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Abstract. We study stationary solutions of the Cahn–Hilliard equation in a bounded smooth

domain which have an interior spherical interface (bubbles). We show that a large class of interior

points (the “nondegenerate peak” points) have the following property: there exists such a solution

whose bubble center lies close to a given nondegenerate peak point. Our construction uses among

others the Liapunov-Schmidt reduction method and exponential asymptotics.
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1. Introduction. In this paper, we continue our investigation of stationary so-
lutions of the Cahn-Hilliard equation.

The Cahn-Hilliard equation is the simplest model for the separaton of a binary
mixture in the presence of a mass constraint (see [7]). It can be derived from a
Helmholtz free energy

E(u) =
∫

Ω

[
F

(
u(x)

)
+

1
2
ε2|�u(x)|2]dx(1.1)

subject to the constraint 1
|Ω|

∫
Ω

udx = m. Here Ω is a bounded smooth domain
corresponding to the region occupied by the body, u(x) is a conserved order parameter
representing for example the concentration, ε is the range of intermolecular forces, the
gradient term is a contribution to the free energy coming from spatial fluctuations
of the order parameter and F (u) is the free energy density which has a double–
well structure at low temperatures. The simplest one is F (u) = 1

4 (1 − u2)2. Hence
f(u) := F

′
(u) = u3 − u. For the rest of the paper we often write u3 − u instead of

f(u). However, since we are looking for solutions of (1.2) with ‖u‖L∞(Ω) ≤ C, we
can modify the nonlinearity f(u) = u3 − u for u large so that the mapping u �→ u3,
H2(Ω) → L2(Ω) is compact regardless of the dimension N . See [32] and [34] for more
general nonlinearities.

A stationary solution of E(u) satisfies the following Euler-Lagrange equation

⎧⎪⎪⎨
⎪⎪⎩

ε2�u − f(u) = σε in Ω,

∂u
∂ν = 0 on ∂Ω,

1
Ω

∫
Ω

udx = m

(1.2)

where f(u) = F ′(u), σε is a constant and ν(x) is the unit outer normal at x ∈ ∂Ω.
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Equation (1.2) has been studied extensively by many authors. It was first observed
by Modica in [19] that global minimizers uε of E(u) under m = 1

|Ω|
∫
Ω

udx have a
transition layer. Namely, there exists an open set Γ ⊂ Ω such that if a sequence
uε converges then uε −→ 1 on Ω\Γ̄, uε −→ −1 on Γ as ε −→ 0 and ∂Γ ∩ Ω̄ is a
minimal surface having constant mean curvature. Kohn and Sternberg in [16] studied
local minimizers of the functional without mass conservation by using Γ-convergence.
Chen and Kowalczyk [9] proved the existence of local minimizers using a geometric
approach. The dynamics of the transition layer solution has been studied by many
authors, e.g. Chen [8], Alikakos, Bates and Fusco [3], Alikakos, Bates and Chen [2],
Alikakos, Fusco and Kowalczyk [4], Pego [25], etc.

The study of the solution set of (1.2) is the key in understanding the global
dynamics as this has been illustrated by Bates and Fife [6], Alikakos, Fusco and
Kowalczyk [4], Grinfeld and Novick–Cohen [13], [14].

In the one dimensional case, Grinfeld and Novick-Cohen [13] and [14] completely
determined all stationary solutions and proved some properties of their connecting
orbits. In the higher dimensional case (N � 2), little is known about stationary
solutions except for the transition layer solution. In [32], we first established the
existence of boundary spike layer solutions, namely solutions which are “almost”

constant and have a spike on the boundary. More precisely, suppose that
√

1
3 < m < 1

and P0 ∈ ∂Ω such that �τP0
H(P0) = 0, (�2

τP0
H(P0)) := GB(P0) is nondegenerate,

where H(P0) is the mean curvature function at P0 and ∇τP0
is the tangential derivative

at P0. Then for ε sufficiently small there exists a solution uε of (1.2) such that
uε(x) → m for x ∈ Ω̄\{P0}. Moreover, uε has only one local minimum Pε where
Pε ∈ ∂Ω, Pε −→ P0 and uε(Pε) −→ β < m. Multiple boundary spikes are also
constructed in [33].

In [34], we established the existence of interior spike layer solutions under some
geometric conditions on the domain.

We first introduced the following set: For each P ∈ Ω, we define

ΛP :=

⎧⎪⎨
⎪⎩dµP (z) ∈ M(∂Ω)

∣∣∣∣∣
∃εk −→ 0 such that

dµP (z) = limεk→0
e
− |z−P |

εk dz∫
∂Ω e

− |z−P |
εk dz

⎫⎪⎬
⎪⎭(1.3)

where M(∂Ω) are the bounded Borel measures on ∂Ω and the convergence is weak
convergence of measures.

A point P0 ∈ Ω is called a nondegenerate peak point if it satisfies the following
conditions:

(1) ΛP0 = {dµP0(z)}.
(2) There exists a ∈ RN such that

∫
∂Ω

e<z−P0,a>(z − P0)dµP0(z) = 0 and∫
∂Ω

{
e− |z−P0|

ε e<z−P0,a>∫
∂Ω e− |z−P0|

ε dz

}
(z − P0)dz = O(εα0)

for some α0 > 0. Here and throughout the paper < A,B > means the inner product
of A ∈ RN and B ∈ RN .

(3) The matrix G(P ) :=
(∫

∂Ω
e<z−P0,a>(z − P0)i(z − P0)jdµP0(z)

)
is nondegen-

erate, where a is given in (2).
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Remark: The vector a ∈ RN in (2) and (3) is unique. A more geometric characteri-
zation of a nondegenerate peak point is the following fact: P0 is a nondegenerate peak
point if and only if P0 ∈ int (conv(supp (dµP0))) where int (conv(supp (dµP0))) is the
interior of the convex hull of the support of dµP0 . Moreover, when Ω is strictly convex,
the maximum point of the distance function-d(x, ∂Ω)- is a nondegenerate peak point.
See [29]. This is much in line with the formal analysis done in [27] (but here we don’t
need N = 2).

Under conditions (1) – (3), we proved in [34] that if
√

1
3 < m < 1 then for ε

sufficiently small, there exist solutions uε of (1.2) with the property that uε has only
one local minimum Pε and uε → m for x ∈ Ω \ {P0}, uε(Pε) → β < m, Pε → P0.

In this paper, we shall construct another kind of solutions: bubbles. A bubble
solution is a transition layer solution with a spherical interface. More precisely, uε is a
bubble solution if there exists an open ball (with center x0 and radius rb) Brb

(x0) ⊂ Ω
such that uε → +1 in Brb

(x0) and uε → −1 in Ω\Brb
(x0).

Bubble like solutions have been studied recently by some authors. N. Alikakos
and G. Fusco [5] and M.J. Ward [27] studied the dynamics of bubbles. It was proved
that bubble solutions are metastable and the bubble drifts across the domain with
exponentially small velocity without changing shape while maintaining a constant
radius to conserve mass. In [27], M. J. Ward used matched asymptotics expansions to
give a careful but formal (non-rigorous) analysis on stationary bubbles for equation
(1.2) in a strictly convex domain in R2 and some special domains in R3. More
precisely, it was shown in [27] that for a strictly convex domain Ω in R2 the center
of a bubble is at an O(ε) distance from the center of the largest inscribed circle in Ω.
Some special results for R3 were also contained in [27]. As far as we know, a rigorous
proof of the existence of stationary bubbles in general domains has not been given.

