved In distilled 

water In weight concentration ratios ( salinities ) of 2.5%. 5.0% 

and 10.0 %. The salinity (C) is defined as: 

weight of NaC1 
-)x 100 (3.3) 

weight of NaC1 + wo ight of wate r 
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The still was tested Indoors under the lamp array radiation. The 

Inclination angle was 450 and the irradiance was about 420 W/m2. 

At each of these water salinities. the water was feeding the still 
for 3-4 hours at a mass flow rate of about 2.5 kglm2. h. The 
distillate was collected every 30 minutes. The efficiency was 
calculated as : 

Djhjg. j 

nSx 3600 

where: 

(3.4) 

Di Is the mass of distillate collected per 30 

minutes (kg/M2. h). 

n is number of the 30 minutes intervals. for which 

the distillate was collected. 

hlg., is the latent heat of evaporation (J/kg). 

S Is the irradiance, (WIM2). 

The variation of the still efficiency with the salt 

concentration Is plotted in Fig. 3.2.9. From this figure it is clear 

that Increasing the salt concentration results In a decrease In the 

efficiency of the solar still. 

3.2.4 Determination of the still time constant 

. 
The still time constant Is defined as the time required 

for the absorber temperature to drop to a factor of We of the 

total possible temperature drop to lowest possible absorber 

temperature while the Input water flow rate and temperature are 
kept constant. 
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An ASHRAE ( American Society of Heating. Refrigerating 

and Air-Conditioning Engineers. Inc. ) standard test outlines a 

procedure for estimating the time constant of a collector. Dullie 

and Beckman (1980). The wick solar still was kept running for 2- 

3 hours. Indoors. under the lamp array insolation (420 W/M2) and 
the still at 45* Inclination angle. Then the lamps were switched 

off. while the temperature measurements were continued and the 
Input water flow rate (2.5 kg/m2. h) and temperature (22.3 OC) 

were kept constant. Fig. 3.2.10 shows the cooling curve of the 

still. From this figure the still time constant has been 

determined and it Is equal to 55 minutes. 

3.3 OUTDOOR RESULTS 

Outdoor testing of the still was carried out with and 

without the V-trough solar concentrator. The still angle to the 

horizontal of the cover was set so as to be perpendicular to the 

direction of beam radiation at noon. The still was tested with 

various salt concentrations. also. with various Input water flow 

rates. The distilled water production was measured every 30 

minutes. The temperatures were measured each minute and the 

solar Irradiance was measured every 10 seconds. The live minute 
averages of these quantities were stored by the data logger. The 

wind speed was measured every 30 minutes. 



Experimental Results page 4S 

3.3.1 V-trough concentrator and wick-typo solar still 
combination 

A V-1rough solar concentrator ( of apex anglo 300 ) has 
been combined with the flat wick solar still. It was used to 
Investigate the enhancement of the outdoor performance of the 

wick-type solar still by the solar concentrator. This was 
attached to the outer surface of the glass cover of the flat still. 
An Internal concentrator exposed to the evaporating water was 
also investigated but was found to be Inoffective (Appendix AS). 

Prior to testing. some measurements were carried out to 

obtain an instantaneous localised concentration factor over seven 
hours at 1S minute intervals. These measurements were done by 
locating the tube solarimeter (TSA) centrally on the long axis of 
the base of the concentrator as shown in Fig. 3.3.1 and the dome 

solarimeter No. 1 at its aperture plane. The data obtained from 

these measurements are shown In Fig. 3.3.2 on both a very sunny 
day (25G/1990) and a very cloudy day (2717/1990). 

In order to measure the average local concentration 
factor (ALCF. Mazumder and Hussain (1991)). the base area of the 
trough was divided into 108 squares each of 5X5 CM2. With the 

aid of the digital irradiance motor. the concentrated Irradiance at 
each of those squares was measured in addition to that at the 

aperture. This was done at times of 8.00.10.00.12.00.15.00, and 
18.00 GMT an a sunny day (111711990). The (ALCF), has been 

determined by calculating the average concentrated Irradiance at 

the base divided by the aperture Irradiance. The variation of ALCF 
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with time of the day Is shown In Fig. 3.3.3. This shows the effect 

of the shadow created by the end walls of the concentrator. An 

actual distribution of Irradlance In the base of the trough 

concentrator is shown In Appendix A6. The maximum value of 
ALCF determined was 1.62 at 12.00 GMT while this was 0.24 at 
18.00 GMT. 

3.3.2 Solar still performance dependence on input water flow rate 
Solar still testing with and without the solar 

concentrator was carried out using Input distilled water with 

various flow rates. Table 3.3.1 shows the still efficiency 

variation with Input water flow rate and irradiance range. These 

data were obtained from outdoor testing of the solar still with 

and without the solar concentrator. The efficiency decreases as 
the flow rate Increases under nearly similar conditions. When the 

still is combined with the concentrator the efficiencies are 
higher but the trend In results Is as before, Le. still efficiency 
decreases as the flow rate Increases. 

In outdoor experiments. where the Irradianco varies with 
time. it Is difficult to vary the flow rate according to the outdoor 

conditions. particularly in unsettled weather. Hence, In the 

present work. the flow rate was In the range (3.0- 5.5) kg/M2. h. 

This výas sufficient to keep the absorber surface wet during the 

clear days. This was decreased. In Winter. to (1.0 - 2.0 ) kg/m2. h. 

The inclination angle was In the range 600 - 650 In winter and In 

the range 2911 - 45 11 in summer. 
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3.3.3 Solar still performance with salinity variation of the Input 

water 
The Input water flow rate was sot at an avorago, of 3.8 

kgIM2. h In summer and 2.0 kgIM2. h In winter. NaCl solutions of 

concentrations of 2.5 % and S. 0 % by weight In addition to the 

distilled water (0.0 %) were used, as food water. The performance 

of the still with and without the concentrator at these salinities 

was investigated. Those salinities havo been chosen to be In the 

normal tango that would be encountered In solar distillation 

operation. Common sea water salinities are In the range (3.0 %- 

4.3 %) and the standard Is 3.5%. Howo and Dekker (1974). Table 

3.3.2 shows the daily efficiency of the still with and without the 

concentrator and when the concentrator was used from 11.00 am 
to 13.00 prn in GMT. The efficiency decreases when higher salinity 

water is used whether or not the concentrator Is used. It 

decreased from 63.6 percent to 35.3 percent when the 

concentrator was used, and from 53.4 percent to 33.7 percent 

when the concentrator was not used. These decreases occurred 

when the Input water was changed from distilled water to 5% 

NaCl solution. 

3.3.4 Comparison of the solar still performance with and without 

the concentrator 

It has been shown experimentally that using the solar 

concentrator under clear condition and during tho middle part of 
the day. the incident solar energy an the absorber surface 
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Increased significantly (subsection 3.3.1). This Increased the 

absorber temperature as shown In Fig. 3.3.4. 

Various outdoor runs for the solar still were carried out 

on clear days. The V-trough solar concentrator was used to 

Investigate the enhancing of the performance of the wick solar 

still. Some of the runs were carried out In winter (late November 

1989) and others In summer (July/August 1990). In winter runs, 

the conditions were : ambient temperature (7 - 13) OC Input water 
flow rate (1.0 - 2.0) kgIM2. h at temperature (8 - 15) OC and still 
Inclination angla In the range 626 - 630. The summer conditions 

were ambient temperature (20- 35)*C. Input water flow rate 

(3.0 - 5.5) kglm2. h. at temperature (25-38 )*C and Inclination 

angle In the range 29* - 451 according to CIBSE guide. 
The V-trough concentrator was fixed on the glass cover 

during some of these days e. g. 2311111989.1/8/1990. The 

distillate was collected every thirty minutes. The still 
inclination was chosen according to the solar altitude angle at 

noon. to receive maximum solar radiation. 
Figs. 3.3.5 - 3.3.7 show the variations of the ambient. 

absorber and cover temperatures together with the solar 
insolation and the productivity of the still with time. These 

results relate to clear days in summer. Some other runs were 

carried out an clear days in winter. when 2.5% NaCl solution was 

used. These days were on 2311111989 (using the concentrator) 

and on 29/1111989 (without concentrator). Variation of the st, 

performance for these days is shown in Figs. 3.3.8 and 3.3.9. 
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From these figures can be shown the response of the wick 

solar still to the solar insolation In terms of the productivity, 

and operating temperatures. Figs. 3.3.10 and 3.3.11 show variation 

of the ratio of the still productivity to the corresponding solar 
Insolation when the concentrator was used and not used at 

various times of day. They are for the total and beam Incident 

radiation. These figures are In summer and winter respectively. It 

can be seen that use of the concentrator appears to be more 
beneficial on winter clear days than on summer clear days. In 

winter. the input water was 2.5% NaCl solution (in summer run on 
251711990 and 1/8/1990 distilled water was used) with a flow 

rate In range (1.0- 2.0) kg/M2. h. In summer the flow rate was 

(3.0- 3. s) kgIM2. h. 

Tables 3.3.3 and 3.3.4 show the hourly (11.00 - 13.00) and 
daily performance of the solar still with and without solar 
concentrator In summer and In winter. It Is clear that the 

efficiency of the still was higher when the concentrator was 
used. 

3.4 MATERIAL INVESTIGATION RESULTS 

As Is mentioned In chapter two. the spectral reflectance 

of the absorbing and reflecting materials were measured by the 

available Instrumentation. According to the law of conservation 

of energy. for any surface. the sum of spectral absorptance (c(, ). 

spectral transmittance (, T). )and spectral reflectance (p,. ) at a 
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given wavelength (X) must be unity. Thus for an opaque material. 
ct;. + P;. =I( as C;. =0) (3.5) 

Henco by using this equation the solar absorptance (ct. ) of the 

absorbing materials was calculated. 

3.4.1 As received materials 

3.4.1.1 Water transport and solar absorber capillary wick 

materials 
The charcoal cloth used in the present work Is an 

expensive material (about C20 per a square meter). It might 

become available at a lower price it It could be produced 

commercially from natural cheaper sources e. g. coir. Hitchcock 

et aL (1983). No reference has been found to its previous use for 

sofa r still testing. Its solar absorptance has been measured In the 

present work. The spectral reflectance of the charcoal cloth for 

the visible VIS and near Infrared NIR radiation Is shown In Fig. 

3.4.1 and for Infrared IR radiation is shown In Fig. 3.4.2. Those 

typical spectra show an average solar absorptance of about 98.0 ± 

0.2 percent for VIS and NIR and 99.0 ± 0.2 percent for IR; Le. a 

very large portion of the incident solar energy Is absorbed by the 

charcoal cloth. 
Blackened hessian cloth (supplied by Brown. B. (Holborn) 

Ltd. ) Is studied in this research to compare some of its properties 

with those of the charcoal cloth. Hessian samples show spectral 

reflectance for IR radiation with no significant difference from 

that of the charcoal cloth samples. Typical spectral reflectance 
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spectra for VIS and NIR and IR radiation of hessian cloth samples 

are shown In Figs. 3.4.3 and 3.4.4 respectively. The average solar 

absorptance of the hessian cloth is about 64.8 percent In a dry 

condition. It Is about 13.8 percent larger when the hesslan is 

wetted by distilled water and 11.2 percent, when wetted by a 15 

percent by weight concentration of NaCl solution. 

3.4.1.2 Reflecting materials 
Reflecting materials are used as mirrors to redirect 

Incident solar energy In solar concentrators construction. They 

are exposed to the atmosphere and subjected to degradation 

mechanisms such as deposition of dust, corrosion by water vapour 

and chemicals in the atmosphere. Cost reduction is an essential 

element of the solar energy programs. so. in order to reduce the 

construction cost, In addition to damage risks and significant 

absorptance of Internal sides of solar concentrators, sell 

adhesive mirrors have been suggested. This Is as an alternative to 

relatively expensive glass mirrors or high polished metal sheets 

with a high probability of corrosion of most metals. Some sell 

adhesive reflecting materials have boon investigated. They are 
flexible. Inexpensive materials and commercially available. 

Because of the daily variation of solar Insolation and 
becau 

' 
so of short term fluctuations resulting from cloud passage, 

reflective materials need to be tested with a cyclic treatment. 

Thus five different materials, namely, W Scotchcal Films 530, 

680,3658 and 5400, in addition to an aluminised plastic mirror 
have been Investigated for use as mirrors of the solar 
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concentrator. Their response to various humidity and/or heat 

treatments has been studied. Their degradation In the outdoor 

environment and exposure has also been Investigated. Scanning 

electron microscopy (SEM) of samples of the mirrors was carried 

out. Their surface topographies are shown In Figs. 3.4.5 - 3.4.9 as 

received from suppliers. A sample of 3M Scotchcal 680 shows 

cracks In its surface. (Fig. 3.4.6) and low average solar 

reflectance, about 52 percent. This discouraged further 

investigation of this material. Surface composition of as received 

3M Scotchcal Films has been carried out. after specimen 

preparation. 
The electron probe microanalysis ( EPMA ) of samples of 

3M Scotchcal S30.3G58 and S400 Is shown In Figs. 3.4.10 - 
3.4.12. No elemental composition of their surfaces can be 
detected (apart from the gold coating applied to avoid charging of 
the films) except for 3M Scotchcal 3658 film which shows a high 

presence of chlorine and a lower proportion of aluminium. This 
Indicates a high thickness of an organic coating layer used in 

these materials (e. g. to reduce corrosion and degradation effects). 
The spectral reflectance of five to eight samples of each of the 

reflecting materials, from different parts of the supplied 

quantities. have been measured. No significant difference in their 

spectra'has been observed for a given material. Their reflectance 

spectra are shown in Figs. 3.4.13 - 3.4.17. Calculation of averages 

of their solar rellectances shows that 3M Scotchcal Film 5400 

has the highest reflectance while 3M Scotchcal Film 680 has the 
lowest reflectance. 
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3.4.2 After treatment materials 

3.4.2.1 Heat treatment 

Various samples of the reflecting materials have been 

heat treated In the air Inside the oven for different periods of 

time and at different temperatures. Before any treatment, the 

average solar reflectance of each sample has been determined as 

shown in Table 3.4.1. 

Heat treated samples were put In the oven at 

temperatures between 80 OC and 180 *C with an accuracy of :tS 
OC for continuous periods of SO. 100.150.200.2SO and 300 

hours. Aluminised plastic and 3M Scotchcal 5400 were excluded 

from temperatures higher than 120 OC. These materials showed 

sample shrinkage and bending at the higher temperatures. After 

each period. at a certain temperature. the average reflectance 

was determined as shown In Tables 3.4.2-3.4.5. The tables show 

the heat Is affecting aluminised plastic and 3M Scotchcal Film 

5400 and the lowest effect Is on 3M Scotchcal Film 530. The 

degradation of the heat treated samples In air at elevated 

temperatures for various periods of ageing are shown In Figs. 

3.4.18 - 3.4.21. From these figures can be seen the effect of 

heating time and temperatures on solar reflectance of the 

materials. 

3.4.2.2 Humidity and thermal cycling treatment 

Samples of four reflecting materials namely 3M 

Scotchcal Films 530.3658 and 5400 and aluminised plastic were 

put in the humidity chamber for various cycle numbers (each 
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cycle of 24 hours) at average relative humidities ( R. H. ) In the 

range (68 - 9S) % and at temperatures (23.5 - 77) OC with 

accuracies of :t 5% and :t3 OC respectively. Figs. 3.4.22 - 3.4.24 

show SEM of samples after the ton cycles of the heat and 
humidity treatment. 

