
STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD
EQUATION

JUNCHENG WEI AND MATTHIAS WINTER

Abstract. We study the Cahn-Hilliard equation in a bounded domain
without any symmetry assumptions. We assume that the mean curva-
ture of the boundary has a nongenerate critical point. Then we show that
there exists a spike-like stationary solution whose global maximum lies
on the boundary. Our method is based on Lyapunov-Schmidt reduction
and the Brouwer fixed-point theorem.
Résumé. Nous étudions l’équation de Cahn et Hilliard dans une domaine
ouverte sans supposer aucunes conditions de symétrie pour la domaine.
Nous supposons que la courbature moyenne sur la frontière a un point
critique non dégeneré. Nous montrons qu’il existe une solution station-
naire avec un pic qui atteint son maximum sur la frontière de la domaine.
Notre méthode utilise la réduction de Lyapunov et Schmidt et le théorème
du point fixe de Brouwer. (Titre: Solutions stationnaires pour l’équation
de Cahn et Hilliard).

1. Introduction

The Cahn-Hilliard equation [5] is an accepted macroscopic field-theoretical

model of processes such as phase separation in a binary alloy. In its original

form it is derived from a Helmholtz free energy

E(u) =
∫
Ω
[F (u(x)) +

1

2
ε2|∇u(x)|2]dx

where Ω is the region occupied by the body, u(x) is a conserved order param-

eter representing for example the concentration of one of the components,

and F (u) is the free energy density which has a double well structure at

low temperatures (see Figure 1). The most commonly used model is for

F (u) = (1 − u2)2.

The constant ε is proportional to the range of intermolecular forces and

the gradient term is a contribution to the free energy coming from spatial
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fluctuations of the order parameter. Moreover the mass m = 1
|Ω|

∫
Ω udx is

constant. Thus a stationary solution of E(u) under m = 1
|Ω|

∫
Ω udx takes the

following form ⎧⎪⎨
⎪⎩

ε2∆u − f(u) = σε in Ω,
∂u
∂ν

= 0 on ∂Ω,∫
Ω u = m|Ω|

(1.1)

where f(u) = F ′(u) (see Figure 2) and σε is a constant.

There have been numerous studies of the Cahn-Hilliard equation. The

global minimizer of E(u) has a transition layer. More precisely there exists

an open set Γ ⊂ Ω such that uε is a global minimizer then uε → 1 on

Ω \ Γ, uε → −1 on Γ and ∂Γ ∩ Ω is a minimal surface and has constant

mean curvature, see [16]. The dynamics of the interface have been studied

extensively, see for example [2], [3], [23]. Also local minimizers of E(u) have

been studied and their transition layer structure has been established in [6]

and [13]. In particular, Chen and Kowalczyk in [6] used boundary mean

curvature to construct local minimizers (therefore transition layer solutions)

for equation (1.1).

In this paper we are concerned with solutions of (1.1) with spike layers.

In the one dimensional case, Bates and Fife [4] studied nucleation phenom-

ena for the Cahn-Hilliard equation and proved the existence of three mono-

tone nondecreasing stationary solutions when m is in the metastable region

(
√

1/3 < m < 1), (a) the constant solution u ≡ m, (b) a boundary spike

layer solution where the layer is located at the left-hand endpoint, (c) a

transition layer solution with a layer in the interior of the material.

Motivated by the results of [4], we shall construct a boundary spike layer

solution to (1.1) for ε << 1 in the higher dimensional case when m is in the

metastable region.

The existence of spike layer solutions as well as the location and the profile

of the peaks for other problems arising in various models such as chemotaxis,

pattern formation, chemical reactor theory, etc. have been studied by Lin,

Ni, Pan, and Takagi [14, 17, 18, 19] for the Neumann problem and by Ni and

Wei [20] for the Dirichlet problem. However, they do not have the volume

constraint and the nonlinearity is simpler than here. To our knowledge the
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present paper is the first to establish this kind of results for the Cahn-Hilliard

equation in higher dimensions without any symmetry assumptions on Ω.

Naturally these stationary solutions are essential for the understanding of

the dynamics of the corresponding evolution process. While Bates and Fife

[4] prove some results in this direction for the one dimensional case these

questions are open for higher dimensions.

In [11] in the one dimensional case the number of all stationary solutions

is counted by arguments using transversality.

First we make the following transformation.

v = m − u,

g(v) = −f(m) + f(m − v).

Rewrite

g′(0) = −m, g(v) = −mv + h(v).

Then equation (1.1) becomes{
ε2∆v − mv + h(v) − 1

|Ω|
∫
Ω h(v) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω.
(1.2)

(Figure 3 shows qualitatively how the graph of g looks like.)

To accommodate more general g we assume that

(1) g′(0) < 0, g(0) = 0, g ∈ C3(R,R).

(2) g(v) has only two zeroes for v > 0, 0 < a1 < a2 and∫ a2

0
g(s) ds > 0, g′(a2) < 0.

(3) The function v → g(v)
v−v0

is nonincreasing in the interval (v0, a2) where

v0 is defined as the unique number in (a1, a2) such that
∫ v0
0 g(s) ds = 0.

(4) |h′(v)|, |h′′(v)| ≤ C for any v.

Remarks:

(1) Condition (3) can be weakened further. For example, the conditions in

[7] will be enough since we just need the uniqueness and weak nondegeneracy

of the ground state solutions of (1.3).

(2) Condition (4) is not a restriction physically since in the physical world

v is always bounded. Hence we can modify h near infinity so that h satisfies

(4).
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It is easy to see that for f(u) = −2u(1 − u2) conditions (1), (2), (3), and

(4) are satisfied. Our main result can be stated as follows.

Theorem 1.1. Let Ω be a bounded smooth domain in RN(N ≥ 2) and

P0 ∈ ∂Ω be such that ∇P0H(P0) = 0 and (∇2
P0

H(P0)) 	= 0 where H(P0)

is the mean curvature of P0 ∈ ∂Ω and ∇P0 is the tangential derivative at

P0. Then for ε << 1 there exists a solution vε of (1.2) such that vε → 0

in C1
loc(Ω \ P0), vε has only one local (hence global) maximum point Pε and

Pε ∈ ∂Ω, Pε → P0, vε(Pε) → V (0) > 0. Moreover

ε−N

{∫
Ω

ε2

∣∣∣∣∇vε −∇V
(

x − Pε

ε

)∣∣∣∣
2

+
∫
Ω

∣∣∣∣vε − V
(

x − Pε

ε

)∣∣∣∣
2
}
→ 0

as ε → 0 where V (y) is the unique solution of⎧⎪⎨
⎪⎩

∆V − mV + h(V ) = 0,
V (0) = maxy∈RN V (y), V > 0,
V (y) → 0 at ∞.

(1.3)

(By the results of [9] and [24], (1.3) has a unique radial solution).

The method of our construction evolves from that of [8], [21] and [22]

on the semi-classical (i.e. for small parameter h) solution of the nonlinear

Schrödinger equation

h2

2
∆U − (V − E)U + Up = 0 (1.4)

in RN where V is a potential function and E is a real constant. The method

of Lyapunov-Schmidt reduction was used in [8], [21] and [22] to construct

solutions of (1.4) close to nondegenerate critical points of V for h sufficiently

small.

