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Abstract

In tunnel excavation, the use of rockbolts has long been a popular means of reinforce-

ment in rock masses to prevent the rock opening from caving in. The idea has evolved from

the earliest form of rockbolt made of wood to the more up-to-date form of pre-tensioned

or grouted steel rockbolts.

A major breakthrough in the design of rockbolt models was made by Aydan (1989).

This rockbolt element was modelled in coupled form, with one sub-element representing

the steel bolt, and the other sub-element the grout. This representation was necessary to

model the complex action in the continuous rock mass near the joint.

In elasticity problems, the large displacement formulation of a beam element is derived

from the fundamental theory, and the bending phenomenon of a thin rod is analysed by

the finite element discretizations of the bar elements and the beam elements. Experiments

show that the deformation characteristics of the latter representation resemble a more

realistic life behaviour. Based on this finding, this thesis proposes a modification to Ay-

dan's two-dimensional rockbolt element, with the beam elements discretising the steel bolt.

The different mechanical responses of a perfectly elastic rockbolt are considered, and

the large displacement formulation of the new rockbolt element is derived by combining

those of Aydan's rockbolt element and the beam element.

The mechanics of the Aydan element and the new rockbolt element are described, and

their performances are compared in an identical situation. It is found that in the two

two-dimensional examples used in this thesis, the modified element ensures the continuity

of curvature of the rockbolt, and in general, can act as support across a discontinuity or

joint between rock masses well.

In conjunction with the displacement method in the finite element procedures, a con-

ventional iteration solution procedure is first described to solve the nonlinear incremental

stiffness equation. However, it is found that this procedure is cumbersome, and requires

a large amount of comptutations. Some limited storage quasi-Newton minimization algo-

rithms are considered as an alternative.
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Chapter 1

Introduction

All structures, whether houses, hospitals, bridges, or tunnels, have at least one thing in

common: they are expected to be safe from collapse when used for the purpose for which

they are intended. To ensure this structural safety together with the economical use of

materials of construction and effectiveness of design, the designer has first to investigate

the effect of imposed forces.

A force may be defined as an external agency which changes or tends to change the

state of equilibrium or uniform motion of a body. That is, a force is associated with the

acceleration of a body.

A structure has to be designed so that when realistic forces are acting upon it, it is

always in equilibrium, or at rest. One task of a structural engineer is therefore to es-

timate all the external forces and reactions acting on the structure, and to ensure that

these forces will be in equilibrium. The designer has then to choose suitable materials of

adequate dimensions to withstand the tensions, compressions, bending, deformations, etc.

which are the results of the external forces and reactions, and to improve the efficiency of

the design.

This chapter will introduce the ideas of geometric and material linearity and nonlinear-

ity of structures, and it will survey the areas of tunnels and tunnel support mechanisms,

with particular reference to rockbolts. Rockbolts will be classified according to their pur-

poses and functions. A brief history and the excavation scheme of the New Austrian

Tunnel Driving Method will also be included.
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The survey carried out in this chapter is based on the following sources: Beaver (1972),

Bowen (1975), IIobst & Zajic (1983), Jaeger & Cook (1979), Lampe (1963), Meek (1971),

Ross (1990), and West (1988).

1.1 Material properties of structures

All materials alter slightly in shape when they are under stress. A member which is

subject to tension stress increases in length and its cross-section becomes slightly smaller.

Similarly, a compression member becomes shorter and slightly larger in cross-section.

1.1.1 Linear behaviour

The materials used in structural work are frequently assumed to be linearly elastic within

the range of stresses caused by working loads and, although a small amount of nonlinear

inelastic behaviour may occur as a result of high stresses at joints, a metal structure as a

whole may be considered to be both linear and elastic when working loads are not exceeded.

On the other hand, concrete is usually a non-linear inelastic material throughout the

whole stress range, and methods of analysis which recognize these characteristics are to

be preferred for concrete structures. Even with concrete, however, the early stages of

the stress-strain curve may be approximated by a straight line, and linear elastic analysis

which has been used with success for so many years may continue to be acceptable in

certain circumstances.

1.1.2 Nonlinear behaviour

In structural analysis, nonlinear behaviour may occur because the material of which the

structure is made possesses a nonlinear stress-strain law. It may also arise because changes

of geometry are significant so that an analysis based on the geometry of the deformed

structure yields results which are appreciably different from those based on the original

structure geometry. Of course, both of these effects may be present together. Nonlinear

behaviour can be classified into the following three groups:

1. Material nonlinearity

In Figure 1.1, strain-stress graphs are used to illustrate some examples of nonlinear

material behaviour. The curve in Figure 1.1(a) is that generally assumed for mild

steel, with a perfectly elastic portion followed by a perfectly plastic plateau which is
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terminated when strain hardening commences. In Figure 1.1(b), the curve given has

a perfectly elastic zone followed by a plastic zone in which linear strain hardening

takes place. The curves A and B in Figure 1.1(c) illustrates a rigid plastic material.

The material A exhibits nonlinear strain hardening, whearas B is perfectly plastic.

It should be noted that the rigid-plastic curve is that assumed in the limit theorems

and their use for calculation of plastic-collapse loads of structures. The material of

the type in Figure 1.1(d) has nonlinear behaviour in both the elastic and plastic

states. Other common types of nonlinear material behaviour are elastoplasticity,

viscoplasticity and viscoelasticity.

Figure 1.1: Material stress-strain curves (after Meek (1971)

2. Geometric nonlinearity

In some structures, results based on the geometry of the deformed structure will dif-

fer appreciably from those based on the initial geometry. The change of geometry,

even though small, must be taken into account for realistic modelling. Even though

the material may remain linearly elastic throughout, it will result in a nonlinear rela-

tion between load and displacement. It is not always easy to see intuitively whether

small changes of geometry will be negligible or whether they will profoundly affect

the results, but the influence of this nonlinear behaviour must be considered.
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Examples of nonlinear geometrical behaviour are shown in Figures 1.2 and 1.3. Fig-

ure 1.2(b) shows the load-deflection curve for the tightly stretched cable of Figure

1.2(a). It can be seen that the greater the deflection, the more efficiently the cable

can carry the transverse load and hence the load-deflection curve shows a continually

increasing slope.

P

(a) Transverse load on tightly stretched cable

Load P

A

.-----	 > displacement

(b) Load-deflection curve

Figure 1.2: Example of geometrical nonlinearity - tight cable

Deflections of a transversely loaded beam are shown in Figure 1.3. If an axial load is

applied as shown in Figure 1.3(b), the moments P/ will occur and it will produce

additional deflections as shown. If linear analyses are assumed for all structures, it

is clear that these results cannot be attained, as some errors are present when both

axial and bending actions occur. The additional moments PA Q and displacement

are second-order effects and a method of analysis which incorporates these effects is

a second-order or nonlinear method. The linear stiffness and flexibility procedure is

called a first-order method.

With the help of a load-deflection graph in the analysis of geometric nonlinearity,

it is possible to predict the maximum load, or critical load, that a structure can
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withstand before total collapse occurs. Both linear and nonlinear analyses and the

numerical prediction of the critical load will be described in full in later chapters.

(a) Transverse load on beam

(2111 
P	 P

/

AQ	 A due to PAQ moments

(b) Beam with axial load

Figure 1.3: Example of geometrical nonlinearity - beam

3. Combined material and geometric nonlinearity

The inelastic instability of struts is a typical case of combined material and geo-

metric nonlinearity. This problem can be analysed by the Rankine-Gordon formula,

where initial imperfections are important. There are many structures which should

theoretically fail through elastic instability but, becasue of initial imperfections, fail

at a much lower load than the predictions based on elastic theory. Such structures

are said to suffer elastic knockdown. This combined nonlinear behaviour of mater-

ial is more involved and difficult to deal with. Suggestions to solve the problem of

combined nonlinear behaviour of structure by finite element analysis can be found

in Desai & Phan (1980).

In this thesis, problems with only geometric nonlinear behaviour, in a two-dimensional

analysis of a linear elastic body will be dealt with. Other types of nonlinearity are be-

yond its scope and will not be included here. However, it is hoped that the next stage of

development of the algorithm proposed in this thesis will be to adapt it to these material

or combined nonlinear behaviours and to three-dimensional problems.
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In principle, the inclusion of mild material nonlinearity, for example, strain-hardening

plasticity, should be straightforward and could be accommodated within the iterative

solution algorithm developed for the geometric nonlinearity. More problematic, and more

important, would be the modelling of post-failure behaviour, for example, when the steel

bolt of a rockbolt breaks, or a rock joint debonds and shears.

1.2 Tunnels

Tunnels have existed for many years, the earliest having been constructed in order to

mine precious metals with manual methods being used to dislodge the minerals. In the

eighteenth century, explosives were first utilized for excavating, blasting being used to alter

the form of the material in order to facilitate removal. In 1872, the first dynamite was

successfully employed in driving the Musconneteong tunnel on the Lehigh Valley Railroad

in the USA. Using the same method, an aqueduct tunnel was driven from Ceoton to New

York City, and after that, blasting was considered to be both safe and rational as a tool

for constructing tunnels. For a full account on the history of tunnelling see Beaver (1972).

1.2.1 Tunnel support mechanisms

The equilibrium stress state of the rock mass can be disturbed by an underground exca-

vation, and as a consequence, lumps of rock become loosened and fall from the exposed

rock face, the rock is forced towards the excavated space, and the support system that is

constructed experiences an additional stress load. These effects can generally be described

as manifestations of rock pressure. The source of this pressure is principally the force of

gravity, although sometimes the residual stresses of orogenic activity within the earth's

crust, including forces responsible for the formation of the surface relief, are also opera-

tive. Usually only the weight of the overlying rock above the excavation is considered in

the vertical in situ stress, and a lateral stress ratio used to derive the horizontal stress state.

In general, the tunnelling engineer is faced with two basic problems: to support the

roof, face and sides of the heading between the operations of excavating and lining it;

and to carry out the various operations of tunnelling - for example, excavating, timbering,

mucking and lining - in the necessarily confined working space that the tunnel offers. As

a general rule, it may be said that driving through very soft ground is the most difficult

form of tunnelling. The excavation must be supported in some manner as soon as it is
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completed, otherwise the walls will tend to fall and the bottom may even bulge upwards.

These sliding movements may exert enormous pressure upon timbering and can even crush

it completely.

Most types of support can be divided into active support which imposes deliberate

loads on the rock surface and passive support which generates loads as a result of its com-

pression by convergence across an excavation. Examples of active supports are hydraulic

props used in mining and long rockbolts anchored into the solid elastic rock beyond the

zones of failed rock and tensioned around an excavation. Arches, linings, and packs are

examples of passive support which generate load only as a result of their compression, as

are rockbolts which are anchored in the completely failed rock and form a lining of bolted

aggregate.

A variety of methods are used to support the tunnel, and some of the most common

ones are described below.

1. Arches

Arches are applicable to all types of compact and fissured rocks, to soft rocks, and

even to soils. The arch corresponds to a zone of increased stress which exists within

the rock mass and is unaffected directly by excavation. The pressure of the over-

burden is supported by this arch and transferred on to the sides of the opening and

hence into the substrata. The weight of the loosened rock underneath the arch may

load the support of the opening.

2. New primary linings

In the construction of soft ground tunnels the erection of the permanent lining takes

place as soon as the tunnel has been excavated, usually by the erection of a prefabri-

cated segmental lining in the tailskin of the shield. In the construction of hard rock

tunnels, the construction of the permanent lining is often left until the whole tunnel

has been excavated. After the tunnel has been driven, a lining train passes through

the tunnel, consisting of a travelling shutter and concreteing plant, and the per-

manent concrete lining is placed. However, if the rock will not stand unsupported,

because of being broken up by closely spaced joints for example, then some tempo-

rary support, often called primary lining, is installed to keep the rock in place until

the permanent lining is placed. If a primary lining has been used, the permanent
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lining is sometimes called the secondary lining.

3. Pipe jacking

In conventional soft ground tunnelling, the lining for the tunnel is erected close be-

hind the shield, near to the point where the ground is being currently excavated.

By contrast, in pipe jacking, although the ground is excavated from within a shield,

the lining is formed by adding new sections at the rear end of the tunnel and then

jacking the whole tunnel lining forward. (see Figure 1.4). As the name suggests,

pipe jacking was originally used for installing small pipes for water, sewage and other

services, but the method was soon found applicable to large-diameter pipes and for

tunnels. It has been especially used for placing short tunnels, subways, culverts and

services beneath existing trunk roads and railways, particularly when these are on

embankments.

The great advantage of pipe jacking is that because it is being formed from complete

sections of pipe, the complete tunnel has no longitudinal joints; it is therefore far

easier to make watertight than a segmental lining and is also structurally stronger.

The disadvantages are that only straight or reasonably straight lengths of drive are

possible and that there is a limitation on the length of drive which is determined

when the frictional resistance of the ground on the pipe exceeds the thrust force

available from the jacks.
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4. Rockbolts

Figure 1.5: The Norad Expansion Project (from Hobst & Zajic (1983))

Rockbolts were used as early as 1872 in a slate quarry in North Wales. A loose, or

potentially loose, block of rock in the tunnel roof or wall is fastened via the rockbolt

to the main mass of intact rock. If a fan-shaped array of rockbolts is installed in

the tunnel roof, say, then a whole zone of loosened rock can be made stable. Rock-

bolts are made of steel rods and are of varying sizes. There are different methods

of securely attaching the furthermost end into the intact rock mass; mechanical ex-

pansion or resin grouting are the most common methods of attachment. A metal

plate is placed on the thread end that projects into the tunnel and this is tightly

bolted up. Figure 1.5 shows prestressed grouted rockbolts which were installed in a
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regular pattern to provide permanent support in the Norad Expansion Project near

Colorado Springs in the USA.

5. Wire mesh

Sheets of wire mesh are placed around the tunnel wall and held in place either with

steel arches or rockbolts. Wire mesh provides little structural support but it does

prevent small pieces of rock falling out from the space between rockbolts or arches

and can assist in preventing progressive spalling away of the rock, termed 'ravelling',

from occurring on the tunnel walls. (See Figure 1.6).

Figure 1.6: Wire mesh on the surface of an excavation secured with rockbolts

(from Hobst Si Zajic (1983))

6. Sprayed concrete

Sprayed concrete has been used in civil engineering since 1909, and was used under-

ground in Pittsburgh, USA, in 1914. It consists of spraying a mixture of aggregate,

sand, cement and water under pressure from a gun onto the surface to which it is

desired to apply a layer of concrete. Because of its method of application, sprayed
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concrete is often referred to as `shotcrete' or `gunite'. As used in tunnels, sprayed

concrete is applied to the tunnel walls as soon as possible after excavation. It is

often used in conjunction with arches or rockbolts and wire mesh.

1.3 Types of tunnels

Tunnels may be defined as conveyance systems open at both ends, and they may be

excavated in soft or hard ground using various mining operational methods. Obviously

the nature of the rock and the water table are two of the most critical factors in the

structural design of tunnels. Based upon these considerations, Bowen (1975) classified

them into the following two types of tunnel, and a brief discussion is provided below.

1.3.1 Hard rock tunnels

In general, tunnels in hard rock are built by blasting. In the full-face method, the entire

area of the tunnel cross-section is blasted out at each round. The heading and bench

method is rather different, the heading being carried on ahead of the bench, the latter

acting as a working platform. Both are shot at one round, the bench charges being deto-

nated first.

Whatever the excavation method, the space between the rock surface and the supports

should be packed with stone or concrete and wedged. In many cases, concrete linings

are installed and, after their construction, all possible back packing voids ought to be

cement mortar grouted. Sometimes different components are utilized. For example, in the

Pennsylvannia Turnpike tunnels, voids were filled by blowing in powdered slag, chemicals

being subsequently pumped in to form a hard mass after reaction. Here, however, the

exacavations were made in solid rock.

1.3.2 Soft rock tunnels

Tunnelling in soft rock is rather different because of the lower tensile and shearing strength

encountered. Unlike the sudden, sporadic and violent influx of water sometimes encoun-

tered in hard rock tunnels, combating water may be a more or less continuous process.

Therefore water table is an important factor. One remedial approach is to lower the water

table which may be achieved by sinking well points. Load-bearing supports for the tunnel

may not be neccessary if excavation is being carried out in firm soft ground, e.g. a ce-
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mented sand. In flowing ground where water may be present, poling boards are employed

to support roof and sides, the work progressing by shifting these as required. Blasting is

used to facilitate work in cohesive running ground.

One of the most common methods of excavation is that involving the shield. This is

a circular steel box or ring usually possessing a transverse diaphragm. The front end is a

cutting edge and the rear end juts back over the finished lining, often consisting of cast iron

rings. The shield is advanced by means of hydraulic jacks that react against the finished

lining to the rear. In firm beds, the work progresses in a series of steps. In soft materials,

the shield is pushed against the facing soil and some of these flow into the tunnel through

openings in the diaphragm, the balance of the soil material being displaced upwards. The

shield is larger than the tunnel lining so that an annular space is created and must be

grouted, usually with a dense suspension of cement and sand in equal proportions. Some

early examples of shield tunnels are the Holland tunnel in New York City, some parts of

the Paris Metro and, most famous of all, the Tower subway under the River Thames at

Tower Hill in London, which was constructed using the Greathead shield in 1870.

1.4 Purpose of tunnels

Tunnels may be considered as conveying people or materials, and they can be roughly

classified as follows:

1.4.1 People tunnels - pedestrian subways

Subway construction under railways has been greatly facilitated by the introduction of

the 'pipe jacking' technique. Previously, they were made by cut and cover or by timbered

excavation methods. The 'pipe jacking' approach has the advantage that it can be used

without interrupting the traffic. They can have large diameters, from 3 to 3.8m, and are

circular in cross-section when constituting pedestrian subways.

1.4.2 People tunnels - vehicle traffic

The original Blackwall tunnel beneath the Thames in London was completed in 1897. At

one time, it was the main traffic crossing point. The Mersey road tunnel in the UK was

constructed to carry cars and it joins Liverpool and Birkenhead; the main tunnel is about

llm wide. It was drilled through sandstone underlying the mud bed of the Mersey river.
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Deep shafts were sunk and lined to the sandstone on each bank of the river and, from

their bottoms, two pilot headings were driven, one a top, one a bottom heading. To deal

with the water problem, the shafts were drilled much lower than the tunnel depth, and a

drainage tunnel was drilled below the two main headings and parallel to them.

1.4.3 Gas tunnels

A very drastic grouting operation has been used in constructing the East River gas tunnel

in New York City, a good example of this category built before the First World War. The

operation involved two drillings which were located well below the river in order to avoid

water problems. However flooding and leaking still persisted. Cement was forced in to fill

the whole space between the two underground bulkheads. After much delay, the tunnel

was finally completed in 1916.

1.4.4 Water tunnels

A good example of this type of tunnel is in the Tecolote tunnel conveying water from the

Cachuma reservior to a conduit in Glen Annie Canyon, California. The work commenced

in 1950. After a violent gas methane explosion in 1951, the heading was quickly filled with

sand and water, and massive bulkheads were installed to restrain floods. High pressure

grouting was employed to seal the leakages.

