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Abstract

In this theals a new solution concept is developed for n-player,
nonzero sum gamess The solution concept is based in reinterpreting the
neplayer nonzero sum game into 2=player zero sum games. The n-player
nonzero sum game is first reuritten as an n ¢+ 1 player coalition game,
The definition of zero sum payment is that one player pays the other
what he gets in a given outcome (coalition of the n ¢+ 1 player game).

who pays whom dependa on the coalition, More than one 2eplayer zero

sun interpretation game always results from the procedure, and criteria
are established %o select one of the zero sum interpretation games.
The solution concept defines results identical to the minimax concept

when applied directly to zerc sum 2-player games.

When applied to 2-player prisoner's dilemma games, the solution
procedure assigns mixed strategies to the prisoners, thereby "resolving®
the dilemma, The mixed strategles vary with the payoffs (up to a

linear transformation). For prisoner's dilemma matrices which have

been used in large numbers of gaming experiments, the solution concept
predicts dynamically, i.e., by play number, the "fraction of cooperative

choices" for (approximately) the first 30 plays. In addition, the

mixed strategy appears in a game between each subject (prisoner) and

the n + ist player (diatrict attorney), suggesting that the subjects

have been playing ag
this conclusion is given, A theorem is proved for n-player prisoner's

inst the

BXD srimenter, mjur ical evidence f{ or

dilemma games.
Game theory is reviewed to show the roots of this solution

concept in the heuristic use of gero sum n-player games in the von

umann and Morgenstern theory, and in ratlonal decision making models,
‘€sgey “games against Nature.? The empirical and formal difficulties



of the equilibrium point solution concept for nonzero sum games are
discussed, Detalled connections between game theory and cybernetics

are described,
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Introduction and summary

Cybernetics, the study of control and communication in animsls

and machinu,m employs mathematical decisien making models for normae

tive prescriptions of control proceusean and descriptive models of

17, o7

the environment to be controlled. One important mathematical

decision making model is the theory of games of atratey.n However,

for formal reasons, the effectiveneas of this type of model is limited
to its most elegant portion -- the theory of zero sum two player games,

where the interests of the players are totally opposed, This part of
game theory links with linear programming .72

the theory of “nneuraln’ 78
74

nets, and statistical decision making processes, Solutions to ganes

of this type can be fully characterized and computed (although the
latter is sometimes difficult). However, there have been few applica~

tions of this pertion of game theory to real world problems because

few problems satisfy the zero sum reatriction.7s

Worse still, the
theory of many player games and nongero sum games is ungatisfactory

for various reasons,

In the case of zero sum games of more than two players, the
thecry secems to say too muich «- it does not give precise enocugh a
statement (although there does seem to be some empirical relevance to
its conclusion)., In the case of nonzero sum games of two or more
players, we may distinguish two cases, according to whether the players

can negotiate or not. If they can negotiate, we can rethink the game

as a zero sum game, and the previous comment applies. I1f they camnot

negotiate, the theory is unsatisfactory for both formal and empirical
reasons, Formally, the theory leads to a paradox —- the prisoner's
dilemma paradex4 - and empirically, the paradox (as well as other




predictions of the theory] appears to be false. The theory of nongero

sum games ia based on the idea of strategy, where as the theory of zero

sum games (two player, many player, and negotiated nonzero sum games
which are rethought as zero sum games) is based on the idea of conflict.

The argument of this thesis 1s that the idea — heuristic -- of pure
confliet is far more powerful in terms of effectiveness than is the

idea of strategy. The contribution of this thesis to game theory is

the development of a solution concept based on the heuristic of pure

conflict for nonzero sum games,

This paper will develop a new solution concept for nonzero sum
games which will "resolve" the prisoner's dilemma paradox by making

The basic idea is to convert the nonsgero

the result probabilistic.

sum game into a zero sum two player game between each prisoner and
84

Nature, The new solution eoncept has empirical applications, and

by restating the nonzero sum game into zero sum games, can draw upon

the applications and theorems of zero sum two players games, Thus,

the new solution concept may open-up nongero sum games for use in
succesaful descriptive models of the world., One such model —- of the
dynamics and statics of psychological experiments on prisoner's dilemma
games -- will be discussed in detail,

A very brief description of the new solution concept follows.



O.d The prisoner's dilemma

The prisoner's dilemma paradox derives from the parable of a

district attorney having in custody two prisoners whom he knows

committed a certain crime, but he lacks proof. The D.A. (Gistrict

attorney) sepurates the prisoners so that they cannot talk to each

other and gives each prisoner a chance to turn state's evidence, i.¢.,

confess on the other. If one confesses and the other does not, the
one who confesses gets off (gets the maximum payoff) ana the other

gets the maximum gentence (minimum payoff). If both confess, both get

an intermediate sentence for co-operating with the police (third best

payoff). If neither confesses, each gets a light sentence on some

trumped up charge (second best payoff). A numerical example satiafying

the constraints is the following:

O.l.1 Prigsoner 1l

Confeas = Not confess

-2,2 1,1

Confesas

Not confess

The first number in euch cell refers to the payoff to player 1 and the
second mumber is that to player 2, Prisoner 1 chooses a row and

Prisoner I1 chooses a column, and the outcome is the cell where the row

and column intersect.

The ocutcome representing matual confession is conaldered the

solution since, if the players arrive at it, they would not want to

change thelr strategies; either prisoner who did so would reduce his



payoff -~ providing the other did not change his strategy. This
combination of choices is called an equilibrium point.> There is a
great deal of empirical evidence to the effect that the prisoner's
dilemma outcome falls to occur when it might be expected to occur“’ 45,50

The next

and thus we think a new solution concept is called for.

section will briefly describe the alternative solution concept called
gzero sum interpretation, The development of this solution concept, some
of its results, and the elaboration of it from its scurces in pame

theory and cybernetics will be the concern of this thesis.

