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Abstract 

9 

I 

In this thesis a now solution ooncept is d*veloped for n--players 

nonzero wa games* The solution concept is based in reinterpreting the 

rk-oplVer nonzero sum game into 2-player zero sum games. The n-oplayer W- 

nonzero am game is first rewritten as an n+1 player CoalitiOn gms* 
The definition of zero sun payment is that one player Pays the Otbsr 

what he gets in a given outoome (coalition of the n+1 player game)* 

Who paqs whom depends on the coalition* More than one 2mplayer z4wo 

sum interpretation game always results from the procedure# and criteria 

are established to select one of the zero sam interpretation games* 

The solution concept defines remIts identical to the minimax concept 

when applied directly to zero sum 2. *-player gameso. 

Wben applied to 2-player prisoner's dilemma gamesp the solutim 

procedure assigns mixed strategies to the prisoners$ therebr "resolving" 

the dilemmu The mixed strategies vary with the payoffs (up to a 

linear transformation)* For prisonerts dilemma matrices which have 

been used in large numbers of gazing experimentsq the solution concept 

predicts 4namicallys ie. 8 by play nuaberp the "fraction of cooperative 

choices" for (approximately) the first 50 plays. In additionp the 

mixed strategy appears in a game between each subject (prisoner) and 

the n+ Ist player (district attorney)# suggesting that the subjects 

have been playing against the eaperimentere EVIrima evidence fqw 

this conclusion is given* A theorem is proved for n-player prisonerts 
w 

dileuma games. 

Game tb*ory is reviewed to show the roots of this Solution 

concept In the howistic use of zero isum n-player games in the van 

Reumann and Morgenstern theory,, and in rational decision malging models, 

e. g., "games against Nature. " The empirical and forml difficalties 
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of the equilibrium point solution ooncept for nonzero sam games are 

discassed. Detailed connections between game theory and cybernetics 

are describedo 
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000 Introduction and euvmmT 

Cybernoticap the etu4 of control and communication in animals 

and machiness 
70 

employs mathematical decision making models for norme.. 

tive proscriptions of control processes 
71 

and descriptive models of 

the wivironment, to be controlled. 
171p 97 One important mathematical 

decision making model is the theory of games of strategy. 
71 However# 

for formal reasonsp the effectivenses of this type of model is limited 

to its most elegant portion - the theory of zero sam two player gamesj 

where the interests of the players are totally opposedo This part of 

game theory links with linww programaingJ72 the theory of --,.. neiiral 
73 p 78 

notep and statistical decision making processes. 
74 Solutions to genes 

of this typo can be fully characterized and computed (although the 

latter is sometimes difficalt). However# there have been few applicap. 

tionis of this portion of game theory to real world problems because 

few Problems satisfy the zero am restriction. 
75 Worse still, the 

theory cif many player games and nonzero sm games is unqatjsf&ctcg7 

for various reasons. 

In the case of zero sum games of &we than tvo players, the 

thwry seems to mW too mch . it does not give precise enough a 

statement (although there does seem to be some empirical relevamo to 

its conclusion). In the case of nonzero sum games of two or more 

playere# we may distinguish two cases# according to whether the players 

can negotiate or not,, If they can negotiate# we can rethink the game 

as a zero sum game, # and the previous comment applies. lf they cannot 

negotiate# the theory is unsatisfactArY for both formal and eVirical 

reasonse Formally# the theory leads to a paradox - the prisoner's 

dilemma - and empiricaUyp the paracIox (as ve3.1 as other 
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predictions of the theory) appears to be false* The theory of nonzero 

sm game is based on the idea of strategy$ where as the theory of zero 

sm gamels (two player# mwwy player,, and negotiated nonzero sun games 

which are rethought as zero sm games) is based on the idea of conflict. 

The argument of this thesis is that the idea - heuristic - of pure 

conflict its far more powerful In terms of effectiveness than is the 

idea of strat*gy* Th* contribution of this thesis to game theW is 

the developnent of a solutim ooncept based on the hearistic of pure 

conflict for nonzero sum gases. 

This paper will develop a new solution concept for nonzero sam 

games vhich vill "resolve" the prisoner's dilemma paradox by making 

the remlt probabilistic* The basic idea le'to convert the nonzero 

sun game into a zero wx two player game between each prisoner and 

Nature. 84 The new solution soncept has empirical applicationsp and 

by restating the nonzero sum game into zero sum gamesp can drav upon 

the applications and theorems of zero sum two players games. Thus,, 

the new solution concept may open-up nonzero sum games for use in 

ouccesoftl descriptive models of the world. One such moael - of the 

dynamics and statics of psychological experiments oz prisoner's dilema 

games - will be discussed in detail* 

A very brief description of the now solution concept followsb 
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001 The prisoner Ia dilemna 

Tkw prisoner's dilemma paradox derives from the parable of a 

district attamey having in OustmV tvo prisoners whom he knovil 

coummitted a certain crime# but he laWw proof. The DeAs (district 

attorney) separates the prisoners so that timly cannot talk to each 

other and gives each prisoner a chance to turn state's evidence; Lmeell 

confess .0 
lik otblito If (me confesses and the other does not, the 

one who confesses gets off (gets the maximim payoff) and the other 

gets the maximum-senteac (minim= payoff)* If both confessp both got 

an intermediate sentence for co-operating with the police (third best 

payoff). If neither confesses# each gets a light sentence on some 

trumped up charge (second best payoff). A nimerical example satisfying 

the constraints is the followings 

001411 

confass 

Not confess 

Prisoner Il 

The first number in etich call refers to the payoff to player 1 and the 

seoond mimber is that toplayer 2* Prisoner I chooses a row and 

Prisoner II chooses a column# and the outcome is the cell where the row 

and column intersect* 

The outcome representing mutual confession is considered the 

solution sinces if the plVers arrive at it, they waald not want to 

change their strategies; either prisoner who did so would reduce his 

Confess Not confess 
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pVoff - providing the other did not change his Strateg3re This 

combination of choices is called an equilibrium. point* 
5 There is a 

great deal of empirical evidence to the effect that the prisoner's 

dilemma, outeme faile to occur when it might be expected to occur 
43045#50 

and than we think a new solution concept is called for. The next 

section will brief2y describe the alternative solution concept called 

zero sm interpretations The development of this solution concept,, some 

of its restatep and the elaboration of It from its saarces In game 

theor7 and qybernetics will be the concern of this thesis* 

Oo2 The resolution t(y zero sum interpretation 

If players I and Il reinterpreted the prisoner0a dilemma game 

directly into a zero sum game betveen thewelvesp nothing dif fermt. 

from the equilibrium point solution would occur* This has been shown 

by Scodel st alp 
" 

and recently elaborated by Sbubik. es We shall 

try a slightly different approach by introcUcing the idea of winning 

and- loging coalitioniss SUMOBS that we include the D. A* as a damq 

p]^7. *rp and gay that when a prisoner confesses he joins a winning 

coalition with the D. A. against the other prisoner. If both prisoners 

confesso we can say that each forms a separate cogtlition with the D, *A*g 

and that both of the separate coalitions occur* Lxamining game (1),, 

we see that if only one player confessesp he wins 2 and the other 

loses 2* If both confessp each obiýains 0 in game (1)s, and we see that 

2,40 1. e. each obtains the IMS of what he wins when he is in a 
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winning coalition together with vhat he loses vhen he is outside of 

a winning coal-ition. Final p we can treat the mutual noi. -confession 

MACOMS af ths fOrmaticn Of a coalition against the D. A. We can my 

that the Doke loses 2 in this canoe Now ve can interpret this zero 

x= three player game Into zero mm 2-ViVer gameg. 

Firstp we notice that a zero sun 2. plV*r game between the two 

I 

prisoners again gives us nothing new. This is beeause the upper 

right hand cell wast contain 2 aince the defeated prisoner must 

cartainly pay cat 2 and the victorlAms prisoner wins 2* Also& the 

lower left, hand corner must contain -. 2 for a simI]a reason. The 

upper left band comer must be 0 since it ia the am of the other two 
IT-x- 

zero mm 2, wplayer interpretations. These fact* make the upper left 

hand corner a saddlepoint independently of the value of the lower 

right hand corner. This is because It is simultaneously the maxJmm 

of its colimon and the minimum of its rowt and no value for the lower 

right hand corner could be thisp since it vould have to be sim, 11taneausly 

less than *-2 and greater than 2* 

In any case# what value(a) could be in this call? Both 

prisoners are in the same coalition (against the D, *P,. *) * We 4*uld sW 

that the paysents would be Interpreted ao zero a= between the two 

players if one payed the other his ammint in the coalition* In other 

words# ve could give the lower right hand box entries of gj&Mt I or 

-. 1. As we have seen$ of courselo neither entr7 would alter the 

solution to JI&Im zero sum interpretation game. Thaup this approach 

, rpr, gtatjL(m gtill giv, 81, ug ng)thing - new - until we to zero am intp 

consider zero sun 2m. player games between ew% pLqer and the DeAe 

Considering a rAwo mm 2--player game between prisoner I and 

the D, *A*, # and writing prisoner I as the rov player and the D*A* as 
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0 

the column playerlp where the matrix cons represent the same oatcones 

an in matrix (1)j, we can see that the lower left hand call must 

contain the entry 0 and the lower right hand cell sust contain the 

entry le This Is because the D. A. clearly obtains nothing (in the 

ga. of matrix (1) ) when prisoner I is defeated,, and he clearly pays 

1 to prisoner I when prisoner I in victorious jad the D. A. is defeated* 

Ncw the upper right hand cell nist contain either 0 or 21, since these 

are the amounts that one player in the coalition of the DeAo and 

prisoner I pays to the othere Finally# the upper left hand cell anst 

wntain the am of the zero sum interpretations of the lower left call 

and the upper right cell,, i*eos either 0+0=0 or 0+2=2. Sol, 

we have the following zero am 2-oplayer matrices to considers 

0*2 

(a) 

Matrices (a) and (c) have saddlepoints on the upper left hand 

corner and thus give us nothing new* Matrix (b) gives us a saddle- 

Doint an the lower left hand c=ere This means that if we define 

4.1-- 

the probabilities on the zero sm interpretation game as identical to 

those in the original nonzero sun game (vbieh we MApj do for the idea 

of zero =a interpretation to make sense) we got an inconsistent 

result, * This in because ve got a probability wight of 1 on the call 

representing the defeat of prisoner I# but if this had been a game 

between the D*A* and primner III, the probability weight of 1 would 

be an the ceU representing the defeat of prisoner II (with prisoner 

9 
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II as the Low player and the D. A* as the column player as in (b). 

Moreovers if both prisoners,, in their respective zero sm interpret, &. 

tion games choose not to corifess, the probability weight of 1o hg9jd 

be on the lower right corner. But, if we were to allow the D, A, to 

do what prisoner 11 might do,, then the D. Al s strategy is not optimall, 

and thas the whole point of zero sum interpretation is losto Game (b) 

clearly represents an imImssible inconsistencys and mst be ignored. 

These considerations leave only game (d). Votice that its solution is 

a mixed strategyp which can be computed by assigning probability weights 

of x to row ls, 1.. x to row 2,, y to column 1 and 1--y to column 2* ThLs 

gives the value of the games to prisoner I 

2gy + (1 (1-x) (1-y) = 3igr -y -x + le 

Factoring out ys, we obtain y(5x - 1) .x+1. 

By setting x= WSq the coefficient of y becomes 0 and the value of 

the game to prisoner I Is equal to VS. Notice also that a similar 

calollation would yield y= 1/3p and thas the D. A. uses a strategy 

--2-A 

which would correspond perfectly with an optimal strategy for prisoner 

2 in = corresponding game (d)a 

By using the trick of coalitions and zero sum interpretation 

within and between coalitions$, we hM obtained a now resaltl It would 

seen natural to define the solution to the original prisonerts dilemma 

game as the probability veightinge obtained in game (d)p since if 
-both 

players (prisoners) use these strategies they are mutually better off& They 

give for each players (-2)+2/5(2/3)1 = 4/99 

vhich is greater than Op the maximm both obtain from any of the other 

consistent zero sm interpretations. 

The req&n that players reinterpret the original game along the 
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lines ve have indicated in extra-theoretic, but thjg he=igtic can be 

tak4M in the isame spirit as that of "perfect bargainingo in von Neumann 

aM Morgenstern' a theory of UP-otlated nonzero am game! The idea 

of Nperfect bargainine is extra theoretic In their theorye If we 

employ &= howinUcs we obtain a uniform theory of zero am interpre- 

tation gums# sincej if the solution in applied to a game which is 

already a zero =a 2omplayer gameg our remat will be identical to that 

of th6 von Nemann and Morgenetwn minimax concept. This is shown 

below* 

0*3 commts an this solution Ocnawt 

Incidentally# the *strategy" of the D*A. which we have used is 

not the imme as that used be3. ovjp vhero the D*Ao uses a stratea agalnet 

player I which corresponds with that of the nfmI other real p3Ayers in 

their corresponding games with the same index MMberlp jjL2ZLdQg this 

stratow gives at least the zwo S= 2-o player game value v against 

plw4ir I's maxlmln strategy. The Wo mWe of computing the D*A. I is 

stratea work out to the jume thing for P-. plgrw xymetrical prisoner's 

dUema gmes, But for n-pplayer nonzero oum games (vbere n> 2),, only 

the strateg7 derived below will work* 

An interesting point proved below is that all npLqer symetrical 

prismers a dilemma gamete of the type of matrix (1) 9 is es, p where mutual 

aWesslan has a value of 0 for all playerss, have zero sam interpreta. 

tim mixed strategies which are independent of the number of players* 



U 

This is interesting because it may be that plVers will not know hov 

many other players there are in a game of this type. Alsop the 

probabiliiW of the occurrence of the coalition of all real players 

against the D. A* turns cut to approach the limit e 
where 9= 2*7 *ooo 

equal to the negative of the amount lost by the D. A. when no one 

confesses* What is strikilIg abmt, this result is that the exponential 

-ft-wetion 
Is oftm intuitively associated with prisonerts dilemma type 

17 
situations# such as the spread of a fashiop, but had not previous4 

been dedaced from a formal solution to the gane* Finally# the solution 

concept employs a normaLizations, vhichs essentiallys does no more than 

put games in the form ouggented by matrix (1) 9 i. e. , where mutual 

confession is represented by summing the payoff a associated with the 

ev? swate 2-player coalitions of a rwa plErer and the D#, A* i4ormalizam. 

tion formulas are givm for all 2-player priscmer I is dilema, games below. 

This solution concept hat; topirical applications to prisoner's 

dilema gaming experiments# L. a.,, the fraction of co. -operative choices 

for the first 50 (roughly) plays can often be described. The strategy 

occurs in a zero sum 2*-player pas between each player and the D. A.,, 

who can be thought ofs in the context of the wqperimentalp as the 

exPerimentero Thas we conclude that in the "early play" (under 30),, 
T, 

the subjects have been playing against the experimenter rather than 

interacting with each othere The topic will be discussed in detail 

below* 



12 

004 Historical note and organization of the paper 

The mathematical thewy of games of strategy van developed by 

John von Neumann in 1902mw $1 although some earlier work had been done 

by Emil Barel. 2 
and published in 1927. Borel had conjectured some 

special cases of the minimax theuremS which# in bil I generalityg 

van Neuxam prmdo The classic works JU2 jh§= of Games and 
3 

by John von Namunn and Oscar Morgensternp appeared &9QQ9"2w"zW 
in 1943o The work tbroogh 1956 is surveyed by Luce and Raiffat 5&M 

wUch is# to our knowledges, the last publisheds, 

ooWshonsive mrvey of the fields This thesis developes a particular 

point of viewl the heuristic underlying the von Neummm and Mwgenstern 

theW can be extended to cover the set of games they did not discuss 

(noomnegotiateds nonzero sm games - which we shall define later). We 

shall thwefore review tbr, & theox7j, and such other work as seems 

pertinent (**go Nash'sS theM) in order to fully understand their 

underlying howistic and present the ftrther develqaent of it. An we 

proceec4 we shall I Ink each section of the theory of games vith its 

wpivaience or analogue in qrbemeticso MaUrs in section 7j, we 

shmIl clismais in detail the solution concept described in sectLons 

(0*2) and (0.3) * 
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le ? Awo mm 2-player games. 

101 Definition of a game. 

The introchction of a few technical terms wil. 1 help clarify 

exactly what we mean by a "game"* By "game" we mean "the totality of 

ruLles which describes it" (von Neumam and Mlorgenstern p. 49)p but 

we may conveniently distinguish some important features of these 

rules. Firstj, there is some finite nwaber of playerej which is design. 

nated by an integer. The term n-player game# therefore# always refers 

to the number of plEqerst- (as opposed to,, says, the number of options 

open to eacher player). In this section,, we shall be concerned exclu- 

aively with 2-player games. Secmdp at each moment in the gamep 

players are faced with W=. Mowp a move is plk the actual choice a 

player makes# but the entire complex of possible choice allowed for by 

the rules of the game at the specific point in the gaMo The IM)Ves 
a 

are numbered 10 r# and at each mmober# (me and only one player 

has an opportunity to make a choice. The moves constitute all possible 

positions which could be open tA) the player at this point and which a--- 

could, J& R&Jjap"JA be emmerated before the game even began* There 

are two types of movenj personal and chance. A personal move designates 

a choice for a playerl for a chance move (or referee's move) the rules 

must specify the probability of each alternative occuring. Third,, at . 

each instance of a personal moves a player makes a Qgjce from among 

the Imesible alternatives open to his at that move. Now., the series 

of acbma choices made by aU the players in the course of the game 

from beginning to end (ie. fr4m the first move to the last) constitates 

a IRIgZ of the game* Since the actual choices made are 11mlited# but not 
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deterainecIg by the rulesp a game W have a number (pcosibly a very 
larp mmber) of distinct plays, When a play is completec'6 the rules 

of the game specify conclusively what payments mast be made to each 

player* These paymentag thereforeo are a function of the actual 

choices made by each and evex7 player in the course of the specific 

play of the games If each choice (taken at each am) of the game is 

designated saccemisively as 41p jd# then the payoff to player k 
r 

is a function of the di, and is designated as 

10 101 rk (dlp 9*9# dýr) pk=1#.... 

we need to say something aboat the amount of informaF. 

ti(m each player has when he actially makes his choice from the 

alternatives at each mve. This is a subject of great complwdtyp bat 

10__ for our parposes# we need only distinguish two possibilities. Firstil 

the player is fully informed of all jZjjjq&, s choLoes of the other 

plVws. Chesis in an ample of a game cW this type* Sec=4 some or 

all of the choices that have previoudy occured were made in secret, 

Leo the players are not fully Inf armed of all that has preceded their 

own choices* Poker Lis an example. Game of the first types games of 

perfect information, are often thought of as being of a particularly 

*rational" characters while ths others are generallY thought Of as 

relying mach more heavily on luck or ski 13 * Although von Nommm and 

Mwgenutern havo shown that some features of sayj, pokerp (for example 

Pluffing) are matters of choosing wisely (vhat is normally termed 

"strategy") an extremely important theorem . also proved by von Neuvinn 

azld Morgenstem -, Wxwx that gwmes of perfect information do indeed 
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possess a property which makes them particularly "ralional" (a term 

we shall define in the next section). 

1*2 Utilitiesp strategies and game tress. 

Although the theory of games can be described without ever 

raising the Issue of utility (by pretending that the payoff matrix 

rWesents moneyq and that the plVers are Interested in maximizing 

their expected amount of money) . the theory of games isp in principle,, 

based on the notion of utility. The idea is that pL-Wers are 

interested in maximizing the expected value of their utilityv where 

the wcrd *utility" can refer to anythingp including money. The 

easiest way to describe the theory of utility is in anecdotal form, 

Imagine that you are on the late train to Lands End and the 

Buffet Car offers a limit ed selection of beveragess teas, whiskyq eastor 

oil* After looking over the selectionp you quickly rank your prefe- 

rences In decanding orders 1) whish; rp 2) t6at 5) C"tOr Oil* SO# 

.a -- you Order a whiWW,, to which the attendent repliesp "I'm sorry Sir, 

but on these late night special baffet services,, its not as easy as 

that. 113-1 give you a mire thing of tea against a brown paper bag 

which has a 50-50 chance of containing either a ILI&IIed small bottle 

of whiWw or a (labelled) smal 1 bottle of castor oil* Which do you 

vant, for lOp? " Assuming that you ckml t return to your seat at this 

points, you may replys "Tea# cartainlyt" To this the attendent 

repliesp "75-25 vhiskey against castor oil. " And you may says '"I'll 

still take the tea. " 095-05 wbisky against castor ollo" "I'm not L-; 

0=09 if YOU reply* 
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Writing this algebraic&Uy# we can see what happened at the 

final offer of the Buffet Car attendents where we write 

ut utility of tea 

uw utility of whid7 
u 

co utllity of castor oil. 

Now tJ* ran king wasq U 
vs 

utv U 
00 v and if we set UW=I and U 

cc = 00 

we get the ftma offer s 

ut0 9s(U 
V) 

+ 
0O5(U 00) 

+ »05(0) 
ut 

If there had been a fourth item on the menup isay orange squaship with 

aU 08 associated vith the choice and ranked# say., just before castor 

ailp then we could us e the same end pain ta of the gamble pU w+ 
(1-P) U 

co 
and find the point where this equates with U 

Do 0 We know that it will 

be closer to castor oil than vas tea* In this ways, a numerical 

ordering of preferences can be achieved for any number of alternatives. 

The anecdote# incidentlyj is not an far fetched as it might seem., for 

the technique of determining wmeane# s intionsity of preferences 

accor-din to the tbearY of utility is done in essentially this way 

(although it need not be done an the late night trei n) * Notice that 

the Or&ring is specific to a particular context (in this case the 

train) * Under other circullastancesp a different ordering might result, 

Notice also that the zero and the unit value (m&XIMM value) were 

chosen arbitrarily for this customers's values. In other wordsO there 

is no interpersonal coWarison of utility implied by this proce&re. 

Since the zero and unit point are arbitrarys they, can be altered by, 
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multiplication by a positive scalar# and addition of a constant to -,. q)l 

the values* This means that the utility is preserved up to a linear 

transformatim of aA + Bo where A is a matrix of utility valuess, aa 

scalar matrix# and Ba constant matrix. 

TUB definition of Utility is kn*wn as all interval 8cales The 

ranking alone it; known as an ordinal scale. And,, if we made a compari. 

son between two (or more) permus - which means fixing the zero and 

units at the same values for evwyone, we would have a cardinal scale. 

AXLOMatic systemil to arrive at the utility system we have described are 

presented in Luce and Raiffa and von Neumwn and Morgenstern* The tvc 

basic assumptions in either of these axiomatic Watens areg first# the 

transitivity of the preferencesy Ie. j, if A is preferred to B and B to CO 

then A is preferred to Cp and# secondq the Independence of irrelevant 

alternativess, iteep we were able to determine a utility for tea without 

having to worry about orange oqwwhj, and vice versa. 

If factj, becauae cW the obvious practical difficalties and 

certain conceptual ones,, the thewy of utility has had very little to 

do with the development of game theory* It does provide a loLical 

basis fcr the concept of mixed strategies in zero sum two --player galles,, 

but even hares the fact that the game is zero sum means that the 

asoumption of cardinality hasj, essentiallys been made. (We say 

OessontiaJ48 because the two player's utility functions could be 

related by a linear transformation)o The theoretical difficulties 

centre on the original ordering of preferences# Loeog why should real 

persons be able to do this# and wIVr should the preferences be transitive? 

In ()ther words# if one Is with List Whape he would rather be with 

Alice$ and vice versao The practical difficulties in the use of utility 

hav,, es we lu)pet been ouggested by air anecdotes 
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Having described the concept of utility$ we are now in a 

poisition to define exactly what we mean by rationality. This is 

DiVIY the independent maximization on one' a utility index. If utility 

11mear with money# Ueee, if a graph of money against utility 

prodaces a straight line) thm thigs definition of rationality amounts 

t, O rAaximizingo independentays the expected amount of money* By UsIng 

the word OoVected" we a32ow for the possibility of the money being 

discounted by Its li k1 Id of being obtained. In any cases, there 

w(uld seen to be at least one actual social situation where ut. Uity 11 

linear with money a- the fiduciary relationshIp. That JLs,, a trastee 

is under a legal Obligation to PrudentlY M&Timizs the fundS Of the 

person whose money is being Managede (See hiker (6) for a niller treat. 

ment of this idea)* We shaU assume# for the remainder of this thesis* 

that we are elvays speaking in terms of money rather than utility$ and 

that each player is out to maximize his expected amount of money, 

We can see that the functim 1*1*1 always defines a munber which 

is an exact amount of money# 1*9* 

10201 » oft# d) >r 
for k= 19 .... no fk(djý 

We have now given an exact meaning to the end point of a game,, 

(i. e. the drp and the payments f,, )q and we have described the motiva. 

tion of the players# vizp each player k# will choose among the 

alternatives open to him at each move such that f, (dl# 
.. # dr) is 

maximized. Considercan extremOy simplP two player game,, where each 

player moves once only and then the game is over. Each player k will 

choose to achieve the maximum of fk (dl# d2)* 
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Z"IX) 
Sup so player 1j, makes his cboice first and then player 2 

makes his choice* We could draw a diagran to show this situation. 
is shown in figure 1.2.1. 

Figure 

it 

Payoff to plVer 1 

's Player 29 move 2 

Player 1 

A black dot indicates a set of alternativeol, a clear cLrclev an end 

point to the game to which specify monetary payoffs are attached and 

expressed in terms of the payoffs to player I* W* shall assume that 

player 1 receives frm (if the number is positiv*) or paIrs out (if the 

number is negative) these ammmmts to player 2. Games which have this 

property constitute an exceptionany important set of games and are 

known as zero am gamesp since the sun of all payments in arq play of 

the game In zero. In terms of economicap they constitute problems of 

distribution as oppos*d to problems of production* They are defined 

formally far two player games ais followst 

1o2*2 f (djo 
1 oeop dr) %. f2(dj# e*ev dr) 

5 1. 



Now in figure le2elp the diagrant which is caUed a F-ame tme, 

for obvioas reaoones shown that player 1 chooses first, that he has a 

choice among two alternativess, and that player 2 then makes his choice. 

Player 2 also only has two alternatives from which to choose# althmgh 

the diagram shows four branches* This is becaasep of Courses player 2 

XUJ LW WjMqM at one or the other of the two points designated by 

the two black dots at move 2* 

On what basis will the plagrew make their choices? 

Considerings, first,, player lp he will look at the game tree - asmaing 

of course that he has it available for consultation - and see that if 

he chooses alternative as, then depending an what plVer 2 doesp he will 

either draw or An So If he clxposeo alternative bp howeverp he will 

bt a -ain either 1 or 2 depending an the choice of player 2. Obvicmsly 

he would want U obtain 51, but he cannot count on the stupidity of 

Player 2. vh* would prefer to hold player 1 to zeroe Therefore# pLqer 

1 mst look at the possible choices of player 2* If player 2 found 

himself at the black dot on the left he would certainly choose alter- 

native c and drav with player I* If on the other handg player 2 found 

himself at the black dot on the rights he vould certainly choose 

alternative e and Ix)ld player 1 to lp i. e. lose 1 to player lo It 

is now clear how player 1 should choose* He must count on player 21 to 

rationality and therefore pick alternative b. Playw 20, realizing 

thiav must choose alternative a and pay one imit to player 19 Leo 

192*3 f (bq -f 12 

Now the thinking we have just described can be written more saccinctlys 

For player 2s (ýhoose e against player l1a choice of bs, and choose c 
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against player 11 s choice of a. For player 1: Choose alternative b 

fair an wrpected value of 1# and choose alternative a for an eo-.,, --Aected 
value of zero. These prescriptions are strategies* The number 

expressed by 1.2.3 is the value of the game to player 1j, and is desig. 

nated as the lower case English ve Observet that although this game 

is zero s=,, In this case the number v=1A oe The game we have 

just described had a deterministic solution,, i. e. it was obvious exactly 

what two intelligent players would do and each had a definite course 

of actions, Lee* a isingle clear path through the game tree which seemed 

*best". Such games are caUed gjaicWj dgterMjae . We might also note 

that we have solved this game# i. e. found a set of good strategies and 

a value for each player# entirely on the basis of a game tree, with its 

branches describing the game in every details A descriptim of a game 

using a game tree which describes every possible event is caUed the 

SgjjMjW fom of the game. Throughout the discussion of the game 

pictured in figure 1.2.1v we have implicitly aammed that pLqer 2 knew 

before making his choice exactly what player 1 had done. We noted 

earlier that this situation does not alveys obtainq eg. in poker. 