1.4.5 Some observations

Great advances in tunnelling have occured since the nineteenth century and these have

obviated older techniques such as timbering which are rapidly becoming lost arts. Machin-

ery has enormously reduced risks and improved working conditions. All rock removal is

now mechanized, blasting in hard rock tunnels, for instance, being followed by mechanical

shovel collection of debris which is later loaded on to conveyor belts. Similarly, slurry-

pumping plant is used for disposal and, in gravelly soil, sifting may be accomplished by

machine, the smallest fragments of the product being utilisable in association with grout-

ing. Such tiny pieces are compressed air-injected into the space between the rock wall and

the tunnel lining through holes in the latter. The quantity of cement needed for subsequent

grouting is thereby reduced so that the costs diminish. There can be no doubt that tun-

nelling machinery will become increasingly elegant and it may well be that grouting may

eventually become part of a continuous, automated process that also involve excavation,

mucking and if necessary, lining.
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1.5 Excavation systems

Nowadays, all major tunnelling operations through soft ground are carried out using the

shield method which does not require timbering. But it was not always so. A variety

of excavation methods were evolved during the last century, most of them taking their

name from the country in which they were originated. The most famous ones are the

Belgium method, the German method, modified German method, the English method,

the Austrian method, the Italian method, radial method, and the upraise method. These

methods have been described in detail by Beaver (1972).

1.6 The New Austrian Tunnel Driving Method

Although it is based mostly on empirical knowledge, the New Austrian Tunnel Driving

Method has been in use all over the world during the last three decades or so. One of the

main innovations of the method is to consider the effects of using rockbolts to stabilize

the excavation.

1.6.1 The classic method

Figure 1.7: Classic Austrian tunnelling method with corresponding support construction

sequences (from Beaver (1972))
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The classic Austrian tunnelling method was one of methods of tunnelling in the

nineteenth-century with timber supports. It was first used in the construction of the

Oberau tunnel on the Leipzig and Dresden Railway in 1837. Figure 1.7 shows the order

of excavation of this tunnelling method. The main disadvantage was that the strut was

liable to distort or gave way under unsymmetrical pressure, and was soon superceded by

the New Austrian tunnelling drive method.

1.6.2 The modern method

The modern New Austrian Tunnel Driving method was described by Hobst Zajic (1983)

as follows.

The rock in the surroundings of the opening, which may be damaged or loosened by

excavation work, is strengthened by a regular system of steel bolts to form a self-bearing,

but yielding, roof arch. The bolt system is complemented at the rock surface by a layer of

gunite or shot crete of varying thickness, reinforced by wire mesh or steel ribs, if necessary.

This reinforcement can be adapted for either temporary or permanent stabilization of un-

derground excavations with a variety of cross-sections; it can be used in full face tunnel

sections or in parts, while explosives, tunnelling machines or shields are being used nearby.

The extent of the strengthened zone around the excavation varies according to the quality

of the rock and the outline of the opening. This zone can easily be strengthened with

further rockbolts or layers of gunite, if it seems necessary on the basis of the amount and

shape of the deformation of the rock and rock reinforcement registered by instruments set

up in the course of excavation. The reinforcement is quickly installed with a high degree

of mechanization, made possible by the fact that the opening remains free all the time.

The full opening usually has a circular or horseshoe shape.

The design of the rockbolts and the complementary strengthening is usually carried

out according to a standard scheme corresponding to particular qualities of the rock or

soil. In Europe, the classification of standard schemes for the New Austrian tunnelling

driving method compiled by the Austrian experts Rabcewicz (1964, 1965), Lauffer (1958)

and Pacher (1973) is well known. There are six classes with corresponding construction

sequences and reinforcement ranging from class I for massive, unjointed, or slightly jointed

dry rocks to class 6 for loose soils, detritus and crushed rocks, as shown in Figure 1.8.
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I.	 /I

Figure 1.8: New Austrian tunnelling scheme - Six classes of tunnel excavation scheme,

with corresponding support construction sequences (from Hobst 	 Zajic (1983))

The Austrian tunnel driving method has proved its worth not only in strong rocks, but

also in squeezing and loose ground where astonishingly good results have been obtained.

For instance, during the construction of the Massenberg tunnel in Austria in slope detri-

tus and weathered shales, initially caving-in occurred even with the use of strong concrete

reinforcement of 80cm thick; and the rock was eventually stabilized by the use of rockbolts.

This method is very adaptable to new conditions of the rock mass encountered during

the course of excavation, and the reinforcement can be strengthened almost arbitrarily and

instantaneously, if necessary. For example, when sections of the Taurus motorway tunnel

in the Austrian Alps were driven at a depth of 800 to 1,000m into highly compressed

phyllites, the reinforcement turned out to be inadequate. Large deformations rapidly de-

veloped during excavation of the roof section as a result of large lateral pressures. To

overcome this problem, further non-prestressed grouted rockbolts of 6m in length (and

later 9m) were installed, and ultimately two rows of 13m long rockbolts, prestressed to

600kN has to be added. Subsequently the section was stabilized by the additional supports.
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Most of the communication tunnels all over the world are driven by this method

nowadays.

1.7 Classification of rockbolts

The selection of a suitable type of rockbolts for securing a particular structure to the

ground depends on the requirement of the load-bearing capacity, the length and number

of rockbolts needed, and the available facilities for placing, fixing and stressing the rock-

bolts at the site.

As far as purpose is concerned, four of the most common types of rockbolts are classified

below by Bowen (1975) and Hobst & Zajic (1983).

1.7.1 Short rockbolts

Short rockbolts are useful where small tensile forces up to 100kN are to be distributed

among a large number of short rockbolts, for example, in the stabilization of a rock face.

With regards to manipulation, short rockbolts are the simplest in terms of preparation,

placing and prestressing. Bars of low quality steel are normally suitable only for short

rockbolts with a short service life, such as those used in securing rock surfaces in small

underground excavations, or in situations where no prestressing is required.

1.7.2 Long rockbolts

Long rockbolts of up to 15m can be rapidly installed for taking up larger forces of up

to 400kN where sufficient boring capacity and space for manipulation are available, for

example, in foundation pits.

1.7.3 Prestressed rockbolts

The purpose of prestressing rockbolts is to create an elastic tension in the free section of

the steel bolt tendon with the aid of suitable stressing equipment. In this way, the tendon

section exerts a predetermined force on the bolted structure.

The methods of prestressing, testing, and checking rockbolts are now fixed by Stan-

dards and Codes in many countries. The recomendations differ in details, but the basic

procedures must take account of the characteristics of the materials used and the safety
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demands of the bolted structure, and are therefore standard everywhere.

Functionally, prestressed high quality steel rockbolts are the most suitable for an-

choring structures into rock and soil. They reduce expenditure on steel and minimize

the boring and prestressing requirements. Moreover, reductions in prestressing caused by

rock creep, and more especially by soil creep, will be diminished. The prestressing of high

quality steel up to the yield point, produces an elongation several times greater than that

created by a similar stress in a steel bar of standard quality.

1.7.4 Grouted rockbolts

The fixing of rockbolts by grouting is one of the most highly developed techniques. The

ideal of every grouting system is to drill the borehole as quickly as possible, insert the

assembled bolt tendon into the borehole with ease, and then prefectly grout the borehole

and the immediate rock or soil to create a load-bearing root and reliable anti-corrosive

protection of the tendon throughout the service life of the bolt. The appropriate procedure

is selected according to the type of soil involved, and the design of the bolt. In general

the weaker the rock or soil and the smaller the assumed cohesion between the ground and

the bolt root, the more exacting are the requirements placed on the rockbolt technology,

if reliability and economy of installation are to be ensured.

Short steel bars, usually shaped with threaded ends, are fitted into prepared boreholes

in rock which are then filled partly or completely with grout or mortar. If they are fixed

only at the remote end of the borehole, they can also be prestressed. If, however, the

entire length is embedded in grout, the bolt remains unstressed and reinforces only the

rock mass in the vicinity of the excavation. Compared with mechanically fixed bolts, those

embedded in grout are much cheaper and can be used with success in softer rock types;

however, the fixing of grouted bolts into boreholes is more complicated and it takes longer

for these bolts to be brought into use, since the strength develops with the hardening of

the grout or mortar.

In the case when an accelerator is added, the mortar may start to harden after a few

minutes and a sufficient strength is reached in two or three hours.

Anchoring bolts or rebars, fixing the borehole length throughout by grout, which is
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injected through a special tube inserted down to the borehole at the remote end and pulled

out step-by-step with the progress of grouting, are called SN-bolts in Europe, named after

Store-Norfors, a place in Sweden where they were used for the first time. Bolts, enveloped

by grout along their entire length, are more effectively protected against corrosion. Cor-

rect positioning in the centre of the borehole must be established by means of suitable

spacers attached to the bolt. The bottom part of the borehole must often be de-aerated

to ensure its perfect filling by grout. This is achieved by a plastic tube of small diameter,

inserted together with the anchor bar down to the bottom of the borehole, or by the bar

itself, which is hollow in this case.

So-called dry bolts without prestress are short steel bars fully fixed in soft rock only by

the grip of the rock without cement. They are driven mechanically into the borehole whose

diameter is slightly smaller than that of the bar. This type of anchorage was successful,

for example, in the anchoring of the faces of excavations in clayey shales for the Prague

Underground railway, and in the excavation of a gallery in much saturated shales under

the Rhine bed in Germany.

1.8 Mathematical modelling of tunnelling

Rock structures can generally be divided into two broad categories: constructions realised

on the ground surface (such as slopes, embankments) and underground excavations (such

as tunnels). The choice of an appropriate method of analysis depends on the geometry

and the type of structure.

For underground works in soils, excavations can often be modelled as two-dimensional

plane strain, or axisymmetric problems. In particular, tunnels are frequently considered to

be of circular cross-section, and the in situ stress field in the rock is assumed to be isotropic.

Fenner (1938) and Hoek Sz Brown (1980) provided analytic solutions for the stresses in

the axisymmetric tunnel problem for an elastic brittle-plastic material using the Mohr-

Coulomb and Hoek-Brown yield criteria respectively, and strains and displacements in the

elastic region are obtained from these by elasticity theory. Wilson (1980), Kaiser (1980)

and Brown et al (1983) proposed methods to predict the displacements in the yielded

rock surrounding the tunnel using simplifying assumptions such as the proportionality of

major and minor principal strains, and constant or zero elastic strains in the plastic region.

An analytic solution for the Mohr-Coulomb problem using the full theory of incremental
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plasticity for the case of an elastic ideal-plastic rock model and an associated flow rule was

proposed by Florence & Schwer (1978). Reed (1986) suggested an analytic solution for

an elastic brittle-plastic rock with Mohr-Coulomb dilation flow rule, using the standard

boundary condition.

1.8.1 Finite element solutions

The two-dimensional finite element method has been used by many researchers to analyse

plane strain problems in soil mechanics. This technique has been well documented by,

for example, Zienkiewicz (4/ Taylor (1989, 1991), Davis (1980). In this technique, the

displacement vector is the primary unknown, and the stress vector derived from it is the

secondary variable. There are a lot of computer software packages available for both

commerical and educational use. This thesis will use the finite element technique to

examine deformation along the °penning of a tunnel, and it will propose a new finite

element to model individual rockbolts as a tunnel supporting mechanism.

1.8.2 Finite element modelling of rockbolts

The first attempt at numerical modelling of simulated pull-out tests of anchored bolts

was carried out by Coates Sz Yu (1970). Egger (1973) was one of the first to propose

a method of calculation, taking into account the influence of systematic bolting on the

stability of a circular excavation. In the study of the behaviour of any construction, it

is necessary to assume certain simplificaions for representation of bolt elements and their

interfaces. In the first attempts at finite element modelling of reinforced structures, Heuze

& Goodman (1973) used a one-dimensional element with axial stiffness to represent the

bolts. The empirical formulae for the Dowel effect, which is significant when the bolt is

set a perpendicular angle through the joint or discontinuities between rock mass, is con-

sidered by BjurstrOm (1974). Taking into account the tangential stiffness of the bolt and

the grout, St. John Sz van Dillen (1983) elaborated a three-dimensional rockbolt element.

Brady Sz Long (1988) suggested an element with two springs, one parallel to the local axis

and one to its transverse direction. Aydan (1989) developed a three-dimensional element

with eight nodal points - six nodes connected to the rock mass and two representing the

steel bolt. Since then, many researchers have modified and improved this type of rockbolt

in coupled form. Details of this rockbolt element and some of its modifications can be

found in Chapter 8. Egger Sz Pellet (1992) defined an interface element whose thickness

corresponds to the distance between two plastic hinges in the bolt. Based on the stiffness
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matrix of an interface element representing the rock joint introduced by Ghaboussi et al

(1973), Swoboda & Maren'Ce (1991, 1992, 1995) introduced the Bolt Crossing Joint (BCJ)

element by assigning different coordinates for the bolt nodes and the nodes of rock-grout

interfaces, thus resulting in different displacements for the bolt and the rock at the bolt-

joint intersection.

The discrete element method and the hybrid finite element - discrete element method

(See Chapter 2) have also been used by some researchers to model rock mass, tunnel

supporting mechanisms and rockbolts. Long (1985), Pan (1988) and Harts (1991) are

some of the contributors.

1.9 Purpose and structure of the thesis

When using grouted rockbolts as a medium to prevent caving-in excavating tunnels, the

relevant properties of soil and rock strata as well as the rhelogical character of the grouted

rockbolts must be examined.

1.9.1 Purpose of the thesis

The stability analysis and rockbolt design for an underground excavation must take into

account the geometry of the excavation, the geological structure in the wider surroundings

of the excavation, the physical and mechanical characteristics of the rock mass including

its initial state of stress, and the excavation method. These starting conditions may vary

from the simple to the very complex, and from situations which are well understood at the

outset to those that can only be more accurately understood as the excavation proceeds.

The rockbolt design is decided by these starting conditions, which are known empirically

or from the results of analysis; thus the design may be complemented, if necessary, by the

results of observations and measurements carried out in the course of excavation.

The design must in every case be based on up-to-date geological information concern-

ing the location of joints and other major features of the geological structure, and there

must be a careful appraisal of the information obtained from behaviour measurements in

areas that are already opened up.

A very important part of this appraisal is the observation of the effect of deformation
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on the loading of the excavation. Immediately after excavation of the cavity an elastic dis-

placement of the rock into the free space takes place together with a marked drop in radial

pressure. This is the most suitable time for setting up the support and reinforcement of

the rock, because, according to Rabcewicz et.el. (1972), a relatively weak reinforcement

then suffices for its stabilization. Delay in placing the reinforcement leads to a gradual

loosening of the rock in the surroundings of the excavation and a further decrease in pres-

sure.

Grouting is a process of injecting appropriate material into certain parts of the earth's

crust so as to reduce permeability and/or increase strength. Thus this grouting process

appears to be a very good way of partnering rockbolts as a means of stabilising rock strata

in underground excavation and should be included in any rockbolt model. Based on the

analysis of large displacement theory in elasticity, the aim of this thesis is to propose a new

rockbolt element which can effectively and economically model such a reinforcement. As

underground excavation is often modelled as a plane strain problem, where the in-plane

cross-section of the tunnel is taken as the domain, and further, it is assumed that the

surrounding rock is made of isotropic linear elastic material, it is intended to carry out

the investigation as a two-dimensional plane strain problem as a first approximation to

the reality.

1.9.2 Structure of the thesis

There are eleven chapters in this thesis. Chapter 1 is the introductory chapter which de-

scribes linearity and nonlinearity problems in structural engineering. It also gives a brief

classification of different types of tunnels and their use. Some common tunnel excavation

methods and tunnel stabilizing techniques are discussed. In particular, the ideas and ad-

vantages of using rockbolts as a supporting mechanism are assessed.

Chapter 2 surveys some of the most commonly used numerical methods in engineering.

Their basic principles, brief history, the current state of development, the application and

limitations are assessed and compared.

Chapter 3 covers the basic fundamentals of the finite element analysis of elasticity

problems and establishes the stiffness matrix by minimization method. The continuous

linear elastic two-dimensional structure is discretised by a mesh of eight-noded isopara-
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metric elements, and a linear strain-displacement relationship is assumed. This technique

has been widely adopted, and two examples are included to validate the principles.

Chapter 4 introduces the idea of large displacement which arises when geometric non-

linearity is considered. The theory again focuses on the use of eight-noded isoparametric

elements to discretise the linear elastic structure. Loads are applied in incremental steps,

and iterations are introduced to deal with the nonlinear change of the geometry. A buck-

ling problem is used as an example to validate the theory.

In Chapter 5, the theory established in the last chapter is adapted to two- and three-

noded bar elements, where each node assumes translational degrees of freedom only. Be-

cause of the absence of rotational degrees of freedom, this adaptation gives unsatisfactory

bending results and does not reflect the general bending phenomenon of a rod. Several

examples are used to illustrate the main drawback of this algorithm.

To give a more realistic representation, rotational degrees are introduced to the end-

nodes of the beam elements. Simple small displacement analysis for two-noded beam

elements can be found in some standard text, but in Chapter 6, new formulations for

large displacement for two- and three-noded beam elements are proposed, together with

an iteration algorithm to refine the overall results due to geometrical nonlinearity. The

examples used in the last chapter are re-tried to show improvements of the new algorithm.

Based on some established results on joint elements, Chapter 7 develops a suitable

model of a joint element which will be implemented in later chapters. Validations of this

algorithm are described by the use of some examples.

Chapter 8 proposes a new algorithm for grouted rockbolt element. This algorithm

combines the exisiting rockbolt model proposed by Aydan (1989) and the formulations

established for beam element in Chapter 6. Formulations for both small and large dis-

placements have been derived, and they are used to compare results with other established

algorithms with the use of some examples. This chapter also proposes to combine new

iterative solution techniques to deal with the convergence of large displacements.

In Chapter 8, the solution procedure for the stiffness equation in the large displacement
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analysis of rockbolt is provided by iterations based on residuals. Although this method

works, it is very inefficient and time consuming, Therefore, as an alternative, Chapter 9

proposes the use of limited-storage Quasi-Newton algorithms. Unfotunately, the use of

this method in this research is still in its early stage, so no concrete conclusion can be

drawn. But the signs are good, and it will be interesting to see how this method progress

in the future.

By using a set of parameter as closely as possible to the one used by other researchers

in the University of Innsbruck, Austria, a wedge stability problem is presented in Chapter

10. To make it more interesting, different sets of parameter are used in the same problem

for direct comparsion.

Chapter 11 concludes this research, and discusses its strengths and weaknesses. It also

sets out suggestions for possible further development.

1.10 Conclusions

It is hoped that the new algorithm for grouted rockbolt proposed in this thesis can improve

the accuracy of similar finite element models that are currently under investigation, and

it may offer a slightly different angle on the way this problem can be tackled. From the

foundamental theories of elasticity and tehniques of finite element methods, both linear

and geometric nonlinear models will be discussed in full and compared. While this algo-

rithm may offer some advantages over other methods, some established powerful numerical

algorithms may complement this proposal and make the whole package a more efficient

one. However, due to the limitation of the scope of this research, only a few possible

improvements have been investigated.

The pre and post processors of this programming package were written in FORTRAN

77 jointly by Dr. Martin Reed and Dr. Mike Warby, both are lecturers at Brunel Uni-

versity, Uxbridge, UK. The main program itself is also coded in FORTRAN and has been

compiled and run using the DOS version of FTN77 (Salford FORTRAN).



