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Abstract

The transition from Neumann (traction-free) to Dirichlet (fixed-face) boundary

conditions is investigated in respect of wave propagation in a linear isotropic elastic

layer. Attention is focused on the implications of such a transition on the dispersion

curve branches within the long wave region. The formation of low frequency band

gap that is expected to exist in layers with Dirichlet boundary condition is shown to

be caused by different mechanisms in anti-symmetric and symmetric cases. Certain

implications to short-wave propagation in the layer are also investigated. The study

includes both a numerical investigation and a multi-parameter asymptotic analysis.

1 Introduction

Most structures are utilized within scenarios in which they are surrounded by a medium

that interacts with them. When the contrast in acoustic properties between the medium

and structure is large, it is often possible to disregard the influence of the surrounding

medium and significantly simplify the model. In particular, stress-free (Neumann) boundary
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conditions are not only valid for elastic bodies in vacuum, but also serve as a very good

approximation to the behaviour of many solids in air. Similarly, a relatively soft body

in a stiff enclosure may be well approximated by a fixed (Dirichlet) boundary conditions.

Clearly, there is a wide range of situations laying in between these two extremes and it is

often unfeasible to model the environment of a structure in minute detail. For example, the

boundary condition appropriate for the inner or outer wall of a human blood vessel cannot

truly be described as either “free” or “fixed”; correct modelling of surrounding tissue is still

a daunting prospect.

In acoustics this situation is often resolved by considering so-called impedance bound-

ary conditions that, as impedance grows, provide a natural transition from Neumann to

Dirichlet boundary conditions. Intuitively, we can expect that in the elastic case a good

first approximation can be obtained by assuming that the field at its boundaries satisfies a

Hooke-type law, i.e. that the boundaries are elastically restrained. While the idea appears

natural, surprisingly little research has been devoted to wave propagation in bodies with

such boundaries. As an exception, Mindlin [8] looked into wave propagation in an isotropic

elastic layer with boundaries elastically restrained in the normal direction; however, he was

only interested in analysing a grid of bounds for dispersion curves. It is our aim to extend

Mindlin’s study and investigate more general aspects of wave propagation in layers with

elastically restrained boundaries, with particular emphasis on long-wave propagation.

Section 2 is devoted to the physical motivation behind the elastically restrained boundary

conditions (ERBC). The general formulation of ERBC in the two-dimensional case implies

introduction of four additional parameters into the problem. We limit our analysis to

situations for which the boundary conditions are the same on both the top and bottom faces;

such symmetric geometry reduces the number of additional parameters to two and enables

splitting of the problem into two simpler cases, so-called anti-symmetric and symmetric

motion.

In Section 3 we derive the dispersion relations that generalise classical Rayleigh [12] and

Lamb [7] result to the isotropic elastic layer with ERBC. In order to further reduce the

considered parameter space, much of the subsequent analysis is concerned with particular

types of ERBC, depending on a single parameter. The case that was previously considered

by Mindlin [8] is given a particularly detailed treatment.

Waveguides with Dirichlet boundary conditions are known to act as high-pass filters,

i.e. they cannot propagate waves below a certain cut-off frequency. The same is true for

elastic layers with fixed faces. On the other hand, the layers with free faces possess at

least one propagating mode for all frequencies. In Section 4 we demonstrate in some detail

how the introduction of elastic support leads to the emergence of a low-frequency band gap
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in both the symmetric and anti-symmetric dispersion relations. The associated long-wave

asymptotic regimes are identified and analysed in Section 5 for a particular kind of ERBC.

Generally, it is possible to identify two types of long-wave motions in elastic layers: low-

frequency and high-frequency, see [3]. The long-wave low-frequency asymptotics describe

so-called fundamental modes, relating to the classical approximate theories of rods, plates

and shells, as well as their modern generalisations, see e.g. [5, 13, 11]. The long-wave

high-frequency asymptotics correspond to “thickness vibrations”, long-wave limits of higher

solution modes. This type of motion is particularly important for layers with fixed faces,

where the classical long-wave low-frequency mode does not exist, see [2].

Long-wave high-frequency motion of elastic layers has previously been analysed for the

variety of anisotropic and pre-stressed media, see for example [4, 10, 6]. A particularly inter-

esting aspect of such motions concerns the change in asymptotic structure of the expansions

that happens when the long-wave limits of two different modes coincide, see [15]. In this

case it is necessary to develop a separate asymptotic process, described in [9, 14]. The re-

sulting asymptotics are not uniform with respect to the parameters affecting the long-wave

high frequency limits. In this paper we present a procedure capable of deriving long-wave

high-frequency expansions that are uniform in this respect.

The paper is concluded in Section 6 by some remarks on the short-wave limiting be-

haviour of the derived dispersion relations. We observe that the two coupled Rayleigh wave

travelling along the opposite faces, the expected short-wave limit in isotropic elastic layers,

are not immediately destroyed by the presence of elastic support at the boundary and, in

fact, exist for any finite value of the boundary elastic modulus. However, they become dis-

persive and, as the boundary gets stiffer, degenerate into a surface-skimming shear wave at

a particular wave number.

2 Modelling elastically restrained boundary

Consider an infinite isotropic elastic layer of thickness 2h in a state of plane strain that is free

from external forces. Classical boundary conditions on the faces of the layer typically belong

to two types: the free face boundary condition, obtained by setting surface tractions to zero,

and so-called fixed face boundary condition implying the vanishing of the displacements. A

combination of these two conditions is sometimes used, in which one of the tractions is

required to vanish along with one of the displacements. This type of boundary condition is

usually termed mixed, and its importance is related to the fact that it enables splitting the

vector elasticity problem into two scalar problems, see [8] or [1].