Following the strategy of [8], [21] and [22] we shall construct a solution

vε of (1.2) with maximum near a given nondegenerate critical point of the

mean curvature P0 on ∂Ω. Heuristically we rescale (1.2) to obtain{
∆uε − muε + h(uε) − 1

|Ωε,P |
∫
Ωε,P

h(uε) = 0 in Ωε,P ,
∂uε

∂νε
= 0 on ∂Ωε,P (1.5)

where uε(z) = vε(x) for z = (x−P )/ε, z ∈ Ωε,P and Ωε,P = {z ∈ RN | εz+P ∈
Ω} and νε is the unit outer normal to ∂Ωε,P .
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Taking the limit ε → 0, uε → V where V is the unique solution of⎧⎪⎨
⎪⎩

∆w − mw + h(w) = 0 in RN
+ ,

w > 0 in RN
+ ,

∂w
∂yN

= 0 on RN−1 × {0}
(1.6)

with V (0) = maxRN
+

V . Therefore the ground state solution V restricted

to RN
+ can be an approximate solution for uε. Since the linearized problem

arising from (1.6) has the (N − 1)-dimensional kernel span{ ∂V
∂y1

, . . . , ∂V
∂yN−1

}
we first “solve” (1.6) up to this kernel and then use the nondegeneracy of

H(P0) to take care of the kernel separately.

The paper is organized as follows. Notation, preliminaries and some use-

ful estimates are explained in Section 2. Section 3 contains the setup of our

problem and we solve (1.2) up to approximate kernel and cokernel, respec-

tively. Finally in Section 4 we solve the reduced problem.

Acknowledgement. The first author would like to thank Professor Wei-

Ming Ni for his enlightening discussions. Part of the work is inspired by

some related work by Professor Wei-Ming Ni and Professor Y.-G. Oh. This

research was done while the second author visited the Department of Math-

ematics, The Chinese University of Hong Kong. It is supported by a Direct

Grant from The Chinese University of Hong Kong and by a grant of the

European Union (contract ERBCHBICT930744).

2. Technical Analysis

In this section we introduce a projection and derive some useful estimates.

Throughout the paper we shall use the letter C to denote a generic positive

constant which may vary from term to term. We denote RN
+ = {(x′, xN)|xN >

0}. Let V be the unique solution of (1.3).

Let P ∈ ∂Ω. We can define a diffeomorphism straightening the boundary

in a neighborhood of P . After rotation of the coordinate system we may

assume that the inward normal to ∂Ω at P is pointing in the direction of the

positive xN -axis. Denote x′ = (x1, . . . , xN−1), B′(R0) = {x′ ∈ RN−1| |x′| <

R0} and Ω1 = Ω ∩ B(P,R0) = {(x′, xN) ∈ B(P,R0)|xN − PN > ρ(x′ − P ′)}
where B(P,R0) = {x ∈ RN | |x − P | < R0}. Then, since ∂Ω is smooth, we

can find a constant R0 > 0 such that ∂Ω ∩ Ω1 can be represented by the
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graph of a smooth function ρP : B′(R0) → R where ρP (0) = 0,∇ρP (0) = 0.

From now on we omit the use of P in ρP and write ρ instead if this can be

done without causing confusion. The sum of the principal curvatures of ∂Ω

at P is H(P ) =
∑N−1

i=1 ρii(0) where

ρi =
∂ρ

∂xi

, i = 1, . . . , N − 1

and higher derivatives will be defined in the same way. By Taylor expansion

we have

ρ(x′ − P ′) =
1

2

N−1∑
i,j=1

ρij(0)(xi − Pi)(xj − Pj)

+
1

6

N−1∑
i,j,k=1

ρijk(0)(xi − Pi)(xj − Pj)(xk − Pk) + O(|x′ − P
′ |4)

In the following we use ρα to denote the multiple differentiation ∂|α|ρ
∂xα ,

where α is a multiple index.

For x ∈ ∂Ω, let ν(x) denote the unit outward normal at x and ∂/∂ν the

normal derivative. Let (τ1(x), ..., τN−1(x)) denote (N − 1) linearly indepen-

dent tangential vectors and ( ∂
∂τ1

, .., ∂
∂τn−1

) the tangential derivatives.

In our coordinate system, for x ∈ ω1 := ∂Ω ∩ B(P,R0), we have

ν(x) =
1√

1 + |∇x
′ρ|2

(∇x′ρ,−1),

∂

∂ν
=

1√
1 + |∇x

′ρ|2

⎧⎨
⎩

N−1∑
j=1

ρj
∂

∂xj

− ∂

∂xN

⎫⎬
⎭
∣∣∣∣∣∣
xN−PN=ρ(x′−P ′)

,

τi(x) = (0, . . . , 1, . . . , 0, ρi(x
′
)),

∂

∂τi

=
1√

1 + |∇x
′ρ|2

{
∂

∂xi

+ ρi
∂

∂xN

}∣∣∣∣∣
xN−PN=ρ(x

′−P
′
)

.

For a smooth bounded domain U we now introduce a projection PU of

H2(U) onto {v ∈ H2(U)|∂v/∂ν = 0 at ∂U} as follows: For v ∈ H2(U) let

w = PUv be the unique solution of the boundary value problem{
∆w − mw + h(v) = 0 in U,
∂w
∂ν

= 0 on ∂U.

Let hε,P (x) = V
(

x−P
ε

)
− PΩε,P

V
(

x−P
ε

)
where

Ωε,P = {z ∈ Rn|P + εz ∈ Ω}.
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Then hε,P satisfies {
ε2∆v − mv = 0 in Ω,
∂v
∂ν

= ∂V
∂ν

on ∂Ω.
(2.1)

We denote

‖v‖2
ε = ε−N

∫
Ω
[ε2|∇v|2 + mv2].

For x ∈ Ω1 set now {
εy′ = x′ − P ′,
εyN = xN − PN − ρ(x′ − P ′). (2.2)

Furthermore, for x ∈ Ω1 we introduce the transformation{
Ti(x

′) = xi, i = 1, . . . , N − 1
TN(x′) = xN − PN − ρ(x′ − P ′). (2.3)

Note that then

y =
1

ε
T (x).

The Laplace operator and the boundary derivative operator become

ε2∆x = ∆y + |∇x
′ρ|2 ∂2

∂y2
N

− 2
N−1∑
i=1

ρi
∂2

∂yi∂yN

− ε∆x
′ρ

∂

∂yN

for x ∈ Ω1,
(2.4)

√
1 + |∇x

′ρ|2 ∂

∂νx

=
1

ε

⎧⎨
⎩

N−1∑
j=1

ρj
∂

∂yj

− (1 + |∇x
′ρ|2) ∂

∂yN

⎫⎬
⎭ for x ∈ ω1.

(2.5)

Let v1 be the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
2

∑N−1
i,j=1 ρij(0)yiyj on ∂RN

+
(2.6)

where V ′ is the radial derivative of V , i.e. V ′ = Vr(r), and r =
∣∣∣x−P

ε

∣∣∣. Let

v2 be the unique solution of⎧⎨
⎩ ∆v − mv − 2

∑N−1
i,j=1 ρij(0)yi

∂2v1

∂yj∂yN
= 0 in RN

+ ,
∂v

∂yN
=

∑N−1
i,j=1 ρij(0)yi

∂v1

∂yj
on ∂RN

+ .
(2.7)

Let v3 be the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
3

∑N−1
i,j,k=1 ρijk(0)yiyjyk on ∂RN

+ .
(2.8)

Note that v1, v2 are even functions in y
′

= (y1, ..., yN−1) and v3 is an odd

function in y
′

= (y1, ..., yN−1) (i.e. v1(y
′
, yN) = v1(−y

′
, yN), v3(y

′
, yN) =

−v3(−y
′
, yN)). Moreover, it is easy to see that |v1|, |v2|, |v3| ≤ Ce−µ|y| for
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some 0 < µ <
√

m. Let χ(x) be a smooth cutoff function such that χ(x) =

1, x ∈ B(0, R0 − δ) and χ(x) = 0 for x ∈ B(0, R0)
C (for a positive number

δ.) Set

hε,P (x) = εv1(y)χ(x − P ) + ε2(v2(y)χ(x − P ) + v3(y)χ(x − P )) + ε3Ψε,P (x).

Then we have

Proposition 2.1.

‖Ψε,P‖ε ≤ C.