The goal of this paper is to give an explicit and rigorous construction of bubble-
like solutions in general domains. Our analysis is based on the Liapunov–Schmidt
reduction method which was used in a similar context by Floer and Weinstein ([11])
and extended by Oh ([23], [24]) in the study of semi-classical states of the following
nonlinear Schrödinger equation

ε2∆u − V (x)u + up = 0, x ∈ RN .

There they studied the role of the potential V (x) for the existence of concentrated
solutions and the order of the error is algebraic (i.e., O(ε)). Here we have to overcome
two additional difficulties. First, the error term is exponentially small, and we use
the method of viscosity solutions as introduced in [18] and used in [22] to estimate
exponentially small terms. Second, the linearized operator, modulo its approximate
kernel, is not uniformly invertible with respect to ε (it is uniformly invertible in [11],
[23], [24] and [34]). We have to estimate the order of small eigenvalues of the linearized
operator (modulo its kernel).

The following is the main result of this paper.

Theorem 1.1. Let P0 ∈ Ω and m ∈ (−1,
2|Bd(P0,∂Ω)(P0)|

|Ω| − 1). Suppose P0 is a
“nondegenerate peak” point. Then for ε sufficiently small there exists a solution uε of



4 J. WEI AND M. WINTER

(1.2) such that uε → 1 in Brb
(P0) and uε → −1 in Ω \ Brb

(P0) where rb is such that

|Brb
(P0)| =

m + 1
2

|Ω|.(1.4)

Examples. (1) A bubble in a dumbell domain (see Fig. 1.1).

1 P2P0
 P

Fig. 1.1. Dumbell Domain

By explicit computation, we know that P1 and P2 are nondegenerate peak points.
There are two bubble solutions for (1.2).

(2) Let Ω ⊂ R2. If the support of dµP0(z) contains more than two points then P0

is a nondegenerate peak point (see Fig. 1.2).
To lay down the proof of Theorem 1.1, we first transform equation (1.2). It is

easy to see that equation (1.2) is equivalent to the following

⎧⎪⎪⎨
⎪⎪⎩

ε2�u + u − u3 = m − 1
|Ω|

∫
Ω

u(x)3dx in Ω,

∂u
∂ν = 0 on ∂Ω,

1
|Ω|

∫
Ω

udx = m.

(1.5)

We prove Theorem 1.1 in the following steps.
We first study a problem in RN , namely the following⎧⎨

⎩ �v + v − v3 = σ in RN ,

v(0) = maxy∈RN v(y), v � τσ, v(y) −→ τσ as |y| → +∞
(1.6)

where τσ is such that

v − v3 − σ = (v − τσ)(v − aσ)(bσ − v), τσ < aσ < bσ.

Note that as σ → 0, τσ → −1, aσ → 0, bσ → 1. Moreover, if σ > 0, we have

∫ bσ

τσ

[v − v3 − σ]dv > 0.
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P
0

3

P1

P
2

P

Fig. 1.2. Support of dµP0 contains exactly 3 points

It is well–known (see [10] and [26]) that the following equation⎧⎨
⎩ �w + w(w − a)(b − w) = 0 inRN ,

w(0) = maxz∈RN w(z), w(z) > 0, w(z) → 0 as |z| → ∞
(1.7)

has a unique solution which is radial if

0 < a < b

and ∫ b

0

w(w − a)(b − w)dw > 0.

Hence σ > 0 fixed and small (1.6) has a unique solution vσ which is radial.
In Section 2, we study the asymptotic behavior of vσ as σ → 0. By a special

choice of σ (namely σ = O(ε)), we have

vσ

( |x − P0|
ε

)
→ +1 in Brb

(P0), vσ

( |x − P0|
ε

)
→ −1 in Ω \ Brb

(P0).

for some rb > 0. Hence vσ is a bubble solution to (1.6). However, vσ does not satisfy
the boundary condition (which is why we need to introduce the geometric conditions
(1)-(3)).
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Set

Ωε = {y|εy ∈ Ω},Ωε,P = {y|εy + P ∈ Ω}.

In Section 3, we study a function PΩε,P
vσ which is a modification of vσ. It satisfies

the Neumann boundary condition on ∂Ωε,P .
In Section 4, we choose σ such that

σ = m − 1
|Ω|

∫
Ω

(PΩε,P0
vσ)3dx.(1.8)

We set PΩε,P
vσ = wε,P . We use wε,P as our approximate solution.

In Section 5, we set

uε = wε,P0+z + Φε,z(1.9)

where

z = ε(
1

2
√

2
d(P0, ∂Ω)a + z̃)

and substitute into equation (1.2). We linearize equation (1.2) around wε,P0+z. The
linearized operator is

LεΦ = �Φ + (1 − 3w2
ε,P0+z)Φ + 3

1
|Ω|

∫
Ω

w2
ε,P0+zΦdx.

The error term Φε,z is exponentially small. We need to obtain the precise exponential
asymptotics. This is done in Section 5.

In Sections 6, we use the classical Liapunov-Schmidt reduction procedure. We
first define the approximate kernel

Kε,z = span {∂wε,P0+z

∂zi
|i = 1, ..., N} ⊂ H2(Ωε)

and approximate cokernel

Cε,z = span {∂wε,P0+z

∂zi
|i = 1, ..., N} ⊂ L2(Ωε).

We solve Φε,z in the approximate kernel. To this end, we need to analyze the small
eigenvalues of Lε (modulo Kε,z). We will show that these small eigenvalues are of
order O(ε2). Thus Φε,z can be solved. Equation (1.2) is reduced to finite dimensions.

In Section 7 we apply a degree-theoretic argument to solve the reduced finite
dimensional problem (in which the nondegeneracy of the peak point P0 is essential)
and complete the proof of Theorem 7.1.

We note that M.J. Ward in [27] obtained identities similar to condition (2) about
bubbles. In [28], he also derived a similar identity for the location of peaks of localized
solutions for a semilinear elliptic equations with Robin boundary conditions. Such
kind of identities have also appeared in the analysis of interior spike solutions for the
stationary reaction–diffusion equation



BUBBLE SOLUTIONS 7

⎧⎨
⎩ ε2�u + f(u) = 0 in Ω,

∂u
∂ν = 0 or u = 0 on ∂Ω.

(1.10)

See [22], [29], [30], [31], [34], etc.
Throughout this paper, we use C,C0, CN , c, etc. to denote various generic con-

stants. The symbols O(A), o(A) mean that |O(A)| ≤ C|A|, o(A)/|A| → 0 respectively.
A ∼ B means A/B → C in some limit. The numbers µ, δ are small positive numbers.

2. Equation in RN . In this section, we study a parametrized semilinear elliptic
equation in RN .

Let vσ be the unique solution of the problem⎧⎨
⎩ �v + v − v3 = σ in RN ,

v(0) = maxy∈RN v(y), v � τσ, v(y) −→ τσ as |y| → +∞.
(2.1)

For σ small, let v − v3 − σ = (v − τσ)(v − aσ)(bσ − v) where τσ < aσ < bσ. Then

τσ = −1 + c0σ + O(σ2), aσ = 0 + c1σ + O(σ2), bσ = 1 + c2σ + O(σ2).(2.2)

where c0, c1, c2 are constants.
Let Rσ be the radius such that

vσ(Rσ) = 0.(2.3)

We have
Lemma 2.1.

σRσ = cb + O(σ)(2.4)

as σ → 0 where cb > 0 is a positive constant.
Proof: We divide the proof into the following steps.

Step 1: Rσ → ∞ as σ → 0.
We have vσ → v0 uniformly in any compact set where v0 satisfies⎧⎨

⎩ �v0 + v0 − v3
0 = 0,

v0(0) = 1, v
′
0(0) = 0.