Game trees can be constructed to show gagtly the information each 

player possesses when he makes his choice. The usual procedare is 

merely to place dotted lines around each set of nodes of the game tree. 

These dotted enclosares tell us exactly what the player knows about 

his move. A dotted circle aroand a single nods means that the player 

knows unambigucusV that he is at that nods. But If the dotted enclo. - 

mrs contains two or more nodes# then the player does S91 know at which 

of these nodes he happens to bee This situation Is shown in figure 

192*29 
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At move 1j, plVer 1 knowis that the game is beginning# At move 2v 

playvaý 2 does ad know whether player 1 chose branch a or b* Observe 

that for this to be the mw* the two nofts inside player 21 o informam. 

tion set must have the sane number of branches emerging from them* At 

move 3. v player 1 knows if he is at the node at the and of choice c 

(because there are three branches from it)# and he knows if he is 

choosing at the end of "d" or Ile"s or if he is choosing at the end of 

xf ## "g* or *h". The pme contirmess but ve need not be concerned vith 

the r or. Figure 1, @2.2 was already considerablv more complex than 

was figure 1.2.1so and this gives us a hint at luw comPlicated gane 

trees can becemg. In fact* for games like chess and checkers they are 
7 

J&descrLDAUX complicated. For exaWlep the muiber of possible 

alternative roates through the game tree in checkers Is estimate4P at 

10! 0 Clear1y this is beyond our capability even to ammratej let 

alone work tbrough the strateiic possibilitiess which would take 1021 

centaries if the alternatives at each move were considered three to a 

ad. 11 Ilml crooecond-o In fact# of course# the "curse of dimensionality" 
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as Bellman has called it 99 
takes effect long before we attempt to 

construct a game tree for a game as complicated as checkers. We must 

not get the impression howevers that the extensive form of a game is 

merely an elaborate,, if Useleass curiosity. An extremely important 

result can be proved on tkw basis of the extensive form of games. In 

facts, we have already demonstrated a specific case of the result in 

our discussion of the game of figure 1.2.1. We recall that in that 

games, the players had perfect information as to each others' actAial 

choicesp ises player 2 could see exactly the cboice which player I made. 

Since player 1 chose firstq he could not of course see the choice made 

by plaver 2 before he himself chose,, but he did. Know that player 2 

would see his choice,, and this fact was decisive in the thInk-Ing of 

player lo The general result,, of which the game of figure 1.2.1 was 

an instance# cannot be stated witbout one more definition. A SM 

aLratey-7 is any single set of instructions,, covering an entire play 

of the games for a player 1 which defines his exact choice at each of 

his personal moves in the play of the game. The general result is as 

fonows: 

1*2*4 Rver7 zero sum tvo player game of perfect information and 

'expressed in extensive form has a good pure strategy for each player 

and a value v. 

Th*orem 1.2.4 can be rephrased: 

1.6 20 5A sufficient condition for a zero sum two player g, --, me in 

extensive form to have a value v and a good (op-coimal) pure strategy, for 

each player is that the game have perfect information. 

Observe that perfect information is sufficient,, but not 
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necessary$ for the game to have optimal strategies and a value ve For 
10 

a necessary condition, see Dalkeyo 

There are several proof a of this theorem (sees, for examples 

von Neumann and Morgensterng Section 15) and we shall sketch only the 

most intuitive of than. However,, this proof is satisfactory for our 

purposes, and in fact there is only one objection to it - it requires 

the asmuption of rationality on the part of both players. Ive have 

alrea4 seen that this assumption pleved a role in our discussion of 

the game of figare 1j, 2*1* Now the theory of zero sum tvo player games 

is specifically desi&med not to require this assumption. Howeverl as 

we shall see,, the vay in which the theory avoids the asaWtion is 

hardly advantageoasp i. e. # the power of the theory is only apparent if 

-the assumption is made* At any rate,, the proof can be istated simply 

and verbally* At the next to the last move (i. es move r-1) of the 

pDq of the games, the player making a choice known that his opponent 

wi3I minimize If he is player 2 (or maximize if he is player 1) the 

fk (dl# *99p dr) * Therefore$, the final move can be deleted because the 

value of the game is known at move r-1. Therefore# move r. 1 becomes 

the final move of the game, However# the player choosing at r-. 2 

similarly Imows what will happen at r-l and thus the value is known at 

rý-2. So., move r--l can be deleted and r%. 2 can be considered the 

terminal move* obviouslyi, this process can be carried back to the first 

personal move in the games and a value and optimal pure strategy 

determined for each plaverp which is what we said we would provee As 

we said earliers the only objection to the proof is that it requkes 

that both player be rational. The role of perfect information Is also 

apparent - each player knows exactly where he is in the game tree and 

therefore knows what to expect next and how to optimize at the moment 
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of choioes 

Theorem 192*5 tells us that all games of perfect infamatim 

are 11rictly dstggjaeg; but it given no practical guide for finding 

the true path through the game tree. Certainly one device which would 

seem to be necessary in this regard wmld be a way to list all possible 

pure strategies for each playertogether with their expected values* 

In this way the various pure strategies could be compared. The 

technique of doing this will be discussed in the next section* 

los Normalizationg matrix games# mixed strategies 

Consider the following game tree,, where# it should be noticedv 

both playersare utterly lacking in information about the choiceg of 

the other player 9. 

Figare 1*5,1 
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ebooses first from mong the set (LsR) for left and 

right* Nextj, player 2,, not knowing which choiee player 1 made# chooses 

either L (w Rs after which player 11, not knowing the choice player 2 

m&dep eboosee L or R* The payoffs for the possible paths are given at 

the andis of the tree. 

Player 2 clearly has cay two alternativeo from which to choooss, 

either left or right* Player 10 howevers has the possibility of 

choosing among fcvur possible ways* He can choose L at move lp and L 

at move 31 we shall write this an (LoW e Similarly his other three 

possible strategi" are as fýllowsi (LSR), p 
(R#L)IO (R#R). The game 

tree given as the value for the possible combinations of strategiesip 

and these can be enumerated in the form of a rectanguJ" tableg, or 

, aLtg" of payoffs# We shaU Ust player 21 a strategies as colums 

and Player V is strategies an rows t 

Figar* 1.5*2 

PlVer 2 

(LoloYN- 

(L#R) 

(R#L) 

(ROR) 

column 

soudma 

mini"a of 
column ma: xima 
= maximm 

of row minima 
=a= 

La 



Once the game is in normalised (matrix) forms, the players are 

assumed to eboose simultaneously and in secreto This game can be 

evaluatAdq nows very sis; 4e Player 2 can see that if he chooses R# he 

need never do any worse than draw with player 1. That iss from the 

standpoint of player 2$ each element in column 2 is less than or eqLuLl 

to the corresponding element in co3x=m 19 For situations of this kindo 

we say that column 1 dominates column 2e Player 29 of course# wants 

the smallest mumber possible to restat in this game# thereforejo damina- 

tion tells him which column to Ajpjd Lee. he shm1d choose oolumn 2e 

Player 1 can see that player 2 will avoid column 1,9 tAzieforo he must 

pick that row the second element of which in as largo an possible. This 

turns out to be row 2 (Loeb the strategy (L, 9R) ). The value of this 

gamO therefOre in v= Os When a matrix game has the property of an 

OPtimal puxe strategy for each plVer, J. 'e. when the game is strictly 

determined, # it is said to have a gl§Q gqQj in pare strategies. (A 

matrix element in a saddle point if it In Amultaneous2y the miniulls 

of its r(w and the ma3dimim of its colum) o A. Ithoa& a beet way can be 

found for each plVw to play the game of figam 1*5.1 ftm an inspeco. 

tian of the game tree,, the normallsed form of the gone (figgre 1*3.2) 

provides a mch easier way to analyse the gaus. Of 4xursel, making 

easier the decisica making task was precisely what we hoped to achievo 

with the normalization* Incidentialyp the game of figures 14*1 and 

1*5#2 is strictly determined but lackis perfect information* We see 

that perfect information cannotp IW itself, be necesswT for strict 

determinateness. Consider the game t"e of figa" 1*3, el agains, and n(w 

inagine that player 2 can see uhat player 1 does in his first choice,, 

but player I is still ignorant of what player 2 does at move 2. 
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The game is now represented as foUaws: 

Figure 1. S. 3 
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Player 2 

Player 2 now has some additional strategic choices which corres. 

ptad, with his additional information* That inp If player 1 has chosen 
I 

at move 10 then player 2 c= choose either L or R at move 2 and if 

player 1 has chosen R at move 1v then player 2 again can choose L or TL 

at move 2* Therefore# player 21 it set or pure strategies is as followel 

Strategy, ll (L against Lp L against R); Strategy 21 (L against L# 

R against R); Strategy' 33 (R agminst Ls L agdnst R)# Strategy 41 (R 

apinst Lp R against R)e In short# each strategy specifies a choice 

&Vainst, AU cloLoe of player lo 

Player 10 on the other hand,, in still ignorant of the choice of %r 
player 2 at nave 2. Therefore,, at move 3. he still does not know 

precisely where he is in the game tree (except thgLt he knows that he is 

at move 31, and he knows whether he its an the left or right hal of the 
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(LS, R)p (R#L)s (R,, R). The nomalized form of the game of figure 1*593 

troe)* His strategic choicesp thereforelp are the same as before: (L,, L),, 

in n(w a four by four peqoff matrix. 

Figure 1.3.4 

Player 2 

(L ag L) (L ag L) (R ag L) (R ag L) 

(L ag R) (R ag R) (L ag R) (R ag R) 
raw 

minima 

(L#L) 

P4 

(a, R) 

Column Ma xima 

* 
ag = against* 

naximas of row minima, = 

minimum of column maxima = 

This matrix turns out to be strictly determined in exactly the 

wwne way as was that cW figare 1.3.2. i. e. plapr 2 finds column 4 

(which is identical to column 2 in figure 1*3.2) to be bestq and 

player 1 is gg&U forced to choose raw 2 merely to drav even. Now this 
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is lntOrs5tings beemse it shows that tba addition of AX information 

t COMPliCates player 21tv decision making taisk (as well ats player 

lts) without at the same time improving his rewardq Lee the value vo 

Thin situation is not true in gmeralv and as one shoad expects, 

afinding cat" the other p1werl a choice can increase the payoff to the 

player finding cutlo* To show this however# we shall have to introduce 

a new concept - that of MjMd L&ILtAg"so These are used when no pare 

strategy eeeme a good reply to the other player' a beat pure strategy. 

A mixed strategr in a probability weighting (auuming to unity) on a 

plaY4W' s pilre Strategies, Some of the veights W be zerop and a pure 

strategy is cloar2y Just a trivial case of a aimed strategro The 

value v Ls then the expected values, and La defined as fo31 owe where au 

is the Ls jth elment of a payvff matrLms xi is the Ljh component of 

player Its mixed strategy vector and jr is the jth component of 

Plaw 2's aimed strategy vecton 

1*301 V 

Jul 
Now conAder the following gaM trOO 

Figare 1*3*5 
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r'1'8"ly,, both PlaYers stake Ueir choices uninfamed of the 

choice of the other player. 

L 

i R 

The payoff matrix is as followes 

FiPre 1.5.6 

Playe r2 

If plV er 1 choose a raw 2 in an attempt to ob tain 2j, he meq 

asmme that player 21 s best reply to this would be to choose colum I 

for a value of Oe On the other hands if player 1 chooses raw lp in 

an atteWt to obtain 19 he may rightly assume that player 21 s best 

reply to this choice would be to choose colunn 20 for a value of 0. 

N(Ywj, since this game is normalized the choices are made in mcreti, so 

of courset player 2 cannot which choice pleVer 1 vill maket but 

I- - he cannot even intelligently guess the choice eithers and the same is 

true for plVer 1. Obvioualyo there is no single best vay for either 

of the players to choose. Moreover# neither M&g the other to be 

able to guess what he will chooses This is the reason that we intro.. 

see mi=d strategi()s, player 1 chooses a probability weighting of x 

on raw 1 and 1-ox an row 2* S1 al I arlyp player 2 chooses a weighting of 

y on column 1 and 1--y on column 2. The value v is therefore given by 
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193*2 Ox (1--Y) + OY (3. -, X) +2 (1-x) (1-q) 

v=3 2z - 2jr + 

10503 
X(3y' - 2) -4 

If playvw 2 chooses y=I then the coefficient of x is wwo.. 

and no matter what player 1 does# player 2 need not pay his more than 

1*5*4 =y V= -4ý7 +22+2 2' 

Similarly# player 1 can gaarantee, himself at least this amount 
, 2* 

br choosing x zo J The opt-=' mixed strategiss therefore becomes 

0 --L ) For player ll 33 

For Plawer 2s -L ) 3 

And the value Y= -3 

Let us now consider the game tree of figure 1*3*5 such that 

player 2 chooses after player 1 Aad in somebw informed of the choice 

of p3ayer 1 (he cheats) i 

Figure 1.3.7 

.0 

L 

2 

«OF 
40 

Player 2 IF 

Player 1 

32 



33 

Player 1 still has only two pure strategiess L or Re Player 29 however, # 

now hais ftyar pure strategies# as shoun on the following payoff matrix: 

Fieure 1.3.8 

Player 2 

ag LL ag L ag L ag 

L ag RL ag L ag R R ag R 

minima 

L 
r4 

a 

mi 

na 

maximum of row minbta = 

minimum of column maxim 
V=0 

This g-, me is strietly determined vith v= 0� PlaYer 2 uýsing 

pure strategy of column 3 and player 1 having two equivalent strategies 

of either row 1 or row 2 or AM mixtwe of the twoo (The value v will 

be the same). Therefore,, by knowing the choice of player 1,0 player 2 

can hold p3Ayer 1 to a draw - instead of losing -1 3 to hiA* Intuitively,, 

we saspected that increaiing a plVers' information in a gaze (relative 

ag against 
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to the other plvers information) would I ove his situation. This 

has now been fwwUly demonstratecL Increasing a player's information 

actually Increases the size of the payoff matrix beemse it makes more 

numerous the available strategies* An incidentil remark of McKinsey' a 
11 

is WeU worth qu4)tALng in this regards 

No** and it in true almost universallyO besides# that the 

loss knowledge we have# the easier ve find it to make up 

our minds (a deaf man has less trouble deciding on a wife 

thun has a man with normal hearing) 11 o 
A final poInt with regard to normalizatim of games should now 

be briefly mentioned, We are refwTing to chance (referee' a) moves in 

the pme* Since these are asmimed to be made by the referees, we muq 

just as well a smime that they are all made in advance of the actual play 

and then disclosed to the players at the actusal moment they occar in 

the course of the p1sq. In this wayj, tboy can be pat in the game tree 

(Looo the probabLUties of the varicras branches occurking can be put in 

the game tree) in advame of the plars and all possible pure strategies 

can stln be mapped cut before the actua play. The vay this works Is 

discassed in acne detaJ3, in McKinseyp Chapter 5. An interesting alterý. 

native approach to 4, ft" chance (refereele) moves in a game 

writing cut a Sme tree ia contaUed in a version of poker discusoed by 

Kommy, anall and Thampswý2 (Ppo 578,, 581)o 

in this gamet the cards are dealt by a referee at the beginning 

of the gam4, one card to each player, The cards are either high (H) or 

low (L) with no further gradations assumed. * (For ezapplej, red carcW 

could be low and black cards high). The equiprobable dwas are, of 

courses, the following four aets., where the firot letter in player 11 s 

card and the second is player 2's cardt (HsH) (H,, L) (LpH) (LOL). Each 
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player can see his own but not his opponent's card. Player 1 is 

allowed to choose first and he can either Psee" or "raise". 1f he 

chooses to see* the higher hand wine or eqaal hands split the pot ea 

player 2 has no choices in this caseo If player 1 chooses to "raise". 

he adds an amount b to the pot (which already contains an antep a.. 

from each player). Only if player 1 chooses "raise% does player 2 

exercise choices; he can either "fold", in vhich case player 1 vins 

the pots without revealing his hands, or player 2 can "call"l by adding 

the same amount b to the pot. Then the cards are compared and the 

higher hand wine or,, for equal hands , the pat is divided evenly between 

the playerso Player 10 a strategico are the four possible combinations 

of seeing and raising against his own high or low card (eeg* raise 

against a high cardq see against a low card - which we can xCite raise. 

see). Player 21 is strategies are the four ecabinations of fold and call 

(e. g. b fold against receipt of a high card# call against receipt of a 

low card). Since the four possible deals are assumed to be equipro. 

bable, we can easily compute the e&g2jed jallie of each combination of 

strategies, q for example, (seeraise) versus (fold-fix1d), & 

For the deal (HqH) Player 1 sees and the pot, is split* 

(HjL) Player 1 sees and wine the potp i. e. ) a. 

0 (L#H) Player 1 raises and player 2 Lglds player I vine a. 

(L#L) Player 1 raises and player 2 foldos and so 

player 1 wins a* 

The expected value of these two strategy combinations (to player 1) 

can tlvls be computed: J20 + J-za + Jxa + J-za =k 4 

The number Ah would be entered in the appropriate place on the 4x4 
4 

payoff matrix* In this way, # the probabilities involved in the random 
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deal can be takon into account in the normalized forn of the game even 

withmt the use of a game tree,, The reader is referred to Kemeny# 

Snell -and Thompson 12 
for the remainder of the analysis of this poker 

game. 

le4 Mixed strategies and the minimax theorem. 

We introduced the concept Of Mi"d stratogies in an attempt to 

elucidate a key issue of game theory - the role played by information. 

We shaU now discuss mbmd strategies for their oim sake. One point,, 

however,, has alrea4 been mentioned in the discussion of figure 1.3.5 

and 1.5.6 - secrecy. The game described by figure 1*3.5 did not 

allaw player 2 to know the choice of player. 1. If he had been able tA) 

knows be could take advantMe of this fact, * an was seen in figuure 

1.3.8. Therefore., if the rules of the game allow secrecy the players 

are well advised to exploit it. In this casep player 1, by keeping his 

choice secret, i. e. by randcuizing It with appropriate probability 

weightinges, could win something from player 2. Moreover player 2 would 

not want to announce$ in advances, his choice to player lp since player 

1 coald then exploit this knowledge to his own advantage. Now,, for 

strict determinatenesep announcing an optimal strategy in advance will 

make no difference - since the other player has already decided that 

the annvanced strategy was going to be used anyway. This Is why# when 

we gave player 2 more information in the game tree of figure 1*3*3 than 

he had had in that of figure 1*39lj we still obtained the same saddle 
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ý)oint and optimal strategics. Secrecy, plays no essential role in 

strictly dc-termined games. But it is the featare of mixed 

strategies. The specific choice in this case is so secret th. -.,,. t ý-ven 

the player making it does not know in advance what it ui. 11 be. He can, 

if he chooses# announce the probability weightings,, since he can lose 

nothing if he does this. 

We adiall examine the algebra of mixed strate6its in more ,, ctail 
13 

largely using the notation o-, L' Vaj da. 

strategy expected value as 

vZ7 xjyý ail where 
ij 

We have def ined the Nixed 

and Z 

-vn) 
2 Y'j ý1* 

Now suppose that player 2 chooses a pure strategy which mLnindze 

the payoff of player 11 s mixed strategy* TIvA is# suppose player 2 

chmses 

1.4.2 min ai j zi 
j 

Player 1 can ass=e that play6r 2 will certainly want to achieve this 

minimamo Therefore player 1 may as well assume that it wil. 1 occure 

and choose his mixed strategy x to maximize this valuet 

1.4*3 max min ail xi v, 
xj 

sjmtLirlj,, we can obtain the analogous expression for player 2t 

1.4*4 min max Zajyj 
ý V2 

yi 
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Now the valu es v, and V2 involve a pure strategy the best 

mixture of the opponent* We can also establish them against any 

strateLry: v, mýn -x a and v max Y- i ij 2j "ij 

where I 
-and 

7 are any strategies at aU. Soo we aA, have 

V, xZjaij and 

z Zý am 
x 1.4.6 v21jx iyj ali 

Since the right hand sides of 1.4.. r. , md 1.4.6 ore eqaall, we always have 

L 1.4.7 V, wo v2 

If we can prove that V1 '2 V2-1 we will prove two things. 

WI - firstp we A32 prove that mixed strategies can alkgZa jve a value v 

(for non strictly determined games) which is identical in spirit to 

the va2ue V for strictly determined games,, i. e. a value v below which 

player 1 cannot be reduced no matter what plVer 2 does and r, -, o. f -,: than 

which player 2 need not pay player 1 no matter what . 'Lý, fcr 1 does. 

Second,, we win prove the minimax theoremO the most important theorem 

in game theory, # which establishes precisely what we have said in the 

preceding remark. Von Neumann and Morgenstern proveU the til-, ocorem by 

showing thats with appropriate mixed strategies it is never possible 

and we shall now present this proof,, for V1 '6 V2 * 

The proof of the minimax theorem in von Neumann and ltýýo-., -, ýýenstern 

not based on the proof by von ýJcumann 
1. 

rather it is a 
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simplification of a proof by J. Ville I'arther si-T-II--dij icLALon of 

the treatment in von Neumann and I. orgenstern can be found in the work 
13 22 

of Vaj da and of Owen,, The presentation here is based on von ý, 'euniann 

and 14or,; -, -, on stern,, Vajda and Owen. To prove the theoremp we shall first 

have to prove two lemmas* 

. Lýs The Thg2am S? L 
J&k 

§M22p. Ktjjag =emlaI2 
dmmwwý 

41 4 -0 
1.4o8 Let p vectors X jP be given, Then a vector Y 

41 4p 
either belongs to the convex L spanned by XX or there exists 

4 
a hyperplane which contains I such tk-,. -,. t all of L is contained in one 

half space proclaced by that hyperplane. 

Proof: 
4 

The case where Y belongs to ý., is trivial,, so we shall assume 
4 

that does not belong to C. Gonsider a point Z of G which lies 
n2 

as ý-; eux as possible to i. e.. where (Zi - Yj) a 

,, inumum. Now consider arq other point u to C. For every t 

(0 t 1) 0+ (1 - t)"Z' belongs to the convex C. Since Z has 

the minimis property mentioned abovep 

I -b t)'* .. 
112 7 14 

. 
-k 12 

tu + (i -z=7, Y 

4 .04+ (Z -i) 

t(U 1 '00 9 
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This givesp by elementary algebra 

(2, . y, ) (u, t+ (ui 2t2 'P, 2f0 It we rirst 

divide by to we next see that as t converges to Op this expression 

converges to 

7 
2f yi) (uj - Ol, and u'lividing by 2 

7 (z yi) (u Ix10. Having shown that the 

portion on the left is greater than zero# we see that 

(" 
em 2)+ which meý--, nis 

(zi 
L)2 yj z 

"' 13 a' 444 Now, 1 --0 since Z AI (since Z is in C but Y is not) . 

11 

Thun 70 

JL*e*j 
A(u 

i 
(z 

i- vi) - yi(Si - yl. )) 7 0* 

1 

(ai - YIL 
i=l 
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Set aizi10 and a: L an ý0 is not possible because 

4 
z I., Put aivi bv which is a hyperplane to which Y 

belongs. Set X, =Ui and we have 

1.4*9 
t 

six, bs which is the half space prodaced by the byper- 
im 1 

planes and U belongs to this half space. Since U was an arbitrary, 

element of Cp the 
, )roof is conplete. 

The second lemma is the followings 

The thgore - Ma-I&Xe L& matriCeS- 4wmwwm - -M 

g1k 

1.4*10 Consider an mxn matrix Y. = (ail). Then the following 

alternatives are rmatually exclusivel 

The point 0 (the zero vector) is contained in the convex hall C 

of the m+n pointat 

(a: 
Lp 

0*0 

an *, ": (ain" ... am) 

and lu - 
(1,9 00 0%Q# 

02= (09 ip es*# 
0) 

, an - 
(09 

6009 
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and Uns there exist nwabers y, suell that yj Z 0, 

ZY 
=1 ýý, id 

±ay -1 1ý is 0600 no j=j 
0f tor 

2) The point 0 is not contained in the cunvc. x hiU of the m+n 

points# and there wdot munbers x1p 9**% such that 

Xi 7 

ixi=1 

ajx, 70 for j 

and 2 are mtuAlly exclusives 

fax70 
by y and sum over multiply 

L=l ij Lj 

This gives aijX,. Yj7 0* .. -Ow 
j ul i=l 

týr xi and am over i 

m rl 4 
Tkdýý gives 

;I;; 
Ic&ijxiyj = 09 This is a contradiction. 
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Proof of case ls 

Since 0 is contairried in C. It is a convex combination of the 

m+n points* Tbus there exist mumbers t Of with 

m+ns, and adding to unity., sach hat 

U 

t4a 
j=1 � 

tn+i= Op for i=1, ***p 

(Thas a column vector of 0 is generated with the appropriate element 

from e contributing its weight)* 

±t 
aij 

14 

Sol we see that 

Ir ti =00, b =tn= os tn+1= 09 

which is not possible since, -, s we have just remarked, it comes frm 

the unit vectors# which are linearly Independent. Tbus we see at 

least one of the t, i is positive. So# iý t17 Oj, and we can put 

194.10 
1 

ýv 

ti 
J=j 

and -these values will satisfy 

the conditions of case le 
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Proof of case 2s 

Since 0 does not belong to Cq we can use the theorem of the 

supporting hyperplane to szq that there exist mabere sl# *9eq a 

such that 

for 

Now this is true for every one of the m+n vectors, so s17,0 for 

all is So# we can set 

xi and these are the mmbers 

specified in case 2. 

Proof of the minisax theorem: 

W'e can use the previous result to prove this theorem. Recall 

tivA we know already that V14 W2 0 

Case I gives us y such thatt for all i 

1.4.12 Z ajyl, 0, There fore,, also for 
i 
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max Z: a ijy i= ij 

sN ol 

194*13 

le4. ol4 

M-1 n max a44y = 0. 

Case 2 gives us x such that for all 

aijxi 7 0,, and thus,, also for 

min 1: aijXj 0, b 

sot 

1.4, el5 Irax min aX 

SO., 

0 1.4*16 v, 40 /- v. is not possible. 

- if 
Now take any k and -Iter 

the matrix to become a ke In the 

same way as befores it is not possible to have 

La4*17 v, Zk 4- V2 * 
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Thus# we have only the possibiUty that 

the proof of the theorem. 
1 V v2v wh'ch comPletes 

It is clear that the only thing that the miniaLax theorem does 

is prove the existence of a value v for mixed strategy zero mm two 

player games. Now this value v is optimal in the sense of being at 
least v against the best that the other player can do* What aboat 
the other player's worst? In generals, optimal strategies do not 

wcploJLt the other pleVerl a mistakes* Optimal strategies are emserva. 

tive strategies. This is the reason we said much earlier in this 

thesis that the pover of the concept of optiml strategies is apparent 

oaU if both players are assumed to be rational (i. e. good) 0 players. 