To prove Proposition 2.1, we begin with

Lemma 2.2. Let u be a solution of{
ε2∆u − mu + f = 0 in Ω,
∂u
∂ν

= g on ∂Ω,

Assume that
∫
Ω |f |2 ≤ CεN ,

∫
∂Ω |g|2 ≤ CεN−1. Then

‖u‖ε ≤ C.

Proof: Multiplying the equation by u, we have

ε2
∫
Ω
|∇u|2 + m

∫
Ω

u2 =
∫
Ω

fu + ε2
∫

∂Ω
gu.

Lemma 2.2 follows easily by the following interpolation inequality (the proof

of it is delayed to Appendix A),

‖u‖L2(∂Ωε,P ) ≤ C‖u‖ε

where Ωε,P = {z| x = P + εz ∈ Ω} for a fixed P ∈ ∂Ω. �

Proof of Proposition 2.1: We first compute the equation for Ψε,P (x):

−ε2∆Ψε,P (x) + mΨε,P (x)

=
1

ε3

[
ε2

{
∆x(εv1χ + ε2(v2χ + v3χ))

}
− mεv1χ − mε2v2χ − mε2v3χ

]

=
1

ε2

⎡
⎣{

∆yv1 + |∇x
′ρ|2 ∂2v1

∂y2
N

− 2
N−1∑
i=1

ρi
∂2v1

∂yi∂yN

− ε∆x
′ρ

∂v1

∂yN

− mv1

}
χ

+ε

{
∆yv2 + |∇x

′ρ|2 ∂2v2

∂y2
N

− 2
N−1∑
i=1

ρi
∂2v2

∂yi∂yN

− ε∆x
′ρ

∂v2

∂yN

− mv2

}
χ

+ε

{
∆yv3 + |∇x

′ρ|2 ∂2v3

∂y2
N

− 2
N−1∑
i=1

ρi
∂2v3

∂yi∂yN

− ε∆x
′ρ

∂v3

∂yN

− mv3

}
χ
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+Eε(χ)

⎤
⎦

=
1

ε2

⎡
⎣χ

⎧⎨
⎩|∇ρ|2 ∂2v1

∂y2
N

− ε∆ρ
∂v1

∂yN

− 2
N−1∑
i,j=1

(ρi − ερij(0)yj)
∂2v1

∂yi∂yN

⎫⎬
⎭

+χ

{
ε|∇ρ|2∂2v2

∂y2
N

− 2ε
N−1∑
i=1

ρi
∂2v2

∂yi∂yN

− ε2∆ρ
∂v2

∂yN

}

+χ

{
ε|∇ρ|2 ∂2v3

∂y2
N

− 2ε
N−1∑
i=1

ρi
∂2v3

∂yi∂yN

− ε2∆ρ
∂v3

∂yN

}⎤
⎦

+
1

ε2
Eε(χ)

= fε

where Eε(χ) denotes all the terms involving derivatives of χ. Since |v1|, |v2|, |v3| ≤
exp(−µ|y|) for some µ <

√
m we have fε ∈ L2(Ωε,P ) and

∫
Ωε,P

f 2
ε ≤ C. On

the other hand, for x ∈ ∂Ω it holds that

∂Ψε,P

∂ν
(x) =

1

ε3

{
∂V

∂ν
− ε

∂(v1χ)

∂ν
− ε2

(
∂(v2χ)

∂ν
+

∂(v3χ)

∂ν

)}
.

Note that
∂V

∂ν

√
1 + |∇ρ|2 = V ′< x − P, ν >

ε|x − P |
√

1 + |∇ρ|2

= V ′
(

x − P

ε

)
1

ε|x − P |
{

1

2

N−1∑
i,j=1

ρij(0)(xi − Pi)(xj − Pj)

+
1

3

N−1∑
i,j,k=1

ρijk(0)(xi − Pi)(xj − Pj)(xk − Pk) + O(|x′ − P ′|4)
}

=
V ′(y)

|y|

⎧⎨
⎩1

2

N−1∑
i,j=1

ρij(0)yiyj +
ε

3

N−1∑
i,j,k=1

ρijk(0)yiyjyk

⎫⎬
⎭ + O(ε2 exp(−µ|z|)).

Furthermore,

√
1 + |∇ρ|2 ∂v1

∂ν
=

1

ε

{
N−1∑
k=1

ρk
∂v1

∂yk

− (1 + |∇ρ|2) ∂v1

∂yN

}
,

ε
∂Ψε,P

∂ν
(x) =

1√
1 + |∇ρ|2ε2

⎡
⎣V ′

|y|

⎧⎨
⎩1

2

N−1∑
i,j=1

ρijyiyj +
ε

3

N−1∑
i,j,k=1

ρijk(0)yiyjyk

⎫⎬
⎭

+O(ε2(exp(−µ|y|)))
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+χ

{
−

N−1∑
k=1

ρk
∂v1

∂yk

+
∂v1

∂yN

+ |∇ρ|2 ∂v1

∂yN

−ε
N−1∑
k=1

ρk
∂v2

∂yk

+ ε
∂v2

∂yN

+ ε|∇ρ|2 ∂v2

∂yN

−ε
N−1∑
k=1

ρk
∂v3

∂yk

+ ε
∂v3

∂yN

+ |∇ρ|2 ∂v3

∂yN

}
+ Eε(χ)

⎤
⎦

= gε(y)

where again Eε(χ) denotes all the terms involving derivatives of χ. This

implies

gε ≤ C exp(−µ|z|) for |z′| ≤ R0 − δ

ε
.

Therefore ∣∣∣∣∣ε∂Ψε,P

∂ν
(x)

∣∣∣∣∣ ≤ C exp(−µ|z|) for z =
x − P

ε
.

Let Ψ̃ε,P (z) = Ψε,P (x), x = P + εz. Then Ψ̃ε,P satisfies

∆Ψ̃ε,P − Ψ̃ε,P + fε = 0 in Ωε,P ,

∂Ψ̃ε,P

∂νε

= gε on ∂Ωε,P

where fε ∈ L2(Ωε,P ), gε ∈ L2(∂Ωε,P ) and both the corresponding norms are

bounded independent of ε. Hence by Lemma 2.2

‖Ψε,P‖ε ≤ C.

Therefore Proposition 2.1 is proved. �

We next analyze ∂/∂τPj
PΩε,P

V
(

x−P
ε

)
. After choosing a suitable coordi-

nate system we can assume that ∂/∂τPj
= ∂/∂Pj. Then ∂/∂Pjhε,P (x) satis-

fies

ε2∆v − mv = 0 in Ω,

∂v

∂ν
=

∂

∂ν

∂

∂Pj

V
(

x − P

ε

)
on ∂Ω.

We compute

(1 + |∇x
′ρ|2) ∂

∂ν

∂

∂Pj

V
(

x − P

ε

)
=

N−1∑
i=1

∂

∂xi

∂

∂Pj

V
(

x − P

ε

)
ρi
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− ∂

∂xN

∂

∂Pj

V
(

x − P

ε

)

= −
[

N−1∑
i=1

∂2V

∂xi∂xj

(
x − P

ε

)
ρi − ∂2V

∂xN∂xj

(
x − P

ε

)]
.

Now we have (let x = P + εz)

∂V

∂zj

(z) = V ′ zj

|z| ,

∂2V

∂zi∂zj

= V ′′ zizj

|z|2 + V ′
{

δij

|z| −
zizj

|z|3
}

,

∂2V ((x − P )/ε)

∂xN∂xj

=
1

ε2

{
V ′′ zjρ/ε

|z|2 − V ′ zjρ/ε

|z|3
}

=

{
V ′′ yj

|y|2 − V ′ yj

|y|3
}

1

ε3
ρ + h.o.t.,

∂2V ((x − P )/ε)

∂xi∂xj

=
1

ε2

{
V ′′ zizj

|z|2 + V ′
{

δij

|z| −
zizj

|z|3
}}

ρi,

(1 + |∇ρ|2) ∂

∂ν

∂

∂Pj

V
(

x − P

ε

)
=

−
⎡
⎣ 1

ε2

{
V ′′yiyj

|y|2 + V ′
{

δij

|y| −
yiyj

|y|3
}}

ε
N−1∑
k=1

ρikyk

− 1

ε3

{
V ′′ yj

|y|2 − V ′ yj

|y|3
}

ε2

2

N−1∑
k,l=1

ρklykyl

⎤
⎦ + h.o.t..