Another set of samples were put In a humid atmosphere 

above a shallow tray containing saline water Inside a sealed 

semitransparent enclosure for two months. The temperature 

range was about (15-35)OC. Table 3.4.6 shows the solar 

reflectances of the heat and humidity-cycle-treatod materials. 

There were minor changes to the reflectance of the exposed 

sample except samples of 3M Scotchcal Film 5400. Those samples 

suffered shrinkage and largo reduction In their reflectance when 
they exposed to humidity and thermal cycling in the ranges (75 - 
95) R. H. and (30-77)*C temperature. 

3.4.2.3 Environmental treatment 

Samples of reflecting and absorbing materials were 
fixed in a very shallow wooden box with a concave transparent 

plastic cover, outdoors. The reflecting materials exposure time 

was along 3.6.9. and 12 months starting from April 1988 for 

samples of 3M Scotchcal 530 and 3568 and aluminised plastic and 
April 1989 for samples of 3M Scotchcal S400. The absorbing 

materials exposure time was 1,2.3.6.9.12 and 18 months for 

the hessian samples and up to 24 months for the charcoal cloth 

samples starting from September 1988. The effect of this 
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exposure on the reflectance of the reflective materials is 

marginal as shown In Table 3.4.7. In the case of the hesslan 

samples, the blackness almost faded within the first three 

months and faded completely within the second period of three 

months. That decreased the solar absorptanco of the treated 

hessian samples by 6.0% as shown in Table 3.4.8. The charcoal 

cloth did not fade even after twenty four months and the 

reflectance showed no significant change due to outdoor exposure. 

(Table 3.4.8) 



Table 3.2.1. Variation of absorber and cover temperatures with 
Input water flow rate. obtained Indoors with average Irradianco 

- 420 W/M2. wind speed - 0.7 nVs and Inclination anglo - 450, 

using distilled water. 

Flow Rate Temperature I 11C 
kg/mA2. h___ Absorber Cover 

11.70 35.2 ± 0.5 32.1 t O. S 
9.00 39.0 34.8 
8.70 40.9 3G. 1 
7.20 39.1 33.7 
6.10 43.4 36.0 
5.30 45.0 37.6 
5.10 46.3 37.8 
3.00 49.3 39.9 
2.00 53.0 41.7 



Table 3.3.1. Variation of the still officioncy with Input 
distilled water flow rate obtained from outdoor testing In 

summer (Inclination angto 300 - 400). 

Without Solar Concontralor 

Flow Rate 
kglm"2. h 

Irradianco Range 
kW/inl, 2 

Efficiency 
6110 

1 

14.10 0.7 - 0.8 30.90 

11.00 0.3 - 0.5 35.00 

9.10 0.7 - 0.9 41.40 

8.30 0.4 - 0.7 38.80 

5.00 0.8 - 0.9 43.10 

4.30 0.4 - 0.7 43.90 

3.30 0.7 - 0.9 55.10 

With Solar Concentrator 

Flow Rate Irradianco Range Efficiency 
kg/mA2. h kW/mh2 % 

9.20 0.5 -0.8 45.70 

5.50 0.8 -0.9 68.90 

4.20 0.7 -0.8 63.70 



Table 3.3.2. Experimental efficiency of the still with and 
without the solar concentrator. In summer. using Input 
NaCl solutions with different salinities. (Hourly 
efficiencies refor to the period (11.00 - 13.00) GMT. when 
the concentrator was used). 

NaCl Without With Concentrator 
Salinity Concentrator Daily Houtly 

%wt % % % 

0.00 53.40 63.6 68.9 

2.50 39.00 40.5 59.4 

5.00 33.70 35.3 40.9 



Table 3.3.3. Comparison of the hourly performance (11.00 

- 13.00) GMT. of the solar still with and without the solar 
concentrator. (a) In summer using distilled water (b) In 
winter using 2.5% NaCl solution. 

(a) 

Units 
With 

Concentrator 
an 1/8/1990 

Without 
Concentrator 
on 251711990 

Mean Solar Intensity W/m'12 870 031 

Mean Absorber Temn Oc 78.9 69.4 

Mean Cover Temp. 0C 69.6 57. S 

Mean Distillate kg/mA2. h 0.933 0.773 
productivity 
Efficiency 68.9 S3.8 

(b) 

Units 
With 

Concentrator 
on 23/1111989 

Without 
Concentrator 

on 2911111989 

Mean Solar Intensity W/mA2 738 767 

Mean Absorber Temp. OC 59.9 44.9 

Mean Cover Temp. CC 48.3 28.3 

Mean Distillate Prod- kg/mA2. h 0.622 0.304 

Efficiency % S5.2 36.3 



Table 3.3.4. Comparison of the daily performance of the 

wick-typo solar still with and without the solar 
concentrator. (a) in summer using distilled water (b) In 

winter using 2.5% NaCl solution. 

(a) 

Units 
With 

Concentrator 
on 118/1990 

Without 
Concentrator 

on 2S/7/1990 

Solar Insolation kJ/MA 2. day 17090 19723 

Distillato Prod. kg/mA2. day 4.679 4.515 

Efficiency I% 
63.6 S3.4 

(b) 

Units 
With 

Concentrator 
on 23/1111989 

Without 
Concentrator 

on 29/1111989 

Solar Insolation kJ/mh2. day 10242 8622 

Distillate Prod. kgfml, 2. day 2.333 1.313 

Efficiency 
I% 

52.1 3G. S 



Table 3.4.1. Solar reflectance of as-receivod samples of the 

investigated materials. 

Material Reflectance 
pX 

3M Scotchcal 8 6.3 10.0 0 
530 

3M Scotchcal 5 1.5 i 0.09 
680 

3M Scatchcal 60.6, t 0.02 
3658 

3M Scotchcal 86.8 t 0.13 
5400 

AlumInIsed 85.0t O. OS 
plastic 

Hesston 35.4 t 0.06 

cloth 

Charcoal cloth 2.0 t 0.2 



Table 3.4.2. Solar reflectance of samples of 3M Scotchcal Film 
530. after various periods of ageing In air at elevated 
temperatures. 

Ageing Ageing Time Reflectance 
Temperature Hours PX 

(90 

As-received 86.3 1: 0.08 

too 85.9 

ISO S&I 
too 200 8S. 5 

300 85.9 

too 94.9 
150 84.4 

140 200 819 

300 84.4 

100 91.9 
ISO 91.0 

160 
200 81.3 
300 80.6 

100 $1.7 
200 81.0 

ISO 
250 80.6 
300 80.5 



Table 3.4.3. Solar refloctance of samples of 3M Scotchcal Film 
3658. after various periods of ageing In air at elovatod 
temperatures. 

Ageing Ageing Time Reflectance 
Temperature 

(60 
Hours PX 

As. recelved 60.6 1 0.02 

so 61.7 
100 61.4 

too ISO 60.3 
200 59.7 
300 S9.3 

100 60.4 
ISO S9.5 

140 200 S9.1 
300 59.0 

100 S3.4 
ISO SI. 3 

160 200 SO. 4 
300 47.13 

100 S2.0 
180 200 SO. 6 

2SO 48. S 
300 48.2 



Table 3.4.4. Solar reflectance of samples of 3M Scotchcal 
Film 5400, after various periods of ageing In air at elevated 
temperatures. 

Ageing Ageing Time Reflectance 
Temperature Hours PX 

(1, C) 

As-received ---- 136.8 1 0.13 

100 86.0 
ISO 06.7 

80 200 86.1 
300 06.6 

too 82. S 
100 ISO 130.1 

200 76.3 

2 47.6 
S 41.6 

120 so 34.9 
100 34.3 
200 35.0 

140 so 33.3 
too 32.8 



Table 3.4.5. Solar reflectance of samples of Aluminized 

plastic, after various periods of ageing In air at elevated 
temperatures. 

Ageing Ageing Time Reflectance 
Temperature Hours pX 

(00 

As-recelved 85.0 t 0.05 

so 84.3 
100 84 1 100 ISO . 83.0 
200 83.0 

so 83.9 
120 100 83.1 

200 81.2 

so 38.1 140 100 34.2 
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Table 3.4.7. Soler reflectance (p) of samples of reflecting 
materials after various time In sheltered outdoor environment. 

Treatment 
Period 

3H Scotchcal Films AluminlSed 

month 530 3658 5400 
Plastic 

Shoot 

As. recelved B6.3: t 0.00 60.6 t 0.02 06.8 10.13 ()5.0 1 o. oS 

3 8S. 4 S9. S 8S. 0 83.4 

6 8S. 8 S9.4 83.6 82.9 

9 8S. 6 S13.8 132. S 82.9 

12 84.8 S8.7 81.1 82.0 

Table 3.4.8. Solar absorptance W) of samples of absorbing 
materials after various time In sheltered outdoor environment. 

Material As. Expo sure Period / month 
Received 11 2 31 6 9 12 1 113 24 

Charcoal 
Cloth 9 8.0 i 0.2 97.8 97.8 97.6 97.1 ---- 97.9 ---- 98.1 

Blackened 6 4.6 1 0.0 6 6 4.0 6 3.2 6 0.9 6 0.7 S 19.8 S8 3 S8 7 --- hesslan I I 1 . . 
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using V-trough solar concentrator. 
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Fig. 3.4.5. Scanning electron micrograph of an as-received 

sample of 3M Scotchcal Film 530. 



Fig. 3.4.6. Scanning electron micrograph of an as-received 
sample of W Scotchcal Film 680. 



Fig. 3.4.7. Scanning electron Micrograph of an as-received 
sample of 3M Scotchcal Film 3658. 



Fig. 3.4.8. Scanning electron micrograph of an as-receivod 

sample of 3M Scotchcal Film 5400. 



Fig. 3.4.9. Scanning electron micrograph of an as-received 

sample of aluminised plastic. 
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Fig. 3.4.22. Scanning electron micrograph of a sample of 3M Scotchcal 
Film 530 after 10 days of temperature and humidity cycling. 



Fig. 3.4.22. Scanning electron micrograph of a sample of 3M Scotchcal 
Film 530 after 10 days of temperature and humidity cycling. 



Fig. 3.4-23. Scanning electron micrograph of a sample of 3M Scotchcal Film 3658 after 10 days of temperature and humidity cycling. 



Fig. 3.4.24. Scanning electron micrograph of a sample of 3M Scolchcal 
Film 5400 after 10 days of temperature and humidity cycling. 
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4.1 INTRODUCTION 

In this chapter a theoretical analysis for a tilted wick-type 

solar still Is presented. 

The basic principles of operation of solar stills have been 

stated and developed by many authors: e. g. Dunkle (1961) analysed and 

discussed the heat and mass transfer relationships In a conventional 

root type solar still. He suggested the use of a reflector to Increase 

the irradiation and hence the operating temperature of the still. That 

work was slightly modified by Morse and Read (1968). who 

considered the heat and mass transfer relationships In the unsteady 

state and expressed the various heat fluxes as functions of the cover 

temperature by obtaining a graphical solution and constructing a 

characteristic chart. Cooper (1973) examined the simultaneous 

energy trAnsfer modes within a solar still envelope from a 

theoretical and experimental point-of-view over a wide range of 

operating conditions. 
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The above analyses are for basin typo solar stills. They are 
independent of the inclination of the glass cover and spacing between 

the evaporative and condensing surfaces (cavity volume). Tiwarl and 
Lawrence (1991) made an attempt to derive a now formula for the 

convective heat transfer coefficient In basin-type solar stills from 

the evaporating surface to the condensing surface Including the 

Influence of the Inclination of the glass cover and the cavity volume. 
Some authors. have studied the performance relationships of wick- 

typo solar stills, e. g. Yeh and Chen (1986) for a singlo-efloct wick 

solar still and TIwarl of a/. (1989) for the multi-effOCt solar still. 
(The multi-effect solar still Is that In which the latent heat of 

evaporation of condensed water an a condensing surface can be used 

to increase the Input heat of the next evaporating surface). 
Klatsiriroat et at. (1987) studied the vertical wick-type solar still. 
They expressed the transient energy balance for the absorber and 
both covers In finite difference form to obtain the now temperature 

at the end of a specified time period. 

Previous work on the inclined wick-type solar still does not 

appear to have included an analysis which takes Into account the 

inclination angle of the still. This has been presented in this work. In 

addition. the transient analysis of the wick-type still considers (i) 

the absorber-cover spacing, (ii) Input feed water and output brine 

energies, (iii) mass flow rate of the Input water, (iv) heat capacity 

of the absorber support board and the glass cover and (v) the latent 

heat variation of water with the absorber temperature. 
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4.2 PRINCIPLES OF ENERGY FLOW IN A WICK-TYPE SOLAR 

STILL 

The wick-type solar still used In this work Is. briefly. an 
inclined, shallow box with a tray covered by a sheet of glass and 
insulated on the back and sides. A thin film of water flows through an 

2bsorber/evaporator cloth parallel to the cover where a film of 
condensation is created. This flows down the lower side of the cover 
to be collected. The still energy flow diagram Is shown schematically 
in Fig. 4.2.1. From this figure. it can be seen that solar Irradiance (S) 
is incident on the glass cover. Some of this is absorbed by the glass 
(accvS) but the major portion (tS) passes through It and strikes the 

absorber/evaporator (charcoal) cloth. The amount of the Incident 

radiation absorbed by the cloth, Is equal to (ctTS). A portion of this 

energy is conducted away through the insulation (qk)' Some is carried 

away by the brine (q,. Out) and the rest is carried away from 

absorber/evaporator surface to the Inner surface of the glass cover 
by three modes of heat transfer Le. convection (q. ), evaporation (q,, ) 

and radiation (q, ). 

The glass cover conducts the energy from the Inner surface 
to the outer one. This is then carried away to the surroundings by 

convection* (qc 
.. 

) and radiation (q,, ). The thermal network of this 

system Is shown In Fig. 4.2.2. 
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4.3 TRANSFER MODES INSIDE AND OUTSIDE A TILTED WICK- 

TYPE SOLAR STILL 

In the analysis of the modes of the wick-type solar still 

operation the following assumptions have been made: 

(1) The average absorber temperature is equal to the 

temperature of the water film flowing through the charcoal cloth. 

(2) The temperature gradient perpendicular to and along the 

surface of the glass cover is negligible. Le. It has a uniform 

temperature. 

(3) There is no vapour leakage from the still. 

(4) The condensation film on the glass cover is uniform and has 

small heat capacity which can be neglected 

(5) The surface area of the evaporator/absorber surface and the 

glass cover are identical. 

(6) All the distilled water Is collected without leakage. 

(7) Enhanced reflection of solar radiation due to dropwise, 

condensation Is negligible. 

(a) The mass flow rate of the water Is uniform through the 

charcoal cloth. 
(9) The temperature of the absorberlevaporator surface is 

uniform. 

4.3.1 Heat and mass transfer modes inside the still 

The modes of heat exchange Inside the still between the 

absorberlevaporator and the cover surfaces are heat radiation and 

convection accompanied by evaporative heat and mass transfer (in 

the form of water vapour) Kiatsiriroat el al. (1987). 
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4.3.1.1 Convective heat transfer mode Inside the tilted wick-type 

solar still 

This mode of heat exchange occurs between the 

absorber/evaporator and cover surfaces. It Is entirely dependent on 

the temperature difference and the value of h.. This Is a function of 

the air vapour mixture properties. It must be obtained from empirical 

data. which Is usually correlated using dimensionless equations of 

the Nusselt-Grashof type, (Howe and Tleimat (1977)). 