0.2 The resolution by zero sum interpretation

1f players I and 1l reinterpreted the prisonerts dilemma game

e between themselves, nothing different
from the equilibrium point solution would occur,
- by Scodel et al,

This has been shown

#  and recently elaborated by Shubik,>>

We shall

try a aslightly different approach by introducing the idea of winning
and losing coalitions. Suppose that we include the D.A. as a dummy
player, and say that when a prisoner confesses he joins a winning

coalition with the D.A. against the other prisoner. If both prisoners
confegs, ve can say that each forms a separate coalition with the DA,
and that both of the separate coalitions occur. Examining game (1),
we see that if only one player confesses, he wins 2 and the other
loses 2. If both confeass, each obiains O in game (1), and we see that

0 = 2«2, 1.e. 6ach obtains the gum of what he wins when he is in a




vimning coalition together with what he loses when he is outside of

a winning cealition. Finally, we can treat the mutual non-confession

outcome as the formatlen of a coalition against the D.A. We can say

that the D.As loses 2 in this case. Now we can interpret this zero

sum three player game into zero sum 2-player games,
First, we notice that a zero sum 2.player game between the two

prisoners again gives us nothing new. This is because the upper

right band cell must contain 2 zince the defeated prisoner must
certainly pay out 2 and the victorious prisoner wins 2. Also, the
lower left hand corner must contain -2 for a similar reason. The
upper left hand corner must be O since it is the sum of the other two
gero sum 2Z-player interpretations, These facts make the upper left

hand corner a saddlepoint independently of the value of the lower

right hand corner, This is because it is simultaneously the maximum

of its coluemm and the minimum of its row, and no value for the lower
right hand corner could be this, since it would have to be simultaneocusly
less than -2 and greater than 2.

In any case, what value(s) could be in this cell? Both
prisoners are in the same coalition (against the D.A.). We could sey
that the payments would be interpreted as zero sum between the two
In other

players if one payed the other his amount in the coalitioen,
words, we could give the lower right hand box entries of gither 1 or
«l, As we have seem, of course, neither entry would alter the
solution to thia zero sum interpretation game. Thus, this approach
to zero sum interpretation still gives us nothing new - until we

consider zero sum 2 player games between each player and the DA,
Considering a zero sum 2~player game between prisoner I and

the D.As., and writing prisoner 1 as the row player and the D,A, as




the column player, where the matrix cells represent the same ocutcomes
as in matrix (1), we can see that the lower left hand cell must
contain the entry O and the lower right hand cell must contain the

entry l. This 1s because the DA, clearly obtains nothing (in the

game of matrix (1) ) when prisoner I is defeated, and he clearly pays

l to prisoner 1 when prisoner I is victoriocus gnd the D.A. is defeated.
Now the upper right hand cell must contain gither 0 or 2, since these
are the amounts that one player in the coalition of the D.A. and

prisoner 1 pays to the other, Finally, the upper left hand cell must

contain the sum of the zero sum interpretations of the lower left cell
and the upper right cell, 1.e., edther 0 * 0 =0 or 0 ¢+ 2 = 2, So,

we have the followlng zero sum 2eplayer matrices to consideri

2

(a)(z ) (b)(o o) (c)(o 2) (@) / 2 o)
o 1 o 1 0o 1 (o 1

Matrices (a) and (¢) have saddlepoints on the upper left hand

corner and thus give us nothing new, Matrix (b) gives us a saddle~

point on the lower left hand corner.s This means that if we define

the probabilities on the zero sum interpretation game as identical to

those in the original nonzero sum game (which we must do for the idea

of zero sum interpretation to make sense) we get an inconsistent

This is because we get a probability weight of 1 on the cell

result,
representing the defeat of prisoner 1, but if this had been a game

between the D.A. and prisoner 1l, the probability weight of 1 would
be on the cell representing the defeat of prisoner 1I (with prisoner




11 as the row player and the D.A. as the column player as in (b).
Moreover, 1f both prisoners, in their respective zero sum interpreta-

tion games choose not to confess, the probability weight of 1 ghould

be on the lower right corner, But, if we were to allow the D.A. %o
do what prisoner Il might do, then the D.A's strategy is not optimal,
and thus the whole point of zero sum interpretation is lost. Game (b)

clearly represents an impossible inconsistency, and muist be ignored.

These considerations leave only game (d). Notice that its solution is

a mixed strategy, which can be computed by assigning probability weights
of x to row 1, l=x to row 2, ¥y to column 1 and 1=y to column 2. This

gives the value of the games to prisoner 1

2xy + (L(1=x)(l=y) = 3xy = y -x + 1.

Factoring out y, we obtain y(3x - 1) «x + 1,

By setting x = 1/5, the coefficient of y becomes O and the value of
the game to priscner I is equal to 2/3, Notice also that a similar

calculation would yield y = 1/3, and thus the D.A. uses a strategy

which would correspond perfectly with an optimal strategy for prisoner
2 in hig corresponding game (d).

By using the trick of coalitions and zero sum interpretation

within and between coalitions, we have obtained a new result! It would
seem natural to define the oqlution to the original prisoncr's dilemma

game as the probability weightings obtalned in game (d), since if both
players (prisoners) use these strategies they are mutually better off: They
give for each player, 1/3(1/3)0+1/3(2/3)2+2/3(1/3) (=2)+2/5(2/3)1 = 4/9,
which is greater than 0, the maximum both obtain from any of the other
consistent gzero sum interpretations.

The reagon that players reinterpret the original game along the



lines ve have indicated is extra~theoretic, tut this heuristic can be

taken in the same spirit as that of "perfect bargaining® in von Neumann

and Morgenstern's theory of negotisted nonzero sum gama? The idea

of "perfect bargaining" is extra theoretic in their theory. If we

employ our heuristic, we obtain a uniform theory of zero sum interpre-
tation games, alnce, if the solution is applied to a game which is

already a zero sum 2.player game, our result will be identical to that
of the von Neumann and Mergenstern minimax concept. This is shown
below.

0.5 Comments on this solution ocencept

Incidentally, the "gtrategy™ of the D,A. which we have used is

not the same as that used below, where the D,A, uses a strategy against

player I which corresponds with that of the n=l other real players in
their coarresponding games with the same index mumber, previding

strategy gives at least the zero sum 2« player game value v against

player I's maximin strategy. The two ways of computing the D.A.'s
strategy work out to the same thing for 2-player symmetrical prisoner's

dilemma games, But for n~player nonzero sum games (where n > 2), only
the strategy derived below will work,

An interesting point proved below is that all n-player symmetrical
priscner's dilemma games of the type of matrix (1), i.e., where mutual
confession has a value of 0 for all playera, have zero sum interpreta-

tion mixed strategies which are independent of the number of players.