(2.5)

This implies v0 ≡ 1 (since v0 is radial). Therefore, Rσ → ∞ as σ → 0 and Step 1 is
proved.

Step 2: vσ(Rσ + s) → U0(s) in C2
loc(R) as σ → 0 where U0(s) is the unique

solution of the ODE⎧⎨
⎩ u

′′
+ u − u3 = 0,−∞ < r < +∞,

u(0) = 0, limr→−∞ u(r) = −1, limr→+∞ u(r) = +1.
(2.6)
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Set v̂σ(|x|) := vσ(x) and ṽσ(s) := v̂σ(Rσ + s). Note that ṽσ satisfies

ṽ′′
σ +

N − 1
Rσ + s

ṽ′
σ + ṽσ − ṽ3

σ = σ.(2.7)

Now

1
Rσ + s

→ 0(2.8)

uniformly with respect to s in any compact subset of the real line R since Rσ → ∞.
This implies that ṽσ → U0 in C2

loc(R) where U0 satisfies (2.6). Step 2 is thus
proved.

Step 3: σRσ = cb + O(σ) as σ → 0.

Set Φσ(s) = ṽσ(s) − U0(s). Then Φσ satisfies

Φ′′
σ + (1 − 3U2

0 )Φσ + O(|Φσ|)Φσ = σ − N − 1
Rσ + s

ṽ′
σ(2.9)

uniformly in any compact subset of R. This implies

‖Φσ‖C2
loc[−Rσ,∞) ≤ CMax(σ,R−1

σ ).(2.10)

Furthermore, U ′
0 satisfies

(U ′
0)

′′ + (1 − 3U2
0 )U ′

0 = 0.(2.11)

Multiplying equation (2.9) by U ′
0 and (2.11) by Φσ, integrating and taking the differ-

ence, we get

Φ′
σU ′

0 − ΦσU ′′
0 |∞−Rσ

+
∫ ∞

−Rσ

O(|Φσ|2)U ′
0 ds =

σ

∫ ∞

−Rσ

U ′
0 ds −

∫ ∞

−Rσ

N − 1
Rσ + s

ṽ′
σU ′

0 ds.(2.12)

This implies

σRσ =
N − 1

2

∫ ∞

−∞
(U ′

0)
2 ds + O(RσMax(σ2, R−2

σ ))(2.13)

as σ → 0. Therefore Step 3 is proved and Lemma 2.1 follows. �

Let U0(r) be the solution of (2.6). We then have
Lemma 2.2.

vσ(r) = U0(r − Rσ) + O(σ).(2.14)

Proof. Lemma 2.2 follows by Lemma 2.1 and equation (2.10). �

Next we shall study the eigenvalues associated with the linearized operator

LσΦ := �Φ + (1 − 3v2
σ)Φ,
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Lσ : H2
N (Ωε,P ) → L2(Ωε,P )

where

Ωε,P = {y|εy + P ∈ Ω}

and

H2
N (Ωε,P ) =

{
u ∈ H2(Ωε,P )

∣∣ ∂u

∂ν
= 0 on ∂Ωε,P

}
.

We first consider the operator on RN :

LΦ := �Φ + (1 − 3v2
σ)Φ,

L : H2(RN ) → L2(RN ).

Lemma 2.3. For σ > 0 sufficiently small

Kernel(L) := X = span
{

∂vσ

∂yj

∣∣∣∣ j = 1, 2, . . . , N

}
⊂ H2(RN ).

Proof. By [26], Lσ is invertible in the space H2
r (RN ) = {u = u(|y|) ∈ H2(RN )}.

Similar to the proof of Lemma B.2 in [21], we have Lemma 2.3. �

We now use a perturbation analysis to extend Lemma 2.3 to the operator defined
on Ωε,P . Similar to [32], we introduce a notion of “distance” between two closed
subspaces E,F of a Hilbert space H := L2(Ωε). Following [15], we set

→
d (E,F ) = sup{d(x, F )|x ∈ E, ‖x‖H = 1}

It is easy to see that
→
d is non-symmetric,

→
d (E,F ) � 1 and that

	d(E,F ) = 1 if and only if E ⊥ F.(2.15)

Moreover, it is not hard to show that

→
d (E,F ) =

→
d (F⊥, E⊥).

Then the following two lemmata are proved in [15].
Lemma 2.4. Let A be a selfadjoint operator on a Hilbert space H, I a compact

interval in R, {Ψ1, . . . ,ΨN} linearly independent normalized elements in D(A). As-
sume that the following conditions are true
(i) ⎧⎨

⎩ AΨj = µjΨj + rj , ‖rj‖ < ε′

µj ∈ I, j = 1, . . . , N.

(ii) There is a number a > 0 such that I is a-isolated in the spectrum of A:

(σ(A) \ I) ∩ (I + (−a, a)) = ∅.
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Then

→
d (E,F ) = sup{d(x, F )|x ∈ E, ‖x‖H = 1} ≤ N1/2ε′

a(λmin)1/2

where

E = span{Ψ1, . . . ,ΨN},

F = closed subspace associated to σ(A) ∩ I,

λmin = the smallest eigenvalue of the matrix (< Ψi, Ψj >).

Lemma 2.5. Let K > 0 and consider that part of the spectra of two linear
operators L and M which lie in I(ε) = (−∞,Kε2). Let E and F be the corresponding
spectral subspaces. Assume moreover that I(ε) is ε2-isolated in σ(L) for ε < ε0:

σ(L) ∩ [Kε2, (K + a)ε2) = ∅

for some a > 0. Then there is a bijection

b : σ(L) ∩ I(ε) → σ(M) ∩ I(ε)

(counting multiplicities) such that for ε < ε0 the following estimates hold:

b(λ) − λ = O(e−C/ε),(2.16)

→
d (E,F ) = O(e−C/ε),(2.17)

→
d (F,E) = O(e−C/ε)(2.18)

for some C > 0.
The following result gives an approximation of the kernel of the linear operator

Lσ defined on Ωε,P .
Lemma 2.6. Suppose that σ = cε + O(ε2) where c > 0 is constant. For ε > 0

sufficiently small there exists C > 0 such that

	d(Kernel(L),Xσ) = O(e−C/ε)

and

	d(Xσ,Kernel(L)) = O(e−C/ε)

where

Xσ = span
{

∂vσ

∂yj
∈ L2(Ωε,P )

∣∣∣∣ j = 1, 2, . . . , N

}
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is the kernel of Lσ defined on Ωε,P .
Proof. The lemma is an immediate consequence of Lemma 2.5. �

Now we estimate the eigenvalues of the operator defined on Ωε,P .
Lemma 2.7. Let (τ,Φτ ) with Φτ ∈ H2(Ωε,P ) be a solution of the following

eigenvalue problem ⎧⎨
⎩ ∆Φ + (1 − 3v2

σ)Φ = τΦ in Ωε,P ,

∂Φ
∂ν = 0 on ∂Ωε,P .

(2.19)

Suppose that σ = cε + O(ε2) and Φτ ⊥ Xσ where c > 0 and

Xσ := span
{

∂vσ

∂yj
∈ L2(Ωε,P )

∣∣∣∣ j = 1, 2, . . . , N

}
.

Then |τ | ≥ Cσ2 where C is independent of σ << 1.
Proof: Suppose Lemma 2.7 is not true. Then there exist sequences τk and σk,

k = 1, 2, . . . such that τk

σ2
k
→ 0 as k → ∞. Here τk is an eigenvalue of Lσk

and τk �= 0,
i.e.

Lσk
Φk = τkΦk, Φk ⊥ Xσk

where

Xσk
=

{
∂vσk

∂yj
, j = 1, 2, . . . , N

}
⊂ L2(Ωε,P ).