=
1

ε

⎡
⎣1

2

N−1∑
k,l=1

ρkl

(
V ′′

|y|2 − V ′

|y|3
)

ykyjyl +
V ′

|y|
N−1∑
k=1

ρjkyk

⎤
⎦ + h.o.t..

Let [
∂V

∂τPj

− ∂PΩε,P
V

∂τPj

] (
x − P

ε

)
= w1(y)χ(x − P ) + εwε

2(x).

Here w1 is the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −1

2

(
V ′′
|y|2 − V ′

|y|3
)∑N−1

k,l=1 ρkl(0)ykylyj − V ′
|y|

∑N−1
k=1 ρjk(0)yk on ∂RN

+ .

(2.9)
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Note that |w1| ≤ C exp(−µ|y|) for some µ <
√

m and w1 is an odd function

in y
′
. Then w2 satisfies⎧⎨

⎩
ε2∆w2 − mw2 + 1

ε
[ε2∆w1χ1 − w1χ1] = 0,

∂w2

∂ν
= 1

ε

(
∂
∂ν

∂V
∂τPj

− ∂
∂ν

[w1(y)χ(x − P )]
)

(2.10)

Note that |w2| ≤ C exp(−µ|y|) for some µ <
√

m. Similar to the proof of

Proposition 2.1, we have

Proposition 2.3.[
∂V

∂τPj

− ∂PΩε,P
V

∂τPj

] (
x − P

ε

)
= w1(y)χ(x − P ) + εwε

2(x)

where w1 is defined above and

‖wε
2‖ε ≤ C.

Finally, let

L0 = ∆ − m + h′(V ).

We have

Lemma 2.4.

Ker(L0) ∩ H2
N(RN

+ ) = span

{
∂V

∂y1

, . . . ,
∂V

∂yN−1

}
.

where H2
N(RN

+ ) = {u ∈ H2(RN
+ ), ∂u

∂yN
= 0 on ∂RN

+}.

Proof. See Lemma 4.2 in [19]. �

3. Reduction to finite dimensions

Let P ∈ Ω and

Ωε,P = {z ∈ RN |εz + P ∈ Ω}.
Let H2

N(Ωε,P ) be a Hilbert space defined by

H2
N(Ωε,P ) =

{
u ∈ H2(Ωε,P )

∣∣∣∣∣ ∂u

∂νε

= 0 on ∂Ωε,P

}
.

For u ∈ H2
N(Ωε,P ), set

Sε(u) = ∆u − mu + h(u) − 1

|Ω|
∫
Ω

h(u).

Then solving equation (1.2) is equivalent to

Sε(u) = 0, u ∈ H2
N(Ωε,P ).
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To this end, we first study the linearized operator

L̃ε : u(z) → ∆u(z) − mu(z) + h′(PΩε,P
V (z))u(z),

H2
N(Ωε,P ) → L2(Ωε,P ).

L̃ε is not invertible due to the approximate kernel

Kε,P = span

{
∂PΩε,P

V (z)

∂τPj

∣∣∣∣∣ j = 1, . . . , N − 1

}

in H2
N(Ωε,P ). It is easy to see (integration by parts) that the cokernel of

L̃ε coincides with its kernel. We choose approximate cokernel and kernel as

follows:

Cε,P = Kε,P = span

{
∂PΩε,P

V (z)

∂τPj

∣∣∣∣∣ j = 1, . . . , N − 1

}
.

Let πε,P denote the projection in L2(Ωε,P ) onto C⊥
ε,P . Our goal in this section

is to show that the equation

πε,P ◦ Sε(PΩε,P
V + Φε,P ) = 0

has a unique solution Φε,P ∈ K⊥
ε,P if ε is small enough.

As a preparation in the following two propositions we show invertibility of

the corresponding linearized operator.

Proposition 3.1. Let Lε,P = πε,P ◦ L̃ε. There exist positive constants ε, λ

such that for all ε ∈ (0, ε)

‖Lε,P Φ‖L2(Ωε,P ) ≥ λ‖Φ‖H2(Ωε,P ) (3.1)

for all Φ ∈ K⊥
ε,P .

Proposition 3.2. There exists a positive constant ε such that for all ε ∈
(0, ε) and P ∈ ∂Ω the map

Lε,P = πε,P ◦ L̃ε : K⊥
ε,P → C⊥

ε,P

is surjective.

Proof of Proposition 3.1: We will follow the method used in [8], [21] and

[22]. Suppose that (3.1) is false. Then there exist sequences {εk}, {Pk}, and
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{Φk} with Pk ∈ ∂Ω, Φk ∈ K⊥
εk,Pk

such that

‖Lεk,Pk
Φk‖L2 → 0, (3.2)

‖Φk‖H2 = 1, k = 1, 2, . . . (3.3)

We omit the argument Ωεk,Pk
where this can be done without confusion.

Denote

ek,j =
∂

∂τPj

PΩε,P
V/

∥∥∥∥∥ ∂

∂τPj

PΩε,P
V

∥∥∥∥∥
L2

.

Note that

< ek,i, ek,j >= δij + O(εk) as k → ∞
by Proposition 2.3 and because of the symmetry of the function w1, which

was defined in (2.9), where δij is the Kronecker symbol. Furthermore because

of (3.2),

‖L̃εk
Φk‖2

L2 −
N−1∑
j=1

(∫
Ωεk,Pk

L̃εk
Φkek,j

)2

→ 0 (3.4)

as k → ∞. Let Ω1, χ, ρ and T be as defined in Section 2. Then T has an

inverse T−1 such that

T−1 : T (B(P,R0) ∩ Ω) → B(P,R0) ∩ Ω.

Recall that εy = T (x). We introduce a new sequence {ϕk} by

ϕk(y) = χ(T−1(εky))Φk

(
T−1(εky)

)
(3.5)

for y ∈ RN
+ . Since T and T−1 have bounded derivatives it follows from (3.3)

and the smoothness of χ that

‖ϕk‖H2(RN
+ ) ≤ C

for all k sufficiently large. Therefore there exists a subsequence, again de-

noted by {ϕk} which converges weakly in H2(RN
+ ) to a limit ϕ∞ as k → ∞.

We are now going to show that ϕ∞ ≡ 0. As a first step we deduce∫
RN

+

ϕ∞
∂V

∂Pj

= 0, j = 1, . . . , N − 1. (3.6)

This statement is shown as follows (note that det DT = det DT−1 = 1)∫
RN

+

ϕk(y)

[
∂PΩε,P

V

∂τPk,j

(
T−1(εky) − Pk

εk

)]
dy
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= ε−N
k

∫
Ω1

χ(x)Φk(x)
∂PΩε,P

V
(

x−Pk

εk

)
∂τPk,j

dx

= ε−N
k

∫
Ω

Φk(x)
∂PΩε,P

V
(

x−Pk

εk

)
∂τPk,j

−ε−N
k

∫
Ω\Ω1

Φk(x)
∂PΩε,P

V
(

x−Pk

εk

)
∂τPk,j

−ε−N
k

∫
Ω1

[1 − χ(x)]Φk(x)
∂PΩε,P

V
(

x−Pk

εk

)
∂τPk,j

= 0 − ε−N
k

∫
Ω\Ω1

Φk(x)

[
∂V

∂Pk,j

− ∂PΩε,P
V

∂τPk,j

] (
x − Pk

εk

)

−ε−N
k

∫
Ω1

[1 − χ(x)]Φk(x)

⎡
⎣∂V

(
x−Pk

εk

)
∂Pk,j

− ∂PΩε,P
V

∂τPk,j

⎤
⎦(

x − Pk

εk

)

−ε−N
k

∫
Ω\Ω1

Φk(x)
∂V

(
x−Pk

εk

)
∂Pk,j

−ε−N
k

∫
Ω1

[1 − χ(x)]Φk(x)
∂V

(
x−Pk

εk

)
∂Pk,j

where Ω1 is as defined in section 2. In the last expression the first two terms

tend to zero as k → ∞ since εk
−NΦk is bounded in L2(Ω) and [. . . ] → 0

strongly in L2(Ω). The last two terms tend to zero as k → ∞ because of the

exponential decay of ∂V/∂Pk,j at infinity.

