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Abstract. In this paper we are concerned with a wide class of singular
perturbation problems arising from such diverse fields as phase transi-
tions, chemotaxis, pattern formation, population dynamics and chemi-
cal reaction theory. We study the corresponding elliptic equations in a
bounded domain without any symmetry assumptions. We assume that
the mean curvature of the boundary has M isolated, non-degenerate crit-
ical points. Then we show that for any positive integer m ≤ M there
exists a stationary solution with M local peaks which are attained on
the boundary and which lie close to these critical points. Our method is
based on Liapunov-Schmidt reduction.

1. Introduction

In this paper we are concerned with a wide class of singular perturbation

problems including the Cahn-Hilliard equation for phase transitions in met-

allurgy, the Keller-Segal model in chemotaxis, the Gierer-Meinhardt system

in pattern formation and a famous model from population dynamics and

chemical reaction theory.

Let us begin with some background and a summary of our results for

the Cahn-Hilliard equation. Among the models mentioned above this is

mathematically the most complicated one because of its non-local character.

Then we will describe the other problems which can be dealt with by our

approach.

The Cahn-Hilliard equation [6] is a commonly used macroscopic field-

theoretical model of processes such as phase separation in a binary alloy. It
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can be derived from a Helmholtz free energy

E(u) =
∫
Ω
[F (u(x)) +

1

2
ε2|∇u(x)|2]dx

where Ω is the region occupied by the body, u(x) is a conserved order param-

eter representing for example the concentration of one of the components,

and F (u) is the free energy density which has a double well structure at low

temperatures. The prototype for the free energy density is F (u) = (1−u2)2.

The constant ε is proportional to the range of intermolecular forces and

the gradient term is a contribution to the free energy coming from spatial

fluctuations of the order parameter. Moreover the mass m = 1
|Ω|

∫
Ω udx is

a given constant. Thus a stationary solution of E(u) under m = 1
|Ω|

∫
Ω udx

takes the form

⎧⎪⎨
⎪⎩

ε2∆u − f(u) = σε in Ω,
∂u
∂ν

= 0 on Ω,∫
Ω u = m|Ω|

(1.1)

where f(u) = F ′(u) and σε is a constant.

There have been numerous studies of the Cahn-Hilliard equation. The

global minimizer of E(u) has a transition layer. More precisely there exists

an open set Γ ⊂ Ω such that if ε is small enough uε is a global minimizer

and uε → 1 on Ω \Γ, uε → −1 on Γ and ∂Γ∩Ω. Furthermore, Γ is a surface

whose area is minimal under the mass constraint and which has constant

mean curvature, see [23]. The dynamics has been studied extensively, see

for example [3], [9], [10], [30]. Also local minimisers have been studied and

their transition layer structure has been established in [20]. In this paper we

are interested in solutions of (1.1) with spike layers. In the one dimensional

case, Bates and Fife [5] studied nucleation phenomena for the Cahn-Hilliard

equation and proved the existence of three monotone nondecreasing station-

ary solutions when m is in the metastable region (
√

1/3 < m < 1), (a) the

constant solution u ≡ m, (b) a boundary spike layer solution where the layer

is located at the left-hand endpoint, (c) a transition layer solution with a

layer in the interior of the material.
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Motivated by the results of [5], in [34] we constructed a boundary spike

layer solution to (1.1) for ε << 1 in the higher dimensional case when m is

in the metastable region.

In this paper we extend the approach to construct multi-peak solutions to

the Cahn-Hilliard equation.

To our knowledge these papers are the first to establish this kind of results

for the Cahn-Hilliard equation in higher dimensions without any symmetry

assumptions on Ω.

Naturally these stationary solutions are essential for the understanding of

the dynamics of the corresponding evolution process. While Bates and Fife

[5] prove some results in this direction for the one dimensional case these

questions are open for higher dimensions.

In [16], [17] in the one dimensional case the number of all stationary solu-

tions is counted by arguments using transversality. Furthermore, the energy

levels of stationary solutions and their connecting orbits are established.

Before we state our main assumptions we make the following transforma-

tion.

v = m − u,

g(v) = −f(m) + f(m − v).

Rewrite

g′(0) = −m, g(v) = −mv + h(v).

Then equation (1.1) becomes{
ε2∆v − mv + h(v) − 1

|Ω|
∫
Ω h(v) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω.
(1.2)

Our main result can be stated as follows.

Theorem 1.1. Let Ω be a bounded smooth domain in RN(N ≥ 2). For

i = 1, 2, . . . ,M let P0,i ∈ ∂Ω be such that ∇τP0,i
H(P0,i) = 0 where H(P )

is the mean curvature of ∂Ω at P and ∇τP0,i
is the tangential derivative at
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P0,i. Furthermore, assume that (∇τP0,i
∇τP0,j

H(P0,i)) is nondegenerate for

i, j = 1, ...,M .

Then for ε << 1 there exists a solution vε of (1.2) such that vε → 0 in

C1
loc(Ω \ {P0,1, P0,2, . . . , P0,M}), vε has exactly M local maximum points Pε,i

and Pε,i ∈ ∂Ω, Pε,i → P0,i, vε(Pε,i) → V (0) > 0. Moreover

ε−N

⎧⎨
⎩
∫
Ω

ε2

∣∣∣∣∣∇vε −
M∑
i=1

∇V
(

x − Pε,i

ε

)∣∣∣∣∣
2

+
∫
Ω

∣∣∣∣∣vε −
M∑
i=1

V
(

x − Pε,i

ε

)∣∣∣∣∣
2
⎫⎬
⎭ → 0

as ε → 0 where V (y) is the unique solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆V − mV + h(V ) = 0,

V (0) = maxy∈RN V (y), V > 0,

V (y) → 0 at ∞.

(1.3)

(By the results of [13] and [31], (1.3) has a unique radial solution).

The method of our construction evolves from that of [11], [28] and [29]

on the semi-classical (i.e. for small parameter h) solution of the nonlinear

Schrödinger equation

h2

2
∆U − (V − E)U + Up = 0 (1.4)

in RN where V is a potential function and E is a real constant. The method

of Lyapunov-Schmidt reduction was used in [11], [28] and [29] to construct

solutions of (1.4) close to nondegenerate critical points of V for h sufficiently

small.