An appropriate relationship for estimating h. for the tilted 

wick-type solar still (as a rectangular Inclined cavity) is the Nusselt 

number correlation as a function of Rayleigh number (Ra") and 
Inclination angle (0) which is reported by Hollands etaL (1976). It Is 

expressed as: 

WH. I+1.44 1.1708 1708(sin 1.82) 
-1; '; 

H Cos 0 R3ticos 0 

e 

1 
1/3 

1 
(U RaH<105 and UM) (4.3.1) 

NuH has -a maximum error (with respect to practical values) ofabout 

: t5% for 0: 5 600 and up to : 1: 10% for 0 In the range 600 to 750. Also. the 

convection heat transfer coefficient between two parallel plates 

separated by a distance H, is related to the Nusselt number which is 

defined In the usual form as: 
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NJM . 
hcH 

Kamara) ot at (1980) (4.3.2) ka 

Where. the Rayleigh number is expressed as: 

FbHm oPH 
3 AT 

aava 
(4-3-3) 

and the diflusivity (alk) is expressed as 

a, = 
k, 

(4.3.4) 
PaC; p. a 

Here. 

0 Is the Inclination angle (degree). 

Pa Is the air density ftlm3). 

V. is the air kinematic viscosity (m%). 

CP. 8 Is the air specific heat (J/kg. K). 

and 

k. Is the air thermal conductivity (W/m. K). 

The notation implies that, if the quantity In brackets Is negative, 
it must be set equal to zero. Incropera and Do Wilt (19as). 

In solar stills (, &T) Is the effective temperature difference 

between the evaporation and condensation surfaces. This has been 

expressed as: 
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AT - Tabs- I. co, + 
(Pb. - Pcoj (Tb. + 273.1 S) 

(4.3.5) 
268900- Pats 

Dunkle (1961) and Tiwari and Lawrence (1991). 

Where the water vapour pressure at the absorber temperature Is 

Pabs "' 0 
[0.622*7.5(Tes- 273.15)/(Tes-35.0)] 

. (here in mm Hg) (4.3.6) 

while at the cover temperature it Is 

Pco" - 10 
10.922 

*7. S (T. - 273.15)/(T.. -3S. 0 )l 

. 
(here In mm Hg) (4.3.7) 

Yoh and Chen (1986). 

Therefore. the convection heat transfer rate from the absorber cloth 

to the inner surface of the glass cover can be expressed as: 

qc - hc (Tgta - Tcaj (4.3.8) 

4.3.1.2. Evaporative mass transfer mode Inside the tilted wick-type 

solar still 
Evaporative mass transfer accompanies the heat convection 

in the form- of water vapour. The amount of water transferred from 

the water surface to the condensate film on the cover can be 

est. imated In terms of the analogy between heat and mass transfer. 

Accordingly. the mass flow rate Is proportional to the heat transfer 

coefficient and the driving potential. The latter is tho difference In 
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partial pressures of the material being transferred Howo and Tleimat 

In Sayigh (1977). The algebraic formulation of the corresponding rate 

of heat flux Is: 

q4 - 0.0 16 he (Pabs - PcOj (4.3.9) 

Where 

q4 - h. (Talm - Tcoj (4.3.10) 

and 

h. - 0.016 he Pabs * peow 
T. w - Tcol' 

Tirwarl et at (1988) and Tiwari et at (1989) 

This is related to the amount of the condensation on the Inner surface 

of the glass cover by the expression: 

q, 9 - 
Dhg_ 

3600 (4.3-12) 

where hi, is the latent heat of evaporation of the water and D Is the 

distillate production rate. hf, Is expressed as a function of water 

temperature as , 

hig- 10 3 (2501. G7 - 2.389 Tmj (4-3-13) 

where Ta. is in *C and h, 
g 

is in (J/Ikg), Elsayed (1983) 

4.3-1.3 Radiative heat transfer mode 

Radiative heat transfer Inside the wick-typo solar still, 

between the glass cover and the absorber/evaporator surfaces is 

considered as that between two Infinite parallel plates. With 
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assumptions of diffuse and gray surfaces and that the aspect ratio is 

sufficiently large to neglect edge effects. it Is given per unit area as: 

4 

qr .. 
a(Ta4t* - Tcaj 

1 
.+1 .1 

, 'ý'Cov Caw 

(Charters. In Sayigh (1977)). where cy is Stefan-Boltzmann's constant 

(5.6697 x 10-8 WjM2K4)- The measured value of cabs of the charcoal 

cloth is equal to 0.98. For simplicity it can be approximated to unity. 

Hence equation (4.3.14) becomes: 

44 

r- Ec., c; (Tb. - Tcoj (4.3.15) 

and hence the radiative heat transfer coefficient from the 

absorberfevaporator to the glass cover can be expressed as: 

22 
ht - I; cov CY(T&bs + Tcjjj (Tabs + Tcaj 

4.3.2 Heat transfer modes outside the still 

Outside flat tilted solar stills, the heat Is transferred to 

the surroundings by radiation and convection from the glass cover and 
the back. and sides of the solar still (neglecting conduction through 

the still support structure). The convection heat transfer coefficient 
Is assumed to be a function of wind speed only and Is expressed as : 

hc& , 5.7 + 3.8V (4.3.17) 
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Duffie and Beckman (1980), where V Is the wind speed in (nVs). 

Hence. the convective heat losses can be expressed as- 

qca - hca (Tcoj - TamO (4.3.18) 

where T,. b Is equal to the air temperature. 

The radiative heat transfer Is a function of the cover 

temperature and sky temperature. The sky temperature Is assumed to 

be a function of ambient temperature, Dullio and Beckman (1980). 

and expressed as: 

1.5 
TOY" 0.0552 amb ; (Temperatures are In degrees Kelvin) 

Therefore. the radiative heat losses can be expressed as: 

44 
qta-r,., (Y(T,., - Tský (4.3.20) 

and hence the radiative heat transfer coefficient from the glass 

cover to the surroundings In a form of long wave radiation can be 

express as: 

44 
hta- 

ecocy (Tcow - Tský 

Tcov - T&mb (4.3.21) 
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4.4 ENERGY BALANCE EQUATIONS 

4.4.1 Energy balance on the absorber/evaporator surface 
At the absorber/evaporator surface. the energy is 

transferred to the glass cover by convection. evaporation and 

radiation. Thus. the energy Input Into and output from the surface In a 

given time can be written as: 

energy Input - solar energy absorbed by the absorber + energy of 
the Input water (4.4.1) 

energy output - energy of evaporation of water from the 

evaporating surface + radiant energy loss to the 

glass cover + convection energy loss to the glass 

cover + conduction energy loss to the back of the 

still + energy of output brine (4.4.2) 

Hence. the energy balance expressions can be written as: 

energy in - energy out - Increase of energy of the 

absorber/evaporator (4.4.3) 

Le. for a unit time Interval and unit absorber area 

mc dTb, 
ctjS + qw. in - (qc + qo + qf + qk + q.. aj .(': --P) abs (4.4.4) 

Adt 



Theoretkat Analysis paift, a67 

where 
qw. ln-rWCp. w(Tw. jn- Tcoj (4.4. S) 

qk-hb (Tabs - Tmj (4.4.6) 

and 

q, v. oul - (M'- D) Cp. w (Tabs - Tcoj (4.4.7) 

Here. Tcow Is considered as a reference temperature In which 

q,,.,,, and qD are expressed. This gives: 

qD . CCp. JT,.,, - T, oj '0, Yeh and Chen (1986) (4.4.8) 

hb IS considered as the resistance of heat flow through the 

absorber wick support ( masterclad ) and the two layers of insulation 

polystyrene and styrofoam 

Le. 
I LI, 

+ 
L12 

+ 
L13 

4.1 
hb kil k12 k13 hi 

where 

(4.4.9) 

are the thickness and thermal conductivity of the 

masterclad respectively. 

L12 , k12 are the thickness and thermal conductivity of the 

polystyrene respectively. 

L13, k13 are the thickness and thermal conductivity of the 

slyroloarn respectively. 
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4.4.2 Energy balance on the glass cover 

The energy incident on and leaving the glass cover can be 

written as : 

energy input - solar radiation absorbed by the glass cover + energy 
input by (convection + evaporation + radiation) 
from the absorberlevaporator surface (4.4.10) 

energy output - energy loss from the glass cover by convection and 
radiation to the environment + energy loss of 
distillate. (4.4.11) 

Therefore, 

energy Input - energy output - increase of energy stored In the 

glass cover (4.4.12) 

Le. 

We + qe + qJ + C(caS - (qCa + qrJ - qD 
rnC dTcO, 

(4.4.13) A cov dt 

4.5 SOLVING OF THE TRANSIENT ENERGY EQUATIONS 

The transient energy balance equations (4.4.4) and (4.4.13) 

for the absorbinglevapo rating cloth and the transparent cover can be 

respectively. rewritten as: 
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rZ_ 
dT. b. (_ A 

0) 
cvrS + qw. ln - (qc + q. + qr + qk + q,,. aj W't- MCp absl 

dTco, 
.(A) ctcoS + (qc + qo + qr) - (qca + qrj 

dt MCP COVI 

These equations can be rewritten In finite difference form 

to obtain the now temPeratures Tb, and Tco, at the end of a specified 

increment of time At. as: 

dT&bs (Tabs - Tbj 
(4.5.3) 

dtAt 

similarly. 
dTco, (Tcov, Tcoj 

(4.5.4) 
dt At 

Therefore, the now expressions become: 

Tabs - T&s +AtIaI caS + nfCp. %v (T.. In - Tcaj -h (Tab. - Tcoj ý' -. -. 
P-) .I 

- hb (Tb. - Tj - (m'-D)C P.. (Tab. - Tcaj] (4.5.5) 

T: ccjj - Tc civ +At(A 
Icav[ 

aco,. S + hi(Tabs- Tco, ) - h2(Tcor Tamj] (4.5-6) ýýFd 

where, 
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h, - he + h. + hr 

and 
h2 hca + hra 

4.6 NUMERICAL ANALYSIS 

4.6.1 Computer simulation of the tilled wick-type solar still 

(4.5.7) 

(4.5.8) 

In order to use the analytical model of the previous 

sections. a computer program (Appendix A7) was developed to solve 

equations (4.5.5) and (4.5.6) to calculate the absorber and cover 
temperatures and then the other related parameters after time 

Interval at The time Interval at was chosen to be 0.01 hour to avoid 

unstable solutions. The sequence steps of the computer program are 
illustrated In a flow-chart which is shown in Pig. 4.6.1. It Indicates, 

briefly. the operations and their functions. 

Hence. from the measured initial values of the absorber and 

cover temperatures. and by giving the hourly averages of solar 

Irradiance. In the plane of the glass cover. and ambient temperature 

for each hour of the day. the performance factors of the wick-typo 

solar still can be predicted. 

The calculations were started after giving the Initial 

conditions. by obtaining the partial vapour pressures at the givOn 

absorber and cover temperatures according to equations (4.3.6) and 

(4.3.7) respectively. From these the effective temperature difference 

was calculated as In equation (4.3.5). Having calculated this factor 

Rayleigh and Nusselt numbers can be calculated, from which the 
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Internal coefficients of convective heat transfer, and hence. the 
evaporative one can be determined with tho other heat coefficients 
and parameters. 

The now absorber and cover temperatures. alter the 
Increment of time. can be calculated. These would be considered as 
initial values for the next Increment. 

From the calculation of the Instantaneous distillate 

production rate the hourly and daily averages of the productivity and 
the efficiency can be determined. 

4.6.2 Predicted results and their discussion 

By applying the transient model and a finite difference 

technique. numerical calculations were carried out for various still 
performance parameters based on realistic data of solar insolation 

Incident on the glass cover and ambient temperature of a typical 

summer day (2517/1990) at the experimental site. These 

calculations show variations of the still performance and the heat 

transfer coefficients with time of the day. Input water flow rate. 

wind speed and still cover transmittance In addition to the absorber- 

cover distance. 

To carry out the calculations various relevant material 

properties have been used. They are shown In Table 4.6.1. The 

thermodynamic properties for thermal diffusivity (a. ). kinematic 

viscosity (v. ) and density (p. ) of humid air have been given absolute 

values. Their variations with temperature (in the range 5011C - 706C) 

did not significantly influence the predicted performance of the solar 
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still (loss than 0.02%). Thorofare. absolute values have been 

considered with an average temperature of SOIC as shown in Table 

4.6.1. 
Figures (4.6.2) and (4.6.3) show the predicted variations of the 

daily and hourly (11.00 - 12.00) still efficiencies with wind speed. It 

can be seen that the wind speed up to (4 m1s) only marginally affects 

the efficiency. particularly. when the input water flow rate Is within 

the range (3-4) kg/M2. h. This is in agreement with Lof (1980) and 

the experimental paper by Yoh and Chen (1986). This range of flow 

rates has been adopted and applied experimentally in this work. 
Therefore. to predict other variations of other parameters (2 m/s 

the average wind speed has been chosen as shown In Figs. 4.6.4 

4.6-14. 

The flow rate of the Input saline water into a wick-type 

solar still has been soon as an Important parameter In the 

performance of inclined solar stills. as shown In Figs. 4.6.3-4.6.6 

and Table 4.6.2. This was validated by the experimental part of this 

work as In Table 3.3.1. It has to be sufficient to keep the evaporator 

wot and to avoid creating dry spots and salts accumulation. In Fig. 

4.6.4 the daily efficiency of the wick-type solar still is related to 

the Input water mass flow rate according to the following equations: 

- Tj % . 68.06 x 10 *0.0355M' 
when %-0.90 (4.6.1) 

-0.0360m, il % . 64.29 x 10 

, 0.0367m* 
Tj % . 58.70 x 10 

ii % . 49.59 x 10*0* 0378m, 

when v-0.86 (4.6.2) 

when t-0.80 (4.6.3) 

when t-0.70 (4.6.41 
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Unfortunately, there is a lack of literature In which the input 

water flow rate has been taken into account. In Tiwarl et at. (1989) 

and Yoh and Chen (1986) it has been considered as a variable and 

given certain rather low values. It was taken as I kglm2. h In the 

former and 0.86 kgIM2. h In the latter paper. Such small a flow rate, 

which has to be uniform along the evaporator/absorber surface. Is 

very difficult to maintain unless using high precision flow 

controllers. 

Fig. 4.6.5 shows the predicted effect of the glass cover-absorber 

distance on the daily efficiency of the wick-type solar still This Is 

for various Input mass flow rate. The maximum efficiency can be 

seen when the separation is in the range of (20 - 2S) mm. 
Figs. 4.6.6 and 4.6.7 show the effect of the Inclination angle of 

the still on Its daily efficiency and the Internal convective (hj. 

evaporative (h, ) and radiative (h, ) heat transfer coefficients. It can 

be seen that the efficiency decreases as the Inclination angle 

increases. but this Is appreciable only when the angle Is more than 

sc)*. The same trend of behavior Is seen for (h. ). but (hj and (hc) are 

little affected by angle. 

Figs. 4.6.8 and 4.6.9 show the effect of the cover 

transmittance on the daily and hourly efficiencies of the still. It Is 

clear that the efficiencies are functions of the cover transmittance. 