Chapter 2

Survey of some common numerical

methods used in engineering

When a structural member is subject to an applied load, and if it is cut theoretically at any

section so that two or more separate free bodies are formed, then for the whole member

and for each part, the conditions of equilibrium state that equal and opposite internal and

external forces act on each side of the cut section. One of the most fundamental aspects

of a structural engineer's work is to give consideration to and evaluate the magnitude and

distribution of stresses in the materials of construction.

All engineering materials deform under stress, and the amount and shape of the de-

formation of the member depends on the resulting strains of each element of the material.

The compatibility of finite elements, which enables them to fit together in the deformed

state, is a necessary condition of the displacements and strains, just as equilibrium is a

necessary condition of force and stress systems.

The requirements of equilibrium and compatibility for each element must extend to and

across the boundaries of the member and indeed of the structure. Thus, at any boundary,

the external and internal forces and stresses must balance exactly. Further, it is essential

that any solution of the problem must comply with all boundary conditions. Any problem

that involves boundary conditions is called a boundary value problem.

There are many practical engineering problems which may be classified as boundary

value problems. A typical boundary value problem consists of one or more differential
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or integral equations within a specified domain, together with some conditions over the

boundary of the domain. There are some situations where it may be possible to find an

analytical or a closed-form solution for a given boundary value problem, but in other cases,

there may be no other choice but to employ a numerical procedure to approximate the

solution of the given problem. With the arrival and the advancement of high-speed digital

computers, approximate numerical procedures have become very accurate and reliable for

the solution of initial and boundary value problems. Currently, the most frequently used

numerical techniques in engineering analysis are the finite difference method (FDM),

the finite element method (FEM), the boundary element method (BEM), the dis-

tinct (or discrete) element method (DEM), and the structural element method.

These methods are briefly described below.

The survey casrried out in this chapter is based on the following sources:

1. Brebbia C.A., Venturini W.S. (ed.) (1987) Boundary Element Techniques: Applica-

tion in Stress analysis and Heat transfer. Computational Mechanics Publications,

Southampton.

2. Brown E.T. (ed.) (1987) Analytical and Computational Methods in Engineering Rock

Mechanics). Allen & Unwin, London.

3. Cookson, R.A. (1987) State of the art review of the boundary element method.

Advances in the use of the Boundary Element Method for Stress analysis. Mechanical

Engineering Publications, London.

4. Pan, X.D. (1988) Numerical modelling of rock movements around mine openings.

PhD Thesis, University of London (Imperial College).

2.1 The finite difference method

The finite difference method is a straightforward and well-tested numerical algorithm

for the solution of ordinary and partial differential equations on domains of simple geom-

etry. The domain of the given problem is discretised point-wise into a rectangular grid

of mesh points and the unknown parameters are considered to be the values of the field

functions at those mesh points. Using the forward difference formula, or the five-point

formula, or otherwise, derivatives of the field function can be approximated by the dif-

ference or other combination of values of the field function at neighbouring mesh points.
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hence, the differential equation can be reduced to a system of algebraic equations of the

unknown field values, which may be solved directly or iteratively by standard numerical

methods.

While the finite difference method is a reliable technique for the solution of fluid me-

chanics and transient analysis problems, some measures should be taken into consideration

to maintain the numerical stability of finite difference algorithms. A scheme is said to be

stable if local errors remain bounded as the method proceeds from one step to the next.

There is a great deal of literature on the stability of finite difference schemes, e.g. Smith

(1978).

In this technique, every derivative in the original equation is substitued by a formula

which involves differences of several field values at neighbouring mesh points. Therefore

accuracy of this method depends heavily on the accuracy of these substitutions. There

are a host of formulae where these substitutions can be chosen from, but in general, an

accurate formula involves many terms, which in turn will complicate the use of boundary

values, or cause complexity in forming the corresponding system of equations that follows.

Further, there are some difficulties encountered with complex domains and/or gener-

alised boundary conditions. In general, the finite difference method requires many mesh

points to fit a finite difference mesh to the given irregular domain with good accuracy, and

for this reason, the finite difference mesh is often chosen in such a way that the mesh points

do not actually lie on the boundary at all. To approximate the given boundary condi-

tions, difference operators with unequal arms are used. This may consequently reduce the

overall accuracy of the method and cause inefficiency and difficulties from a programming

point of view. Therefore in the finite difference method, the application of the boundary

conditions may become a very complicated process. This drawback is particularly serious

for the modelling of tunnelling and other geotechnical problems.

Another difficulty associated with the finite difference approach concerns the effect of

a mixed boundary condition on the system of equations. It may cause the overall system

of equations to lose symmetry. This is not the case in the finite element method in most

applications.



Numerical modelling of rockbolts	 35

2.2 The finite element method

Like the finite difference method, the fundamental idea of the finite element method is

the discretization of the domain into several sub domains, or finite elements. But these el-

ements can be irregular and possess different material properties, so that they can be used

to discretise complex structures which are made up of different materials. The govern-

ing continuous functions can be replaced by piecewise approximations, which are usually

polynomials.

An integral formulation for the governing equation of a boundary value problem may

be obtained by using variational or weighted residual methods. A variational method is

based upon the determination of a function which gives rise to a stationary point of a

functional of this function and the field function. It may be solved directly by means of

the Rayleigh-Ritz method. Alternatively the solution of the governing differential equa-

tion can be approximated by a linear combination of a set of chosen basis functions, and

it can be substituted into the governing differential equation to give a weighted error. A

weighted-residual expression is based upon the minimization over the whole domain, of

the weighted error, and the determination of the unknown coefficients in the approximated

solution at the minimum point. Numerical solutions to weighted-residual expressions may

be obtained directly by means of point-collocation, least squares, Galerkin methods, etc.

These methods have been described in detail by Davies (1980) and Zienkiewicz & Taylor

(1989 and 1991). The finite element method is based upon the piecewise discretization of

the variational or weighted-residual approaches. Discretising the problem domain piece-

wise into a number of subdomains, or finite elements, the governing equations for each

element can be obtained by means of variational or weighted-residual approaches. Assem-

bling together the equations for the subdomains, a global system of algebraic equations

can be obtained and then solved.

In the case of elasticity analyses, the element stiffness matrix is obtained by minimizing

the potential energy function with respect to the nodal parameters for each element, and

by assemblying element stiffness matrices for all elements, the global stiffness matrix for

the structure is obtained.

There is a wide range of applications of the finite element method for which realistic

boundary conditions can be stated. As each element is dealt with individually before
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assembling for the whole stucture, this method has the distinct advantage of being able

to deal with a structure with complex properties. However, its main drawback is that as

it is based on a whole body discretization scheme, this may lead to a very large number

of elements, or the use of higher-order elements with many degrees of freedom, and hence

result in a large system of equations. This is especially true when dealing with complex

three-dimensional structures. Typical three-dimensional problems may require thousands

of equations and, of course, a very powerful computer to solve them. For surface engi-

neering problems, such as those encountered with linear elastic fracture mechanics, there

is no escape from the tedious calculation of superfluous results inside the domain interior.

Structures or domains, where the shape or internal geometry is complicated, are best

modelled by the finite element method. From a practical point of view, simple elements,

such as quadrilateral or triangular elements for two-dimensional problems and eight-noded

brick elements for three-dimensional continuum problems, are commonly employed. The

use of higher order elements is attractive from an accuracy point of view. However, it

should be noted that, while, for the same number of elements, the number of degrees of

freedom is increased which makes the resulting global stiffness matrix more complex, the

expectation is that a smaller number of elements will be needed for the same accuracy.

The modern use of finite elements really started in the field of structural engineering.

Probably the first attempts were by Hrennikoff (1941) and McHenry (1943) who developed

analogies between actual discrete elements, like bars and beams, and the corresponding

portions of a continuous solid. A major breakthrough was made by Turner et al (1956)

with numerical methods in structural mechanics, when they presented the element stiff-

ness matrix, based on displacement assumptions, for a triangular element, together with

the direct stiffness method for assembling the elements.

Workers in the early 1960s soon turned their attention towards the solution of non-

linear problems. Turner et al (1960) showed how to implement an incremental technique

to solve geometrically nonlinear problems, that is, problems in which the strains remain

small but displacements are large. Stability analysis also came into consideration and was

discussed by Martin (1965). Plasticity problems involving nonlinear material behaviour

were modelled at this time by Gallagher et al (1962), and the method was also applied to

the solution of problems in visco-elasticity.
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In 1965, Melosh showed that the finite element method could be extended to field

problems by variational methods, while Ziekiewicz & Cheung (1965) applied it to a large

number of steady-state and transient field problems.

The scale of computational power and its accessessibility have recently increased at

an astonishing rate. This has contributed to the acceleration of the use and development

of the finite element method. The method has now become an important technique from

both a practical and theoretical point of view, and the number of published papers began

to increase at a tremendous rate from 1970 onwards.

It must be stated here that there is still some work to be done in some nonlinear

areas, e.g. the coupled diffusion-convection problem involved in solving the Navier-Stokes

equations is still, from a finite element point of view, far from satisfactory. The types

of problems currently being attempted using finite elements cover the whole range of the

physical sciences, including both steady and unsteady phenomena. The method is also

finding applications in the field of biomedical engineering, where the problems exhibit all

the difficulties associated with geometric and material nonlinearity.

A further area which has recieved much attention involves the development of suitable

numerical algorithms for the calculation of element matrices, and efficient solution of the

resulting overall system of equations for the whole system, e.g. multigrid methods. Despite

the continuous progress made in other numerical techniques, the finite element method

offers greater flexibility in the treatment of nonlinearities, inhomogeneities and anisotropy.

Finally, it may be said that the theory and application of finite element method offers

much in the way of interesting problems for engineers, physicists, applied mathematicans,

and numerical analysts. All of these groups have made important contributions, and

undoubtedly will continue to contribute to its development.

2.3 The boundary element method

The following description of the boundary element method is based on the article by Cook-

son et al (1987).
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Using some mathematical techniques, such as potential theory (as demonstrated by

Kellogg (1929)), a partial differential equation over a domain can be transformed into

a boundary integral equation over the boundary of the domain. The boundary integral

equation may be solved numerically by means of piecewise discretization, whereby the

boundary of the domain is divided into sub-boundaries, or boundary elements. The equa-

tions on the sub-boundaries, or elements, are assembled to form a system of algebraic

equations in terms of the values of the field function parameters over the boundary. Solv-

ing such equations, the value of the field function at any point inside the domain can be

obtained by means of a simple equation which involves the evaluation of some boundary

integrals. This approach, which is known as the boundary element method, has the

following advantages, compared with other numerical techniques:

• It reduces the dimension of the problem by one, resulting in a smaller system of

equations and a considerable reduction in the amount of data required for the analy-

sis.

• The boundary element method offers continuous interior modelling within the so-

lution domain, and the values of the solution variables can be calculated at any

selected interior point.

• Boundary conditions at infinity are properly accounted for in the formula represented

by the integral, and hence there is no need to resort to truncated domains. Therefore

the method is well suited to problems of infinite domain, such as soil mechanics,

hydraulics, stress analysis, for which the classical domain methods are unsuitable.

Since the 1960's, boundary element researchers have managed to apply the method to

a large range of applications.

Cruse (1969) provided formulations of the boundary element method, followed by Wat-

son (1979), Brady (1979) and many others. Crotty & Wardle (1985) extended the appli-

cation of the method to analyse heterogeneous media with continuous planes of weakness.

The developments made in the finite element method started to find their ways into

the formulations and solutions of boundary integral equations, and the first textbook on

the boundary element method was written by Brebbia in 1978. International conferences

on topics of boundary elements were regularly held, and proceedings of these meetings

were edited by Brebbia, and also by Banerjee et al. Cruse (1969) applied the boundary
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integral equation method to three-dimensional stress analysis and improved the algorithm

in 1974.

His work was followed by Lachat & Watson (1976). Jaswon & Maiti (1968) investigated

an integral equation method to solve the plate-bending problem. Bezine & Gamby (1978),

and Tottenham (1979) proposed different algorithms for the same problem. Elastoplastic

analysis of axisymmetric bodies was introduced by Dobare et al (1982), and the large

deflection problem of viscoplasticity was considereded by Chandra & Mukherjee (1983).

An advanced algorithm for the boundary element analysis of two- and three-dimensional

problems in elastoplasticity was proposed by Banerjee & Raveendra (1986).

Despite the increasing interest in the boundary element method, there are still some

difficulties encountered with the use of the method, thus preventing its popularity in

engineering disciplines. Primarily, these difficulties arise in modelling inhomogeneity, and

material nonlinearity problems.

2.4 The discrete element method

The discrete element or distinct element method is one of the most powerful and

versatile methods for simulating discontinuum behaviour. This method was originally de-

veloped by Cundall (1971) as a means of modelling the progressive failure of rock slopes.

In this method, the region of interest is a discontinuous medium, with real joints intersect-

ing the body to form a system of differently shaped individual 'blocks'. The stresses and

displacements are continuous within each block, but are generally discontinuous between

these blocks. Therefore the general partial differential equations for the static equilibrium

problem are usually not satisfied for the whole region, because overlaps and cavitation

often occur. Other equations governing the constitutive relations between the joints have

to be introduced. This also means that unlike other methods, the compatibility condition

is no longer satisfied in the governing equations of the distinct element method so that

more assumptions are usually involved in the solution procedure.

In the original and basic form of the distinct element method, the blocks are taken

to be rigid, and deformations are associated with the surface of contact between blocks.

Physically this means that the deformability of the surface material, such as asperities of

the joints, is far greater than that of the solid rock. A universal law, Newton's second
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law of motion, is then applied as the primary governing equation for the problem, and

the behaviour of contacts between blocks is simulated using other assumptions concern-

ing the geometry, the contact points and the force - displacement relations at the contacts.

The solution procedure is by use of a modification of the dynamic relaxation technique

of the finite difference method (Southwell 1940, 1946, Otter et al 1967), so that in the

procedure one block is equivalent to a nodal point of this classical dynamic relaxation.

Like other explicit methods, it is not necessary to solve global simultaneous equations,

and the numerical iteration is stable only if the time step is taken as very small.

2.5 The structural element method

The structural element method, discussed in detail by Long (1984), and Long &

Brady (1984), is more general in its treatment of rock support mechanics, and rock sup-

port interaction.

The essence of the structural element method of analysis of support systems is the for-

mulation of a stiffness matrix defining the generalized load-displacement behaviour of the

support structure. The method forms part of the well established engineering procedures

for matrix analysis of linear structural systems. The usual displacement formulation of

the method is presented in many texts on structural mechanics, such as that by Ghali

and Neville (1978). A structure is resolved into discrete structural elements, assumed to

deform in a linearly elastic way under applied load. The stiffness matrix of each element

may be established from its simple deformation mechanics, and the stiffness matrix for

the structure is constructed by satisfying the conditions for equilibrium and continuity at

each node of the structure.

2.6 Hybrid methods

Pan (1988) surveyed some of the following hybrid methods. They are briefly described

below with their development history.

The advantages and limitations of the various numerical methods of analysis in en-

gineering rock mechanics have been briefly discussed in the preceding sections. In the

application of these numerical methods, it has been found that none of the methods is
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ideally suitable for all practical problems because of the limitations involved in each of the

methods. A hybrid method is a combined or coupled computational scheme in which two

or three different methods are used to combine the advantages of each numerical proce-

dure and to minimize disadvantages. The existing hybrid methods used in rock mechanics

include the finite element - boundary element method, the boundary element - distinct

element method and the finite element - distinct element method.

2.6.1 The finite element - boundary element method

The procedures of coupling the finite element method with boundary integral solutions

were first introduced by Zienkiewicz et al (1977). Georgiou (1981) and Brebbia et al (1984)

suggested the conversion of boundary element equations to equivalent stiffness matrix

equations compatible with the finite element equations. This idea has since been further

developed and widely applied by Sivakumar (1985), Vallabhan Sivakumar (1986). The

latter developed a static condensation procedure, which is similar to substructuring in

the finite element method, to reduce the boundary element equations to the order of the

displacements of the boundary. This technique is very efficient on the computer and helps

the user to prepare data easily.

Investigations in the three-dimensional excavation problems (Beer et al 1987) was

carried out. Asymptotic error estimates for Galerkin methods and for certain cases of col-

location were investigated by Wendland (1988), and Eberhardsteiner et al (1991) applied

this technique to stress analysis in elastoplasticity. Brink (1991) compared this coupled

method with finite element-infinite element method in two-dimensional problems in linear

elastostatics.

2.6.2 The discrete element - boundary element method

In order to analyse the stress distribution and displacement in a jointed and fractured

region of a rock mass, a hybrid distinct element - boundary element model has been de-

veloped (Long and Brady 1982, 1984; Lemos and Brady 1983). When representing the

rock which constitutes the near field of an excavation with distinct elements, and the far

field with boundary elements, the problem has generally to be solved in an iterative way.

This is unlike the linkage of the finite element and the boundary element method, because

the distinct element method is a specially developed explicit technique while the bound-

ary element solution is an implicit procedure. The calculation proceeds by considering
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the satisfaction of the displacement continuity and equilibrium conditions at the interface

between the two solution domains (Brady 1985). In other words, it was assumed that no

slip or separation could occur at the interface.

Verification of the performance of this hybrid method appears very difficult, particu-

larly for the occurrence of large movement of distinct elements. Practical applications of

the method have not been found.

2.6.3 The finite element - discrete element method

Dowding et al (1983) presented a coupled finite element - rigid block (distinct element)

model to analyse lined openings in a jointed rock mass. In their model, an explicit finite

element formulation (dynamic analysis) was used to coincide with the relaxation algo-

rithm of discrete element analysis. Finite element nodes at the interface were assumed

to be fixed on the neighbouring rigid blocks, and only linear elastic analysis examples

were given. No existing program of this type was found in the literature (Plishke 1988;

Coulthard Perkings 1987). Pan (1988) combined the finite element package COAL with

the discrete element package BLOCK and used this coupled method to analyse the non-

linear modelling of rock mass behaviour around mine excavation.

As has been described, the hybrid scheme is usually implemented by coupling the

different codes to model different parts of the region. One variation is the deformable

block model of a jointed rock mass developed by Maini et al (1978) and Vargas (1982) in

which finite differences and finite elements were used to represent the deformable rocks

within the distinct elements. This technique has been used in the development of updated

discrete element programs (Lemos et al, 1985).

2.6.4 The structural element method with discrete element - boundary

element method

The structural element may be readily coupled with the discrete element - boundary ele-

ment method. In this procedure, contact at various points between the rock and support

is represented by springs orientated normal and parallel to the surface. The springs are

taken to have stiffness. Their contribution to the performance of the support structure is

taken into account by the inclusion of appropriate terms in the support stiffness matrix.
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Computationally, linkage is achieved by imposing continuity and equilibrium condi-

tions at the points where the rock mass bears upon the support contact springs. The

forces imposed by the support at the discrete element contacts are introduced in the com-

putational cycle for the discrete element domain. Thus, the support forces mobilized by

rock displacements can be updated in each computational cycle, in the same way as the

interface forces between the infinite domain and the discrete element domain.