Following the strategy of [11], [28] and [29] we shall construct a solution

vε of (1.2) with maxima near M given nondegenerate critical points of the

mean curvature P0,i on ∂Ω by taking the sum of M functions each having

a peak lying on the boundary and being close to P0,i for i = 1, 2, . . . ,M .
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Heuristically, for each of these functions we rescale (1.2) to obtain{
∆uε − muε + h(uε) − 1

|Ωε|
∫
Ωε

h(uε) = 0 in Ωε,
∂uε

∂νε
= 0 on ∂Ωε

(1.5)

where uε = vε(εy), Ωε = ε−1Ω (assuming P0,i = 0, the origin) and νε is the

unit outer normal to ∂Ωε.

An immediate though formal calculation shows that uε → V as ε → 0

where V is the unique solution of⎧⎪⎨
⎪⎩

∆w − mw + h(w) = 0 in RN
+ ,

w > 0 in RN
+ ,

∂w
∂yN

= 0 on RN−1 × {0}
(1.6)

with V (0) = maxRN
+

V . Therefore the ground state solution V restricted

to RN
+ can be an approximate solution for uε. Since the linearized problem

arising from (1.6) has the (N − 1)-dimensional kernel span{ ∂V
∂y1

, . . . , ∂V
∂yN−1

}
we first “solve” (1.6) up to this kernel and then use the nondegeneracy of

H(Pi) to take care of the kernel separately.

The proof of Theorem 1.1 also works for the the following singular pertur-

bation problem {
ε2∆v + g(v) = 0 in Ω,
∂v
∂ν

= 0 on ∂Ω.
(1.7)

Furthermore, the proof of Theorem 1.1 can be adapted to deal with non-

linearities satisfying the following conditions:

(g1) g(0) = 0, g
′
(0) = −m < 0

(g2) g ∈ C1+σ(R+), g(u) = −mu + h(u) where h satisfies

h(u) = O(|u|p1), h
′
(u) = O(|u|p2−1) as |u| → ∞

for some 1 < p1, p2 and there exists 1 < p3 such that

|hu(u + φ) − hu(u)| ≤
{

C|φ|p3−1 if p3 > 2
C(|φ| + |φ|p3−1) if p3 ≤ 2

(g3) The equation ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w + g(w) = 0 in R

N

w > 0, w(0) = max
z∈Rn

w(z)

w → 0 at ∞
(1.8)
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has a unique solution V (y) (by the results of [13], V is radial, i.e.,

V = V (r) and V
′

< 0 for r = |y| �= 0) and V is nondegenerate.

Namely the operator

L := 
 + g
′
(V ) (1.9)

is invertible in the space H2
r (RN) :=

{
u = u(|y|) ∈ H2(RN)

}
.

It is easy to see that for the Cahn-Hillard equation conditions (g1), (g2)

and (g3) are satisfied. Two other important examples are the following.

Example 1 (chemotaxis and pattern formation): g(u) = −u + up

where 1 < p < (N+2
N−2

)+(= ∞ if N = 2; = N+2
N−2

if N > 2). It is easy to see

that g satisfies (g1), (g2) and (g3). Hence multiple boundary spike solutions

can be constructed for multiple nondegenerate critical points of the mean

curvature. This problem arises from the Keller-Segal model in chemotaxis

and the Gierer-Meinhardt system in pattern formation (see [25], [26] and the

references therein). Single boundary spike solutions have been extensively

studied by [25], [26], [33], etc. In [12], Gui used variational methods to con-

struct multiple boundary spike solutions at strict local maximum points of

the mean curvature. Our result in this paper is the first result in constructing

multiple boundary spike solutions in the general situation.

Example 2 (population dynamics and chemical reaction theory):

g(u) = u(u − a)(1 − u) where 0 < a < 1
2
. This is a famous model from

population dynamics and chemical reaction theory (see [4], [19], [32]). By

the result of [14], g satisfies (g1)-(g3). Hence single and multiple boundary

spike solutions can be constructed. This is the first result in constructing

boundary spike solutions for this nonlinearity. Note that the methods of [12]

and [25] cannot be applied here since g does not satisfy the conditions in

those papers.

Other nonlinearities satisfying (g1), (g2) and (g3) can be found in [8].

The existence of spike layer solutions as well as the location and the profile

of the peaks for other problems arising in various models such as chemotaxis,

pattern formation, chemical reactor theory, etc. have been studied by Lin,

Ni, Pan, and Takagi [21, 24, 25, 26] for the Neumann problem and by Ni and
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Wei [27] for the Dirichlet problem. However, they consider only least-energy,

hence single-peak solutions.

In this paper, we prove Theorem 1.1 for the Cahn-Hilliard case. The

arguments can be easily modified to deal with the other cases of more general

nonlinearities.

The paper is organized as follows. Notation, preliminaries and some use-

ful estimates are explained in Section 2. Section 3 contains the setup of our

problem and we solve (1.2) up to approximate kernel and cokernel, respec-

tively. Finally in Section 4 we solve the reduced problem.

Acknowledgement. The first author would like to thank Professor Wei-

Ming Ni for his enlightening discussions. The second author would like to

acknowledge discussions with Professor Amy Novick-Cohen. Part of the work

is inspired by some related work of Professor Wei-Ming Ni and Professor

Yong-Geun Oh. This research was done while the second author visited the

Department of Mathematics, The Chinese University of Hong Kong. It is

supported by a Direct Grant from The Chinese University of Hong Kong

and by a grant of the European Union (contract ERBCHBICT930744).

2. Technical Analysis

In this section we introduce a projection and derive some useful esti-

mates. Throughout the paper we shall use the letter C to denote a generic

positive constant which may vary from term to term. We denote RN
+ =

{(x′, xN)|xN > 0}. Let V be the unique solution of (1.3).