Variations of the absorber and cover temperatures and their 

differences are shown in Figs. 4.6.10 and 4.6.11. They vary as the 

solar Insolation varies through the hours of the day. The heat transfer 
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coefficients vary with time due to the variation In absorber and 

cover temperatures with time. These are shown In Fig. 4.6.12. From 

this figure it can be seen that the highest coefficient Is the 

evaporative coefficient. The productivity and hence the hourly 

efficiency have the same trend of behavior as the evaporative 

coefficient as shown in Figs. 4.6.13 and 4.6.9. Fig. 4.6.14 shows that 

the productivity is a linear function of the absorber temperature. It 

varies with absorber temperature (Tabs) according to the following 

equation: 

D- -0.9 5+0.026 Tabs (4.6.5) 



Table 4.6.1. Solar still material properties used for the 

numerical calculations. 

A(gisss) m 0.533 M2 

Cp(gl&ss) m 7SO Jfo(g. K 

CC(glass) 'o. os 

P(Glass) m 2500 kgfm3 

k& - 0.029 VI/m. K 

pa w 1.998 x 10-s kglms 

Va - 1.887 x 10, S M21S 

h, - 20.0 %VIM2. K 

kii(maslordad) - 0.29 W/m. K 

ki2(pofysWone) m 0.034 W/m. K 

ki3(styrafoam) m 0.039 W/m. K 

A(masterclad) " 0.47S M2 
Cp(masterclad) , 900 Jlkg. K 

P(matterelad) - I SOO kg/m3 

C(CharCoal Cloth ft 0-98 

cp. a " IOOG. 9 Jlkg. K 

pa - I. OG14 kg/m3 

cp. 
w - 418G. 8 Jokg. K 

Pwater 1000 kglm3 
L, 

I(m, 11.1111d) 
0.009 m 

Li2(polystyrono) 0.012S m 
Li3(styrofo&mn) 0.03S m 



Tabel 4.6.2. Predicted variation of the absorber and cover 
temperatures around noon (Tabs, Tcov) with Input saline 
water flow rate of the wick-type solar still on 25/7/1990. 
Solar Insolation - 3353.3 kJlmA2. h, ambient temp. - 24.16C. 

Input Cover Trans. 0.80 Cover Trans. 0.86 
Flow Rate Tabs Tcov Tabs Tcov 
ý2/MA 2. h *C OC OC OC 

. 

1 68.1 55.1 70.4 S7.6 

2 GG S2.9 68.2 55.3 

3 64.1 50.9 66.1 53.2 

4 62.2 49.1 64.4 51.3 

5 GO. G 47. S 62. G 49. S 

6 58.9 4S. 9 61 47.9 

8 S6.1 43.3 58.1 45.1 

10 53.6 41.1 5S. 5 43.5 

12 S1.4 39.2 53.2 40.7 
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Fig. 4.6.1. The flowchart of the computation program. 
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F 11 V 
DISCUSSIOINI 

5.1 PERFORMANCE OF THE WICK-TYPE STILL 

5.1.1 Comparison of theoretical and outdoor experimental results 
In the numerical calculations and the graphs given In Ch. 4, 

realistic solar Insolation and ambient temperature data have boon 

used. They were recorded experimentally during an outdoor lost of 
the wick solar still on 251711990. Based on these recorded data 

the predicted performance of the solar still has been determined. 

The other experimental variables are given ranges of variation 
from which can be seen the predicted behavior of the still 

performance. The day of 2517/1990 was considered as one of the 

most clear summer days for running an experiment In solar 
distillation. It was almost calm. This test was followed by 

another experiment carried out using the solar concentrator. 
Therefore this day has been chosen to apply the numerical 

analysis and compare the predicted with the measured results. 



Discussion 'Plp 

Based on the Initial predicted variation of the still 

efficiency with wind speed as shown in Fig. 4.6.3. no hourly 

variability was taken into account. but the daily average (wind 

speed -2 m1s) was considered. I. e. the Initial theoretical 

simulation had Indicated only a small variation in still output 

with wind speed. This has been proved by Indoor experiments by 

Yeh and Chen (1986). 

Comparisons of some calculated and measured still 

parameters on the still performance are shown in Figs. S. i. j. 

5.1.3. As can be seen from these figures the corresponding 

experimental curves are in fair agreement. They show tho same 

trend of behavior relative to the Greenwich Mean Time (G. M. T. ). 

The discrepancies are likely to be duo to: (a) Various assumptions 

made to simplify the analysis (Ch. 4). (b) The accuracy of the 

predicted determination of Nusselt number which Is * 5.0 % for 

0<601'and up to : 00% W606<0<750 (subsection 4.3.1). (c) The 

uncertainty In the recorded data e. g. Irradiance 11.5%. This 

Increases as the temperature increases above or decreases below 

10 OC at a rate of 0.15% per *C (Appendix A2). (d) The non-uniform 
flow rate through and over the absorber cloth causes some 

variation (about *4 *C) In the absorber temperature (channels 

16-19). hence the cover temperature (channels 8 and 11-14) at 

various points. This Is shown in Appendix A4 (Table A4.11). 

5.1.2 Input water flow rate 
The effect of the flow rate on the porformanco of the 

solar still has been Investigated experimentally and 
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theoretically. From Figs. ( 3.2.7) and ( 4.6.4 ) and Tables 3.2.1 and 
4.6.2 It can be seen that the flow rate of the input salino water 
affects the efficiency of the solar still and absorber and cover 
temperatures. They decrease as the Input water flow rate 
increases when other conditions are fixed e. g. under the effect of 
Indoor conditions the still efficiency decreased from 38 percent 
to 11 percent (Fig. 3.2.7) and the absorber and cover temperatures 
decreased from 53 OC and 41.7 OC to 35.2 OC and 32.1 11C 
respectively (Table 3.2.1). These decreases occured when the 
input water mass flow rate increased from 2 kglm2. h to 11.7 
kg/M2. h. This was because the heat loss associated with the 

output brine Increased. The theoretical and experimental results 
have the same trend In behavior. Moustala of at. (1979) 

estimated the input water flow rate should be as much as ( 3.4 ) 
times the production rate of the still. But in this work, a fixed 
flow rate was used for each experiment. It was estimated to be In 
the range of (4 - 8) times of the production rate. This is 
according to the Incident energy1hour of the day and the salinity 
of tho input brine. In theory. to got the highest efficiency. the 
input water flow rate should be proportional to the received solar 
energy and of the minimum required amount. It should be 

sufficient to keep the absorber surface wet during the time of the 

experiment. This Is to avoid having parts of the evaporating cloth 
dry at times, as In Frick and Sommerfeld's still. Yeh and Chen 

. 
(1986). -This would help to suppress salt accumulation. pores 
blockage, colour fading and flow rate Instability which might 
occur with highly concentrated brino. Henco the right choice of 
Input water flow rate is essential. 
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Maintaining a constant flow rate In wick-type solar stills 
is a major problem Lot (1980). A constant flow rate Is needed 

during settled conditions (specially the solar irradianco) to avoid 

energy loss or creation of dry spots In the absorber surface. The 

former occurs when a flow rate much higher than needed Is 

supplied. The latter most likely occurs when the flow rate is 

Insufficient or a non uniform distribution of water flow through 

the absorber cloth Is present. 

Theoretically. from Figs. 4.6.3 - 4.6.6 the flow rate should 

be just greater than the evaporation rate when other conditions 

are fixed. In outdoor experiments. where the Irradiance varies 

with time. varying the flow rate accordingly. during clear 

weather. would decrease the heat loss and thus Increase the still 

efficiency. It may be difficult to vary the flow rate according to 

the Irradiance during somicloudy weather. Those drawbacks are 

offset by many advantages of the tilted stills. such as: (a) 

Flowing saline water In a tray Is an enhancing factor for 

evaporation. Narusawa and Springer (1975). (b) Having the liquid 

surface oriented at an optimal Inclination with respect to the 

Incident beam radiation. (c) The glass cover Is parallel to the 

water surface. (d) Exposure of a relatively small amount of saline 

water to solar radiation leads to a high water temperature Malik 

of A (1982). 

5.1.3 Salinity of the Input water 
In wick-type solar stills the water flow Is In the form of 

a film of salty water passing through and over a porous cloth. In 
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this work it has been shown experimentally (Fig. 3.2.9 and Tablo 

3.3.2) that Increasing the salinity of the input water to the wick- 

type solar still decreases the efficiency of the still. 7his may duo 

to: (1) A decrease in the vapour pressure of the water as the salt 

concentration increases leading to a decrease In ovaporation rate 
Spiegler and Laird (1980) (e. g. as the salinity Increases from that 

of puro water to 10% of that of sea water at 60 IC the vapour 

pressure decreases from 149.4 mm Hg to 140.2 mm Hg. (2) 

increase of density and viscosity of the sally water as the salt 

concentration increases leads to a decrease In evaporation rate. 
(3) Decrease of the absorptance of the porous cloth for incident 

radiation as the salt concentration increases. (4) Increase of the 

surface tension of the salty water during the evaporation process 

which decreases the evaporation rate and honco the still 

efficiency, Rai ot A (1990). 

Study of this effect on the performance of wick-typo solar 

stills has not been found In the literature. Rai ot aL (1990) 

investigated the effect on the performance of a basin-typo solar 

still and concluded that the daily distillato rate decreased from 

ljo kg to 0.50 kg as the salt concentration Increased from 7% to 

120%. In this work it has been found that In the wick solar still 

efficiency decreases from 38 percent to 20 percent as the salt 

concentration Increases from 0.0% to 10%. This was under Indoor 

conditions when the incident Irradiance was 420 %Vlm'2. flow rato 
2.5 kg/m2. h. wind speed 0.7 mis and the average ambient 

temperature 22.3 T. 
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The outdoor testing results of the still with various 

salinities are shown in Table 3.3.2. They are for the still with and 

without the solar concentrator. It can be soon that the still 

efficiency decreases as the salinity increases duo to the above 

mentioned reasons whether with or without the concentrator. 13ut 

the daily officiency decreases more markedly at 5% salinity when 

the concentrator was used Le. to 3S. 3 percent. Without the 

concentrator the effidency decreased to 33.7 percent. The reason 

for this Is due to a required Increase In the Input water now rate 

(in the case of the concentrator) by 30% In order to match the 

high insolation at the hours around noon Le. to avoid creation of 
dry spots and salt clogging. However the hourly efficiency around 

noon (11.00-13-00) is still relatively high Le. 48.9 percent. 

5.1.4 Solar insolation and Inclination angle 
For maximum Integrated solar Insolation In a year a 

receiving surface should face south and be Inclined to the 
horizontal at an angle equal to the latitude of the place Malik at 
at. (1982). Maximum solar Insolation for a particular clear day 

with a stationary Inclined still Is possible by choosing an 

optimum Inclination angle in which the Incident radiation is 

perpendicular to the glass cover at noon. In this work the 
Inclination angle was chosen to be equal to the solar altitude at 

noon (around which a major fraction of daily Incident energy Is 

received). It has been found that the Inclination angle affects the 

productivity of the still In two ways: (I) affects the Internal heat 

and mass transfer through the ovaporativo and convoctivo 
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transfer coefficients Le. h. and h. respectively as shown in Figs. 

4.6.7 and 4.6.12 and (ii) affects the amount of radiation 
Intercepted by and transmitted through the still cover and 

collected by the absorber. (Figs. 4.6.6 and 4.6.8). As the amount of 

radiation Is a strong factor affecting the productivity of the still 

the still yield Is affected strongly by the still inclination anglo. 
(This Is shown e. g. experimentally In Fig. 3.3. S In the close 

correlation of increase and decrease of the productivity curve and 

the solar Insolation curve. ) 

5.1.5 Use of the solar concentrator advantages and disadvantages 
The V-trough solar concentrator used with the solar still 

had an apex angle of 30* and aperture to base ratio 1.9 with depth 

to base ratio 1.7S. An expected concentration factor for beam 

radiation of about 1.68 should be achieved according to Bannerot 
(1974) (see Appendix AB). 

An approximate Instantaneous concentration factor was 
determined during a very sunny day (201711990). and a very cloudy 
day (27M1990) as shown In Fig. 3.3.2. Also the averaged local 

concentration factor on the base of the trough at different hours 

of the day has been determined as shown In Fig. 3.3.3. In both 

figures the effect of the shading of the absorber by the end walls 

of the trough is apparent and Is more pronounced at the off-noon 

periods. during which time the ratio of the heat collected to the 
daily total insolation available Is not significant. However. there 

was a considerable Increase in the solar energy received on the 

solar still for the total operating period on a clear day. The 
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maximum averaged local concentration factor (ALCF) around noon 
was about 1.6 as shown in Fig. 3.3.3. The Increase In the still 
efficiency was not in the same order for two reasons. First. the 
increase In the absorber temperature Increases the heat losses 
from the back and sides of the still and also that of the outlet 
brine. Second, the presence of the trough decreases the absorber. 
cover temperature difference. Le. the Increase of the cover 
temperature is more than that of the absorber temperature as 
shown In Figs. 3.3.5 and 3.3.6. This Is due to reduced convective 
heat transfer from the cover to the ambient air as the convective 
heat transfer coefficient varies linearly with wind speed (Eq. 

4.3.17). The Increase in the Input water flow rate from 3.2 to 4.5 
kg/M2. h when the solar concentrator was used would also tend to 
decrease the still efficiency ( subsection S. 1.2 ). Nevertheless. 

the efficiency has been increased from S3.8 to 68.9 percent 
around noon and 53.4 to 63.6 percent daily (Tables 3.3.3 and 3.3.4 

respectively) and a good response of the still performance to the 
Incident energy displayed as shown In Figs. 3.3.5-3.3.11 for 

various weather conditions during different days. The comparison 
between the still performance with and without the solar 
concentrator can be seen In Figs. 3.3.10 and 3.3.11. These show a 
higher distillate production rate to solar insolation ratio In 

winter than In summer. This may be so in winter. because (i) the 

proportion of diffuse radiation was lower on clear winter days 

than on clear summer days. (ii) the high inclination anglo may 

also have led to a lower water film thickness and density of 
dropwise of condensation and (iii) the high effectiveness of 
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retain the heat of the cover by the concentrator; I. e. concentration 

of the incident (beam) radiation may have been more effective on 

winter clear days and less heat loss from the cover with 

concentrator than without it. 

The percentage efficiency difference (PED) of a solar still 

with and without the solar concentrator Is expressed as: 

PED. Efficiency with concentrator -Efficiency without concentrator X100 
Elliclency without concentrator 

Using this expression. it has been found that PED In selected 

winter days (23/1111989 and 29/11/1989) Is 43 percent. while 

in summer days (251711990 and 118/1990) it Is 19 percent. This 

illustrates that use of the concentrator an winter clear days 

appears to be more useful than use on clear days in summer. 