This topic is discussed at some length in Luce and Raiffat as wel. 1 as 

in von Neumann and Morgenstern (see, in particular# section 17,11). 

Another problem is that the minimax theorem gives us no hint aB to a 
87 

way to find the optimal strategies * 'This can be done qaite simply 

for W games using the device of 1.3.2 to L, 5e4, In factq for W 

mixed strategy, games# general solutions are readily available and can 

I 'Alaw, be founds, for In von Nv=ann and MargensUrn (section 18.2.5); 
14 XORGIW Snell and Thamps=j and Rapaport ý The reader can derive them 

easily encagh himself if he remembers the fact that the optimal mixed 

strategy is good (ie. gives at least the value v) against arq puxe 

strategy of the opponent. Thuss if the following is a mixed strategy 

matrix (for which a necessary and sufficient condition is that the 

diagonals be separateds ie. a>b and d -7 c,, or c, - a and b/-7 do, ) we 

can easily compute the optimal strategies: 
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Figure 

Player 

'-4 

If player 1 chooses (xq 1. x) and player 2 chooses column 

we have,, 

1*4*18 x (a) +c (isx) so 
"' 

Simalla lys, if player 2 chooses colum 21, we have 

(b) +d (1-x) 1 

It is safficient that these eVressions are in fact equal to 

v1 so we can iset them equal to each other and obtain 

1*4.20 x (a) +c (J6. x) =x (b) +d (1-x) 

From thi s, we can solve for x to obtain 

d-c 1.4.21 wommom a. c. b+d 
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The farmila for y can be islAilarly obtainedp and# of coarses Jx and 

1--y can be even more easily obtainedt These formulas - which we shall 

not compute here - constitute a general solution for W mixed strategy 

games* (See Ma 5*14) for general solutions to all matrix games). 

A few properties of optimal strategies shmId at least be 

mentioned. We have alreakly noted the concept of one column (or row) 

majorizing another. This is also known as dgg&ation. There are a 

couple of varieties or domination which shuald be pointed oat. In 

addition to the one we have alre&4 mentioned (every element in one row 

strictly greater than every element In -another row),, there Is also the 

case of at least one element greater than its corresponding element 

and the other elements equale Finallyg there is the domination of a 

convex combination of two rows which has a greater value than a pure 

strateff of another rov. Another property of qptJma3 strategieg JLg 

that any row or column vhich appears in an optimal strategy iisO by 

itselr as a pure strategy, # an eaua3. i against the other player's 

optim33 mixed strategy* This means that vhen used as a puro strategy 

against the other player's optima3 mLmed strategy# the row (or column) 

will proftee the value v. The varioas properties of opti-ma3 strategies 
is 

are discassed at length in Karline 

We interesting properV of mixed strategies might be mentioned,, 

althwgh the reader my have spotted It alreacýre Reconsider the game 

of fig=o 1.3.6 
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Figure 1.3.6 

1 

4 

0 

1 

0 2 I 

Player 11 s optimal strategy, was# we may recall ( 23: 
ý -31- ). 

This meam he chooses row 1 with probability Y-3 and row 2 with probabi- 

litY -31- * Yet# his highest pWoff , 2,9 is in row 21 The intuitive 

reason for this reverse weighting is to .., volci being taken advantage of 

over something which seem obviously desirable. This is nerely avoiding 

the "fools rush in" mentality. It Is described as "inhibition". by 
I A12 dw 

Y(Xmgo 
7, 

; Ae sho, Ud note that the solution to a zero sum two player ý, a-me 

matrix holds up to a JL-iý-ag Lrgagf2 ZM&j2B . This means thut if A is 

a matrix,, s is a positive sc. &Ier matrix and Ba constant matrixg 

the good strategies are unaffected by a transformation of the form 

sA +B. 

The theory of zero sum two player games is a agg&tivo theory . 

i. e. it tells one that there always exists a method of plaj which wi32 

guarantee a 'value v no matter how gg2j a player the opponent may be. 

If the opponent is a bad player the theory says that the amamt v can 

still be obtainecig but the theory does not ir;. (d, -. ý. te that the opponent' a 
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weaknesses can be taken advantage of* Optimal sIvrategiesp therefore 

arre normatively ZZ& strategies (this word was used by von 'Jcamc-axn and 

'.. "orgenstern rather than "OPtimal") 9 Whether or not the theory is also 

jqjcriý. tlye of real hu3an bein, -.. -s . good players$, average mes or even 

bad once - is a subject about which the theory says nothing. 

105 Information theory# cybernetics and zero sum two player games, 

Let us look again at two of our examples* The first example is 

that of figure 1.3.2. 

Figure 1*3,2 

"AP. 1 ayr 
4 

Row minima 

(L, #L) 

(L,. ) 
r-f 

$14 

I- ) (R 

'll 
k- 

ximm mininrum 

J[L, -jJWjgUkM - LMI. A. M. KU%AAU 93MA-L &-fts- 
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In this game# we may recalls the players were utterly 

uninformed about each othcr Is choices. When we alloved plVer 2 to 

see the choice player 1 had made at move 19 we obtained the foUowing 

payoff natrixs 

Figure 1,3*4 

Player 2 

L ag 
L ag 

M 

0 ca 
rqi P4 

folum 

L age LR age LR age L 
R ag* RL age RR age R 

maximLuz of row minima =0 

Unimum of colum maxima =0 

* 
ag = against 
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Thus, we saw that Increasing player 21 a information chan,, ed b 

A-01hing in this strictly determined game. Now,, consider the other 

examplep tlrmt of figure 1.3.6, 

1 -1 'ijure 1, ', '. 6 

Player 2 

L 

L 

r-4 

lt 

In the extensive form of this games, we may recalls each player 

made his choice uninformed of the choice of the other player. They 

employed mixed strategiesp which turned out to be the same for each 

playerj, namely x 'L 3 33 
I 

and v When we gave 

player 2 information about the choice of player lj, how(lver,, the situa, 

52 

tion altered radically. 



53 

Player 1.3.8 

Plver 

L ag LL ag LR ag LR ag 

nima 

L 

a 

col 

max 

ag Against. 

Maximum of row minima = 

Minimum of coblmn maxima 

v 

The game., in short,, beeme strictly determined and player 20 who 

obtained the new information$, was able to Increase his payoff from ý3 

to 

it is clear how the two cases differ, In the first case,, 

although player 2 obtaiaed new information,, he was just as certain as 

he had been before obtaining the information exactly what player 1 would 

-he second game# the one which had a mixed strateLj solution do. But in -It 

(i. e. the game of figure 1.3.6),. -the addition of new information removed 

L ag RR ag RL ag RR ag R 



54 

DljUr &I-s unce tatn-ke The removal of uncertainty, thereforep is the 

key ingredient which distinguishes the two games. It is reflected in 

the f act that the value v increased for the player whose uncertainty 

was removed. (This f act has been used by Farquharson 88 to show the 

importance of the secret ballot in voting). 

Now information theory treats information as "that which removes 

uncertainty. B17 The average amount of informatice obtained after the 

receipt of a message has been given a precise definition by Shannon 18 

and we shall look at this definition in a moment,,, At this points how. 

ever, v two things are worth noting. lirstq something may be called 

"Information" in game theory even if it removes no uncertainty. Secondp 

to put the matter most plainlyp information theory talks. about the 

anKrant c)f uncerWLnty In a system while game theory tells us if we can 

make wV money out of the uncertainty. Notice that increasing a player Ia 

information also increases his mmber of strategies. Howeverp the 

increase in his strategies only sometimes leads to an increase in 

payoff - when the information which prodaced these new strategies also 

removed uncertaintye If no uncertainty is removeds the new information 

merely complicates the problem for the person obtaining it. Ifthe 

problem got so oomplicated he could no longer understand it# the new 

information could redM his payoff - by making him play less 

efficient1ro In deterministic games# ignorance may be blisal 

Aebby 
17 has described what he has called the Law of Requisite 

Variety# which we shall- now relate to the theory of games, Consider a 

table of outcomess 



Figare i. s. 1 

L 

1 

2 

3 

R 

fr 
Ice 

ink 
bb 
c q 

h 

d 

p 
n 

191- 
k 
f 

a 
b 

c 
m 

(from Ashbjr# Table 3.1/, 5/1) 

R specifies a choice of strategy (, 
--x p -, r ) for each choice of D, 

Since no letter is repeated in each columap the variety (number of 

possible outcom. ei) cannot be less than 

1*501 D Is variety 

1" 1% 1a variety 

= m/n where m is the number of 

rows and n the number of columns. Thus the variety in the outcome V0 

cannot be less than d (variety of the disturbance divivec', by the Vr 

variety of the regulator). Measured logarithmically,, this gives us 

1*5*2 Va=Vd. Vr. 

This formula shows that a decrease in the variety of the outcome can 
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only be achieved by an increase in the variety of the regul,, itor, AB %F 

Ashby says,, "Only variety can destroy variety. te 

Ashby then derives essentially the aam result from the work 

Iý of Shamon,, some results from his Mathematical Theory of Gommmi- 

cation. Shannon's measure of the average amount of information 

co=wnicated by a received message is 
lJven 

by 

105*3 H=. M: Pilog Pi. 

Using this formula, ahannon establishes a few identies for information 

sach as 

10504 (i, ) H (Ro D) 

H (R 1, D)' 

where li,,, (R) is the entropy, O-P 11 when the disturbance is known$ and 

'i(Rg D) is the entropy of two information sourcesq R and Do Shannon 

also shows (p. SL) that 

1*5e5 '3 (Rv D) ýH (R) +H (D) 

This is intuitively obvious since. the uncertainty of a joint event 

should be less than the sum of the uncertainties of the individaal 

events, unless the two events are independent (Lee*# where p(i9j) 

p(J)p(j) ),, Ln which case the entropies should be equals 
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j, oiýijj Ashby' s condition that no letter be repeated in the same colum 

means that 

1,5*6 % (E) Z% 

And the two identies above can be set equal to each others 

1, s*7 H (D) +% (R) -H (R) +% (D) 

Substituting HR(E) for HR(D), q we get 

14,508 H (D) + (R) H (R) + RR (E) 

Now from the identies we have 

1*509 H(R) 

Thuss 

-j OW 110 5*10 I-, ',. (D) + ', ýj 1; 
(R) i H(RpE) 

But we know that 

So'l 

Which gives 

H (R) + li (E) * 

(R) 4H (R) R (D) + 

10 5*15 H (F, ) ZH (ID) + RD (R) - H (R) 

This result is essgntial4 the same as the earlier exprG98iOn of the 

Law of Requisite Variety* 
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The intw*xtlzg thing is that an analogme resUt exists in zGrO 

sum two player sum theoryo 66 
Althoa& the game theoretic reoLdt Lis 

mwe uo*W# It answers the same queotions How moW strategies do I 

need to do an w*U an possible apAnst, a malevalent " efficient 

opponent? The answer Jel No fewer strategioil than he useot 

1* U14 Consider a reetw*ulw gme with pq*off matrix Ap and 

consider an X which is stratoW for the raw player and aI which in 

stratoff for the Colum playwo A necessary md sufficient condition 

that tho X and X =e (exbrom point --- meaniM thrAt O-U OPUM81 

strategies can be derived from thom as ccmvex oatbinaticne) optimal 

strate4" Is that thwe wdst a aubmatrix B of Ap cro rdier, r,, mch that 

J (sAj B)J* 0# and rr 

-det 
B 

t B)J; 

ilk) 
r 

(adj B)ýt- 
rr 

ir(aN B) t 

r 
(adj B)Jtr 

wbwe X is the voctw obtAined fras X by deleting the ejsm, 6jjts 

4 m. ekbt 
F 

c4rre to the rms deleted to - -&In B from Al X is the vector 
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obtained from I by dc-;, leting the elements corresponding to the columns 

deleted to obtain B from A. Jt Is a colum vector of length r r 

containing only 11 as and adj B is the adj oint of B. (The adj oint of 

a matrix B is the transpose of the matrix obtained from B by replacing 

each element by its oofactors where the cofactor is (-l)'+Jdet(ll 
ii 

(B))# 

and )ý, (B) is the minor of B obtained by striking out the ith row and 

jth column)* 

We shall not prove this theorem here (It is proved in Mickinevp 

Section 5, P3) since oar purpose is merely to point to its existence,, 

and to sme of its features* Notice that each strategy has the same 

aLwber of components in It* 

A rumberical examples fIrcm MdUnseys, (p. 79) illustrates the theorem. 

JL 

The three W submatrices (these are the largest square subnatrices 

possible in this case) are as follows: 

24 
B 

1 

Figure lo 5,93 

20 

14 

4 JO 

04 

ewW to show that submatrix B produces aX strategy with a 

negative components, and thus is not acceptable. Submatrix C is more 

seatisfactorv 



, an 
%RV 

The det C=8, p adj C= 
40 

01r (adj B) = (3 2) 

Pt 
and Jr (adj B) (4 1). Thass applying the formulasp we obtain 

1* slais (3/50 215) 

Ym (4/ß» 09 1/5) 

3x 8/5 

This result can be proved to be a oolution to matrix A by trying the 

X against each column of A to see IS it yields I' vp and similarly 

by t ry I rj4-, . the Y a&pjzst each row of A to see if It yieldis vo If 
4 

both X and Y satisfy their respective inequalitlest they are Optimal 

strategieso It can be shown that the submatrix D does not yield a 

solution to A* The optimal strategied(, ebaracterizod by this theorem 

can be expressed in terms of the strategies for the Disturbance and 

the Regulator of Ashbv#s Lav of Requisito Varietys The reV. latcr must 

be able to use at least as many pure strategies as the Disturbance 

p XWS &hS kLakvkomý gjg uses , Ut gLLLcjglA. If the Disturbance 

is aptima3. (malevolent) bat not efficient (not using a minimam number 

os strategies)$ the Regulator need not use more than his minim= 

optimal number. The requisite nximber of strategies correopwds to the 

nURkbw of oomponents In the smallest optimal Maximin, strateg7, The 

value of the game Its the essential variablo which the Regulator is 

tx7ing to ke" under control. The nwaber of elements in the smalleot 

pare mAmetrix which proviLdes optjAal strategies corresponds to tbe 
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outcomes B in Ashby' s sense* Ashby, ' s term HD (R) equals zero since this 

corresponds to the entropy of the Regulator's strategy in the minorant 

gamep vhich is strictly determined* 

There is on3, v one objection to this analogy - wtiy should the 
I 

Disturbance be malevalent? We shall not attempt to ansver this question 

now. It wiU come up again when we discuss the theory of zero sum 

interpretation# and we shall deal with it then, The idea-that one 

player emercises control strategies and the other disturbance strategies 
19 

has recently been further developed by Banerji. The awreepcmdenes 

between a zero mm two player gaime with perfect infortnatim and In 

extensive form with the activities of a prey and predator is described 

by Ashby* 

Reconsider the function of L1.1, p i*eo 

f (d, d)# for k=1,9 2 kr 

Consider the case wbere the predator comes within view of the 

preV and call that The prey's first response is d2 The predator 2* 

then stops to take note of the reaction of the preyp 
4* The process 

contimes until the prey escapes or is eaten. This of course is 

exactly what the function of 1*191 describeos 

k 
fk(4# 4# 4# 

oo*s cl; ) k= 1#2 

Note that we have left opim the qaestion of who has the last 

wcwd by designating the last wve as 
ý* 

AoW has also po: Lnted out that a game in extensive form can be 

shown to be is(norphic with certain machines with input. The fonoving 

diagram Is from Aslibyl s figure 13V2PIls 
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Fitm, re 1.5. g, 

C 

r 

V1 
. 9ý 

V2 

ki 

The above diagram is the machine with input* The players Ti 

know its internal structure (i. e. its game tree). The switch F 

determines which game is played* The vý are chance moves (referee's 

moves), b The players Ti are determinate (because the game is in 

extensive form) 4ynamic systems coupled to M both by reciving informýi- 

tion, through definite channels li and by making determinate acts on 

Novo the activities of the TIs and the vi acting through Uis Ymachinery 

of M bring aboat controls on the dials G. The referee,, H,, reads the 

dialoland makes the appropriate payments to the T's. 
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If the plVers use optimal minnex strategies, thW will preswoo. 

ab4 be satisfied with the paqaents received from ho and the system AU 
be ultrastabloo 

A link has been indicated by Georgoo between the theor7 of neural 

nets and the th*ory of two playerp zero sum games* 
78 This has al-so been 

73 discassed by Jan Goessip w1w has succeeded in constructing a neuron 

network model to genorate optimal strategies* The model is too compli- 

cated to be discussed in this paperq howeverj, the technique for 

approximating solutions to games which he employs will be describedoin 

a later section (14,7) 
* 

Notice that because minmax strategies are not pennauently 

antimsi # and for complicated gamesp not alvays coWtables they belong IV 
to the general field of hLULg&jggo The term has been defined by 

Goorps 96 

The word Oheuristic' is used to represent a genwal rule 
of thumb (ad hoe rule' or Oshorteutl are sVnonymaus) which 
U meeAt as a good rough guldes but which in not an 
algorithm# and is therefore liable to error* An wmmPle 
would be that of soyUg 'Never allow your motherwin. -law to 
live with you or 'In sumer it is sunny's etco These are 
'better than average* guiding principles to which there are 
obvious exceptions,, and they are used when an algorithm is 
either impossible or uneconomic* For example# to work out 
exa, etly how to play 'perfect' chess (bgr an algorithm) might 
take a thousand yowsp so we play by houristical the better 
the heuristics the better the player* Heuristics are like 
generalisations of kWpothesess, and intelligent behaviour 
leads to the adapting and modifying of heuristics in the 
light of experience oeee 

In this context Obouriatic" refers to the applications o.. both 

normativo and descriptivo - of the swo sum model* Foraillyp the 

theory specifies an algoritbmg since a minmax solution always exists 

to a zero mm two player gamet although., of coarses as the quiatation 

shov$# the solution Is not alvays computablee An application of zero 

am 2-oplayer games has been made to optimal vord length in a natural 
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language (English) by Mandelbrot. 99 

Before leaving the topic of cybernetics and two player zero 

mm gamesp mention should be mad* of the single player decision making 

models known as "games against Nature*" These are part of the field 

known as decision making under conditions of uncertaintyo These are 

zero am two player games where one player is a real player and the 

other player is Nature or the state of the vorld. (In part 7 ve shall 

also talk aboat games against Natureq i*e*j zero sum two player games 

where one player is a real player and the other player is an imaginar7 

player. The only differences between the games against Nature of 

section 7 and those of the present section are the way they are obtained 

and their exact use in the decision making process; the spirit of the 

tvo is quite similar). Games against Nature are discussed by Milnor., 102 

and we shall make only a few comments* 

player games (the second First, q since these are essentially . 9ne 

player is just a fiction) the theory of zero sum two player games is 

used as a heuristic device for decision making. Thus they properly 

belong to the field of heuristic decision making,, as has been pointed 

out by George. 
71 

Secondp although a maxmin strategy for the real 

pleqer (with the payoff matrix representing the possible monetary pay. 

off for each course of action against each state of the world) is one 

type of decision miodelýo some of these decision models involve trans. 

formation of the payoff matrixo We shall discuss an example known as 

"minmax regreto" 
103 Consider the following payoff matrix# where the 

rows represent courses of action for the decision maker# the columns 

states of the worldg and the nunbers the monetary payoff to the (row) 

player: 
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641 
783 
259 

Suppose the decision maker decides to obtain 9 (the moat he can get 

in this case). Ile nust choose row three and ass-=e that the state of 

the world will be as represented by column three. But what if the 

state of the world turns out to be that represented tq column onel 

The row player would obtain 2 instead of 9, * Had the row player correctly 

guessed the state of the world,, he would have chosen row two and obtained 

Thuss, the difference between uhat he actually obtained 2 and what 

he might have obtained 7 Is 7-2=5. which Is defined to be the 

regret suffered by the decision maker over his choicee We can compute 

the regret for each state of the world by replacing each matrix entry 

by the difference between it and the largest entry in the column. For 

the above matrixg we would obtain the following$ 

1 

006 
53 

A cautious decision maker my wish to guarantee that his regret will 

be the minimum,. Therefore., he need only examine each row for its 

mazinim regrets, and eboose whichever row has the minima of the maximum 

regrotos 
maximum regret 

row one 8 

row two 6 

row three 5 minimizes the maxima regret. 

This decision making concept saffers from the weakness of not 

being independent of irrelevant alter-. qatives. The important points 

from our perspective ares, first,, the game is essentially a one player 
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ganel the second player# Nature# is assumed to be acting in a way to 

impose the maxim= damage on the real player* ThasI the game is 

off actively intemrLt" jg& & &M 21M ta2 r)1,2- , rýr , with all winnings 

obtained from Nataroo Second$ 'given the zero sum interpretation,, an 

ad hoc rule is used to transform the payoff matrix# before the decision 

in mades and the decision is made on the basis of the transformed 

matrixe In section 7. we shall develop a solution concept which is 

in somewhat the same spirit - reinterpreting a nonzero sum gane as a 

zero sum two player game where one player is Nature# and# in doing this, 

making use of rules to change the payoff matrix entries. 
I 

1*6 Game playing programs 

We have discassed zero sum two player games with perfect 

information and have looked at the theorem which says that they always 

are strictly determinede We have al so noted that game trees can be 

indescribably oomplIcated. For example the game tree for the most 

famous and prestigious example of a game of this type, i. e. chess# 
On 

involvee somewhere around 10"J different paths through the tiree am 

a figure estimated t7 Claude Shannon*20 And the theory of pmes 

does not give us a clue as to how we should play it. For a way to 

plaIr 

. infal3lbly winning chose - and there may be more than one - we 

would need to explicate enough of the game tree to get from first to 

last move gad jQlov -= &U dgtour6s taken by the opponents Obviously., 

this is again an indescribably complicated task# even though it Is 

clearly a smaller job than explicating the entire game tree. Thus,, 

there seemis to be no hope of turning chess into a trivial game within 
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the foreseeable futures We cans, howevers pro6yam a computer to look 

ahead in the game tree a few moves and evaluatep in some ways the 

possible alternatives vhich are available. Now this is notp strictly 

game theory* Rather it is the mamdacturing of chess playing behaviour. 

Since the behavioux in mamifacturedg ioeop a buian artifacts, it is 

artificials, and since chess playing in an activity normally associated 

vith intelligent behaviour$, these chess playing programs are a branch 

of Ultif 19121 IMMIligence, Nevertheless,, these programs utilize some 

, game theoretic concepts (as vell as some heuristic tricks) and therefore 
U- 

faU into a sort of bwdarline zone between game theory and heuristic 

programing, The fact that these programs are essentially heuristics, 

rather than "pare" mathematicsq does not mean that they should be 

despised by those who call themselves game theoreticians. 

we have already seen that the (VtJ=1 strategies in a zero sun 

two player game are pj& permanently optimal,, i. e. they employ a heuris.. 

tic. -admittedly a high powered one - limitation in the search for 

strategies* Laters ve shall see that the theory of np-player games 

usesp in a fundamental way# a zero sum two player interpretation 

heuristic. Thus,, the entire theory of games will be seen to be shot 

through with heuristic deviceso 

Tbuss, we are well advised to look at a chess playUg program. 

There have been several* beginning with Shannon's 20, p 54 in 1949. We 

57 
shall briefly describe that of Nowellp Shaw and Simon. The basic 

idea of the program is as follows* First there are various well known 

goals associated with chess e. g. king safetyq center control. The 

goals, v in short# are alrea(V tricks associated with "good" (i. e. even 

passing) chess. They are however,, not specified by the rules of the 

game. Nowp the goals are called upon by an analysis at the beginning 
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of each move vhich determines what situation obtains in the gaw at 
that move (: Le*o what branchos lead from that nods). Having 

established the situation# the program specifies a set of appropriate 

goals. More than one goal is considered at a time -a list is made 

vith the most (witical ones at the top. Irom this listq the rest of 

the program is controlled, A "mOVS 96narat-or* proposes alternatives. 
(The word "move" is used here in its populart nat game theoretic sense). 
These again have been largely written into the program from the view- 

point of chess playing exp4wience. For example$ if the goal is 

"center control". the move gaiwatar wU1 propose P-Q4 for a good 

Opening choicee Having proposed that choice,, another routine will 

evaluate it to determine Its acceptability. This vill be based on a 

value for the proposed choice which is a vector having one element 

for each goal. This element is smetimes a number - the standard piece 

values,, e. go 9 for a queen - and sometimes the element siMly expresses 

the presence or absence of the property specified by the goal* Now 

the value vector is determined by looking ahead in the branches 

leading from the given nodes, and the question in# of caursep how far 

ahead? To determine this# a trick used by Turing 21 Is adopted in 

this program. This involves oxploring ahead as far as it takes to 

reach a "deud Djaglaa"o A dead position is one vhich is "stable*,, 

which is taken to mean that it is at the end of a seqaence of choices 

at which a3l exchanges have taken place such as an exchange of queens, 

In short# no more choices would be made which woald significantly 

effect the particular goal under oonsiderationg rich as material 

balanoee The search continues until the position is found to be dead 

. 0-- 
far all the gwas considered in the value vector. Thas,, the prWam 

does not search ahead for a fixed number of moves,, but merely contirmen 
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to 6604* UAW tbG V&bw VOctw is W011 defined* This- wald happen 

with a r*UUT*U sbwt sewchs or it cou3A be quite an extoonsire 

amraN depending witireV cc the pwdtim from which the sewch Ls 
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In the g Alagran (wbich its figwe 4 of Nwj&Ut Show & Simon) t 

y4P" ! *, %, *I 
[P0 

J whitA 

LAd 

___________________ 
11 

1r P 

L2 
-®® 

__�1 

"N 7A 

0-14L u 

WhLts 

K 

@e 10 

0 

69 



70 

The proposed choice for white P0 Is cy- 9 From this we obtain 

p1g whicho however# le-aves the third component in the value vector 

unsp*Wied. From this paintp we see that black vill choose between ý, r 

and 4.467 vill specify a dead position# and ý, - AU a3law 

white three further alternativesp 6ý- and 6 both of vhich 

specify dead Positiones and a third contimiation vhich is not 

shown* ThLiev we so* how the program specifies contimations. It 

remins to discass lum these static value vectors are compared. In 

other vordsj vhich one is chosen* Vectors are compared compment wise# 

with the first element doWLnating and thong if found equal# the next 

element ng,; and if famd equal# the next The decision 

procedure wh: Lch in used is that of I max, * Gaing back to figu" 

le6el# we see that at P1 black vmld certainly not choose ge # for 

this would allow white to choose 6 for a value of (4p 7, q 5), Black 

would therefore choose ,. 
g and hold white to (4, p 3# 1)9 This valme is 

therefore the minimax value of the choice cA a The " choice 

is made by establishing an acceptance level for a given choice# coupu. 

ting minbux values for var: Lcus goal specifications in order of 

&Mportanco and taking the first choice which reaches the specified I -- 

acceptance levelo If nme are found# the best of the evaluated choioes 

in taken. The estimated time per move for this program is between one 

and ton haws, 

Having read a brief description of the Newell* Shaw and Simon 

program# the reader might e2pect a description of its modification in 

the light of experience and,, perhapas a reference tA) its most recent 

successors, which has just won a chess tournament* 

HUnfortunatay this Is not possible, since there seem 
to be no survivors of the various chess programs known 
to have been written ... which are capable of really 
competent chess* On this criterion it appears that no 
significant advance has been made since the early days, 
in spite of a widespread and strongly. -held belief to 
the contrary. "AP 
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The stateamt ve have just quoted was writtAn in 19669 BY 

1987g a profTm ýmo vrittmiv that of Gremblatts'06 which was able to 

plaY PaSMUe ChOSS agaLnot good amateur playerse This program 

owl(; Vs 50 heuristicap has some book move s written Lntk) 

it& and explores to a fixed depth (bUt bail isame flexibility on width 

of emrch# ieeog evalua-don of possible choices at a givark position) a 

However# one authoritq on cccputez%--chea9,, LeV,, 107 doubts that sign1m. 

ficant progress will be made beVand the achievement a the Greenblatt 

programjp exurpt perhaps In the direction of hardware which speeds up 

the evaluatime LvWl a amosommt appearsd In 197le Far an exomple 
as 

of a reowt propoang noe that of -'Soottv which we "I mt discum 

bmrao InaidentaWs the game of checkers has also been made the 

cibject of artificlal IntelUgmoo propames 
80 07 bat we shaU not 

ddlacuss this topic her*, * 

le 7 Linear 
-wdmg and Browat a approziaation algxwitAm 

Am-wr zwo mm two player game in aatrix Awn can be solved 

ust_n%p the technique of linsur programming# Loos# every two plaM zero 

am flme problom in also a Linear pro. 4 V% problem* The revwse is 

aloo U%*, # but is of no particular interests The conversion In 

perfeeW straightforward. Consider an mxn matrix with aU Positive 

slammtes 
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a(l. 2) a(lon) 

a(i#2) a(ign) 

a(m#2) a(m#j) a(m#n) 

If p1wer 2 (Column) uses a pure strategy of column j S, and player 

uses a mixture (xis 7-2# **** XM) * whWO I Xj = 1,1 then we have 
M 

xiaij -'ý 9, t BAY* NOW,, fOr eVerY pure column against 10 at leajrb 

one g will be the ismalle. 1t. Call this v's Thmso fc)r every column j,, 

xlý v. We can divide by Tr to obtain 

xiaij 
and for the xi we got 

V 

Clearly$ the row p34yer wants to maximize 7p which is the same as 

minimizing its reciprocals, 2/fr,, Thusp our last two summations can be 

taken to be a standard problem of linear programmingp with the latter 

mn=tIon the objective function to be optimizedj, and the former 

smmation the constraints to which the objective function is subject. 