Let P ∈ ∂Ω. We can define a diffeomorphism straightening the boundary

in a neighborhood of P . After rotation of the coordinate system we may

assume that the inward normal to ∂Ω at P is pointing in the direction of the

positive xN -axis. Denote x′ = (x1, . . . , xN−1), B′(R0) = {x′ ∈ RN−1| |x′| <

R0}, B(P,R0) = {x ∈ RN | |x − P | < R0}, and Ω1 = Ω ∩ B(P,R0) =

{(x′, xN) ∈ B(P,R0)|xN − PN > ρ(x′ − P ′)}. Then, since ∂Ω is smooth, we

can find a constant R0 > 0 such that ∂Ω ∩ Ω1 can be represented by the

graph of a smooth function ρP : B′(R0) → R where ρP (0) = 0,∇ρP (0) = 0.
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From now on we omit the use of P in ρP and write ρ instead if this can

be done without causing confusion. The sum of the principal curvatures of

∂Ω at P is H(P ) =
∑N−1

i=1 ρii(0) where

ρi =
∂ρ

∂xi

, i = 1, . . . , N − 1

and higher derivatives will be defined in the same way. By Taylor expansion

we have

ρ(x′ − P ′) =
1

2

N−1∑
i,j=1

ρij(0)(xi − Pi)(xj − Pj)

+
1

6

N−1∑
i,j,k=1

ρijk(0)(xi − Pi)(xj − Pj)(xk − Pk) + O(|x′ − P
′ |4)

In the following we use ρα to denote the multiple differentiation ∂|α|ρ
∂xα where

α is a multiple index.

For a smooth bounded domain U we now introduce a projection PU of

H2(U) onto {v ∈ H2(U)|∂v/∂ν = 0 at ∂U} as follows: For v ∈ H2(U) let

w = PUv be the unique solution of the boundary value problem{
∆w − mw + h(v) = 0 in U,
∂w
∂ν

= 0 on ∂U.

Let hε,P (x) = V
(

x−P
ε

)
− PΩε,P

[
V
(

x−P
ε

)]
where

Ωε,P = {z ∈ Rn|εz + P ∈ Ω}.
Then hε,P satisfies {

ε2∆v − mv = 0 in Ω,
∂v
∂ν

= ∂V
∂ν

on ∂Ω.
(2.1)

We denote

‖v‖2
ε = ε−N

∫
Ω
[ε2|∇v|2 + mv2].

For x ∈ Ω1 set now {
εy′ = x′ − P ′,
εyN = xN − PN − ρ(x′ − P ′). (2.2)

Furthermore, for x ∈ Ω1 we introduce the transformation T by{
Ti(x

′) = xi, i = 1, . . . , N − 1
TN(x′) = xN − PN − ρ(x′ − P ′). (2.3)
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Note that then

y =
1

ε
T (x).

Let v1 be the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
2

∑N−1
i,j=1 ρij(0)yiyj on ∂RN

+
(2.4)

where V ′ is the radial derivative of V , meaning that V ′ = Vr(r), and r =∣∣∣x−P
ε

∣∣∣. Let v2 be the unique solution of⎧⎨
⎩ ∆v − mv − 2

∑N−1
i,j=1 ρij(0)yi

∂2v1

∂yj∂yN
= 0 in RN

+ ,
∂v

∂yN
=
∑N−1

i,j=1 ρij(0)yi
∂v1

∂yj
on ∂RN

+ .
(2.5)

Let v3 be the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
3

∑N−1
i,j,k=1 ρijk(0)yiyjyk on ∂RN

+ .
(2.6)

Note that v1, v2 are even functions in y
′

= (y1, ..., yN−1) and v3 is an odd

function in y
′

= (y1, ..., yN−1) (i.e. v1(y
′
, yN) = v1(−y

′
, yN), v3(y

′
, yN) =

−v3(−y
′
, yN)). Moreover, it is easy to see that |v1|, |v2|, |v3| ≤ Ce−µ|y| for

some 0 < µ <
√

m. Let χ(x) be a smooth cutoff function such that χ(x) =

1, for x ∈ B(0, R0− δ) and χ(x) = 0 for x ∈ B(0, R0)
C (where δ is a positive

number). Set

hε,P (x) = εv1(y)χ(x − P ) + ε2(v2(y)χ(x − P ) + v3(y)χ(x − P )) + ε3Ψε,P (x).

Then we have the following proposition.

Proposition 2.1. The remainder Ψε,P satisfies

‖Ψε,P‖ε ≤ C.

Proof. Proposition 2.1 was proved in [34] by Taylor expansion and a rigor-

ous estimate of the remainder using estimates for elliptic partial differential

equations. �

Similarly, we know from [34] that the following proposition is true.
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Proposition 2.2. We have

[
∂V

∂τPj

− ∂PΩε,P
V

∂τPj

] (
x − P

ε

)
= w1(y)χ(x − P ) + εwε

2(x)

where w1 satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆v − mv = 0 in RN
+ ,

∂v
∂yN

= −1
2

(
V ′′
|y|2 − V ′

|y|3
)∑N−1

k,l=1 ρkl(0)ykylyj − V ′
|y|
∑N−1

k=1 ρjk(0)yk on ∂RN
+

(2.7)

and

‖wε
2‖ε ≤ C.

Note that |w1| ≤ C exp(−µ|y|) for some µ <
√

m where w1 is an odd

function in y
′
and that |w2| ≤ C exp(−µ|y|) for some µ <

√
m.

Define the linear operator L0 by

L0u = ∆u − mu + h′(V )u

for

u ∈ H2
N(RN

+ ) = {u ∈ H2(RN
+ ),

∂u

∂yN

= 0 on ∂RN
+}.

We have the following statement.

Lemma 2.3. The kernel of L0 satisfies

Ker(L0) ∩ H2
N(RN

+ ) = span

{
∂V

∂y1

, . . . ,
∂V

∂yN−1

}
.

Proof. See Lemma 4.2 in [26]. �
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3. Reduction to finite dimensions

In this section we use the Lyapunov-Schmidt method to reduce the prob-

lem to finite dimensions.

Let P ∈ Ω,

Ωε = {z ∈ RN |εz ∈ Ω},
and

Ωε,P = {z ∈ RN |εz + P ∈ Ω}.
Let H2

N(Ωε) be the Hilbert space defined by

H2
N(Ωε) =

{
u ∈ H2(Ωε)

∣∣∣∣∣ ∂u

∂νε

= 0 on ∂Ωε

}
.

Define

S̃ε(u) = ∆u − mu + h(u) − 1

|Ωε|
∫
Ωε

h(u)

for u ∈ H2
N(Ωε). Then equation (1.2) is equivalent to

S̃ε(u) = 0, u ∈ H2
N(Ωε).