Φk satisfies

Φ′′
k +

N − 1
r

Φ′
k +

1
r2

�SN−1Φk + (1 − 3v2
σk

)Φk = τkΦk.(2.20)

Assume that

‖Φk‖H2(Ωε,P ) = 1.(2.21)

Extend Φk from Ωε,P to a function in RN such that Φk = O(e−C|y|) for y ∈ RN \Ωε,P

and such that the same result holds for the first and second derivatives of Φk.
We make the following decomposition

Φk(r) =
∞∑

m=1

Φk,m(r − Rσk
)em(θ)(2.22)

where r = |y|. Here em(θ) are the eigenfunctions of ∆SN−1 , i.e.,

�SN−1em + µmem = 0.

Note that Φk(r) = O(e−δRσ ) for |r − Rσ| ≥ βδ0 > 0. Hence there exists δ > 0 such
that

Φk,m(r) =
∫
|θ|=1

Φk(r)em(θ)dθ = O(e−δRσ ) for |r − Rσ| ≥ βδ0 > 0.
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It is well–known that

µ0 = 0, µ1 = . . . = µN = N − 1, µN+1 > N − 1, µm ∼ m2 as m → ∞.

Furthermore, Φk,m satisfies

Φ′′
k,m +

N − 1
Rσk

+ s
Φ′

k,m − µm

(Rσk
+ s)2

Φk,m + (1 − 3ṽ2
σk

)Φk,m = τkΦk,m(2.23)

in [−Rσ,∞). Note that ṽ′
σk

satisfies

(ṽ′
σk

)′′ +
N − 1

Rσk
+ s

(ṽ′
σk

)′ + (1 − 3ṽ2
σk

)ṽ′
σk

=
N − 1

(Rσk
+ s)2

ṽ′
σk

in [−Rσ,∞).(2.24)

We next decompose Φk,m into

Φk,m = Ck,mṽ′
σk

+ Φ2
k,m

where

Φ2
k,m ⊥ ṽ′

σk
.

Multiplying (2.23) by ṽ′
σk

, multiplying (2.24) by Φk,m, taking the difference and inte-
grating we obtain∫ ∞

−Rσ

(
τk +

µm − (N − 1)
(Rσk

+ s)2

)
Φk,mṽ′

σk
ds = O(e−δRσ ).(2.25)

Since τk = o(1)σ2
k, we have

Ck,m = O(
R2

σe−δRσ

µm
).(2.26)

Note that Φ2
k,m satisfies

(Φ2
k,m)

′′
+

N − 1
Rσk

+ s
(Φ2

k,m)
′
+ (1 − 3ṽ2

σk
)(Φ2

k,m) =
µm

(Rσk
+ s)2

Φ2
k,m

+τkΦ2
k,m +

µm − (N − 1)
(Rσk

+ s)2
Ck,mṽ′

σk
+ τkCk,mṽ′

σk
in [−Rσ,∞).(2.27)

Multiplying (2.27) by Φ2
k,m and integrating by parts, we have∫ ∞

−Rσ

[((Φ2
k,m)′)2 − (1 − 3ṽ2

σk
)(Φ2

k,m)2 + (
µm

(Rσk
+ s)2

+ τk)(Φ2
k,m)2

− N − 1
Rσk

+ s
(Φ2

k,m)′Φ2
k,m] ds = O(e−δRσ ).(2.28)

Since Φ2
k,m ⊥ ṽ′

σk
, we have that∫ ∞

−Rσ

[((Φ2
k,m)′)2 − (1 − 3ṽ2

σk
)(Φ2

k,m)2 + (
µm

(Rσk
+ s)2

+ τk)(Φ2
k,m)2
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− N − 1
Rσk

+ s
(Φ2

k,m)′Φ2
k,m] ds ≥

∫ ∞

−Rσ

σ0[((Φ2
k,m)′)2 + (Φ2

k,m)2] ds.(2.29)

(Suppose not. Then there exists a subsequence, again denoted by Φ2
k,m, such that

Φ2
k,m → Φ0 in H1(−∞,∞) where

∫ ∞
−∞((Φ0)′)2 + (Φ0)2 = 1 and Φ0 ⊥ U ′

0. Further-
more, Φ0 satisfies ∫ ∞

−∞
[((Φ0)′)2 − (1 − 3(U0)2)(Φ0)2] ds = 0.

This is a contradiction since the operator −∆ + (1 − 3U2
0 ) is positive and has the

kernel span(U ′
0).)

Hence, combining (2.28) and (2.29),∫ ∞

−Rσ

[((Φ2
k,m)′)2 + (Φ2

k,m)2] ds = O(
e−δRσ

R2
σ + µm

) = O(
e−δRσ

µm
),

or, in other words,

‖Φ2
k,m‖2

H1([−Rσ,∞)) = O(e−δRσ/µm).

By elliptic regularity theory we also know that

‖Φ2
k,m‖H2([−Rσ,∞)) = O(e−δRσ/µm).

Hence

‖Φ2
k,m‖2

H2(RN ) = O(RN−1
σ e−δRσ/µm).(2.30)

By (2.26) and (2.30),

‖Φk‖2
H2(Ωε,P ) ≤

∞∑
m=N+1

‖Φk,m‖2
H2(RN ) = O(RN+1

σ e−δRσ )
∞∑

m=N+1

1
µm

= o(1).

This is a contradiction! The proof is finished. �

Corollary 2.1. For all Φ ∈ H2
N (Ωε,P ) where Φ is orthogonal to the kernel of

Lσ, we have

‖LσΦ‖L2(Ωε,P ) ≥ Cσ2‖Φ‖H2(Ωε,P )(2.31)

where C > 0 is independent of σ << 1.
Proof: Let LσΦ = σ2f , then by Lemma 2.4, we have

‖σ2f‖L2(Ωε,P ) ≥ Cσ2‖Φ‖L2(Ωε,P ).

On the other hand, Φ satisfies

∆Φ − 2Φ = (3v2
σ − 3)Φ + σ2f.

Hence by elliptic regularity estimates, we have

‖Φ‖H2(Ωε,P ) ≤ C(‖Φ‖L2(Ωε,P ) + σ2‖f‖L2(Ωε,P ))
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≤ C‖f‖L2(Ωε,P ) ≤ Cσ−2‖LσΦ‖L2(Ωε,P ).

The Corollary is thus proved. �

Finally, we study the asymptotic behavior of vσ.
Lemma 2.8. For σ sufficiently small, we have

vσ − τσ = C(
r

Rσ
)−

N−1
2 eν̄σ(Rσ−r)(1 + O(σ)) for r ≥ Rσ(2.32)

where τσ is defined in Section 2 (note that τσ → −1 as σ → 0), C �= 0 is a generic
constant and

ν̄σ =
√

3τ2
σ − 1.

Proof: We use matched asymptotics as in [27], although the proof can be made
rigorous by ODE arguments and the maximum principle.

Let v̂σ = vσ − τσ. Linearizing equation (2.1) around τσ, we have that v̂σ satisfies

v̂
′′
σ +

N − 1
r

v̂
′
σ − ν̄2

σ v̂σ + O(v̂2
σ) = 0.

Note that ν̄σ =
√

2 + O(σ) and the exact solution of the following problem

u
′′

+
N − 1

r
u

′ − ν̄2
σu = 0, u(Rσ) = −τσ, r ≥ Rσ, u(r) → 0 as r → ∞

is (−τσ)( r
Rσ

)1−N/2Km(ν̄σr)(Km(ν̄σRσ))−1 where m = (N − 2)/2 and Km(z) is the
modified Bessel function of the second kind of order m.