We conclude

lim sup
k→∞

∣∣∣∣∣
∫

RN
+

ϕk(y)
∂PΩε,P

V

∂τPk,j

(
T−1(εky) − Pk

εk

)∣∣∣∣∣ = 0, j = 1, . . . , N − 1.
(3.7)

This implies (3.6).

Let K0 and C0 be the kernel and cokernel, respectively, of the linear oper-

ator S ′
0(V ) which is the Fréchet derivative at V of

S0(v) = ∆v − mv + h(v),

S0 : H2
N(RN

+ ) → L2(RN
+ ),

H2
N(RN

+ ) =

{
u ∈ H2

N(RN
+ )

∣∣∣∣∣ ∂u

∂yN

= 0

}
.
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Note that

K0 = C0 = span

{
∂V

∂yj

|j = 1, . . . , N − 1

}
.

Equation (3.6) implies that ϕ∞ ∈ K⊥
0 . By the exponential decay of V and

by (3.2) we have after possibly taking a further subsequence that

∆ϕ∞ − mϕ∞ + h′(V )ϕ∞ = 0,

i.e. ϕ∞ ∈ K0. Therefore ϕ∞ = 0.

Hence

ϕk ⇀ 0 weakly in H2(RN
+ ) (3.8)

as k → ∞. By the definition of ϕk we get Φk ⇀ 0 in H2 and

‖h′(PΩε,P
V )Φk‖L2 → 0 as k → ∞.

Furthermore,

‖(∆ − m)Φk‖L2 → 0 as k → ∞.

Since ∫
Ωεk,Pk

|∇Φk|2 + mΦ2 =
∫
Ωεk,Pk

[(m − ∆)Φk]Φk

≤ C‖(∆ − m)Φk‖L2

we have that

‖Φk‖H1 → 0 as k → ∞.

In summary:

‖∆Φk‖L2 → 0 and ‖Φk‖H1 → 0. (3.9)

From (3.9) and the following elliptic regularity estimate (for a proof see

Appendix B)

‖Φk‖H2 ≤ C(‖∆Φk‖L2 + ‖Φk‖H1) (3.10)

for Φk ∈ H2
N we imply that

‖Φk‖H2 → 0 as k → ∞.

This contradicts the assumption

‖Φk‖H2 = 1

and the proof of Proposition 3.1 is completed. �
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Proof of Proposition 3.2: Assume that the statement is not true. Then

there exist sequences {εk}, {Pk} such that εk → 0 as k → ∞ and Pk ∈ ∂Ω and

such that for all k, Lεk,Pk
: K⊥

εk,Pk
→ C⊥

εk,Pk
is not surjective. Let Kε,P and Cε,P

be the kernel and cokernel of L̃ε, respectively. Then πεk,Pk
: C⊥

εk,Pk
→ C⊥

εk,Pk

is not surjective, i.e. for all k there exists a Φk ∈ C⊥
εk,Pk

with Φk 	= 0 such

that Ψ+Φk 	∈ C⊥
εk,Pk

for all Ψ ∈ C⊥
εk,Pk

. This is equivalent to Φk ∈ Cεk,Pk
and

Φk 	= 0. Because we can assume that w.l.o.g. Φk = 1 this can be rewritten

as follows. For all k there exists a Φk ∈ Cεk,Pk
such that

‖Φk‖L2 = 1, (3.11)∫
Ωεk,Pk

Φk

∂PΩε,P
V

∂τPk,j

= 0 j = 1, . . . , N − 1.

Now since

∆Φk − mΦk + h′(PΩε,P
V )Φk = 0

and because of the elliptic estimate (3.10) it follows that

‖Φk‖H2 ≤ C

for some constant C independent of k. Extract a subsequence (again denoted

by {Φk}) such that ϕk as defined in (3.5) converges weakly in H2(RN
+ ) to

ϕ∞ as k → ∞ and ϕ∞ satisfies

∆ϕ∞ − mϕ∞ + h′(V )ϕ∞ = 0 in RN
+ ,

∂ϕ∞
∂yn

= 0 in RN−1 × {0} (3.12)

with ∫
RN

+

ϕ∞
∂V

∂yj

= 0 j = 1, . . . , N − 1. (3.13)

From (3.12) we deduce that ϕ∞ belongs to the kernel of S ′
0(V ) and (3.13)

implies that ϕ∞ lies in the orthogonal complement of the kernel of S ′
0(V ).

Therefore ϕ∞ = 0. As in the proof of Proposition 3.1 we show by the ellip-

tic regularity estimate (3.10) that ‖Φk‖H2 → 0 as k → ∞. This contradicts

(3.11) and the proof of Proposition 3.2 is finished. �

We are now in a position to solve the equation

πε,P ◦ Sε(PΩε,P
V + Φε,P ) = 0. (3.14)
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Since Lε,P |K⊥
ε,P

is invertible (call the inverse L−1
ε,P ) we can rewrite

Φ = −(L−1
ε,P ◦ πε,P )(Sε(PΩε,P

V )) − (L−1
ε,P ◦ πε,P )Nε,P (Φ) ≡ Mε,P (Φ)

(3.15)

where

Nε,P (Φ) = Sε(PΩε,P
V + Φ) − [Sε(PΩε,P

V ) + S ′
ε(PΩε,P

V )Φ]

and the operator Mε,P is defined by the last equation for Φ ∈ H2
N(Ωε,P ). We

are going to show that the operator Mε,P is a contraction on

Bε,δ ≡ {Φ ∈ H2(Ωε,P )|‖Φ‖H2(Ωε,P ) < δ}
if δ is small enough. We have

‖Mε,P (Φ)‖H2(Ωε,P ) ≤ λ−1(‖πε,P Nε,P (Φ)‖L2(Ωε,P ) + ‖πε,P (PΩε,P
V − V )‖L2(Ωε,P ))

≤ λ−1C(c(δ)δ + ε)

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show

‖Mε,P (Φ) − Mε,P (Φ′)‖H2(Ωε,P ) ≤ λ−1C(ε + c(δ)δ)‖Φ − Φ′‖H2(Ωε,P )

where c(δ) → 0 as δ → 0. Therefore Mε,P is a contraction on Bδ. The

existence of a fixed point Φε,P now follows from the Contraction Mapping

Principle and Φε,P is a solution of (3.15).

Because of

‖Φε,P‖H2(Ωε,P ) ≤ λ−1(‖Nε,P (Φε,P )‖L2(Ωε,P ) + ‖PΩε,P
V − V ‖L2)

≤ λ−1(cε + c(δ)‖Φε,P‖H2(Ωε,P ))

we have

(1 − λ−1c(δ))‖Φε,P‖H2 ≤ Cε.