This can be solved by the simplex method* 

Thus set xjL x and m l/is and we 
I 

i 
7 

obtain a familiar problem of linear programming: 
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Shibi eat to 

1 
l, s7*2 2iaij 

minimize 

2: 4= 
Mg 

1 for all j0 

With the use of negative slack variables to bring about equallties 

and artifieW variables for a starting basisp we can use the simplex 

method to solve this game* The dual problem for the colum plVer am 

be analogoti4y defined* There are several abhor methods for converting 
A IV% ~ a game intko a linear pr . problemp but we ishall not discass the 

matter further* We could also show that arq linear programming problem 

can be cmverted into a (sqaww gmetric) game matrix# but we will not 

ishow this hiorso It is discassed very clearly in Dorfmn# et ale 
75 

The classic papersp one by Do Gajeq H. ILuhn and A. W. Tackerp 108 

another by Ge Dantzig# 
72 

and a third by Re Dorfman 109 
vere presented 

at a omference in 1951* 

The solution to a wwo mm two player gam in matrix form can 

be approximted by the algorithm of Brolifts 68t 69 Moreover# this 

algorithm can be used by a p3AWer who knows nothiýg about game theoz7, 

He only needs a maxims "The future will be like the past** At the 

first play,, each of the two players arbitrarily selects any strategy 

at &Uo and theng on the seemd pUq each chooses by mudnizing an the 

other's choice at play =mber Lo At play mimber 5# each player chooses 

according to the of his expectations frce theprevims pWj,, 

This is done by sumaing the elpectations associated. vith each pure 
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strategy choice. As an examples imagine a 2X2 matrix* The row 

player $We to himself# "If I had chosen rov 1 vhen he chose (say) 

Column 1# 1 would have obtained x plus my previous balance of X 

associated with my choice of raw 1. If I had chosen raw 2 when he 

chose colim 1# 1 would have obtained y plus vT previcas balzince of 

Y associated with ay choice of row 2.1 see that (say) X+x is 

greater than I+ ya so I shall choose row 1 on the next play* 11 The 

colUmn plaYer reasons simi Ar4. If this procedare is followed# as 

the number of plays increaseag the ratio of choices of row 1 to row 

2 will approach the optimal mamnin mixtures, and similarly for the 

ratio of eolumn I to column 2 (which will approach the optimal minmax 

mixture)* For games which are 23a, # and larger any convergent series 

AU converge to an aptiml strategav 
86 

ke a mwerical examples consider the following matrixt 

I 

4 

003 -1 

Starting the proesdars arbitrarily with a choice of row 1 and column 

1 for playwo 1 and 2 resp*ctLveIj# we obtain the following table 

for the first tive plairas 
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1*7.3 

Play Player 1 Total expectation of Player 2 Total axpectation of 
chooses Player 2 by choosing chooses Player 1 by choosing 

column row 
1 2 1 2 

2 3 1 .2 -5 

4 6 2 005 .4 

7 7 2 .8 -5 

10 a 2 -11 -6 

13 9 1 -13 .9 

This table could be made as long as we wish. There ares of 

course# three oth6r tables which could be constructed by starting in 

one of the other three matrix elements. Any rule could be used to 

break ties as in play 4 for player 2,, where his previous expectation 

did not give his an unambiguous choice. The rule we have used in this 

example is# "If in doubt, do what I did the last time*" However# the 

rule could have alternatively required doing the opposite of the 

previous choicep or could have required flipping a coin when in doubt. 

Von Neumann 
90 has developed a probabilistic approximation technique 

which has been largely ignored in the literature. 

Zero sam n-player games 

The theory of zero sum two player games Is extremely elegant 

mathematically. It suffers,, howeverq from an almost fatal defeOt - 

irrelevance to most social situations. 
92j, 95,, 100 Even many parlor 
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games involve n ;>2 playerst eg,, I most versions of poker. Von Neumann 

and Morgenstern were perfectly aware of this factq and devoted near4 
tvO thirds of their book to games which were not of pure conflict 
between two players-o These are of two types - zero sam games with 

A -ýý 39 and nonsero sum games with n> MOMM Ono* 
2* We shall briefly discass 

the former in this section. As we sha13 seep howeverl neither of these 

topics is unrelated to our previous discussiona Indeed# they, depend 

heavily cc the theory of zero sum 2-player gameso 

291 Coalitions 

Suppose three players numbered 1#2#3 decide to play the following 

zero GUIA gamel 

In secret, each writes the number of gggth-gj player on a piece 

of paper. Tho three pieces of paper are then handed to a referee. If 

two p3ayern choose each othert is number# the referee announces that they 

for-un a ggalijaggi and the third player awt pay this colUUou the mm 

of Ilp which they may divide any way thoy like* Either exactly one 

S22JUISSa will form# or none wlU form (, e,, ge 1 chooses "2"p 2 chooses 
"3w# 3 chooses Nlw)* The obvioaa three questions are,, how ahculd a 

player play this game; which coWAtIon can be expected to fWal what 

distribution of payments can be axpected within the winning coalition? ). 

The von Neimann and Morgenstern np3Ayer theory of games faile to 

answer the firot two questional but does give an interesting answer to 

the third. We shall diacusis the aix)ve three player game in gome detai3.,, 

and as we procode we shaU make use of some convenient notation. Having 

discussed this gamep we shall extend the formalization and definitions 

to all n. 'b. S. In to1lowlng this approachp we are exactly following the 
amom 

line of discussion used by von Neumann and Morgenstern. For an 
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alternative and less intuitive order of presentation - see Luce and 
Ralffag section 7.1 and chapters 8 and 9* 

The game we have just described can be given some convenient 

notation* We know that the following sets can be formed: 

2.1.1 (1,92) 

(45) 

and (3) 

and (2) 

and (1) 

and of cowse the empty set $ (for the atke of completeness). In 

add: LtJLon,. we know that each of these sets have a value,, which we 

shall call v: 

20102 V ((3)) =1 

V ((2)) = 

v ((1)) =-.. 1 

This value v can be characterized as followe for each sets of 

plvers, ioe. each v(11): 

201*3 if S has 2 eIGMents 

if 3 has 1 element 

0 if 3 has 3 elements 

0 if 8 ham no elements 

77 
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Now if the set of all players is designated by 1. then we can 
properly speak of sets 3 and their compliments -. 8 within 1 and from 

2. loSp we can observe that we always bave 

2*1*4 v (S) = -V (. 4) 

The above equation eipresses the fact that the game vith coali.. 

tions is a zero sum two player game between the players 3 and -45. 
Therefore,, if the players of. S can "cooperate fully" with each 

other against the players in -3,, the minimax theorem of section 1 can 

be seen to apply# and thas we see the importance of the 2--plaver zero 

s= theory to the n-player zero s= theory. Now# guppose that (S) = (1) 

and (T) = 2,9 we observe that 2*1*5 in true. 

, 
CThe qmbol SUT refers to a now iset composed of all 8 and all 

.f of T* The Wabol SnT refers to a new set composed unly of what is 

common to both 8 aAd Tp and to no other parto of 8 and T. 7. 

20105 v(SEJT) :: b v(S) +v (T) for SAT =$ 

The expression 2.1.5 says that players have an incentive to 

form coalitions. 

In the rules of the three player game we first deacribed, the 

players were not allowed to commmicate with each other when they chose 

the numbers* We may ass=ep bowevers that before the game beganp they 

as a groupp or perhaps a subset cX them# say two close friendisp 

discussed what they were going to do* That ism, they decided which 

numbers to pick. This is the same as saying that they decided vhich 

coalition would form, The craestion therefore becomest what will the 
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considerations be which cause them to make up their minds as to which 

coalition will forms So far we have mentioned two possible considerap- 

tions - the fl to be divided,, J. s. how it wi3l be dividedj, and the 

possibility of two good friendis in the negotiationse We sha. U dispose 

of the later of these first. In facts it disposes of itself - if there 

are two and only two close associates in the games, then we magr expect 

that they vill naturally choose each other' s numbers and SU9-criMjaat-e 

against the third player by excluding him* from whatever further 

discussion is involved in the division of the takes alxmt which we 

might expect a "friendly rivalry". i. e. each wiII try to got as mch as 

he can. An interesting possibility suggests itself - what if there are 

Ibm good friends? Perhaps two of thm are "better friends" with each 

other than uith the third and tbis would form a coalition but neverthe. 

low would not want to alienate the thirdp i. e. they might "kick back" 

some or all of the Cl plus perhapst even pay his a premiums so as not 

to hart his foolingoo ýhese are interesting opeculations ando what is 

even more interesting$ they turn up gaite unexDectSdly in the rigorous 

mathematical analy'sio of this game -7 but more of that latero 

Let us consider the first case - vhere none of the players are 

friends and the on3, v possible Influence on the formation of a coaliticn 

is division of the El between the swabarts of the winning coalition. The 

reader may object that the division is self evidentv and although we 

_ 
ateeig- &g&&ng 12r22SCU which makes it "self could demonstrate the str 

evident" (as opposed to some principle of "fair division") we shall 

instead generalize considerably the game and discass the strategic 

aspect for the following games, of which the game of 2.1.3 is mwely an 

example. The new game is as follcroist If players 1 and 2 form a coali. 

ticin they obtain the amcunt cs, and no mores, frce player Be If players 1 
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WId 5 fWM a Coalitiong they obtain bp and no morej, from player 2* If 

players 2 and 3 form a coalititmv thor obtain the amount a# and no mwe 

fr= PlaYer le The reader can see that the game of 2*1*3 is merely the 

SitUation we have just described with a0mcle However# apbp and c 

no" ncit be equal* Suppose player 1 demand the amount x if he forms 

a coalitica with plVer 2# and he donands, the same amount if he forms 

the owaition with player S. Tbang, in the first casep pU"r 2 can 

expect to obtain owa4 and in the second casep player 3 can expect to 

obtain bmx* Put another ways, player I will keep xj, and give a 

2AMMI of bwa (or owat) to his partnere Players 2 and 3 can evaluate 

the claim of plVw 1 in the following light* If 2 and 3 fam a coali. 

tion with each otherq perhaps they can each obtaLn more than c-x and 

bm*x respeeUvelyo Put another vay# if the am of their offwa, jpoe* 

cm-x and bimx are ISO than the total which they can obtain if they fom 

a coalition with each other against pWer I# then they oust be expected 

to rej ect player 11 a offers That is& player 11 s offer wiU owtain3, v 

be reJected ift 

24146 (tw»it) + (bm4 l( at 

Tbump the clals of x an the part of player 1 vill certainly be 

Con 
'"re'ejected Sla&M 

-it 

2*1*7 (ba-4 -: 1b a* awmo 

We may rewrite the inecpallty of 2*1*7 an follows 

2*1*8 fta+b+c 
2 
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Clearlys the MWZJM claim oý which p3Aqer 1 can reammably make 
in the one where equality holds in 2o1*8 

2olo9 cý 

Repeating the above arguments for players 2 and 3 respectively# 

we obtain 

2*1*10 The majdImIm amount player 2 can reasonably clain is 

ý3 = 

2*1*11 The maxim= amamt player 3 can reasonably claim is 

? P- = L+I! =g 2 

Observe that the word "reasonable" in the above eVressions 

does ad refer to "fairness" or to any egalitarian principles vhatever. 

Rather# it refers exclusively to the expectation that if more than -2< k 
49 

or 
ý' 

is c3silnedp the claim will certainly be rejected. The reader 

cm further verify that the following holdst 

2*1m]. 2 + bs, 69 

That isq the clalmo exhaustv but do not exceeds the valuell of 

. Ll- - 

the respective coalitions* 

We see# therefores that although the eVected divisim of the 

, spaUs in game ZalG3 was somehow "obvious", g other 3 p1syer zero sun 
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games can be constructed for which thin is hardly the casee For example# 

set 

V((1#2)) = 11, v((1,3)) = J. v((2p3)) 

We Mall not perform the computations here. Notice that the formulae of 

2*1*10# 2.1ell establish one point conclusivelys Whenever a 

player is a member of a winning coalition# he can always reasonably 

expect the same amount* But; vhat incentive does a player have to 

enter a coalitionp that isp why not refuse to cooperate with the other 

players. Clearly# if player 1 refuses to cooperate,. he obtains -a.. if 

player 2 does so# he obtains b. if player 5. the amount is -c. Thas 

players 1 and 2 can always get -(a+b) if they don' t cooperate with 

each other, If theY do copperaUs, they could get c : -* . ab. Now 

consider the two cases of c a-&-bj, which we rewrite as 

2*1*13 a+b+ c 'ým* 
"Okle 

If 00 then c= -mmaombp and clearly the tvo players have no 

incentive to form a coalition. Sach games are said to be inellslMliale 

If Cýý >. 09 then o>--am-bj, and the two players bjLvo an incentive to form 

We can coalltiona* In this case,, the game is said to be asgLni 

sV more about this case* If a player,, say player lp forms a coalition, 

he can obta In oý * if the gme is essential,, then ot - (a) >0 (sin ce 

he gets .a if he doea not join a Coalition). Now#*ý+a turns out to be 

equal tO 
L.. 

* R"tiftg 'the WV15*11to for each plVer, we find 
2 

that 
t-. 'b 'ý: b 0 is always the inducement for joining a coalition in a 
4000 2 

three player zero mm game* 

We have thus been able, to fully describe (non-discriminatwy) 
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payoff distributions for AM essential zero s= three playw game. 

Which distribution obtain$? The answer is not given by the theory. 

Indeed# no one distribution is stable by itselfO since it was found 

only as an answer to other possible distributions. Thereforep the 

jitj of reasona, e distributime itself* rather than any one of its 

elcomautst emstitutes the "solution" to this game in the sense we 

have been dencribingo We can list each of these possible distributions 

as a payeff vector relative to a certain coalition* Thus,, ve have 

found that for the coalition (lp2),, the payvff vector is (e4 
000 -c). 

The entire non-discriminatory oolution is as fonowiso 

261,014 0-oalition payoff vector 

9, -b p 
(205) (. «, 42 ý) 

vhere the 04 p 4QO 
_to 

a#bvc, # are as in 2*1*9# 2*1*10# 2*1*11 

Which of these payoff distributions wiU obtain# that isp which 

coalition will furm# Lo giltdide the g=g gL jb& Qg=e This solutim 
is somewhere between a prescription of what one can reasonably ask for# 

and a discription of uhat one can reasonably expect to find in a zero 

throe plajrer game. That Is# it is not clear whether the theory is 

n. UUMIWI (w delVARIAng althcugh one inspects that. it is most 

probably the latter type of the Wa 

We shm1d note that we were able to derive the possible reason. 

able distribations entirely from a consideration of the v(S) * Clearly, 

the v(S) is of central importance to the thsoryv indeed$ the entire 

rim-player theW hinges on it* A v(S) of the type we have just described 

is clearly a mathamtical set function, and is known as a charagtgigtjc 
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Its properties for zero sum n-player games are as follw. 4, s: 

2*1*15 V(Q) = 

v (a) = -V (. -S) 
v(SUT) V(S) + v(T) for SOT -0 vwý 

We have seen one instance (for n=3) of the way in which the 

characteristic function determines everything. Von Neumann and 
%I-- Morgenstern have succeeded in developing a theoryp -,. or all ny based 

an the characteristic fumetion described in 2*1*15,, The reader is 

referred to chapter Vadd VI of their book for a detailed discussion 

(or to Luce and Raiffaj, chapto 8j, McKinsey., chapt. 15,, Owen 22 
, chapt 

VIII). We shall now take up the formal properties of the payoff 

vectors, 

2*2 Imputations v isolutionsg norma3 I sation. 

The pWoff vectors# called jp2utjjtjgng exhibit certain proper.. 

ties which we can oonveniently list. First,, we noted that for essen. 

tial gamess we never had the payment to a member of a winning coalition 

an less than what he could obtain alone* Thusp if oý i is the payoff 

to player L# member of the winning coalition So we have 

v((J))s for i 2*2*1 
4,4 1 

==p 

Second isince the game was zero sum,, qLc imputation satisfied 

the following propertirs 

2.2e2 :ýd, -o 
i=L 
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Thirdip we can notice that in no case were the sum of the I 
to the members of S in the imputation greater than the amount that this 

set of players could steal from . S3 

2aW 7 
4/1-- 

<v (a) 
i in 3 

dft 

If the imputationo are thought of as possible promises of rewards 

which will be paid when the game is over# expressim 2.2.3 says that 

the promises must not be more than the coalition can deliver. Thus,, if 

a set S wdsto for a given Imputation such that 2.2.3 is satiefieds the 

set S is said to be effective. 

A fo=th property was exhibited by the imputationsp name4o they 

g2lLWjjgd a3l impatations not among them and were dominated by none 

among them* Domination is a relationship which is always relative to 

a specific set S. It has the following three propertiest 

2*2*4 a) S is not emply 
Z> 

b) S is effective for the impatation,, my ol, 

C) for all i 

0. # Ma 

If an imputation *ý dominates anotherp say jg relative to 

a particular effective set SI, this is conventionally written as 

68 
The entire set of imputation vectors in 2,1,914 constituted the 

gglatiMs as we have aesn. We can therefore generalize to an exact 

definition for a solutian# where the set of imputation vectors in the 

solu-Uon is writtwi as Vs 
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-4 -4 2*2*5 NoB in V is dominated by an I in V. 

2*2.6 EVery not in V is dominated by some in V. 

Now# V represents a,, &tqgdgjd-. of be imrj, within which 

various particular perwtations and combinations are possible* This 

is, on reflectiong a reasonable definition of a solations, because it 

isolates what is stable about a given social situation - ramelyp the 

underlying values and tyDes of distribution. Indeed$, recent political 

thinking on the part of the "New Left" seems to view social situations 

in precisely this way. That iss, the entire §ýAadad 2f bgbAjj= is 

what is called into question and who happens to be In the winning 

coalition at arW given moment is of little importance. 

T Lhass, whether George Wa3lace, Richard Nixon or Hubert Humphrey 

would be elected president of the U. S. in 1968 seemed unimportant to 

those with this political persaasion, # (some of whom voted for Pigasas, 

a pigp as an (irmical) alternative, i. e. as a choice outside the 
Olt 

standard of behavioar which included Wallace; Nixon and Humpbrey'ý"),, 

Another point about this solution concept should certainly be 

mentionecL The permutations and various imputations in V all 142t 

in a X&tual sensej, even though only one may obtain in rcalitys The 

other imputations must be included as part of the solution because 

they have helped to glumll the reality. From this viewpoint,, the 

bias of some historians to trace back actual events and seek "causes" 

24 in amirl&al evidence may be highly misplaced. Fort the "cause" of 

an event may, never have occured at a3le 

We should take note of the existence and number of these 

n. -Pplayer game solutionse Von Neumann did not know,, that is caald not 
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prove# utether a solution even existed for games of any no He 

considered this the main unsolved problem in game theory (See Tucker 

and Luce56) a We now know that this question has been anzwered in the 

119CAtive# since a ten player game has beer. found which has no 
101 

solution, Various catagorieo of games exist for which solutions 

can be described relatively ea&Uy. The reader is referred to the 

discussion in Luce and Raiffas Chapter 9,9 Oweng chapter VMO Tucker 

and Luce.. the Introduction# and Von Neumann and Morgenisterng where a 

Very large partion of the book in concerned with the inveotigation of 

solutions* Second# there may be more than one solution Vv each with 

its set of specific Imputationes for any g: Lven game. This turns (at 

to be the case for zero sum three player gemeep where in addition to 

the Mija solution of 2*19140 there exists another solution# which can 

be found by graphical meams# which in a aIMS11rAgAIM solution of the 

type we originaUy intulted. This V turns out to bo an lainite set 

ca"sed of the tbree permatations of an infinite set of discriminatory 

distributions* Moreover# if an imputation in (cqag-wo-a) where 

-1 &aZ. lo-cs and where c is the discriminator7 assignment# 

restricted to j". N. c ;. 2w . 1s the payments to players 2 and 3 are no 

longer vabject to the bargaining influence of the first players and 

thasp themselves become essentially unrestricted - although they mist 

satisfy 2, *2*1 and 2*2*2 (shown above with a normalization such that 

v((JL)) = -ol). Tbas# we see that for those games for which we have 

solutionsp we seem to have more than we Imov what to do withl 

One importguat topic of the von Neumann and Mcargenstern n-player 

zero am theory, shail d be mentioneds strategic equivalence and norrmai- 

zation. Two games are said to be alratea cALU g IU for a given 

characteristic function if the sme strategic considerations apply to 
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C193 00 

either me* Tbisp if we maltiplied the characUristic function v by 

a nosit. &I constant cp we do notbing but change the scale of the unit 

of meamwemmt (as in changing L to This is expressed as fonowst 

2*2*7 v (8) cw(S) for all subsets S of I* 

Observe that the constant must be positive or else it changes winning 

coalitions into losing (wee (Lee* turns a game of strategy into a 

poUatch) o Seowdq we can aodd a fixed payment 4LIL to the payef to 

each player In St 

00 91 "7' Aleroov v(a) + 4ý 
111 

ä 

V(, S). 1 in 8 

We can combine thww two aperatims 

2*2*9 crv(s) 77 
mom* L In S 

aj 

Nows with the formula of P. * 24 9 we find that ecpivalence c3assets 

can be established for games# and we need only look at a convenient 

representative fnxn each cUsso The normalimtice we referred to 

earlier In a parenthetical remark on discriminatory soluti(ms was# 

2*2*10 VOLD a 0-10 V(I) =0 f(w every i in I. 
i 

This normallsation is discassed in some detail In van Neumarm 

1- And Margenste=o (Vhere Lt Is c4LUed the Lq&Lga form of the gam) 

wid is alm described in Luos and R&Lffao sectLon 893* Another 

normalization is also cormwnt This is# 
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292911 V(U» = 0, $ v(I) =i 

Games In this normalization are said to be c-ong-tigat jBIR gamesp 
They can alvays be obtained frcm their strategically equivalent zero 

mm versiono 

2*5 Criticism of the theoryp alternatives. 

We have described the von Newunn and Morgenstern theory of 

no-player sero, stm games in sufficient detail to consider a few of the 

criticisms which have been leveUed against it* Some of these have 

already been mentionedq e. go the large number of solutions which have 

been found fcw games of various n., (See Luce and Raiffa, for a brief 

accountp von Newnazm and Morgenstezu for a detailed# but incomplete,, 

account of some specific casex, e. g. n=4) * However, as we have noted,, 

this abundance of solutions for a given n is not necessarily undesire. 

ablee Tho solution concept$ after all,, isolates the varicas standards 

(W behaviour for a given number of players# and this result is of 

considerable value in itself* Therefore# the criticism about the 

abundance,, ie. no&-uniqueness of solutionsm, Is really a cal I for a 

the=7 with a greater resolving pwor than this one has. We feel$ 

nevertholeasq that although there is certainly a need for a tbeoz7 

which ALI for examples tell one which coalition cm be 93cpected to 

occur.. there is also a need for a theory which isolates the possible 

underlying standards of behaviours and this theoz7 appears to do the 

job. 89 There is incidentally no sheirtage of partial results of alter. 

nativo theories. The reader in referred to Luce and Raiffal chapters 
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71,8j 9 and 109 An excellent discussion (and, collection of papers) 
can also be found in 7ucker and Luce. 

Another criticimt closely related to the first,, is that the 
theory "seems to prejudge the problem". (Tackex and Luce 55 

pe 2) 9 
In shorts vIq should the players divide into two opposing coalitions? 
Von Neumann and Morgenstern go into the argument in some details and 

we shall not rehash it here. The reader is referred to their section 

2*4*2 for a detailed mathematica: 6 and hLu 
. 
Us" case for the coalition 

theory. We eaphasize the word heuristic for a very g7ood reason. It 

has appeared before Ln this thesis when we noted that the zero sum 

2-oplayer theoz7 involves a heuristic I Imi ion on the search for 

solutions* That is clearly the case in the n-player zero s= theory as 

wello (Although there is consideraWv less success in the later case). 

Indeedv even with their Imposition of the zero sum two player asmimp. 

tiong they are still compelled to adduce j&d bgS argumentation over the 

determinants of both the specific standard of behavioars i. e. the 

specific solution Va and the occarrence of the specific coalition S 

within the V. In MY case, the imposition of the r6ejjjtgrDj: ýta-tlM of 

the n-player zero sam game as a two player zero sum coalition gme 

- he certainly is a heuristic trick* This A& a criticism on3, v if 144 

heuristic is a bad heuristic, Nowt a good case can be made for the 

formation of the winning coalition Sp but what of the kmation of its 

compliment S? Why should it form if it has no incentive to do so? 

The answers, although it may be a weak ones is that -S forms so that 

it can effectively exploit arq mixed strategy in the game of S versus 

-3 * 

A third criticism of the theory is that it is static., when what 

is really needed is a d$uamic theoz7s This objection is closely related 
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to the criticism that the theory does not tell us vhich coalition can 
be expected to occur. Fourth, the theory has been criticized over the 

assumptions of an infinitely divisible,, conserved and transferable 

utility quantity (e. g. money). This criticism could just as easily be 

(and has been) levelled against the 2-player zero mm theory. It is 

far too complicated t; o discuss here. The reader is referred to Luce 

and Raifft. Finally, the theory has been criticized because it fails 

tO makS explicit the actual bargaining procecUre upon which the whole 

justification for coalitions rests. 