Since

Km(z) = (1 + O(
1
z
))(π/(2z))1/2e−z

as z → ∞, we have

v̂σ = Cσ(
r

Rσ
)1−

N
2 (

π

2r
)

1
2 e−ν̄σr(1 + O(σ)) as r → ∞(2.33)

where Cσ may depend on σ. On the other hand, let r = Rσ + s, then

v̂σ = C0e
−ν̄σs(1 + O(σ))(2.34)

for s large, where C0 �= 0 is a generic constant. Combining (2.33) and (2.34), we have

Cσ = C0π
−1/2(2ν̄σRσ)1/2eν̄σRσ .

Hence Lemma 2.8 is proved. �

In the following, it will be more convenient to rewrite equation (2.32) as follows

vσ − τσ = Cσlr−
N−1

2 eν̄σ(Rσ−r)(1 + O(σ)) for r ≥ Rσ.(2.35)

where l = −(N − 1)/2.
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3. The projection of vσ. In this section, we construct a modified function
PΩε,P

vσ. It is close to vσ and satisfies the Neumann boundary condition. Furthermore,
we provide an error estimate for Ψε,P = vσ − PΩε,P

vσ.

Let Ψε,P be the unique solution of⎧⎨
⎩ ε2�u − ν̄2

σu = 0 in Ω,

∂u
∂ν = ∂vσ( x−P

ε )

∂ν on ∂Ω.
(3.1)

Define PΩε,P
vσ := vσ − Ψε,P . Later, in Section 4, we will show that for every small

ε > 0 there exists exactly one σ = σ(ε) satisfying a certain nonlinear equation, and,
furthermore, we have σ(ε) = γ0ε+O(ε2) as ε → 0 where γ0 is some positive constant.
In this section we will write σ and ε with the understanding that this relation holds.
We set

νε = ν̄σ(ε).

Note that by (2.35) on the boundary of ∂Ω,

vσ(
x − P

ε
) = τσ + Cσl

( |x − P |
ε

)−N−1
2

e−νε(|x−P |/ε−Rσ)(1 + O(σ)).

In particular, we have the following asymptotic expansion of Ψε,P . A proof can be
found in [34].

Lemma 3.1. For ε sufficiently small, we have

Ψε,P (x) = (CN + O(ε))εl1eνεRσ

×
∫

∂Ω

{
e−νε

|t−P |+|t−x|
ε |t − P |−N−1

2 |t − x|−N−1
2

〈t − x, ν〉
|t − x|

}
dt(3.2)

where l1 is a rational number.
Let us introduce the following notation

ϕ̃ε,P (P ) :=
[∫ ∞

0

(τ2
σ − v2

σ(r))v
′
σ(r)u′

σ(r)rN−1dr

]
Ψε,P (P )(3.3)

where uσ is the unique solution of

∆u − ν2
ε u = 0, u(0) = 1, u > 0, u = u(r) for r ∈ [0,∞).(3.4)

We have the following key computations.
Lemma 3.2. Let P0 be a nondegenerate peak point of Ω and α0 > 0 is given

by condition (2) in Section 1. Suppose Pε = P0 + ε( a
2
√

2
d(P0, ∂Ω) + z̃) with |z̃| =

O(εα), 0 < α < α0. Then

Lj(ε, z̃) :=
∫
Ωε,Pε

(τ2
σ − v2

σ)Ψε,Pε

∂vσ

∂yj

= Lj(z̃)ϕ̃ε,Pε
(Pε) + O

(
ϕ̃ε,Pε

(Pε)εmin(1,2α,α0)
)(3.5)

where L(z̃) := (L1(z̃), ..., LN (z̃)) is a matrix which satisfies

Lj(z̃) = γ

∫
∂Ω

e<t−P0,a>〈t − P0, z̃〉
(
tj − P0,j

)
dµP0(t)∫

∂Ω
e<t−P0,a>dµP0(t)
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where γ �= 0 is a constant depending on N and d(P0, ∂Ω) only.
Proof. Since the proof is quite similar to the proof of Lemma 3.4 in [34], we will
merely sketch it. Note that

Lj(ε, z̃) =
∫

Ωε,Pε

(τ2
σ − v2

σ)Ψε,Pε

∂vσ

∂yj

=
∫ ∞

0

(τ2
σ − v2

σ)v
′
σrN−1dr

∫
|θ|=1

θjΨε,Pε
(εy + Pε)dθ + O(ϕ̃1+µ

ε,Pε
(Pε)).

But (let x = εy + Pε)

Ψε,Pε
(εy + Pε) = Ψε,Pε

(Pε)

∫
∂Ω

{
e−νε

|t−Pε|+|t−x|
ε |t − Pε|−N−1

2 |t − x|−N−1
2

〈t−x,ν〉
|t−x|

}
dt∫

∂Ω

{
e−νε

2|t−Pε|
ε |t − Pε|−N−1

2 |t − x|−N−1
2

〈t−x,ν〉
|t−x|

}
dt

= Ψε,Pε
(Pε)

∫
∂Ω

{
e−νε

2|t−Pε|
ε eνε< t−Pε

|t−Pε| ,y>|t − Pε|−N−1
2 |t − x|−N−1

2
〈t−x,ν〉
|t−x|

}
dt∫

∂Ω

{
e−νε

2|t−Pε|
ε |t − Pε|−N−1

2 |t − x|−N−1
2

〈t−x,ν〉
|t−x|

}
dt

= Ψε,Pε
(Pε)

∫
∂Ω

e<t−P0,a>e
νε<

t−P0
|t−P0| ,y>

dµa
P0

(t)(1 + O(εα0))

by condition (2) on page 2, where

dµa
P (t) = lim

ε→0

e−2νε|t−Pε|/εdt∫
∂Ω

e−2νε|t−Pε|/εdt
.

Hence

Lj(ε, z̃) =
[∫ ∞

0

(τ2
σ − v2

σ(r))v
′
σ(r)u

′
σ(r)rN−1dr

]
Ψε,Pε

(Pε)Lj(z̃)

+O(ϕ̃ε,Pε
(Pε)εmin(1,2α,α0)) = Lj(z̃)ϕ̃ε,Pε

(Pε) + O
(
ϕ̃ε,Pε

(Pε)εmin(1,2α,α0)
)
.

�

4. Choosing σ. In this section we choose σ and give an asymptotic expansion
including error estimate for its behavior as ε → 0.

Let PΩε,P
vσ be defined as in Section 3. Set

σ = m − 1
|Ω|

∫
Ω

PΩε,P
vσdx.(4.1)

We show that this equation has a unique solution σ if ε is small enough.
Note that ∫

Ω

(PΩε,P
vσ)3 dx =

∫
Ω

v3
σ dx +

∫
Ω

[(PΩε,P
vσ)3 − v3

σ] dx.
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Now choose Rσ such that for rb = εRσ

|Brb
| − |Ω \ Brb

|
|Ω| = m + O(σ) + O(ε)(4.2)

as σ, ε → 0. This implies

1
|Ω|

∫
Ω

v3
σ dx = m + cσ + O(σ2)

for some constant c > 0. Furthermore, there exists C > 0 such that∫
Ω

[(PΩε,P
vσ)3 − v3

σ] dx ≤ C

∫
Ω

|Ψε,P | = O(e−C/ε).

Therefore by the implicit function theorem, if ε is small enough, there exists exactly
one solution σ of (4.1). Furthermore, this σ satisfies

σ = γ0ε + O(ε2)(4.3)

as ε → 0, where γ0 = cb

rb
.