The coupling of these hybrid methods have proved to be very effective and successful,

and clearly it has great potential for future investigation. At present, many researchers are

proposing different algorithms to analytically combine these hydrid methods, and finding

their applications in rock mechanics, engineering and other scientific problems, it would

be interesting to monitor its development in future.

2.7 Conclusions

Various exisiting numerical methods in rocks mechanics have been briefly discussed and

assessed. It would be impossible to pin down one single method that would provide the

best solution for all types of problems in rock mechanics. In fact, each method has its

own strengths and weaknesses, and the choice must, therefore, depend on how well the

strength of one particular method can be utilized as much as possible without incurring

much compromise.

The finite element method is one of the most frequently used techniques for analysing

stability in underground excavations. It takes into account, with minimum difficulty, many

of the factors which affect stability.

Analysis by the finite element method is based on the assumption that the surround-

ings of an underground excavation can be considered as a large number of small geometric

elements with two, three or four apices, increasing in size with distance from the opening

or narrow boundary as the effect on stress diminishes (see Figure 2.1). The calculation

considers a unit displacement of one apex of the element and the force which can be said

to have induced the deformation of the element is sought. This force must be equal to

the resultant of all forces actually acting on the rock element. Physical and mechanical

characteristics of the rock mass, found as a result of investigation, are substituted into

the deformation equations for one element. Similar equations are obtained for the other
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elements of the mesh. The entire program comprises a system of large number of equations

depending on the number of nodes used in the mesh and degree of freedom of each node.

The computation gives the magnitude of the stress at different points in the excavation

surroundings. By studying these points, any zone in which the strength of the rock might

be exceeded can be identified.

Figure 2.1: Example of a finite element mesh

In the study of the effect of using grouted rockbolts as a stablizing technique in under-

ground excavation in a two-dimensional plane strain problem, the whole structure consists

of many different media, namely the rock, the joints, the rockbolts, and the grouting.

These media are of different shapes, and are made of different material which have differ-

ent material properties and behaviour. Even the material in the same medium may exhibit

different characteristics. For example, the rock in the surroundings of the tunnel opening

may be softer at one end, or rockbolts may be made of different steel bolts to maximize

the effect. Therefore it is essential that all these different materials can be analysed simul-

taneously under one scheme with minimum effort and minimum loss of information and

continuity.
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One of the fundamentals of the finite element method is to consider the mesh of the

structure under investigation as an integration of a large number of small geometric ele-

ments, and each of these elements is analysed and formulated individually according to

its own characteristic and shape before they are assembled to form a formulation for the

complete system. Therefore the finite element method appears to be the ideal tool to

perform this inhomogeneous analysis. Further, because of the popularity of the finite el-

ement method in geomechanics, there are many good and readily available finite element

packages which can be used as a starting point, and they can be used as a platform to

extend to the new theory.

This research is based on the computer package FESTA (Finite Element Simulation

for Tunnelling Applications). It was orginally developed on an SERC/British Coal

co-funded research project at the Oxford University Computing Laboratory between 1985

and 1986. Since then, it has been subject to continuous development at the Department of

Mathematics and Statistics at Brunel University under the support of SERC (until 1992)

and British Coal (until 1988). The program structure is based on the linear elastic finite

element package FINEPACK develped at the Department of Civil Engineering University

College of Swansea (Naylor 1977, Hinton & Owen 1977).

FESTA has been developed to model the deformation and stresses in rock masses in

two dimensions. It uses elasto-viscoplastic theory for the nonlinear analysis. The detailed

theory and features, as well as a user's guide, can be found in Reed & Lavender (1988),

Reed & Pan (1990), and later updated by Qu (1992a, 1992b). The present research deals

with the deformation of the elasticity problem. It is based on the large displacement

theory incorporated in FESTA, and it is extended to develop a new element to model

grouted rockbolts in two-dimensional plane strain analyses of underground excavations.

This element incorporates the features of beam elements and joint elements which are used

to model the steel bolt and grouting respectively, together with special formulations for

large displacements and the bolt axisymmetry. The different materials used in this thesis

are assumed to be isotropic and linearly elastic throughout.



Chapter 3

Basic theory of Finite Element

Method in Elasticity

Finite elements take many and varied forms, depending on the shape of the object they are.

supposed to represent. For example, to represent flat plates, the choice of finite elements

will usually be of triangular or quadrilateral shape, whilst for solids, the finite elements

will usually appear in the form of tetrahedrons or cubes. In the two-dimensional analysis

of elasticity of materials, the choice of eight-noded quadrilateral elements ('serendipity'

elements) is frequently adopted.

The main advantage of using isoparametric elements with quadratic shape functions is

that, in a mesh, curved boundaries can be represented. Linear shape functions also impose

restrictions on the stress contours - for example, the linear triangular elements which were

introduced by Turner et al (1956) assume the stress and the strain in any given direction

for any particular element are constant, and they are therefore not sufficiently accurate to

use in the mathematical modelling of stress distributions in areas of steep stress gradient,

without a very dense mesh of elements in such regions.

One of the problems that occurs with these elements is that the determination of stiff-

ness matrix for each element involves the integration of a matrix over the element, and

therefore each entry in this matrix requires, in general, to be determined numerically.

Despite the efficiency of today's many numerical integration schemes, the computational

time required to generate these element matrices is much larger than that required for the

constant strain triangle elements.
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Another problem with these elements is that even if the domain is covered with a

mesh of the same number of elements, an increase in the number of nodes in each element

will result in a corresponding increase in size of the bandwidth of the resulting global

stiffness matrix (this will be discussed in full in the latter part of this chapter). This

will result in a substantial increase of computer storage space and computational time.

However, these drawbacks are compensated by the superior stress and strain predictions

and also in the improved modelling of the structure, particular if it has curved boundaries.

To investigate the theory of elasticity solution by finite element method, consider a

perfectly elastic isotropic body which is constrained to deform linearly in plane strain under

a prescribed load. To deal with a more realistic real life situation, it can be formulated

so that the body can be modelled by a combination of different materials with different

properties. The theory of this finite element discretization is well documented by many

textbooks, such as Hinton & Owen (1977), Cheung & Yeo (1979), Zienkiewicz & Taylor

(1989, 1991).

3.1 Stresses and Strains

It has been mentioned in the introductory chapter that for a more realistic representation,

consideration must often be given to nonlinear effects on the deformation of the body.

However, as a first step, this chapter concentrates on the simple linear problem when both

the geometrical and material properties are taken to behave linearly throughout. Further,

the domain of the body 2, with loaded boundary r, is assumed to be discretised by a

mesh of eight-noded isoparametric quadrilateral elements. Based on these assumptions,

the theory of linear elasticity will be used to establish the small displacement formulations,

and these algorithms will then be extended to deal with nonlinear behaviour and adapted

to other types of element in later chapters.

Let the stresses and strains at a point in the body in plane strain, omitting the out-

of-plane direction, be given by the vectors

and

o-x	 y Txy)T

6 = (ex 6y 7xy)T



1 oV
1—v

1	 0V

1—v

E(1— v) 
D =

(1 + v)(1 — 2v)
(3.6)
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respectively.

In a two-dimensional problem, let u = (u v)T be a vector representing the displace-

ment functions at a point (x y)T in the body.

With displacements known at all points within an element in a continuous body, the

linear strain at a point is determined by the rate of change of displacement with distance,

i.e. the direct strains in the x and y directions are given by

au

	

Dv
ex = —	 and

ax	 Y —
UnY

with shear strain

(3.1)

Du	 Dv

7xY = Oy + Ox•
(3.2)

In matrix form, these linear relationships may be expressed as

E = Au (3.3)

where A is the strain-displacement operator

-
a	

0
ax

A= 0	 a
ay

(3.4)

55
_ ay 3x _

According to the linear elastic constitutive law when the structure is assumed to exhibit

linear elastic behaviour, stresses and strains are related linearly by

cr = Dc	 (3.5)

where D is the elasticity matrix. In plane strain of an isotropic material where there is no

movement in the out-of-plane direction, this matrix takes the form

_

0	 0 1-2v
2(1—v)
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whereas in plane stress, this matrix becomes

D=
1 — v2 v 1 0

00 1—v
2

where E is Young's modulus and v is Poisson's ratio.

As the mesh is made up of a number of eight-noded isoparametric quadrilateral ele-

ments, the nodal displacement vector ue for any element e within the mesh is

lle = (U1 V1 u2 V2 U3 V3 • • • Ug Vg

The shape functions, or basis functions, N, with i = 1, 2, • • • , 8, in terms of the curvi-

linear coordinates 7 / , and the nodal displacement parameters u i , vi , are used to represent

the displacement variations at a point within the element.

8

• n = l-

e = — 1

.

e = 1,
.

.	 n = —1 .

4

Figure 3.1: Eight-noded isoparametric element

To satisfy compatibility, shape functions should be parabolic. In general, the shape

function Ni for the corner nodes ( ii), where = ±1, = ±1, is given by

1
= —4 

( 1 + i)(1	 71 77i)(i	 — 1),
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and for mid-side nodes with e i = 0,

1
= —

2
(1 — e2 )(1 rMi),

and with	 = 0,
1

= —(1 + eei )(1 — 112).
2

Hence, the displacement functions over the whole element can be expressed in the form

	

8	 8
u(x,y) = ENi(6 ,71) ui	 and	 v(x,y) ENi(6,n)vi,	 (3.7)

	i=i	 i=1

and from equation (3.3), it follows that the strain vector c at a point (x, y) inside the

element e is given by

c = B e ue	 (3.8)

with

ONI	 n
u 

aN2 
0	

aN8
0

Ox	 ax	 ax

Be=	 0 aN, 
0 

aN2 
0 

aN8
ay	 ay	 ay

aN, aN, aN2 aN2	aN, aN8_
_ ay	 ax	 ay	 ax	 ay	 ax _

= AN

(3.9)

where

N= (3.10)

Combining equations (3.5) and (3.8) gives

cr = DBeue
	

(3.11)

3.2 Principle of Minimum Total Potential Energy

The principle of minimum total potential energy states that, in order to satisfy the equa-

tions of elasticity and equilibrium, the potential energy of the system must be at a local

minimum, i.e. when the change of potential with respect to the displacement must be

stationary.
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It is shown in standard texts that the principle of minimum potential energy is equiv-

alent to the principle of virtual work. However, it is important to note that the principle

of virtual work is the more general concept since it is independent of the stress-strain

relationship, and indeed can be used even if a potential energy function does not exist.

however, for the purposes of extending the ideas outside the structural analysis, the prin-

ciple of minimum potential energy is extremely useful, and may be used directly for the

purpose here.

The total potential energy of a system is given by

(I) = U +W	 (3.12)

where W is the potential energy of the external forces in the deformed configuration, and

is defined by

W —	 uTb dV — f uTp dS,	 (3.13)

and where U is the strain energy of the deformed structure, which is given by

U —1 if ET o- dV	 (3.14)
2	 c2

In finite element discretization, substituting equations (3.8) and (3.11) into equation

(3.14), it can be seen that

u _ Ell	 tsueTBeTarn•eue
2

	

	
dV

0
(3.15)

The potential energy of the external forces may be simplified if the surface and the

body forces can be approximated by a set of equivalent nodal forces q. Thus, the force at
8

any point in an element would be given by ENi gi , which can be written as NTq, where

N1 N2	 N8
N=

N1 N2	 N8

With this approximation, the potential energy can be written as

w
 E if

ueTNTq dv,
0

so that the total potential energy of the system becomes

(3.16)
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1_ _	 B,,Eff ueTas.TD,, dV — Ell uTNTq' dv
2 e	 °	 e	 Q

By variational principles, this is minimized when

(3.17)

where u is the global vector of nodal displacements. When this is applied to the global

system form of (3.17),

= g BTDBu dV — g NTq dV = 0.
du

In matrix form, this system of equations can be written as

Ku = f
	

(3.18)

where K, the global stiffness matrix, is given by

K = if BTDB dV	 (3.19)

and f, the global consistent load vector, is given by

f = g NT q dV.	 (3.20)

These formulae can also be obtained from the virtual work approach. Details of the

theory and procedure of this approach can be found in Zienkiewicz & Taylor (1989).

In this analysis, equation (3.18) is a linear matrix equation, and it can be solved numer-

ically by many well-proven methods for the displacement vector u. In the finite element

method, however, the body of the structure is discretised in a mesh, and the stiffness

matrix for each individual element must be found first before they can be assembled to

form the global stiffness matrix for the whole system.

3.3 Element Stiffness Matrix

For the purpose of finding the stiffness matrix for an arbitrary element e lying inside the

mesh, the global stiffness matrix can be written

K _ E LeKefeT	 (3.21)
e=1

with

K e = g B eTDB e dV
Qe



=J

371

(3.22)

aNi
ax

aNi
ay
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and the L e are Boolean matrices representing the assembly procedure.

The element strain matrix B e has earlier been established in equation (3.9), and from

this formulation, it can be observed that the shape functions for an eight-noded isopara-

metric element are defined with respect to the curvilinear coordinates and y, and there-

fore cannot be differentiated directly with respect to the global x and y axes. To overcome

this difficulty, it is necessary to obtain a relationship between the derivatives of these two

sets of coordinates.

For a two-dimensional problem, the normal chain rule of partial differentiation gives

aNi aNi ax aNi ay+
ae	 ax ae	 ay ae

and
aN, aNi OX aNi ay
an	 ax	 ay a7,

which, in matrix form, can be written as

The 2 x 2 matrix J relating the derivatives of the two system is called the Jacobian

matrix and it takes the form

ax
ae aeJ =

	

	 (3.23)
ax
371 	ail

For an eight-noded isoparametric element, the coordinates at a point, in terms of the

nodal coordinates, can be expressed by

8	 8
x = E Ni x i ,	 y	 Niyi

in the same way as for the displacements, where (xi , yi ) are the global coordinates of node i.

Thus, from

a Ni
xi ,	 etc.,	 (3.24)

ae



_
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equation (3.22) can be rearranged as

2iL
= J -1

ONi

(3.25)Ox

ON .

a6

ON.
ay	 _ an_	 _

so that the 2 x 2 Jacobian matrix J will have to be inverted in order to find the equivalent

Cartesian derivatives.

Further, to work out this element stiffness matrix, it is necessary to tranform the

double integral into the en-coordinate system. To achieve this, it can be observed that,

for any function F(x , y),

IL Fdxdy =F (det J) • ck dn

where det J is the determinant of the Jacobian matrix.

Hence the element stiffness matrix becomes

K e 
= 1

1 1 1 BeT DBe (det J) de d7i.
L i. —1

(3.26)

(3.27)

Each entry in this matrix involves integration over the 6 and n axes, and in general, the

evaluation of this integral cannot be carried out explicitly, especially when some complex

functions are involved in the integrand. For this purpose, a standard numerical integration

technique can be used.

Recall that the shape functions for an isoparametric element are quadratic polynomials,

and that terms in the B matrix involve the first partial derivatives of the shape functions.

Therefore, the simplest accurate numerical integration scheme for this purpose is the

following 2 x 2 Gaussian rule : if a function f(, 77 ) is defined for the variables and n,

then the double integral can be approximated by the sum

Jrfi
.1-1	

,	 4

f (e,n)d6 dn '--• E wifi 	(3.28)
—1	

i=1

where the Gauss weights w 1 = w2 ---= w3 = w4 = 1, and A are the values of f at the four

Gauss-points (±-,3--3--,± ,5-).
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With this numerical integration scheme, entries in the matrix product BeTDB e can

be integrated term by term to form the element stiffness matrix.

When the stiffness matrix for each element is found, they can then be assembled to

form the global stiffness matrix for the whole system. Procedures for assembling this

matrix will be discussed in full later in this chapter.

3.4 The Load Vector

To initiate deformations, loadings must be applied to the structure. The types of mechan-

ical loading that can be applied to a two-dimensional element are divided into two main

groups: surface traction, such as pressure and nodal points loads; and body forces, such

as those due to gravity and centrifugal loads; the latter is being omitted in this project.

All loads in a triangular element can be assigned to nodes intuitively or by statics, but

in the case of an eight-noded isoparametric element, the nodal loads due to distributed

loads must be computed in accordance with the consistent load vector for each element,

which is given in equation (3.20) as

fe = if NT qdV

where N is a matrix containing the shape functions, and

fe = (Fs 1 Fy 1 Fx2 Fy2 • • • F. Fy8)T

where Fa.„ Fyi etc. are the x and y components in the global x and y directions of the

equivalent loads at each node i of the element e.

The equivalent nodal forces are added, element by element, into the global load vector

I before it is used in the solution procedure. The treatment of the different types of load

discussed in detail below.

3.4.1 Point loads

It is common to assume that point loads will always be applied at nodes and not at an

arbitrary point on the element boundary. This can always be achieved by arranging the

element mesh with nodes where the concentrated loads are acting. The point loads are
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resolved into their x and y components, and they are then added directly to the appropriate

entries in the load vector f.

3.4.2 Surface tractions

If a series of forces are applied along one edge of an element, it is usual to approximate

the actual surface traction variation along the edge by a parabolic distribution defined by

the point values at each of the three nodes along that edge, and all intermediate pressure

values can be calculated using the shape functions.

For convenience in coding, all nodes of the element are used in the computation so

that there is no need to sort out the appropriate shape functions for the three nodes with

given pressure values, which can include an input value of zero. Thus

8

P = E Nkpk•
k=1

Consider a pressure P, which is specified in force per unit length, applied along the

= 1 edge of an element with nodes 5, 6 and 7, as shown in Figure 3.2(b).

P may vary along the edge, i.e. P = P(). As the local coordinate system will not

be the same as the global coordinates, there will usually be both x and y components of

pressure.

The task here is find the components of the equivalent nodal forces on the nodes along

the loaded side

Px5) Py57 Ps6) Py6) Px71 Py7•

Referring to Figure 3.2(c), consider a small element ck along the loaded side. The

force applied to this element is P

The x and y components of this force are

a	 az
Ps = P 

y 
4	 and	 P= —Pd

and hence the equivalent nodal forces are given by

ay
Px5 = I P N5	

d-1

(3.29)



x

(a) Global element
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Figure 3.2: Surface traction

and
1	

a X
P 5 = I P N5 ( — — ) de	 (3.30)

-1	 ae

and similarly for nodes 6 and 7 respectively, using N6 and N7. In general, the element

load vector P e can be represented by the matrix equation

ay
1

P e = I P NT [ ae 1 de	 (3.31)
-1	 ax_

ae

where

N1	 0 N2 0 •	 -	 • 0
N =

[ 1

0	 N1 0 N2 •	 •	 • Ng

(3.32)



Ic

2

P e a.' E wkPk
k=1

(3.33)

1
 j(

1

1-1 -1 gy

= TnNT 
gx 

det J
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The above integrals can be evaulated accurately by numerical methods. In accor-

dance with the Gaussian rule (3.28) employed to approximate the integral in (3.27), a

corresponding two-point Gaussian rule is generally used:

where N k is the value of N as defined in (3.32) at the Gauss-point k, and wk is the Gauss

weight. This numerical method should be sufficiently accurate as the shape functions

involved in (3.33) are all quadratic polynomials.

3.4.3 Body forces

The usual types of body force are those due to gravity gy and those due to earthquake

loading gy . The formulation is given by

n n

E win inNT gs I det J
z=1iz1	 gY

(3.34)

where m is the mass per unit area and gx and gy are accelerations in the x and y directions

respectively.