Even within the assumptions of the theor7l rmmerical examples 

can be shown which shake one' s faith in the "reasonableness" of the 

solution - no matter how one defines "reasonableness% Consider the 

following example of Kenengy Ia 25 
8 

V«1,92» = 100,9 V«193» = 10# v«293» = la 

The non-discriminatory solution has the follouing in; utations 

(which the reader mgV verify directly with the formulas 2.1.99 2ololOp 

2*1.11)s (54o5# 45*5, p -100), p 
(54.5# -*10# -44*5)# (-l* 45.5j, a-44.5). 

In fairness to tbo solution concept# however,, we might expect a 

discriminat=7 solution in a game with such wild assymetrices in the 

values of the various coalitions. KemeVt 9 example Is by no means 

unrealistict for actual social situations axist where the players 

have exactly one equal voto eacho but the vealth that each represents is 

widely ,, ý unequal* The U*S* Senate is an exampleo Each state popularly 

elects two senatorsp who are supposed to represent the interests of 

the state. (Since there are 50 states, this is a 100-player game). 

The senator from Nevada represents less than a half millicin personsi, 

while the senator from neighboring California represents over 20 



92 

million personsp and one of the wealthiest political entities in the 

worldo Of courses, the discriminatory nature of the standard of 

behaviour in the Senate is notoroasp and is institutionalized in a 

senority system which gives among other things, 0 kRy committee assig7l. - 

ments to those senators who have been in the Senate the longest. It 

is interesting to note who gets discriminated against - the "wealtby 

players"# i. e. the senators from the wealt1w (Nortbern and Western) 

stateso These tend to change more frequently than do the senators 

from Southern rural states 
26 

vhere the electoral procedares are 

sometimes scandalously corrupt and depraved, # systematically disenfran. 

C448ing vluxle segments of the potential electorates e. g. blacks in 

Minsissippir lt Is interesting U) speculate that if the standard 

of behaviour were changed to a non-discriminatory one., the senators 

from large states vould still not do welly as Neamy' s example suggests 

(for a Swplayer gans) * Neverthelessp they might be able to do 

oonAderably better than at presento where the large industrial states 

sew to be robbed to the maximum possible extent - witness the well 

knoum Idocay" of the big cities in the UoSo # virtuaIJv all of which 

are in the large industrial states* 
030 

Mention should be made at this point of the leY vaIUSK" and 

of the stiggestion bv ShapleY and Shabik 29 that this value can be 

applied to legislatares to determine the power distribution involved 

in legislative voting schemes. A keV notion involved in this applicam. 

tion of the Shapley value is that the formation of coalitions in 

legislatares is treated as random. Of coursep we know that this is 

not the cases e. g. political parties interfere with pure randomness. 

In any case p It is poosible to compute voting power ratios of# sayp 

individual members of the U. S. House of Representativess the U. S. 
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Stmatep and the Presidentj, and the power ratio turns out to be 2s 31350-o 

The fornaa for the value Le as fol 3 owas 

I 
(V) = )PM 

is a =beet 
at I 

K- 

4 

where a in the mimber of elements In S and 
do"n (a) (nos) 

&rNote that v(S)*, v(Sw(j)) =0 for all S which do not include I Is 

This formula is based an three axiom* First# the individial 

values win be the Sme in azW penutaticn of players of the original 

RELMOO Seaond, # the ow of the values for aU i is precisely the 
W-V-- 

value of the coalition of &U plapwis (in o#1 normalisatim). Third# 

if two indopmdmt gam" are cambinedq the two valu ea for each plWer 

must be ou=NKIp 1*** (0 (V+W) w*+ Aio 

Another altemative tahOW9 which is reaUy meray an alter4mm - 

tion of the von lisminn and Hargenstem theox7p should be m -ede 
This is the emoopt of * -m- stability advanced by WCOSO, and 

dLwamed in detaU in Luce and R&Ma# Chapter . 10* WhatT- stabL21ty 

involves in a "ruas of admissable coalitim changes"j, which defines 

. a-- 
f4w ewh coal-Ition atructure the set of permitted changes in the 

structureo The ex&Wle 9LVM in Luce SAd Raifft (Pe 167) is a rule 

wbich allows a given coalitim structure T to cbenee by the a4dition 

of Om more pWer, * Thus for the stracture Tg Loamp all pomdble 

strutures of T In a tbree pWar games we bme the folloving diarts 
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295*7 
T '40"' 

(1), 
p 

(2). 
q 

(3) 
p 

(1#2) (193)., (293) 

(192)p (3)9 

(1#3)s (2)p 

(2$3)p (1)v (1#2#3), 
p 

(192)9 (1#5) 

The main point about the function Is that it must be imposeed 

ALhM onto the coalition structure. Determining the relevant "Y is 

an empirical problem. 

So far we have mentioned the function *,, 
Now we shall mention 

the part of the concept relating to stability. For a given structure 

Tp an imputation and T are said to be stable (for a given 

game with characteristic function v and adnissable coalition rule 
+) 

if two conditions hold. 
4 

8 in T. JL*9,,, v(S) = 
*, > v((i)) if pleqer, 

the amomt 04 1* 

4MA . 

fixetp the imputation is effective for every 
7 for every S In*4 (T)e Second 

i in in a nontrivial coalition and receives 

2.4 Cyberneticap n-playerl, zero sum games# and experimental evidence. 

We have already discussed the major connection between the twq) 

theories# i. e. the heuristic nature of the n-player solution concept 

with its zero sam two player interpretationo This use of the inter. 

pretation of the game into two opposing coalitions served the function 

of limiting the search for possible solutions. Second# a comection 

has been noted by Pask and von Foerster 
31 between a self organizing 

system and an n. -pL-Wer zero sum game. The reader Lis referred to their 
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experimental and theoretical discassions. Thirds Pa, W2 has noted the 

connection betveen the game theoretic concept of coalitions# in 

particular$ expression 2.1*5 and the "social" activity of certain 

simple organisass, in this cases aline molds The key idea is that Slime 

molds can be thought of as making decisions to form coalitions which 

satisfy the property 2.1.5* Thusp theV can be thought to constitute 

a self organizing system, Finally# a vez7 readable and interesting 

experimental study on tbree player oonstant oum gamsis has been presented 

by RikerF 

39 Non-zero sum n. -player negotiated gamexo 

301 Significance of non-zero sum gamese 

The previous two sections have dealt with games which exhibit a 

particularly restrictive but important property - the fact that the 

payments to all players s= to zero. An example of the two player case 

was suggested$ namely a "game" of ouxvival between a prey and its 

predator. And an example of a mWW PlVer zero sum game (actually of 

its strategically equivalent constant sm version) was the U*S. Senate. 

The theory thus has some bearing on realityo However# its applicatims 

are IImJted; the ovmnihelming number of social situations are such that 

it is possible for all members of a society (Loe* all players of a 

gum) to be matually better or worse off if they pursue certaift actions. 

Or it is possible for one or several members of society to be worse off 

in a manner qaite incommensurate with the well being of the other members 

of society. Thus# not all decisions are exclusively concerned with 

problems of disjrj"jgn. Many involve,, at least in parts, problems of 
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Rroda-cl&(m (amplification) and dgsjm-ctiqUo Novi, if a game has even 

one outcome which exhibits the latter quality,, which we shall call 

mim. than the entire game must be regarded as nonzero gum# 410019ow 

even if aU the other outcomes are strictly zero mm. On r eflectimp 

one finds that most soci al situations one nonzero sum in character,. 

Thasp we shal I now notice another feature of the theory which was not 

obvicRis before - its potential win become more apparent# and its 

shortoomings more glaring. Put another wayj, isince the zero sum situam. 

tions were bwdcally artif icial (es g. actual parlor gmnes) we had no 

objection to tbeir solutions being in some sense artificialp e. g. 

good strategies in two player games and the isolation of non-descriminam. 

twy standards of behaviour in ný-player - even though the "real world" 

games, O each as legislaturesp seem clearly to operate with discrimina. 

tory istandardo of behaviour. Since the "games" will begin to correspond 

with realityp we shall begin to want the solutions to do so as wel. 1* 

In this connection an important question must be raisede 

30101 Does knowledge of the theory falsify the conclusions of the 

theory? Von Nownam and Morgenstern wenI 

and (succeseftlky) answer this question. 

two "rational" pWersp (rational in the 

required), Imowledge of the theory 2S& 

conclusions. Althought for the n-mOarer 

inclusives that one suspects MX realiýjr 

to great lengths to face 

For it is clear that with 

almost super Inuum sense 

Waa does not falsify its 

theorY. 9 the "solution" is so 

(among "rational" players) 

mst be included* Nows a closely related questions hats not been 

properly raiseds 

3*1*2 Does knowledge of the theory &jjX&ntee its confirmation? 

That isp is the thoory a normatively Self-fulfilling prophecyl 
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One suspects that this is the real question vhich von Neumann 

and Nbrgenstern have answered* This answer was satisfactory for sero 

sum two player games large1y because they are LBW,, rm 

and tbas an artificial (in some sense) solution was satisfactory# isee 

even If the theory compelled players to use strategies they might not 

otherwise have used* But for nonzero sum gamesp which may closely 

correspond to real world eventep a theory which is a selfe-fulfilling 

propb*W cotAd turn out to be disastrous. If this turns out to be the 

cases and we ishal3 isee that# indeeds it doesp we mW have to attoWt 

to disentagle the cSostion of 3.1.1 from that of 5*1*2* We shall 
34 discuss solution cmeeptis which attempts to do this,, (those of Howard 

and &. 
J9 ) However# we shall find that those attewts will merely 

alter the "reality" to fit the solutionp and therefore wUl have 

limited applIcations. Thus we shall tw coVelled to consider a solu.. 

tien amcept which cannot mccesafully answer 3elels (bat can 

successAWy give a "no" answer tk) 3,1*2) for nonsem sum games# but 

neverttoless is succeseful at answering 3*1*1 for zero sam games* In 

otbar words* we shall show that for nonzero sun gamess, these questions 

are not relevant. 

The author wq be aemsed of preoenting the imedlately 

preoeding discussion (on 3.1.1 and 3.1.2) somewhat prematurely# since 

we shall not discuss its main features until section 4* However,, ve 

feel that the reader shotzld be alert to the problems now and consider 

all of the folloving dismosion in their light (or shadov). Forj, as 

wo shall Beep one of the solution concepts discussed in section 4 is 

ver7 C108017 C=ected (at least intuitiv4y) idth the solutim con.. 

(mpt which we shall now dLocass. 
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3.20 The von Nouawan and Morgengtern treatment of nonzero sam games . the 

extra player. 

Consider the following two player game: Each player, chooses in 

secret a number from the set (1#2). If both clx)ose the number "10, 

each player receives J. Otherwisep each player receives the amount 

-. 1. i. e. each loses 1. Notice Itshat if each chooses "lug and receives 

0ý 10 then 7.0ý 
i= le Howeverp if each chmses 2,, or if one plzyer 

chooses "20 and the other chooses "1"v 37cý 
i= -2. Since 1j -2 

k c, 
this game is neither zero S=p nor constant s=. It is clearly nonzero 

s=. In this game., a "good way of playing" seems perfectly obvious 

and trivial# i. e. each player should choose "P. However,, we have 

introduced no game theoretic decision making procedures by which this 

"obvious" solution can be obtained* Von Neumann and Morgenstern's 

entire theoryp as we have seent is based either directly on zero sam 

two player games or on the reinterpretation of an n(a 3) player 

zero sum game as a zero sum two player eoalitim game by means of the 

characteristic functiong What von Veumann and Morgenstern have pro- 

posed for this game iss not surprisinglys another zero sum reinterpre. 

tations, They suggest that an "extra" player be added to the set of 

playerss, Thus an n-player game becomes an n+l player game. The extra 

PlaYlOrs i*e* PlaYlsr n*lm cannot enter into the bargaining or pro-gam 

discussions in any way whatever; nor does he have any strategic choices,, 

i. e. control over wW of the variables in the sequence d1s. esop dr 

vhich constitute the extensive play of the game, However, he is 

asslýped an amount by the function f (dj# ... 9d and in facts it 
n+1 r 

is 

3*2, ol 
(djo 

v dr) =-I (dlp ***# dr) fn+l k=l fk 
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Thasp we see that the addition of the extra player turns this 

nOnsOrO sm ri-PlsYe-r game into an n+1 player zero oum game* Having 

obtained this zero suit games we can apply the tbeOry of the previcus 

sectione to obtain its soluti(m. 

The coWlicatim is this - player n+1 is a Utal fictim vho 

cannot participate in arT woq in the bargaining precedi n the formation 

of coalitions# *to, * However# we saw that this situation occared in the 

case of zero am three player ganes as well* This happended when two 

players chose to dLmM&3LRatj against a third player and assign his 

some amount a moons& *4* If we restrict ourselves to discrininatory 

solutionsp with player n+1 the victins, the zero sum nm-player theory is 

adequate for defining some kind of a solution, * Two questions remain. 

Firsts what will be the exact value of a? Second# what will be the 

divisions of pVmwts between players l and 27 The first question can 
1. - be answered qaite ximplyq we alvays have c= ml. That in# the totality 

of all real plaqers alvaps acts to ma3dmi so the v((lp ,, s n)). This 

is alwayis aommed to be possible becmae of the aswmVtion of absolut4y 

perfect bargaining# negotiations and commmications among the real 

plajrero preceding the actual pLq. The socoAd questionp as ve rocall,, 

was left open In the discussion of Ue die xrindnatory solutions* For 

2 player games# each obý. Rains cZ -as but otherwise they are in 

pure opposition to each other for the farther division of the money. 

They play a zero am In player game between themijolves to determine 

the f inal distribations This# in oumsary,, is the von Neumann and 

Mwgenstern theory of negotiated nonzero sum games* The mAct# final 

distributim is always left to considerations which are extra theore. 

tiega ., for examplep vho Lis the better negotiator* Since real pleVers 

can pay each other compensations . side payments . they can arrive at 

Outcomess L*e* coordinate choicesq which achieve a maximim valae for 
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th* 00alittiOn 8'0 Threatogs bluff 8* PrOmUesp punishments - all enter 
into this negotiatim, procedure. ClOarlYs no real player need accept 
lose tb'm th" V((i)) 9 h'O can 99t withmt Joining a coalition 

of real plaVeras The set of nagoti&ted outcmsg the jae . &Lt" ReL 

Le coMosed of all outomes with v((L)) p and for which the 
10( L ommum 

L= av((n+l)), o whsre Lt All be recaUed# v((zml)) was asisumed 

to be at Itis 
-m 

The condition we bave just described is called 

Pareto aptimaUtys 

P 3*2*20 P- 44 . =, wv((n+l)),, for v((n+l)) at its u4nimem. 
iwl 

TIvog the negotiation set is Composed of all outcomes satisfying 

3*2o2o In the exmVle of a nonzero mm game which we discussed earlier,, 

US OAY Parst4w-Optlmml OUtcome ums designated by the payoff vector 

Observe that the final mimber of tUs vector may be omitted 

-A Ance it assigns a value to a completely fictiorml playere lole could 

ha» vrjtten tj» payott equally weil an (ii, *). Thin la an wdared pae 

of mumbers wba" the f irist number is the payoff t; o player 1 and the 

second in the pWoff to plVer 2, p The gem discussed earlier could be 

written in the fors of a matrim 
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Figure 3,, 261 

Myer 2 

1 

1 

v-4 
A 

2 

Writing 2*. player nonzero s= games in this vqjr is often con. 

venients as we shal I see in the next section, 

3050 An exampleg and general soltaions for the 2-player case. 

If the Z-player nonzero am negotiated game is pal in normalized 

flbru, v as was the preceding example# its solution in the sense we have 

just considered can nevertheless be fully described$ and from the 
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preceding discussion is seen to be the set of all ordered pairs 

(0410 c4 ) vhich satiafy the following conditionss 

59301 

04 1> V((l)) moom 
04 > v«2» 2 woý 

o4 ,+ c42 = V«102» 

(These for=xUo are from von Neww= and Morgenstern section 

60*2, *2) The formula* of Mel can be used to c*mpute the solution to 

any gone of the type we have been doiscribingo 
w 

For example# 

Figure 305 el 

Player 2 

1 

1 

1"4 

2 

000 
-30 2 

50 
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This is really two matrices: 

Figare 3.5.2 

For player 1 

I 

2 

04 

-1 5 

Figure 3.3.3 

For player 2 

I 

2 

0 3 

2 -1 

Observe that the matrix has been transposedp i. e. the ij. Q 

element is replaced by the ji. Q element. This has been done so that 

the maxlx.., rj, br convention an operation for the ZU playerp can be 

ccmputedo 

The V((i)) can be easily computed. It is the maximin value of 
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each matrixg iee* that value below which a player can never be redaced 

no matter what the otber does* 

For player lo It is v( (1) vith the mixed strategy 

For playw 29 it is v((2)) -1 with mixed strategy (*j *). The 

v((lj, 2)) is the maximum ancant obtained by ouming each set of ordered 

pairs of the matrix of figure 3.3.1 (because only this matrix is 

defined in terms of the ordered pairs oý P)) 
Thass, the 

v((192)) 4>2 ý* 0>.. lo And the solation is the system of all 

ordered apirs ( 'J'I I *ý' 2) satisfying the followings 

3*3*2 "41+04. = 

-31 

o4 2 ý! t 1 

The difference between the maxim= which both can obtain if thoy 

cooperate fallys, 4. and the minimum both obtain if they fall to 

cooperate is 

IA 

If we represent (following McKinsey) the outcome of the negotia, 

1>0 ;k tions as a mmber .. 
00, we can write the c4 1 as follown 

=ýI+ 30305 o4 13 

042 =1+ 
10 
leý (1 -9 )0 3 
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3*4 Discussion and criticism of the solution conceptp alternatives 

There are four main criticiums which can be levelled agalxwt 
this part of the theory* one criticism deals with the heuristic 

nature of the solution. Another concerns the ad bZ nature of the 

role of negotiations; the third concerns the crude way in which the 

stop at the characteristic function can gloss over glaring asymmetries 

in a gamej and the fourth centers an the vital role of interpersonal 

comparisons of utility. 

First, we shqI I discuss the fact that the solution is clearly 

a hearistic tricka, This mty or may not be a criticismp depending an 

one's viewpoint* The zero mm interpretation technique is a method 

used by von Neumann and Morgenstern to obtain a more or less unified 

theory of games (see their discussion on this point,, section 56,5), 

Indeed,, this solution concept is really the solution to the n+l player 

zero s= g&MsISS ggM to the original n-player game* Von Newnann 

and Morgenstern's ultimate Justification for their procedarep in 

addition to that of preserving a unified theory# is based on its 

economic applications* That is,, they argue that the value of their 

procedure must finally rest an its success or failure in "real world" 

economic and socialogical applications. This is$ of coursej, the last 

defense for an intuitivo4 *unnatural" procedare. But it is a 

reasonable defense if the theory doll have successful applications 

since one's "obvious" inituitive assessment of a situation mustgertainly 

k2 in generalp or else we would have had highly successful 

nathematical social theories long ago. 

The second nament on the theory is that the pre-game negotiations,, 

Vbich p3Ay such a decisive role in the von Neumann and Morgenstern 

tb, oory, are &ot part of the theory# and since the final distribution 
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depends on the outcome of the neCotiations,, the solution seems hope. 

19,94y imprecise. Moreovers the credibiLLtv . of threats is assumed in 

the theorys for "since there exists perfect information for all players,, 

there can never be any doubt"* (Von Neumwin and Morgenstern,, p. 541). 

Not everyone agrees with van Neumann and Morgenstern on this pointp and 

an interesting book by Sche-Uing 55 
goes into the point in some detail. 

Luce and RWLffa also amnarize the problem very vell (section 6.4) * 
The problem boils down to this - if a tbreat has to be carried out,, 

the tbreatener may be worse off than he would have been if he had not 

threatened in the first place* TIvisp a threat may not be credible. 

But# if threats and proWWes are not fullv beUevable,, we no longer 

have a situation of perfoot preplay negotiations, and therefore the 

relevance of the whole theory Is called Into questiono Wkwit Is needed 

is clearly a theory of negotiation, 90 and what is also dbrviously 

suggested Lo the need for a theory of non. -negotiated nonzero sm gramea 

as well. Now,, von Nomann and l4orgenstern have offered no extension 

of their zero mm heuristioj, to the case of non-negotiated nonzero sum 

games. One such extension has recently been developed by the present 

authcrS6 and will be described in detail in section 7 of this thesis., 

A third criticism of the solution concept centers on the way 

the characteristic function ignores particularly striking asymetries 

of a game. The following exmple from McKinsey illustrates the pointl 

Figuxe 3,4*1 

Player 2 
2 

J1 
O, t.. Jooo 1000 
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The first player has only, one "choice". the second player has 

2 choices. Obviouslys, the game favors player lp who can never do 

worse than zero# and may obtain 10* Player 29 who must make the 

choices can try to extract some of player lls 10 in exchange for 

choosing choice 21, but any threat to choose choice 1 would presumably 

not be believed since it Involves such a staggering loss to player 2. 

Thas,, there seems no way that player 2 can threaten player 1 and 

obtain some share of the montqs The characteristic function of the 

game does not show this fundamental asym*etrys 

3.4f, 1 

V((l)) = V((2)) 

V((102)) - 10 

maution is wW (0(19 oý 2) with o( > oso4 +*< = 10. 12ý12 
Another criticis% which should certainly be mentioned even 

though we have deliberately sappressed the problem throughout this 

paper, is the question of interpersonal comparison of utility, Much of 

the work that has been done on negotiated games has been done to avoid 

interpersonal compariisonse The reader is referred to Luce and Raiffa 

for the relevant discussi(mo 

Alternative approaches to the theory of negotiated nonzero sm 

games exist and are discussed in Luce and Raiffa* Most of these are 

called ark=Ltj&n. pShS291 and involve axiomatic formulations which 

will give a unique payoff vector which satisfies various criteria of 

fairness. The reader is referred to the discussion in Luce and Raiffaj, 

and to Braithwaite* 
94 
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49 Non-negotLated nonzero s= games 

Altheugh much more detail could be added to the discussion we 

have just gLvens no von Neumann and Morgenstern solution to any other 

type of game could be presented# for their book ends# more or lessp 

with the section we have just described. As we have said already.. 

hxwevers a most important type of game (perhaW the most important 

type) has not been discussed . nonzero sum games where the players 

cannot negotiate before the play or; as has been suggestedq cannot 

believe each other even if they SM negotiate* A vid*4 discussed 

theory for this type of game does existp however# and we shall take 

it up now. Our discassion will be primarily concerned with 2-player 

games# although some of the consid9rations will be enlarged to include 

n. -player games as well* 

The 2-player zero samp n-pLqerp and nonzero sam game solution 

concept was,, as we have said repeatedly, a zero 9= interpretation 

solution concept. The procedare, we wiU now consider is not of that 

type at a32. It is based on a quite dif ferent definition - that of 

the sauij4brLa R&Qto 

4.1 Equilibrium pointso 

An equilibrium point is a payoff function to player L on a 

set of pure strategies 3 and defined as followst 

An n. -tuple (Slo **995 is *oov Sn) is an equilibrium 

point if 

mj(slo go*# Sit ; 
JLR go*# s 

n) 

for i -. = ljo ...,, 
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. vg that if aU Definition 4.1.1 sa . plVers use their respective 

strategies (Slt 3)9 and thus player i uses strategy Sit n 
player i cannot increase his payoff by changing to some other 

strategy i, 
* If this holds for every, player Is, then the strategy, 

n"tIP18 (SlO **** Sn) is a set of equilibrium strategies$ and is also 

called an equilibrium pointo This definition of an equilibriim point 
5 

is due to Nash# and so these equilibrium points are often called Mash 

equilibrium points* The corre3ponding definition for m ixed strategies 

can be obtaLned merely by sabstitating 
ei 

for 31 where 
d, 

is the 

mixed strategy of player io Nash has proved that for every finite game 

at least one equiUbrium point jxIstj in mixed strategies. 
^I- 

Observe that in the definition of 4.1.1 we said nothing about 

vhether or not the game was zero sum or nonzero sum. The reason Is 

that the definition covers ý2Q categories and therefore may be viewed 

as a more general concept than that of optimal mwdudw or minimax 

strategies. Nash' s thecrem produces identical rem: Llts to the minimax 

theorem for 2--oplayer zero sum games and 19M to extend these results 

to other types of games. No difficulties wqr be mentioned nowso and 

both apply to nonzero sum games and n. -player zero mm games, & Firsts 

a game may have more than one equilibrium point,, but these points my 

not be vorth the same to each playere Tbas, if Ml. is the payoff to 

player I from equilibrium point lp and is the payoff to him from 
"ftVAN 

M1 : ý;; Mi2 equilibrium point 2. each of the following Is possibles L -12".. J It 

Since the p1librium Points may be worth different amounts to 

dirferwit playerst one player may prefer one equAlibrium point and 

another plVer mq prefer some other ýqailibrium point. Secondlyp 

the gtrategies in the wpilibrium points may not be interchangeable$ 

thusi, JLf one equilibrium point is (51# so*# Sio *0*0 Sn) and another 
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JL8 (rljp e9op ris eees rn)s th6 n-tuple (31, 
so. # rip oeop Sn) may not 

be an equAlibrium, point* This problem could bep prestamablyp obviated 
If the players were able to agree beforehand on which equilibrium point 

n. -taple be used. Howeverp we have assumed a total absence of negotia- 
tions bargaining etc*., and there thas seems to be no way by which the 

&-tuple could be chosen* 

One advantage of speaking in terms of eqUlibrium points is that 

there is no need to assume interpersonal comparisons of utility. Each 

player chooses his strategy on the basis of his 
jW payoff, and he is 

concerned not with the payments to the other playersq but with the 

strategiess, (glip of the other players. Nows of course# these &i 
are 

arrived at on the basis of each player's utility,, and thass knowledge 

of the (3(1 umuLUy does in fact reqaire knowledge of the other player's 

utilities. fWe shall see how this works in section 4.22o 

Luce and Raiffa discuss the significance of this definition of 

equi3lbriums and their discumsion (section 5.7) is worth taking note of. 

They seem to feel that the definition an equilibrium point 4.1.1 

corresponds to the notion of equillbrium in society in the following 

senses One can Imagine the members of society Moundering about" with 

various courses of action (strategies) until the society finally 

settles into a set of strategies where no one sees any margin in 

opposing the general tide of society' a opinion. In this wayp a social 

equilibrium is created which seems to correspond strikingly with the 

definition 4.1.1. It is interesting to note the difference betveen 

this notion of social equilibria and the von Neumann and Morgenstern 

idea of sets of Upitations as expressing a standard of behaviour where 

the linputations witbin the set are in equJ. Ubrius. The Nash concept of 

equilibrium is a mach more rigid notion. In the von Neumann concept, 
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opposing a particular configuratim of social forces is not going 

outside the iump unless it also chalIenges the underlying 

standard of behavioure One is strongly teWted to see in these tw) 

definitions of stability . von Neumann's for negotiated games and Nash's 

for non-negotiated. ones - two different historical periods - von 

Neumam' a reflecting the muAdcal chairs governmental changes of the 

Weimar Repub3les Nash's reflecting the totalitarian rigidity of the 

Joe McCartbjr era in the U *S. 
Luce and FAUfa give various definitions of "solutions" to tva 

player norim-zero, sum gamesp md they should be noted. 

A Z-player non-negotiated game is solvablep in Nashts sensej, ir 

every pair of equilibrium pairs are interchangeable* If a game is 

solvable in this sense# its solution is its set of eqdlibrium pairs. 