All of these boundary conditions are limiting cases that are not usually met in reality,
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Figure 1: Elastic restraint in the normal direction.

because the free face conditions mean that the layer is in vacuum, whereas the fixed face

conditions describe the layer embedded in an infinitely stiff enclosure. Classical boundary

conditions are often very good approximations, but sometimes it is necessary to take into

account more complex interactions at the boundary. Generally, we may introduce ERBC as

τ21 + d±1 u1 = 0 , τ22 ± d±2 u2 = 0 , x = ±h , (2.1)

so that when d±n → 0, n = 1, 2, we arrive at the free faces boundary conditions and when

d±n → ∞, n = 1, 2, the fixed faces case is obtained. However, it is difficult to analyse solutions

that may depend on four additional elastic constants d±n , n = 1, 2. The analysis may be

simplified by assuming that the elastic modulae at the top face are the same as the ones at

the bottom, i.e. d+n = d−n = dn, n = 1, 2. Such a layer possesses the reflectional transverse

symmetry, which enables reducing the general problem of wave propagation to two simpler

problems dealing with propagation of purely anti-symmetric or symmetric waves.

More insightful analysis is possible if we restrict our attention to certain types of ERBC

that are characterised by a single parameter. The first type is associated with an infinite

layer that is held between perfectly lubricated elastic surfaces, see Figure 1. This can be

modelled by considering uniformly distributed linearly elastic springs that resist normal

displacements at the layer faces, but produce no tangential restraint, for which we assumed

boundary condition in the form

τ21 = 0 , τ22 ± du2 = 0 , where x2 = ±h . (2.2)

These conditions were previously considered by Mindlin [8]. As boundary, as we allow the

modulus d to increase from 0 to ∞, the conditions at the layer faces undergo transition from

free to mixed. A subsequent transition to fixed boundary conditions may be modelled by
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Figure 2: Elastic restraint in the tangential direction.

considering

τ21 + du1 = 0 , u2 = 0 , where x2 = ±h . (2.3)

Alternatively, we may start by assuming that our layer has a very thin flexible membrane

attached to its faces, which produces no restraint in the normal direction, see Figure 2. This

can be described by the boundary conditions of the form

τ21 + du1 = 0 , τ22 = 0 , where x2 = ±h . (2.4)

A very soft membrane results in the free-faces case, while an inextensible membrane pre-

cludes any tangential displacements on the faces. A subsequent transition to fixed boundary

conditions may be modelled by considering

u1 = 0 , τ22 ± du2 = 0 , where x2 = ±h . (2.5)

The principal advantage of using such a single-parameter boundary conditions (2.2)–(2.5) is

that it enables the transition from free to fixed faces through two well-understood cases of

mixed boundary conditions. This will enable us to perform very detailed analysis of mode

transition from free to fixed faces, as well as formulate a natural physical interpretation of

this process.

Each of the boundary conditions (2.2)–(2.5) may be obtained by appropriate specialisa-

tion of the elastic constants in (2.1). Thus, we intend to derive dispersion relations for the

most general case and then analyse specific single-parameter cases by appropriately special-

ising the boundary modulae. This process may in fact be performed more conveniently if

the boundary conditions at x2 = ±h are given by

1

µ

(
α1τ21 + δ1

µ

h
u1

)
= α1

{
∂u1

∂x2
+

∂u2

∂x1

}
+

δ1
h
u1 = 0 , (2.6)

1

ρ

(
α2τ22 ± δ2

µ

h
u2

)
= α2

{
(c21 − 2c22)

∂u1

∂x1
+ c21

∂u2

∂x2

}
± c22

δ2
h
u2 = 0 , (2.7)

where αn, δn, n = 1, 2, are non-dimensional scalars, c1 =
√
(λ+ 2µ)/ρ the dilatational wave

speed, c2 =
√

µ/ρ the shear wave speed and λ and µ the Lamé parameters. The free faces

boundary conditions are obtained by selecting α1 = α2 = 1 and δ1 = δ2 = 0. The fixed

faces are obtained when α1 = α2 = 0 and δ1 = δ2 = 1.
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3 Dispersion relations

Consider a layer composed of linear isotropic elastic material subjected to the boundary

conditions (2.6)–(2.7). The equations of motion may be presented in displacement form as

follows

c21
∂2u1

∂x2
1

+ (c21 − c22)
∂2u2

∂x1∂x2
+ c22

∂2u1

∂x2
2

=
∂2u1

∂t2
, (3.1)

c22
∂2u2

∂x2
1

+ (c21 − c22)
∂2u1

∂x1∂x2
+ c21

∂2u2

∂x2
2

=
∂2u2

∂t2
. (3.2)

We seek solutions of (3.1)–(3.2) in the form of travelling harmonic waves

un(x1, x2, t) = Une
kqx2eik(x1−vt) , n = 1, 2 , (3.3)

where k is the longitudinal wave number and v the phase speed, ikq is the transverse wave

number that is chosen to ensure that the equations of motion (3.1), (3.2) have non-trivial

solutions. Substituting (3.3) into (3.1), (3.2) and requiring the resulting linear homogeneous

system to have non-trivial solution, delivers a quadratic equation in q2, with four roots given

by

q21 = 1− V 2 , q22 = 1− V 2

κ2
, (3.4)

in which V = v/c2 is the non-dimensional phase velocity, κ2 = c21/c
2
2 = 2(1 − ν)/(1 − 2ν)

the ratio of longitudinal and shear wave speeds and ν Poisson’s ratio. Any solution for u1

and u2 can be represented as a linear combination of the four integrals associated with roots

(3.4). By referring back to the equations of motion these solutions can be given by

u1(x1, x2, t) = {A1 cosh(kq1x2) +A2 sinh(kq1x2)

+A3 cosh(kq2x2) +A4 sinh(kq2x2)} eik(x1−vt) , (3.5)

u2(x1, x2, t) = − i

q1
{A1 sinh(kq1x2) +A2 cosh(kq1x2)

−q1q2(A3 sinh(kq2x2) +A4 cosh(kq2x2))} eik(x1−vt) . (3.6)

Expressions (3.5)–(3.6) contain terms that are both symmetric and anti-symmetric with

respect to x2. Due to the symmetry of the boundary conditions it is possible to impose a

symmetry requirement on (3.5)–(3.6) and then obtain the dispersion relation by satisfying

boundary conditions on one face.