5. Technical Framework. In this section, we set up the technical framework to
solve equation (1.2). As we mentioned in Section 1, this framework was originated by
Floer and Weinstein [11] and later used by Oh [23], [24]. We modified their approach
to the Cahn-Hilliard equation in [32], [33] and [34]. We shall follow [34].

Without loss of generality, we assume that P0 = 0 ∈ Ω is a nondegenerate peak
point, i.e.

(1) Λ0 = {dµ0(t)},
(2) ∃a ∈ RN such that ∫

∂Ω

e<t,a>tdµ0(t) = 0

and

∫
∂Ω

{
e−

|t|
ε e<t,a>∫

∂Ω
e−

|t|
ε dt

}
tdt = O(εα0)

for some α0 > 0,
(3) the matrix G(0) :=

(∫
∂Ω

e<t,a>(titj)dµ0(t)
)

is nondegenerate.
Let z = ε( a

2
√

2
d(0, ∂Ω) + z̃) where |z̃| < εα with 0 < α < 1 to be chosen later.

We assume that σ = σ(ε) where σ(ε) is defined in Section 4.
Define Hε : H2

N (Ωε) → L2(Ωε) by

Hε(u) := �u + u − u3 − m +
1

|Ωε|
∫

Ωε

u3 dy(5.1)

where

H2
N (Ωε) :=

{
u ∈ H2(Ωε) :

∂u

∂ν
= 0 on ∂Ωε

}
.
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We are looking for a nontrivial zero of (5.1). We make the ansatz

u = PΩε,z
vσ + Φε

where Φε is now the unknown. Recall that we set wε,z = PΩε,z
vσ. We assume that

ε > 0 is small and Φε is small in C2
loc(Ωε). We shall see that solutions of this particular

form correspond to bubble solutions of (1.2) where the center of the bubble is located
near 0. Inserting this into the equation gives

�Φε + Φε + �(PΩε,z
vσ) + PΩε,z

vσ − (PΩε,z
vσ + Φε)3 =

m − 1
|Ωε|

∫
Ωε

(PΩε,z
vσ + Φε)3 dy.

Recall that

�(PΩε,z
vσ) + PΩε,z

vσ = ∆vσ −�Ψε,z + vσ − Ψε,z

= v3
σ + σ − 3τ2

σΨε,z.

This implies

�Φε + Φε + v3
σ + σ − 3τ2

σΨε,z − (PΩε,z
vσ + Φε)3

= m − 1
|Ωε|

∫
Ωε

(PΩε,z
vσ + Φε)3 dy.

By the choice of σ,

LεΦε + v3
σ − 3τ2

σΨε,z − (vσ − Ψε,z)3 + Nε,z(Φε) = 0

where

LεΦε := �Φε + Φε − 3(PΩε,z
vσ)2Φε + 3

1
|Ωε|

∫
Ωε

(PΩε,z
vσ)2Φε dy

and

Nε,z(Φε) = −3PΩε,z
vσΦ2

ε − Φ3
ε +

1
|Ωε|

∫
Ωε

[3PΩε,z
vσΦ2

ε + Φ3
ε ] dy.

Recalling that Φε → 0 as ε → 0 in C2
loc(Ωε) we finally arrive at

LεΦε + 3(v2
σ − τ2

σ)Ψε,z + Nε,z(Φε) + Mε,z(Ψε,z) = 0

where

Mε,z(Ψε,z) = −3vσΨ2
ε,z + Ψ3

ε,z.

It is easy to see that
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Lemma 5.1. For ε sufficiently small

‖Nε,z(Φε)‖L2(Ωε,z) � c‖Φε‖2
H2(Ωε,z),

‖Mε,z(Ψε,z)‖L2(Ωε,z) � c‖Ψε,z‖2
L2(Ωε,z) ≤ c|ϕ̃ε,z(z)|.

Furthermore,

‖Nε,z(Φ(1)
ε ) − Nε,z(Φ(2)

ε )‖L2(Ωε,z) ≤ c‖Φ(1)
ε − Φ(2)

ε ‖2
H2(Ωε,z).

It remains then to estimate the term 3(v2
σ − τ2

σ)Ψε,z. We have
Lemma 5.2. For ε sufficiently small, we have

‖(v2
σ − τ2

σ)Ψε,z‖2
L2(Ωε,z) ≤ C|ϕ̃ε,z(z)|1.5.(5.2)

Proof: In fact,

(v2
σ − τ2

σ)Ψε,z = eνεRσuσ(v2
σ − τ2

σ)u−1
σ e−νεRσΨε,z

where uσ is the unique radial solution of ∆u − ν2
ε u = 0, u(0) = 1, u > 0.

Now

|uσ(v2
σ − τσ)| ≤ e(νε+δ)Rσ(5.3)

where δ > 0 is small. Furthermore, by Lemma 3.1, (note that εy + z = x),

e−νεRσΨε,z

= (CN + O(ε))
∫

∂Ω

{
e−νε

|t−z|+|t−x|
ε |t − z|−N−1

2 |t − x|−N−1
2

〈t − x, ν〉
|t − x|

}
dt.

≤ eνεRσe−2νεd(z,∂Ω)/εe(νε+δ)|y|.

Therefore,

|u−1
σ e−νεRσΨε,z| ≤ Ce−2νεd(z,∂Ω)/εe(νε+δ)Rσ .(5.4)

Combining (5.3) and (5.4), we obtain

|(v2
σ − τ2

σ)Ψε,z| ≤ Ce−2νε(d(z,∂Ω)−εRσ)+2(δ+νε)Rσ

≤ C(ϕ̃ε,z(z))0.8.

This implies

‖(v2
σ − τ2

σ)Ψε,z‖2
L2(Ωε,z) ≤ ϕ̃ε,z(z)1.5.

The Lemma is thus proved. �
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6. Reduction to Finite Dimensions: Fredholm Inverses. In this section,
we show that H ′

ε(wε,z), modulo its approximate kernel, is an invertible linear operator
if ε is small enough. Moreover we show that the operator norm of the inverse operator
is bounded by Cε−2. (Note that in [11], [23], [24] and [34], the operator norm of the
inverse operator is uniformly bounded).

Set

Kε,z = span
{∂wε,z

∂zi

∣∣i = 1, · · · , N} ⊂ H2
N (Ωε)(6.1)

and

Cε,z = span
{∂wε,z

∂zi

∣∣i = 1, · · · , N} ⊂ L2(Ωε).(6.2)

Kε,z is called the approximate kernel, while Cε,z is called the approximate co-kernel.
Note that a function Φ ∈ co-kernel of H ′

ε(wε,z) iff for all ψ ∈ H2
N (Ωε) we have∫

Ωε

ΦH ′
ε(wε,z)ψ dy = 0.

Integrating by parts, we have∫
∂Ωε

ψ
∂Φ
∂ν

do +
∫

Ωε

[(∆Φ + (1 − 3w2
ε,z)Φ)ψ] dy

+3
1

|Ωε|
∫

Ωε

Φ dy

∫
Ωε

w2
ε,zψ dy = 0, ∀ψ ∈ H2

N (Ωε).

Hence Φ ∈ co-kernel of H ′
ε(wε,z) if and only if⎧⎨

⎩ ∆Φ + (1 − 3w2
ε,z)Φ + 3w2

ε,z
1

|Ωε|
∫
Ωε

Φ dy = 0 in Ωε,

∂Φ
∂ν = 0 in ∂Ωε.

Observe also that span{∂vσ

∂yi
|i = 1, · · · , N} is the kernel of L, where L is the linear

operator defined as

LΦ := ∆Φ + Φ − 3v2
σΦ, Φ ∈ H2(RN ).