Thus we see that whether or not a gam Is defined to have a 1121IUnn 

is quite a different matter fftm whether or not the game has an 

equilibrium pcUt 1which it always does)* 

It is clear thatequillbrium points may dazinate one another, 

In the two player cases we say that (S,, # S2) jointly dominates (rsr 
2) 

"t Mj(ý10'62) : ý'ý Ml(rl, *r, ) "A m 2(3111 S2) ýý 142(rl,, rdý`bý It an 

equilibrium pair is not J ointly daninated. another =4 it is mid 

to be jointly admissableo This another possible definition of a 

solution (for 2ý*plVer games) is the followings A ncffkonegotiated 

game has a solution In the strict sense If an eqrailibrlua pair exists 

among the jointly admissable strategy pairep and# all jointly admissable 

pairs are Interchangeable and equivalent, * 

FJLnal4l, we might note that ve have smdd nothing aboat how the 

equilibrium points can be found., we have mly Wdd that at least one 

exists. A constructive proof for the wdstance of an equilibrium point 
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104 for wW 269layer n4msero oum game is given by Lemke and Howoon. 

Since the proof In constructive# it provides a tecbnique for finding 

one -, - ium point for W two player nonzero om matrix. * 

46,2 Biaatrim forao exWle a. 

We have already looked at an wKaWle of a &Mtiak& nonwro 

aum game matrix (figure %3,61) and we can observe that the same matrix 

cmad have been used to describis the game if It had been naim-4aegotiatedo 

W* can oa&Uy generaliss this matrix form 

Figure 4*2ol 

Player 2 

4... 10 a 
i to* n 

0ý 1 
0112 

40 

40 

0( 

c; ç 

Game matrices in this form are sometimes called game in kjaLtg" form 

(Owen). Observe that the elemont JLJ JLJ 
) is an ordered Pair. 

We shall consider a few examples of non-negotiated nonzero om 

g&ueu, There are tbree classic wwapleaq each of %hich has a parable 
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attachedo The firstip usaally known as "battle of the sexes" clearly, 

was given its parable in the days before the women' a Liberation move- 

ment got underwars A lusband wants to go to a boxing match with his 

vifol who vantio to go to the ballet with her husband instead. Each 

prefers a decision to do one or the other together over a nowagreement 

outcolsew 

The payoff matrix# from Luce and Ralffa (section 5-3) is as 

rallOves 

IN. Iý aoxing 
match4l 

ballet 

04 2 

Fig"* 4* P.. * 2 

boxing 
Wife 

ball et iZ 
match 03 

12 

201 

-it -1 ll, 2 

Observe that each of outcomes (0ý19 0,1 ) and ( oý 2' 
6ý 2) is 

an equilibrium point,, but the utility values for the two points are 

not equitalent for the hasband (or the wife)4. This may be interpreted 

to mean thatv if the husband somehow found himself at the ballet with 

his wifeq he waad not want to leave her there so that he could go to 

another part of toun to watch the boxing matcha. A sisdlar interpre. 

tation could be given for the wife if she jound ber6selt at the prize 

fight* But there is no indication how they should find themselves at 
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either the fUht or the ballet in the absonoo of promplaw naptiation* 

Obowye that ftyp the busband uLght want Us strategy to be "famd 

oklt* bCr the vife providing Ww -rmad not see to it that he know her 

strategy as modle This the lmu*md aight be toqOped to ask a good 

friend to phono hws and deUver the moosage that the hasband was 

closeted in an L"rtant bmalnew conference at an undisclosed restau- 

root and would met his wife at the boxing match at sighto This 

In ow subj sat in disamsed in sme dstaU by 8. undw the lab-ol 

4. of strategieso 

Luce and Raiffa obswvs that heavy handed methods (such as the 

stratagem of the preceding pwagruA may actuwaly change the utMty 

entri6s In the pVoff matrix* For cur purpomw# bowevers we ohs] I 

asome the payafs to be fixed througbout wW prowgroo message 

deUverings There is also a mixed strateor ium point to this 

game, * The husband uses the strategr ( -2 g, 
2ý: ) lp the wife uses the !r Sr 

stratW "4 Observe that these are different from the maxisin., Sr 

mixed strategies# which are and reepwitively, * A mixed 

. ft 

eqqllibrium strategy holds the 2M= pLqer tk) a certaU amwnts, whwe 

J, -,, -oneself a ouetain amounts What is a stratOgy 9WU*At"B as a maximl. 

interesting JLn this distinction is that the equiUbrium strategr does 

not, q suppooodlyt involve Interpersonal 0OWariews Of util ItIve But# 

to coopute tjw AKW 
.. 

. Ubrium mLxed strategiesp me must ýM the other 

play, ers g UtjUtjLes. Ch tbe other hand# to compute the maAnifto CnO 

need only kn(m his am utilitieso 

Anothw wal known exuple of a non. -zero am game Le "chicken". 

made faincus In a HoWwood movie entitled "Rebel Without a Causew,, 

starring Jams Dean* This e is strongly reccemnded (it scmetimes 

appea" C112 latA night television) for a vJLmua doxamtration of the 
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folloving gems Two cars of equal Vead are driven at pili tbrott3., g 

tovard aW1f. The fir at driver to jump out of his rapidly accele- 

rating car ill given the opithet "chicken". Roth driveres, however# are 

expected to jump bY the last Imsible moment# and if this happowl, 

tbsy are both oonsidered eTuilly courageous* However# if one Jumps 

OLIt firlsto the other is not only courageous but (assuming he 

jumps cut before the car goes over the Cliff) and t1us is totally 

triumpbant* Ifs hmmvers thq7 both wait tcm long# they both go over 

the cliff and are not only dead but foolishe In the Hollywood versiono 

a random element was thrown in just to make things interesting't and 

one of the drivers - not James Dean - inadvertently went over the 

cliff with his car because he caught his sleeve on the door handle. A 
am 

typical pavoff matrix for chicken, fkt= Mis and Sermato" ILs the 

followings 

F: Lpre 4*2o3 

iuw 

---A walt 

505 Sv7 

7#3 oto 

Observe that the strategy combinations and 

are ju& equilibrium pointso However# (*ý 
lt io 2) - player (0420 

'012) 

1 is cbicken and player 2 is dominant - and player 2 Is 
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chicken and player 1 is dominant - are equilibrium points* There is 

also a mixed strategy equilibrium point composed of the two equivalent 

stratogiong 0 and ýr (Iv # 6*') 0 This in obtainedy for example for 

player L ao follows: We write down player I, $ a utility valuesp and 

compute the mixed strategys 

Figure 4*2.4 

Player 2 

y 1-Y 

x 
�a 

i_x 

5 

7 0 

5V +3 (x(l... v)) + 7(y(l. -x)) 

3x + 7y 

x(. 5y+3) 7. v 

3 
Observe that if player 2 chooses y =, 3-p the coefficient of x 

& 2.1 is zero,, and hence with y= 'ý 1, V, v, Thusp if player 2 uses 

y player 1 comot increase hit; own payoff with my change of 
4-1 

strategy. (Flayer 1 similarly can hold player 2 to by setting 
A 

X, ý ý ir )* A mixed atrategy solution has a certain plausibility with 

regard to the game of chicJam since one strongly suspects that the 
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outcome is tq no means deterministic before the game begins. Whether 

the eW: LrJLceJly true mixed stratog7 is the one we have just foimd is 

another matter altogethere In fact# it clearly is notj see reference 
Im 
Rig 

We should observe that ve have been able to describe - in a very 

crude way - tvo actwLl social situations with nonzero sam non.. 

negotiated gamess and there seems to be some intuitive acewacr in the 

. 
aMjscrir)tJLS& (W the situation using nonownegotiated game matrices. 
Wl* 
w bootber there In any intuitive or eVirical accuracy in the mISM of 

the situation as defined ty the equillbrium point concept in# hovever,, 

an open question. For examplep the mixed strategy wFilibrium pair 

do, es not appear to correspond vith my empirically observed firequencies 

37 in games of chicken perrarned under laboratory conditions. 

Before diacussing this point fartherp we shal I look at the 

most wide4 discussed nonzero mm game. 

54 Prinnerf x dilemma gamess a paradoxe 

The third nonzero ma game parable (frtm Luce and FALffa) is 

as follows: A prosecuting attorney (District Attorney or Queen' 9 

Council) luw under interrogation Wo prisoners vlxm be strongly sus. - 

pe*ts are guilty oCk crimep bat he lacks proof. The only uV he can 

convict is with a confession. The prosecuting attorney puts the 

ou"ets in seperate rooms so they cannot commmicate with each other 

and then wMate tk) each separately that the courts wJ3-1 ngo easierm 

on eithw one wtu) confessesp JLf his partner keeps quiet* The one who 

keeps quiet if the other confesses gets the maximum sentencep Lao 

"takes the rAP"o If rIaLtbar cmfooses the D*Ao can still prosecate 
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an some trumpedwup cha Go go concea3lng evidence,, and this payoff 

is equal to or worse than the payoff to the IM oonfessorso If both 

confew# the courts vUl still show awe leniency# but each will get 

an Intermediate sentenees eog. perhaps life imprisorAment instead of 

the death pena3tye 

Each atimipeat coad reasm an follows . "If I confess then I 

get the lightest sentencep for turnin states' evidence it the other 

guy IceVs quiet* On the other hand if he confesses an ve3ls I get a 

long prison term* Bat JLf I don* t C=feaes arid he doesp I get the 

-12 - electric chair* Of coursep if he also doesn' t confessip I get the 

nuniabnent associated vith th* trumped-oup charpo I guess I had 

better can ess*o 

Since thqV both can reason that way# they both confess# and got 

life in prisone N(wo had thW both been irrationalp Lee. not gone 

tbrough the reasoning process we have just described* thmV both could 

have kept qaiets, and received the sentence associated vith the trwVed. 

up charge. That isj, two Irratimal players cOuld c1A) better than tvO 

rational oneal This is the paradox of "rational" dscisicn making* It 

is smetims sad that it contrasts Individwa rationality with 
Iwo 

collOctive rationality (Rapaportup) This interpretation in relevant 

only if one accepts the equilibrium point concept as a definition of 

rationality* Since# as we sha3l met we feel that the entire argwunt 

is misplaced and that the equLilibrium IX)int 0OUCePt shculd be ignored 

altogether# ve shall not consider the merits of this interpretation 

of the prismers dile=w (Lee of graup versus indiviclial rationality). 

Notice# incidentally# that the oonviction of a mispeat is quit* 

injaggiol of his gailt or innocencep but depends GlItIrOV On the 

action of his "partawOo 
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no 

6 

Sol Payoff matrix* 

numerical example of the problem is the followings 

Floire Solol 

Prisoner 2 

ip., a 
12 

I 

Ok. 1 
caXess 

04 

not 

We see that Sim in an PoInt - and the car 

one . because# havlng arrived at its, neither pLqer has mW incentive 

to change his stratelWo Observe alsop thatp for playw Ip row I 

strictly dominat" row 2# and fw pWar 21p column 1 strictly 0 

I. xlkmnl 2. Tbusp the choice of rov 1 Lis player 11 a maximin strat*IWg 

an is the cho: Lc* of oolum I tV pLkvw 2* Thus# we see that the 

di I eme holds whether we use maxInin or e 4111ý point concepts. 

Clearly# the problem allows for more than one n=srical representaticn, 

and JUa fact# it ocoars whenever certain inequalities boldo The 

fonowing matrix fan4 where the m=bers refer to the combination of 

row and colums, W11 be helpAas 

not 
oonfew ODnf*88 
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Figare S, 1*2 

Player 2 

M 

v 

PIS 
0 

ui 

-a, ui (2 p 2) 

i= 1#2 

The inequalities of the primmer' s dilemma are as followes 

6*101 For plVer lp 

. itl(28,2): * ul(1#1)>U, (2pl) ul (lt 2) 'j-r 

player 2# 

u u2(192)o 

N-pls$er versions of the game are possible# but each player's; 

payoff would have to be represented an a separate matrix# where row 

strictly dominates row 2 (not confess): An example of the 

matrIX for player 1 in a 5-player game in the follovIngs 
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i 

Figure 5.1.5 

20 2 3 no one else 
omfoiss ewesses owasseil confesses 

I 
0 
U 

Pf 

-- 

0 

-1 r 

5 5 6 

4 -4 4 

1 

2 

Clearly, O we could construct matrices for the payoffsý to a 

singIS player JLn an n-player game for arbitrarlly large n merely by 

adding additimal ColUmse 

6*2 The paradox 

We have observed that two irrational players could do better 

than two rational ones in this game. Recalling our questions 3,1.1 

and 3*192# we may observe that the theory is designed to give a "no" 

answer to the first quos tionj Does knowledge of the theory indicate 

to players that they should not follow the theO271, i. e. falsify the 

conclusions of the theory? It succeeds in doing this so well., that it 

gives a "yea" answer to the second questions Does knowledge of the 

theory migZanW the conclusions of the theoryp I. e. Is the theory a 

self. fulfilling prophecy? 

We have also observed that for UM sum two player games there 
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is no reasonable objection to a "yes" answer to the second question. 

This is so for two reasons. First the value V although perhaps 

contrived in the sense that it May not be in the minds of real game 

players is nevertheles 
19 

"natural" in the sense of describing totally 

efficient p1W when the PlaYer'9 intOrests are totally opposed, 

Second$ since zero sum two player games are essentially unnatural 

situationes we do not object to the solution being in some sense 

unnatural. 
IN- ý 

Eut a self-fulfilling prophecy for nonzero sum games becomes 

unacceptable for precisely the reasons that it Is acceptable in zero 

sum games. That is# there may, be Joint maxima to be realized or joint 

minima to be avoided, # and we might expect superhamanly efficient 

players to be able# at least to a small extent.. to take advantage of 

theme Secondly$, since the situations the games describe may be in 

some sense "real"s we do not want "knowledge" to leave us in a worse 

position than ignorance would have done. Rather than allowing us to 

farther control our environment, the "knowledge" appears to damn us 

hopelessly. 

We should take stock of the equilibrium point notion for non- 

zero sum games. We have seen that for a given game there may be two 

or mor eI equilibrium points which may not be equivalent or interchange. 

able* Now we have seen that thfq may not even be desireaUel. Still 

they are premmbly self fulfil2ing prophecies and desireab16 or not, 

if the prophecies are true of the worlds we must deal with them. 

Thus,, the real question seems to be* is this self fulfilling prophecy 

really fulfilled? If notp then oonsidering the forml diff icaltiesp 

we vmq as well ignore them and find some other solution concept for 

n(mzero sum games. 
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503 Empirical evidence 

The data is still incomplete., but it is beginning to look like 

prisoner's dilemma outcomes simply do jlgt OCCLrv in generals in 

prisoner's dilezza situationa. To show thiss we shall verv brief3, v 

examine one historical event,, one sociological phenomenon and some 

psychological experiments. 

Ferhaps no situation appears to typify a prisoner's dilemma 

better than an arms race between two nations. If we substitute "arm" 

for "confess" and "noVarm" for "not confess" in the matrix of figure 

5*1.1, $ we seem to got a crude approximation of an arms race situation, 

The point has been discuased in a number of books by experts in inter. 
39 

national relationss e*ge Morton Kaplan. 

Without going into historical detail an arms racesj, a topic far 

beyond the scope of this thesims we need only observe that even within 

the crade policy dichotomy of arm-not arm# the "arm" choice does not 

receive a strategy probability weighting of le 

"To a considerable extentp the governments are carrying out 

arms control measures on a unilateral basis. The limitation of 

military budgets, the choice of weapons systems designed primari3, v for 

defense or retaliation rather than for attack (ev g, mobile Minuteman 

missiles and the Polaris submarines)# the development of commmications 

and comnand isysteme designed to slow down the response to ambigaous 

danger signals - all of these represent some aspect of a self. -imposed 
40 

control". 

At least the first of these items# budgetary restraint# amounts 

to a *not arm" choicegpM of the time. The present U. S. - Boviet arms 

race,, however catastrophic it Lop is still not as bad as it would be 

if both sides : ifailingly adopted every weapons proposal which came 
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along* Thus it is not a true prisoner's dilem&; the motivation is 

slightly different. If this is the case,, the international system 

might be eipected to be somewhat less confUct oriented than might be 

suggested by the prisoner's dilemma intuition. A recent study seems 
41 to confirm precisely this point. 

Our conclasion would seem to be that the motivation saggested 

by the prlsonWs dilemma probjes is inaccurate and therefore 

misleading. 

We do have a most Interesting case history In recent times 

which seems to suggest thatp at least for one side,, the prophecy of 

the prisoner's dilemma was false. This is the development of the 

atomic bomb* We know that the allies (that is primarily the U. S. ) 

doveloped an atomic bomb out of fear that the Nazi' s might do so 
42 first* Thas the U. S. seems to liave viewed itself as in a prisoner' a 

dilemma. What aboat the Nazis? The evidence is inconclusives, but 

we do know thatl for XWevIE reasonq they'did, M? l attach overriding 

importance to the fear of the U. S. first developing an atomic bomb,, 
Z- 

because they did not seriously begin work on their project until 

quite late In the war* We do D. 91 need to know their reaeming; we 

only need to observe that whatever the reason -they did not act as 

if they were in a prisoner's dilemmia even though they were aware of 

the UsSe Manhatten projectl 

Please observe that we are Dgj presenting any historical 

thesis# rather we are mereV trying to offer alternative intuitions 

to what has become. 9 after more than tmty years of Cold War,, 

established dogm* 

The second example of a prisoner# s dilemma is that of a p-anic 

of escape frcm a erawded burning theatre. This subject is discussed 
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in some detail in an account by Roger Brown. 43 It is clearly an 

zk--pLWer version of the prisoner's dilemma with "rush exits" substi- 
tuted for "confess" and "take turns"' substituted for "not eonfess"o 
The only point we need make is that in fact panics do Mt always occur 
in fire situations in crowded buildings. Brown discounts the influence 

of the members of the crowd being able to watch each other for signs 

of bolting since he argues# quite persuasively# that with "the smoke 

and confusion it would be hard to tell what anyone else is up to". 

Brown suggests two reasona for the fact that panics do not always 

occur in situations where they might do so* First# the members of the 

theatre audience wq not immediately perceive the situation as a 

prisoner's dilemmap Lee. "it takes time for the values in the matrix 

to become clear to everyone in the hous*". Seconds the fire may be 

Perceived as of such minor proportions that it does not really 

constitate a prisoner's dilemma. Both of these explanations seem 

plausiblem, althoagh the first considerably more so than the secondp 

which# in facts, would seem to contradict the first. Indeed# we shall 

extend Brown's intuitions Perhaps prisoner's dilemma situations are 

not always perceived as prisoner's dilemmas by the participants* To 

this extension we might add that since the di-lemma is a readt of a 

"solution" to a games i. e. a decision ruLle applied to a payoff matrix 

which satisfies certain ineqaalitleop Whape the decision rule which 

in fact is appLied does not Lýjj= produce the dilemma* In short, 

vhatever decision rale(o) is (are) applied by real Imiman beiz4,, s, , only 

AqWtjAeg do these decision rules produce prisoner' is dilema outcomes,, 

Lee* joint minima* All of this suggests for a agsSKjDtLvg theory, the 

development of a decision rule which prodaces prisoner's dilemma 

gatc2meff in some sitaations but not in others* One strongly intaits 
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that the occurance of tho "panic" may depend heavily on the exact 

mmerical entties in the payoff matrix. The basic ineqaalities of 15*19 

may not tell the whole story. For a non.. game theoretic discussion of 

panice't see sebultso 91 

At the level of sociological or historical analysisp there 

seems to be no &W way to investigate this conjecture. There iss, 

however# a great deal of evidence accwmlating in the field of experi. 

mental social psychology which confirms the conjecture. This evidence 

in the accumlation of data from actual experiments where subjects, 

usually but not always undergraduates# actually play prisoner's 

dilemma for money or points (but not jail sentences# at least not in 

the *Veriwnts). Admittodlys, as is often the cases, there has been 

a Vida Variety of pbenomena under investigation. Experiments have 

been con&ctedo to mention only a fev variables$, using different setis 

of instractionst lengths of play# commtmication situations# populations 

of subjects (age# sex# race# nat-Ionalityt large universitys s=11 

oollege)# scoring units,, degrees of friendships ar disliking among 

the subjects# types of strategies fr(w the (simulated) "other player",, 

and payoff matrices. Great care must therefore be taken when ispeaking 

about 9th*" empirical results* NevertImassal, throughout most of the 

pure immin wcperi=mts. (as Opposed to "olimi-I " experiments where 

the subjeets are told to pretend to be someone else, e. g. Khrushchev) 

a certain standard set of instructions and gaming situation has 

amergeds aften in the control grcap. The subjects generally do not 

Imaw vho one wwther ares and do not comianicate with each other before 

or during the experiment. They are seated JLndlvicUaUy in booths,, or 

at partitioned tablesp which display a prisoner's dilemma matrix or 

payoff descriptions and two switches - one to indicate the cooperative 
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choice (ntA confess) the Other to indicate the non-cooperative choice 
(confess)* These Choices are almost never labelled in a way to 

suggest cooperative or noru-co"rative connotationsp but are usually 
designated "red" or "black" or "a" or "b". The instractions given to 

the subjects are usually designed to be utterly devoid of game-li)w 

connotations* The game is usually repeated# and# after each play,, 
the subjects are informed of the choice of the other players, and# in 

some vayq the vinninge and losses involved in the play are called to 

the subjeetts attention. Each player is then allowed to choose again 
(if the game is r*peated). After the experimentp the subjects are 

given some amount of money (rarely more than a few dollarsi and 

usuaLly less than two dollars) which generally depends an their over. 

111U winnings, and losses in the repeated game, In most experiments,, 
I 

men pIV against men and women against women. 

The renalto of these experiments ohmlds at a minimum# raise 

doubts on the mVirical relevance of the prisonert s dilemma intuitions. 

The fact ist -in actual plays, even if the game is played only once$ 

subjects alwat never choose the non. -coaparative choice (confess) cw 

the cooperative one., every time. In fact # if one averages the choices 

for the subjects In a single or repeated play Weriment the fraction 

of cooperative choices (as (Vposed to cooperative outcomes, which 

require simultaneous cooperative choices) is amazingly consistent 

, P-- 
A Or a given payof f matrix and mmber of plays (say up to 40 plays). 

44 For ez&mplep the following matrix has been used in at least nine 

separate gaming experiments and the typical fraction of cooperative 

choice$ 
45 im rougbly 20 to 40% bys say# 40 plays. Typicallyq the 

fraction begins close to 60% and declines to the overall averages 
77 

we shall be giving* 
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FXgure 5.3.1 

Player 

Defect 

M 
F4 
V 

r4 P64 
Cooperate 

Interestingly, the prisoners dilemmia matrix of figure 5,1.1 
46 has also prodaced roughly the same fraction of cooperative choicese 

Two other matrices which have prodiced the same fraction are the 

followings 

Lefect 
r-4 

Cooperate 

Fig=9 5.3.2 

Player 2 

Defect Gooperate 

4jO 

0#4 3S3 

Reference 47 

Defeat Cooperate 
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Fiaure 5.3.3 

Player 2 

Defect 

Cooperate 

Defect cooperate 

100-10 

-10010 5105 

Rc-ference 48 

Interestingly# in one of the verv rae one trial runs of 

natrix of figure 5*5, oS,, the fraction of cooperative choices was 
I 

exactly .3 ioee very close to the middle of the 20 to 40% range. 

Two matrices which typically exhibit a larger fraction of cooperative 

choi coo are the following,, which typically give a 50 to 60% fraction 

of cooperative choices: 

Figure 5.3.4 

Defect Cooperate 

Defect 

C(mperat* 

3V5 592 

2p 5 4#4 

Reference 49 
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Figure 5.3,, 5 

Player 

Defect Cooperate 

Defect 

�-4 

Cooperate 

303 701 

107 

Reference 37 

Now, t gaming experiments have been Conducted with runs as long 
so 

as 300 playsv but the results for veI7 long runs do not seem as 

consistent as for relatively short runs (say under 40) * Nevertheless,, 

in long nms,, various dynamic interaction effects become apparent. 

For exauples, one such phenomena# "locking-in" on the mutually coopera. 

tive or mLitually coMetitive ou-toomesp is "most clearly observable if 
51 

the game is played several hundred times". We suggest that for 

long runs, it is quite possible that boredom# aggression,, etc. have 

-significantly altered the player# a perception of the payoff matrix. 

Whether the grame remmins a prisoner's Ulemmaj, in any sense whatever,, 

is open to doubt,, Our comment9v therefore,, are strictly confined to 

the "early play"s ioeo under 40, plays. 

The "early play" empirical Judgement would seem to be the 

follovingo Firstp players rarely if ever choose either the "confess" 

choice 100% of the time or the "not confess" choice 100% of the time,, 

Second$ the consistency of fraction of choices for given matrices and 
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the differences in fraction of choices betveen different matrices 

strongly saggests that the actual numerical entrie a in the payoff 

matrix are critical. Third,, there is typically a. decline in the 

fraction of cooperative choices vhich more or less stops by 30 - 40 

plays* 

The preceding discussion of the prisoner' a dilemma and the 

other nonzero am games has shown both formal I stic and empirical 

growds for rej ecting the oqallibrium point (or mwdmin) concept as 

the definition#, in any isenses of the solution to non-negotiated non- 

zero mm games. For prisoner's dilemme games., the solution is an 

undesirable self fulfilling prophecy which in general fails to occur 

empiricallyo Moreover# in gazing experiments with "chicken". the 
W, 

wp ibrium point concept appears to fail to predict actual choices a-il 
.. & 11. - as vell. Thus# the equilibrium point concept is normatively undeeire. 

able and qpparent3ýy empirically falsea To advise people to act on 

the basis of the dilemma because other people will do so appears to 

be patently bad advice* 

All of this suggests the need for a new solution concept for 

non-negotiated# nonzc-ro sum games# and in Particulars a Solution 

concept which somehow deals with the prisoner's dilemma problem in a 

new way. Would this be a solution concept which would tell us when 

the dilemma occurs and when it does not? The answer to the questim 

is that the question is based on the wrong intuitions. We alreacly 

have established the fact that the dilemma often does not occur when 

it aight do so. Tlus# in those situations where the joint minimal 

outcome does occurs our understanding is obscuured by calling the 

situations "Prisoner' a dilemmas". The point is# a new solution con. 

cept should not even raise the question of a "prisoner's dilemma"* 
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The d1lema would not be "resolved" in this theory# it simply would 

not appear. The intuitions which motivate joint minimal outcomest in 

those situations where they can be expected to occur,, would not be 

the same intuitions as motivate those outcomes in equilibrium point 

solutions to prisoner's dilemas. 

To realize a solution concept of this typep we apparently would 

have to go back to nonzero am gameag and begin again with a non. 

equilibrlum point solution concept. The candidate for such a nolution 

concept has already been discussed repeatedly in this paper - zero 

am interpretation. Before we discuss that theoryt howeverp we would 

be weU advised to examine some alternatives to Itq which opwate 

With. in the framework Of '-, equilibrium point theor7o 

54 # 38 
6, The metagame resolution of the prisoner's dilema, 

79 
and Sbubik% solutions equilibrium point resolutions 

601 Conditional strategies 

Reconsider the matrix of figure 6.1.11 

cenfess 

not 
confess. 