For anti-symmetric modes we require A1 = A3 = 0 in (3.5), (3.6), with the associated

dispersion relation taking the form(
4q1q2 −

δ1δ2
α1α2

q1q2
η2

+
δ1
α1

q1V
2 tanh (ηq2)

η

)
tanh (ηq1)

+

(
δ1δ2
α1α2

1

η2
− (2 + V 2)2

)
tanh (ηq2) +

δ2
α2

q2V
2

η
= 0 , (3.7)
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Figure 3: Scaled frequency (a) and phase speed (b) against wave number for the layer

subjected to ERBC (2.6), (2.7) with α1 = α2 = δ1 = δ2 = 1 and κ =
√
3.

where the non-dimensional wave number η ≡ kh. The dispersion relation for symmetric

modes is obtained by putting A2 = A4 = 0, with the result(
4q1q2 −

δ1δ2
α1α2

q1q2
η2

+
δ1
α1

q1V
2 coth (ηq2)

η

)
coth (ηq1)

+

(
δ1δ2
α1α2

1

η2
− (2 + V 2)2

)
coth (ηq2) +

δ2
α2

q2V
2

η
= 0 . (3.8)

which is, essentially, (3.7) with all tanh replaced by coth. It can be easily verified that by

setting α1 = α2 = 1 and δ1 = δ2 = 0 we arrive at the classical Rayleigh-Lamb frequency

equations. When α1 = α2 = 0 and δ1 = δ2 = 1 the previously known dispersion relations

for layer with fixed faces are recovered.

As an illustration, we have generated two plots with both symmetric and anti-symmetric

dispersion curves for a typical set of material parameters with κ =
√
3, i.e. ν = 1/4.

Figure 3(a) shows non-dimensional frequency against wave number, while Figure 3(b) shows

non-dimensional phase velocity against wave number. Since all of the parameters α1 =

α2 = δ1 = δ2 = 1, Figure 3 demonstrates the response of the layer subjected to boundary

conditions that are intermediate between free faces and fixed faces. Evidently, there are no

long-wave low-frequency modes present in this case.

If we were to fix the non-dimensional frequency Ω = V η and compute the long-wave

limit of the anti-symmetric dispersion relation (3.7), the result simplifies into(
δ1
α1

sinΩ + ΩcosΩ

)(
κΩsin

Ω

κ
− δ2

α2
cos

Ω

κ

)
= O(η2) . (3.9)

The same procedure applied to the symmetric dispersion relation (3.8) results in(
ΩsinΩ− δ1

α1
cosΩ

)(
δ2
α2

sin
Ω

κ
+ κΩcos

Ω

κ

)
= O(η2) . (3.10)
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Figure 4: (a) anti-symmetric and (b) symmetric mode transformations in an elastic isotropic

layer with boundary conditions (2.2), where κ =
√
3.

Evidently, all long-wave solutions can be classified into two families, corresponding to the

individual factors within the leading order dispersion relations (3.9) and (3.10). The forth-

coming analysis will demonstrate that these factors do in fact represent the thickness shear

and thickness stretch resonance frequencies of our problem. The important point to note

here is that each of these factors is only affected by a single pair of δn and αn. Thus,

we can study the processes of long-wave mode transformation in full detail by individually

analysing simple single-parameter types of ERBC.

4 Numerical analysis of mode transformation

It will now be helpful to investigate the transformation of both anti-symmetric and sym-

metric modes arising through the variation of boundary condition modulae. We begin by

considering the configuration shown in Figure 1, with the corresponding boundary condi-

tions given by (2.2). The appropriate dispersion relations for anti-symmetric and symmetric

waves are obtained directly from (3.7) and (3.8) by inserting α1 = α2 = 1, δ1 = 0, δ2 = δ.

The transformation of the first four anti-symmetric modes are presented in Figure 4(a).

The dashed curves correspond to the free-faces case (i.e. δ = 0), with the thick solid lines

corresponding to the mixed boundary conditions on the layer faces (δ → ∞) and other solid

lines transitional modes. Other designations used in this Section’s diagrams are as follows:

SH and ST denote higher harmonics originating from the thickness shear and thickness

stretch long-wave limits, see [8]. The subscripts denote mode numbers, whereas superscripts

‘a’ and ‘s’ indicate anti-symmetric and symmetric modes; the overbar is used to designate

the modes in the case of mixed boundary conditions. For example, ST
a

2 denotes the anti-
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Figure 5: (a) anti-symmetric and (b) symmetric mode transformations in an elastic isotropic

layer with boundary conditions (2.4), where κ =
√
3.

symmetric mode that originates from the second thickness stretch resonance frequency for

a layer with the mixed boundary conditions.

Let us now consider anti-symmetric mode transformations in a greater detail. As δ

increases from 0 to ∞, the anti-symmetric fundamental mode F a moves smoothly to became

harmonic ST
a

1 originating from the first thickness stretch resonance frequency for the layer

with mixed boundary conditions. This means that any boundary restraint in the normal

direction leads to the formation of low-frequency band gap for anti-symmetric motions.

All stretch resonance modes ST a
n , with associated cut-off frequencies κnπ, transform into

ST a
n+1, with corresponding long-wave limits κ(n+1/2)π. As can be seen within figure 4(a),

the cut-off frequencies of SH modes are not affected. The general long-wave behaviour of

SH modes is not significantly influenced by δ, see e.g. transition SHa
2 → SH

a

2 . However,

those SH modes whose cut-off frequency (n − 1/2)π falls within the transition interval

[κmπ, κ(m+1/2)π] of the cut-off frequency of mth ST mode are affected more significantly,

see SHa
1 → SH

a

1 .

