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Abstract. We study standing wave solutions in a Ginzburg-Landau equation which con-
sists of a cubic-quintic equation stabilized by global coupling

At = ∆A + µA + cA3 − A5 − kA

(∫
Rn

A2 dx

)
.

We classify the existence and stability of all possible standing wave solutions.

1. Introduction

The study of pattern formation in various fields of science leads to systems with global

coupling. Examples, some of which we will describe later, arise in fluid mechanics as well as

chemistry or biology. In this paper, we consider pattern formation in a Ginzburg-Landau

equation, where a cubic-quintic equation is stabilized by global coupling. This equation was

suggested by Riecke in [13] and can be written as follows:

At = ∆A + µA + c|A|2A − |A|4A − kA
∫

Rn
|A|2 dx, (1.1)

where A is a complex-valued function defined on Rn × (0,∞), k > 0 and c, µ are real

numbers.

To exclude the effects of dispersion, we consider the Ginzburg-Landau equation in its

real-valued form. This means that we replace (1.1) by the following equation:

At = ∆A + µA + cA3 − A5 − kA
∫

Rn
A2 dx, (1.2)

where A is a real-valued function defined on Rn × (0,∞).

We note that the cubic-quintic equation arises by deriving the amplitude equations up

to the fifth order. Very often it is not enough to expand just to the cubic term and the

quintic term becomes important. We refer to the interesting remarks in this direction

given in Section 5 of [10]. There the authors consider a partial differential equation part

of which is similar to the Swift-Hohenberg equation but which is of fourth order and also

has a quadratic, symmetry breaking term. Then they show that it is important to include

the quintic term into the amplitude equation to achieve good agreement of the profiles of

localized patterns in the amplitude equation with the envelopes of the solutions of the partial

differential equation.

We now describe some related work.
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The amplitude equations (1.1) without the quintic term have been derived for hydrody-

namic models in [7], [2], and [15] and for thermosolutal convection, rotating convection, and

magnetoconvection, in [3] and [10]. The stability of various steady states to these amplitude

equations was analyzed in [16].

In [14] an amplitude equation called minimal model is given which is derived from the

Navier-Stokes equations and consists of a cubic-quintic Ginzburg-Landau equation similar

to (1.1). To exclude the effects of dispersion, in [12] the real-valued case is studied.

In this paper, we consider (1.2) and in particular study the effects of the quintic term on

the existence and stability as well as the profile of standing waves.

We first consider the steady-state solutions of (1.2) which satisfy

∆A + µA + cA3 − A5 − kA
∫

Rn
A2 dx = 0. (1.3)

A standing wave is a solution to (1.3) which satisfies A > 0, A ∈ H1(Rn). Hence a standing

wave satisfies the partial differential equation

∆A − âA + cA3 − A5 = 0, A > 0, A ∈ H1(Rn) (1.4)

with the consistency condition

â = k
∫

Rn
A2 dx − µ.

Note that if â < 0, then there are no nontrivial solutions to (1.4). So we may write â = a2,

where a > 0. Moreover, it is obvious by the maximum principle that c must be positive.

Now we rescale the equation (1.4). Set A(x) = βÂ(y), where y = αx and the positive

constants α and β will be chosen suitably below. Then (1.4) becomes

βα2∆Â − a2βÂ + cβ3Â3 − β5Â5 = 0.

We choose

a = α, cβ3 = βα2, δ =
β4

α2
(1.5)

which implies that

a = α = c
√

δ, β =
√

cδ.

This shows that Â(y) = wδ(y), where wδ is a solution of the equation⎧⎨
⎩

∆wδ − wδ + w3
δ − δw5

δ = 0,

wδ(|y|) → 0 as |y| → +∞, wδ(0) = maxy∈Rn wδ(y).
(1.6)

Thus (1.3) is reduced to (1.6) and the consistency condition

a2 = k
∫

Rn
A2 dx − µ,

which is equivalent to

β(δ) := δc2 − kc1−nδ
2−n

2

∫
R

w2
δ(y) dy = −µ, (1.7)
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where wδ is given by (1.6). To summarize, a solution of (1.7) gives rise to a solution of (1.3)

through the relation

Aδ(x) =
√

cδwδ(c
√

δx). (1.8)

In Section 2, we will show that problem (1.6) has a unique ground-state solution if and

only if δ ∈ (0, 3
16

).

The main result of this paper is the following theorem.

Theorem 1. (a) (Existence). Problem (1.2) has a standing wave steady-state solution if

and only if

µ ≥ − max
δ∈(0, 3

16
)
β(δ), (1.9)

where β(δ) is defined in (1.7). If (1.9) holds, then the steady-state solution Aδ of (1.2) is

given by (1.7), (1.8), where wδ is the unique solution of (1.6).