Figure 6.1*1 

Player 2 

confess not confess 

-2#2 
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Pretend that player 2 could choose after player 1 had choseng 

and could see player it s choice# i*e* player 2 knows the choice of 

player 1. Ve have seen in figure l.. z;. 8 the effect of such information 

.. Lt increases the available strategies to player 2. In6tead of the 

altcrnativee "confesis" and "not confesis". he can now choose among 

the following four strategiess 

1. Confess if 1 confessess confess if 1 does not confess* 

2. Confoos if 1 confessess, do not conf eas if 1 does not confess. 

S* Do not confess if 1 confesses,, conf ess if 1 does not confess, 

4* Do not confess if 1 confessesp do not confess if 1 does not 

confess. 
IN- By using the numerical entries for the various strategy 

combinations of figure 6.1.1 we can obtain the new matrixt 

Fitn, we 6*1*2 

Player 2 

If 1 chooses "c"s, then 
2 chooses 

If 1 chooses "NG", q then 
2 chooses 

Confess 

not 

confess 

confess confess not confess not confess 
l 

confess not confess Confess not confess 

.1 jp .1 . 10.1 2#--2 2j, -2 

. 2j, 2 101 -292 
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We observe that player 2 still has a pure strategy 

Of COIL= Is and PlaYer 1 still has his old dcuinating pure strategy 

of row Thus# no new eqaUibria are Introdaced. Now suppose that 

ve are faoed vith the game described by figure 6*1*2 (tbe 2x4 game), 

and pretend that player 1 em see the choice made by player 2* We 

Iuww that this will increase the available strategies to player 1. ý 

it AU give him all possible responses to player 11 s four possible 

etrategies. Thls am=ta to sixtem pur* stratogien. For examclog, 

one of these would be the followingi Confess against his first choicep 

gA confeas 94, eaLnst his second choicop confess agaWt his third 

cholce, q confe" against his fourth choices We shall 1write this as 

(CONCVCIC)o 

'The new matrix thas becomes that of. figure 6*1As 
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Observe that we have interpreted player 2's strategy choices 

&a specific InstrucUons to either confess or not according to whether 

player 1 confesses or not* That isjo tbW are conditional on the 

choice of "C" cw "NC" of player 1. On the other handip player 11 s 

choices are conditional on the choice of column nadbg of player 2. 

In this wayp meaning can be given to the matrix and we can fill in 

all of the boxes on the basis of the number associated with the 

strategy combinations of the players in the matrix of figure 6.1.1. 

The two 2a equilibrium points,, as well as the old one, are circled. 

They are found as follows: Hold the strategy of player 1 fixed and 

look at the payoffo to player 2 for 21 s own alternative strategies. 

If no other strategy offers a higher payoff to player 2j, repeat the 

procedu. re for playevj. j. ioeo hold player 2's strategy, fixed and search 

player 11 a alternative strategiess If no other strategy off era a 

higher payoff then this combination of strategies is an equilibrium 

point (really# a metaeqailibriump since it occurs in the metagame). 

The tbree circled equilibrium points are the only ones on this matrix. 

'M-- ror examplep the ce32 we have labelled with an "IN is not an equilL. 

brium point since both players have an incentive to change their 

strategies. 

The Ame of figure 6*1.2 is called the 2-metagames and that of 

figure 6*1*5 is the lo 264metagameo Howard has proven that further 

expansions will yield nonew. equilibrium points. Thus# once each of 

the -players hate been DNAqg once no new equilibria are introdaced. 

Therefore# we never need investigate the 2#11,2. mtagameo 

Observe that the dilemma is resolveds that isip the joint maximal 

outcome can always be realized by the netagame procedure. Notice also 

that we could have given player 1 the four choices -and player 2 the 
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sixteen choicesp but in each complete expansion (expanding once for Cý 
each player) one player must have four and the other sixteen choices. 

The solution is defined as those meta-equilibria which are meta- 

rational in both expansions. Thus, the joint maximal outcome in 

prisoner' s dilemma games is Meta-rational no matter how it is viewedj, 

i. e., no matter which player expands first* For practical purposes 

and recall that this is what nonzero sum games are about - it mayp 

nevertheless# matter a great deal w1u) expands first. This is because 

meta-strategies are ways to enforce certain outcomess, rather than 

models of thought. We shall discuss the asymetries in the expansion 

ahartlyo 

If the metagame Ooncept is applied to zero sum 2-player gamess 

the met&-rational strategies do not change the value v of the game. 

They can beg however, slightly different from optimal mlnimx 

strategies. This point is discussed by Howwd. 52 Fcr a textbook 

treatment of netagame theory# see Saaty. 56 

6o2 Discussion of the metagme concept 

The difficulties with the solution concept for nonzero sum 

games such as the prisoner's dilemma should be mentioned* Firstp and 

most obviousv Wv strategies# ioe.,, the conditional strategiess, are 

introduced which simply were not in the original game of figure 

(or 691*1)o Harris 58 has argued - and we agree - that these 

conditional strategies change the nature of the game and use the 

referee (the DIxtrict, Attorney) in a way contrary to the rules of 

the game. (Harris$ original comments59 have sparked a three way 



controversy involving H&rris. 62 600 61 3 64 Rapoport, and ftowwrcP 0 (and 

we might note that the oo=nents of these gentlemen# in this 

oontroversVp are not always geutlem*nIy)* Rapoport hats argued that 

a referee always decodes normalised strategies and thus plays no new 

rol* in the metagame of the prisoner's dilemma. Thisi, howeveri, seems 

hardly to be the case since the metap-stratogies can be contrary to 

the original rules of the gamo Me# in the prisoner's dilemma 

parables we can imagine the cigar mooking DeA* grimly enteAng the 

room containing Prisoner I and aWdngg Vo you confess? * To this# 

Prisoner 1 repliesp "l dop unless he (Prisoner 2) sVs that he confesses 

if I do and does not confess if I don' t oonfwm. It he mqs that# then 

I don't oonfeties" The D. A. (perhaps somewhat mwprised by this reply) 

waW into the adjoining room and asks Prismer 29 *Wellp what about 

it# do you confess? " Prisoner 2 repliesq "I confess It he (Friacner 1) 

confesses and don't confess if he does not confem" 

The reader can make his cmin assessment as to whether the t. A. 

would ace"t these replieso In ohartp the referee must be willing to 

aocapt oUtements of stratogies vhich were not specified in the 

original rules of the gamo 

A second criticim is that the golation concept twna a fumda.. 

wntally oWmetrical game into an aAWuntricmi (me, jL. jj.,, in any actual 

pIv of the metagames, one player has four strategy choices and the 

othw sixteene Moreover, emich must know which player he ist Us* 

whether he is player 1 or player 2* 

The question in whether the asymetry, is of no importance. Th4t 

ing does the asymmetry merely reflect corWn feat-area of the table 

but no idgnificant LUMUd& consideratims? Put another ways woUd 

we rather be player 1 or player 2? The answer Is decisively that we 
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would rather be player 1. We would expect that the player with more 

variety (choices) at his disposal is favoredq although we have seen 
in the matrix of figure 195A that this is not neceswirily the case* 
The advantage only occurs in the case of the metagame resolution of 
the prisoner's dileamat if one of the player makes a mistake. Thasp 

consider the situation if player 1 uses his third strategy, # and player 
2 mkes a mistWm and chooses his third or fourth strategy. Player 2 

Igggs 2# and plVer 1 wins 2. Now consider the situation if player 2 

uses his second strategys and player 1 makes a mistWwg Lee uses some 

other strategy. Inspection of the table shows that either there in 

no Change in payoffs# or both players lose 1. Thasi, player 21 s 

OPU MAI strategy is only optimal in the sense of gmuranteeing at least 

solue number (-l),, but player 11 a optimal strategy is j2ermanentlv, - 
Optimallp Lee* it alvays mwduises on AU choice of player 2. But the 

asymetry is even more drastic* If player 2 uses strategy 2# then 
Olk'trM 

pl.,. r 1 is protected against JW& M& mistakLaq ise. no mistake will 

-A -- gLve him less than -. 1. But If player 1 uses strategy 51, player 2 is 

ml protected against his own mistakes# ioes a mistake on his 

(player 21 a) part coad give his -. 2o Thasp player 1 becomes the odds.. 

an favorite,, but he was given no such advantages in the original 

game of figure 6.1ole Again we askp which player in the game of 

figure 6olo3 would the reader prefer to beO Player 1 (w player 2? Nows, 

loca at the game of figuure 6.1.1. Which player vould the reader 

prefer to bes, player 1 or player 2? Thasp the real questions is tbg 

make of figure 6.1.3 the same game as the original prisoner's 

dilema game of figare 6.1.1? If the answer is "nows, then the 

sy trical prisoner's dilemma of figure 6.1.1 has still not been 

Iteisolved"o 
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Within the context of equilibriurA point theor7., howeverq the 

29tagamS Q*ncSPt &ChieT98 8011kething - it allows two players,, who 

know their roless, tA) reason independently to a joint maximal out,. 
i 

come. This could be the basis for a new agrmativit, theory of equili. 

briun point nonzero sum ganese (Howard argaes that the theory Lip 

descriptive# but there seems U) be no clear evidence that it describes 

anything. The reader is referred to the report of his experiments in 

reference (52)) s 
The solution is decid*4 artificials, but since it is not also, 

obviously undesireablep there seems to be no obvious objection to its 

artificial character* The judgement as to whether or not the metagame 

theoz7 may be useful for practical situations# e9go 2-player 

negotiations 
95 

where the players do not trust each otherip (Harris# in 

"Paradox Regained" indicates that Rapaport has privately said that 

this is wbere the greatest value of metagame theory lims) woald seen 

to depend very heavily on two things. First, the players would have 

to agree on the order of expansion of the gameo As we have seen,, this 

is not a trivial mattero 

Howard' a exWle of the Vietnam war 
52 is Illuminating in this 

respect* He trggts each side (the U. S. and the Vietcong) as having 

pure strategies of nescalation" and "not escalation" in a prisoner's 
I 

dilemma gamee For the metagame resolutions we RMY as w03-1 TICtIO 

Howards ". Qn side sual have a policy of Tit, -for-P-Tatq and the OtwM 

aunt react with INot Escalate' against 'Tit-for. -Tattl 'Escalate' 

against 'Always Escalatel or 'Tato-for-Tit' moreoverg of courses these 

policies vust be credible. (52# p. 3-12). (Emphasis added) Howard 

leaves open the question of which side adopts the respective policiew 

It does not tgLx one's thinkingg however, to see that in this casep the 
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question of which side will have a permanently optimal strateg3r . if 

it is raised in the negotiations - may be vieved by the participants 

as going to the heart of the problem. 

Second# the judgement as to the value of an application o; f 

metagame theory to a particular negotiation woald depend decisively on 

whether or not the use of conditional strategies significantly alters 

the objective situation about which the sidea are negotiating. Observe,, 

in this regard that the problem of credibility of the conditional 

strategies assumes everwholuLng importance. This is because each 

player mast be able to make his conditional strategies believable to 

the other players. How this could be done is an empirical matter, but 

as we have seen in section 5.4j, this could drastically alter (perhaps 

in an unpleawnt way) the original objective situatione There is no 

iseae of credibility in the agg. -negotiated prisoner' a dilemma situa, 

tions, since each player either does one thing or another thinge 

605 Sbubik' s solutions 

Slmibik" has suggested that there may be several valid solutions 

to prisoner' a dilemma type games largely because the prisoner' s dilemma 

does not exist, as a single problems "* e, the only paradox (JLf there is 

any) Is that so much concern has been lavished on mistaking a class of 

games for a single game and on trying to use too simple a construct to 

explain too mach. " (p. 91) Shabik is concerned with the I*real world" 

(and experimental environment) relevance of solutions to prisoner's 

dilemma gamess, which,, as we have said repeatedly# is precisely the 

j. apcwt&nce of nonzero sum games* He describes two solution concepts,, 

one involving an infinite repetition of the prisoner' s dilemma where 
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Nature (Losop a random device) decides if the game viU terminate at 

wW given play or be repeatede The players got the sum of their 

payoffs P from each playP Thasp if the game J& played five times,, the 

playero got 

P29 
t=l 

If the game in infinitely repeated (ioeo s until the randomizing device 

assigns p=0 of continuing at time t) we have 

Co Co 

6.3, o2 ( 2: t, t ptP2#t) vere 0 IL p p Ap 
t=l 19 f twi 

i 

tb, q prob&bility of contirazing to the next dayj, and 1-p is the 

probability of terminating at time to Note that each payoff is 

discounted by its Ilkli d of occuring. Neither player now knows vhen 

the game vill end. Thereforep the argament that a known finite number 

of rep6titions of the prisoners a dilemma always produces a prisoner' s 

diIema outcome no longer appliess (The argament. 9 essentially 

identical to the proof of theorem 1.2.5 says that on the final plan, 

each player will eboose to confessq since he does not fear retaliation. 

So the final play' a outcome is known and. the next to the last play can 

be treated as the final playq but again the previous remark applies,, 

and so on to the first day). Tbusp with no known end to the gme# 

perfect cooperation beemes a possible eqdlibrium state. This can be 

combined with various t1hreat strategiesp as we shall see in a moment. 

Shubik' a second resolution model involves ths previous infinite 

eVressions but thia time alvays interpreted an an infinite play 



145 

w 
of the gameo The pt is now considered to represent a diao =t rate 
On thO POYef matrix* WIV the dJLSco=t rate? This Is mer4y a woq 
ý40 of saying that money made In the future in warth less than money made 

at the present time* In the previous solutions this was because the 

game might end# and thas the probability of its continuing got 

prepeasive2y smaI3 9 In the present model# the disewnt rate means 
tbat, o as Shabik myst "'Pie in the platel is preferred to *pie in the 

Skre ", Sao 
As an exaWle of the second solution concept# considw the 

following matrix: 

60303 000 0-610 . 10 
1 in »s bi 5 ~0 

Sappose that the player choose to cooperate on the first plays, JL. e. # 

choose row 2 and column 2 reapectivayo The present worth of 5,0 for 

saah player# is 

6o394 PS + *400) a ja 
l«. P 

Now assume a disc=t rate P=99 and suppose that plVer 2 defects on 

Playconei . -He obtalne 10. SWous player 1 has a strategy, #If be 

dGf9ctS, v tben I defect for k periods and than resume c4loice 2, If he 

es to defectp I chooev; row I (defeat) for k+l periods# and 

thOn MOM cb*ics 2o SO# if k= 19 then player 2's winning of 

10 + 07 5+ 4* S. But# if k 2, v then 10 +0 /- 5+ 49 5+ 4*06s, T)ujj 

defectLan does not pay when ka 20 and mtual cooperation is stable. 

The infinite PaYvff. to PWer 2. JX he insists on optimaly defecting 
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in given by 

6*3*5 10(p, * 
36P 10 

+ P2 + PS +4 P15 5 + P21 + Pk. j + 00*11 ) 6 

vhe" lei = JL .. I + kil. If p= , 91, this expression reaches the 

I lalt 29942s, The present worth of 5= 
ftSiD 

45* 
1-Y 

Thaelp in an infini to playO no one has an Incentive ever to play 

choice 19 providing at least one player uses the threat strategy vith 

k2. 

The first solution concept is cUe to R*J, Aumanns but ig 

r"rted only in Sbubik (reference 79) e The second solution concept 

in an application of Shabik' a work on games of social survival! 
oslal 

Notice that the threat strategies need not be verbally communicated. 

They can be learned in the coarse of announcing the result of each 

Play. Since the game is played on infinity of timesq there is no %F 

shortage of time for learning. 

Rapaport 82 has pointed out some of the difficulties of these 

solution concepts, all of vhich center ar(xmd the fact that they 

radicaUy alter the nature of the original problea. That is$ threat 

strategies# infinite repetitions (with known probabilities) and 

discount rates are simply not part af the original problem. Moreover,, 

we have seen that aj&glg plv experiments (figure 5, *3,3) seem to 

produce no significant difference in fraction of cooperative choices 

than do experiments involving 30 or 40 plays. Thuss, even from the 

point of viev of empirical psychological explanation,, the" models 

are not helpfalo, We make this claim only for the early play. Perhaps 

for long runis of experimental gamesp these models may have mm 
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relevance* 

The obj ections we have discussed to the metagame concept and 

to the Wo solutions discussed by Shubik are in addition to the far 

more fundamental empirical objection to the equilibrium point concept 

itself# and in particular its use in prisoner's dilemma situations* 

We shall now look at an entirely different approach to non-negotiated 
I 

nonzero sum games -a non-equilibrium point solution concept in 

vhich (for two player game) the prisoner's dilemma outcome and 

intuition simply do not arise. The need for a new ty-pe of solution 

seems clear,, for we have seen that the prisoner' s dilemma does not 

tell us the truth about ourselvesp and in f actp its use as a guide to 

intuition may be doing us great harm, even though it is put forward 

as a painfuls, but helpful$ insight which will aid our survivalo The 

prisoner's dilemma appears# in factp to be a hoaxe 

Zero sum interpretation theory 

We have seen that for negotiated nonzero sum gamess, the von 

Neumann and Morgenstern solutim added an extra players, to make all 

differences zero s=# and then had the n real players "cooperate 

fa3ly" against him* "Cooperating fully" involved a perfect interplay 

of threatsj haggling# negotiationsp etc. The question isj colald a 

zero sum interpretation theory be constructed which specifically 

excluded any possibility of negotiations? A ffyes" answer to this 

question has been developed by the present author 
36 

and we shall 0 

now discuss this solution ooncept in some detail* 
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7*1 Two player zero sum games 

Since no pregame negotiations are possible,, the notion of 

cOOPerating AIlly against the n+ lot player must be revised. For 

ve shall substitute the concept of 2la-Ang de2g.! jdlgjjaX agral-n-lt -the 
IgI jj1&jer. Instead of a coalition of n players playing an 

imaginary zero sum Z. -player game against an imaginary extra playerq 

ve shall develop a theory which has each of the n real players playing 

ggoar, ga Imaginary zero sum two player games against the (still 

imaginary) extra player. These imaginary games will correspond element 

for element with the real game. The motivation for the players, 

thinking in these terms in extra theoretic# i. e. we must assame that 

the real players view their decision making task in terms of the zero 

sun 2"player games between each player and the extra player. Of 

coursep this asxwVtJL*n prejudges the arguSente It should be thought 

of in the same spirit as the tecbniqae used by von Neumann and 

Morgenstern for treating n-player nonzero sum and zero sum gamesp 

where the 11jig2liatignal are extra theoretice We can# howeverp bolster 

our assimption to a certain extent; we can also consider a wide 

range *f zero sum 2-Pplayer games between each and every pair of real 

players, v to see if the real players might not prefer pare conflict 

vith each other over pure oonflict vith the extra player* 

Since we have assmed that the motivation for the zero sum 

interpretation, is extram-theoreticl and that all decisions are made 

in terms of the imaginary zero sum 2--player gamesp one decision rule 

would seen to be compelling - if a combination of n separate zero 

min 2-player game against the extra player produces a joint maximm 

for the n real play6rej, this combination of imaginary games should 



147 

constitute "the solution"* That is each real player should act in 

the real game he were playing his "best" (joint ma3d=m) zero 

sum 2-player game against the extra player* This joint maximm- 

realizing combination of imaginary zero sum games (actually of the 

s&Xatg&Jes for the real player in these gamis) mast be subject to the 

single requirement imposed by the one to one correspondence between 

the elements of the imaginary games and those of the real game: the 

probabUities which "occur" in the lmaginwy games must correspond 

one to one with the probabilities which occur in the real game. Thasp 

the lmginary games are true zero mm 2--player interpretations of the 

real game. We ahall tbereforep, consider our task completed if we can 

alm the "existence" of a joint maxi mim. -reali zing combination of 

ary zero sum 2-player games & It ut U turn (mt that for 2-player 
v 

prisoners a dilemma games such a combination always exists. 9 and that the 

joint maximum solution for each rwa plVer Is always a mixed strategy 

(which incidentallyp corresponds strikingly with the fractions of 

cooperative choices obtained in the gazing experiments). Whether or 

not a almllar combination exists for n-player (n -., --2) prisoner's 

dilemma games depends critically on the exact numerical payoffs. Ve 

shaU slxýw an important case where the combination does existp and 

for which the mixed istrategy soluticme are independent of the number 

of players. We shal I also show that in the special case where the 

nonzero sum game happens to be In fact a zero sum 2-player game, 

our solution concept produces results identical - both in terms of 

strategies and the value v. with those of the von Nemann and 

Morgenstern minimax ooncept. 
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7og n+1 player game 

Notice that the addition of the extra player serves only to 

turn the nw-player nonAwwo sm game Into an n+1 player (and W? j a 

2-player) zero sum gamep and that the LM&inljU. zero sam 2-player 

games ve have been discassing are nubsequently derived from the 

n+1 player zero sum game. This is the critical difference between 

our solution concept and von Neumann and FAirgenstern' a treatment of 

negotiated nonzero sum games. We shall find it convenient to treat 

the n+1 player game as a coalition game# where each real player has 

the choice of joining or not joining a coalition with the extra 

player (corresponding with "confessing* and "not confessing'*) * That 

is# if 10 is the oxtramiplayers, and ik is any real player,, then each 

real player can choose to form his own separate coalition with the 

extra player. We shall write this coalition as (i 
o* 

Y* 1f two or 

more real players choose to form their coalitions with the extra 

player# we shall treat this as the union of the separate two player 

coalitiones (i 
o# 

ik) u (%$I 
j 

). In this way$ the Isolation of the 

separated real players# with the obvious possibility of "overcompen.. 

sating" the imaginary extra player# is brought out* Inefficienoy, 

in shorts, is represented as ansalative. Thass, in a two player 

prisoner's di1emma, games, if (10j, il) corresponds to the situation 

where player 1 confesses# we could have a payoff n-taple as follows: 

where the first element is the payment to the extra player 

10# the second element is the payment U) player ll and the third 

element is that to player 2e The situation when player 2 cbooses 

floonfess" in as followes (i 
o" 

1 2) 9 
49.1 9ý) . Snc'e mtual c'onf'88'9'ono 

JLS OLoll 11) U (jLo* '2) and represents compounded inefficiencyp we must 



149 

sun the respective payoff n-tupleg to obtain (19moig-J). Any 

aW strical primmer' a dilema game can be normalized into either this 

forup vhere the extra player vins some amount if a player conf e ss ea1, 

or into the analagoun form# where the extra pLVer pays out some 

amount if a real player confesses. The first of these cases repre. 

sents a loss to nature dae to inefficiency. The second represents a 

subsidy from naturep which may be tlxmght of as increased productivity 

revalting from competition* Normalization is essential if we are to 

determine the exact role played by the extra player (for example,, 

the DeAw) in a prisoner's dilemma game. The normalized matrices for 

the two possible -'cases In 2--player prisoner' 9 dilemma games are as 

fo3lowsp together with their respective normalization formlass 

Figure 7.2.. l 

case 1 

confess 

04 

not 
Confess 

ul (1,2) 

ul(2#2) 
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Each element Of thO Original prisoner's dilemma matrix 
(for player 1) becomes 

o 

ul(m, n) u: L(201) 
ul (1,2) - ul(ll) Ul(lpl) - ul(l. 2) 

Figure 7,2.2 

Case 2 

confess 
m 
to 

not 
confess 

1-ul (2.1) 

u1 (21,1) ul(2,, 2) 

M 

Each element of the original prisoner's dilewaa matrix M 

(for (player 1) becomes 

u1 (mn) ul(lp2) 

ul(1#1) ul(2#1) 
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Analogous expressions can be obtained for pl%rer 2. 

of ftgure 6*191 normalies as follows: 

Figure 7.2.3 

Player 

confess 
V-4 

$4 
k 

Cd 
r-f 
P4 

not 
confess 

not 
confess confess 

oto 

Written as a coalition game# this waald be 

7.2.1 

coalition 

2) U 
0,9 

IL 2) 

3) Uo vi 1 
)U(i 

0 si 

4) ('l"'L2) 

11--tuple 
0: L 

3p3 

�2. 
ty �- �3 

F', ' 2.2. 

'y 'i'i 
(ORO#O) 

The matrix 

Notice that the elements of each n. -tuple sum to zero, We see 

also that the descripti(m of the game in 7. -L ,f is merely a list of 

coalitions and associated n-taples. We shall. designate the list by 
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and each component of it by 
40 

Observe also that for each coalition 

O's 
ik)S, we have v( OL 

081 k)) ý 'V (('J)), 

The 3 player Wmetrical game of figure 5.1.3 could be 

normalized (to v((i k)) r-" -*1) and written as a zero sum coalition game 

as foll(met 

7*292 
coalition n-tuple 

(109il) (0010"tf"4) 

#1 2) 
(Ot-491V-4) 

01 5) 
UoIYU ('og*'2) 

(JLO, il)u (iotis) 

(i 
os'2)U 

('osjýd 

U 
oti 1)U 

('o#'2)U ('01"d (0000000) 

.L0 L -1 331 ( 
1"2"'3) 

(11 a p"LO 

An n+1 player (I. e. the u real players,, i is, ... " in and 

player i. ) coalition game is characterized by the following: 

7*2.3 

i) Players =I= (iot 111 *000 1n )* 

ii) Each player of (1 
1P 0*90 1n )I i0es I- (1 

0) 

has two strategic choices "Join io"O "not 

j Oin 10 "o Player L 
() 

has no strategic choices. 

Therefore# the game has 2n Outcomess 
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iii) Each coalition (L 
olo'k))(k 

i 0))has a unique 
kkkkk payoff n-ttiple where = (ao 

j, &I,. an 

and the superscript k indicates that player ik 

chose "Join L0 "0 

iv) The coalition (ij# ... m, in) has a unique n-tuple 

associated with it and is designated without a 

superscript an (a 
0 a, # " an), 

V) For (L 
o"k) 

U(i 
0 Si kýjý op we have k+ 

vi) For (i 
O'li k) U ('o 01 UotU(i 

0 
1., ) we have k++ 

too + n9withkkj ýOý 
see 

ýn 

vii) Each n-tuple 
k 

satisfies 

k 
ak 

i*k 

viii) Each coalition's value is such that v((i o4k)) 

and 

(JL1'p ---I 
ix) o> V((Lk)) ý'. * --lp for k= lp , ## no v((i 0 

)) is 

unrestricted* 

x) The entire list of coalitions# union of coalitions 

and associated payoff 
- 
n. -tuples in designated byý 

and each coalition and associated n-tuple by k. 

7*3 Zero sum interpretation of each oateome 

We shall now oonsider the zero wam interpretations of each 

outcome. These are the MMbers which are used to fiU in the 2-player 

7, ero sum interpretation matrices. Since the nonzero sum game has been 
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converted into a coalition game (b 7' including the District Attorney. 

player LO)s any zero sum interpretation payments between two players 
vin alvays be betveen members of different coalitions or the same 

coalition(s) * We shall call any coalition containing arV player and 
10a winning coalition$ and the coalition of all real players we 

shall also call a winning coaliticn (even if it wins a negative 

am*mt)o All Other coalitions - including one player "coalitions" 

we shall call losing coalitions. Every zero =a interpretation 

matrix wUl represent every oatcome of the game in terms of payments 
between two specific players. Swe matrix boxes will represent the 

cases where one of these two players is a winner, and the other a 
108erq and vice versa for other matrix boxes* For those cases - for 

these boxes - the loser pays the winner what the winner gets* In 

other boxess both pleyeris are winners or both losers$ ie. # both are 

members of the sa-we coalition. The zero sum interpretation of payments 

within a coalition (winning or losing) are that one player pays the 

other what he gets. This given tvo possible interpretations depending 

on who pays whom. A third interpretation wIthin coalitions is to 

take the difference betvaen the other tvo interpretations. Sop for 

paymmts betwen umbers of the smue coalition (vinning or losing) ve 

have a total of three posisiblo zero sum interpretations. Since a 

zero sum game matrix has only one number in itp we wmld need three 

matrices with the appropriate box containing the rexpective entry. 