The transformations of the first four branches of the corresponding symmetric dispersion

relation reveal a slightly different structure of the mode transition, see Figure 4(b). The

fundamental mode of the layer with free faces F s becomes non-dispersive branch V = 1

in the limit δ → ∞, as is expected from the layer with mixed boundary conditions, see

[1]. The behaviour of symmetric harmonics is broadly similar to that seen in respect of

the anti-symmetric case. Modes related to thickness shear originate from πn and are only

weakly affected by changes in δ. The cut-off frequencies of modes associated with thickness

stretch resonances vary between κ(n− 1/2)π and κnπ, n = 1, 2, . . .

Mode transformations produced for boundary conditions (2.4), i.e. by selecting α1 =
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α2 = 1, δ1 = δ, δ2 = 0 are presented in Figure 5. In this case, the anti-symmetric fundamen-

tal mode degenerates into the non-dispersive mode V = 1 as δ → ∞. The cut-off frequency

of the symmetric fundamental mode F s moves away from 0, resulting in a low-frequency

band gap and becoming the first harmonic SH
s

1. More generally, the cut-off frequencies

and mode transformations for boundary conditions (2.4) are similar to those for boundary

conditions (2.2), switching the anti-symmetric and symmetric cases around. Accordingly,

the cut-off frequencies of the ST -modes remain constant and the cut-off frequencies of SH-

modes move smoothly to became the thickness shear resonance frequencies for a layer with

the mixed boundary conditions.

For the sake of brevity, detailed diagrams showing mode transitions associated with the

boundary conditions (2.3) and (2.5) is not presented. However, it is worth remarking that the

fundamental mode transition associated with (2.3) is remarkably similar to that described

in Figure 5. Thus, if we were to consider a transition from a layer with free faces to the

layer with fixed faces via a sequence of problems with boundary conditions (2.2) and (2.3), a

low-frequency band gap would be formed for both anti-symmetric and symmetric motion. A

similar observation would be true for a sequence of problems with boundary conditions (2.4)

and (2.5).

The various combinations of boundary conditions considered in this section enable us

to formulate a simple physical interpretation of what leads to the creation of an associated

low-frequency band gap. A layer with faces that are restrained in the normal direction

loses its ability to propagate low-frequency anti-symmetric (bending) waves, see Figure 4.

However, the low-frequency symmetric (extensional) motions remain largely unaffected. If

the layer’s faces are restrained in the tangential direction, the low-frequency extensional

motion is not possible, see Figure 5, however low-frequency anti-symmetric motions are still

possible. In this case they cannot be characterised as as classical bending, because in this

case the long-wave low-frequency limit attains a finite velocity.

5 Boundaries with a restraint in the normal direction

The prohibitively large number of asymptotic regimes that are possible in a layer with

boundary conditions (2.2)–(2.5) makes it impossible to consider all of the cases in this

paper. Thus, we focus our attention on one particular case associated with boundary condi-

tions (2.2). The asymptotic processes necessary to analyse different types of the boundary

conditions are all similar to those described in this paper.

10



5.1 Long-wave behaviour of anti-symmetric waves

In the anti-symmetric case the dispersion relation (3.7) assumes the form

4q1q2 tanh (ηq1)− (2 + V 2)2 tanh (ηq2) +
q2V

2δ

η
= 0 , (5.1)

which differs from the classical Rayleigh-Lamb dispersion relation only through the presence

of the final term, which specifies the effect of elastically restrained boundaries.

In order to clarify the effect that the boundary elasticity modulus δ has on the long-wave

behaviour of the solution branches, we now proceed to an asymptotic analysis of dispersion

relation (5.1). Taking the limit η → 0 yields two families of solutions, namely

Λa
sh =

(
n− 1

2

)
π , n = 1, 2, . . . , (5.2)

and

κΛa
st tan

(
Λa
st

κ

)
= δ , (5.3)

see also (3.9). The first family (5.2) corresponds to the thickness shear resonance fre-

quencies Λa
sh and are independent of δ. The second family, which is implicitly defined by

equation (5.3), is associated with thickness stretch resonance frequencies Λa
st. The trans-

formations of solution branches of the dispersion relation (5.1) in the long-wave regime are

largely dominated by the dependence of Λa
st on δ. In the case of a layer with free faces

(δ = 0), equation (5.3) reduces to Λa
st = κπn, n = 0, 1, 2, . . . , with n = 0 corresponding

to the low-frequency fundamental mode and n = 1, 2, . . . related to thickness stretch reso-

nance frequencies. In the case of a layer with mixed boundary conditions (δ = ∞), solutions

of (5.3) reduce to Λa
st = κπ(n − 1/2), n = 1, 2, . . . Low-frequency anti-symmetric motions

are clearly not possible in this case. It is worth remarking that equation (5.3) may be of

practical importance because it allows computing of the boundary elastic modulus δ directly

from an experimentally determined first thickness stretch resonance frequency, also the first

thickness resonance for sufficiently small δ. It may also enable quantitative estimates for

the stiffness of media that surrounds the layer.

The asymptotic structure of the dispersion relation (5.1) is essentially determined by the

two parameters: η and δ. In order to establish the principal asymptotic regimes for (5.1),

we need to correlate the magnitudes of these parameters. Thus, we seek scalings for δ of

the form

δ = δ0η
2m , δ0 = O(1) . (5.4)

Case 1 (m = 1): δη−2 ∼ 1

In this case the dispersion relation (5.1) may be written as

4q1q2 tanh (ηq1)− (2 + V 2)2 tanh (ηq2) + q2V
2δ0η = 0 . (5.5)
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Figure 6: Comparison of the asymptotic solution (5.8) with the numerical solution for

δ = 10−4 and κ =
√
3.