(b) (Stability). Let Aδ be given in (a). Then the stability of Aδ is determined by β
′
(δ).

More precisely, if β
′
(δ) > 0, Aδ is linearly unstable. If β

′
(δ) = 0, Aδ is neutrally stable. If

β
′
(δ) < 0, Aδ is linearly stable.

In the one-dimensional case, we can solve (1.7) explicitly. The result is stated in Section

4. Thus we give a complete answer to the existence and stability of standing wave solutions

in R1.

The organization of this paper is as follows: In Section 2, we study the parameterized

ground state equation (1.6). In Section 3, we consider the stability of standing wave solu-

tions. In Section 4, we deal with the one-dimensional case.

Acknowledgments. The research of JW is supported by an Earmarked Grant from RGC

of Hong Kong. MW thanks the Department of Mathematics at the Chinese University of

Hong Kong for their kind hospitality.

2. Parameterized Ground States

In this section, we study the parameterized ground state equation (1.6).

Observe that when δ = 0, wδ exists and is unique if and only if n ≤ 3. (Existence follows

by a shooting method, see [8] and [11]. Radial symmetry is proved in [6] and uniqueness in

[9].) On the other hand, if δ > 0, we will show that wδ exists for all n. To this end, we let

g(v) = −v + v3 − δv5. (2.1)

Note that for each δ < 1
4
, there are exactly two positive roots to g(v) = 0 given by

t1(δ) =

√
1 −√

1 − 4δ

2δ
< t2(δ) =

√
1 +

√
1 − 4δ

2δ
. (2.2)

Let

c(δ) =
∫ t2(δ)

0
g(s)ds. (2.3)
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Then it is easy to see that for δ < 3
16

, c(δ) > 0 and for δ > 3
16

, c(δ) < 0.

We then have

Lemma 2. For each δ ∈ (0, 3
16

), the function g(v) satisfies the following conditions:

(g1) g ∈ C3(R,R), g(0) = 0, g
′
(0) = 0.

(g2) There exist b, c > 0 such that b < c and g(b) = g(c) = 0, g(v) > 0 in (−∞, 0) ∪ (b, c),

and g(v) < 0 in (0, b) ∪ (c, +∞).

(g3)
∫ c
0 g(v)dv > 0.

(g4) Let θ > b be the smallest positive number such that G(u) = 0, where

G(u) =
∫ u

0
g(s)ds.

Let ρ > b to be the smallest number such that g(u)
u−ρ

is nonincreasing for u ∈ (ρ, c). Then

either

(i) θ ≥ ρ, or

(ii) θ < ρ with Kg(u) nonincreasing in (θ, ρ), Kg(u) ≥ Kg(θ) for u ∈ (b, θ), and Kg(u) ≤
Kg(ρ) for u ∈ (0, b) ∪ (ρ, c), where

Kg(u) =
ug

′
(u)

g(u)
.

Proof: The proof of this lemma is elementary but we present it for the sake of completeness.

The conditions (g1) – (g3) are easy to verify. (Here b = t1(δ), c = t2(δ).) We only consider

(g4). We first compute ρ. By definition, there exists an u0 > b such that

g(u0) = g
′
(u0)(u0 − ρ) (2.4)

and

(g(u) − g
′
(u)(u − ρ))

′ |u=u0 = 0. (2.5)

(2.5) implies that g
′′
(u0) = 0 which gives u0 =

√
3

10δ
. Now from (2.4) we get ρ = u0 − g(u0)

g
′
(u0)

.

A straight-forward calculation gives ρ =
√

3
10δ

24
45−100δ

. If ρ ≤ θ, we are done. (This is the

case when δ is close to 3
16

.) Suppose that θ < ρ. We need to calculate

Kg(u) =
−u + 3u3 − 5δu5

−u + u3 − δu5
= 1 +

2u2 − 4δu4

−1 + u2 − δu4
.

It is easy to compute that

d

du
(Kg(u)) =

4(−u + 4δu3 − δu5)

(−1 + u2 − δu4)2
.

Since δ < 3
16

, it is easy to see that d
du

(Kg(u)) < 0 for u ∈ (b, c). This implies that Kg(u) is

nonincreasing in (0, c). Moreover

Kg(u) ≤ Kg(0) = 1, for u ∈ (0, b)

But

Kg(ρ) = 1 +
2ρ2(1 − 2δρ2)

−1 + ρ2 − δρ4
> 1.
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Hence Kg(u) ≤ Kg(ρ) for u ∈ (0, b) ∪ (ρ, c). This shows that (g4) holds.