10



Thls is interesting because it may be that players will not know how

many other players there are in a game of this type. Also, the
probability of the occurrence of the coalition of all real players

against the D.A. turns out to approach the limit e'b where € = 2,7 ¢eve b
is equal to the negative of the amount lost by the D.A. when nc one
confesses, What 1s striking about this result is that the exponential
function 1s often intuitively associated with prisoner's dilemma type
gltuations, such as the spread of a faﬂ,hsion],"’ but had not previocualy

been deduced from a formal solution to the game. Finally, the solution

concept employs a normalization, which, essentially, does no more than
put games in the form suggested by matrix (1), i.e., where mutual

confession 1s represented by summing the payoffs associated with the
separate 2-player coslitions of a real player and the D.As Iiiormalizae

tion formilae are givem for all 2«player prisoner's dilemma games below.

This solution concept has empirical applications to prisonert's
dilemma gaming experiments, i.e., the fraction of co-operative choices

for the first 30 (roughly) plays can often be described. The strategy
occurs in a gzero sum 2eplayer game between each player and the D.A,,
who can be thought of, in the context of the experiments, as the

experimenter, Thus we conclude that in the "early play" (under 30),
the subjects have been playing against the experimenter rather than

interacting with each other, The topic will be discussed in detail

below.



Historical note and organization of the paper

The mathematical theory of games of strategy was developed by

John von Neumann in 1928 ,1 although some earlier work had been done

by Emil Borel.2 and published in 1927. Borel had conjectured some

special cases of the minimax theorem, which, in full generality,

von Neumann proved, The classic work, The Theors
5

by John von Neumann and Oscar Morgemstern, appeared

in 1945, The work through 1956 1s surveyed by Luce and Ralffa, Ggmes

which is, to our knowledge, the last published,
comprehensive survey of the field. This thesis developes a particular
point of viewy the heuristic underlying the von Neumann and Morgenstern
theory can be extended to cover the set of games they did not discuss
(nonenegotiated, nongero sum games - which we shall define later). Ve
shall therefore review their theory, and such other work as seems
pertinent (e.g. Nash! a‘ theory) in order to fully understand their

underlying heuristic and present the further development of it. As we
proceed, we shall link each section of the theory of games with its

equivalence or analogue in cybernetics, Finally, in section 7, we

shall discuss in detail the solution concept described in sections

(0.2) and (0.3).
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le 4ero sum 2-~player games.

1.1l Definition of a game.

The introduction of a few technical terms will help clarify

exactly what we mean by a "game"., By "game® we mean "the totality of
rules which describes it" (von Neumann and Morgenstern p. 49), but

we may convenlently distinguish some important features of these

rules. First, there is some finite number of players, which is designe-
nated by an integer. The term n-player game, therefore, always refers
to the number of players, (as opposed to, say, the number of options
open to eacher player). In this section, we shall be concerned exclu-

sively with 2-player games. Second, at each moment in the game,

players are faced with movegs. Now, s move is pot the actual choice a

player makes, but the entire complex of possible choice allowed for by
the rules of the game at the speciflic point in the game. The moves
are mumbered 1, ..., Iy and at each number, one and only cne player

has an opportunity to make a choice, The moves conatitute all possible

positions which could be open to the player at this point and which
could, in principle, be emumerated before the game even began. There

are two types of moves, personal and chance, A personal move designates
& choice for a player; for a chance move (or referce's move) the rules
mist specify the probability of each alternative occuring. Third, at .
each instance of a personal move, a player makes a ghoice from among

the possible alternatives open to him at that move, Now, the series

of actual choices made by all the players in the course of the game

from beginning to end (i.e. from the first move to the last) constitutes

a play of the game. Since the actual choices made are limited, but not



determined, by the rules, a game may have a number (possibly a very
large mumber) of distinct plays. When a play is completed, the rules

of the game specify conclusively what payments must be made to each
pw e

choices made by each and every player in the course of the specific
play of the game.

designated successively as dl’ eenp dr’ then the payoff to player k

These payments, therefore, are a function of the actual

If each choice (taken at each move) of the game is

is a functlon of the d; . and is designated as

10101 fk (dl’ ®00p dr)’ k = l) eoey No

Finally, we need to say scmething about the amount of informa-

tion each player has when he actually makes his choice from the

alternatives at each move, This 1s a subject of great complexity, but

for our purposes, we need only distinguish two possibilities, First,

the player is fully informed of all ;

players.
all of the choices that have previcusly occured were made in secret,

avicug cholces of the other

Chess is an example of a game of this type. Second, some or

1.es the players are not fully informed of all that has preceded thelr

own cholces.

Poker is an example, Games of the first {ype, games of

pexrfect infermation, are often thought of as belng of a particularly
"rational®™ character, while the others are generally thought of as

relying mich more heavily on luck or skill, Although von Neumann and
Morgenstern have shown that some features of say, poker, (for example
bluffing) are matters of choosing wisely (what is normally termed
"gtrategy") an extremely important theorem - also proved by von Neumann

and Morgenstern - shows that gamea of perfect information do indeed




possess a property which makes them particularly "rabional® (a term
ve shall define in the next section),

le?2 Utilitles, strategies and game trees,

Although the theory of games can be described without ever

raising the issue of utility (by pretending that the payoff matrix
represents money, and that the players are interested in maximizing
their expected amount of money), the theory of games is, in principle,
based on the notion of utility. The idea 18 that players are

interested in maximizing the expected value of their utility, wvhere

the werd ™atility" can refer to anything, including money. The
easlest way to describe the theory of utility 1s in anecdotal form,

Imagine that you are on the late traln to Lands End and the
Buffet Car offers a limit ed selection of beveragess tea, whisky, castor

oil. After looking over the selection, you quickly rank your prefe

rences in decending orders 1) whisky, 2) tea, 3) castor oil. So,

you order a whisky, to which the attendent replies, "l'm sorry Sir,

but on these late night special buffet services, ita nol as easy as
thate I'l1l give you a sure thing of tea against a brown paper bag .

which bas a 50-50 chance of containing either a labelled small bottle
of whisky or a (labelled) small bottle of castor oil, Which do you

vant for 10p?" Assuming that you don't return to your seat at this

point, you may reply, "Tea, certainlyl"™ To this the atiendent
replies, "75-25 whiskey against castor oil." And you may say, "1'11

still take the tea." "95-08 whisky a.ainst castor oil." "I'm not

sure," you reply.