5.1.6 Absorber and cover temperatures 

Comparison of Figs. 3.2.8 and 4.6.14. shows similar 

behavior of the solar still; Le. the productivity of the still varies 
linearly with absorber temperature. But they are applied for 

different conditions; I. e Fig. 3.2.8 is for the indoor conditions 

while Fig. 4.6.14 for the outdoor conditions. The productivity 

increases as the evaporation heat transfer coelficient increases 

which. in turn, increases as the effectivo absorber-cover 

temperature difference increases as shown in Figs. 4.6.11. 
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5.2 CONSTRUCTION OF THE WICK-TYPE SOLAR STILL 

5.2.1 Absorberlevaporator surface 
The solar still of this work was constructed with an 

absorberlevaporator made of charcoal cloth. This cloth has a high 

solar absorptance of about 98.010.2 percent for VIS and NIR and 
99.0 :k0.2 percent for IR radiation. It is intrinsically black and no 
dye Is required. It has not been used before for such a purpose. 
Many authors used jute cloth, e. g. Sodha et at (1981). Yeh and 
Chen (1986). Trwari and Yadav (1987) and others. Jute needs 
frequent replacement and/or black dye Injections. Moustala et at. 
(1979) used a synthetic wettable mat lined with black plastic on 
the underside. Charcoal pieces were used by Akinseto and Dura 

(1979) In a basin-type solar still so as to reduce the thermal 
Inertia of the still due to following reasons: 

(I) Charcoal exhibits capillary action. 
(ii) Charcoal is reasonably "black! to solar radiation. 
(iii) The rough surface of a typical charcoal piece scatters 

rather than reflects Incident radiation. 
These characteristics are almost the same In the case of 

the charcoal cloth which has boon used in this work. However, its 

cost is known to be well above that of blackened jute. So it is 

only convenient to use the charcoal cloth In a standard 

experimental solar still unless charcoal cloth will be produced 
from natural sources such as coir. Hitchcock of at. (1983). This 

might make it less expensive. 
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5.2.2 Evaporator support board 

This Is made of fire resistant flat hard board (Cape 
Insulation) to give a firm support to the charcoal cloth and a high 
durability to the high temperatures which might occur when using 
the solar concentrator and/or at high solar Insolation. It has much 
lower heat conductivity (k - 0.29 W/M-11C) than that of the 

galvanized Iron (k - 51.2 W/m-*C) which was used by Sodha el at. 
(1981). or the fibre resistance plastic, Dhiman and TIwarl (1990). 
It has a relatively high heat capacity so that It reduces the effect 
of sudden variation of solar Insolation on the performance of the 

still. 

5.2.3 Still cover 
To separate the top of the still enclosure from the 

ambient air. a transparent cover either from plastic or glass is 

used in the conventional solar still. In this work. a four mm 
thickness of window glass Is used as a condensation surface and 

a transparent cover. Its emissivity for IR radiation was 

estimated to be 0.94. However. solar still elliciency Is not 

strongly dependent on cover glass emissivity, e. g. a value of 0.88 

was recommended by Rabl (1985) and used by Kiatsiriroat of aL 
(1987). It affects only the radiative heat transfer between the 

glass cover and the absorber, eq. (4.3.14) (from the Inner side) and 

the surroundings. eq. (4.3.20) (from the outer side of the cover). 
But both these radiative quantities are small compared with the 

evaporation rate inside the still and convection rate outside the 

still cover. This Is shown In Fig. 4.6.12. Plastic covers for solar 
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stills offer some advantages over glass covers since they may be 

relatively Inexpensive and not easy to fracture. However, they 

have operational problems such as low resistance to scratching. 
distortion and even drops of the condensation failing back to the 

absorber/evaporator surface Frick and Sommorfold (1973). 

In this work to avoid some drops of distillate falling back 

to the evaporator surface. the still cover is made of glass and a 

rectangular cross section aluminium channel Is fixed firmly with 

the help of araldite. to its inner surface. so that the distillate 

can slide directly to the channel where it Is conducted to the 

outer drainage tube. 

The transmittance of the glass cover Is an Important 

factor in the predicted performance of the daily officioncy of the 

Solar still due to its direct effect on the Incident solar energy. It 

has been studied by many authors e. g. Norton el aL (1988). From 

the predicted numerical calculations which are shown In Fig. 4.6.8 

it can be seen that the still efficiency is a strong function of the 

cover transmittance. It decreases from S3.6 to 38.4 when the 

transmittance decreases from 0.90 to 0.70. The real experimental 

value of the transmittance of the solar still cover with 

condensation on It. in the form of thin film or dropwise. is a 

variable quantity and depends an the distribution of the drops and 

their sizes or the thickness of the film of condensate on the 

-cover. These vary with the Instantaneous still operating and 

weather conditions. Cooper (1969 and 1969b) mentioned In his 

studios that the overall effect of condensate (as a thin film) Is to 

increase the transmittance of the system by reducing reflectance. 
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Therefore. an attempt to prove this and to measure the 

transmittance In conditions like those faced during real operating 
time was carried out to got an estimated value of this factor 

(about 0.86). The method was similar to that published by Norton 

et aL (1988) who found experimentally that the unscatterod 
beam transmittance was linearly dependent on the quantity of 
water sprayed on a cover; Le. spraying water film continuously on 
the Inner surface of the glass cover and fixing two solarimetors 
(in parallel planes facing the south at noon) one underneath the 

glass cover and the other nearby. The Irradianco was therefore 

measured with and without the cover. Their ratio represents the 

cover transmittance and is given by 0.86. 

5.2.4 Absorber-cover separation distance 

It has been shown theoretically (Fig. 4.6. S) that the 
highest daily efficiency occurs when the absorber-cover 

separation distance (H) is in the range (20-2S) mm. This is 
because it gives the highest evaporation coefficient. This Is 41.0 
W/m2. K when the separation distance Is 20 mm. while In the 

separations of 10,30 and 50 mm. it is 37.7.38.9 and 34.5 %Vlm2. K 

respectively. Here the Input mass flow rate Is 3.2 kglm2. h. the 
Inclination anglo Is 32% the cover and condensation 
transmittance Is 0.86 and the time Is mid-day. However. the 

separation. of the still of this work Is designed to be 40 mm 
because olapractical reason. 
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6.1 CONCLUSIONS 
Use of the charcoal cloth as a standard absorber material 

for a wick-type solar still Is recommended (although it is 

comparatively expensive) as it has a very high absorptanca for 
VIS and NIR radiation and for IR radiation ( Figs. 3.4.1 and 3.4.2 ). 
Charcoal cloth showed only a slight change In Its solar 
absorptance and no visual deterioration due to an outdoor 
exposure of about two years in a transparent plastic covered 
enclosure. The blackened hesslan cloth laded completely within 
six months (Table 3.4.8). 

The wick-typo solar still efficiency varies with Input 

water mass flow rate. Le. increase of the input water mass flow 

rate leads to a reduction in the efficiency of the wick-typo solar 
still (Fig. 3.2.7 and Table 3.3.1). This is In agreement with the 
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theoretical results (Fig. 4.6.4). Therefore. varying the Input 

water mass flow rate in a wick-type solar still according to the 
incident energy Is recommended. (Fig. 4.6.13). 

Transmittance of the glass cover with condensation has 

an effective influence on the efficiency of the solar still. The 

higher the amount of the dropwise condensation on the still 

cover the less transmittance and consequently the loss 

efficiency (Figs. 4.6.4,4.6.8 and 4.6.9). The wick-type solar still 

productivity varies linearly with absorber temperature (Fig. 

3.2.8). This shows the same trend in behavior as the theoretical 

results. 

The ratios of productivitylinsolation of the solar still 

show there is an observable effect due to use of the V-trough 

solar concentrator with the wick-typo solar still (Figs. 3.3.10 

and 3.3.11). The percentage efficiency difference due to use of 
the solar concentrator on certain clear winter days was more 
than double of that on certain clear summer days. (Table 3.3.4). 

The still efficiency decreased linearly with increase of 

salinity of the Input saline water (Fig. 3.2.9) as determined 

Indoorp. In outdoor experiments the daily efficiency decreased 

as in Table 3.3.2. The highest daily efficiency of the solar still 
Is found to be when the absorber-cover separation Is In the 

range (20 - 25) mm. (Fig. 4.6.5). 
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3M Scotchcal Film S30 had a good durability when 

exposed to elevated temperatures and relative humidity during 

various ageing time as compared with 3M Scotchcal films 3GS8 

and 5400 and aluminised plastic ( Tables 3.4.2-3.4.6 and Figs. 

3.4.18 - 3.4.21 ). 

6.2 FUTURE WORK 

I) Application of the model using realistic data for a place 

in the Middle East e. g. southern Iraq. 

2) Investigation of use of the latent heat of evaporation by 

using a double glazed cover for the wick solar still and lotting 

the input water pass, firstly, through the cover and then to the 

evaporator cloth. 

3) Investigation of connection of flat plate solar collector 

to the wick solar stills. with water flow over the glass cover 

and then input to the collector. 

4) Investigation of the physical properties of the charcoal 

cloth, the still performance and their deterioration with various 

periods of time of running the still outdoors. 

5) Investigation of the effect of Input brino salinity on the 

input flow rate through the charcoal cloth. 

6) Investigation of economics of the solar distillation plant 

with wick-type solar stills. 
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7) Investigate use a solar simulator with a more ellicioncy 

and uniformity incident flux. 

8) Comparison of the performance of solar still by using 
different sources of charcoal cloth and hessian cloth. 

9) Investigation of the performance of wick-type solar still 

with: 

a) variation of the input water temperature in relation to 

efficiency and absorber temperature. 

b) inclination angle of the still for various orientations 

relative to the incident flux, 

c) variation of the cover-absorber separation. 
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APPENDIX Al 

BASIN-TYPE SOLAR STILLS 

In addition to what is mentioned In section 1.2 about basin 

type solar stills, a thorough review of the various designs of tho 

basin-type still has given by Eibling et at. (1971). who also 

included a good discussion of the various factors which affect 

the productivity of such stills. That work was slightly modified 
by Morse and Read (1968) who considered the heat and mass 
transfer relationships which govern the operation of a solar still 
In the unsteady state and expressed the various heat fluxes as 
functions of the cover temperature. The analysis was then used 
to find the effects on output changes in various parameters such 

as wind speed, ambient temperature and heat loss from the base. 

Several attempts have been made to Improve the efficiency 

of basin type solar stills by using: (i) air flow through the still to 

carry the vapour to an external condenser Yoh and Chen (1985). 

(ii) forced bubbling of ambient air inside a solar still Pandoy 

(1984).. (iii) the latent heat of evaporation In either multieffect 

system Dunkle (1961) and Tiwari at at. (1989). doubla basin 

solar still Nayak (1980) and Sodha at at. (1980) or for 

preheating the brine Malik at aL (1982), Yeh and Chen (1987) and 

Tiwari at al. (1989). (iv) black and coloured dyes dissolved in 
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the brine Sodha et at (1980b). Raivanshi (1981), Pandoy (1983). 

Tamiml (1987) and Lawrence et at. (1988), (v) waste hot water 
flowing through the still directly Madhurl and Tiwari (198S) and 
Yadav (1990), or through a heat exchanger Proctor (1973). (vi) 

heat provided to the stills by solar pond Tabor (197S) or by a flat 

plate solar collector either directly, by feeding the hot water Rai 

and Tiwarl (1983) and Rai et at (1990) and with and without 

water flowing on the cover Dult et at (1988). or through a heat 

exchanger Lawrence and Tiwari (1990) and Tlwarl and Dhiman 

(1991), (vii) pieces of ordinary wood charcoal In the basin of a 
typical still Akinsete and Duru (1979) and blackened Jute cloth 
floating over the water having wool knitted in it Rai et at. 
(1990) and (viii) an extended internal condenser Khalifa (1985). 

Since solar stills are needed to work out of the sunny 
hours, so nocturnal production of distilled water has been studied 
by numerous investigators Tloimat and Howe (ISG6). Sodha et at 
(1981), Tiwari and Dhiman (1985). Madhurl and Tiwari (198s) and 
Gupta et A (1988). They used waste hot or warm water Input 

from either power plants or chemical plants. In this process. 

stills can work even in the absence of sunlight. Tielmat and Howe 

(1966) compared experimentally the performance oladeep, basin 

solar still. and that of the tilted-tray solar still. They studied 

also the nocturnal operation of a tubular glass solar still. Thay 

Indicated a substantial Increase of distillate production from tho 

continuous addition of waste hot water to the still. This Is a 
function of flow rate. feed-water temperature, evaporating and 

condensing areas and ambient temperature. Sodha slat. (1981) 
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presented an analysis of the performance of a S013f still using 
the linearised Dunkle's relations for heat and mass transfer. Two 

modes of waste hot water utilisation have been considered: 

(a) a flow of the waste hot water of constant rate through the 

solar still and (b) feeding the waste hot water once a day. A 

single basin solar still with intermittent flow of waste hot 

water has been analysed by Madhurl and Tiwarl (1985). They 

discussed also the effect of various parameters an the 

performance of the still. Tiwari of aL (198S) also incorporated 

the analysis with the effect of water flow over the glass cover 

of the still. A transient analysis of a double basin solar still. 
incorporating the effect of intermittent flow of waste hot water 
into the lower basin. has been presented by Gupta of aL (i9se). 

They found that the yield Increases with flow rate In higher 

temperatures. Nocturnal production In tubular solar stills has 

been studied theoretically by Tiwarl and Kumar (1988). 

Expressions for different parameters have been given. 

Several investigators have also looked at the effect of 
floating porous pads on the surface of water so that the brine, 

depth Is effectively reduced such as life raft typo solar distiller 

designed and tested in summer of 1943 by Telks (ISS3). Bloomer 

and Eibling (1966) reported an Increase In productivity by 10 

percent over the similar shallow basin stills. Later Szulmayor 

(1973) reported tests on flotation of a black liner with outputs 

of 2.934 JIM2. day. Akinsete and Duru (1979) have studied the 

effect of charcoal pieces on performance of a basin still. 
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Charcoal Is wettable and has a large absorption coefficient for 

solar radiation. It scatters rather than reflects the solar 

radiation. They concluded that the effect of charcoal pieces. 

floated on the water surface, is most pronounced In the morning 

and on cloudy days Le. cases of low beam radiation. 

A detailed study of digital simulation of the transient and 

experimental performance of solar stills have been published by 

Cooper (1969,1973). The factors affecting the absorption of solar 

radiation in solar stills by the reflecting layers of salt on the 

water surface and still liner have been discussed by Cooper 

(1972). 
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APPENDIX A2 
INSTRUMENTS 

A2.1 SOLARIMETERS 

Two types of solarimeter were used 1) Kipp and Zonon 

solarimeter. 2) Delta-T-Devices tube solarimeter. The electrical 

output signal of both is produced by a copper constantan 

thermopile which lies under black and white areas. Signal 

magnitude is proportional to the difference in temperature. 

since the black areas absorb most short wave radiation and tho 

white areas do not. A glass cover limits their response to within 
the range 0.35 to 2.5 microns. which involves visible to the near 
Infrared wavelengths. The time constant stated by the 

manufacturer of the tube solarimeter is 5 seconds. 

A2.1.1 Kipp and Zonen dome solarimeters 

1) Dome solarimeter No. i 

Serial No. is CM5-774038 

Calibration factor 12.677 mV/kWM-2 according to the 

certificate shown below. 

Wavelength range 300 - 2500 nm. 

Accuracy within 1.5 %. 

Total response time approximately 10 s. 

Screen diameter 30 cms. 
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Height II cms. 
Weight 3.7 kg including base and screen. 

Weight of solarimeter only 0.8 kg. 

2) Dome solarimeter No. 2 

Serial No. Is CMS-7S2429. 

Calibration factor 10.623 mV/kWM-2 according to the 

certificate shown below. 

The other specifications are as the above one. 