3.5 Global stiffness matrix

In the last section, methods of calculating the element stiffness matrix K e and element

load vector fe for an element inside the mesh have been described.

When all element matrices are found, the next step is to assemble them into the global

system

Ku = f,

where the global matrices consist of entries from all corresponding element matrices. With

this matrix equation, the solution vector u for the complete system can then be solved to

give the displacement vector of the deformed body.
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3.5.1 The assembly

To assemble the global matrices K and f, it is always best to construct a global 'desti-

nation vector' w first. This vector w consists of the x- and y-displacements of all nodes

inside the mesh, and thus it would be more convenient to use w as a reference to assign

entries in each element stiffness matrix and element load vector into their corresponding

position in the global matrices.

This procedure can of course be done automatically by a computer under a certain

prescribed algorithm. As a general rule, the element stiffness entry k eij will go to entry

kim, in the global stiffness matrix, where 1 is the global node number of the i'th node in

element e, and ra is the global node number of the j'th node. (i,j = 1,2, ..., 8). It is useful

to note the following two properties of the global stiffness matrix:

1. In most applications, K will be symmetric, as indeed is each of the element stiffness

matrices.

2. If the structure is made up of a large number of elements, the global stiffness matrix

K will have a large dimension, but if the nodes of the elements in the mesh are

numbered sensibly (the reason for this will be given in the next section), K will be

sparse and banded about the leading diagonal for most structural problems. In this

case, there are some special algorithms that can be employed to reduce the storage of

K without losing any of its details in order to increase the efficiency of the solution

procedure of the global matrix system.

3.5.2 Condensed rectangular matrix

There are various choices of methods for solving a linear matrix equation, and these vary

in computational efficiency and accuracy. One of the most simple and frequently used

methods is Guassian elimination. However, as the number of elements increases, so does

the dimension of the global stiffness matrix, which makes these methods most inefficient in

terms of core requirement and the number of numerical operations in achieving a solution.

A more efficient algorithm will be discussed in full in later chapters.

To take advantage of the two properties mentioned in the last section, Cheung 8./ Yeo

(1979) suggested a more efficient and space-saving band matrix solution routine, in which

only the upper half, or the lower half, together with the leading diagonal of the band



hbw = ndof X (Mdif f 1), (3.35)
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matrix is stored as a rectangular matrix as shown in Figure 3.3. The number of entries in

any one row is called the half band width of the matrix.

......a? 1

	

a 1 2 	 a13	 -,

	a12 "----... a22	 a23	 a24	 • • • \

-..	 -,...	 0

	

a l3	 a23	 a33	 a34	 a35
-.,	 -...

	

.- •	 a24	 a34	 .......1a44	 a45	 a46 

a35	 a45 ----,a55	 a56	 a57	 .......,

,...	 -..,	 ....
half band width

n 	 -,..
0

(a) Original sparse banded matrix

an	 an	 al3

a22	 a23	 a24

a33	 a34	 a35

an_3,71

an-2,n	 0

an-1,n	 0	 0

ann
	

0	 0	 0

(b) Condensed rectangular matrix

Figure 3.3: Space saving technique for global stiffness matrix

It can be seen from the figure that the width of the condensed rectangular matrix

depends on the half band width of the original matrix, and it can be calculated from the

relationship

where ndof is the number of degree of freedom at each node (in the case of an eight-

noded isoparametric element, it is two), and Mdiff is the overall maximum difference in

global node numbers in all elements. Therefore in order to maximize the efficiency of this

storage-saving scheme, great care must be exercised in the numbering of the nodes so that

the difference between connecting nodes can be minimized.
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3.6 Nodal fixity

One further important property of all element stiffness matrices, and hence the subsequent

global stiffness matrix, is that they are always singular. To remove this singularity, the

structure must be fixed against rigid-body motions. In practice, the problem of nodal

fixity arises when some constraints are necessary to prescribe displacements which very

often are zero displacements at rigid supports. Non-zero displacements are prescribed

for support settlements and also for boundary points of local fine mesh analysis in which

the displacements were first obtained through a coarse mesh of a much larger domain.

Without this nodal fixity, the body will slide or move infinitely along a frictionless surface

when a load is applied upon it. The nodal fixity can be applied at any node in the mesh

in either the u or the v direction or both.

One very simple method that deals with nodal fixity was suggested by Cheung (gz Yeo

(1979). This method has been adapted throughout this project because of its simplicity

in its theory and its implementation into a computer program.

Suppose that there is a rigid support at a node with known prescribed direction. The

method suggests the adding of a very large arbitrary number, say 10 50 , to the matching

diagonal coefficients of the node which physically corresponds to 'earthing' the structure

with a very stiff spring. The sudden increase of this large number in the global stiffness

matrix will give rise to a very small, but not absolute zero, displacement in the corre-

sponding node, which satisfies the requirement of nodal fixity for a rigid support.

Hence, the reaction for that support can be obtained by the formula

reaction = — (big spring stiffness) x (very small displacement)

This method will fail if the arbitrary number, or the stiffness of the spring, is not

significantly big enough. However, with a suggested value of 10 5°, it is unlikely to occur

in practice.

3.7 Some practical everyday examples

In the following simple example, a structure is assembled by four identically sized isotropic

and perfectly elastic blocks, as shown in Figure 3.4. Each elastic block is modelled by four
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equal eight-noded isoparametric elements. The structure is secured on a horizontal floor,

where its bottom end is rigidly supported, so that this edge cannot slide or move in both

the x and the y directions when the rest of the body is free to deform under loadings.

P

Figure 3.4: Structure made up of four identically sized elastic blocks

To initiate deformations of the structure, surface traction is applied uniformly, ver-

tically downwards along the top side of the structure. To investigate the effect of using

different materials in a non-homogeneous structure, two problems are run. In Problem

1, all four elastic blocks have the same material properties, with Young's modulus and

Poisson ratio of 0.4 x 10 6 Njrn 2 and 0.3 respectively. In Problem 2, Young's moduli for

block A, B, C, and D are of 0.1 x 10 6 , 0.2 x 106 , 0.8 x 106 , and 0.4 x 10 6 1\i/m 2 respectively,

while Poisson ratios of 0.3 are used throughout.

Using finite element method, the theory for eight-noded isoparametric elements is ap-

plied to the system. Figures 3.5 and 3.6 show details of deformation of the whole body

when an exaggeration factor of 50 is used to magnify the magnitude of the deformation.

In Problem 1, although the structure is modelled by four different blocks, it behaves

like one unit, as the four blocks have the same material properties, as shown in Figure

3.5. The whole body is squashed downwards, while the middle section slightly bulges out.

The deformation is symmetrical about the vertical centre of the structure.
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Figure 3.5: Problem 1 - deformation of structure with equal material property

Figure 3.6 shows the deformation of the structure in Problem 2 when the four blocks

have different material properties. As the Poisson ratio is constant throughout, the de-

formation depends heavily on the stiffness of the material, or the value of the Young's

moduli of the blocks. Block A has the smallest Young's modulus, and it deforms most,

while Block C has the highest Young's modulus, and it deforms least.
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Figure 3.6: Problem 2 - deformation of structure with different material properties

3.8 Summary

The standard finite element method for analysing two-dimensional linear elasticity prob-

lems for eight-noded isoparametric elements has been presented and discussed. Improve-

ments on the efficiency of this method, and ways to save computer storage space and

computation times during execution of the program are summarized. It can be concluded

that, as long as the elasticity problem remains linear throughout, and that the rock mass

can be discretised in a mesh of eight-noded isoparametric elements, this small displace-

ment formulation can be used to carry out stress analysis and accurate calculation of the

deformation of rock mass in linear elasticity problems.



Chapter 4

Large Displacement Analysis

4.1 Introduction

In the last chapter, simple two-dimensional elasticity problems have been solved by the

finite element method for eight-noded isoparametric elements. This analysis has been

considered accurate when certain approximations for the stress and displacements of the

structure are made.

The strain-displacement relationships defined in equations (3.1) and (3.2) have been

taken as linear, thus ignoring second and higher order terms in the partial derivatives of

the displacement functions. This linear relationship gives rise to the small displacement

analysis of structures. If higher order terms in these relationships are taken into consid-

eration in the analysis, the finite element method can also be extended to cover some

problems in nonlinear structural mechanics.

Nonlinear behaviour of a structure may be due to the inherent nonlinear stress-strain

relationship of the material, or due to nonlinear changes in the geometry in dimensions and

configuration caused by the loads. If the material has a linear stress-strain relationship,

then as long as the displacements caused by the loads are small compared to the dimen-

sions of the structure, the structure will behave linearly for all practical purposes. This

linearity case has been dealt with in the small displacement analysis discusssed in the last

chapter for eight-noded isoparametric elements. However, as the displacements increase,

the linearity assumption of the original stiffness matrix can no longer adequately represent

the behaviour of the structure. A large displacement analysis is therefore required.
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4.2 Material and Geometric Nonlinearity

The linear elastic theory of structures assumes that the material is within its elastic limit,

and that it follows a simple linear stress-strain curve. Material nonlinear behaviour of

structures may be due to the inherent nonlinear stress-strain relationship of the material

- for example, when the material undergoes plastic deformation.

In large displacement problems, care has to be taken with the applied loading as the

geometry changes, because a nodal load will not generally rotate around the node, while

surface tractions will follow the model as it moves. Body forces continue to act in their

original directions.

If a structure undergoes a large displacement due to an applied load, then, since its

geometry changes, its stiffness matrix needs to be adjusted accordingly. There are two

ways in which this can be achieved. The first approximate method assumes that the size of

the individual elements is constant, so that a re-orientation of the element stiffness matri-

ces due to the elements' rotation and translation is all that is required. The second method

is more accurate, and recalculates the stiffness matrices of the elements after adjusting

the nodal coordinates with the calculated displacements. In both cases, an incremental

solution is required. If the spatial motions are not large, then it is possible to apply the

load in a single step with several iterations, but for large motions, the load is best applied

in smaller incremental steps.

Problems requiring both material and geometric nonlinearities are probably the most

demanding type of quasi-static analyses that can be undertaken by the finite element

method. The difficulty in applying the stiffness analysis to problems involving instability

is that any compressive axial load on a structural member will tend to decrease its bending

stiffness and vice versa for a tensile axial load. Thus, if a structural member is subjected to

compressive axial loading, buckling will occur when the bending stiffness is so decreased,

that any small bending caused by the offset of the load will be larger than the bending

resistance of the structure. Such analysis is further complicated by the effects of material

nonlinearity where the stresses in certain parts of the structure have exceeded the limit of

proportionality.
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4.2.1 Previous works

Investigation of structures involving material and geometric nonlinear behaviour has been

a subject of study for a long time. Derivation of a new class of stiffness matrix and the

conception of incremental step for large displacement analysis were described by Turner

et al (1960), and further work was done by Argyris (1964), Turner et al (1964), and Oden

(1969). Davidson & Chen (1974), Carter et al (1977) investigated large deformation re-

sponse to elastoplastic materials. Desai & Phan (1980) extended the theories of material

and geometric nonlinearities to general three-dimensional problems.

In dealing with geometric nonlinear behaviour, all the kinematic and static variables

are referred to the previous configuration of the continuum. If they are referred to the

original undeformed configuration, the approach is called Total Lagrangian. Works by

Zienkiewicz & Nayak (1971) and Bathe el al (1975) were based on this approach. If the

variables are based on the recently computed configuration, the approach is called Updated

Lagrangian or Approximate Eulerian. Yamada (1972) and many researchers universally

adopted this approach. In fact, the Updated Lagrangian approach is found to be more

general and efficient during computation, hence all large displacement formulations de-

rived and used throughout this thesis are based on this approach.

In this chaper, only large displacement due to geometric nonlinearity will be considered.

4.3 Nonlinear strain matrix for isoparametric element

According to Newton's law, a particle or body can have no acceleration if there is no

resultant force acting on it. Such a body is said to be in a state of equilibrium. Zero

acceleration may of course imply constant velocity, but in the context of civil engineering

structures, the state most frequently dealt with is that of zero velocity.

A body is in a state of equilibrium if the resultant of all forces acting on it is zero.

There are two kinds of forces, external forces and internal forces. The internal forces rep-

resent the interactions between different particles or elements in the body. Since actions

and reactions are equal and opposite, the internal reactions may be represented by equal

and opposite vectors having the same line of action.
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By applying the virtual work principle, or by minimising the total energy of the struc-

ture of a body, the equilibrium equation of a body can be derived as

1
.11 BT ac/S1+f = 0	 (4.1)

where B is the nonlinear strain matrix and f is the vector of equivalent nodal loads, and

the integration is performed over the region 12.

If a body is in equilibrium, then every element of the body must also be in equilibrium.

Thus the idea of 'removing' an element of the complete body can be conceived, and it will

be in equilibrium under the action of any applied external forces. This means that it is

possible to extract any element from a larger structure and examine it in detail under the

action of all forces acting on it. On extending this idea, the whole body may be consid-

ered as an assembly of these elements. In conjunction with the last chapter, eight-noded

isoparametric elements are used to model the body throughout this chapter.

Consider an arbitrary element e, the element strain matrix B e can be written in the

augmented form

Be = [B1 B 2 • • • B8],

where B i is the B matrix for node i in element e.

In large displacement analysis, these matrices B i must be nonlinear. The first step

here is to derive B e in its explicit form.

4.3.1 Derivation of nonlinear strain matrix

Figure 4.1 shows a body lying in a Cartesian coordinate system. The coordinates of a

particle in the body in vector notation are given by

x = (xo,Y0)T

Suppose some loadings are applied to the body in incremental form. In the n-th

increment, if the body undergoes some changes of configuration and moves to a new

location under certain conditions, the displacements of the particle can be defined in

vector form as un = u(x), where

lin = ( Un, Vn)
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Figure 4.1: Body deformation and displacement notation

and so the new coordinates of the particle become

x n = (xn , yn ) = (X0 Un, yo Vn)T.

Using these definitions, Bathe (1996) and Pan (1988) explicitly defined the nonlinear

strain-displacement relation as

OX I2Dx± 
Cax )2

11,011..,2
. 0

ay -r	 ) +	 21a)2
ay	 ay )

0_,Lyi,	 au ,u

az 1- ay + ,x_ ° °Y	 aX ay

where Es , Ev and -yxy are the shear components in the x, y plane.

For convenience, the strain vector in equation (4.2) is split into two components, namely

the linear and the nonlinear parts:

c = (4.2)

(4.3)= EL ENL

where

EL =



_

(4.4)

where the linear part

der, = d

_
Du„
ax

ay
ay

ay ' ax

(4.7)
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For isoparametric elements, the displacement vector can be written as

u = Nue 	(4.5)

where N is the matrix of element shape functions as defined in (3.10) for an eight-noded

isoparametric element, and u e is the nodal displacement vector.

In most constitutive laws in elasticity, the incremental strain de is assumed to be small.

From this assumption and equation (4.3), de can be decomposed into linear strain deL and

nonlinear strain dcAiL as

de = d€L-F dENL
	

(4.6)

Un
= BL d[	 1= Br, due

vn

and the nonlinear part can be obtained from the relationship in equation (4.4) as

1	 1
deNL = —dA • 0 + —A • dO

2	 2
(4.8)



Numerical modelling of rockbolts

From the properties of A and

dA • 0	 =

0,

dt-
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(4.9)

and hence the nonlinear part can be simply written as

dENL = A • dB
	

(4.10)

Further, by (4.5), the vector 0 as defined in (4.4) can be expressed in the form

Dun

ax

0 =

where for each node i,

Gi =

Dvn

= Gue

0

aNi

(4.11)

(4.12)

ax

our,
ay

av
ay

aNi
ax

0

aNi

ax

0

aNi

ay

0 ay

Substituting (4.11) into (4.10), it can be seen that

d€NL = A • d0 = A • d[Gu'] = AG • du e = BNL due ,	 (4.13)

and together with (4.7), equation (4.6) becomes

de = (B L	 BNL ) due = B due	 (4.14)
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where

B = BL + BNL

= BL + AG

Therefore, for each node i, the matrix B i can be expressed in the explicit form

[B i ]	 =	 [B L ] i +

aN.

AiGi

ON-

au 0N. av	 aN.

(4.15)

ax

0

aN

ax ax

Du n ONj

as ax

av	 ON.
ay

ON

ay ay

02_1,211,T.	Lt_ni

ay ay

avn ON,	 Dv,- aNi
ay Ox ay ax	 Ox ay ay ax	 ax Oy

4.3.2 Factorization of strain matrix

The nonlinear element strain matrix B, for node i has now been expressed as the sum of

a linear part, which is now written as and a nonlinear part [BNL1i, and it can be

written as

[B] i = [BL] i + [BNL]i
	 (4.16)

Referring to Figure 4.1, the relationships between the coordinates and the displace-

ments of the body before and after deformation are

and

Un = Xn X0,

axo	 Dyo,
— 1

ax – ay 
=

Vn = Yn YO

axo	 ayo n
— — — u

ay	 ax
(4.17)

where 'an and x n are respectively the x-displacement and the new x-coordinate of a par-

ticle after deformation in the body at the nth incremental load, etc.

With these relationships, entries in [B] i can be simplified, viz

aNi a'lln aNi aNi (axn ax0 )0Ni aNiax,d_	 =	 d_	 =
ax	 ax ax	 ax	 ax	 ax ax	 ax ax

Du, aN, = ax„ _ax o aNi = ON, axn
ay ay	 ay	 ay ) ay	 ay ay

(4.18)

a Ni aun a Ari Olin a	 =Ni	 aNi ( ax, ax o aNi ( ax, axo aN+	 i
ay	 ay ax + ax ay	 ay + ay – ay j ax + ax – ax ) ay

aNi ax, aNiax,=
ay ax + ax ay



[B] i =

aN. 0

aAri
(9Xn aYn

(4.20)

ax

0

aNi

ax

2 Lri

ax

aYnay

aNi ay ay

ay ax_

[BLP D
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Likewise, the following can be obtained:

Dvn aN, aNi ayn
Dx ax	 ax ax

aN, avn aNi aNi ayn

ay	 ay ay	 ay ay

and
avn aNi avn aNi aNi ayn aNi ayri

ax	 ay ax	 ax ay	 ax ay + ay ax

With these simplifications, [B] i in (4.15) can be reduced to the compact form

(4.19)

aNi ax, _L aNi ax„ aN, ay.	 aNi ayn
ay ax	 ax ay	 ax ay ' ay ax

where JD is called the Deformation Jacobian matrix, and is given by

axn aYn
ax ax

J D =
axn ayn
ay	 ay

This particular form of [B] i is very useful in practice, because it is expressed as a

product of two simple matrices, and so it can be conveniently used in further analyses.

4.4 Nonlinear Instability Analysis

To give a more realistic simulation in the study of nonlinear instability behaviour of a

structure by the finite element method, the deformation of the structure under loading

has to be calculated in incremental form. This process has been under investigation since

1970 by Zienkiewicz & Nayak (1973), Carter et al (1977), Yamada & Wifi (1977), Desai

& Phan (1980), Kiousis et al (1986). Pan (1988) investigated this process using time

increments. Most of these works focused on geometric nonlinearity, while significantly less

work has been done on material nonlinearity.
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4.4.1 Incremental equilibrium equation

The idea of incremental approach for nonlinear problems was first investigated by Turner

et al (1960).