15



Writing this algebralcally, we can see what happened at the
final offer of the Buffet Car attendent, where we write

U15 = utility of tea
= utility of whisky

U = utility of castor oil,

Now the ranking was, U Uys Um’ and if we set U, =1 and U = 0o
we get the final offer:

et

.95(0,‘) + .OS(UM)
=  L,95(1) < ,05(0)

= ,95

If there had been a fourth item on the menu, say orange squash, with
al og 288oclated with the choice and ranked, say, just before castor
oil, then we could use the same end points of the gamble pu_ ¢+ (J_--p)Uﬁ:o
and find the point where this equates with B“. We know that it will

be closer to castor oil than was tea, In this way, a numerical

ordering of preferences can be achieved for any number of alternatives,

The anecdote, inclidently, is not as far fetched as it might seem, for

the technique of determining someone's intensity of preferences
according to the theory of utility is done in essentially this way
(although it need not be done on the late night treln). Notice that

the ordering is specific to a particular context (in this case the
train). Under other circumstances, a different ordering might result,

Notice also that the zero and the unit value (maximum value) were

chosen arbitrarily for this customers's values, In other words, there

is no interpersonal comparison of utility implied by this procedure,
Since the zero and unit point are arbitrary, they can be altered by

16
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multiplication by a positive scalar, and addition of a constant to =ll
the values, This means that the utility is preserved up to a linesr

transformation of sA ¢+ B, where A is a matrix of utility values, s a
scalar matrix, and B a constant matrix.

TAis definition of utility is known as an interval scale. The

ranking alone is known as an ordinal scale. And, if we made a compari-
son between two (or mere) persons ~- which means fixing the zero and
units at the same values for everyone, we would have a cardinal scale,
Axiomatic gystems to arrive at the utility system we have described are
presented in Luce and Raiffa and von ﬂeuma.nn and Morgenstern, The two
basic assumptiong in cither of these axicmatic systems are, first, the
transitivity of the preferences, i.€., 1f A is preferred to B and B to C,
then A is preferred to C, and, second, the independence of irrelevant

alternatives, l.es, we were able to determine a utility for tea without

having to worry aboul orange squash, and vice versa.
1f fact, because of the obvious practical difficulties and
certain conceptual ones, the theory of utility has had very little to

do with the development of game theory. It does provide a loical

basis for the concept of mixed strategles in zero sum two slayer games,

but even here, the fact that the game is zero sum means that the
assumption of cardinality has, essentially, been made. (We say
nggsentially" because the two player's utility functions could be
related by a linear transformation). The theoretical difficulties

centre on the original ordering of preferences, 1.e., why should real
persons be able to do this, and why should the preferences be transitive?
In other words, if one is with Liz, perhaps he would rather be with

Alice, and vice versa. The practical difficulties 1n the use of utility

have, we hope, been suggested by ocur anecdote.
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Having described the concept of utility, we are now in 2

position to define exactly what we mean by rationality. This is
If utility

simply the independent maximization on one's utility index,

is linear with money, (i.e., if a graph of money against utility
prodices a stralght line) then this definition of rationality amounts
By using
the word "expected" we allow for the possibility of the money being

to maximizing, independently, the expected amount of money.,

discounted by its liklihood of being obtained, In any case, there
would seen to be at least one actual social situation where utility Jls

That is, a trustee

linear with money «- the fiduclary relationship.

is under a legal obligation to prudently maximize the funds of the
person whose money is being managed. (See Riker (6) for a fuller treat-

ment of this idea), We shall assume, for the remainder of this thesis,

that we are eslways speaking in terms of money rather than utility, and
that each player 1s out to maximize his expected amount of money.
We can see that the function l.l.1 always defines a mumber which

is an exact amount of money, i.e.

lelel fk(dl. XX Y dr) % O for k= 1. eonp o

We have now given an exact meaning to the end peint of a game,
(L.e. the d., and the payments fk)’ and we have described the motiva-
tion of the players, viz, each player k, will choose among the
alternatives open to him at each move such that fk(dl’ ooy d) 1s
maxinized, Consider«an extremely simplp two player game, where each
player moves once only and then the game 1s over, IEach player k will
choose to achieve the maximum of fk(d'l ’ dz) .



Suppose player 1, makes his choice first and then player 2

makes his cholce., We could draw a diagram to show this situation, It
is shown in figure 1.2.1.

move 1

Player 1

A black dot indicates a set of alternatives, a clear circle, an end
point to the game to which specify monetary payoeffs are attached and

néreued in terms of the payoffs %o player 1. We shall assume that

player 1 receives from (if the number is positive) or pays out (if the
number is negative) these amounts to player 2. Games which have this

property constitute an exceptionally important set of games and are

known as zero sum games, since the sum of all payments in any play of
the game 18 zero. In terms of economics, they constitute problems of

distribution as opposed to problems of production, They are defined

formally far two player games as follows:

£(diy ooy &) = «f,(d)) eeep d)

1e2e2



Now in figuro 1.201’ the diﬂ.@'&ﬂ, which is called a M’

for obvious reasons, shows that player 1 chooses first, that he has a

choice among two alternatives, and that player 2 then makes his choice,
Player 2 also only has two alternatives from which to chooge, although

the diagram shows four branches. This is because, of course, player 2

pgelf at one or the other of the two points designated by

the two black dots at move 2.

On what basis will the playexs make their choices?
Considering, first, player 1, he will look at the game tree - assuming

of course that he has it available for consultation - and see that if

he chooses alternative a, then depending on what player 2 does, he will

elther draw or win 5§, If he chooses alternative b, however, he will

obialn either 1 or 2 depending on the choice of player 2., Obviocusly
he would want to obtain 5, but he cannot count on the stupidity of

player 2, wvho would prefer to hold player 1 to zero. Therefore, player
1l mast look at the possible choices of player 2, If player 2 found
himself at the black dot on the left he would certainly choose alter-

native ¢ and draw with player l, If on the other hand, player 2 found
himself at the black dot on the right, he would certainly choose

alternative e and hold player 1 to 1, i.e., lose 1 to player l. It
is now clear how player 1 should choose., He must count on player 2's

rationality and therefore pick alternative b, Player 2, reallizing

this, must choose alternative e and pay one unit to player 1, 1l.e.