A2.1.2 Delta-T-Devices tube solarimeter 

Serial No. is TSM-6640 

Calibration factor 13.78 mV/kWm-2 measured as shown in Fig. 
32-1. 

Wavelength range 350 - 2500 nm. 
Total response time approximately S s. 
Length 380 mm. 

Diameter 12 mm. 

Detector area 320 mm x, 8 mm 

A2.2 THE OVEN 

Medical F-lectronics Ltd.. Industrial Division 

Type M. P. C. 
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A2.3 HEAT AND HUMIDITY CHAMDER 

Environmental Test Equipment Dept.. Chiswick Flyovor. Great 
West Road. London W4. 

Model HCVH14. 

Serial No. S04145 
72 cm a 72 cm x 68 Crn - 0.352S M3 capacity 
Test parameters: 
Temperatures -65 to +ISO iSlIC 

Humidity range at tomp. (30 - 8S) 9C Is (30 - 9S)% 

Fully automatic through the range. 
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CALCULATION OF SOLAR REFLECTANCE (p. ) 

All WAVELENGTH OF ENERGY BANDS 
Solar reflectance of the SaMPIOS WOrO C, 21culated from 

total reflectance data In the solar region ( 0.3 - 2.5)jIm using 
selected ordinates for air mass 2 and 23 km visibility In twenty 

equal increments of energy given by Weibolt and Henderson 
(1979) from Duffie and Beckman (1980). as shown in Table A3.1. 

Table A3.1. Selected ordinates in solar region (0.3 - 2.5) pm. 

Energy Band 
Number 

Wavelength Range 
Micron 

Midpoint Wavelength 
Micron 

1 0.300 - 0.434 0.402 
2 0.434 - 0.479 0.458 
3 0.479 - O. SI7 0.498 
4 0.517 - O. SS7 O. S37 
s O. SS7 - O. S9s 0.57G 
6 0.59S - O. G33 O. G14 
7 0.633 - 0.670 O. GS2 
a O. G70 - 0.710 0.691 
9 0.710 - 0.7S2 0.731 
10 0.7S2 - 0.799 0.77S 
11 0.799 - 0.84S 0.821 
12 0.84S - 0.894 0.869 
13 0.894 - 0.975 0.923 
14 0.97S - 1.03S 1.003 
Is 1.03S - 1.101 1.064 
16 1.101 - 1.212 1.171 
17 1.212 - 1.310 1.2SO 
18 1.310 - I. GO3 1.532 
19 I. GO3 - 2.049 1.689 
20 2.049 - 5.000 2.292 
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A3.2 COMPUTER PROGRAM 

Printout of the computer program used to calculate Solar 

reflectance of the samples measured by Lambda-9 Petkin Elmer 
spectrophotometer and traced by a cursor connected to a 
digitizer. 

C THIS PROGIUN CALCULATES SOLAR REFLECTANCEOrSJL%IrLE3 
C MEASURED BY WtBDA-9 MRKWCEWER SPECTROPHOTOMETER AND 
C TRACED 13Y A CURSOR CONDNECTED TO A DtGtTtZER. 

C 
dimension l&mbJ&(3OLrou(3OLx(3OW30) 

wtits (6.10) 

c 
C 
C READ DATA RECORDED N. FILE NMUD lumiC FROM A DIGTTMER C AS % ANW 
V COORDINATES. 
C 

f *ad (3.6liunit 
do 111 n 1,20 

feed Gunit. 20) R(Dyi) 
it continue 

writefiu. nit. 30) 

writtflunit, 40) 

C 
do 22 1a 1420 

c 
c %%RrrE DOWNTHE VALUES OFYMM YW cam 
c 

witgAiurtit, wl Iliwi) 
22 ftntinut 

flout a 0,0 



C CALCULATE THE NVA%"ELE. '%*GTH CORMPONDING TO EACII'je AND 
C THE REFLECTANCEC CORRESPON'DUM TO EACIIy. 

C 
do 33 1a UO 

lambditi) m it(i)010.0+300.0 
rou(i) a yGY2.0 
rout a rout+rou(i) 

33 continue 

c 
c CALCULATETHE SOLýR REFLECTANCE OF THENMASURED SA. MPLE 
c FROM THE AVERAGE OF REFLECTANCES OF THE TWEN-ry LNCREjjF, %,; TS OF 
ENERGY. 
c 

rouav a rout)20.0 

w, rite(iunit. 60) 

write(iunit, 70) 
do 44 1a1.20 

c 

c WRITE DOWN THE %VA%ELF-NGTH I. ANIDDA! DCMICROIAS 
c AND THE REFLECTANCE PERCENTAGE. 

write(iunioO) lambda(i). rotei) 
44 continue 

writeflunit. 90) 

writeflunitjOO) 

c 
c WRITE DOUN. THE SOLAR REFLECTANCE OF THE SPECTRMI 
c OF THE NIFASURED SA-1 IPLE. 

writeGunikI10) rouiv 
write(iunit. 120) 

C 
STOP 

c 
to formul'iuniCl 

2 20 farmatflx. Mlý 

30 form3v , 



50 rormat(2xJB. 1.4s. (6.1) 

60 formatUlx. *1. A%IBDAINIICRO. r. 2t. *ROUI%*) 

70 

80 rormat(3i. i6.7z. f5.1) 

90 (cmatUf-lx. *REFLECTMTY-) 

100 format(2z. *--) 

110 romat(403.1) 

120 

END 
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APPENDIX A4 

SAMPLE OF CALCULATED EFFICIENCY OF THE STILL 

The still efficiency (q) was calculated according to the 

relation: 

DI hig. 1 

(A. 4.1) 
n 

where: 
D, is the mass of distillate collected per 30 minutes 

(kg/m2. h). 

hl,., is the latent heat of evaporation (Jlkg). 

Ii is the radiant energy incident on the glass cover (J/m2. h). 

n is number of the intervals. the distillate was collected In. 

The data were collected by the data logger every live 

minutes as shown In Table A4.1 In addition to the manual 

measUrement of the distilled water produced every thirty minutes. 
The arithmetic means of the recorded values over a larger period of 
time were used In calculating the efficiency of the solar still. 
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The manual working out the efficiency started by 

determination of the average absorber temperature of four 

thermocouples of channels 16,17, IS and 19 for live minutes 
Interval and then the average of six intervals to got the average In 

thirty minutes. e. g. for the interval from 11.00 to 11.30 am the 
five minutes averages are 66.9,67.1,67-6.68-0.65.9 and 69.0. 
Hence. their average Is 67.4 11C for which the latent hoat of 
distilled water evaporation can be calculated as: 

hig - 1000 x (2501.67 - 2.389 Tabs) (A. 4.2) 

where Tabs in *C and hl, in (Jlkg), Elsayed (1983) 

Le. 

hig - 1000 x (2501.67 - 2.389 x 67.4) 

hfg - 2340600 J/kg 

The five minutes average of the measured solar irradiance Is 

recorded by the data logger as it In channel No. 2 In kW/m2. The 

average of thirty minutes was determined by the arithmetic means 
of six intervals (S mins. each) Le. 

0.898 + 0.90S + 0.921 + 0.922 + 0.913 + 0.921 
. 0.9135 kW/m 

6 

This was converted to (J/M2. h) by multiplying by 3600 socjh to 
become 3288600 JIM2. h. 
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The mass of distilled water produced from 11.00 to 11.30 am 

was 125.9 gm which Is equivalent to 0.699 kg/M2. h (using A-0.36 

M2). 

Hence, the efficiency is 

0.699 x2340600 
3288600 

0.4975 

or 
0.498 

and same for the other intervals. But when the still efficiency for 

n intervals is wanted Eq. A. 4.1 can be applied Le. for the lost on 

2SM1990 which was seven hours long ( fourteen Intervals ) the 

efficiency Is 

Di hig. 1 
10876111 

n 
U381600 

Tj - 0.534 



Table A4.1. Print out of the data logger for the still test on 

2517/1990. It was carried out for the still without the solar 

concentrator. outdoors. 

t atl fill: . 37-CAT. 

ovir-m trr^. r 
: 0111 fIlR: q 
oil blits Itou; 
over-rup tIlsI:, 

............................... 
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C.. z 1S. '. 4311 11.1 :,.. 1 S3.1 ss. 7 9.3 SIA Is.! 
13110 : 1.1 143.1 11.11 11.1 41.1 

IM 15.1 VA U.; 1: 3 31.1 11.1 s!. 1 H. 1 11.1 
. 1. * 

U. 1 s- 9.6 $1.1 17.1 
T!, : *. I AVIEN4. 3.1 : ). *4 V. ) 11.14 41.1 

1;.! IM V.; : 1.2 11.1 S1.1 iLs 10.1 11.1 

lc:: s 3124 1: M-. : 1.1 142.1 IM 11.1 41.: : 3% 

I VA 51.6 11.1 VA 11.1 
!. 1 0.1 41.1 41 : **% 



Jable A4.1. Print out of the data log ger for the still te st on 

2517/1990. It was carried out for the still witho ut the solar 

conce ntrator, outdoors. (continued) 

11.1 11.1 ISA 11.1 SM 
: 3107 MM11 11.1 3.111.1sl X0.131-2 U1117 1.191 

11.7 11.1 17.1 MS 21.1 11.1 11.3 11.7 63 11.1 
: 1101 11: 23: 00 22.1 All'-st-I M13 : 1.1 41.1 11.1 11.1 141.1611 11.1 SM 11 ! 21.3 *S 12.1 11.1 11.1 1: 
: 1/17 11: 11: 00 ; 13 1.151111 313SIN 1.1111 17.1 11.1 11.1 IM 11.1 : cc% so SLS 11.1 1L *1 IS. 1 ISA 12.1 11.1 Ml 
11101 11: 30.0 ZZA 0.15031 ASS171-1 LIM? if 11.1 11 41.1 3it 

11.1 31.1 11.1 MI OISA IS. 1 11.1 12.2 11.3 13.1 
11/07 11: 15: 10 12.1 1.141111 . 1121SM 1.1111 4*1.1 11.1 11.1 12.1 11.1 . 1111 33.1 H. 4 If. 1 H. 2 2 1.1 16.6 11.1 13 IW 
ZS111 11: 13: 10 22.1 11.171S 1.10: 7.11 t. 11711 MI 11.1 11.2 H. I 11. 

53.1 MI 11.3 sl 11.1 17.1 11.1 13.1 03 
65111 HAND 141.1 0.111111 . 161,11-16 Mills 3.11 SIA 

SSJ 11 33.1 I'm 13.1 
21117 W. 9: 91 22.1 *1. IN 1 : 1.1 S1.1 H. 1 11.1 

SU Is.: 11.2 M1 ILS 17.1 11.1 17.1 
11101 MIMI 12.1 1.111111 MMI-I 1.1.31 . 11.1 11.1 1, % it. 1 

SM SM SIJ H. 1 21.1 11.3 11.7 It's 173 
11117 ll:: I: C: 231 1.111317 . 14101-1 06.11: 1 : 11.1 : 1.1 $11.1 13.1 9.1 Mn 

SI 51.! 9.3 ! 1.6 V.? 11.1 11.1 Is IL. 4 17 
ISIC7 ll: cs: c3 Ml C. 11131 . 3131t. 11 1.1*1111 17.1 1.1.1 SIA 11.1 9.2 M 

SM SM U 11.1 MI 11.41 is. 1 IS. 2 11.3 %'. 1 
OIt? 11: 11.0 . 13.3 03: 631 JOHN 1.11 1.1.1 *11.1 33 13.1 11.1 : 3% 

S2.1 S1.1 $1.1 H. ) *11 11.1 (1.1 IS. 1 11.1 17.1 
25117 11ASAI 143.1 3.11.07*11 . 11113M L11111 V. 3 *11.1 11.1 11.1 IM 

S1.1 51.1 SIA S8.1 UA 11.1 11.1 11.1 $1 
, Sic? 11: 2114 21.1 1.1311S AS1231.1 tAllsol *LI : 1.1 11.1 HA 11.1 

111 S) 9.2 ! 1. [ : 6.1 11.1 11.1 H. 1 11.3 11.1 
ll: zs:: ) 13.7 3.1112M MMM "AsIll . 1.1 1S. 3 11.1 S1.1 It 

S1.1 Ms SM 9.7 VJ 17.1 (1.2 W., Vm $1.1 
: S/11 11: 111) : 1.1 LMM AM'11_1 LOW . 11.1 33 ! 111 1*..? 11.1 11.101 11.6 12.1 SM 9 3 Ml 11.1 17.1 71.1 M: 
ZS111 IMMI 13.1 1.11,1131 AMIN MS511 "1 : 1.1 ý1.1 U.: il. 1 : 13 $]. I SM I.,.. % SIA Is. 1 11.1 VA 11.1 ! L: W" 
Uill MMU . 1.7 3.1111: 1 . 112111-2 ME:? 3 11SA 11.1 11.40 M: : 3% 

5S. 1 13.1 $3.1 11.1 : 1.1 11.12 V. 1 113 140.1 MI 
HIP MINI 40.111151 1.1.1141.1 LIM : 1.1 . 11.1 H. 1 H. 1 Ml : 11 

1.1.1 SLI 11.1 NA 11.1 17.1 If. *. *1 13.1 
Is/:.? 11: 9: 13 It LINAI 1XII Mt . 1.1 SS. 1 U. ) 1: 3 :.: 1 

! 1.1 SM VJ IS., 1.1 IL: H.: 11.. 
ISM 1,11s: 3 21.7 3.11! 111 :. 117! 1 3 11S. 1 11.1 11.1 !1 

Ml 11.1 9.2 St. ) :1 11.1 11 it 11.1 1:. * 
MV. MN-13 11.1 11-Mill it . 11: 11 M! : 1.7 M1 WI H. 1 :: 3 

H. 1 1: 3 11.1 9.2 V. 1 
UMH JIVIP: 13.37 :1 Ali. ) 161.1 S!. 9. ;. 1 :1 *:. 1 

11131 MUIC 111*11-: :. 41.1: : ). 1 33 4A U.: !. J 



Table A4.1. Print out of the data logg er fo r the Still te st on 

2517/1 990. It was carried out for the still without the solar 

concentrator, outdoors. (continue d) 

9.1 
ISIVY IZ: 13: 50 1*617 33 41 1 SLS 11.1 

51.1 11 53 57 Z? 1 613 11.1 H3 
IS107 12: 23M : 4.1 MIMS . 111,11-2 LMI) *41.1 11.1 11.1 11.1 U. 1 a*:: 

$5.1 11.2 SLI H 26.3 72.2 II. s 11.1 it It. $ 
ISM 11: 4, M) 213 Millis 0.10116 13111 111.3 . 1.3 ILI 11.1 U. 1 16: 1 4 SM 12.1 563 11.3 21 12.1 11 61 713 11.6 
Z 1/0 1 11 -. 11: 11 21.7 1.11111 1.131261 I. M67 11 .1 1.1. t II 11.1 11 .1 .1: C 