In the incremental approach to matrix analysis for nonlinear instability and large dis-

placement problems, the single solution of the nonlinear set is replaced by the repetitive

solution of the linearized set, and the loads (or in some cases the specified displacements)

are applied in a series of increments. At each increment step, the displacements are accu-

mulated due to large deformation, and hence the element stiffness matrix and the resulting

global stiffness matrix are constantly changing. So they have to be recalculated at each

incremental step.

For the purpose of analysing nonlinear instability behaviour of a linear elastic material,

it is necessary to first of all deduce an incremental equilibrium equation due to incremental

loading.

Suppose an incremental load Sf is applied to the system, which is previously in equi-

librium under load f and stress a. Denoting

Sf = fn — f

6a = an — a
	

(4.21)

SB = 613 NL = Bn — B

where 6B NL is a nonlinear function of incremental displacements 6u, and Syn.

With these relationships, the equilibrium equation (4.1) for the new load f n and stress

an becomes

I {(B + 613 NL)T ( cr + 6a)} dSI + f + Sf = 0.	 (4.22)

Expanding (4.22),

i {B T a + [6. B NL]T a -I- VBNLF 6. a + B T 6. al dS2, + f + 6f = 0	 (4.23)



[BL]

and

[BNL]i =
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Using the original equilibrium equation (4.1), equation (4.23) can be simplified to the

form

Jo [6BNL]TudS1+ BT bo-dS1+ [6BNL ] TSadC1+ Sf = 0	 (4.24)

which is now the incremental equilibrium equation for the incremental load 8f.

Equation (4.24) is nonlinear. To solve it for So- and hence Su, there are many readily

available numerical methods, such as Newton's method, Quasi-Newton method, conjugate

gradient method etc. For simplicity, (4.24) is replaced by an approximate linear equation,

and the solution of this linear equation is used as an initial approximation in a simple

iteration scheme based on the idea of residual load.

4.4.2 Method of solution

The third term in equation (4.24) involves the product of two increment terms, and hence

it is infinitesimal when compared to the other terms. Therefore, it can be neglected to

give the approximate incremental equilibrium equation

BT SadD, +	 [SBNL] T o-dS2 + Sf = 0.	 (4.25)

From (4.15), it has been deduced that, for each node i in element e,

 [B L ] i + [BNdi,

where

Laik aN . j_ au aN . Lami_
ay ax	 as ay	 ay a,	 as ay

and where the matrix [BNdi can be factorized in the form

[BNL1i = [A]4%	 (4.26)



VB NLii =

(4.28)

[6BNI]iT

= [G]iT
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ax
ax as

[A] i =

au, avn

Dun avn and [G] =
aN,

ax

0
ay

Dun

ay

Ovn ay
_	 ay ay as as

0 ONi
ay

When compared to the nonlinear strain matrix BNL in equation (4.15), the incremental

nonlinear strain matrix 6BNL at node i can be similarly expressed as

(4.27)

	

abu ON .	abu ON. a(nv

	

_ ay as	 as ay	 ay ax	 as ay

Following (4.26), (4.27) can be written as

[n3N LliT

aNi 0 ONi

_
a,
ax

06vn

0

0

abu
ay

Obvn
as ay ax ay

0
ONi

0

0

°bun Nun
as ay ay

06v,

ax

abvn
ay ay

[G] T vAiiT

To express equation (4.25) in terms of the unknown vector Ou, it can be seen that, for

each node i,

[B]iTbo-i = [13] iT [D] i 8Ei = [B] iT [D] i [B] i Sui 	(4.29)

where bUy is the subsequent incremental displacement, and by using (4.28),
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=[G]iT

TI	 gyi

where

= [G]iTM[G]ibUt (4.30)

axl 7-syI 1
(4.31)

and

Tsu i	 o•vl

10
1=

01

Gi is defined in (4.12), and it has to be recalculated for each node i in element e. To

assemble them for the element, augmentation must be used. For example, if an eight-node

isoparametric element is used, [G C] for element e is the augumented 4 x 16 matrix

[G e] = [G1 G2 • • • G8].
	 (4.32)

Hence, the 16 x 16 matrix in the second term in (4.25) becomes

[Ke]NL = L e [Ge i TM [ Gre ] dn.
	 (4.33)

Assembling equations (4.29) and (4.30) for each node i, and then for each element e,

the resultant element matrices can then be substituted into (4.25) to obtain the global

stiffness matrix K with

Khu = —6f	 (4.34)

which is now the approximate equilibrium equation for the incremental load (5f in matrix

form, where

K = +

with

IC/ =	 BTDB dl,	 (4.35)

and

K11 = GT MG dn,	 (4.36)

where, from (4.20),

B = BUD,

and where M and G in element form are defined in (4.31) and (4.32) respectively.
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It is still required to evaluate the two definite integrals IC / and KH , and hence K.

This can be carried out by applying Gaussian quadrature or other accurate numerical

integration methods to the two integrals in (4.35) and (4.36). Once K is found, the next

step is to solve the matrix equation (4.34) for the approximate displacement Su of the

incremental equilibrium equation.

4.4.3 Residual load

It has been derived from the last section that the matrix equation (4.34) is the approxi-

mate equation for the incremental equilibrium equation (4.24).

This approximate equation is a linear matrix equation, and it can be solved accurately

for 6u by standard methods of linear algebra. This solution can be taken as an approx-

imate solution of the original incremental equilibrium equation in (4.24). It is necessary

to seek ways to refine this approximate solution.

The simplest and the most direct approach would be to reduce the size of the third

term I [6B N L I T 5a-dS2 in equation (4.24), which is the omitted term and is therefore the
S1

actual difference between the two equations. This could be achieved by simply reducing

the size of each incremental load, and hence the product of the two increment terms that

follow would also be reduced accordingly. It would give rise to a more accurate approx-

imate solution. However, if the size of the incremental load is too small, the number of

incremental steps will have to be increased accordingly, and this in turn would affect the

efficiency of the method. Furthermore, this would create the unneccessary accumulation

of computation errors which would reduce the overall accuracy of the method.

An alternative and better method would be the use of an iterative method based on

the idea of residual load (or residual error).

Suppose that in the kth iteration of the residual load when the nth incremental load

is being applied to the system, the incremental equilibrium equation takes the form

kou(k) = _61(k)
	

(4.37)

where
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is the stiffness matrix, as defined in equation ( 4.34), updated to the kth

iteration,

6u 	 is displacement increment in the kth iteration, and

641c) is the sum of the nth incremental load and all residual loads up to and

including the (k — 1)th iteration.

Once 6.4k) is found, the accumulated displacement 141c) can be obtained from the

equation

u(k) = u(k--1)	 bu(k),	 (4.38)

and with this updated value of 1.4k) , the updated stiffness matrix h can be calculated.

From the relationship

4 5. C41,k) = D B (54k),	 (4.39)

the stress in the kth iteration, 6c4,k) , can be found and hence the accumulated stress, oV,

can be updated from the relationship

,.(k)	 .( k -1) j_ s 0.(k)
n•

Define the residual load (or residual error) by

r (nk ) = f(k) 
m 
I ft-	,.(k)

n	 -'-' uu n "

where

(4.40)

(4.41)

(k)
	rn	 is kth residual load,

454k) is the sum of the nth incremental load and all residual loads up to and

including the (k — 1)th iteration,

is the new, updated stiffness matrix due to the accumulated displacement

u,,k) defined by equation ( 4.38), and
(k)

	

n	 is the accumulated stress in the kth iteration.

As the updated values in (4.38) and (4.40) are used in the integrand in equation (4.41),

the residual load 141,k) is effectively the vector that contains any surplus in the orginal in-

cremental equilibrium equation when the accumulated displacement and stress are used.

In order to refine the approximate solution, the aim here is to reduce 14„,k) to a zero vector,

or at least to make it converge under certain prescribed criteria. However, it cannot be



Numerical modelling of rockbolts 	 80

entirely certain that small residuals imply correct answers.

To overcome this problem, introduce the residual ratio p(k) as

n (k)	 urn II 

ii4k-1)11

This residual ratio p(k ) is a factor which can be used to monitor the relative ratio of

the norms of the two consecutive residual loads. It can give an indication whether the

error is becoming smaller, and hence the iteration is converging.

Further, a tolerance factor can be prescribed so that when the residual ratio p(k) is

smaller than this factor, the error can be regarded as small enough to be neglected, or

insignificant in the context of this iteration. Hence it can be used as a factor to determine

when the iteration can be terminated and the computation can proceed to the next incre-

mental step. However, it is of vital importance that this factor must be small enough, so

that it reflects a fair judgement on the convergence of the iteration.

If the residual ratio is greater than the tolerance factor, the approximate incremental

equilibium equation

ko4"-1)	 f(k+i)

must be solved for St4k+1) , and with this solution, the displacement vector must be accu-

mulated to form a new stiffness matrix, and the whole procedure has to be repeated.

Note that in large displacement analysis, the cartesian derivatives of the shape func-

tions(terms such as —) can no longer be assumed to be constant when they are used to
ax

evaluate the matrix i in this section. The new coordinates of the nodes in the deformed

body have to be found first by adding the current nodal displacement (54k) to the original

cartesian coordinates, and this vector can be used to form the matrix B. Therefore B will

change slightly after each iteration.

To ensure validity of the results, the residual ratio in each iteration should be con-

vergent. If not, the resultant displacement vector is infinite. It implies that either the

material property of the body is used incorrectly, or the applied load exceeds the critical

load so that the bending moments are too big. In either case, it causes the deformation

to collapse.

(4.42)



P

(a) Full beam (b) Half beam
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4.5 Euler Buckling

To validate the theory of large displacement analysis, the following example in column

buckling is analysed with the algorithm set out in the last section.

4.5.1 A simple example - buckling of a uniform slender column

Axial load P	 Critical load Pcr

11

Figure 4.2: Slender column

This buckling problem is concerned with the calculation of deflection caused by applying

axial loads to a column. It can also be used to calculate the critical loads which cause

elastic instability of a structure. In this particular example, buckling of a thin column of

uniform cross-section is considered. The concept and the theoretical approach on buckling

can be found in many standard textbooks, such as Timoshenko (1951) and Meek (1971),

and Pan (1988) used the large displacement analysis in the finite element method to analy-

sis the same problem numerically.

For the finite element discretization, the column is modelled by eight-noded two di-

mensional plane stress elements throughout. The column used is assumed to be made of

homogenous, isotropic, and perfectly linear elastic material.

Consider a slender pin-jointed column which is free to move in the axial direction at
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both end with a compressive axial force P, as shown in Figure 4.2(a). For convenience

of imposing constraints on displacement, only half the column is modelled, as shown in

Figure 4.2(b). The half column is fixed at one end and free to move in the other with P.

The finite element mesh for the half column is shown in Figure 4.3. In this model, the

column remains linearly elastic when subject to large strain, so that direct comparsion

can be made between the computed buckling load and that predicted by Euler's theory.

10

10 — —10

8 — 8

6 — —6

4 — 4

2 — —2

0 — —0

0
	

2
	

4	 6	 8	 10

Figure 4.3: Finite element mesh of elastic column

In a finite element analysis, in addition to the axial load P, it is necessary to apply

a small lateral load OP perpendicular to the free end of the column, in order to initiate

nonlinear bending behaviour. The values of are small so that this lateral load does not

significantly affect the stress distribution according to the theory of infinitesimal strain.

In this model, the value of 13 lies between 0.1% and 0.05%. Further, the element at the



Lateral load

PP
4	 Top element

3

Figure 4.4: Details of top element
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top of the free end of this column is subject to both axial and lateral loads. They are

applied along the two sides as surface traction, and the details of this element are shown

in Figure 4.4.

Axial load P

The program incorporating the large displacement theory predicts a collapse at about

0.97P„ where P„ is the maximum permissible axial load (critical load) given by Euler's

formula
7r2EI

P CT - 4L2

where E is Young's modulus of material of the column,

/ is the moment of inertia, and

L is the length of the half column.

Figure 4.5 shows the deformation (without exaggeration) of the half column of length

10m when an axial load of 0.97P„, together with a small lateral load with 13 = 0.1% are

applied to the free end of the column. These loads are applied in 16 equal increments.

The Young's modulus of the beam is taken as E = 0.2 x 106 N/m2 , with Poisson's ratio

v = 0.3. In the computation of the residual load, a tolerance ratio of 0.1% is used.
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Figure 4.5: Deformation of column (Actual size)

4.5.2 Prediction of Critical load

In order to determine the critical load of the column, different trial values of the axial

loads and p are used for further calculations and comparisons. The following table shows

values of lateral displacements (in m) in the x direction of a half column u as a function

of applied load P, computed by the program and according to large displacement bending

theory with iterations performed on its residual loads. Material properties and number

of equal increments used are the same as the model in Figure 4.4. Nodes 5, 6, and 7 are

used as reference points in these computations.
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load ( x10 3N)

0 = 0.1%

node 5 node 6 node 7

0.20 0.00844 0.0083 0.00814

0.25 0.0136 0.00134 0.0132

0.30 0.0233 0.0231 0.0229

0.35 0.0478 0.0475 0.0473

0.38 0.0964 0.0962 0.0960

0.39 0.14 0.14 0.14

0.40 0.248 0.248 0.248

0.41

13 . 0.05%

node 5 node 6 node 7

0.20 0.0038 0.0036 0.0035

0.25 0.00671 0.0651 0.00634

0.30 0.0113 0.0111 0.0109

0.35 0.023 0.0227 0.0225

0.38 0.0462 0.0459 0.0456

0.39 0.0671 0.0668 0.0666

0.40 0.119 0.118 0.118

0.41

Table 4.1: Calculated displacement values

Using node 5 as the reference, the computed values in the above table for the two

different values of 0 are plotted in Figure 4.6. In can be seen from the figure that the

characteristics of these two plotted graphs are very similar, and they both give rise to the

same asymptotic value. This asymptotic value is taken as the computed critical load of

the pin-jointed column. It shows that the critical load is independent of the values of 0,

provided of course that the value of 0 remains very small, and the computed critical load

agrees with the theoretical solution provided by Euler's formula. It can be shown that

similar graphs will be obtained if values for other nodes are used.
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EULER'S PROBLEM
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Figure 4.6: Column buckling - prediction of critical load of the beam

If the program is run when the small displacement theory is used instead, a similar

buckling characteristic will occur. However, it has been found that the displacement at

each increment step is linear, and is also linearly proportional to the axial stress applied

to the top free hand. Therefore, when the displacement-load graph is plotted, it would

only be possible to obtain a straight line which shows that it would be impossible for the

small displacement theory to predict collapse, even when the thin column is under large

axial stress, as shown in Figure 4.7.
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displacement

Figure 4.7: Column buckling using small displacement analysis

4.6 Conclusions and discussions

In this chapter, the standard finite element method for eight-noded parametric elements

for two-dimensional elasticity problem has been extended to deal with nonlinear geometric

behaviour. The main feature of this large displacement formulation is the use of a simple

and easy to understand iterative method to calculate the residual load of the incremental

equilibrium equation. This algorithm has been incorporated fully into the program and is

used as a standard procedure.
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This algorithm seems to be quite effective for most applications. However, its draw-

back can be fully seen when it is required to calculate the critical load, or to predict the

collapse of the object. The number of iterations required to perform this analysis is simply

too large to be efficient. Further, there is no algorithm or valid error analysis to predict

the collapse of the object, ie. to show when the critical load has been exceeded. It can

only be observed when the residual load fails to converge during the iteration process.

This procedure is unreliable and is too time consuming. In order to enhance the appeal

of the method, attempts will be made in Chapter 9 to investigate a different but more

efficient approach to deal with residual loads.

The large displacement analysis presented in this chapter assumes linear behaviour of

structures, and the medium which it is applied on is modelled by eight-noded isoparametric

elements. An immediate extension of this theory would be to adapt it to three-dimensional

problems, perhaps together with nonlinear material characteristic. Further, as one of the

main features of the finite element method is to allow the structure to be represented in a

mesh of different types of element, it would be appropriate to consider applying the theory

to other types of element. The latter is the aim of the chapters that follow.



Chapter 5

Implementation of Bar Element in

Finite Element Analysis

5.1 Introduction

In the last two chapters, the theory for both small and large displacement formulations

has been established for the use of eight-noded isoparametric quadrilateral elements in the

finite element analyses of some plane stress and plane strain problems. In this analysis, all

members forming the frame must be able to be discretised by eight-noded isoparametric

elements, and although in some simple cases, this may be possible, it will be more effec-

tive if members of different shapes can also be discretised by other more relevant types of

elements. For example, a bar element is an ideal element to model structures which are

one-dimensional and are infinitely thin such as rod, plane truss etc. It is also important

in the development of finite element models of rockbolts.

One of the main problems with using different types of elements inside a mesh is that

algorithms for these elements must be compatible within the solution procedure framework

of the whole structure, and that they can be implemented in a computer program. With

this requirement in mind, the theory established in earlier chapters will be modified and

adapted, so that algorithms for bar and other one-, two- and three-dimensional elements

can be established with a similar approach.

In this chapter, the use of a three-noded one-dimensional bar element in both the small

and large displacPment analyses will be implemented to analyse similar elasticity problems

that involve thin rods. It should be noted that, in the bar element discretization of a thin
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rod, the element couples longtitidinal strain with shear strain, but it does not any bending

stiffness. This phenonemon features throughout this chapter.

Throughout this chapter, the cartesian derivative of the shape function Ni is denoted

by N, and the coordinates in the rotated axes by x' and y'.

5.2 Geometry of a three-noded bar element

A two-noded bar element and a three-noded bar element share the same characteristics.

Therefore, for the purpose of illustration, only the three-noded bar element is described

Ii ere.

Suppose that a thin bar is discretised by a number of bar elements. The geometry of

a standard three-noded one-dimensional element is shown in Figure 5.1. Initially, the bar

element lies along the global axis x.

When loading is applied to the thin rod, the rod deforms and at some stage, it causes

the bar element to move its local axes to x' and	 (with x' coincident with the bar's axis

which are inclined at an angle of 0 to its original axes. This one-dimensional element
Du'	 Dv'

allows variation only in the direction, so that — = — = 0. This element is of length
ay'	 ay'

L, and each node has two translational degrees of freedom. The nodes are located at

= —1,0 + 1, and the bar extends from x' = 0 to x' = L (see Figure 5.2).

Figure 5.1: General geometry of a three-noded bar element in a rotated axis

From this figure, it can be seen that the relationship between any local displacements
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u' and v', and the global displacements u and v can be expressed in matrix form

Q U	 (5.1)

where U = (u, v)T and 15' = (u', v')T and Q is the rotation matrix

cos /3	 sin
Q =

	

	 (5.2)
— sin 13 cos 13

To evaluate this angle for a three-noded one-dimensional bar element, let

3
	

3

ax = E	 and aY = E	 Yi,
i=1
	 i=1

where N,' is defined as the derivative of the shape function for the bar element

dN . dN. de
N . ' =	 =	 —.

dx'	 de dx'

Then, can be found from the relationship

a	 ar
sin = 	 	 	 Or 	COS (3 = 	 	 (5.3)

Vas 2 + a 2 Vax2 + a
Y
2

A proof of this relationship can be found in Chapter 7.