�
In the following lemma we state some important properties of wδ.

Lemma 3. If δ ∈ (0, 3
16

), then problem (1.6) has a unique solution wδ that has the following

properties.

(i) wδ ∈ C∞(Rn).

(ii) wδ > 0 is radially symmetric and w
′
δ(r) < 0 for r = |y| �= 0.

(iii) The first eigenvalue of the linear operator

Lδ = ∆ − 1 + 3w2
δ − 5δw4

δ : H2(Rn) → L2(Rn), (2.6)

denoted by λ1 = λ1(Lδ), is positive and simple; the corresponding eigenfunction Φ1 can be

made positive and radially symmetric.

(iv) The second eigenvalue of Lδ is 0 and the dimension is n. Namely, λ2(Lδ) = 0 and

Kernel (∆ − 1 + 3w2
δ − 5δw4

δ) = span

{
∂wδ

∂y1

, ...,
∂wδ

∂yn

}
. (2.7)

(v) The operator Lδ : H2
r (Rn) to L2

r(R
n) is invertible, where H2

r (Rn) = H2(Rn) ∩ {u =

u(r)} and L2
r(R

n) = L2(Rn) ∩ {u = u(r)}, r = |y|.

Proof: The existence follows from a standard shooting method. (See [8], [11].) The radial

symmetry follows from [6]. By Lemma 2, for δ ∈ (0, 3
16

), g(v) = −v + v3 − δv5 satisfies

conditions (g1)-(g4). Lemma 3 follows from Proposition 1.3 of [1]. (For uniqueness, see [5]

and [11].) �
The following lemma gives information about the dependence of wδ on δ and provides

some key identities.

Lemma 4. (1) wδ is C1 in δ.

(2) As δ → 3
16

, wδ(y) → t2(
3
16

) in C2
loc(R

n), where t2 is defined in (2.2).

(3) If n ≤ 3, then, as δ → 0, wδ → w0 in C2
loc(R

n), where w0 is the unique solution of

(1.6) with δ = 0.

(3) The following identities hold:

Lδwδ = 2w3
δ − 4δw5

δ , (2.8)

Lδ
dwδ

dδ
= w5

δ , (2.9)

Lδ (y · ∇wδ) = 2
(
wδ − w3

δ + δw5
δ

)
, (2.10)

Lδ

(
1

2
wδ + δ

dwδ

dδ
+

1

2
y · ∇wδ

)
= wδ. (2.11)
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Proof: (1) follows from the uniqueness of wδ given in Lemma 3.

To prove (2), we note that wδ ≤ t2(δ) and hence, as δ → 3
16

, wδ approaches in C2
loc(R

n) a

solution of the equation

∆u − u + u3 − 3

16
u5 = 0, u = u(|y|), y ∈ Rn

which admits only constant solutions. That constant must be t2(
3
16

) since wδ(0) → t2(
3
16

).

This proves (2).

The proof of (3) is similar: As δ → 0, wδ → w0 in C2
loc(R

n), where w0 is a solution of the

problem

∆w0 − w0 + w3
0 = 0, w0 = w0(|y|), w

′
0(|y|) ≤ 0, y ∈ Rn. (2.12)

When n ≤ 3, then by [9] there exists a unique solution to (2.12).

The first two identities (2.8) and (2.9) follow from direct computations and the third one

(2.10) follows from Pohozaev’s identity. (2.11) follows from (2.8) – (2.10).

�
Now we consider the consistency condition

β(δ) = δc2 − kc1−nδ1−n
2

∫
Rn

w2
δ dy = −µ. (2.13)

We then have

Lemma 5. If n = 1, then for any µ ≥ 0, problem (2.13) admits a solution.

If n = 2, then problem (2.13) admits a solution for any µ ≥ µ0, where µ0 = kc−1
∫
Rn w2

0.

If n = 3, then problem (2.13) admits two solutions for µ ≥ µ̂0, where µ̂0 = −maxδ∈(0, 3
16

) β(δ).

Proof: Note that by Lemma 4 for all n , β(δ) → −∞ as δ → 3
16

. On other hand, we have

as δ → 0, β(δ) → 0 if n = 1, β(δ) → −kc−1
∫
Rn w2

0 if n = 2, β(δ) → −∞ if n = 3. Lemma 5

now follows from the mean-value theorem.

�
Remark 2.1: If n = 1, we have a complete answer to (2.13). See Section 4 below.

3. Stability Analysis: Proof of Theorem 1

In this section, we give necessary and sufficient conditions for the linear stability (or

instability) of standing wave solutions.