57 V. I MI 9.4 17.1 12.1 0.1 11.1 11 1 11 1 
13137 11: 3 3 :01 11 .7 3.11161S 1.1371116 1.456 19 .1 16.1 16.1 $1.1 a, I: 

S1.7 11.1 SS. 1 S9.1 27.1 12.3 11.1 UA 12 
IS/$? 12: 11: 00 if.? 1.111CH OMMI 1.4111 Z1.1 I1 11 S) 1* *1 C 

SM 11.1 . 11.5 11.1 27.1 72.1 11.1 0.1 71.1 12.1 
INNO ZM LISTISS I. I. CMIS tAM1 411.1 21.1 11.1 11 11.1 It, 

SM 11.11 St. ) SLI ILI 72.1 11.1 11.1 11.1 11.1 
11.107 1213: 33 21.1 IM11 *1311 213 . 11.1 11.1 ILI 11.1 

si. 2 13.6 3. ] 12.1 11.1 11.1 113 

1337 INNI *. 1.2 1.1111,15 *. 0111 it. ) : 6.1 51 11.1 U. 2 
I1 .1 12.3 Ml SIA 27.1 1: 3 11 11 71.1 It.. 

V1 /V MUM 14s LIHM IXIM 1-Mil 1.3.7 : 1.1 113 11.1 11 
SIA 61.3 SAM SM 21.1 

1.1.1 . 6.1 9.1 13.1 11.1 
55.5 1 60.1 

SM 9.1 4ALI '1.1 11.2 11.2 13.1 12.1 
*! 11*# -1: 31 : &. 1 0.111111 ASIS11-1. 1.111 : 1.1 ;;. 1 S1.1 133 Is 

S1.3 it.? Ml 9.1 HA 72 11.3 11.4* .1 11.1 
IS137 11: 11SA., Is. 1 C. 126113 LUM M) HA 11.1 11.1 

MMI . 11.1 

SM [). I S3.1 S7 : 1.1 1.,. " 11.4 W! 
ISM I!: Is: 4*1 

Is C. 111111 M*3111 1.1101 11.1 : 1.3 9.1 MI 114 

SM IM UJI 9.9 : 6.1 71A M) U.: 11 V. 1 
Z5.11 4!. 1 1-113 

. 
11.1 : %1 9.3 11.1 ILI 

$1.1 ; 1.1 *1 1 71.1 IIJ 11.1 11.4 

1 :7 1!. 1 3.111*117 1.17414-: *Mll's 1.13 : 73 1? IM H. 1 
It IM HA it 21.2 9-:. & 11.1 11.1 11-1 

11/0 11.4:::: V. 7 9.111311 163: 311 1.11111 21.1 . 7.! $11.1 It is 
S* U SM It. s . 11.1 1* . 1* 11.1 MI 11.1 C 

: WU IMMO, I&S. 1 1.1111: 3 3.111: 111i tX3,1 : 1.1 VM 17 $1 11.1 
31.1 11-1. H.,. 0.7 11.2 1.1 11.1 IM 11.1 V. 

M"I'. IMM: : s-I MIMI 1114111-1. 1.11CM 11.1 : Ll V. 1. ill., 1).: .1 
)73 M! H. 1 11.1 MI 1:.! U. 1 it. *. 11.1 1: 

: 11V &I-Ss: *. '. . 3. ) *'JiMi :. ":! 1: 1..!: 1: 7 : 1.1 : 1.1 S%I H. 1 1. 
I,.: sl : I. % II 

11.1 It. 1 : 1.! !. j 11.3 it.,. %J I:. 
: 1,: 7 11-1 MIMI) 1! it it 

11A 
: V: 7 it-*: : I.: CAMN 



Table A4.1. Print out of the data logger for the still test on 

25/7/1990. It was carried out for the still without the solar 

concentrator, outdoors. (continued) 

SS. 1 13.1 1.1.5 IS *47.1 11.1 It.: 11.1 13.1 12.1 
:6 OJIMS L-1411 1.11113 *41.1 147.1 16.1 11.1 15.1 NA 

IS 61, 31.1 ;I... : I. -, -. 1 67.1 67.1 -, I um. 
Is"01 *1: 13: 11 113.9 0.1,111 it) 101-1: 11 is 14*634, 411.3 147.1 11.1 1*63 IM NM 

33.1 I. M. 53.2 SIA 21.7 11.3 U. 2 17.3 11.1 11.1 
:, S121 11: 11: 11 26.1 0.11,10cl 3.1.14M Lclosl : 1.1 11.1 13.7 11.1 Is. 7 ::: % 

H. 5 5) $3.1 11.1 27.2 M., 17 67.1 11.2 61.3 
B/11 MMOC 116.2 0.171411.1* M. *11711 : 3113? : 1.6 11.1 SIA 11.1 St. $ ::: % 

is S1.4 Is. 1 51.11 "Ll, ILS IM 16.1 11 VJ 
MICT M-13: 13 Ms 0.12M 3.11,14 ZIA *11.1 ss. 1 It.? is *.. &% 

S1.1 9.7 1 SM 11.3 61.3 HA 11.1 IM 
1311, IIAMI 26.2 0.1311*1 1.11,661 MOM 111.1 IM IS 11.3 11.1 1: 91 

SM S7.2 S1.1 S6 IM 11.1 0.1 WI 17.1 V. 1 
23/07 HASM 11.1 0.74041 MINIM 4.1: 1111 Ms 111.1 SIA S1.1 11.6 : 3% 

S3.1 S1.2 MI 11.5 27.1 11.2 Ml 13.1 61.1 1.1.1 
IML. 3 LVIO, MINIT : 1.1 : 1.6 11.1 I ! 1.. 11.1 : 3% 

S1.1 $3.7 sl . 11.2 V. 1 0.3 IS. 1 ; 1.1 93 
IMS: 91 "Ll 0.11: 211 L-4131. 11.1 3-1 it. 1 11.1 11.1 1,,: :I 

51.1 SI.: $2.1 S!. l 3 113 IS Is.: 11 SIA 
Isit? IS: *. C:. § Z1.1 1AMI t. UD"! 0.111 14). 1 U., U3 $,.. 1 11.1 ! let 

S3.1 SIJ ILI $1.1. 1.1.1 16.1 (1.1 If. * 61.6 H.. 
IUCI 1!: Cl:: o C-15i: MCIIS1 It. ) 17.1 1.1.1 : 3ý 

53 U. 2 IM Is. 7 "Ll If.; 11.3 11.1 VA 
IHHI 1-114M I. it !1 : 1.3 MI J7. I : 3% 

0.1 11.1 it. $ 11.6 

1.55iHI M15511 1.41.141 IA 3.3 SIA S1.1 a) : *: t 

Ms S*. A IM U :!. 1 13 1 11.1 U..? 1! 51 
1! 4, : 6.1 0.513,11 3.1.111111 LIM : 1.1 21.3 41.1 is., $:. I ::. *% 

11.2 Ms 1.0.1 U VJ 1,.,. 
MIT "I 0.111M LIS316s) LIM 1.1.1 11.7 lilt Ml : 1.9% 

11.3 U. 3 IL* N5 *173 13.1 (10.1 11 

, S:;, 3.3 M11 3 : 1.1 11.1 Is. 1 11.1 : 31 
17.1 !!. S IM Mf : 1.1 13 If.! 6: 11.3 SIA 

0.311K I-11X: 1 11.3 St., 17.1 :: q, k 
IM IM 11.5 : 1.1 11 9.1 9 P. 1 

1.11MI 10, AHM V-3 
47 ! 2.1 17 SM : 6.1 11 S1.1 W: Ill. I HA 

"Ll LIM`? 1.11: 11: : XAS31 : 1-1 Mz 11 0.1 ILT :: *It 

13.1 It t; 11.7 *If.! 
11.1 IM V-11 11.1 If 

3.1 M1,11: 1 L*11: 3 L"IM" : 1.1 47.1 KJ 41.1 
It.; IM U.: 11.1 : S., 11.1 ! '. 1 ! 1-1 

MV ISMAI N. I t. 11'. 1* ; XN11 1.41,111. HA : 1.1. 
11.5 I'A If.: M6 M) 9.1 If. 1 V.: If.: 
21.2 C. 13131 : 1.1 : 1.1 03 is., 
11.7 11.1 1*$., 1' : 1.: !:.! MI H.: 1,.: 1: -, 

LIMH 1.11,110 : 1.2 V. 4 11.1 ! 1A If. * 1.0 
M. P., : Sý: 4A MI !SI P1 



Table A4.1. Print out of the data logger for the still test on 

2517/1990. It was carried out for the still without the solar 

concentrator, outdoors. (continued) 

: $III ti: *. I:: 3 

ISJU 11: 14,11 

IslIT IWSA: 

ISII? MUM 

Isill MOM 

IS117 *. I: SI: Cl 

Wal ISASA3 

1110 tl:::: *o 

: ji: 1 1!: 'i'!: Ob) 

. Sill 1T: 1:: t3 

0.11314 . 1111671-12 
42.1 13.1 

*11.3 MIMI AMIN I. Issill 
17.1 it. ) 37.1 it 
25.1 1.311111 AMIN 1.1: 21 

31.2 Ml 31.1 31.2 
13.1 0.11,11V . 411111.2 0.21110 

31.1 31.2 IMS 11.1 
IS. 1 0.311,161 1.111111 

31.3 31 31.3 11 
Is. 1 I. I? Clls I. IIS? t-z 1.1111 

31.3 37.1 31.1 31.1 
15. S I. SSINT AMIN 0.111113 

11.3 33.2 31.1 it.., 
21.1 IMIC147 . 41411411-1 1.137131 

H. 1 37.1 31.7 31.3 
IM 2.451121 . 335311-2 LICS 
17 37 37.1 H. 3 

11.1 I. Ml H. 31 11.21 

NA 

: $. I 

Ml 

113 
21.1 

17.1 
Z1.1 

17.3 

11 
16.2 

I'M 
IM 
219% 

13.1 

113 
41.1 13 11.1 1431 

47.1 11.1 ILS 43.1 
ll. S 11.1 11.1 : 3% 

11.5 11 11.3 VA 
11.1 ILI 11.1 13% 
17 17.1 11.1 13.1 

31. S 414.4 Ml : 31 

41.1 ILI 17.1 11.1 

Ncl 
111: 

1 
44: 

11 ! 1.141 

MA IM U. 3 :M 
I 4c,, 1 :1 N3 
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APPENDIX AS 

WICK-TYPE SOLAR STILL WITH INTERNAL 
V-TROUGH SOLAR CONCENTRATOR 

The experimental work originally started with the aim of 

using a truncated V-trough solar concentrator of 300 apex angle 

as an internal concentrator of a wick-type solar concentrator 

still. Its base represented the absorber surface of the still and 
its aperture was the glass cover of the still. In this design: (1) 

The concentrator mirrors act as reflectors for solar radiation as 

well as condenser surfaces. (ii) The cover on the concentrator 

prevents dust accumulation on the reflectors. (III) The rellector 

angle Is fixed. Therefore two wick-type solar distillation units 

with the same glass cover area were constructed for testing. One 

was a solar still with solar concentrator. its absorber area was 

a third of that of the cover to let the concentration factor be In 

order of 2. The other still was the conventional wick-typo solar 

still. 

After testing these stills outdoors with the same 

Inclination angle facing the south. It was found that although the 

operating temperature of the solar concentrator still was higher 

than that of the other still, its yield was much loss than that of 



Appendix AS pag# A 14 

the conventional still. The high reflector temperatures ( higher 

than of the cover ) caused evaporation of the condensate occuring 

in some parts of the reflectors. So. these negative results 

discouraged further work on such a design. Other reasons why the 

performance of the solar concentrator still was low may have 

been the cover-absorber distance which was very largo (D . 510 

mm ). This increased the convection heat losses. The absorber 

area was small due to the design. 

Later the decision was made to fix a solar concentrator on 

the glass cover of the conventional wick-type solar still and 

compare its performance with that of the still without the 

concentrator. 
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APPENDIX A6 

MEASURED DISTRIBUTION OF IRRADIANCE IN THE 
BASE OF THE CONCENTRATOR 

The actual distribution of solar Irradiance In the base of 

the V-trough solar concentrator has been measured at different 

times of a clear day 11/7/1990 using the digital irradlance 

meter. This was carried out by dividing the base of the 

concentrator to 108 squares 5xS cm2each. Figs. A6.1-A6.5 

show these distributions and the effect of the shadow created 
by the concentrator ends walls. 
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APPENDIX A7 

COMPUTER PROGRAM TO MODELTHE 

pap A 18 

PERFORMANCE OF THE WICK-TYPE SOLAR 

STILL 



C THIS PROGRAld SOLVES THE DAILY TRANSIENT EQUATIONS OFTHEMCK-TYPE 
C SOLAR STILL USING FINITE DIFFERENCE MEMOD BASED ON REAL DATA FOR 
C A161DIENT TEMPERATURE AND SOLAR INSOLATION. 
C***o********* 00*0004 
C PROGRAll IVICK-TYPE 

IMPLICIT REAWS(A-11,04) 
C 

DO 999 XXzO. 80,0.90.0.02 

C 
WRITE(6,111) XX 

WRITE(331,111)XX 

WRITE(382.111)XX 

TAO n XX 

CALL NVICK(TAO) 
C 

999 CONTINUE 

Ill FOULATV//. IOX, 7RANSNIrrrANCE=!, FS. 3) 

C 
STOP 

END 

SUBROUTINE WICIC(TAO) 

C 

C 

IMPLICIT REAL*8(A-11.0-Z) 

PI n 4. ODO*ATAN(I. ODO) 

DO 250 FLO = 3.20.3.40.0.10 

DO 260 A= 30.0,40.0.2.0 

DO 270 11 a 0.025.0.040. O. W5 

RAD a PI/160.0 

SN a SIN(RAD'A) 
CN a COS(RAD*A) 



c PRINT*. 'INPUT TABS TCOV DT SUNRISE SUNSET' 
c 
c READ% TABS. TCOV. DT. SUNRIS. SUNSET 

TABS 56.8 
TCOV 43.7 
DT a 0.01 
SUNRIS 9.0 
SUNS ET 17.0 

C 

C- START COUNTING HOURS OF THE DAY 

SUNRIS n SUNRIS +I 

C 
C- START UP SPECIFICATIONS 

TOINSO 0 
THPIUM 0 

C 
CALL CO. '; STRUCnO, '; 

-SPECIFICATIONS(R. %IAS I. R. %LkS2) 

C 
0n9.8 

CPW n 4186.8 
CPA a 1006.9 
IMIEU a L99SE-5 

ROU n L0614 

ENE%V a 1111EUIROU 

TIIK a 2.90E. 2 

ALFA a TIIKAROUOCPA) 

c 
c FOR TEMPERATURE m 60 C=333K 

ALFACII = 0.98 

ABSW a 0.9 

ABSG a US 

SIGINIA a &67" 

III = 20.0 



C-READ THE REALISTIC DATA OF HOURLY SOLAR INSOLATION AND MIDIENT 
C TUIPERATURE. THE DATA IS BASED ON A SET OF MEASUREMENTS TAKEN 
C ON 2517/1990 

C 
DO 200 IID a SUNRIS. SUNSET 

READ(266. *) I tINSO 4 TANI 0 

C-IIINSOL IN AND TAMB IN ( C) 

CAMA a 0.0 

C TAKE THE NORINUL (VERTICAL) COMPONENT OF THE INSOLATION I. E. AS AT 
C NOON TMIE. 