We have proved

Lemma 3.3. There exists ε > 0 such that for every pair of ε, P with 0 < ε <

ε and P ∈ ∂Ω there exists a unique Φε,P ∈ K⊥
ε,P satisfying Sε(PΩε,P

V +Φε,P ) ∈
Cε,P and

‖Φε,P‖H2(Ωε,P ) ≤ Cε. (3.16)
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We need another statement about the asymptotic behavior of the function

Φε,P as ε → 0, which gives an expansion in ε and is stated as follows.

Proposition 3.4.

Φε,P (x) = ε(Φ0(y)χ(x − P )) + ε2Ψε,P (x) (3.17)

where

‖Ψε,P‖ε ≤ C

and Φ0 is the unique solution of

∆Φ0 − mΦ0 + h′(V )Φ0 − h′(V )v1 = 0, in RN
+ ,

∂Φ0

∂yN

= 0 on ∂RN
+ ,

Φ0 is orthogonal to the kernel of L0 (3.18)

where L0 = ∆ − m + h′(V ), L0 : H2
N(RN

+ ) → L2(RN
+ ).

Proof. Note that the kernel of L0 is{
∂V

∂yj

∣∣∣∣∣ j = 1, . . . , N − 1

}
.

Furthermore we have

|Φ0| ≤ C exp(−µ|y|) for µ <
√

m.

The notations for Ω1, χ, ρ and T are as in section 2. Our strategy is to

decompose Ψε,P into three parts and show that each of them is bounded in

‖ · ‖H1(Ωε,P ) as ε → 0. That means we make the ansatz

Ψε,P (x) = Ψ1
ε(x) + Ψ2,1

ε (x) + Ψ2,2
ε (x)

where the functions Ψ1
ε , Ψ2,1

ε , Ψ2,2
ε will be defined as follows. Let Ψ1

ε be the

unique solution of

ε2∆Ψ1
ε − mΨ1

ε = 0 in Ω,

∂Ψ1
ε

∂ν
= gε on ∂Ω (3.19)

where

gε(x) = − ∂

∂νx

[Φ0(y)χ(x)].
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Since ‖gε‖L2 ≤ C there exists a constant C > 0 such that

‖Ψ1
ε‖H1 ≤ C. (3.20)

Define Ψ2,1
ε by

Ψ2,1
ε = −1

ε
π̃Φ0(x)χ − π̃Ψ1

ε (3.21)

where π̃ is the projection in L2(Ωε,P ) onto Kε,P . Because of the exponential

decay of Φ0, the smoothness of χ and and by (3.20) it follows that

‖Ψ2,1
ε ‖ε ≤ C. (3.22)

Finally, define Ψ2,2
ε (x) to be the unique solution in H2

N(Ω) of the following

equation

ε2∆Ψ2,2
ε − mΨ2,2

ε + h′(PΩε,P
V )Ψ2,2

ε = − 1

ε2
fε in Ω,

(3.23)

∂Ψ2,2
ε

∂ν
= 0 on ∂Ω (3.24)

where

fε = L̃ε(Φε,P − εΦ0χ − ε2(Ψ1
ε + Ψ2,1

ε )).

Note that the right-hand side of the last equation lies in C⊥
ε,P since

Φε,P − εΦ0χ − ε2(Ψ1
ε + Ψ2,1

ε ) ∈ H2
N .

This is clear for Φε,P by definition. By construction we have that −εΦ0χ −
ε2(Ψ1

ε + Ψ2,1
ε ) satisfies the Neumann boundary condition. By (3.18) and the

smoothness of χ we conclude that Φ0χ ∈ H2. By (3.19), Ψ1
ε ∈ H2. Finally,

since ej ∈ H2 where

ej =
∂V

∂τPj

/

∣∣∣∣∣ ∂V

∂τPj

∥∥∥∥∥
L2(Ωε,P )

j = 1, . . . , N − 1

we have Ψ2,1
ε ∈ H2. Therefore fε ∈ C⊥

ε,P . Furthermore, the following lemma

is true.

Lemma 3.5.

‖fε‖L2(Ωε,P ) ≤ Cε2.
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Proof. We have

fε = S ′
ε(PΩε,P

V )(Φε − εΦ0χ − ε2(Ψ1
ε + Ψ2,1

ε ))

= −h(PΩε,P
V ) + h(V ) + εh′(V )v1χ + N ′

ε,P (Φε)

where

N ′
ε,P (Φ) =

1

|Ω|
∫
Ω

h′(PΩε,P
V )Φε +

1

|Ω|
∫
Ω
[h(PΩε,P

V ) − h(V )]

−[h(PΩε,P
V + Φε) − h(PΩε,P

V ) − h′(PΩε,P
V )Φε]

+
1

|Ω|
∫
Ω
[h(PΩε,P

V + Φε) − h(PΩε,P
V ) − h′(PΩε,P

V )Φε]

+εΦ0(y)[∆ − m + h′(PΩε,P
V )]χ(x) + ε < ∇xΦ0(y),∇xΦ(x) >

+ε2h′(PΩε,P
V )Ψ1

ε + ε2[∆ − m + h′(PΩε,P
V )]Ψ2,1

ε .

Note that

‖ − h(PΩε,P
V ) + h(V ) + εh′(V )v1χ(x)‖L2

≤ ‖ − h(PΩε,P
V ) + h(V ) + εh′(V )v1‖L2

+‖ε(−h′(V )v1 + h′(V )v1χ)‖L2

≤ C(ε2 + exp(−µR0))

by the definition of χ and the exponential decay of V . Furthermore

‖N ′
ε,P (Φ)‖L2 ≤ Cε2.

This proves Lemma 3.5.�

By Lemma 3.5 and the invertibility of

L̃ε : H2
N ∩ K⊥

ε,P → C⊥
ε,P

Proposition 3.4 follows. �
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4. The reduced problem

In this section we solve the reduced problem and prove our main theorem.

By Lemma 3.3 there exists a unique solution Φε,P ∈ K⊥
ε,P such that

Sε(uε) = Sε

(
PΩε,P

V
(

x − P

ε

)
+ Φε,P

)

= ε2∆uε − muε + h(uε) − 1

|Ω|
∫
Ω

h(uε) ∈ Cε,P .

Our idea is to find P such that

Sε(uε) ⊥ Cε,P .

Let

Wε,j(P ) =
1

εN+1

∫
Ω

(
Sε(uε)

∂PΩε,P
V

∂τPj

)
,

Wε(P ) = (Wε,1(P ), ...,Wε,N−1(P )).

Then Wε(P ) is a continuous map of P .

Let us now calculate Wε(P ). First of all, from condition (4) on h, we have

|h(t)| ≤ Ct2.

Therefore ∫
Ω

h(uε) ≤ CεN .

Hence by Proposition 2.3

1

εN+1

∫
Ω

(∫
Ω

h(uε)
) ∂PΩε,P

V

∂τPj

=
∫
Ω

h(uε)
1

εN+1

∫
Ω

∂PΩε,P
V

∂τPj

= O(εN)

(
1

εN+1

∫
Ω
(
∂V

∂Pj

+ w1(y)χ(x − P ) + εwε
2(x))

)

= O(εN)
1

εN+1

[
O(exp(−σ/ε)) + ε

∫
Ω

wε
2

]

= O(εN/2)

because
1

εN

∫
Ω

wε
2 ≤

1

εN/2
‖wε

2‖L2(Ω)

and Proposition 2.3. On the other hand, since

ε2∆
∂PΩε,P

V

∂τPj

− m
∂PΩε,P

V

∂τPj

+ h′(V )
∂V

∂Pj

= 0,
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we conclude ∫
Ω
[ε2∆uε − muε + h(uε)]

∂PΩε,P
V

∂τPj

=
∫
Ω

⎧⎨
⎩h(uε)

∂PΩε,P
V

(
x−P

ε

)
∂τPj

+

[
ε2∆

∂PΩε,P
V

∂τPj

− m
∂PΩε,P

V

∂τPj

]
uε

⎫⎬
⎭

=
∫
Ω

⎡
⎣h(uε)

∂PΩε,P
V

(
x−P

ε

)
∂τPj

− h′(V )
∂V

(
x−P

ε

)
∂Pj

uε

⎤
⎦

=
∫
Ω

[
h(PΩε,P

V + Φε,P ) − h(PΩε,P
V ) − h′(PΩε,P

V )Φε,P

] ∂PΩε,P
V

∂τPj

+
∫
Ω

[
h′(PΩε,P

V )
∂PΩε,P

V

∂τPj

− h′(V )
∂V

∂Pj

]
Φε,P

+
∫
Ω

[
h(PΩε,P

V ) − h(V )
] ∂PΩε,P

V

∂τPj

= I1
ε + I2

ε + Jε

where I1
ε , I2

ε , and Jε are defined by the last equality. We first calculate I2
ε .