It is possible to identify three asymptotic regimes that can balance (5.5) for long-wave

motions. The first possible asymptotic structure is defined by

tanh (ηq1) ∼ η , tanh (ηq2) ∼ η , V ∼ 1 , (5.6)

and associated with a perturbed low-frequency (fundamental) mode for very small values of

δ. Due to the fact that the phase speed is finite within this regime, the hyperbolic tangents

can be expanded into the series for small argument. By substituting an asymptotic ansatz

of the form

V 2 = V 2
0 + V 2

2 η
2 + V 2

4 η
4 +O(η6) , (5.7)

into the dispersion relation (5.1) and equating coefficients at every order of η2 we may obtain

the unknown constants V0, V2, V4. The resulting third order asymptotic approximation for

the phase speed is given by

V 2 = δ0 +

(
4

3
− δ0 −

(δ0 − 2)2

3κ2

)
η2

+

(
37

15
δ0 −

8

15
δ20 −

12

5
+

(57δ0 − 94)(δ0 − 2)

45κ2
+

4(δ0 − 5)(δ0 − 2)2

45κ4

)
η4 +O(η6) . (5.8)

Figure 6 demonstrates excellent performance of the asymptotic approximation (5.8) when

compared with the exact numerical solution over a wide range of η. This approximation

provides an important insight into the way in which fundamental bending mode degenerates

into a harmonic under the influence of elastically constrained boundary.

The second asymptotic regime that is dominated by thickness shear resonance frequencies
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Λa
sh is reached when

tanh (ηq1) ∼ V 2 , tanh (ηq2) ∼ 1 , V ∼ η−1 , (5.9)

this being possible when the argument of hyperbolic tangent tanh (ηq1) is near to i
(
n− 1

2

)
π.

Thus, we may expand this argument into power a series for small η, namely

q1η = iΛa
1 + iϕ2η

2 + iϕ4η
4 +O(η6) , (5.10)

in which we introduced thickness shear resonance frequencies Λa
1 =

(
n− 1

2

)
π, n = 1, 2, . . . ,

and parameters ϕ2 and ϕ4 are (in general) O(1) unknown quantities. The corresponding

expansion for tanh (ηq1) is given by

tanh (ηq1) = − i

η2ϕ2
+

iϕ4

(ϕ2)2
+O(η2) . (5.11)

We may now use (3.4) to obtain corresponding approximations for all required functions in

(5.5), thus

V =
Λa
1

η
+
2Λa

1ϕ2 + 1

2Λa
1

η +O(η3) , q2 =
iΛa

1

κη
+O(η) , (5.12)

tanh (ηq2) = i tan

(
Λa
1

κ

)
+O(η2) . (5.13)

Substituting expansions (5.10)–(5.13) back into the dispersion relation (5.5), we obtain

expressions for ϕ2 and ϕ4 in the form

ϕ2 =
4

κ(Λa
1)

2 tan
(

Λa
1

κ

) , ϕ4 =
(5− κ2)

2(Λa
1)

2
ϕ2 +

((Λa
1)

2δ0 − 8)

4Λa
1

ϕ2
2 . (5.14)

It is now possible to obtain the third order approximation for scaled frequency in the form

Ω2 = (Λa
1)

2 + (1 + 2Λa
1ϕ2) η

2 +

(
(5− κ2)

Λa
1

ϕ2 +
((Λa

1)
2δ0 − 6)

2
ϕ2
2

)
η4 +O(η6) . (5.15)

We present in Figure 7 a comparison of the asymptotic expansion (5.15) with the numerical

solution in the vicinity of the first two shear thickness resonance frequencies. Both numerical

and asymptotic solution show excellent agreement over a surprisingly large wave number

region. The accuracy improves for higher harmonic numbers, which is associated with

decrease in the numerical value of ϕ2 which has a (Λa
1)

−2 factor.

The last asymptotic regime capable of satisfying the dispersion relation (5.5) is associated

with the thickness stretch resonance frequencies Λa
st and may be identified by

tanh (ηq1) ∼ 1 , tanh (ηq2) ∼ V −2 , V ∼ η−1 . (5.16)

The derivation of an appropriate asymptotic expansion is very similar to the previously

considered case for the shear thickness resonances, with the exception that in this case the
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Figure 7: Comparison of the asymptotic solution (5.15) with the numerical solution for the

first (a) and second (b) SHa harmonics for δ = 10−4 and κ =
√
3.
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Figure 8: Comparison of the asymptotic solution (5.17) with the numerical solution for the

first (a) and second (b) SHa harmonics for δ = 10−4 and κ =
√
3.
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cut-off frequencies are given by Λa
2 = κnπ, n = 1, 2, . . . The corresponding approximation

for the scaled frequency has the form

Ω2 = (Λa
2)

2 +

(
κ2 +

2(Λa
2δ0 − 4 tan (Λa

2))

Λa
2

)
η2 +

(Λa
2δ0 − 4 tan (Λa

2))
2

(Λa
2)

4
η4 +O(η6) . (5.17)

Figure 8 demonstrates that good agreement is observed when comparing asymptotic solution

(5.17) with the numerical solution.

Case 2 (m = −1): δη−2 ∼ 1

Low-frequency motions are not possible for large values of δ, so we only need to consider

the long-wave behaviour of two families on harmonics, namely thickness shear and thickness

stretch resonance modes. Consequently, the corresponding dispersion relation

4q1q2 tanh (ηq1)− (2 + V 2)2 tanh (ηq2) + q2V
2 δ0
η3

= 0 , (5.18)

supports two asymptotic regimes. The first results in thickness shear resonance modes with

the following asymptotic structure

tanh (ηq1) ∼ V 4 , tanh (ηq2) ∼ 1 , V ∼ η−1 . (5.19)

The derivation of the approximation for scaled frequency is quite similar to Case 1, with

the result given by

Ω2 = (Λa
1)

2 + η2 − 8η4

δ0
+O(η6) . (5.20)

The simplicity of (5.20) is related to the particularly simple analytical structure of hyperbolic

solution branches of the problem with mixed boundary conditions, see [1]. As can be seen

on Figure 9(a) the asymptotic and numerical solutions are almost indistinguishable for all

harmonics over a large range of wave numbers.