Fix P = (P1, . . . , PM) with Pi ∈ ∂Ω. For the rest of this section we fix a

small δ > 0 such that

min
i,j=1,... ,M,i �=j

dist(Pi, Pj) ≥ δ.

We set

PVi(y) = PΩε,Pi
V (y − Pi

ε
),

Vi(y) = V
(
y − Pi

ε

)

and

u =
M∑
i=1

PVi + Φε,P.

To solve (1.2) we first consider the linear operator

L̃ε : u �→ ∆u − mu + h′
(

M∑
i=1

PVi

)
u,

H2
N(Ωε) → L2(Ωε).
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Using integration by parts it is easy to see that the cokernel of L̃ε coincides

with its kernel. We choose the approximate cokernel Cε,P and kernel Kε,P as

Cε,P = Kε,P

= span

{
∂PVi

∂τPi,j

∣∣∣∣∣ i = 1, . . . ,M, j = 1, . . . , N − 1

}
.

Let πε,P denote the projection of L2(Ωε) onto C⊥
ε,P. Our goal in this section

is to show that the equation

πε,P ◦ S̃ε(
M∑
i=1

PVi + Φε,P) = 0

has a unique solution Φε,P ∈ K⊥
ε,P if ε is small enough.

As a preparation in the following two propositions we show invertibility of

the corresponding linearized operator.

Proposition 3.1. Let Lε,P = πε,P ◦ L̃ε. There exist positive constants ε, λ

such that for all ε ∈ (0, ε) and all P = (P1, . . . , PM) with P1, . . . , PM ∈ ∂Ω

and mini,j=1,... ,M,i �=j dist(Pi, Pj) ≥ δ:

‖Lε,PΦ‖L2(Ωε) ≥ λ‖Φ‖H2(Ωε) (3.1)

for all Φ ∈ K⊥
ε,P.

Proposition 3.2. There exists a positive constant ε̃ such that for all ε ∈

(0, ε̃) and all P = (P1, . . . , PM) with P1, . . . , PM ∈ ∂Ω and

min
i,j=1,... ,M,i �=j

dist(Pi, Pj) ≥ δ

the map

Lε,P = πε,P ◦ L̃ε : K⊥
ε,P → C⊥

ε,P

is surjective.
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Proof of Proposition 3.1: We will follow the method used in [11], [28],

[29] and [34]. Suppose that (3.1) is false. Then there exist sequences

{εk}, {Pk} = {(P1,k, . . . , PM,k)} and {Φk} for k = 1, 2, . . . with the fol-

lowing properties: εk > 0 and Pi,k ∈ ∂Ω with

min
i,j=1,... ,M,i �=j

dist(Pi,k, Pj,k) > δ

such that Φk ∈ K⊥
εk,Pk

and

εk → 0, (3.2)

Pk → P, (3.3)

‖Lε‘k,Pk
Φk‖L2 → 0, (3.4)

‖Φk‖H2 = 1 for k = 1, 2, . . . . (3.5)

For j = 1, 2, . . . , N − 1 denote

eij,k =
∂

∂τ(Pi,k)
j

PVi,k/

∥∥∥∥∥∥
∂

∂τ(Pi,k)
j

PVi,k

∥∥∥∥∥∥
L2(Ωεk

)

.

Note that

< ei1j1,k, ei2j2,k >= δi1i2δj1j2 + O(εk) as k → ∞

by Proposition 2.3 and because of the symmetry of the function w1 which was

defined in (2.9). Here δi1i2 is the Kronecker symbol. Furthermore because of

(3.4) we deduce that

‖L̃εk
Φk‖2

L2 −
M∑
i=1

N−1∑
j=1

(∫
Ωεk

L̃εk
Φkeij,k

)2

→ 0 (3.6)

as k → ∞. Let Ω0, χ, ρ and T be the same as in Section 2. Then T has an

inverse T−1 such that

T−1 : T (B(P,R0) ∩ Ω) → B(P,R0) ∩ Ω.

Recall that εy = T (x). We use the notation T (i) if P is replaced by Pi. We

introduce new sequences {ϕi,k} by

ϕi,k(y) = χ(
1

εk
(T (i))−1(εky))Φk

(
(T (i))−1(εky)

)
(3.7)
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for y ∈ RN
+ . Since T (i) and (T (i))−1 have bounded derivatives it follows from

(3.5) and the smoothness of χ that

‖ϕi,k‖H2(RN
+ ) ≤ C

for all k sufficiently large. On the other hand,

‖ϕi,k‖H2(RN
+ \B(0,R)) → 0 as R → ∞

uniformly in k for all k large enough. Therefore there exists a subsequence,

again denoted by {ϕi,k} which converges weakly in H2(RN
+ ) to a limit ϕi,∞

as k → ∞. We are now going to show that ϕi,∞ ≡ 0. As a first step we

deduce that ∫
RN

+

ϕi,∞
∂V

∂yj

= 0 for j = 1, . . . , N − 1. (3.8)

Noting that det DT = det DT−1 = 1 this statement is shown as follows

∫
RN

+

ϕi,k(y)

⎡
⎣ ∂PVi,k

∂τ(Pi,k)
j

(
(T (i))−1(εky)

εk

)⎤
⎦ dy

= ε−N
k

∫
Ω0

χ(x − Pi,k)Φk(
x

εk

)
∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

) dx

= ε−N
k

∫
Ω

Φk(
x

εk

)
∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)
∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)
∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

= 0 − ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)

⎡
⎣ ∂V

∂(Pi,k)j

(
x − Pi,k

εk

)
− ∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

⎤
⎦

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)

⎡
⎣ ∂V

∂(Pi,k)j

(
x − Pi,k

εk

)
− ∂PVi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

⎤
⎦

−ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)
∂V

∂(Pi,k)j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)
∂V

∂(Pi,k)j

(
x − Pi,k

εk

)

where Ω0 is as defined in section 2. In the last expression the first two terms

tend to zero as k → ∞ since εk
−NΦk is bounded in L2(Ω) and [. . . ] → 0
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strongly in L2(Ω). The last two terms tend to zero as k → ∞ because of the

exponential decay of ∂V/∂(Pi,k)j at infinity.

We conclude that

lim sup
k→∞

∣∣∣∣∣∣
∫

RN
+

ϕi,k(y − Pi,k/εk)

⎡
⎣ ∂PVi,k

∂τ(Pi,k)
j

(
(T (i))−1(εky)

εk

)⎤
⎦
∣∣∣∣∣∣ = 0

for i = 1, . . . ,M and j = 1, . . . , N − 1. (3.9)

This implies (3.8).