1.2.5 fl(b'e) - 42 (b’a) — 1 - '

Now the thinking we have just described can be written more succinctly:

Choose e against player 1's choice of b, and choose ¢

For player 2




against player l's choice of a. For player 1t Choose alternative b
for an expected value of 1, and choose alternative a for an expected

value of zero. These prescriptions are strategies. The number

nated as the lower case kEnglish v, Observe, that although this same

is zero sum, in this case the number v=1 # 0. The game we have

just described had a deterministic solution, i.e. it was obvious exactly
what two intelli ent players would do and each had a definite course
of action, 1.e., a asingle clear path through the game tree which seemed

A&

"besth, Such games are called gtric cermineds We migzht also note
that we have solved this game, l.e. found a set of good strategies and

a value for each player, entirely on the basis of a game tree, with its

branches describing the game in every detall, A description of a game

using a game tree which describes every possible event 1s called the
extengive form of the game, Throughout the discussion of the game

pictured in figure 1.2.1, we have implicitly assumed that player 2 knew
before making his choice exactly what player 1 had done. We noted
earlier that this situation does not always obtain, e.g. in poker,

Game trees can be constructed to show exactly the information each
player possesses when he makes his choice. The usual procedure is
merely to place dotted lines arcund each set of nodes of the game tree.
These dotted enclosures tell us exactly what the player knows about
his move. A dotted circle around a single node means that the player
knows unambiguously that he is at that node. But if the dotted enclo

sure contains two or more nodes, then the player does ngt kmow at which

of these nodes he happens to be, This situation is shown in figure

1e2e2¢



‘At move 1, player 1 knows that the game is beginning, At move 2,

playef‘ 2 does pot know whether player 1 chose branch a or b, Obsgerve
that for this to be the casey the two nedes inside player 2's informae-
tion set must have the same number of branches emerging from them., At
move 3, player 1 knows if he is at the node at the end of choice c

(becanse there are three branches from it), and he knows if he is

choosing at the end of "d" or "e", or if he 1s chooalng at the end of
Wfn, "gW or ®h", The game continmues, but we need not be concerned with

the remainder. Figure l.2.2 was already considerably more complex than
was figure 1.2.1, and this gives us a hint at how complicated game

trees can become, In fact, for games like chese and checkers they are
7

_ , complicated. For example, the number of possible
alternative routes through the game tree in checkers 1is eatimt.eda at

].t)‘..}0 Clearly this 1is beyond ocur capability even to enumerate, let
4 |

alone work through the strategic possibilities, which would take 10

centurics if the alternatives at each move were considered three to a
millimicrosecond, In fact, of course, the "curse of dimensionallty"




9
a8 Bellman has called it » Lakes effect long before we attempt to

consiruct a game tree for s game as complicated as checkers. We must
not get the impression however, that the extensive form of a game is
merely an elaborate, if useless, curiosity. An extremely important
result can be proved on the basis of the extensive form of games, In
fact, wve have already demonstrated a specific case of the result in
our discussion of the game of figure 1l.2.1. We recall that in that
game, the players had perfect information as to each others' actual
cholces, 1.0. player 2 could see exactly the choice which player 1 made.

Since player 1 chose first, he could not of course see the choice made

by player 2 before he himself chose, but he did know that player 2

would see his choice, and this fact was decisive in the thinking of

player 1. The general result, of which the game of fipure 1l.2.1 was

an instance, cannot be stated without one more definition. A pure

Btrategy is any asingle set of instructions, covering an entire play
of the game, for a player 1 which defines his exact choice at each of

hls personal moves in the play of the game. The general result is as

follouss

le2.4

Every zero sum two player game of perfect information and

“expressed in extensive form has a good pure strategy for each plszyer

and a value V.

Theorem 1,2,4 can be rephraseds

le2.5 A sufficlent condition for a zero sum two player game in
extenalve form to have a value v and a good (optimal) pure strategy for
each player is that the game have perfect information,

Observe that perfect intormation is sufficient, but not
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necessary, for the game to have optimal strategies and a value v. For
a necessary condition, see De.lkey.lo

There are several proofs of this theorem (sece, for example,

von Neumann and Morgenstern, Section 15) and we shall sketch only the

most intuitive of them,

However, this proof 1s satisfactory for our
purposes, and in fact there is only one objection to it —— it requires
the assumption of rationality on the part of both players. e have
already seen that this assumption played a role in our discussion of
the game of figure l.2,1l. Now the theory of zero sum two player games
i1s gpecifically designed not to require this assumption. However, as
we shall see, the way in which the theory avoids the assumptlion is
hardly advantageous, i.c., the power of the theory is only apparent if

the assumption is made. At any rate, the proof can be stated simply

and verbally. At the next to the last move (i.e. move r-l) of the
play of the game, the player making a cholce knows that his opponent
wvill minimize if he is player 2 (or maximize if he is player 1) the
fk(dl’ essp d.)e Therefore, the final move can be deleted because the

value of the game is known at move r-l, Therefore, move r-l becomes

the final move of the game, However, the player choosing al re2

similarly knows what will happen at r-l and thus the value is known at

r-2, So, move r-l can be deleted and r-2 can be considered the

terminal move, Obviocusly, this process can be carried back to the first

personal move in the game, and a value and optimal pure strategy

determined for each player, which is what we sald we would prove., As
we gald earlier, the only objection to the proof is that 1% requires
that both player be rational. The role of perfect information 1s also
apparent « each player knows exactly where he 1s in the game tree and

therefore knows what to expect next and how to optimize at the moment
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of choice,

Theorem le2+5 tells us that all games of perfect information

are gtrictly determineds but it gives no practical guide for finding

the true path through the game tree, Certainly one device which would
seen t0 be necessary in this regard would be a way to 1list all possible
pure strategles for each player.together with their expected values.

In this way the varlous pure strategles could be compared, The
technique of doing this will be diémssed in the next section,

Normalization, matrix games, mixed strategles

Consider the following game tree, where, it should be noticed,
both players are utterly lacking in information about the choices of

the other play X -

Figure 1e5el




Player 1 chooses first from among the set (L,R) for left and
right. Next, player 2, not knowing which choice player 1 made, chooses

elther L or R, after which player 1, not knowing the choice player 2
made, chooses L. or R, The payoffs for the possible paths are given at
the ends of the tree.