The second asymptotic regime for Case 2 is characterized by the following relative orders

of relevant functions

tanh (ηq1) ∼ 1 , tanh (ηq2) ∼ V 2 , V ∼ η−1 . (5.21)

The associated third-order asymptotic expansion for scaled frequency is given in this case

by

Ω2 = (Λa
4)

2 +

(
κ2 − 2κ2(Λa

4)
2

δ0

)
η2 +

(
3κ4(Λa

4)
2

δ20
− 2κ2(κ2 − 4)

δ0

)
η4 +O(η6) . (5.22)

where Λa
4 = (n−1/2)κπ. Excellent agreement with the numerical solution is observed within

Figure 9(b) for first two thickness stretch resonance harmonics when δ = 10000.
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Figure 9: Comparison asymptotic solution (5.20) (a) and (5.22) (b) for the first harmonic

with numerical solutions for δ = 10000 and κ =
√
3.

Case 3 (m = 0): δ ∼ 1

When δ ∼ O(1) long-wave low-frequency motions is not possible; only high-frequency motion

is therefore possible within the long wave regime. Similarly to the high-frequency subcases,

these modes are dominated by thickness shear and thickness stretch resonances, i.e. motion

must be within the vicinities of Λa
sh and Λa

st, respectively. The frequencies Λa
sh remain un-

affected by changes in δ, nevertheless, frequencies Λa
st increase as δ increases. At a certain

value of δ = δ∗ a member of Λa
st may coincide with a member of Λa

st. In this case the asymp-

totic structure of both associated modes change and special quasi-linear expansions need to

be developed, see [9, 14]. While both standard and quasi-linear asymptotics are simple to

derive and well-understood now, their applicability ranges are defined by certain asymptotic

conditions that may be difficult to implement in a purely numerical context. Additionally,

the accuracy of standard long-wave high-frequency asymptotics typically deteriorates long

before the quasi-linear expansion can be used. Thus, it will be useful to develop a procedure

capable of producing uniform asymptotic expansions for long-wave high-frequency motion

applicable to this case. The appropriate expansions will now be presented for both types of

thickness resonance frequencies.

Thickness shear expansion

Within the long-wave regime the dispersion relation (5.1) may be represented as

O(V 2) tanh (ηq1) +O(V 4) tanh (ηq2) +O(V 4) = 0 , (5.23)

which is balanced for thickness shear resonance frequencies by making tanh (ηq1) sufficiently

large. To be more precise, it is usually necessary to assume that

tanh (ηq1) ∼ V 2 , tanh (ηq2) ∼ 1 , (5.24)
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so that the argument of tanh (ηq1) is dominated by iΛa
3 , where Λ

a
3 = (n−1/2)π, n = 1, 2, . . .

However, in the close vicinity of certain δ = δ∗ such that

δ∗ = κΛa
3 tan

Λa
3

κ
, (5.25)

the asymptotic regime described by (5.24) switches to

tanh (ηq1) ∼ V , tanh (ηq2)−
δ∗
κΛa

3

∼ V −1 . (5.26)

In order to represent both of these cases within a single asymptotic anzats we seek the

argument of tanh (ηq1) in the following modified form

ηq1 = i(Λa
3 + ηϵ) , tanh (ηq1) = − i

ϵη
+O(1) , (5.27)

where the function ϵ = ϵ(η) and we assume that it may vary between O(η) and O(1). By

carefully keeping all of the terms required in both asymptotic regimes, it is possible to

establish that

Ω = Λa
3 + ϵη +

η2

2Λa
3

+O(ϵη3) ,

q2 =
iΛa

3

κη
+

iϵ

κ
− i(κ2 − 1)2η

2κΛa
3

+O(ϵη2) , (5.28)

tanh (ηq2) = i tan

(
Λa
3

κ

)
+

iϵη

κ cos2
(

Λa
3

κ

) +O(η2) .

If these expansions are inserted back into the dispersion relation (5.1), we obtain a quadratic

equation for ϵ, given by3δ − 4κΛa
3 tan

(
Λa
3

κ

)
− Λa

3
2

cos2
(

Λa
3

κ

)
 ϵ2 + Λa

3

[
δ − κΛa

3 tan

(
Λa
3

κ

)]
ϵ

η
+ 4 = 0 . (5.29)

In view of the fact that we sought our expansion in the vicinity of a single cut-off frequency

Λa
3 , only one root of (5.29) describes a thickness shear mode. The second root only becomes

relevant in the vicinity of δ = δ∗, where it corresponds to the coupled thickness stretch

mode. If we denote the smaller root of (5.29) ϵ = ϵ1 and the larger root ϵ = ϵ2, the following

simple condition enables selecting the correct root:

ϵ =

 ϵ2 , δ < δ∗ ;

ϵ1 , δ > δ∗ .
(5.30)

It is worth reiterating that when δ = δ∗ the notions of thickness shear and thickness stretch

become meaningless and both solutions of (5.29) become asymptotically consistent. The

corresponding expansion for the scaled frequency may be written as

Ω = Λa
3 + ϵη +

η2

2Λa
3

+O(ϵη3) . (5.31)
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Figure 10: Comparison of uniform asymptotic solution (5.31) and numerical solution for the

first SH-mode when δ = 3 and κ =
√
3. Also presented standard non-uniform asymptotic

and the spurious branch corresponding to incorrect choice of ϵ.

Comparison of the uniform asymptotic expansion (5.31) and exact numerical solutions for

δ = 3 and κ =
√
3 is shown in Figure 10. The standard non-uniform asymptotic is also

presented to demonstrate its inaccuracy even when δ is relatively far from δ∗ ≈ 3.4775.