Let K0 and C0 be the kernel and cokernel, respectively, of the linear oper-

ator S ′
0(V ) which is the Fréchet derivative at V of

S0(v) = ∆v − mv + h(v),

S0 : H2
N(RN

+ ) → L2(RN
+ )

where

H2
N(RN

+ ) =

{
u ∈ H2

N(RN
+ )

∣∣∣∣∣ ∂u

∂yN

= 0

}
.

Note that

K0 = C0 = span

{
∂V

∂yj

|j = 1, . . . , N − 1

}
.

Equation (3.8) implies that ϕi,∞ ∈ K⊥
0 . By the exponential decay of V and

by (3.4) we have after possibly taking a further subsequence that

∆ϕi,∞ − mϕi,∞ + h′(V )ϕi,∞ = 0,

that is to say ϕi,∞ ∈ K0. Therefore ϕi,∞ = 0 for i = 1, . . . ,M .

Hence

ϕi,k ⇀ 0 weakly in H2(RN
+ ) (3.10)

as k → ∞. By the definition of ϕi,k we get Φk ⇀ 0 in H2 and

‖h′(
M∑
i=1

PVi,k)Φk‖L2 → 0 as k → ∞.

Furthermore,

‖(∆ − m)Φk‖L2 → 0 as k → ∞.

Since ∫
Ωεk

|∇Φk|2 + mΦ2
k =

∫
Ωεk

[(m − ∆)Φk]Φk
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≤ C‖(∆ − m)Φk‖L2

we have

‖Φk‖H1 → 0 as k → ∞.

In summary we conclude that

‖∆Φk‖L2 → 0 and ‖Φk‖H1 → 0. (3.11)

Using (3.11) and the elliptic regularity estimate

‖Φk‖H2 ≤ C(‖∆Φk‖L2 + ‖Φk‖H1) (3.12)

for Φk ∈ H2
N (a proof can be found in Appendix B of [34]) we deduce that

‖Φk‖H2 → 0 as k → ∞.

This contradicts the assumption

‖Φk‖H2 = 1

and the proof of Proposition 3.1 is completed. �

Proof of Proposition 3.2: Assume that the statement is not true. Then

there exist sequences {εk}, {Pk} = {(P1,k, . . . , PM,k)} with εk > 0 and

Pi,k ∈ ∂Ω and

min
i,j=1,... ,M,i �=j

dist(Pi,k, Pj,k) ≥ δ

such that Lεk,Pk
: K⊥

εk,Pk
→ C⊥

εk,Pk
is not surjective. Furthermore, εk → 0 as

k → ∞ and Pk → P. for all k. Let Kε,P and Cε,P be the (exact) kernel and

cokernel of L̃ε, respectively. Then for k = 1, 2, . . . there exists Φk ∈ Cεk,Pk

such that

‖Φk‖L2(Ωεk
) = 1 (3.13)

and ∫
Ωεk

Φk
∂PVi,k

∂τ(Pi,k)j

= 0 for i = 1, . . . ,M, j = 1, . . . , N − 1.

Since Φk ∈ Cεk,Pk
we have

∫
Ωεk

(∆ϕ − ϕ + f ′(
M∑
i=1

PVi,k)ϕ)Φk = 0
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for all ϕ ∈ H2
N(Ωεk

). Now integration by parts gives

∆Φk − mΦk + h′(
M∑
i=1

PVi,k)Φk = 0

and because of the elliptic estimate (3.12) it follows that

‖Φk‖H2 ≤ C

for some constant C independent of k. Extract a subsequence (again denoted

by {Φi,k}) such that ϕi,k as defined in (3.7) converges weakly in H2(RN
+ ) to

ϕi,∞ as k → ∞. Then ϕi,∞ satisfies

∆ϕi,∞ − mϕi,∞ + h′(V )ϕi,∞ = 0 in RN
+ ,

∂ϕi,∞
∂yn

= 0 in RN−1 × {0} (3.14)

with ∫
RN

+

ϕi,∞
∂V

∂yj

= 0 j = 1, . . . , N − 1. (3.15)

From (3.14) we deduce that ϕi,∞ belongs to the kernel of S ′
0(V ) and (3.15)

implies that ϕi,∞ lies in the orthogonal complement of the kernel of S ′
0(V ).

Therefore ϕi,∞ = 0. As in the proof of Proposition 3.1 we show by the

elliptic regularity estimate (3.12) that ‖Φk‖H2 → 0 as k → ∞. This contra-

dicts (3.13) and the proof of Proposition 3.2 is finished. �

We are now in a position to solve the equation

πε,P ◦ S̃ε(
M∑
i=1

PVi + Φε,P) = 0. (3.16)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P) we can rewrite (3.16) as

follows

Φ = −(L−1
ε,P ◦ πε,P)(S̃ε(

M∑
i=1

PVi))

−(L−1
ε,P ◦ πε,P)Nε,P(Φ)

≡ Mε,P(Φ) (3.17)

where

Nε,P(Φ) = S̃ε(
M∑
i=1

PVi + Φ)



18 JUNCHENG WEI AND MATTHIAS WINTER

−[S̃ε(
M∑
i=1

PVi) + S̃ ′
ε(

M∑
i=1

PVi)Φ]

and the operator Mε,P is defined by the last equation for Φ ∈ H2
N(Ωε). We

are going to show that the operator Mε,P1,... ,PM
is a contraction on

Bε,δ ≡ {Φ ∈ H2(Ωε)|‖Φ‖H2(Ωε) < δ}
if δ is small enough.

In fact we have the following lemma.

Lemma 3.3. For ε sufficiently small, we have

|Nε,P| ≤ C(|Φε,P|1+σ + |Φε,P|p1) (3.18)

‖Sε(
K∑

i=1

Pwi)‖L2(Ωε) ≤ Cε
1+σ

2 (3.19)

Proof: (3.18) follows from the mean value theorem.

On the other hand, (3.19) follows easily by the fact that in the expression

S̃ε(
∑K

i=1 PVi) the functions PVi are essentially separated from one another.