SomO matrix boxes represent the occarance of several separate coalim. 

tions. We sum their respective zero oum interpretations and enter 

them in the appropriate matrix boxp Againq this mV cal. 1 for several 

matrices since a coalition may not have a unique zero w= interpreta. 

tion. Remembers Incidentallyp that in a zero sum two pL-Wer games the 
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column PlaYerl 8 gains are represented as a negative numbers and his 

losses as a positive numbero We 8hall adopt the convention of writing 
L0 as the column player* 

Ccmaider ais an eowApleg a zero sum 2-player Interpretation of 

a 2., player prisoner's dilemma gamo Hov many zrzx-o man interpretatim 

matrices are there between each real player say 10 and the District 

Attorney 107 Between L, and L0# there are nine separate zero sum 
interpretation matricess (land there exists the same mmber between 12 

and 1, )* This is becswe the coalition (iogil) has three zero slam 
1111 interpretations (a,, "%, g a., . %)* Now the natual confession outcome 

is representod by (i 
010h) 

U(lo*'2 )* The first of these coalitions 

has the three zero mm interpretations we have just listed* The 

seoond cW these coalitions U. 42) has a single zero a= interpretation 

betweim I and the - io in a wrinner and I, Is a loser, so zero sum 
2 interpretation is %. This would be written as a negative number if 

JL 
0 

is the column player* This gives us for (Lopil)U(iovi2) the 

folicywing 
jtj= zero sm interpretations, betwen il and i-ol 

121 (a, %) a, - 
2 

aý. 4 
j) 
0 

12 
, (. % -, ). Next we % have the case of 

U0 #JL2)# We have already oonsidered this as part of the wxton of 

coalitions. The matrix entry is simply .a2 Final. 1y, we have the 
Q 

00alitio" (13. "JL2)" 10 th"s O"se 10 io a loser and il in a wi=ere 

The matrix entry is aiVly a3. * Thus we have 5x3xW = ". 3 separate 

matrices required to represent all of the varieV* We shall see 

what these matrices look like in the next section. 
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7.4 The imaginary zero sum 24gVqr games and the solution axims 

We are now in a position to derive zero sum interpretation 

solutions tk) nonzero mm &nese This is becauseq in section 7*1,, we 

bave alre&4 described the nature of the solution and the imaginary 

games* Instead of imedtatWq deriving som remxltoo howeverq we 

ahn" I pr"snt a few more formal structurest which will be conywient. 

First# we bave noted that the Imaginary zero mm 2, ýayer games 

relate tA) the original nonzero mm game on a one to one basis$ ie. 

matrix element for element* We may as won define some generalized 

matrix forms* The matrix form of figure 7*4, ol (see next page) will 

guffice for games between each real pLqer and player i, o We shall 
k 

can these game A-h- where k refers to plaTer Lk (k 4 0) and h refers 

to tbe game number. The gamegi must be mnibered becwl ep as we have 

seen# some matrix elements win have more than one zero sum 

interpretation and tbus there will in general be more than one game 

k 
Aj betwoon eaeb real player 'k (k=lt *get n) am player', 

TM LQW&I XW" A MCAJI, JIL AW& Al i& ZAA 
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Figure 7.4.7 

k Game A7. (For any n): 

�-4 

U U ('0 3'J»k) U ('o»: Lk) 

k k=1 k=1 

k k kýn 

n n n n 

ol"Lk) 
U ('oOlLk) U («to * J»k) U ('»o, 9 ýk) 

2 k-2 k2 k2 

1 k*1, n k 1� n. 1 kn- 29 
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n n-2 n. 1 n-1 

u (i 
o$'k) 

U ('O"k) U ('o'jLk) u (1 
ti k) 0 

k1 k1 k=1 k1 

k2 kn, n-1 k0n,, n-. 2 k n. 2 

n n2 n n- 

see ýu 
(i 

o4k) 
Ul (JLO8Y U ("o"k) U ('o vY 

k-3 k2 k2 k3 

k 2# k lp np k 1. n# k lo n92 

n n2 
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V C: 3 ts 
I. A 

0 

0 

%-. 0 

cl 

0 

%-oP 

CI 
0-1% 
1j. 

0 

C: 3 
oll% 
>M 

0 
'o 

0 t46 lhý. w 



160 

For imaginary zero Eram 2mplayer games between two real plaversl we 

=at first recall that each real player has two and only two choices. 

(This restriction has been removed in recent unpublished work,, but we 

shall n*t discuss this L. eneralization here)o The imaginary zero oum 

games between any two real players are therefore limited to W games. 

If n= 29 this presents no problem; for larger no however# we must 

have a system of games where the specific eleumts mast depend on the 

actions of players not in the game. The total mmber of distinct 

matrix blanks coad become quite large even for relatively small n. 

The mmber is obtained by first noting there are distinct 

sets of two players each. Moreoverp between each pair of players 

there are ew2 possible matrix blanks,, corresponding to the actions 
- X% -AL 

IL - 

of the other (n. *2) players. Altogoothers this gives us for any n 

7.4*1 nj 
___ -_ 

distinct W 
(n, -. 2) 12 

zero sw games b9tween each and every distinct pair of players in the 

set (ils 000 11 in) 0 

In fact# it turnd out that 
. 4U of these games never have to be 

emimerated since most of them can never satisfy the solution criteria 

discussed in section 7*1. For the sake of formal completeness# however, 

we must take note of the entire system of these pness We shall index 

Sk these games an 
is 

where h again is the game mmbers and j and k are 

real player mnsberse 

F, ach of these games will have the following f0m: 
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il . Figure 7.4.2 

If players lip ... 0 J. choose "Join 10 11 ("not j oint 10 

then 

Player ii 

j oin 

oin i 

we Ii 

not 
i oin % 

not j ain i 

Uo "'k) U ('Lo, I 'j )UU ('o* 'k) U go* u (1 
0 vi n) 

(iosid with ii member of losing 

coalitions 

U0 01 u U OLOvi 
n 

(ijP'ks which is 

with ik amber of losing winning if and only if it is 

coalition. the coalition (i,;, 
"" 'd 

and otherwise 
I 

it is losing 
I 

One comment which we shoald make at this point concerns the 

possibility that the matrices of Figures 7.4.1 or 7.4*2 could be tr1o. 

vial matrices# ioe. matrices where every element is the same number. 

In this cases, obvioualy., any pure or mixed strategy for either and 

both players is as good as any othere We shal I exclude trivial 

matrices of thill type from our considerations since they convey no 

useful Information to the real pLqer. 

The solution axioms vhich define the solution concept described 

in section 7*1 can be listecL It is less cumbersome to state the 
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sclutim C*nceptA vWbally as in 7.1 then axi(maticallyg as we shall 
now present it* Howeverlp the axims are helpful f(w oompatati(mal 

pwrpo"s. The first axits relates the I= JnW zwo am games Ak 

and B40k th '0 the rea, game If we write 
k 

h Ah (asn) X to mean the 

k probability assiped by the (a,, n)th element of game S to outcome 
we have 

k 7*492 Either Aj (asn) p (. 4 ) or 

J#k IR . p for each and 4ývery player of 

(ii, ".. i i) 

md for all 
t 

4k 

Plafer lk (k # 0) uses bis optimal von Neumann and Morgenste= 

minimx (or ma: dmln) strateicr* Player i,, Uses MY stratOOF agaInst 

'k IS Optimal otratojW wbLch yields the value v of the zero sum gwn 

in the sonso, ckf von Nwmann and Morgmaterno 

Notice that each player k* a bQ game mat define the same 
for 

&U Therefore* we need only work with any one player's 

hth game. um 
k Now$ tbo' ties asidgned by the games S or Bj #k also I 

necessarily &*alga each player a certain utility value in game 

We canlwrite this as 

L Ui. 
t 

[ 
At (apnA for alli 9 and 

for JLk (14u) 
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k 
11 If the game C or 

J#k 
which assigng the joint maminam 

UUUty is deal pated k 
ais C, or #k 4, 

our definition of the j oint 
U&Tium I'm" sing c0libin4tion of imagin=7 games becomes 

7*4*3 litober a or b is the case: 

4w U Bj#k 
'tk 

U Ak (m 
'on) 

(son) 
lk qq 

for all strategically non-trivial AqqBq (q r), 

for all 
Io 

and 
AP- 

aw each and every lk (whwo k- lp #*up n) 

r 

b) U ilk (non) uI Bjjk or lk 

I' 
ý1. OOWAW JLk Lq 

(=, on "I 

u A" 'Lk 

jo -- Icw all etrategleally non-trivial Aq#Bq 

(q = 1, ... � r) 
for sal tt and 

for each and every ik (k n) 

Thass we have ln 7o4. *2 stpecified the exact rolation between 

the re4a game 
t 

and the Insidnary two pWer zero sum games 
k A7h 

B'h# k0 In 7e4*3 ve specified the J("t maximum realizing 
k pk combin&MAwl of gwou Ah- and 

9* 
Now# if each real player uses 

a pure or odmed strategy S JLk # then the probabIlities on 
4 

are 
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. S. Ww 

g SlLn 

(k Is, *, a aa n), o 

r` P( -X ) fcw all I 
and, for all : Lk 

(% *60 % ohmld bo interpreted as fonowas eogo for n= 3s 

P-S Slo 44 S'20 $12 42 qv S12 Si S' 2 2p 

s231 23 S., 
vhere the stperiscript ls the player number# 2 

872* 32 S72 -2 

and the subscript in the strategy vector element number). 

Tbus our final axiom awway combines axiom 7.4.2 with the 

above oweivelons 

k 7*4.4 Either p (14n) X or 13J2 ja 

lp (i )= 81,000 S In ý Bjpk (Ump) I 

for all 
k. 

and for aU uncorrelated strategy vectors 

a 
ýk 19 6009 n) 

With these tbroo axioms we can define a solution to any gaw 

in the normaUsation of 7*2*5s 

5 we defiLne a solution to any game in the narmalization of 

7,62*3 if atkd only if axioms 7.4.29 7.4.3# and 7.4*4 are satisfied. 

one mudUto result vhich ve present without proof concerns the 

S the "stratWO of the extra, player in the game 
k 

10 
A7h* it 

turns cut that onV one type of strateg7 can satisfy the-solution 
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&: dm -o This reoults which. is, trivial to provet is as followag where 
k S io # lk designates a strategr vector for player 10 in a game Ch with 

plVer iks 

7*4*6 3 io'o 'k =Sh *** si 
i **# S in .1 

for jj 

lntaitive4p 7*4,. 6 oVs that player 10 is a perfect transmitter of 

the actions of a32 real mmbers of society,, except ike Thus player 

10 exercises no independent cbaices and in fact is an exact expression 

of the "general will"o Naturep player 10 p uses passively optimal 

strategiesp JL*e* inefficient clu)ices are not used. But berand this,, 

Nature does not use perunent1y optimal or even good strategies - 

strategies which will ezplcdt a real player's mistakes or even bold 

a real player to a certain value in the zero mm interpretation game. 

This amounts to a partial anever U Weiner# s (Zjection to game theory 

based m Einstein' a maxi a "The Lord is subtle,. but he Lan' t simply 

newa. "78 

745 A theorem fer alzaost porteatly =ipetdLtive nm»player priecnert is 

dilemma gameso 

Owsider the case where % is o. This means that nature neither 

mrB cut nor receives any amowt when a member of a winning coalition. 

Thass all "competitive's paymmto are strictly ammg the real players. 

There is# hcweverv a pWoff vector associated with the coalition 

(110 0000 1n) with ak-, ý, o for kjo. The three player prisoner's 

dilema game of 7*2*2 in an example,, We shall prove a theorem for 

. &ILA 

wiiS class of games of arq u 2). We shall show that a good zero 

oun jLnterprotation strategy in alvays aimed and is independent of the 
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rmmber of playwo. 

The theorem can now be stated: 

7*5*1 For my 07 etrical prisoner' a dilefina game in the 
k normalization of 7*2*5# vdth n %=o andak>op we have smaý 

20 

S 

; Lk 
(fI- 

1+ ak 1+ 'sk 

u 'k (ak) )n 
+ ak 

U22t 

By reference to Figure 7.4.1 we find that the games It 
k 

are h 

2xr matricesp where r= . 2n"'. By application of the zero mm inter. 

pretation definitions of section 7.3.9 raw 2 of these matrices always 

has zero for every alment (2., l),, (2, r-1) , Element (2#r) alvVs 

contains ak which is >0 by asmmption. Row 1 of these matrices 

always is composed of either o or 1 for every element (1#1).. 

(1j, r). If rov 1 dominates row 2, p we have by application of 7*4.652 

U 'k 
0 for every plaver in)* If row 2 dominates row 1,9 

k 
then we bave v0 Sj Al S, 

0 
since the only way row 2 could 

dominate is if eveZ7 element of row 1 is zeroe Thereforep we do not 

have row 2 dft 

row 1 in our solution 7. A., 5. If neither row 

daininate9j, then the S 'k are mixed unless for some column q we have 

k 
each elemot 0, * Bat then we have v Sj_k A7h Si 

0 
Therefore,, 

games 
4,, 

with some column having only zero components will not satisfy 
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k 7.4*5* These considerations leave only games Ah7 of the following 

form to be considereds 

Figare 7.5.1 

19 
*es» 

190 ( 

0,9 -bot# OJO 8'k 

) 

Sine* ak is fixed for any given game,, these games are un_iquep 

i. e.,, for any aka there is only one such game* If it is solvedp the 

maximim solution turns out to be Si 1, Since the 
k 

41 
+ Sk 

coilition games of 7.5.1 aro perfectly symmetricals, and aU competi.. 

tive payments are strictly among (ilp 99*# 1 ), i. e. 
k 

n%= ot all 

competitive outcomes sum to 0# and we have U 'k ý ý, Ik) 
ak 

Since a ,, * 09 the U : ik 08, and this game 
k becomes ka We need k li A, - 

j 
Sk k 

only prove that no game Bh is better than A719 1*90 that 

k #k Ij sk A7, (a,, n) A '7 U BJ (m, n)t for all games E 

I 

Qo 
'k 

I'm 

hh k do 

and for all 
t 

-D 

only two possible Outcomell to games BJ qk could be considered h 

in our solutions a saddlepoint on the purely cooperative outcome, 

or a saddle point on the purely competitive outcoaeso i. e. only these 

two outcomes can satlefy axions 7.4.3 and 7.4.4 simltanscaslye 

(Othervisep the Solution will be biased against at least one player. 

If he chooses a game B jok biased in bj& favors, there will be 
h 

c(ppeting sets of p with no basis for choosing between them). 

Now, 9 the purely competitive outcome saddle point would assign 
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n 
U 04( (ak) and therefore would not be considered, k(1+ 'ak 

) 

This leaves only the saddle point at the purely cooperative outcome. 

This occurs in games of the following forms 

Figure 7.5.2. 

If all other players choose "not join L0 "a then 

Player i 

oln 
. 04 1 

not 
join 

0 

0" 
YU ('o"'2) 

of 

(L 
0* 

1 2) 
I 

(1 
1 ss**$ 

Now,, element (1sl) is always fixed at 0 on this matrix; element (1.9) 

Is always L. nt (291) is always -. 1 0 This malces 
.. I eleme MWMMMý 
n. 1 n-1 

element (1#1) a saddle point independent34r of the value of (2s2). For 

(2#2) to be a saddlepoint# it would have to be similtaneausly the 

minimum of its row and the maximum of its column. This means it would 

have to be both less than =I 9 and greater than I. 
- which is 

rim-l n-l 

not possible* Hencep (2#2) cannot be a daddlepoint. This completes 

the proof of the theorem, 
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An example of the applic,, -Aion of tIds tiieorem is to 
.:, -; ne 7*2.21 

coal ition 

op 
ii) 

0 
1 2) 

0 
y 

Uv) (1 
0 

1 
1) u (1 

00 
1 

2) 
(v) (1 

00 
il) u (iot 13) 

(Vi) (1 
0 

12u (1 
00 

i 3) 
(VII) (1 

0 
11u (1 

0a 
'2) U ('o 10 1 

(viu) (1 
1, 120 13) 

(Xw solution to this ga-me is as followst 

7.5*2 

pvoff n--tuple 

(0 9 -ý q 1,9 --1 ) 

(09 -ts 
(09 ' ät 

(09 ýv 
0-1 9 -9, 

) 

og 09 09) 

-i 3 

9/64 

9/64 

9/64 

P(iv) 3/64 

P (V) 3/64 

P(VI) 3/64 

P(Vii) 1/64 

P(Viii) 27/64 

8i (j, J) for I= lp2#3 
k 

9/64 for K= 1#2#3 

io =- 27/64 
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The malin point about the solutlm described by the theorem is 

that we have proved that a good zero sum interpretation strategy Is 

indeDIRiOU RL ths- MULIAL -Of Rjaegg for n 'ý" "" 2, p and ak 4mý 0 

This means that in a symmetrical gam where %=o and ak --:; ' op the 

ddecAsion making task of the real player is g=jggU sjigj& he need 

acay Imaw his own utilltion and nothing else. The addition of new 

players does not complicate the decision making task* Indeed,, a 

player need not even know how zmV other players there are In a game 

of this types, which seems reasonable for a non-negotiated games 

7*6 The I in'tt 9--b 

Fýnn theorem 7* 5*1v we know that the probability of the 

occurrence of the coalition (ip *900 Ln) is given by 
-1) 

n 

ak 

whim the game is of the prisoner's dilemma type and 
k 32 00 Since 

bn here we can urits this as This ak 1w 0+ Ja 
n 

5t, 
evressicin approaches a val, kn(AIM "Adt as n beemes very large, * 

If b= lp we have Ila (n= e-1. In general. 9 for arq b 

n -4 oD 1- -+Wr-, 

(constrained by our a9mmption however to b =3p o) we have 

lim I---- )n =6b (whwe e= 2*718 e** *) * 
n --# 00 

We my take this to be the probability of a cataclymic buman 

events, e. g. a 
_sw2jg" 

revolution, & 
(Compare Asbbyj Section 4/259 

for an analogous pa-Mint about dynamic GYAGMG) * 
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7*7 Two Play4w symmetrical prisoner' a dilemma games 

General 801utiOn formlao can be derived for tIds case# but we 

-shall not derive them herep although we shall presents, without proof . 

an S'k for this case: 

7*7ol For 2. -ýplayer# symetrical prisoners dilemma games in the 

normalization of 7*2, *3 vith ak o. we haveq 
0 

s-( ak +' l» at )0 '0' ji 
-- ,0 lk 

'ak +1 'ak 

ak This formila, 1.9 obtained by solving a general game vith a0 os, and 
kk in the normalization of 7.2.3. * Notice that If % oo then sý, lp 

and the f ormla is the same as that in theorem 7.5*1. The reader 

wUl find that the seoond eleamt of this strategy vector defines a 

result strikingly close to the fraction of cooperative choices 

obtained in the early plays of the consistent gauing experiments$, 

grach as those discussed in section 5*5* 

figure 5o5*l# which in 

Figure 7.7.1 

in__ for exanplej, the matrix of 

1,91 590 lots 

I SOS 

normalizes to the followings 
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Via 
ri, gure 7.7.2 

F 
ý 

TMM 1 

9 . », m f mmw 
mwý -79m 4f immný 

The forvala 7.7.1 gives us 

k 

as the ak +11 .0j 

probability weight on row 2 (or column 2) Correspondingly accurate 

Probability veightings can be obtained with formula 7.7.1 for the 

other matrices of motion 5. These are discussed in detail in 

reference 36 bat the reader may compute the solutions himself using 

the fOrMula 7-*7*19 applied tw the nomalized games* The most 

interesting aspect of the formla 7*7*1 is that it is obtained in a 

game 
kp* 

Sep in an imaginary, zero sm 2-player goune between a 

real player and the eg&ra 21412 who in the context of the experim. 

mental situation oust be interpreted as the experimenter. Thas our 

wnelusion in that in the early plays of the wq)erimmtsp the real 

plqrergs have be= plUlag rjlQtjE# and ggi il S&p 

interacting with each other. 

There is some evidence for this conclusion in the literature 

on experimotal ganiing. One experimenterp D. W. Conrathp 
65 

allowed 

the subjecUto pase memages to each other between plays* The 

messUes were ceneored to prevent offers of sidepayments or identi. 

fication of the Persons for later settlements. Conrath's comments 

sh, ould be quoteds 
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POne additional point is worth noting. As we (experimenters) have defined itq the conflict to 
be resolved exists between two (or more) subjectaw Some of the communicationp howeverp indicated 
otherwise* A number of the subjects attempted to 
elicit cooperation by essentially asking the other 
party or parties to form a coalition with then 
against the experimental environment (or the 
mpperimenter)* They would describe the game situation 
not as one of conflict between themselves# but as one 
of conflict between them and their environment., 
Experimental resaltsp then# may not reflect how two 
subjects will behave toward each other in an isolated 
conflict situation* Rather# the revalts W indicate 
how well the subjects# once they have sized up the 
situationip can transform the conflict premmd to be 
between then to one in which they are on the same side* 
In a nonzero sum game environment this may be a 
common mechanism for conflict resolutioni, the trans- 
formation of an interpersonal conflict to one involving 
a game against 'nature'*" 

We have accounted for the overall fraction of cooperative 

cboices, and given some evidence for the reinterpretation of the 

prisoner' a dilemma game into a game against the experimenter. We 

shall now account for the g&cM&e in the fraction of cooperative 

choices which genera. Uy occurs in the first 50 plays. Our explans.. 

tion is that the subjects in the experiments have been approximating 
k 

a solution to the zero oun interpretation gaze (A, -) using an approxi.. 

nation technive such as Brown' s algorithm dismssed in section 1*7* 

By averaging the four possible tables which one can generate 

uaing this algoritbag we can obtain various decline patterns# 

depending on the tie breaking rujel 

If in doubts choose the same as on the previous choices 

Play 5 10 

row 2 60 55 

15 20 

45 40 

26 so 35 

37 35 37 
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If in doubt# choose the opposite from the previoug choices 
Play 5 10 15 20 25 50 35 

raw 2 55 43 53 59 41 54 31 

Than# we appear tk) have a good idea of what happens in the 

early play of the prisoner' a dilemma game. Notice that the d1namics 

of the e3rperiaents are merely approximating a static result* ftreoverq 

as a comment on Professor Rapoport' a remark about players not "getting 

the hane of the pas untU after about 100 plays# we see that in 

fact talknons 
approximate to a zero eum interpretation solution roughly 

as fast as a computer would,, I. e. # in as many iterations as a computer 

would require. 

The solation axiom 7*4*5 in fact specifies a rote procedure by 

which a solution can be foun& It is this rote procedwe used on 

generalized games which yields the general formulap as we have seen 

in the proof of theorem 7.5.1. The rote procedwep of course# can be 

appUed directly to a muserical example-* One such example will now 

be wwked out in detail,, The game is as followas 

rigar* 74,703 

Player i 

eq 
*r4 

go *9 -* *v fmi 
. is* *0 * 

The coalition 9aM is US fOllOwingg 



175 

7.7.2 
Pa"f-f Vector 

(Lit - 1) 
coalition 

0 
JLJ ) 

01 2) 
(i 

ot 
ii) U (JLOI 

(ils 1 2) 

The generalized matrix form for games A1 is as follows: h 

Figare 7.7.4 

r-4 
44.4 
14 

Player i 

(i 
ov 

'l) U ('o# 'L2) 
Oq 

il) 

(1 
001 2) 

(il 0 id I 

By application of the zero mm interpretation definitions of section 

7.3,9 we find that there are nine possible games Ak for each I= 1#24, 
&h 

These can conveniently be listed. 
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70703 

Game Elements (1,, J) (192) (291) (2p2) 

1 A71 0 - i If 

A1 2 

0 

A1 4 

A 

A7 6 0 

A1 7 

1 
Aj 

A1 9 0 

1 
Game 1j, the solution gamp is as followes 

Figure 7*7.5 

Player 10 
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The strategy.. is 8 -31 (G. 
_J%e 

2 li is the transpose at 

2 
and Aj is the transpose of the matrix of Figure 7.7.4). 

102 
The games B7h can simil. -irly be 3-tateds 

7.7*4 Game Elements (101) (1,92) (2vl) (2# 2) 

1#2 
jr, 0 

B20 -2 

102 B300 

The solution is as follows: 

7*7, bb 

k6 
Aj (aj, n) 

18 

k 
u Aý (mn) U Aý Mtn) 'k 2 'k 

uB 
1#2 

'k h 

for all 
tv f4w h= 192p5p and for k=1,92* 



178 

kkkkkk Games A9 Ag A769 A7-o 1ý9 fail to satisfy axiom 7*4*2 4 

since Sj AkSvf or h= 40 50 6t 7l 8t 90 and for :hi 
0 

k=1,2. 

An example of the fa. Uure to satisfy axiom 7.4.2 is game A11 4 

Figare 7*7.6 

Play, er 1. 

i-maxt 1 

Tbus the p CC ) and the 3 'k are as follows: 

7*7*6 

pW 

(JLV) 

il 
Si 

= P, / 9 

ow aw 2/9 

4/9 

1/9 

18 

v 

n Ak 
"'ij4 io 
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k Incidentallyp this solution is unique# becaase, gme A7, is uniques, and 

its solution is uni,.. fue by the proof in von Neumann and Morgenstern 

Section 18.2.59 

That the solution concept 7.4.5 reduces totally to the Zplayer 

zero sum miniwx concept vhen applied to 2-player zero sum g-. -ses 

should not be ourprising but we shall now demonstrate that LXt. 

Consider the following gamet 

To7*7 

coalition 

(1 00 11) 
(10 11 2) 
(Lot 11) u (1 

001 
iv) ('l * '2) 

payoff vector 

08 is 1-1) 

( og -10 1) 
0,9 0.9 0) 
ot 4 0) 

The solution to this game# the computation of which we will not 

show here, is as follows: 

797*8 

PW 
P(U) 

P(iii) 
P(iv) 

== (i, o) 

U '2 = 
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The 2-player nonzero sum game embedded in the coalition game 
of 7.7*7 tums out to bG a zero wam 2-player gamev which we present 
with the solution in the sense of 7*4, a5s 

Figure 7.7.7 

Player i 

Player i, 
1 0 1 

0 0 

Howeverp as the reader can ea&Uy verify., the solution to this gme 

in the sense of 7.4.5 is identical to the von Neumum and Morgenstern 

aWmax solutim to this game. 

80 S=zary - zero sm interpretation and cybernetics 

We have seen how the van Neumann and Morgenstern tboory of 

n. -player and nonzero mm games is based on a zero mm 2-player 

heuristic and we have also noted that the zero sum 2-player theory 

itself Involves a heuristic liml ion in the search for strategiea. 

We have also seen that when the zero sLm interpretation is abandoned, 

as in the Naish theory of nonownegotiated gamesp an empirically false 

and intuitively objectionable paradox results - the prisoner's 

dilema (for finite play)o Mach ; )f game theoryp therefores, i. e., 

all those portions which deal with zero sam gmes,, can properly be 

thought of an belonging to the general field of heuristicss i-se. p 
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UOdSls which approximate results because no algaritba exists which is 

generally recopized to be satisfactory. The theory of zero sun 
interpretation of nonmero sum gameog thereforep is part of the general 
field of houristice in eyberneticso 

We have seen that the zero mm heuristic is a very powerful 

one linking with linear programmings statistical decision making# 

docision malting under uncertainty,, Asbby's thew7 of regulation and 

controlp the concept of reqnisite varietyp the theory of neurals nets# 

artificial intelligence game playing programs# and negotiated 

nwplayer games. The eztension. (W this heuristic to non-negotiatedg 

nonzero am games was clearly called for by the empirical Importance 

of nonzero mm gameas The development of this extension is the contri.. 

bution, of this thesis to game theory. We have seen that the extension 

developed in this paper has both Intuitive and regoroas empirical 

applications to the statics and dynamics of prisoner's dilemma gaming 

wirperiments. Mareoverg, formally,, the dilemma simply does not appear 

for two player# and some n-playerp gameso We have seen that this is 

important since the primmer's dilemma appears to be an unreal problem, 

motivated by faulty Intuition* The solution concept may open 

qbernetice to the range of activity which can be described by nonzero 

s= gamisov 
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