Player 2 clearly has only two alternatives from which to choose,

either left or right. Player 1, however, has the possibility of

choosling among four possible ways. He can choose L at move 1, and L
Similarly his other three

at move 3; we shall write this as (L,L).
posasible atrategié; are as followss (L,R), (RyL), (R,R). The game
tree gives us the ;alua for the possible combinations of strategiles,

and these can be enumerated in the form of a rectangular table, or

matrix of payoffs.
and player 1l's strategles as rowss

We shall 1list player 2!'s strategles as columns




(nce the game is in narmalised (matrix) form, the players are
assumed to choose simultanecusly and in secret., This game can be
evaluated, now, very simply. Player 2 can see that if he chooses R, he
need never do any worse than draw with player 1, That is, from the

standpoint of player 2, each element in column 2 is less than or equal
to the corresponding element in column 1,

For situations of this king,

we say that column 1l dominates column 2.

Player 2, of course, wants
the smallest number possible to result in this geme, therefore, dominge
tion tells him which column to gyoid, i.e. he should choose column 2,

Player 1l can see that player 2 will avoid column l,h therefore he mst
pick that row the second element of which is as large as possible, This

turns out to be row 2 (i.e. the strategy (L.R) )« The walue of this

game therefore is v = 0, When a matrix game has the property of an
optimal pure strategy for each player, i.e. when the pgame is strictly
deterained, it is sald to have a gggddls

Int in pure strategies. (A
matrix element 1s a saddle point if it is simultaneoualy the minimmnm

of its row and the maximum of its column). Although a best way can be
found for each player to play the game of figure l.3.1 from an inspec-

tion of the game tree, the normalised form of the game (figure 1.3.2)
provides s much easier way to analyse the game., Of course, making
easier the decision making task was precisely what we hoped to achieve

wvith the normelization., Incidentdlly, the game of figures 1l.,3.1 and
1.3,2 18 strictly determined but lacks perfect information, We see
that perfect information cannot, by itself, be necessary far stirict
determinateness. Consider the game tree of figure l.3.1 again, and now

imagine that player 2 can see what player 1 does in his first choice,

but player 1 is still ignorant of what player < does at move 2.




The game is now represented as follows:

Player 2 now has some additional strategic choices which correg-
pod with his additional information. That is, if player 1 has chosen
L at move 1, then player 2 can choose either L or R at move 2 and if
player 1 has chosen R at move 1, then player 2 again can choose L or &
at move 2. Therefore, player 2's set or pure strategies is as followss
Strategy 13 (L against L, L against R); Strategy 2: (L against L,

R against R); Strategy 33 (R against L, L against R), Strategy 43 (R

against L, R against R). In short, each strategy specifies a choice

against gny choice of player l.
Player 1, on the other hand, is atill ignorant of the choice of

plﬂu 2 at move 2, Therefore, at move 3, he still does not know

precisely where he is in the game tree (except that he knows that he is
at move 5, and he knows whether he is on the left or right half of the

28
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tree). His strategic choices, therefore, are the same as befores (L L),

(L,R), (R,L), (RyR)e The normalized form of the game of figure l1.3.3

1s now a four by four payoff matrix.

Figure l.3.4

Player 2

(Lag L) (Lagl) (Ragl) (R egl)
(Lag R) (R agR) (L ag R) (R ag R)

(L,L) 2 | -2 | -4 -

o | -- -

Column maﬂm _ o 1_ 4

* ag = &g&instu

paximim of row minima = 0

i
-

minirmn of column maxima

This matrix turns out to be strictly determined in exactly the

same way as was that of figure l.3.2, i.e. player 2 finds column 4

(which is identical to column 2 in figure 1l.3.2) to be best, and
player 1 is ggain forced to choose row 2 merely to draw even. Now this



is interesting, because it ghows that the addition of new information

somevhal complicates player 2's decision making task (as well as player
1's) without at the same time improving his reward, i.e. the value v.

This situation 18 not true in general, and as one should expect,

"finding out® the other player's choice can increase the payoff to the
player finding cut. To show this however, we shall have to introduce

a new concept - that of pixed girategiegs. These are used when no pure

strategy seems a good reply to the other player's best pure strategy.
A mixed strategy 1s a probability weighting (summing to unity) on a
player!s pure strategies. Some of the weights may be zero, and a pure

strategy is clearly just a trivial case of a mixed strategy. The

value v 18 then the expected value, and 1s defined as follows where 8, 4
is the i, jth element of a payoff matrix, X, is the ith component of

player 1's mixed strategy vectar and yj is the jth component of
player 2's mixed strategy vectors

, . ]
b Y. 79 v = é é ‘ﬁxly 5
i=] =

Now consider the following game tree.

Flgure le5eS




Clearly, both players make their choices uninformed of the
choice of the other player. The payoff matrix 1s as follows:

Figure 1.3.6
Player 2

1f player 1 chooses row 2 in an att

ampt o obtain 2, he may
assume that player 2's best reply to this would be to choose column }
for a value of 0. On the other hand, if player 1 chooses row 1, in
an attempt to obtain 1, he may rightly assume that player 2's best
reply to this choice would be to choose column 2, for a value of 0,

Now, since thls game i3 normalized the cholces are made in secret, so
of course, player 2 cannot know which choice plgyer 1 will make, but

he cammot even intelligently guess the choice elther, and ths same is

Obvicusly, there is no single best way for either

true for player 1.
of the players to choose. Moreover, neither wants the other to be
able to guess what he will choose. This is the reason that we intro-
duce mixed strategies, Player 1 chooses a probability weighting of x
on rowv 1 and lex on row 2, Similarly, player 2 chooses a weighting of
The value v is therefore given by

y on column 1 and lwy on column 2,
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1.5.2 v = xy(1) + 0x (l-y) + 0y (1-x) +2 (1-x) (l-y)
VES XY =« 2x=- 2y + 2

133 V=I(3y- 2) u@'*2

1f player 2 chooses y = 5 then the coefficient of x 1s zero,

and no matter what player 1 does, player 2 need not pay him more than

Similarly, player 1 can guarantee himself at least this amount

by choosing x= 3 . The optimal mixed strategics therefore becomes

5,3 )

For player 2% (3, 5 )
2

Angd the value v = 3

For player ls {

Let us now conslder the game tree of figure l.3.5 such that
player 2 chooses after player 1 gnd is somehow informed of the choice

of player 1 (he cheats):

Figure 1.3.7




Player 1 still has only two pure strategles, L or R. Player 2, however,

now has four pure strategles, as shown on the following payoff matrix:

Fioure 1.5.8

Player 2

#
Lag L L ag L
L ag R L ag R
; ) %
L 1 i 1 ?
| .
S T
%
1 2 g
~ —
ag = against

paximm of row minima = 0

imun of column maxima = O
v=20

This o-me is strictly determined with v = 0, player 2 ucing a
pure strategy of column 3 and player 1 having two equivalent strategies
of either row 1 or row 2 or gny mixture of the two. (The value v will
be the same). Therefore, by knowing the cholce of player 1, player 2

can hold player 1 to a draw - instead of losing 3"‘" to him. Intuitively,

we suspected that increasing a players! information in a game (relative



54

to the other players information) would improve his situation. This
has now been formally demonstrated. Increasing a player's information
actually increases the size of the payoff matrix becaise it makes more

numerous the avallable strategies. 4n incidental remark ef McKinsey! ﬂll
is well worth quoting in this regards
"eee and it is true almost universally, besides, that the
less knowledge we have, the easier we find it to make up
our minds (a deaf man has less trouble deciding on a wife

hearing)”.
A final point with regard t0 normalization of games should now

be briefly mentioned. We are referring to chance (referee's) moves in
the game, Since these are assumed to be made by the referee, we may

Just as well assume that they are all made in advance of the actual play
and then disclosed to the players at the actual moment they occur in

the course of the play. In this way, they can be put in the game tree
(.. the probabilities of the warious branches occurting can be put in

the game tree) in advance of the play, and all possible pure sirategies

can still be mapped out before the actusl play. The way this works is
discussed in some detall in McKinsey, Chapter 5, An interesting alterw
native approach to including chance (referee's) moves in a game yithout

writing out a game tree 1s contalned in a verslon of poker discussed by

In this game, the cards are dealt by a referee at the beginning

of the game, one card to each player. The cards are either high (H) or
low (L) with no further gradations assumed. (For example, red cards
could be low and black cards high). The equiprobable deals are, of
course, the following four sets, where the first letter is player 1l's
card and the secand is player 2's cards (H,H) (H,L) (L,H) (L,L). Each



39

player can see his own but not his opponent's card., Player 1 is

allowed to choose first and he can either "see" or "raige", If he

chooses to see, the higher hand wins or equal hands split the pot -
player 2 has no choices ln this cases If player 1 chooses to "raise",
he adds an amount b to the pot (which already contains an ante, a,
from each player). Only if player 1 chooses "ralse", does player 2
exercise cholces; he can either "fold", in which case player 1 wins

the pot, without revealing his hand, or player 2 can "call", by adding

the same amount b to the pot. Then the cards are compared and the

higher hand wins or, for equal hands,the pot is divided evenly between
the players. Player l's strategles are the four possible combinations

of seeing and raising against his own high or low card (e.g. raise

against a high card, sce against a low card - which we can write raise-
see), Player 2's strategies are the four combinations eof fold and call
(e.gs fold against receipt of a high card, call against receipt of a
low card). Since the four possible deals are assumed to be equipro-

bable, we can easlily compute the gxp 1e of each combination of

strategies, for example, (see-raise) versus (fold-fold).

For the deal (H,H) Player 1 sees and the pot is split.
nooou "  (H,L) Player 1 sees and wins the pot, i.e., a.
n " w (L,H) Player 1 raises and player 2 foldg, player 1 wins a.
LU » (L,L) Player 1 raises and player 2 folds, and so

pla,y'er 1l wins a.

The expected value of these two strategy combinations (to player 1)

4

can thns be computed: $x0 ¢ 4xa + {xa + {xa =

The number _Ba would be entered in the appropriate place on the 4x4
4

payoff matrix. In this way, the probabilities involved in the random



deal can be taken into account in the normaligzed form of the game even

without the use of a game tree, The reader is referred to Kemeny,

snell and Thompm12 for the remainder of the anslysis of this poker

game,

Mixed strategies and the minimax theorem.

We introduced the concept of mixed strategles in an attempt to

elucidate a key issue of game theory - the role played by information.

We shall now discuss mixed sirategies for their own sake. One point,

however, has alresady been mentioned in the discussion of figure 1.3,5

and l.3,6 - secrecy. The game described by figure l1l.3.5 did not

aldow player 2 to know the cholce of player.l, IiIf he had been able to
know, he could take advantage of this fact, as was seen in figure

l.5.8. Therefore, if the rules of the game allow secrecy the players
are well advised to exploit it. In thls case, player 1, by keeping his

choice secret, i.e. by randomizing it with appropriate probability

56

weightings, could win something from player 2, Moreover player 2 would

not want to announce, in advance, his choice to player l, since player
1 could then expleit this knowledge to hls own advantage, Now, for
strict determinateness, anncuncing an optimal strategy in advance will
make no difference - since the other player has already decided that

the announced strategy was going to be used anyway. This is why, when

we gave player 2 more information in the game tree of figure l.3.3 than

he had had in that of figure 1.3.1, we still obtained the same saddle
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soint and optimal strategles, Secrecy plays no essential role in
strictly cetermined games., But it is the :«c¢y feature of mixed
strategles. The specific choice in this case is so secret th:t :ven
the player making it does not know in advance what it will be. He can,
if he chooses, announce the probability weightings, since he can lose
nothing if he does this,

Wwe ahall examine the algebra of mixed stratezies in more wctail
largely using the notation of Vaj da}s we have defined the nixed

strategy expected value as

lrj.tol Vv = % % xiyjaij Uhere X -~ (I.l, oot,xm), Z xi - 1’ and

y = (0 eeesyy) 275 =1

Now suppose that player 2 chooses a pure strategy which ninimize
the payoff of player 1l's mixed strategy. Th:t is, suppose player 2
chooses

le4.2 min 2 A, . X, e
ij 1
J i
Player 1 can assume that player 2 will certainly want to achieve this

minimum, Therefore player 1 may as well assume that it will occure

and choose his mixed strategy x to maximize this values

1.415 max min z aijxi - Vl °
x J 1

Similsrly, we can obtain the analogous expression for player <

10404 m;n mix Zaijyj = 72 ¢




Now the values vy and v, involve a pure strategy --.inst the best

mixture of the opponent. We can also establish them against any

atrates = X =
rategys vy m.‘s.n % xi‘:l.j and Vo :
1
where x and i are any stratezies at all., 50, we al ' : have
lt"‘;. '1'-' X,V
S vy % % xiyja:l.j and
1.4.6 v, &