Thickness stretch expansion

The procedure for deriving an asymptotic expansion in the vicinity of thickness stretch

resonance frequencies is similar, except that in this case the cut-off frequencies Λa
4 are δ-

dependent and found from the implicit relationship

κΛa
4 tan

(
Λa
4

κ

)
= δ . (5.32)

The standard (non-uniform) asymptotic expansion would rely upon the scaling

tanh (ηq1) ∼ 1 , tanh (ηq2)−
δ

κΛa
4

∼ V −2 . (5.33)

However, when δ ∼ δ∗, see (5.25), this structure changes to

tanh (ηq1) ∼ V , tanh (ηq2)−
δ∗
κΛa

4

∼ V −1 , (5.34)

where (5.34) is clearly equivalent to (5.26).

Similarly, as with the thickness shear case, we seek a uniform asymptotic expansion that

includes both cases (5.33) and (5.34). This is done by introducing the following anzats

ηq2 = i

(
Λa
4

κ
+ ηϵ

)
, tanh (ηq2) =

iδ

κΛa
4

+ i

(
δ2

κ2(Λa
4)

2
+ 1

)
ϵη , (5.35)

in which the condition (5.3) has been used and we again assume that ϵ = ϵ(η), which may

vary between O(η) and O(1). Thus, the general form of our asymptotic expansion is given
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Figure 11: Comparison of uniform asymptotic solution (5.39) and numerical solution for

the former fundamental when δ = 4 and κ =
√
3. Also presented standard non-uniform

asymptotic and the spurious branch corresponding to incorrect choice of ϵ.

by

Ω = Λa
4 + κϵη +

κ2η2

2Λa
4

. (5.36)

By keeping in mind our assumptions on ϵ, it is possible to obtain the following expansions

q1 =
iΛa

4

η
+ iκϵ , tanh (ηq1) =

i tan (Λa
4)

1− κ tan (Λa
4)ϵη

.

If these are inserted into dispersion relation (5.1), we obtain the following quadratic equation

for ϵ [
A tan (Λa

4)−
4A− κ2δ

Λa
4

]
ϵ2 − Aϵ

κη
− 4 tan (Λa

4)−
δ(κ2 − 4)

Λa
4

= 0 . (5.37)

in which A = δ2 + κ2δ + κ2(Λa
4)

2. If we denote the smaller root of (5.37) ϵ = ϵ1 and the

larger root as ϵ = ϵ2, then the rule to choose the correct root is given by

ϵ =

 ϵ1 , δ < δ∗ ;

ϵ2 , δ > δ∗ .
(5.38)

Once again, when δ = δ∗ both roots result in a correct asymptotic expansion. The corre-

sponding approximation for scaled frequency has the form

Ω = Λa
4 + κϵη +

κ2η2

2Λa
4

. (5.39)

It is easy to verify that when δ = δ∗ both asymptotic expansions (5.31) and (5.39) result

in the same expression. Comparison of the uniform asymptotic solution (5.39) with the nu-

merical solutions for δ = 4 is shown on the Figure 11. The performance of (5.31) (or (5.39))

in the case when δ = δ∗ is illustrated in Figure 12. Both solution branches demonstrate

good agreement with the exact numerical solution.
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Figure 12: Comparison of the uniform asymptotic solution (5.39) with the numerical solution

for the special case with δ = δ∗ ≈ 3.4775 and κ =
√
3.

5.2 Long wave analysis of symmetric waves

Analysis of symmetric modes in the case of normally restrained boundaries is similar to the

analysis presented in respect of anti-symmetric motion. Thus, in this Section the results

of the corresponding asymptotic analysis are presented without derivations. The relevant

dispersion relation has the form

4q1q2 coth (ηq1)− (2 + V 2)2 coth (ηq2) +
q2V

2δ

η
= 0 . (5.40)

The long-wave limit of (5.40) has two types of solutions, cf. (3.10). The first is given by

Λs
sh = nπ , n = 0, 1, 2, . . . , (5.41)

and the second is implicitly defined by the transcendental equation

− κΛs
st cot

(
Λs
st

κ

)
= δ . (5.42)

The symmetric fundamental mode originates from (5.41) when n = 0. Its long-wave limit

does not depend on δ, which is also true for the remainder of the frequencies (5.41), associ-

ated with thickness shear resonances. We remark that the thickness stretch frequencies Λs
st

do depend on δ.

As commented in Section 4, the symmetric fundamental mode does not change its asymp-

totic structure due to the effect of normal restraint on the layer faces. Thus, the following

long-wave low-frequency expansion for the phase speed of fundamental mode

V 2 =
(4 + δ)κ2 − 4

δ + κ2
+

(κ2 − 2)2(4− 4κ2 − δκ2)

3(δ + κ2)3
η2 , (5.43)

20



is valid for all values of δ. Nonetheless, the analysis of high-frequency solutions of (5.40)

again requires re-scaling of the parameter δ as described by (5.4), with the associated ex-

pansions presented in the following cases.

Case 1 (m = 1): δη−2 ∼ 1

The asymptotic expansion for symmetric modes related to thickness shear has the form

Ω2 = (Λs
1)

2 +

1− 8

κΛs
1 cot

(
Λs

1

κ

)
 η2 +

 4(κ2 − 5)

κ(Λs
1)

3 cot
(

Λs
1

κ

) +
8((Λs

1)
2δ0 − 6)

κ2(Λa
1)

4 cot2
(

Λs
1

κ

)
 η4 ,

(5.44)

where Λs
1 = nπ, n = 1, 2, . . . The modes associated with thickness stretch have the following

asymptotic expansion

Ω2 = (Λs
2)

2 +

(
κ2 +

2(Λs
2δ0 + 4 cot (Λs

2))

Λs
2

)
η2 +

(Λs
2δ0 + 4 cot (Λs

2))
2

(Λs
2)

4
η4 , (5.45)

in which Λs
2 = (n− 1/2)κπ, n = 1, 2, . . .