�

We have

‖Mε,P(Φ)‖H2(Ωε) ≤ λ−1(‖πε,P ◦ Nε,P(Φ)‖L2(Ωε)

+‖πε,P ◦ (S̃ε(
K∑

i=1

PVi))‖L2(Ωε))

≤ λ−1C(c(δ)δ + ε(1+σ)/2)

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show that

‖Mε,P(Φ) − Mε,P(Φ′)‖H2(Ωε) ≤ λ−1C(ε(1+σ)/2 + c(δ)δ)‖Φ − Φ′‖H2(Ωε)

where c(δ) → 0 as δ → 0. Therefore Mε,P is a contraction on Bδ. The

existence of a fixed point Φε,P now follows from the Contraction Mapping

Principle. Furthermore, Φε,P is a solution of (3.17).

Because of

‖Φε,P‖H2(Ωε,P) ≤ λ−1(‖Nε,P(Φε,P)‖L2(Ωε)
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+‖S̃ε(
K∑

i=1

PVi)‖L2(Ωε))

≤ λ−1(cε(1+σ)/2 + c(δ)‖Φε,P‖H2(Ωε))

we have

‖Φε,P‖H2 ≤ Cε(1+σ)/2.

We have proved the following lemma.

Lemma 3.4. There exists ε > 0 such that for every (N+1)-tuple ε, P1, . . . , PM

with 0 < ε < ε and Pi ∈ ∂Ω and mini,j=1,... ,M,i �=j dist(Pi, Pj) ≥ δ there exists

a unique Φε,P ∈ K⊥
ε,P satisfying S̃ε(

∑M
i=1 PVi + Φε,P) ∈ C⊥

ε,P and

‖Φε,P‖H2(Ωε) ≤ Cε(1+σ)/2. (3.20)

We need another statement about the asymptotic behavior of the function

Φε,P as ε → 0, which gives an expansion in ε and is stated as follows.

Proposition 3.5. We have

Φε,P(x) = ε(
M∑
i=0

Φ0(
x − Pi

ε
)χ(x − Pi)) + ε2Ψε,P(x) (3.21)

where

‖Ψε,P‖ε ≤ C.

Here Φ0 is the unique solution of

∆Φ0 − mΦ0 + h′(V )Φ0 − h′(V )v1 = 0, in RN
+ ,

∂Φ0

∂yN

= 0 on ∂RN
+ ,
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Φ0 is orthogonal to the kernel of L0 (3.22)

where L0 = ∆ − m + h′(V ), L0 : H2
N(RN

+ ) → L2(RN
+ ).

Proof. Note that the kernel of L0 is{
∂V

∂yj

∣∣∣∣∣ j = 1, . . . , N − 1

}
.

Furthermore we have

|Φ0| ≤ C exp(−µ|y|) for µ <
√

m.

The definitions of Ω0, χ, ρ and T are as in section 2. Our strategy is to

decompose Ψε,P into three parts and show that each of them is bounded in

‖ · ‖ε as ε → 0. That means we make the ansatz

Ψε,P(x) =
M∑
i=1

[Ψ1
ε,i(x) + Ψ2,1

ε,i (x)] + Ψ2,2
ε (x)

where the functions Ψ1
ε,i, Ψ2,1

ε,i , Ψ2,2
ε,i will be defined as follows. Let Ψ1

ε,i be the

unique solution of

ε2∆Ψ1
ε,i − mΨ1

ε,i = 0 in Ω,

∂Ψ1
ε,i

∂ν
= gε,i on ∂Ω (3.23)

where

gε,i(x) = − ∂

∂νx

[Φ0(
x − Pi

ε
)χ(x − Pi)].

Since ‖gε,i‖L2 ≤ C there exists a constant C > 0 such that

‖Ψ1
ε,i‖ε ≤ C. (3.24)

Define Ψ2,1
ε,i by

Ψ2,1
ε,i (x) = −1

ε
π̃ ◦ Φ0(

x − Pi

ε
)χ(x − Pi) − π̃ ◦ Ψ1

ε,i(x) (3.25)

where π̃ is the projection of L2(Ωε) onto Kε,P. Because of the exponential

decay of Φ0, the smoothness of χ and and by (3.24) it follows that

‖Ψ2,1
ε,i ‖ε ≤ C. (3.26)
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Finally, define Ψ2,2
ε,i (x) to be the unique solution in H2

N(Ω) of the following

equation

ε2∆Ψ2,2
ε − mΨ2,2

ε + h′(
M∑
i=1

PVi)Ψ
2,2
ε = − 1

ε2
fε in Ω,

(3.27)

∂Ψ2,2
ε

∂ν
= 0 on ∂Ω (3.28)

where

fε = L̃ε(Φε,P −
M∑
i=1

[εΦ0((x − Pi)/ε)χ(x − Pi) − ε2(Ψ1
ε,i + Ψ2,1

ε,i )]).

Note that the right-hand side of the last equation lies in C⊥
ε,P since

Φε,P −
M∑
i=1

[εΦ0((x − Pi)/ε)χ(x − Pi) − ε2(Ψ1
ε,i + Ψ2,1

ε,i )] ∈ H2
N .

This is clear for Φε,P by definition. By construction we have −εΦ0χ−ε2(Ψ1
ε,i+

Ψ2,1
ε,i ) satisfies the Neumann boundary condition. By (3.22) and the smooth-

ness of χ we conclude that Φ0χ ∈ H2. By (3.23) we deduce that Ψ1
ε,i ∈ H2.

Finally, since eij ∈ H2 where

eij =
∂Vi

∂τ(Pi,j)
/

∥∥∥∥∥ ∂Vi

∂τ(Pi,j)

∥∥∥∥∥
L2(Ωε)

for i = 1, . . . ,M, j = 1, . . . , N − 1

we have Ψ2,1
ε,i ∈ H2. Therefore fε ∈ C⊥

ε,P. Furthermore, the following lemma

is true.

Lemma 3.6. The function fε satisfies

‖fε‖ε ≤ Cε2.