Our main result in this section can be stated as follows.
Proposition 6.1. There exist positive constants ε1, λ such that for all ε ∈ (0, ε1)

‖Lε,zΦ‖L2(Ωε) � λσ2‖Φ‖H2(Ωε)(6.3)

for all |z| ≤ Cε and for all Φ ∈ K⊥
ε,z where

Lε,z = πε,z ◦ H ′
ε(wε,z)(6.4)

and πε,z is the L2-orthogonal projection from L2(Ωε) to C⊥
ε,z.

The next proposition gives the surjectivity of Lε,z.
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Proposition 6.2. There exists a positive constant ε2 such that for all ε ∈ (0, ε2)
and |z| ≤ Cε, the map

Lε,z = πε,z ◦ H ′
ε(wε,z) : K⊥

ε,z −→ C⊥
ε,z

is surjective.
Combining Propositions 6.1 and 6.2 gives us the invertibility of Lε,z.
Proposition 6.3.

Lε,z : K⊥
ε,z −→ C⊥

ε,z

is invertible, namely,

L−1
ε,z : C⊥

ε,z −→ K⊥
ε,z

exists. Furthermore, L−1
ε,z is bounded in the operator norm by Cε−2.

We now begin to prove Proposition 6.1.
Proof of Proposition 6.1: We use a different strategy than in [32].

Suppose (6.3) is false. Then there exist sequences {εk}, {zk} and {Φk}, with
|zk| � Cεk and εk → 0 as k → ∞ such that

Φk ∈ K⊥
εk,zk

and

‖Lεk,zk
(Φk)‖L2(Ωεk

) = o(1)ε2k, ‖Φk‖H2(Ωεk
) = 1.(6.5)

We denote, for i = 1, · · · , N

ek,i =
∂wεk,zk

∂zi

‖∂wεk,εk

∂zi
‖L2(Ωεk

)

, e∗k,i =
∂vσk

∂yi

‖∂vσk

∂yi
‖L2(Ωεk

)

.(6.6)

Note that the difference between ek,i and e∗k,i is exponentially small. Hence, after
applying the Gram-Schmidt process to {ek,i|i = 1, · · · , N} we obtain a family of
orthonormal functions {ẽk,i|i = 1, · · · , N} with

ẽk,i = ek,i + δk,i, i = 1, · · · , N

where δk,i = O(e−δ/ε) in L2(Ωεk
) as k → ∞ for each i = 1, · · · , N .

Hence,

Lεk,zk
Φk = H ′

εk
(wεk,zk

)Φk −
N−1∑
i=1

(∫
Ωεk

[H ′
εk

(wεk,zk
)Φk]ek,i dy

)
ek,i + Ek(6.7)

where Ek is defined by (6.7) and it is easy to see that ‖Ek‖L2(Ωεk
) = O(e−δ/εk) as

k → ∞.
Note that

‖Lεk,zk
Φk‖2

L2(Ωεk
) = ‖H ′

εk
(wεk,zk

)Φk‖2
L2(Ωεk

)

−
n∑

i=1

(
∫

Ωεk

[H ′
εk

(wεk,zk
)Φk]ek,i dy)2 + O(e−δ/εk)

(6.8)
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as k → ∞.
Let us denote

∆Φk + (1 − 3w2
εk,zk

)Φk + 3
1

|Ωεk
|
∫

Ωεk

w2
εk,zk

Φk dy = σ2
kfk.

By Corollary 2.1, we have

‖fk − 3
1

|Ωεk
|σ2

k

∫
Ωεk

w2
εk,zk

Φk dy‖L2(Ωεk
) ≥ C‖Φk‖H2(Ωεk

).(6.9)

Note that since Φk satisfies the Neumann boundary condition, we have

|
∫

Ωεk

Φk| = |σ2
k

∫
Ωεk

fk dy| ≤ Cε
2−N

2
k ‖fk‖L2(Ωεk

).

Hence

3
1

|Ωεk
|σ2

k

∫
Ωεk

w2
εk,zk

Φk dy ≤ Cε
N
2

k ‖fk‖L2(Ωεk
).

Thus

‖3 1
|Ωεk

|σ2
k

∫
Ωεk

w2
εk,zk

Φk dy‖L2(Ωεk
) ≤ C‖fk‖L2(Ωεk

).

The last inequality and (6.9) imply that

‖fk‖L2(Ωεk
) ≥ C‖Φk‖H2(Ωεk

) ≥ C.

Therefore

‖H ′
εk

(wεk,zk
)Φk‖2

L2(Ωεk
) ≥ Cσ2

k.(6.10)

Now we estimate ∫
Ωεk

[H ′
εk

(wεk,zk
)Φk]ek,i dy

=
∫

Ωεk

[H ′
εk

(wεk,zk
)Φk]

∂wεk,zk

∂zi
dy + O(e−δ/εk)

=
∫

Ωεk

[∆Φk + (1 − 3v2
σk

)Φk + 3
1

|Ωεk
|
∫

Ωεk

v2
σk

Φk dy]
∂vσk

∂yi
dy + O(e−δ/εk)

=
∫

∂Ωεk

[
∂vσk

∂yi

∂Φk

∂ν
− Φk

∂

∂ν

(
∂vσk

∂yi

)]
do + 3

1
|Ωεk

|
∫

Ωεk

v2
σk

Φk dy

∫
Ωεk

∂vσk

∂yi
dy

+O(e−δ/εk) = O(e−δ/εk).
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Therefore (6.8) implies that

o(1)ε2k ≥ Cσ2
k − o(e−δ/εk).(6.11)

This is a contradiction! Proposition 6.1 is thus proved. �

The following lemma, which can be found in [15], will be needed in the proof of
Proposition 6.2.

Lemma 6.1. ([15]; Lemma 1.3) If
→
d (E,F ) := sup{d(x, F )|x ∈ E, ‖x‖H = 1} <

1, then πF |E : E → F is injective and πE|F : F → E has a bounded right inverse,
where πE(πF , resp.) is the orthogonal projection from H to E(F, resp.). In particular,
πE|F : F → E is surjective.

We are now ready to prove Proposition 6.2.
Proof of Proposition 6.2:

Let CKε,z = co-kernel of H ′
ε(wε,z). We first claim that

	d(CKε,z, Cε,z) < 1(6.12)

for all ε > 0 sufficiently small.
In fact, suppose (6.12) is not true. Then there exist εk → 0 and Φk ∈ CKεk,zk

such that

∆Φk + (1 − 3w2
εk,zk

)Φk + 3w2
εk,zk

1
|Ωεk

|
∫

Ωεk

Φk dy = 0 in Ωεk
,(6.13)

∂Φk

∂ν
= 0 on ∂Ωεk

,(6.14)

‖Φk‖L2(Ωεk
) = 1,(6.15)

∫
Ωεk

Φk
∂(wεk,zk

)
∂zi

dy = 0, i = 1, · · · , N.(6.16)

By (6.13), (6.14), we have∫
Ωεk

(1 − 3w2
εk,zk

)Φk dy + 3
∫

Ωεk

w2
εk,zk

dy
1

|Ωεk
|
∫

Ωεk

Φk dy = 0.

Note that ∫
Ωεk

w2
εk,zk

dy = |Ωεk
|(1 + O(εk)).

Hence, we have∫
Ωεk

Φk dy =
∫

Ωεk

(1/3 − w2
εk,zk

)Φk dy(1 + O(εk)) ≤ O(ε
N+1

2
k )‖Φk‖L2(Ωεk

).