I2
ε =

∫
Ω

[
h′(PΩε,P

V )
∂PΩε,P

V

∂τPj

− h′(V )
∂V

∂τPj

]
(εΦ0(y)χ(x − P ) + ε2Ψε(x))dx

=
∫
Ω

[
h′(PΩε,P

V )
∂PΩε,P

V

∂τPj

− h′(V )
∂V

∂τPj

]
εΦ0χ

+ε2
∫
Ω

[
h′(PΩε,P

V )
∂PΩε,P

V

∂τPj

− h′(V )
∂V

∂τpj

]
Ψε

= εI2,1
ε + ε2I2,2

ε .

Note that

h′(PΩε,P
V )

∂PΩε,P
V

∂τPj

− h′(V )
∂V

∂τPj

=
[
h′(PΩε,P

V ) − h′(V )
] ∂PΩε,P

V

∂τPj

+ h′(V )

[
∂PΩε,P

V

∂τPj

− ∂V

∂τPj

]

and ∫
Ω
[h′(PΩε,P

V ) − h′(V )]
∂PΩε,P

V

∂τPj

Φ0χ

=
∫
Ω

h′′(V )(PΩε,P
V − V )

∂PΩε,P
V

∂τPj

Φ0 +
∫
Ω

h′′′(v1)(PΩε,P
V − V )2 ∂PΩε,P

V

∂τPj

Φ0

+O(exp(−δ/ε))

= O(εN+1)
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since Φ0 is even and V −PΩε,P
V = εV1 where V1 is even. By Proposition 2.1∫

|Ψε|2 ≤ CεN .

Hence

|I2,2
ε | ≤ O(εN).

So

|I2
ε | ≤ O(εN+2).

We next compute I1
ε .

I1
ε =

∫
Ω

h′′(PΩε,P
V )Φ2

ε,P

∂PΩε,P
V

∂τPj

+
∫
Ω

h′′′(v1 + PΩε,P
V )Φ3

ε,P

∂PΩε,P
V

∂τPj

=
∫
Ω

h′′(PΩε,P
V )ε2[Φ2

0χ
2 + 2εΦ0χΨε,P + ε2Ψ2

ε,P ]
∂PΩε,P

V

∂τPj

+ O(εN+2)

= O(εN+2)

since Φ0 is even. Finally, we compute the term Jε.

Jε =
∫
Ω
[h(PΩε,P

V ) − h(V )]
∂PΩε,P

V

∂τPj

=
∫
Ω

h′(V )(PΩε,P
V − V )

∂PΩε,P
V

∂τPj

+ h′′(V )(PΩV − V )2 ∂PΩε,P
V

∂τPj

+ O(εN+2)

= ε
∫
Ω

h′(V )(v1χ + ε(v2χ + v3χ) + ε2Ψε)

(
∂V

∂Pj

+ w1 + εwε
2(x)

)

+ε2
∫
Ω

h′′(V )(v2
1χ

2 + ε(Ψ1
ε)

2)
∂PΩε,P

V

∂τPj

+ O(εN+2)

= ε2
∫
Ω

h′(V )v3
∂V

∂Pj

+ O(εN+2)

= −εN+1

(∫
Ωε,P

h′(V )v3
∂V

∂yj

)
+ O(εN+2)

= −εN+1
∫

RN
+

h′(V )v3
∂V

∂yj

+ O(εN+2).

But ∫
RN

+

h′(V )v3
∂V

∂yj

= −
∫

RN
+

(
∆

∂V

∂yj

− m
∂V

∂yj

)
v3

=
∫

∂RN
+

∂v3

∂yN

∂V

∂yj

− v3
∂

∂yN

∂V

∂yj
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= −1

3

∫
RN−1

(
V ′

|y|
)2 N−1∑

k,l,m=1

ρklm(0)ykylymyjdy

= −1

3

∫
RN−1

(
V ′

|y|
)2 N−1∑

k,l,m=1

ykylymyjρklm(0)dy

= −1

3

∫
RN−1

(
V ′

|y|
)2

y2
j

N−1∑
l,m=1

ylymρjlm(0)dy

= νρjkk(0)

= ν∇jH(P )

where

ν = −
N−1∑
k=1

1

3

∫
RN−1

(
V ′

|y|
)2

y2
j y

2
k dy 	= 0.

Combining I1
ε , I2

ε , Jε, we obtain

Wε(P ) = ν∇P0H(P ) + W ′
ε(P )

where W ′
ε(P ) is continuous in P and W ′

ε(P ) = O(ε) uniformly in P . Suppose

at P0, we have det(∇j∇kH(P0)) 	= 0 then standard Brouwer’s fixed point

theorem shows that for ε << 1 there exists a Pε such that Wε(Pε) = 0, Pε →
P0.

Thus we have proved the following proposition.

Proposition 4.1. For ε sufficiently small there exist points Pε with Pε → P0

such that Wε(Pε) = 0.

By Lemma 3.3 and Proposition 4.1 we have

Sε(vε) = 0,

i.e.

ε2∆vε − mvε + h(uε) − 1

|Ω|
∫
Ω

h(vε) = 0 in Ω,

∂vε

∂ν
= 0 on ∂Ω.

Hence
∫
Ω vε = 0. Let uε = m − vε. We have

ε2∆uε − f(uε) = σε,

∂uε/∂ν = 0 on ∂Ω
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Ω

uε = m|Ω|,
i.e. uε is a solution of the Cahn-Hilliard equation. Moreover∥∥∥∥vε − V

(
x − Pε

ε

)∥∥∥∥
ε
→ 0

and Pε → P0 ∈ ∂Ω.

Finally, we study the shape of the solutions vε. Let Pε be any local maxi-

mum point of vε. Then by (1.1),

mvε − h(vε) +
1

|Ω|
∫
Ω

h(vε) ≤ 0.

But ε−N
∫
Ω h(vε) → ∫

RN
+

h(V ) > 0, hence

mvε − h(vε) < 0.

So vε(Pε) ≥ a1 > 0. On the other hand, from our construction,

‖vε‖2
ε →

1

2
(
∫

RN
|∇V |2 + mV 2).

Similar proof as in Theorem 1.2 of [18], we conclude Pε ∈ ∂Ω and there is

only one such Pε.

Appendix A: Trace Inequality

Lemma A.1 Let 0 < ε ≤ 1. Then

(A.1) ‖Φ‖L2(∂Ωε,P ) ≤ C‖Φ‖H1(Ωε,P )

for all Φ ∈ H1(Ω) where the constant C is independent of ε.

Note that the constant C in (A.1) is required to be independent of ε.

Therefore Lemma A.1 is special although trace inequalities are quite stan-

dard.

Proof of Lemma A.1. For Φ ∈ H1(Ωε,P ) define Ψ ∈ H1(Ω) by a linear

transformation:

Ψ(x) = Φ(z) where z =
x − P

ε
.