5.3 Small Displacement Analysis

To develop some new formulations for a three-noded one-dimensional bar element in small

displacement analysis, recall that the linear B matrix for a two-dimensional, eight-noded

isoparametric element e is

B e = [B i

where for each node i in this element,

B2	 • • •

ONi

/38],

0

(5.4)

ax

B i = [B] i = 0

aNi

aNi (5.5)
ay

aNi
ay ax

while the elasticity matrix D for plane stress is

D=

1

v

v

1

0

0
1 — v

(5.6)
1— v2

00 	
2



(5.8)

(5.9)
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arid for plane strain,

E(1— v)
D

1 0

1 — 2v

(5.7)

(1 — v)

1

0

=
(1 + v)(1 — 2v) (1 —

0
2(1 — v)

Suppose the Young's modulus and shear modulus of the bar are respectively Eb and

G b. The normal stress and strain in the bar can be defined by

b
as/ =	 Ex'b

where
3dub'

= —	 ATZ () 74/Ex' =
dx' i=1

The shear stress and strain are related by the simple form

I xlyl
b
 =	 vs, y, b

where
dVb/

Vs'Y' = —dx' = 
i=1

As described in earlier chapters, the displacement, strain

related by the equations

E = U'

and

a- = D c

where in the element e,

(5.10)

and stress in local axis are

(5.11)

(5.12)

b	 b\T	 b	 b\T
6 =	 si yi )	 and	 = Is Cia71 rxiyi

By comparing equations (5.4) to (5.8), the matrices B' and D for the bar element

become

B' =
0	 —N2'	 0	 —N3 ' 0

(5.13)
—N1 '	 0	 —N2 '	 0 —N3'

and

LEb	 0
D = (5.14)

0	 Gb

where the values of Eb and G b can be taken as

Eb E ,	 and	 G b
2(1+ v)'



[B]i =	 Q	 (5.16)

From this relationship and (5.13), the element B matrix can now be written in the

form

B=

1

L —NI ' cos ,3 —Ni ' sin )3 —N2 ' cos ,3 —N2 ' sin /3 —N3' cos 0 —N3 ' sin 0

sin	 —Nit cos	 N21 sin	 —N2' cos ,3 N31sin ,(3	 —N3 ' cos/3

(5.17)
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and the derivative of the shape function in local axis in B' can be found by

,= dNi dNi de
 —
 ded dx'.

For example, in a three-noded bar element, the relationship between x' and is

, (+1)L 
x =

2

and hence

=	
dN

'
. 

.
L de

x' •
0

e •	 •	
-1

Figure 5.2: Relationship between x' and for a three-noded bar element

Following equation (5.11), the displacement and strain in the local and global axes are

related by the matrix equation

U' = E [Bliq

E	 Q Ui = E
	

(5.15)

with

0
=

0	 AT.,;'

since the two element matrices [B i ] and [W]i in the global and the local axes respectively

are related by

with its associated element displacement vector

\
U = (U1 V1 U2 V2 U3 V3)

T
 .

With this element B matrix, the usual operation f B T DB dl will give rise to the
C2

element stiffness matrix. This formulation can then be used to calculate the deformation

of the linear bar, as described earlier.



(5.18)[ SB NLii =
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5.4 Large Displacement Analysis

The derivation of nonlinear stiffness matrices is necessary for analysing large deflection

and stability problems. This study has been underway since 1958, but only a portion of

the early work has appeared in general technical literature. In 1960, Turner et al took

the first major step by considering incremental steps and a new class of stiffness matrices

associated with geometric nonlinear problems. Since then, attention has also been turned

to analyse large deflection problems of one-dimensional elements. However, most of these

works focused on the representation of column by beam elements, but very little work has

been done on bar element discretization.

The goal of the next section is to carry forward the various formulations that have been

derived in the last chapter for a standard two-dimensional, eight-noded isoparametric

element, and to propose a modification to form a nonlinear stiffness matrix for a one-

dimensional bar element for large displacement analysis. This suggested formulation will

then be applied to some practical everyday problems to illustrate its use and its deficiencies

in soil mechanics.

5.4.1 Derivation of a nonlinear element stiffness matrix

From the last chapter, it can be recalled that in the large displacement analysis for eight-

noded isoparametric quadrilateral elements, the nonlinear incremental strain matrix SBNL

at node i has been established in equation (4.27), and it can be written in the form

Du  aN, _L a6u„ aNi asv, ONi _L abv, aNi
ay ax	 ax ay	 ay ax	 ax ay _

For a one-dimesional bar element along the axis x, the following can be assumed:

au,	 asvn

-b-- 	 ay	
0

'
	etc.	 (5.19)

Consequently, when the bar element is lying in the local coordinates x', equation (5.18)

can be modified to

[bB'Nij Ti

aoun' a Ni a6vni aNi
ox, ax,	ax, ax,



Nun' 
[Ni' 0	 ax'

0	 Or5173)±
as'

= [Gr] iT [SA]iT

0

0

(5.20)

= [G],T
LN,i'o-a,	 0	 1

0	 Ni'cr,

[G] iT o-s I [G]i

[G] iT M [G] i Q 5u	 since

Therefore, it can be observed that

[613'NEl i T aj = [G] iT [bA] T cri = [GIST since	 a = ( as Tsy
)T

= Q Su,	 (5.21)

where

and

Ni' 0 1

0 Ni'
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M o-s I

Analogous to (5.16), the incremental nonlinear matrices in different coordinate systems

are related by

[613Ndi	 [613 /NL] i Q	 (5.22)

Combining equations (5.21) and (5.22), it can be seen that in the global coordinates,

[fiB NL] i T ai = [6B INLQ]iT ai = QT [(5/3 1N.diT ai

= QT [Gr]iT M [G] i	 = [OLT m [O] i 	( 5.23)

where
cos 13	 N i ' sin ,(3

[Or] i = [ G] i Q	 (5.24)

—Ni ' sin 13 Ni ' cos i3

From the earlier chapters on the use of the eight-noded isoparametric quadrilateral ele-

ment in the finite element method, the nonlinear B matrix for node i has been established,

and it can be written in the form

[B] i	[Br]j + [BNL]i



[Bol (5.27)

axn/ ay„' 
ax,

= (5.28)

0	 1

and
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ax ax ax	 ax ax

= 0
ON.
ay

au aN.	 ay	 aN.
ay	 ay	 ay ay

aN . ONi Ti	 au	 aN . 	 Dvn aN . 	ay	 ON .Our, DA	 I__11 _

ay ax Dy	 ax	 '	 ax	 ay	 ay	 ax	 ax	 ay

=	 [B O]JDJ D (5.25)

where

D

axn	ayn

(5.26)
ax	 ax

axn	 ayn
ay	 ay

The relationships between displacements given in (4.17) can be modified to the form

Un = Xn — X0,	 Vn = Yn — YO

and
axo	 ayo	 axo	 ayo n
Dx

=	 — — — —
ay	 0y	 ax

Together with conditions (5.19), equation (5.25) can be simplified to give the B matrix

for the one-dimensional bar element for node i along the local coordinates x', Viz.

[V]i

	

0	
IDun' 

N.
,

+1 ax'

	

0 Ni '	 0

ax	 141!
N	 N

	

n	 i

	

Ox'	 Ox' I

0

0

0	 I

aXn i aYn 

ax'	 ax'

0	 1

where

From the stress-displacement relationship E1 = B' U' and (5.27), it can be seen that

Dun' , ,	 avn'
Es, =E(Nif u

,
i	

—'	 -5-;;•;-Ox' 
1: )

Ox 
(5.29)

= E (5.30)
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where the shape functions N i for the three-noded one-dimensional bar element are now

dependent only on x', with

N1() =	 — 1)

N2() = 1— e
	

(5.31)

N3() = (e + 1)

with
,	 (e 1)L	 dNi

x — 	 	 and	 =	 .
2	 dx'

axn'
From the displacement function xn, = E N, xi , the term 	  can be evaluated by

ax'
the equation

ax„, E N' x' = E Ni i (x i cos /3 yi sin ).
ax'

Once the element stiffness matrix is formed, incremental steps and iterations on resid-

uals to refine the results could be carried out. Algorithms and procedures to perform

these are exactly the same as the one described in the previous chapter for eight-noded

isoparametric element.

Because the movement of the bar element is dependent upon e only, this one-dimension-

al analysis can greatly reduce the number of computations involved in the program, and

formulations for bar elements seem to be a lot easier to implement than before. However,

when the small and the large displacement formulations are used in some practical ex-

amples, the results thus obtained show that both analyses are far from being ideal. To

illustrate the weaknesses of these algorithms, a simple example is described in the next

section.

5.5 An example

To explore how the theory derived above for a bar element can be implemented, a worked

example and a practical example are being used below.

5.5.1 A worked example

In this worked example, the stiffness matrix of a bar element will be worked out by the

exact finite element calculation as described in earlier sections.

A uniform thin rod of length L and radius r is placed horizontally in its plane of sym-

metry as shown in Figure 5.3(a). It is fixed at one end, and at the other end (which is



_
(2e — 1) 2 E

0

1 —4e(2e — 1)E

0

(4e — 1)E

0-

0 —4e(2e — 1)E 0 (4e2 — 1)E 0

(2e —1) 2 G 0 —4e(2e — 1)G o (4e2 — 1)G

0 16e2E 0 —4e(2e + 1)E 0

—4e(2e — 1)G 0 164-2G 0 —4e(2e + 1)G

0 —4C(2 	 -F 1)E 0 (2e -F 1) 2 E 0

(4e2 — 1)0 0 —4e(2e + 1)G 0 (2e + 1)20

12
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free to move in both x and y directions), a point load P is applied vertically downwards.

The thin rod is modelled by a number of three-noded bar elements.

P

K	
	

L 	 )i

(a) thin rod

•	 •	 •
1	 2	 3

(b) bar element discretization of thin rod

Figure 5.3: Deflection of thin rod

Consider a particular bar element e. Suppose it is of length 1. With the shape functions

given in (5.31) for a three-noded bar element, the B e matrix from (5.13) becomes

B [

1—}(g — 1)	 0	 Ire 0 ---1(2 + 1)	 0

0	 —3-(2 — 1) 0 le	 0	 —1(g + 1)

so that the matrix product B eT DBe can be written as

The stiffness matrix for this element can be obtained from the integration

fI, 
BeTDBe

while the load vector (for the element at the free end) is

Fe = (0 0000  — P)T .

To perform this integration analytically, the first entry, for example, can be obtained

by the operation

1 II	 AE 11	
< 7

AE 
0 (2e — 1) 2 E A dx =	 (g — 1) 2 - _	 where	 A = rr2.

12	 --1	 2	 3/ '
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Likewise, other entries in the matrix can be found, and hence the element stiffness

matrix becomes

7E 0 —8E 0 E 0

0 7G 0 —8G 0 G

—8E 0 16E 0 —8E 0
IC = —

A
3/ 0 —8G 0 16G 0 —8G

E 0 —8E 0 7E 0

0 G 0 —8G 0 7G

If a two-point Gaussian quadrature rule is used to numerically integrate the matrix

product B eT DIEI P term by term, the result would be very similar, as, for example,

L

1
2 — 1) 2 de •L.- (2 x (-0.5773502) — 1) 2 + (2 x (0.5773502) — 1)2

= 4.6666666 (correct to 7d.p.),

which explains why this numerical method for integration is accurate when the integrand

is of lower degree.

After assembling all element stiffness matrices to form a global stiffness matrix for the

whole mesh, the stiffness equation becomes

K u = f.

For a one-element mesh, the finite element solution can be obtained by solving the

matrix equation

A

3/

-
7E

0

—8E

0

E

0

0

7G

0

—8G

0

G

—8E

0

16E

0

—8E

0

0

—8G

0

16G

0

—8G

E

0

—8E

0

7E

0

-
0

G

0

—8G

0

7G

-
U 1 =- 0

V1 = 0

U2

V2

U3

V3

,

_
Rx

HY

0

0

0

—P

(5.32)

_	 _ _	 n

where R, and Ry are the respective horizontal and vertical components of the reaction

force acting at node 1.

_

As the horizontal displacements for the three nodes are zero, i.e. u 1 = u2 = u3 = 0,



7 —8 1

—8 16 —8

1 —8 7.-	 -I

_ _
0

=V2

V3

v = — 
PL3 6PL 
3E1 5AG'

(5.33)

Uniform
Bar

-
-
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equation (5.32) reduces to

AG
3/

—P

Pl
which gives a solution of v 3 = --AG . This is analogous to the displacement solution of a

similar uniform bar when an axial load P is applied directly at its end.

The analytic solution for the deflection at the free end of a beam of length L is (Meek

1971):

Ry

0

where the first term is the displacement due to bending, and the second is the displacement

due to shear. In the latter term, a parabolic distribution of shear stress over the beam

cross-section is assumed; if a uniform distribution of shear stress is used instead, the

displacement due to shear is identical to that derived from the finite element analysis

above.

5.5.2 Deflection of a thin bar partly embedded in ground

—E>-
Load —c>-

Ground

(a)

-
-
-
-
--

(b)

Figure 5.4: Thin bar partly embedded in ground

Consider a slender long cylindrical rod of uniform cross-section, partly embedded in an

even ground. To set up the problem, it is assumed that the free end of the rod and the

part that is embedded in the ground is free to move in both x and y directions. The whole
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rod is rigidly fixed at its lowest end point which is inside the ground soil, as shown in

Figure 5.4(a). The entire rod and the ground soil are taken to be homogeneous, isotropic

and linearly elastic throughout.

In order to show how the rod will deform when it is discretised by bar elements, its

free end is subject to different types of loadings, and the Young's modulus of the rod is

taken to be much larger than that of the ground soil, so that the rod is modelled to be

made up of a much stiffer material.

For finite element discretization, the rod is modelled by a total of ten bar elements; the

free end that is above the ground is modelled by eight shorter, but identical, bar elements,

while the part that is embedded in the ground is modelled by two identical bar elements.

All bar elements are rigidly joined together to form a uniform long rod. The ground soil is

modelled by eight identical eight-noded isoparametric quadrilateral elements. The finite

element mesh used in this model is shown in Figure 5.4(b).

Different types of loading are applied perpendicularly from the left to the free end of

the rod. Using the small displacement analysis discussed in this chapter and executed by

the computer, the following is observed:

1. Point Load

A single point load is applied to the top end of the rod. Figure 5.5 shows the

results of the deformation when small displacement analysis is used.

The results show that the deformation of the rod is divided into two parts;

the part that is embedded in the ground, and also the ground soil, remain un-

perturbed by the loading, while the free end of the rod, ie. the part that is

above the ground, is uniformly stressed and is deformed to a straight line. This

example carries the characteristics of a thin rod with no moment of inertia and

hence no bending stiffness, so that the loading has no effect on the embedded

part and the ground soil.

With a point load of magnitude 0.1 x10- 9 N, the numerical results obtained in

this computation for the free end is -0.637 x10- 12m, against the shear term of

the theoretical results obtained by Meek in (5.33) of -0.636x 10-12m.
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Figure 5.5: Deformation of a rod subject to a point load

To explore this further, different trial values of point loads are applied to the

rod. The results shows that the deformation characteristics of the rod and the

ground soil is the same as before. Indeed, if point loads are applied to any two

points at the free end, the part of the rod that lie between these two points

will be uniformly stressed and deformed to a straight line, and the slope of this

straight line depends solely on the strength of the applied point loads, while the

embedded part of the rod and the ground soil remain stationary (see Figure 5.6).

This behaviour does not reflect the natural curve bending phenomenon of a

thin rod. The nodal deflection of a bar element can only provide a rigid body
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translation for the element, but not the angular moments that may exist be-

tween elements. In order to produce a more realistic deformation, additional

rotational degrees of freedom must be incorporated with some nodes of an ele-

ment. This range of elements will be discussed in full in the next chapter.

0	 0.6	 1.2	 1.8	 2.4	 3	 3.6	 4.2

4.2 4.2

3.6 3.6

3 3

2.4 2.4

1.8 1.8

1.2 1.2

0.6 0.6

0	 0.6	 1.2	 1.8	 2.4	 3	 3.6	 4.2

Figure 5.6: Deformation of a rod subject to two identical point loads

2. Uniform Surface Traction

Surface traction is applied uniformly and perpendicularly to the whole of the

free end of the rod above the ground. Figure 5.7 shows the deformation of the

rod and the ground when small displacement analysis is used.

Although the rod exhibits a more natural bending action at the free end, it is
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Figure 5.7: Deformation of a rod subject to uniform surface traction

attributed mainly because uniform traction is applied. Any angular moments

that may exist between elements are still absent. Further, the embedded rod

and the ground soil remain unmoved. This situation is similar to the above case

when a point load is applied, and the rod still behaves like a pin-jointed truss.

This type of rod element could be used to model cable rockbolts (with some

initial stress to represent pre-tensioning). It has also been used by Aydan and

others as the bolt in an element modelling a grouted rockbolt; here, the linking

of the end-nodes with the rock via the grout imposes a surface traction along

its length. The results above lead us to conclude, however, that the absence

of inter-element torsional stiffness makes the rod element a poor model for the

steel bolt, and completely inadequate for ungrouted rockbolts.
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Efforts have also been made to experiment with different number of increments with

unequal steps, and it has been found that the results are very similar. It shows this analy-

sis is independent of the number of load increments used.

The large displacement analysis has also been used in this example, but no improve-

ment on the bending characteristics can be found. In fact, its results are basically in line

with the one obtained by small displacement analysis. The only difference is that the

displacements are slightly larger due to the nonlinear parts.

5.6 Conclusions

Bar elements with only tranlational degrees of freedom have been considered in this chap-

ter, and it has been shown that with this restriction, members forming the frame are

modelled to be pinned together at the connecting points, and no angular bending actions

can take place if the members are assumed to be weightless and external loads are applied

only at the joints. The members are then uniformly stressed in tension or compression.

Further, bar element discretization does not allow the stress to be transmitted between

elements, so that there is an obvious absence of inter-related stress and deformation. Thus

the results obtained are very similar to the deformation of a plane truss or framework.

Nowadays, most connections in structural steelwork are bolted and welded. This will

restrain the slight angular movement which, in a pin-jointed structure, tends to occur as

the member lengths alter under the action of the axial forces, so that some secondary

bending action will take place. This secondary bending will allow the structure to bend in

a curved shape. To obtain this type of deformation, it is clear that the bar elements are not

the ideal elements in the finite element discretization these structures. Therefore it calls

for a different range of elements which can transmit not only forces, but also moments.



Chapter 6

Beam Element

6.1 Introduction

The analysis and design of linear elements supporting lateral loading is one of the most

frequent tasks undertaken by the structural engineer. The resistance of a beam to lateral

loads depends characteristically on the flexural stiffness and, in some cases, the torsion

stiffness, of the member.

In the preceding chapters, it has been shown that under load, the bending exhibited by

the quadrilateral and bar elements for rigid bodies and discrete elements of frame struc-

tures have only translational degrees of freedom, and therefore can only transmit forces

directly from element to element, with the nodes effectively acting as pin joints.