Proof. We have

fε = S̃ε(
M∑
i=1

PVi)(Φε −
M∑
i=1

[(εΦ0(
x − Pi

ε
)χ(x − Pi) − ε2(Ψ1

ε,i + Ψ2,1
ε,i )])

= −h(
M∑
i=1

PVi) + h(
M∑
i=1

Vi) + εh′(
M∑
i=1

Vi)v1χ + N ′
ε(Φε)
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where

N ′
ε(Φε) =

1

|Ωε|
∫
Ωε

h′(
M∑
i=1

PVi)Φε

+
1

|Ωε|
∫
Ωε

[h(
M∑
i=1

PVi) − h(
M∑
i=1

Vi)]

−[h(
M∑
i=1

PVi) + Φε)

−h(
M∑
i=1

PVi) − h′(PVi)Φε]

+
1

|Ωε|
∫
Ωε

[h(PVi) + Φε)

−h(
M∑
i=1

PVi) − h′(
M∑
i=1

PVi)Φε]

+ε
M∑
i=1

Φ0(
x − Pi

ε
)[∆ − m + h′(

M∑
i=1

PVi)]χ(x − Pi)

+ε
M∑
i=1

< ∇xΦ0((· − Pi)/ε),∇Φ(·) >

+ε2h′(
M∑
i=1

PVi)Ψ
1
ε,i

+ε2
M∑
i=1

[∆ − m + h′(PVi)]Ψ
2,1
ε .

Note that

‖ − h(
M∑
i=1

PVi) + h(
M∑
i=1

Vi)

+εh′(
M∑
i=1

Vi)v1χ(x − Pi)‖L2

≤ ‖ − h(
M∑
i=1

PVi) + h(
M∑
i=1

Vi) + εh′(
M∑
i=1

Vi)v1‖L2

+‖ε(−h′(
M∑
i=1

Vi)v1 + h′(
M∑
i=1

Vi)v1χ)‖L2

≤ C(ε2 + exp(−µR0))

by the definition of χ and the exponential decay of V . Furthermore

‖N ′
ε,Pi

(Φ)‖L2 ≤ Cε2.
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This proves Lemma 3.6.�

By Lemma 3.6 and the invertibility of

L̃ε : H2
N ∩ K⊥

ε,P → C⊥
ε,P

Proposition 3.5 follows. �

4. The reduced problem

In this section we solve the reduced problem and prove our main theorem.

By Lemma 3.3 there exists a unique solution Φε,P ∈ K⊥
ε,P such that the

function

uε =
M∑
i=1

PVi + Φε,P

satisfies

Sε(uε) = Sε

(
M∑
i=1

PVi + Φε,P

)

= ε2∆uε − muε + h(uε) − 1

|Ω|
∫
Ω

h(uε) ∈ C⊥
ε,P.

Our idea is to find P = (P1, . . . , PM) with Pi ∈ ∂Ω pairwise different such

that

Sε(uε) ⊥ Cε,P.

Let

Wε,j(P ) =
1

εN+1

∫
Ω

(
Sε(uε)

∂PΩε,P
V

∂τPj

)

and

Wε(P ) = (Wε,1(P ), . . . ,Wε,N−1(P )).

Then Wε(P ) is a continuous map of P . We want to find P = (P1, . . . , PM)

such that

Wε(Pi) = 0 for j = 1, . . . ,M.

Let us now calculate Wε(Pi).

First of all, from the conditions on h, we have∫
Ω

h(uε) ≤ CεN .
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Hence by Proposition 2.2 we deduce that

1

εN+1

∫
Ω

(∫
Ω

h(uε)
) ∂PΩε,P

V

∂τPj

=
∫
Ω

h(uε)
1

εN+1

∫
Ω

∂PΩε,P
V

∂τPj

= O(εN)

(
1

εN+1

∫
Ω
(
∂V ((· − P )/ε)

∂Pj

+ w1(y)χ(x − P ) + εwε
2,i(x))

)

= O(εN)
1

εN+1

[
O(exp(−σ/ε)) + ε

∫
Ω

wε
2,i

]

= O(εN/2)

because
1

εN

∫
Ω

wε
2,i ≤

1

εN/2
‖wε

2,i‖L2(Ω)

and by Proposition 2.3. On the other hand, since

ε2∆
∂PΩε,P

V

∂τPj

− m
∂PΩε,P

V

∂τPj

+h′(V )
∂V

∂yj

= 0,

we conclude that ∫
Ω
[ε2∆uε − muε + h(uε)]

∂PΩε,P
V

∂τPj

=
∫
Ω

{
h(uε)

∂PΩε,P
V

∂τPj

+

[
ε2∆

∂PΩε,P
V

∂τPj

− m
∂PΩε,P

V

∂τPj

]
uε

}

=
∫
Ω

[
h(uε)

∂PΩε,P
V

∂τPj

− h′(V )
∂V

∂Pj

uε

]

=
∫
Ω

[
h(

M∑
i=1

PVi) + Φε,P) − h(
M∑
i=1

PVi)

−h′(
M∑
i=1

PVi)Φε,P

]
∂PΩ,P V

∂τPj

+
∫
Ω

[
h′(

M∑
i=1

PVi)
∂PΩε,P

V

∂τPj

− h′(V )
∂V ((x − P )/ε)

∂Pj

]

×Φε,P

+
∫
Ω

[
h(

M∑
i=1

PVi) − h(V )

]
∂PΩεV ((x − P )/ε)

∂τPj

= I1
ε + I2

ε + Jε
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where I1
ε , I2

ε , and Jε are defined by the last equality. We first calculate I2
ε .

I2
ε =

∫
Ω

[
h′(

M∑
i=1

PVi)
∂PΩεV (x − P )/ε)

∂τPj

− h′(V )
∂V (x − P )/ε)

∂τPj

]

(εΦ0(y)χ(x − P ) + ε2Ψε(x))dx

=
∫
Ω

[
h′(

M∑
i=1

PVi)
∂PΩεV (x − P )/ε)

∂τPj

− h′(V )
∂V

∂τPj

]
εΦ0χ

+ε2
∫
Ω

[
h′(

M∑
i=1

PVi)
∂PΩεV (x − P )/ε)

∂τPj

− h′(V )
∂V

∂τpj

]
Ψε

= εI2,1
ε + ε2I2,2

ε .