Observe that ‖Φ‖2
L2(∂Ωε,P ) = ε1−N‖Ψ‖2

L2(∂Ω), ‖Φ‖2
L2(Ωε,P ) = ε−N‖Ψ‖2

L2(Ω), and

‖∇Φ‖2
L2(Ωε,P ) = ε2−N‖∇Ψ‖2

L2(Ω). Therefore (and after translation) (A.1) is

equivalent to

(A.2) ‖Ψ‖2
L2(∂Ω) ≤ C(ε‖∇Ψ‖2

L2(Ω) + 1
ε
‖Ψ‖2

L2(Ω))
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for all Ψ ∈ H1(Ω) and 0 < ε ≤ 1 where C is independent of ε. The proof of

(A.2) is standard and is omitted here (see for example the proof of Theorem

3.1 in [1]). �

Appendix B: An elliptic regularity estimate

In this section we prove the following inequality

(B.1) ‖Φ‖H2(Ωε,P ) ≤ C(‖∆Φ‖L2(Ωε,P ) + ‖Φ‖H1(Ωε,P ))

for all Φ ∈ H2
N(Ωε,P ), 0 < ε ≤ ε0 where Ωε,P is as defined in Section 2

and C is a constant independent of ε. For a point P on ∂Ω we can find

a constant R0 > 0 and a smooth function ρ : B′(R0) → R such that in

B(P,R0) the boundary ∂Ω is described by the graph of ρ where ρ satisfies

ρ(0) = 0, ∇ρ(0) = 0 (compare Section 2). Furthermore there exists a map

η = T (ξ) with DT (0) = I (the identity map) from a neighborhood UP of

P onto a ball B(0, R1) (compare Section 3). By a linear transformation we

naturally get a map T ε from U ε
P = {(x − P )/ε|x ∈ UP onto a ball B(R1/ε)

with center at 0. We set y = η/ε. Then the Laplace operator becomes

ε2∆x = ∆y + Aε where

Aε = |∇x′ρ|2 ∂2

∂y2
N

− 2
N−1∑
i=1

ρi
∂2

∂yi∂yN

− ε∆x′ρ
∂

∂yN

.

Observe that for given δ > 0 we can find R1 > 0 and ε0 such that for

0 < ε ≤ ε0

(B.2) ‖|∇x
′ρ|2‖L∞(B(R0/ε)) ≤ δ, ‖ρ‖L∞(B(R0/ε)) ≤ δ, ‖ε∆x

′ρ‖L∞(B(R0/ε)) ≤ δ.

In the same way we transform

ε
∂

∂νx

= {1 + |∇x
′ρ|2}−1/2

{
N−1∑
k=1

ρk
∂

∂yk

− (1 + |∇x
′ρ|2) ∂

∂yN

}

= − ∂

∂yN

+ Bε

where Bε is a differential operator on B(R1/ε) ∪ {yN = 0} with coefficients

which are bounded in L∞ for 0 < ε ≤ ε0 (compare section 2). From {UP |P ∈
∂Ω} we select a finite subcovering of ∂Ω and denote it by {U1, . . . , Un}.
Choosing U0 = Ω the set {U0, . . . , Un} is a finite covering of Ω consisting

of open sets. We keep this covering fixed from now on. Let {θ0, . . . , θn}
be a partition of unity subordinate to this open covering. Denote θε

i(y) =
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θi ◦ T−1(εy). Since

u =
n∑

i=0

θε
iu

we have

(B.3) ‖u‖2
H2(Ωε,P ) ≤ ‖θε

0u‖2
H2(Ωε,P ) +

∑n
i=1 ‖θε

iu‖2
H2(Ωε,P ).

Since θε
0 has compact support in RN

‖θε
0u‖2

H2(RN ) = ‖∆(θε
0u)‖2

L2(RN ) + ‖θε
0u‖2

H1(RN )

(see for example [10], Corollary 9.10). Because of

∆(θε
0) = θε

0∆u + 2∇u · θε
0 + u∆θε

0

and

‖∇θε
0‖L∞(RN ) ≤ Cε, ‖∆θε

0‖L∞(RN ) ≤ Cε2,

we obtain

(B.4) ‖θε
0u‖2

H2(Ωε,P ) ≤ C(‖θε
0∆u‖2

L2(Ωε,P ) + ‖u‖2
H1(Ωε,P )).

We are now going to estimate θε
iu, i = 1, . . . , n. Note that

(B.5) 1
C
‖(θε

iu)∗‖Hk(RN
+ ) ≤ ‖θε

iu‖Hk(Ωε,P ) ≤ C‖(θε
iu)∗‖Hk(RN

+ )

where k = 0, 1, or 2 and

v∗(y) ≡ v(
1

ε
T−1(εy))

for v ∈ H2(U ε
i ). Then

(B.6) ‖(θε
iu)∗‖2

H2(RN
+ )

≤ C

(
‖∆(θε

iu)∗‖2
L2(RN

+ )
+

∥∥∥ ∂
∂yN

(θε
iu)∗

∥∥∥2

H1/2(RN−1×{0})

+‖(θε
iu)∗‖2

H1(RN
+ )

)

(see for example [15], Theorem 4.1). Now (B.2) implies that

‖Aε(θε
iu)∗‖2

L2(RN
+ ) ≤ δ2‖(θε

iu)∗‖2
H1(RN

+ ).

Therefore from (B.6)

(1 − Cδ2)‖(θε
iu)∗‖2

H2(RN
+ )

≤ C

⎛
⎝‖(∆ + Aε)(θε

iu)∗‖2
L2(RN

+ ) +

∥∥∥∥∥ ∂

∂yN

(θε
iu)∗

∥∥∥∥∥
2

H1/2(RN−1×{0})

+‖(θε
iu)∗‖2

H1(RN
+ )

⎞
⎠.
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For the operator Bε we can calculate in an analogous way. The trace theorem

implies

(1 − C̃δ2)‖(θε
iu)∗‖2

H2(RN
+ )

≤ C

(
‖(∆ + Aε)(θε

iu)∗‖2
L2(RN

+ ) +

∥∥∥∥∥
(

∂

∂yN

+ Bε

)
(θε

iu)∗
∥∥∥∥∥
2

H1/2(RN−1×{0})

+‖(θε
iu)∗‖2

H1(RN
+ )

)
.

Since C̃ is by construction independent of ε we can choose δ so small that

1 − C̃δ2 ≥ 1/2. This implies

(B.7)‖θε
iu‖2

H2(Ωε,P ) ≤ C

(
‖∆(θε

iu)‖2
L2(Ωε,P ) +

∥∥∥ ∂
∂νε

(θε
iu)

∥∥∥2

H1/2(∂Ωε,P )

‖θε
iu‖2

H1(Ωε,P )

)
.

Similarly as before

(B.8) ∆(θε
iu)‖2

L2(Ωε,P ) ≤ C(‖θε
i∆u‖2

L2(Ωε,P ) + ‖u‖2
H1(Ωε,P ))

and

(B.9)
∥∥∥ ∂

∂νε
(θε

iu)
∥∥∥2

H1/2(∂Ωε,P )
≤ C‖u‖2

H1(Ωε,P )

because of ∂u/∂νε = 0. Combining (B.7) - (B.9) we get

(B.10) ‖θε
iu‖2

H2(Ωε,P ) ≤ C(‖θε
i∆u‖2

L2(Ωε,P ) + ‖u‖2
H1(Ωε,P )).

We conclude, using (B.3), (B.4) and (B.10), that

‖u‖2
H2(Ωε,P ) ≤ C

(
n∑

i=0

‖θi
ε∆u‖2

L2(Ωε,P ) + (n + 1)‖u‖2
H1(Ωε,P )

)

≤ Cn(‖∆u‖2
L2(Ωε,P ) + ‖u‖2

H1(Ωε,P ))

where Cn depends on n. Since n is independent of ε the proof of (B.1) is

finished. �
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