Case 2 (m = −1): δη−2 ∼ 1

The asymptotics for large δ were found to have the same expansions as in the anti-symmetric

case, namely (5.20) and (5.22) for modes related to thickness shear and thickness stretch,

respectively, in which Λa
1 must be replaced by Λs

1, and Λa
4 by Λs

4 = κnπ.

Case 3 (m = 0): δ ∼ 1

In this case we obtained uniform asymptotics near both thickness shear and thickness stretch

resonance frequencies by using the same techniques as were developed in analysis of the anti-

symmetric modes. The expansions for scaled frequency are identical to (5.31) and (5.39),

which should be used with slightly modified equations for ϵ. For the thickness shear modes

ϵ is found from3δ + 4κΛs
3 cot

(
Λs
3

κ

)
− Λs

3
2

sin
(

Λs
3

κ

)2
 ϵ2 + Λs

3

[
δ + κΛs

3 cot

(
Λs
3

κ

)]
ϵ

η
+ 4 = 0 , (5.46)

whereas for thickness shear from[
A cot (Λs

4) +
4A− κ2δ

Λs
4

]
ϵ2 +

Aϵ

κη
− 4 cot (Λs

4) +
δ(κ2 − 4)

Λs
4

= 0 . (5.47)

in which Λs
3 = nπ, Λs

4 satisfies relation (5.42), and A is defined immediately after (5.37).
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6 Short-wave limits and the surface wave speed

It is evident from the dispersion relations (3.7) and (3.8) that the influence of elastically

restrained boundaries diminishes for shorter waves, as η → ∞. In the subsonic regime, when

V < 1, both q1 and q2 are real, see (3.3). This means that also

lim
η→∞

tanh(ηq1) = lim
η→∞

tanh(ηq2) = 1 . (6.1)

Therefore, for sufficiently short waves both anti-symmetric and symmetric dispersion rela-

tions both tend to

4q1q2 − (q21 + 1)2 +

(
q1

δ1
α1

+ q2
δ2
α2

)
V 2

η
+

δ1δ2
α1α2

(1− q1q2)

η2
= 0 . (6.2)

It is possible to show that (6.2) is, in fact, the secular equation for surface waves propagating

in an elastic isotropic half-space with the boundary conditions (2.6)–(2.7).

Let us first assume that α1 ̸= 0 and α2 ̸= 0. The first two terms of (6.2) describe the

leading-order behaviour at large η and can be recognised as the classical Rayleigh secular

equation. Thus, the short-wave limit of the fundamental branches for the layers with elas-

tically restrained boundaries is always the Rayleigh wave speed VR, that is, the solution

of

4q1q2 − (q21 + 1)2 ≡ 4
√

1− V 2
R

√
1− V 2

R/κ
2 − (2− V 2

R)
2 = 0 . (6.3)

For large but finite η relation (6.2) describes physical dispersion of surface waves travelling

along layer faces that is caused by interaction with the elastic restraints. This dispersion

may be described by the two-term expansion

V 2 = V 2
R +

16(1− V 2
R)(κ

2 − V 2
R)

(2− V 2
R)((1− V 2

R)(8 + κ2V 2
R) + (7κ2 − 8)V 2

R)

× 1

η

(
δ1
α1

√
1− V 2

R +
δ2
α2

√
1− V 2

R/κ
2

)
+O(η−2) . (6.4)

The sign of theO(η−1) term is positive for κ2 > 8/7, i.e., in particular, for all positive Poisson

ratios. It is possible to verify numerically that it remains positive for all ν ∈ (−1, 1/2).

Therefore, the velocity of surface wave grows as the wave number decreases. At some point

η∗, the velocity reaches 1 and the surface wave degenerates into a shear wave. However, the

asymptotic approximation (6.2) is no longer valid when V = 1 (because q1 vanishes). Thus,

in order to determine η∗ it is necessary to return back to the original dispersion relations

and analyse the limiting case for V = 1. The appropriate expansion of (3.7) leads to an

implicit relationship(
1− δ1δ2

α1α2

1

η2∗

)
tanh

(
η∗

√
κ2 − 1

κ

)
=

δ2
α2

√
κ2 − 1

η∗κ
. (6.5)
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Figure 13: Anti-symmetric and symmetric fundamental modes shown together with surface

and shear wave speeds, as well as asymptotic expansion (6.4) for κ =
√
3 and δ = 100.

In the case of symmetric dispersion relation (3.8) the corresponding limit is(
1− δ1

α1

1

η2∗
− δ1δ2

α1α2

1

η2∗

)
coth

(
η∗

√
κ2 − 1

κ

)
=

(
4 +

δ2
α2

− δ1δ2
α1α2

1

η2∗

) √
κ2 − 1

η∗κ
. (6.6)

Expressions (6.5) and (6.6) become particularly simple when α1 = α2 = 1, δ1 = 0 and δ2 = δ.

In this case, as δ grows larger, the values of η∗ for both anti-symmetric and symmetric cases

become indistinguishable so that η∗ ∼ δ
√
κ2 − 1/κ.

For example, Figure 13 demonstrates the short-wave behaviour of both anti-symmetric

and symmetric fundamental modes for δ = 100. Expansion (6.4) works well for large wave

numbers, but as η approaches η∗ the error becomes significant. After crossing the line

V = 1 both fundamental modes monotonically tend to their respective long-wave limits.

It is interesting to note that while (6.2) provides very accurate approximation of both

fundamental modes when η > η∗, their behaviour becomes substantially different for η < η∗,

even when η∗ is large. The behaviour at η < η∗ is clearly not associated with two coupled

surface waves travelling on the opposite sides of the layer.

Finally, in the case when α1 = 0 and/or α2 = 0, the appropriate short-wave limit of (6.2)

does no longer correspond to the Rayleigh wave. Furthermore, it can be shown that this

limit possesses no subsonic solutions, which is simply a reflection of the fact that surface

wave cannot propagate along a fixed boundary.
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