We let

A(x, t) = Aδ(x) + εeλtφ(x),

where Aδ is given in (a) of Theorem 1. Substituting the above into (1.2) and collecting the

ε-terms, we obtain the following nonlocal eigenvalue problem:

∆φ − a2φ + 3cA2
δφ − 5A4

δφ − 2kAδ

∫
Rn

Aδφ dx = λφ



CUBIC-QUINTIC GINZBURG-LANDAU EQUATION WITH GLOBAL COUPLING 7

(using the notation in and after (1.4)). Substituting Aδ(x) =
√

cδwδ(c
√

δx), y = c
√

δx into

the above equation, we obtain

∆Φ − Φ + 3w2
δΦ − 5δw4

δΦ − γ
(
wδ

∫
Rn

(wδΦ) dy
)

= λΦ, (3.1)

where

Φ(y) = φ(x), y = c
√

δx, γ = 2kc−(n+1)δ−
n
2 . (3.2)

Recall that (3.1) can be rewritten as

LδΦ − γ
(
wδ

∫
Rn

(wδΦ dy)
)

= λΦ.

Note that λ = 0 is an eigenvalue of (3.1) and the corresponding eigenfunction space is

Kernel(Lδ).

By arguments similar to [4], if λ �= 0, we know that Φ ∈ H2
r (Rn), i.e., the eigenfunctions

(except for the kernel) are radially symmetric.

We first have

Lemma 6. λ = 0 is an eigenvalue of (3.1) with a corresponding radially symmetric eigen-

function if and only if

γ
∫

Rn
wδL

−1
δ wδ dy = 1, (3.3)

where L−1
δ exists in H2

r (Rn) by Lemma 3.

Proof: Suppose λ = 0. Then we have

0 = LδΦ − γ
(∫

Rn
wδΦ dy

)
wδ

which implies that

Φ = γ
(∫

Rn
wδΦ dy

)
L−1

δ wδ. (3.4)

Multiplying (3.4) by wδ and integrating, we obtain (3.3) since
∫
Rn wδΦ dy �= 0 (as otherwise

LδΦ = 0 and hence Φ = 0 by Lemma 3).

On the other hand, suppose that (3.3) holds true. Then for λ an eigenfunction Φ satisfies

LδΦ −
∫
Rn wδΦ dy∫

Rn wδ(L
−1
δ wδ) dy

wδ = 0

and, applying the operator L−1
δ , it is easy to see that this is equivalent to

Φ = L−1
δ wδ.

�
The following is the main result of this section.
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Lemma 7. All eigenvalues of (3.1) are real and

(a) if γ
∫
Rn wδL

−1
δ wδ dy > 1, then for all eigenvalues of (3.1) we have λ < 0;

(b) if γ
∫
Rn wδL

−1
δ wδ dy = 1, then for all eigenvalues of (3.1) we have λ ≤ 0 and zero is

an eigenvalue of (3.1) with eigenfunction L−1
δ wδ;

(c) if γ
∫
Rn wδL

−1
δ wδ dy < 1, then there exists an eigenvalue λ0 > 0 of (3.1).

From Lemma 7, we see that γ
∫
Rn wδL

−1
δ wδ dy = 1 is the borderline case between stability

and instability of (3.1).

Proof: It is easy to see that (3.1) is self-adjoint and hence all eigenvalues are real. Let

λ ≥ 0 be an eigenvalue of (3.1). We first claim that λ �= λ1, where λ1 is the first eigenvalue

of Lδ given by Lemma 3. In fact, if λ = λ1, then we have

γ
∫

Rn
wδΦ dy

∫
Rn

wδΦ1 dy = 0,

where Φ1 is the principal eigenfunction of Lδ. By Lemma 3, Φ1 > 0. This implies∫
Rn

wδΦ dy = 0,

and thus

LδΦ = λ1Φ

which implies that Φ = Φ1. This is impossible since Φ1 > 0 (and thus
∫
Rn wδΦ1 dy > 0).

So λ �= λ1. By Lemma 3, (Lδ − λ)−1 exists for 0 < λ �= λ1. Multiplying (3.1) by wδ

and integrating, it follows that λ0 > 0 is an eigenvalue of (3.1) if and only if it satisfies the

following algebraic equation:

1 − γ
∫

Rn
[((Lδ − λ0)

−1wδ)wδ] dy = 0. (3.5)

(Here we have used the fact that
∫
Rn wδΦ dy = 0 would imply that Φ ≡ 0.) Let

ρ(t) = 1 − γ
∫

Rn
[((Lδ − t)−1wδ)wδ] dy, t ≥ 0, t �= λ1.