Similar to the proof of Proposition 6.1, we conclude that

‖Φk‖H2(Ωεk
) = o(1).(6.17)
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This is a contradiction! Hence (6.12) is true.
Now by the fact that 	d(E,F ) = 	d(F⊥, E⊥), we have

	d(C
⊥
ε,z, CK

⊥
ε,z) < 1

where C
⊥
ε,z(CK

⊥
ε,z, resp.) is the orthogonal complement of Cε,z(CKε,z, resp.) in

L2(Ωε). Thus the map

π
C

⊥
ε,z

∣∣
CK

⊥
ε,z

: CK
⊥
ε,z → C

⊥
ε,z(6.18)

is surjective, by Lemma 6.1.
Since CK

⊥
ε,z is the range of Lε, it suffices to show that the map in (6.18) when

restricted to CK⊥
ε,z, which is just πε,z is onto C⊥

ε,z. However, this follows easily from
the expression

π
C

⊥
ε,z

(Φ) = Φ − πCε,z
Φ. �

Finally in this section, we solve the following equation for Φε ∈ K⊥
ε,z.

πε,z ◦ Hε(wε,z)(wε,z + Φε) = 0.(6.19)

Since Lε,z

∣∣
K⊥

ε,z
is invertible (and we shall denote its inverse just by L−1

ε,z ) by
Proposition 6.3, this is equivalent to solving

Φε = L−1
ε,z ◦ πε,z(Lε(Φε)) = −L−1

ε,z ◦ πε,z(3(v2
σ − τ2

σ)Ψε,z + Nε,z(Φε) + Mε,z(Ψε,z))

:≡ Qε,z(Φε)

where Qε,z is defined in the last equality for every Φε ∈ H2
N (Ωε).

By Proposition 6.3, we have

‖L−1
ε,z‖ ≤ Cε−2.

Hence,

‖Qε,z(Φε)‖H2(Ωε) � Cε−2(‖(v2
σ − τ2

σ)Ψε,z‖L2(Ωε) + ‖Nz,ε(Φε)‖L2(Ωε)

+‖Mz,ε(Ψε,z)‖L2(Ωε))

� cε−2(ϕ̃
1
2+η̃
ε,z + δ‖Φε‖H2(Ωε))

for some η̃ > 0 (in fact, we can take η̃ = 1/4 by Lemma 5.1).
Take δ = |ϕ̃ε,z(z)| 1+η

2 for 0 < η < 2η̃. Then we have (since δε−2 = o(1))

‖Qε,z(Φε)‖H2(Ωε) � C(ϕ̃
1+η
2

ε,z (z)).(6.20)

Equation (6.20) says that Qε,z(Φ) is a continuous map:

Bδ(0) ∩ H2
N (Ωε) −→ Bδ(0) ∩ H2

N (Ωε).
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Furthermore, Qε,z(Φ) is a contracting map if ε is small by Lemma 5.1. Hence by the
Contraction Mapping Principle we have the following proposition.

Proposition 6.4. There exists ε0 > 0 such that for ε < ε0, |z| ≤ Cε there is a
unique Φε,z ∈ K⊥

ε,z such that

Hε(wε,z + Φε,z) ∈ Cε,z.(6.21)

Furthermore,

‖Φε,z‖H2(Ωε) ≤ Cϕ̃
1+µ
2

ε,z (z).(6.22)

7. The Reduced Problem. In this section, we shall prove our main result
Theorem 1.1.

By Proposition 6.4, for ε � ε0 and |z| ≤ Cε, there exists a unique Φε,z such that

Hε(wε,z + Φε,z) ∈ Cε,z.(7.1)

Therefore it is enough to show that for some |z| ≤ Cε, we have

Hε(wε,z + Φε,z) ⊥ Cε,z.

To this end, we now define a vector field

Vε,j(z̃) :=
1

εα−1ϕ̃ε,z(z)
[∫

Ωε

Hε(wε,z + Φε,z)
∂wε,z

∂zj
dy

]
(7.2)

where z = ε a
2
√

2
d(0, ∂Ω) + εα+1z̃, |z̃| � 1, and 	a is given by conditions (2) and (3) in

Section 1.
The main estimate of this section is
Lemma 7.1. For every 0 < α < α0, the vector field Vε converges uniformly to V0

in B1(0) as ε → 0, where

V0 = (V0,1, · · · , V0,N ),

V0,j = γ∫
∂Ω e<t−P0,a>dµP0 (t)

∑N
i=1(

∫
∂Ω

e<x−P0,a>xixjdµP0(x)z̃i), j = 1, ..., N,

and γ is given by Lemma 3.2.
Once Lemma 7.1 is proved, then Theorem 1.1 follows easily. In fact, since 0 is a

nondegenerate peak point, V0 has a nondegenerate zero at 0 (with degree different from
0). Then Lemma 7.1 and a simple degree theoretic argument imply that Vε has a zero
z̃(ε) ∈ B 1

2
(0) for every ε sufficiently small. This solves the equation Hε(wε,z+Φε,z) = 0

for every ε sufficiently small. Setting z(ε) = ε a
2
√

2
d(0, ∂Ω) + εα+1z̃(ε) and

vε = wε,z(ε) + Φε,z(ε)

for x ∈ Ω and ε sufficiently small, it follows then

vε �≡ 0 since Φε,z(ε) → 0 in H2(Ωε) as ε → 0
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while wε,z(ε) remains bounded away from 0 in H2(Ωε) as ε → 0.
That is, vε is a non-trivial solution of (1.2). By the structure of vε, vε has all the

properties of Theorem 1.1.
It remains to prove Lemma 7.1. To this end, we have∫

Ωε,z
Hε(wε,z + Φε,z)

∂wε,z

∂zj

=
∫
Ωε,z

[H
′
ε(wε,z)Φε,z]

∂wε,z

∂zj

+
∫
Ωε,z

[Nε,z(Φε,z)]
∂wε,z

∂zj

+
∫
Ωε,z

Mε,z(Ψε,z)
∂wz,ε

∂zj

+
∫
Ωε,z

3[v2
σ − τ2

σ ]Ψε,z
∂wε,z

∂zj

= I1 + I2 + I3 + I4

where Ii, i = 1, 2, 3, 4 are defined by the last equality.
Note that

I1 = 3
∫

Ωε,z

[
(PΩε,z

vσ)2 − v2
σ

]
Φε,z

∂wε,z

∂zj
dy

+3
∫

Ωε,z

∂wε,z

∂zj
dy

∫
Ωε,z

(PΩε,z
vσ)2Φε,z dy

≤ C

∥∥∥∥(PΩε,z
vσ − vσ)

∂wε,z

∂zj

∥∥∥∥
L2(Ωε,z)

‖Φε,z‖L2(Ωε,z)

+3
∫

Ωε,z

∂wε,z

∂zj
dyε−N/2‖Φε,z‖L2(Ωε,z)

≤ Cϕ̃ε,z(z)
1+µ
2 ϕ̃ε,z(z)

1+µ
2

= O(ϕ̃1+µ
ε,z (z))

where µ > 0 is some small number. By Lemma 5.1 and Proposition 6.4 we have

|I2| ≤ C|ϕ̃ε,z(z)|1+µ

and

|I3| ≤ C|ϕ̃ε,z(z)|1+µ

since Nε,z(·) and Mε,z(·) depend on their arguments only in the second or higher
powers. So we just need to compute I4. In fact,

I4 = − ∫
Ωε,z

3
[
τ2
σ − v2

σ

]
Ψε,z

∂PΩε,z vσ

∂zj

= −ε
∫
Ωε,z

3[τ2
σ − v2

σ]Ψε,z
∂vσ

∂yj

+ O
(
e−

√
νε

(2+µ)d(z,∂Ω)
ε

)
.

By Lemma 3.2, we conclude the proof of Lemma 7.1. �
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