OINSO u IIINSOL*COS(RkD*GANIA) 
OINSO m OINSO*1000 

C 
IIS = OINSO/3600 

C-THE INSOLATION (HS) IS CONVERTED TO (WAI'l) 

C--SET INUM CONDITIONS 

NmO 

Tm0.0 

ITABS 0.0 

TrCOV 0.0 
7TEMPD a 0.0 

TPAB m 0.0 

TPC w 0.0 

TRA a 0.0 

TCN'U n 0.0 

THE a aO 
VIC a 0.0 

TIM u 0.0 

THRA m aO 

TIICA a 0.0 

TPILM u 0.0 



TUIN w TAMB 
TAB a TABS + 273.15 
TC a TCOV + 273.15 
TA m Ttu%IB + 273.15 
TWO a IMIN + 273.15 

99 CONTINUE 

CALL MUN-EQUATIONS (TSKY. TA. TA]3. TC. PAD. IrC. 
& CLAT. I[S. TAO. TE%IPD, PJk. C, *%'U. 0,11, ALFAENE%V. IIC. 
& IIE, IMIII. lICA. IULkII2. QEQB, Q%ýIN. QN%*OUT. QA]31, '4. 
& QABOUT. ALFAIALFA2. SIG, %tAALFACIIAZSW. CP%V. 
& FLOT%%V. PR, %I"tASI, P-NtAS2, SN, CN. EFF. RAI). Ilt. 
& A. Tlt]CABSG, tYT. IUD) 

To T+ DT 
C- COUNT (N) WITHIN AN HOUR ACCORDING TO THE TIME INTERVAL (DT) 

N=N*l 
C ACCMIULATIN G THE INSTANTANEOUS DATA ACCORDING TO (N AND DT). 

TPAB a TPAB + PAD 
77PC a TPC * PC 
TTEMPD m TM%I PD + TEMPI) 
TRA n TRA * RA 
TCN`U a TCNU + CNU 
TPRNt a TPRJ%f + PRIM 
THE a THE + RE 
TIIC a TIM + IIC 
TIM a THR + RR 
TURA a THRA * 11RA 
TlICA a TIICA * HCA 
TARS w TAB - 27115 
TTABS m TTAM * TAM 
TCOV n TC - 27115 
TTCOV a TrCOV + TCOV 



TAI-10 a TA - 273.15 
I F1 T. LT. I. D0) GO TO 99 

c AVERAGING THE DATA TO THE HOURLY 

11PAD m TPABIN 

IIPC a TPC/N 
IrrUIPD a TTEMPD/N, 

ORA a TRA N* 

IICNU n TCXU/N, 

11PIM a TPILNVN 

OHE a TIIE/N 

0110 a TIICIN 

OlM a TIIR/N 

OHRA w THRAM 

OIICA a TIMAIN 

OTABS m TTABSW 

OTCOV m TTCOVIN 

IIEFF u 11PRI&CLAT6100.000INSO 

OTEMPI) u OTABS - OTCOV 

C ACCUMLATING THE HOURLY DISTILLATE rRODUCTION AND THE INSOLATION 

TIIPF-Nt Tlt]rR,, Nt + IIPR. Nt 

TOINSO TOINSO + OINSO 

200 CONTINUE 

TEFF n TI IPP-NI'CLATO 100. WMINSO 
NMITEMV) MAILY EFFICIENCY Wa TEFF 

WRITEM 1.0) 'DAILY EFFICIENCY (A) a TEFF 

WRITE(331.9 

270 CONTINUE 

260 CONTINUE 

250 CONTINUE 

C 

RLTURN 

END ' 



SUBROUTINE OUTPUT-IIOURLY-RESULTS(110. OTABS. OTCOV. OTENirD. 

& ORAOCi4U. OltE. OIIC. OIKOIIRA. 01, N*SO. 

& IIEFFIIS, ItPRNI, FLA)AIITEýIPD. IIPAB. IIPC. IICNUCPAD. 11) 

C 
IMPLICIT REAWWA-11,04) 

c 

c %VRITE(382,82) 11D. OTABS. OTCOV. REFF. IIS. 11PILM. FLO. A 

%VRITE(382,82) ItD. OTABS. OTCOV, (YTENIPD. IrrE%IPD. IIPA13. IIM. ORA. 

&I ICNU. FLO, A 

WRITE(381,81) HD, OHE. 011C. OIIR. ORRA, It. FLO, A. IIM%f. 

& IIEFF. OINSO 

so FoRziATiv/rrABs(cr. =-mov(crxc. -iRR(NVIN12r. LX. -rA. %In(cr, 

& IX: PRAI(KGUr, 3X: EFF %*, 4X: IIE*. 4Y, *FLO*. 2X. "r%%I,, ýr) 
81 FOR', %IAT(2XF5. l, 6FiL3. F7.1,2F8.3. FI2.1) 

82 FOILNIAIXMF5.1.4FS. 2,3FI2.1, FS. 3,2FS. I) 
c 

RETURN 
END 

SUBROUTINE MUN-EQUATIONS (TSKY. TA, TAB. TC. PAD. PC. 
& CIAT. HS. TAO. TENIPD. RA. CNU. 0.1f. ALPA. ENEW. 11C. 11E. 11R. Ill. 
& HCA. 111RA. H2. QE. QB. QNVIN. QWOUT. QABIN. QABOUT. ALFAI. AILFA2. 
& SIGBt&ALFACILASSW. CP%V. FW. TV%'O. PR. %f. L%LASI. P-%IAS2. SI. CN. 
& EFFRAD. III. A. TIKABSG. DT. lM) 

c 
IMPLICIT REAWSWILO-Z) 

c 

TSKY n 0.055'TA**LS 

BETA = 2. GTrAB+TC) 

c VAPOUR PRESSURE AT. OSORBER TEMP. (MI1110 CONVERTED TO MIA1112) 

PAB 10.00*(0.622 + 7-5'(TAB - 273.151%TAB - 35.0)) 
PAB PAB*LCE*5n5O. o 



C VAPOUR PRESSURE AT COVER TEMP. (NINIJIG COWERTED TO NA, 1'2) 
PC m 10.000(0.622+7.56(TC-273. ISY(TC-35.0)) 
PC a PC*I. 0E+5n50.0 

c EFFECrIVE TEMPERATURE DIFFERENCE 

TEMPI) a (TAB-TC)+(PAB-PC)*TABA268900.0-PA]3) 

C 

C 

RA a G*BETA*TENIPD*11**34ALFA*ENE%V) 
CNNU m 1.0-170S. O*(SIN(RAD*I. S*A))**1.6ARA*CN) 

BRACI ul-0-1708. OARMCN) 

IF (BRACI. M. 0.0) BRACI v0.0 
BRAC2 a ((RA*CN/5830.0)*'(0.3333))-I. 0 
IF ( BRAC21T. 0.0) IBRAC2 w0.0 
CNU z 1.0+1.44*BRACI*CNNU+BRAC2 

IIC - THK*CNUII I 

HE a 0.016011C*(PAB-PC)CrAB-TC) 
QE a IIE*(TAB-TC) 

c QE: EVAPORATION ENERGY RATE (IVI. %1^2) 

CLAT a (250L67-2M9*(TAB-27&I5))*10D0.0 

c CLAT: LATENT HEAT OF EVAPORATION UXG) 

PRM a QE*3600.0r. IAT 

c PICA : PRODUCTION 161ASS RATE OF DISTILLATE (KGA. IA2.1 t) 

EFF a QE*100.011S 

IIR u ABSG*SIGB-IA*(TAB**4-TC**4Y(TAII-TC) 

III m IIE+HR+IIC 

VUZO 
ITCA u 5.7+3.8*V 

IIRA n ABSGOSIGNIA*(TC**4-TSkY**4=-TA) 

112 u IICA+IlRA 

D 111 m 0.009 

TIIE31 a 0.29 

DLI a DLlLJTIIKII 



DL12 n 0.0125 
TIIE32 a 0.034 

D12 a DLI2/TIIIU2 

DL13 m 0.033 

T111(13 a 0.039 

DL w DLI31TIlKI3 

IIBB a (Ulil)+DLI+DL2+DL3 

III) a I/IIBB 
QK = IIB*CTAB-TA) 

ALFAI u 0.05 

C ALFA2=CIIARCOALABSORPrIVTTY*GtASSTRANSNIISSINM 

ALFA2 n ALFACIIOTAO 

QWIN a FLO*CP%V*MVO-TCY3600 

C FLO: INPUT WATER FLOW RATE IN HGo"llit) 

QWOUT n (FLO-PfL%I)*CPNV*(TAB-TCY3600 
QCIN a ALFAIOIIS+Itl*(TAB-TC) 

QCOUT a 112*ar.. -TA) 
C QABIN = ALFA20HS+QMN 

QABIN m ALFA2*IIS 
QABOUT m lll*(TAJ&7C)+QK+QWOUT 

C QABOtrr a lll*(TAB-TC)4QK 

TC a TC+3600. OODT*MtAS20(QCIN-QCOtM 

TAB a TAB+3600.0*DT*M*. LkSl*(QABtN-QABOUT) 

RE'rURN 

END 

c 0*00000000000000000 

SUBROUTINE CO. '4STRUCrION-SPECIFICATIONS(P-NIASI. P-%tAS2) 

C 
UIPLICrr REALOB(A-11.0-Z) 

C-ABSORBER SUPPORT CHARACTERS 
Wl 0.95 
Yl 0.50 



At a WI*Yl 
THICKI a 0.009 
Rowl u 1500 
IIASS1 a ROWIM13CKIOAI 
CPAB m 900. DO 
RAIASI a Al/(,, NLASS10CPAB) 

C-GLASS COVER CILUtACTERS 

NV2 0.97 
Y2 0.55 

A2 NV2*Y2 

TIIICK2 n 0.004 

ROM 2500 

1AASS2 ROW2*TMCK2*A2 

CPC m 75O. Do 

RNLAS2 a A2AKk=*CPC) 

C 
RETURN 

END 
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APPENDIX AB 
V-TROUGH SOLAR CONCENTRATOR 

In the literature this sort of concentrator was studied to 

be used with flat plate solar collectors for providing higher 

water temperatures than can be achieved without the 

concentrator. e. g. Issa (1989). In this work the concentrator was 

combined with a flat plate tilted wick-type solar still. The 

concentrator longitudinal axis was oriented along the east-west 

direction and receiver/aperture planes tilted according to the 

solar altitude at noon facing the south. 

The V-trough solar concentrator is a flat sided rectilinear 

concentrator as shown in Fig. ABA. It has two side mirrors of 

reflectance (p) having the cone apex angle (2a), length (L), 

aperture width (A) and truncated somewhere to form the base of 

width (B) and aperture-base depth (D). The solar radiation 

incident upon the aperture with solar Insolation (1) forming an 

angle (y) with the normal to the base and aperture. The 

. 
concentration factor (C. F. ) of the V-trough solar concentrator Is 

defined as the ratio of the energy Incident an the aperture that 

reaches the base, in this case Alcosy. to the energy that would 
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appear over the base if exposed to the sunlight directly, that Is, 

without the presence of the reflecting sides Burkhard el at. 
(1978). The latter energy is Blcosy. 

Thus 
A C. F. 
B (A8.1) 

Under the assumption of direct beam. noon-time solar 

incidence optimal groove designs are possible based an a one. 

reflection. maximum concentration criterion. This criterion. 

accounting for seasonal variations In noon-time incident solar 

angles resulted In a near-optimum geometry of an opening angle 

near 30 degrees, and with the depth to base ratio ( DID ) of 1.7S 

Howell and Bannerot (197S). Therefore. the geometry which has 

been adopted for the concentrator ( Fig. ASA ) has: A-0.600 m, 0 

- 0.310 rn, L. 0.561 rn and 2a = 30". 

Since 
D-L cosa -L cosIS 

henco 

D-0.542 m 
Then tho ideal C. F. is: 

C. F. - AtB -1.935 
and the expected C. F. for beam radiation - 1.68. (Bannerot 

(1974)). 



Fig. ASA. Geometry of the V-trough solar concentrator. 
Dimensions In mm. 
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APPENDIX Ag 
ERRORS CALCULATION 

A9.1 ERRORS CALCULATION OF THE SOLAR REFLECTANCE 

Solar reflectance of different materials was measured 

using Lambda-9 Perkin-Elmer spectrometer. The random error In 

this measurement was calculated by successive measurements of 
the solar reflectance and calculation of their values then the 

standard error in the mean (a,, ) Squires (1968) as In the following 

example using the relations: 

S 

I (A9.1) 
(n. 1) 

where 

d (A9.2) 

di-xi- x (A9.3) 

where 

di Is the standard deviation 

n is the number of successive measurements 
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s is the standard deviation 

Xi Is a measured variable 
Is the arithematic mean value of n measurements 

and 

n 
x -F, X, (A9.4) 

n, 

Example of typical error calculations: 
Five successive measurements of total reflectance of an 

as received sample of 3M Scotchcal Film S30 were carried out. 
The solar reflectance was calculated using each spectrum and the 

values are: 

86.3.86.6.86.1.86.4.86.1 

Their average Is 

x- 86.3 

The deviations of each from the average respectively are: 
0.0. *0.3. -0.2. +0.1, -0.2 . 

so the standard deviation (s) of the sample according to Eq. A9.2 

Is: 

0.1897 

Hence the standard error In the mean (a,, ) according to Eq. A9.1 Is: 

or" - 0.095 

Thus the'measured value of the reflectance is: 

p- 86.3 * 0.095 
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A9.2 ERROR CALCULATION OF THE SOLAR STILL EFFICIENCY 
Solar still efficiency has been calculated according to 

the expression: 

TI =DI 
hl 

(A9.5) 

So the error induced in its value is dependent an the accuracy of 

measuring the rate of distillate mass (D), rate of solar energy (1) 

and the absorber temperature (Tabs) on which hl, is dependent. 

After calculating the errors in these parameters by using 
the equations below Squires (1968) the error in the efficiency 

can be estimated. 

11 Z is a function of A. B. C. ... then 

Az 
jZAA)1ý2% 

(fý2) 2 (AC 2 
0) 

+... (A9.6) a 13 

Hence 

hn 
(A9.7) 

TI Ig 
+ 

(1h 

As a typical example the error in the still efficiency at the 
interval 11.00 to 11.30 am on 2517/1990 has been chosen . That 

was when: 
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Tabs m 67.4 11C. Md m 125.9 gm, h,, - 2340600 JIkg, t- 1800 sec, S 

. 0.9135 kW/M2 (as in Appendix A4). 

According to Eq A9.6 the following expressions can be written: 

L 

ý+(A 
AD 

=V 

FýL 
W 'Md 

+(Ltý 
ff 

L Wf+ mt 
(A9.8) 

Dw( md 

and 
I(LL 

t (A9.9) 
T LL + 

(ý 
W, -mq + 

Ns-f +( Lt 

Where L, W are the length and width of the still absorber. Md IS 

the mass of distillate produced in an Interval time. S Is the solar 

irradiance and t Is the Interval time. 

Since when Z-Z (A) 

AZ = 
dz A (A9.1 0) dA 

and hjg = 1000 x (2501.67- 2.389 T. b, ) Elsayed (1983) 

Hence &h,, = 2400 AT&bs 

± 2400 x 0.1 - :t 240J/kg 

where &Tabs m 0-1 *C 

Therefore by applying Eqs. A9.7 - A9.10 for the above Interval and 

according to the calibration certificate AS 1.5% (Appendix A2) 

the followings can be obtained: 
AD -±0.004 kgIM2. h 

. &hlg -± 240 Jlkg 
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Al -± 50200 JIM2. h 

Thus : 
ATI - 1: 8.2 x 10-3 

paoo A23 

Le. Ti - 0.498 10.008 