Now assume that P = Pi. Furthermore, note that

h′(
M∑
i=1

PVi)
∂PΩεV (x − P )/ε)

∂τPj

− h′(V )
∂V

∂τPj

=

[
h′(

M∑
i=1

PVi) − h′(V )

]
∂PΩεV (x − P )/ε)

∂τPj

+h′(V )

[
∂PΩεV (x − P )/ε)

∂τPj

− ∂V

∂τPj

]

and ∫
Ω
[h′(

M∑
i=1

PVi) − h′(V )]
∂PΩεV (x − P )/ε)

∂τPj

Φ0χ(x − P )

=
∫
Ω

h′′(V )(
M∑
i=1

PVi − V )
∂PΩε,P

V

∂τPj

Φ0χ(x − P )

+
∫
Ω

h′′′(v1)(
M∑
i=1

PVi − V (x − P )/ε))2∂PΩεV (x − P )/ε)

∂τPj

Φ0χ(x − P )

+O(exp(−δ/ε))

= O(εN+1)

since Φ0 is even and (V −∑M
i=1 PVi)χ(x−Pi) = εv1 +O(ε2) where v1 is even.

By Proposition 2.1 we have ∫
|Ψε|2 ≤ CεN .

Hence we conclude that

|I2,2
ε | ≤ O(εN)

and

|I2
ε | ≤ O(εN+2).
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We next compute I1
ε , again assuming that P = Pi,

I1
ε =

∫
Ω

h′′(
M∑
i=1

PVi)Φ
2
ε,P

∂PΩε,P
V

∂τPj

+
∫
Ω

h′′′(v1 +
M∑
i=1

PVi)Φ
3
ε,P

∂PΩεV (x − P )/ε)

∂τPj

=
∫
Ω

h′′(
M∑
i=1

PVi)ε
2[Φ2

0χ
2 + 2εΦ0χΨε,P + ε2Ψ2

ε,P ]
∂PΩεV (x − P )/ε)

∂τPj

+O(εN+2)

= O(εN+2)

since Φ0 is even. Finally, we compute the term Jε.

Jε =
∫
Ω
[h(

M∑
i=1

PVi) − h(V )]
∂PVi

∂τPj

=
∫
Ω

h′(V )(
M∑
i=1

PVi − V )
∂PΩεV (x − P )/ε)

∂τPj

+h′′(V )(
M∑
i=1

PVi − V )2 ∂PΩεV (x − P )/ε)

∂τPj

+ O(εN+2)

= ε
∫
Ω

h′(V )(v1χ + ε(v2χ + v3χ) + ε2Ψε)

(
∂V

∂Pj

+ w1 + εwε
2(x)

)

+ε2
∫
Ω

h′′(V )(v2
1χ

2 + ε(Ψ1
ε)

2)
∂PΩεV (x − P )/ε)

∂τPj

+ O(εN+2)

= ε2
∫
Ω

h′(V )v3
∂V

∂Pj

+ O(εN+2)

= −εN+1

(∫
Ωε,P

h′(V )v3
∂V

∂yj

)
+ O(εN+2)

= −εN+1
∫

RN
+

h′(V )v3
∂V

∂yj

+ O(εN+2).

We also have ∫
RN

+

h′(V )v3
∂V

∂yj

= −
∫

RN
+

(
∆

∂V

∂yj

− m
∂V

∂yj

)
v3

=
∫

∂RN
+

∂v3

∂yN

∂V

∂yj

− v3
∂

∂yN

∂V

∂yj

= −1

3

∫
RN−1

(
V ′

|y|
)2 N−1∑

k,l,m=1

ρklm(0)ykylymyjdy
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= −1

3

∫
RN−1

(
V ′

|y|
)2 N−1∑

k,l,m=1

ykylymyjρklm(0)dy

= −1

3

∫
RN−1

(
V ′

|y|
)2

y2
j

N−1∑
l,m=1

ylymρjlm(0)dy

= νρjkk(0)

= ν∇jH(P )

where

ν = −
N−1∑
k=1

1

3

∫
RN−1

(
V ′

|y|
)2

y2
j y

2
k dy �= 0.

Combining I1
ε , I2

ε , Jε, we obtain

Wε(P ) = ν∇τP0
H(P ) + W ′

ε(P )

where W ′
ε(P ) is continuous in P and W ′

ε(P ) = O(ε) uniformly in P . Sup-

pose that at P0,i, we have det(∇τP0,i
∇τP0,i

H(P0,i)) �= 0 then the standard

Brouwer fixed point theorem shows that for ε << 1 there exist Pε,i such that

Wε(Pε,i) = 0 and Pε,i → P0,i for i = 1, 2, . . . ,M .

Thus we have proved the following proposition.

Proposition 4.1. For ε sufficiently small there exist points Pε,1, Pε,2, . . . , Pε,M

with Pε,i → P0,i such that Wε(Pε,i) = 0.

By Lemma 3.3 and Proposition 4.1 we have

Sε(vε) = 0

which is the same as to say

ε2∆vε − mvε + h(uε) − 1

|Ω|
∫
Ω

h(vε) = 0 in Ω,

∂vε

∂ν
= 0 on ∂Ω.

Hence
∫
Ω vε = 0. Let uε = m − vε. We have

ε2∆uε − f(uε) = σε,

∂uε/∂ν = 0 on ∂Ω
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Ω

uε = m|Ω|,
meaning that uε is a solution of the Cahn-Hilliard equation. Moreover, we

have ∥∥∥∥∥vε −
M∑
i=1

V
(

x − Pε,i

ε

)∥∥∥∥∥
ε

→ 0

and Pε,i → P0,i ∈ ∂Ω.

Finally, we study the shape of the solutions vε. Let Pε be any local maxi-

mum point of vε. Then from (1.2) we deduce that

mvε − h(vε) +
1

|Ω|
∫
Ω

h(vε) ≤ 0.

But ε−N
∫
Ω h(vε) → M

∫
RN

+
h(V ) > 0, hence

mvε − h(vε) < 0.

So vε(Pε) ≥ a1 > 0. On the other hand, from our construction, we see that

‖vε‖2
ε →

M

2
(
∫

RN
|∇V |2 + mV 2).

By a proof similar to that of Theorem 1.2 in [25], we conclude that Pε,i ∈ ∂Ω

and there are exactly M such points Pε,i.
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[35] Zeidler, E., Nonlinear Functional Analysis and its Applications I, Fixed-Point The-

orems, (Springer, 1986).

Department of Mathematics, The Chinese University of Hong Kong, Shatin,

Hong Kong

Mathematisches Institut A, Universität Stuttgart, D-70511 Stuttgart,

Germany