Then ρ(0) = 1 − γ
∫
Rn(wδL

−1
δ wδ) dy and

ρ
′
(t) = −γ

∫
Rn

[((Lδ − t)−2wδ)wδ] dy < 0.

On the other hand,

ρ(t) → −∞ as t → λ1, t < λ1

ρ(t) → +∞ as t → λ1, t > λ1

ρ(t) → 1 as t → +∞.

Thus ρ(t) > 0 for t > λ1 and ρ(t) has a (unique) zero in (0, λ1) if and only if ρ(0) > 0

which is equivalent to 1 − γ
∫
Rn(wδL

−1
δ wδ) dy > 0.

This proves the lemma.

�
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Let us now compute γ
∫
Rn wδL

−1
δ wδ. We have by (2.11) of Lemma 4

γ
∫

Rn
wδL

−1
δ wδ = 2kc−(n+1)δ−

n
2

∫
Rn

wδ

(
1

2
wδ + δ

dwδ

dδ
+

1

2
y · ∇wδ

)
dy

= 2kc−(n+1)δ−
n
2

∫
Rn

(
2 − n

4
wδ + δwδ

dwδ

dδ

)
dy.

It is now easy to see that 1 − γ
∫
Rn wδL

−1
δ wδ dy = 0 if and only if dβ

dδ
= 0.

We arrive at the following Corollary.

Corollary 8. Let δ be a solution of the consistency condition (2.13). Then

(a) if β
′
(δ) > 0, problem (3.1) is unstable. Namely, there exists an eigenvalue λ > 0 to

(3.1).

(b) if β
′
(δ) < 0, problem (3.1) is stable. Namely, for all nonzero eigenvalues λ to (3.1),

we have λ < 0.

(c) if β
′
(δ) = 0, problem (3.1) is neutrally stable. Namely, there exists an eigenvalue

λ = 0 to (3.1) with multiplicity 1 for radially symmetric eigenfunctions (and multiplicity

n + 1 for all eigenfunctions). All other eigenvalues are negative.

Theorem 1 now follows from Corollary 8.

4. The one-dimensional case

In this section, we give a complete study of the consistency condition in the one-dimensional

case, thanks to the following explicit formula of wδ which was derived in Section 5 of [10].

wδ(y) =

√
b√

( b−2
4

+ cosh2y)
, where b =

2√
1 − 16δ

3

. (4.1)

Elementary computations show that∫
R

w2
δ(y) dy =

∫
R

4b

(b − 2) + 4 cosh2 y
dy =

b

f
log

∣∣∣∣∣b/2 + f

b/2 − f

∣∣∣∣∣ , (4.2)

where f > 0, f 2 = b2

4
− 1. Set b = 2 cosh θ. Then f = sinh θ and hence∫

R
w2

δ(y) dy = 4θ coth θ. (4.3)

So (2.13) becomes

β̂(θ) := β(δ) =
3

16
tanh2(θ)c2 −

√
3kθ = −µ (4.4)

which is a purely algebraic equation and can be solved explicitly.

This implies

Lemma 9. Suppose that n = 1.

(a) If 12k
c2

> 1, then for each fixed µ ≥ 0, there exists a unique solution δ such that

β(δ) = 0. There is no solution if µ < 0. Moreover, we have β
′
(δ) < 0.



10 JUNCHENG WEI AND MATTHIAS WINTER

(b) If 12k
c2

= 1, then for each fixed µ ≥ 0, there exists a unique solution δ such that β(δ) = 0.

There is no solution if µ < 0. Moreover we have β
′
(δ) = 0 for µ = arcosh

(√
3
2

)
−

√
3

4
≈ 0.225.

(c) If 0 < 12k
c2

< 1, there are exactly two solutions to β
′
(δ) = 0 which are denoted as

0 < δm < δM . Let βm = β(δm), βM = ρ(δM). Then β(δ) = 0 has a solution if and only if

µ ≥ −max(βM , 0).

If βM > 0, then for each −βM < µ < 0, there are exactly two solutions to β(δ) = 0,

denoted by δ1 < δ2 and we have β
′
(δ1) > 0, β

′
(δ2) < 0. For each 0 < µ < −βm, there are

exactly three solutions to β(δ) = 0, called δ1 < δ2 < δ3 and we have β
′
(δ1) < 0, β

′
(δ2) > 0,

β
′
(δ3) < 0. If µ > −βm, then there is exactly one solution to β(δ) = 0 with β

′
(δ) < 0.

The case βM ≤ 0 can be discussed similarly.
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