Since the right hand sides of 1.4.F and 1.4.6 are equal, we always have

1.4.7 £ v

If we can prove that Vy BV, Ve will prove two things,
First, we will prove that mixed strategles can glways i;ive a value v
(for non strictly determined games) which is identical in spirit to

the value v for strictly determined games, i.e. a value v below which

player 1 cannot be reduced no matter what player 2 does and mo:« than

which player 2 need not pay player 1 no matter what sluyer 1 does,
Second, we will prove the minimax theorem, the most important theorem
in game theory, which establishes precisely what we have sald in the
preceding remark. Von Neumann and Morgenstern proved the ticorem by
showing that, with appropriate mixed st.rategieé it is never possible
for vy & v,

The proof of the minimax theorem in wvon Neumann and lior:enstern

is not based on the ori in:l proof by wvon ieumann , rather it is a

, and we shall now present this proof.
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simplification of a proof by J. Ville « [Iurther simpliricotion of

the treatment in von Neumann and lorgenstern can ve found in the work

1
of Valjda sand of ()wel!l?2 the presentation here is based on von .eumann

and Mor: engtern, Vajda and Owen, To prove the theorem, we shall first

have to prove two lemnas,

-1 ""p -
1.4.8 let p vectors X, ..., X* be given, Then a vector X
> >
either belongs to the convex U spanned by Xl, Ty Xx¥ or there exists

-
a hyperplane which contains Y such th.t all of ¢ is contained in one

half space produced by that hyperplane.

£roofl's

<

The case where Y Dbelongs to ¢ is trivial, so we shall assume

P 3
that ? does not belong to C. Consider a point 4 of C( which lies

n
as neur as possible o ?, ) Y - T wherelz - f I== gl(zi - yi)2 is a

> .
inumume. Now consider any other point U to C. For every t

-
Z

=) .
(0% t £ 1), t0 + (1 - t)2 belongs to the convex C., Since Z has

the minimum property mentioned above,
- > 9 s 2
0+ 1 -t)2 %1% 212-71]
. L.
(Z-T)+ 2@ -2 £1Z-11°

' 2 7 ) 2
l1e€Cey g]_((zi - Yi) ¢ t(ui - 31)) - j_i;l (Zi - yi)



This gives, by elementary algebra

If we first

divide by t, we next see that as t converges to 0, this expression

converges to

O, and cividing by 2

(2, = y,)(u, = 8) &
:/;l By = Vgi\¥y = 5

O Having shown that the

portion on the left is greater than zero, we see that

Uy -, = (hi - 31) + (zi - ¥4)y which me:ns

f(z -yi = ;-;

- 4 - -
Now, IZ-I >0 since Z ¥ Y (since 2 is in C but Y 4is not).

I

Thus (zj_ - yi) (ui - yi) 7 0,

i=1

1.90’ 1%1 (u (3 - Yi) - yi(zi yi)) 7 0.

(31 - y’.) ui 7 é(ai - yi)yj..




o6t &1 - 31 - Yi, and ﬁ = e0e = an = 0 is not pOSﬂiblg because

v 4 > i -

V/ 1. Put a,y; = b, which is a hyperplane to which Y
i=l

belongs. Set X, =u, and we have

le4.9 i a, X, b, which is the half ppace produced by the hyper-
i=1 -

> ' >
plane, and U Dbelongs to this half space. Since U was an arbitrary

element of C, the proof is complete.

The second lemma is the following:

Ibe theorem of the gllery

1.4,10 Consider an mxn matrix 4L = (aij)' Then the following

r exclusives

alternatives are mtua

1) The point % (the zero vector) is contained in the convex hull C

of the m + n points:

&l = (a'.L!. soey aml)
a, = (aln’ eveyp amn)
and = (15 Oy esey 0)

{

Ve

L
w
w»

®

®

.
»

-
Y

(Op eaey O, 1)




and olus there exist mimbers yJ gucih that yj Z O

’

2) The point O is not contaired in the corvex hll of the m + n

points, and there exict numbers Xis eee X such that

xi70

>

1==1%3170 fﬂrj =l’ eeepy llg

Lases 1 and 2 are mibually exclusives

2.

i=1

ialtin 7 0 by yj and sun over J = 1y eeey Tie

aijxj.

n
This gives Z f auxj_y 3 7 0o oW mulol:ly
j=l 1=l

i

ia b4 é { by Ki and sum over 1 = 1’ XYY IN}e
e 4

m N
This glves ; ;1513 xiy j é Oe¢ This is a contradiction,



Proof of case 1lg

Since 0 1s contained in C, it is a convex combination of the

m + n points, Thus there exist numbers t ; & 0, withj=1, ...,

m + n, and adding to unity, such that

¢}
jzl tvjaij + tni_ 1=0' for L =1, eeepy M o

(Thus a column vector of 0 is generated with the appropriate element

from e contributing its weight). So, we see that

jgtjaij '-:-tn*i"()o Ift1=.u=tn=0,t “1'-:0’

which is not possible since, :s we have just remarked, it comes from
the unit vectors, which are linearly independent. Thus we see T..:t at

least one of the tj is positive. OSo, f tj 7 0, and we can put

t
le4.,10 yj = ] s anc¢ these values will satlisfy

L
Lt

J=1

the conditions of case l.



Proof of case 23

Since O does not belong to G, we can use the theorem of the
supporting hyperplane to say that there exist mumbers 519 eeey B
such that

2 sj.aij 7 0 for all J.

Now this 1s true for every one of the m + n vectors, so s, 7 0 for

i

all 1. SQ’ we can sgeb

and these are the mumbers

specified in case 2.

Proof of the ninimax theorens

We can use the prévims result to prove this theorem. Recall

- L
bt we know already that Vi = Voo

Case 1 gives us y such that, for all i

HiN

Q. There fore, also for

1.4.12 2 a,.y
= 21575



i

1. 4.13 Y -—

O.

%1373

J

Case 2 glves us x such that for all j,

X

and thus, also for

T a,

i

min Z a 7 Qe
Jj i
S50,
1.4i15 Vl = max min
x ]
D0,
le4el6 Vl £ Q& Vz is not 'Sﬂibleln

Now take any k and :lter the nmatlrix an to become aii:'i; In the

same way as before, it is not possible to have

1 Z X
104117 Vl k £ vzt

45



46

Thus, we have only the possibility that v. =

the proof of the theorenm.

In general, optimal strategies do not

exploit the other player's mistakes. Optimal strateglies are conserva-
tive strategies. This is the reason we said much earlier in this
thesls that the power of the concept of optimal strategies ia <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>