This type of deformation cannot represent the normal bending phenomenon of a beam

supporting a lateral load system. To obtain a more realistic solution, it is necessary to

investigate the use of another .very useful and important range of beam elements which

can transmit not only forces, but also moments, by specifying both translational and rota-

tional degrees of freedom at their end nodes. With these elements, the external reactions

may be calculated from the overall equilibrium conditions. The internal shear forces and

bending moments can then be determined for sections selected at intervals along the length

of the beam. The fundamental engineering beam theory has been discussed in detail by

Timoshenko and Goodier (1951), and some elementary theory and application of finite

element discretization of beam by Ross (1090).

The aim of this chapter is to first of all examine the nature of bending under load in
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beams, and then to investigate the relations between the factors which govern the behav-

iour of beams.

The beam element is important to the development of a rockbolt element. During the

last decade, Aydan's (1989) type rockbolt element has been subject to much research in

the finite element modelling of tunnelling. In its coupled form, the rockbolt element and

its many modified forms use rod element to model the steel bolt. As it will be seen in

this chapter, a beam element can make a substantial improvement over a bar element in

the discretization of a thin rod in a bending problem, and it can give a more realistic

bending characteristic. It can be envisaged that, if the steel bolt is modelled by a series

of beam elements instead of bar elements, the characteristics of a rockbolt can be better

represented by the new element. The investigation of this new type of rockbolt element is

the main aim of this research.

6.1.1 An example - Bridge girder

A simple everyday example of this type of flexural deformation is a bridge girder, where

the external loads imposed are due to the weight of the parts of the bridge supported

by the girder, and the live loads from the traffic using the bridge. The system can be

represented by a simple beam structure subjected to an equivalent but greatly simplified

loading such as the one shown in Figure 6.1(a). The concentrated forces represent the

load imposed on the girder by transverse members and vehicle wheels, and the uniformly

distributed load allows for the self weight of the system. The reactive forces V 1 and V2 are

necessary to maintain the beam in a state of static equilibrium.

As the beam is made from material which deforms under load, it is clear that bending

or flexure will occur, and the beam will take up some final deflected shape of the form

shown in Figure 6.1(b). Of course the manner and the shape of the deformation depends

on the strength of the material of the beam, the length and the thickness of the beam, the

magnitude of the loads, and where these loads are applied.

The static analysis of rigid-jointed frames and continuous beams is one of the most

important aspects of structural engineering. Rigid-jointed frames take many and varied

forms, and appear in many different branches of engineering, varying from ships to air-

crafts, and motor cars to offshore drilling rigs.
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P2 	 P3 P4

V1
	

V2

(a) Before loading

P1 P2
	

P3 P4

V2

(b) After loading

Figure 6.1: Beam with bending moments

Most rigid-jointed frames can be modelled by a combination of different types of el-

ements, including beam elements. With beam elements, rotational degrees of freedom

are imposed on their end nodes, and hence bending moments are allowed to be transmit-

ted through the elements to produce the natural curve bending phenomenon of a beam.

Therefore structures such as thin rods can be satisfactorily modelled by this type of beam

elements. In this chapter, the existing theory on small displacement of beam elements

will be extended to develop a new large displacement formulation for the stiffness matrix

of a two-noded beam element. Later, this theory will be adapted to three-noded beam

elements.

6.2 Geometrical non-linearity

To investigate the deformation of an object under load, it is necessary to consider geo-

metrically nonlinear behaviour, and in some cases, the material non-linearity, of the object.

The difficulty in applying the stiffness analysis to problems involving instability is

that any compfessive axial load on a structural member will tend to decrease its bending

stiffness and vice versa for a tensile axial load. Thus, if a structural member is subject
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to compressive axial load, buckling will occur when the bending stiffness is decreased, so

that any small bending caused by the offset of the load will be larger than the bending

resistance of the structure. This problem has been investigated in the Euler strut example

in the large displacement theory for two-dimensional elements in Chapter 4. Such analysis

is further complicated by the effects of material non-linearity where the stress in certain

parts of the structure has exceeded the limit of proportionality.

In the matrix method of analysing the instability of such structures, it is usual to

model the effects by adding a geometrical stiffness matrix to the linear stiffness matrix.

The latter matrix usually considers the change of stiffness due to internal forces in the

structure, thus imposing a nonlinear load-displacement relationship.

Therefore for each element, the resulting element stiffness matrix has to be modified

to the form

[Ke] = IKM + [Kb]

where [KM is a linear element stiffness matrix and [Kb] is the element geometrical stiffness

matrix which depends on the internal forces in the element.

The total stiffness matrix in global coordinates is given by

[K] = [Ko] + [KG]
	

(6.2)

and the load-displacement relationship is

q = ([Ko] -I- [K G]) ui	 (6.3)

where

[Ko] = E[K] is the system Linear stiffness matrix in global coordinates, and

[K G] = E[K] is the system geometrical stiffness matrix in global coordinates.

In the last chapter, the process is carried out by a series of incremental loads, where the

load is increased in small steps and the effects of geometrical nonlinearity are considered

for each step and summed together to give the overall effect at the end of each step. This

incremental step procedure was introduced by Turner et al (1960), and it has since been

implemented for all geometrical nonlinear finite element analyses.



Numerical modelling of rockbolts	 110

As in previous chapters, the problem concerning nonlinearity within the elastic limit

will be considered. Therefore there is no material nonlinearity, and this nonlinearity comes

only from the strain-displacement equation.

6.3 Geometrical stiffness matrix

While detailed computations of a two-dimensional element system are performed using

the computer, a simple hand calculation on a one-dimensional finite element of the beam

can be performed. This will allow the introduction of the concept of generalised stresses

and strains in a simple but constructive manner.

In this chapter, efforts are concentrated on the development of an algorithm for two-

and three-noded beam elements, which are the two types of beam element that will be

used throughout this research project.

6.3.1 Two-noded beam element

In two-dimensional bending poblems, the simple Euler-Bernouilli theory assumes that the

plane sections of the beam remain remain plane after bending, and that each longitudi-

nal fibre of the beam behaves as if in uniaxial compression or tension independent of others.

Consider a two-noded beam element described in Figure 6.2. It is assumed for simplic-

ity that the cross-section of the beam has a uniform area A (or uniform radius r), and is

constant along the length of the beam. Further, it is assumed that the beam has modulus

of elasticity E, Poisson ratio v, and the beam element is of length L. The end nodes 1

and 2 are subject to shear forces and moments which result in translations and rotations,

with nodal bending slopes 0 1 and 02 respectively. The element shown has flexural stiffness

factor El. It lies in the xy plane both before and after deformation takes place. Initially

it is oriented along the x axis.

Here it will be necessary to consider both the axial displacement function of the beam,

together with that in flexure, to simulate the bending effect.

The axial displacement function u(x) is one-dimensional along the x direction. With



(U2,02, v2)(U-1, 0 1 , v1)

0

0
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Figure 6.2: Two-noded beam element

the usual shape functions attached to a bar element, u(x) can be represented by

2

u(x) = E Ni(e)Ui
	

(6.4)
i=1

where x and are related by
c	 x

L

and so
de _ 1
dx	 L•

However, due to the two extra rotational degrees of freedom, namely 01 and 6 2 , that

are introduced to the two end nodes of the beam element, the flexure function v(x) in the
dv

y direction must satisfy the condition —
dx 

= 0, so it is necessary to introduce higher-degree

shape functions H,(6) and m,(6) for all nodes i, and write

	

2	 2

	

v(x) = E	 Hi()vi + LErni(e)0i.	 (6.5)

	

i=i	 i=t

To determine these shape functions for each i, it can be assumed that Ni (), H() and

m (e) are of the forms

Ni(6) = ao

= bo + the + b2e 2 + b3e3 	(6.6)

and

rni(6) = CO + Cle C2e 2 c363



where 7710 =
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where ai ,bi , ci are some constants to be determined by the constraints for the shape func-

tions:

1
=

=
0 :	 j

0 :	 i = j
=

0 :	 i	 j

and

dmi
de •

0 :	 i = j

0

1 :	 i = j

0	 i j

After some simple calculations, it can be shown that Ni (),Hi() and mi () can be

taken as:

N1 ()= —

N2(e) =

111(e) = 1— 3
2 +

H2 () = 3e — 2e
	

(6.7)

and

mi(e) = e — 2e2 + e3

m2(e) =	 e

From the elementary beam theory, Martin (1966) formulated the nonlinear strain-

displacement equation in the 'x' direction of any fibre at a distance 'y' from the neutral

axis of the beam, by the equation

	

Ex du + 1 ( dv	 d2V

	

dx 2 dx	
y

dx2
	 (6.8)

where
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1 ( _dv) 2
is the additional strain due to large displacement deflection, and

2 cix

d2v
is the bending contribution to the strain at a distance 'y' from the neutral axis.

— dx 2 y

The strain energy stored in the beam is given by

u
6 — 

E i 2 dV
 2 v Ex	 •

Substituting (6.8) into (6.9), the cubic and higher terms in (6.9) can be neglected.

Further, since

r
	 du d2

2 — V

L —r	 dx dx 2 y clY = 0,

(6.9)

it can be seen that

TT	 E i ( du2	 du ( dv) 2	 d2 V 2 
2 } ay.

ue	 2 iv { clx ) + dx clx ) + (dx 2 ) y

For convenience, U, in equation (6.10) can be written into two parts

U, = Ui + U2

where

(6.10)

(11 = 2E A foL {( cdu ) 2 + -Ci;du (cl;c1v)2} dx
	 (6.11)

and

U 2 = 
-2- 1„ {!Z2) 2 Y21 

dV

= 
_E I ( d2 v ) 2 (

iv y2 dA) dx
2 0	 dx2

El f L (d2 12
=	 dx

2 h dx2
(6.12)

with A as the cross-sectional area of the beam and El as the flexural stiffness factor,

where

I
 = Iy

2 dA
v

represents the moment of inertia of the cross section of the beam with respect to the

neutral axis.

1
For example, for a beam with elliptic cross section, I = —

4
ra3 b where a and b are the

major and minor axes respectively of the ellipse; with circular cross section with radius



a

<
Load

a2 ue

=
" au2 auf

(6.13)
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r,	 —
1

= 1 R-r4  and with rectangular cross section, / = 
1

2
cd3 where c is the width of

the cross section the force is acting upon, and d is the depth of the rectangular bar. (see

Figure 6.3)

(a) Circular beam	 (b) Rectangular beam

Figure 6.3: Moment of Inertia for uniform beams

To find the stiffness matrix for the beam element, it is necessary to apply Castigliano's

first theorem, which states that the stiffness coefficient of an element stiffness matrix

can be obtained from the operation

When applying partial differentiation to Ul with respect to vi and 0i , the term

du
dx

in the integral
IL du (	 2 d

Jo dx	 x

may present some problems, as the value of this term varies in each increment step.

However, at the start of the computation in the first increment step, it is known that
du	 1
—
dx 

= —
L 

(u2 — u 1 ), and hence it can be treated as a constant independent of v i 's and 02's.

This is the assumption which is adopted in most currently used algorithms for a beam



d2 v	 1 2	 1 2

dx2 = 
E imovi + E 74()0,

L2 i_=1 i=1
(6.16)

and

dN() 
MV) =

d2 H i(e) 
and	 H'()= de etc.denoting
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element (see Ross 1990). However, in all other increment steps, this assumption can no

longer hold true, as —
du 

is no longer a constant. Consequently the second term in equation
dx

(6.11) has to be dealt with differently. This will be discussed in a later part.

With this assumption, the stiffness matrix can be obtained analytically by first ob-

serving that U-1 in equation (6.11) can be simplified to

EA 
Jo
IL (	 2

dx+ F 
IL (dv) 2 

dx
Ul	 2	

-y 0 —

	

dx	
(6.14)

where
du

F = EA
dx

is the axial force in the bar, and is considered to be a constant here. This consideration
du 

ican be justified at the start of the first increment step as —
dx 

s assumed to be a constant,

and E and A are the modulus of elasticity and the uniform cross-sectional area of the rod

respectively.

To express Ue in explicit form, recall that the displacement functions are defined as

2
u(x) = E Ni(O/Li

i=1

and
2

v(x) = E Hi()vi + L m(e)9i
i=1

Hence,

du
= 

1 2
—  – E N!(Oui
dx	 L i=1

dv	 1 2	 2
— – E Hf ( e )v, + E
dx	 L i=1 i=1

(6.15)

Substituting (6.15) and (6.16) into (6.10), it can be observed that

au,	 EA fla (du)2)
dx

aui	 2 Jo	 Dui (:Ix

E A	 2
=	 I N[(e) (E NV)u3 )	 (6.17)

L 0	 33=1



+F H.(0 (—EIV.V)uj + E m";(00a)
L	 3

1	 1 2	 2

Jo j=1
(6.18)

Numerical modelling of rockbolts

and

DU,	 El' 	 a (d2 V ) 2	 F	 { a ( dv ) 2
dx + —	 dxavi	 2 Jo	 dx2	 2 o	 avi c/x

EI f la ( 1	 ,„ 1 2	 2

2 Joavi L2 L., -n (Ou + — E mq (e)e	 dx
3=1

+ 2 Joavi

r a (1
2_, Hi (e)tta + E ( - )0j)	 dx
3=1	 3=1

2

FIr1 „	 1 2
	

1 2
=	 II, (0 (-17 Ei.q()uj + E m00.4)

	

3 =1	 3 =1

2
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Likewise,

au,
ao,

= Elf m) (
= 

H7(e)ua
.-- m'a

i ()0i	 d
31 

1

1	 1 2	 2

+ FL 10 mig ) 7 E -11;(0u.i + E 77113 ! (0 6):7 de	 (6.19)
j=1	 j=1

Performing partial differentiation once more, the following can be obtained:

02 ue	  ELA f: {no Ntj(01
aniauj

a2 ue 	 El 11 „
(e) „(0

Dvi avj	
0 Hi	j 4 + —

F 1	
.11Ock

L o 
n0

and

(6.20)

(6.21)

a2 u,	 El 1	 1
aoi	 =	 Jo mil() in'i(e)ck + F fma0 Trii (e)de	 (6.22)

etc.

Substituting the shape functions and their derivatives established in equation (6.7) to

(6.20), (6.21) and (6.22), and using Castigliano's first theorem in (6.13) to establish kij e ,

the stiffness matrix of the beam element [K e] in local coordinates can be found as

[K C ] = [Kr)] + [KM
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0
0 AE2

1 0	 0

0 12 6L 0 —12	 6L

El
0 6L 4L 2 0 —6L 2L2

—	 L3 AL2 0 0 AL2 0	 0

0 —12 —6L 0 12	 —6L

0 6L 2L 2 0 —6L 4L2

+—
L

00

U

L
o	 10

00

o— 5

L
10

2L2

000

n

0

n
"

000

5

L
10

6
5

0

10

L2
— 30

 0

10

(6.23)
15

L
10

n L	 L2 n	 L 2L2
-	 10	 30	 10	 15

and the displacement vector that is associated with this stiffness matrix is

= (U1 '01 01 U2 V2 02)T
	

(6.24)

Note that the element stiffness matrix expressed in (6.23) is obtained by integrating
du

term by term analytically at the beginning of the first increment step when —
dx

, and

subsequently the factor F, is taken as a constant. However, after the first iteration in the
du 

ifirst increment is carried out, the element starts to deform and hence —
dx 

s no longer a

constant. Therefore, the integral

02	 1L du ( dv)2	 1L	 a2	  [du ( dv 2

Dui	 Jo dx	
x =	

aui au3 dx	 )1}
d	

dx
(6.25)

has to be calculated by some numerical methods, such as Gaussian quadrature, which is

the method used for numerical integration throughout this thesis.

The displacement functions u(x) and v(x) for a two-noded beam element are linear

and cubic respectively, therefore it is accurate enough to use the two-point Gaussian

quadrature rule to perform the above numerical integration: if a function f(x) is defined
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for the variable x, then the integral can be approximated by the sum

2

f(x) dx =Ewi
i=1

where the Gauss weights w 1 = w2 = 1, and fi are the values of f (x) at the two Gauss

points ±*i-. The error of this numerical intergation is of the order MO and therefore it

will not significantly affect the overall accuracy of the algorithm.

Efforts have also been made to perform the numerical integration of (6.25) by 3- or

higher-point Gaussian quadrature rule, and almost identical results have been obtained.

While it is necessary to use higher-point Gaussian quadrature rule to deal with integrand of

higher order, it would be impractical to use it when the integrand is of order 4. Further, the

higher-point rule requires to perform a large number of computations, and consequently it

will increase computation time and possibly accumulate noticeable computational errors.

Therefore higher-point quadrature rule does not necessarily yield more accurate results.

As displacements are accumulated after each iteration, the element stiffness matrix

will change slightly, and hence a new element stiffness matrix has to be recalculated and

updated at each interation or increment step.

After the application of the first incremental load, or indeed the first iteration, defor-

mations in both the x and the y directions occur, and hence the beam is now inclined at

an angle /3 to the global axes. By writing c — cos/3 and s = sink, the elemental stiffness

matrix in global coordinates can be obtained from the relationship

[Ker = QT [Ke]Q	 (6.26)

where Q is the rotation matrix

c s 0 000

—s c 0 0 0 0

0 0 1 0 0 0

000  c s 0

0 0 0 —s e 0

0 0 0 0 0 1_

associated with the element e.
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[K]° is the rotated stiffness matrix for a two-noded beam element. In the incremental

approach, if a body is discretised by several beam elements, the stiffness matrix for each

element has to be found in the local coordinates first, and then it is rotated to the global

axis by (6.26). The rotated matrices can then be assembled to form the global stiffness

matrix [K]°, whence the incremental deformation for the whole body can be calculated.

This process is repeated for all other incremental loads.

The advantage of using 1lie rotation matrix Q is to ensure that in this two-dimensional

problem, the local axis always lies along the direction of the element in each iteration or

increment step, and by using this axis as reference, the element stress-strain behaviour can

be reduced to one-dimensional and therefore the amount of calculations can be minimized.

6.3.2 Three-noded beam element

The development of this section for a three-noded beam element follows a very similar

pattern to the previous section for a two-noded element.

2 
1 	 	 	 c>.• x

(u2 , v2)

(U3, 03,v3)

	

x i	 I

0

	

I	

	

-1	 1

Figure 6.4: Three-noded beam element

Figure 6.4 shows a typical three-noded beam element. It is assumed that the element

has a uniform cross-sectional area A, modulus of elasticity E, and length L, while the

flexural stiffness factor is taken as El.

The middle node 2 has translational degrees u 2 , v2 only, while nodes 1 and 3 lie at

opposite ends of the element, and they have, in addition, nodal bending slopes 0 1 and 03,
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together with translational degrees u i ,vi and u3 , v3 respectively. Unlike the bar element,

the additonal nodal bending slopes enable the beam to transmit nodal moments, and

therefore it will give the structure, when modelled by these elements, a curved bending

shape under loading. The beam lies in the xy plane both before and after deformation

takes place. Initially it is oriented along the x axis in local coordinates.

In the x direction, the axial displacement function u(x) can be represented by

3
u(x) = E Ni(oui

i=1

where the Ni are the usual shape functions for bar elements, and are defined by

N1(e)	 —1)

N2(e) = 1—c2

1
N3(e) = 2	

+ 1)

and where x and e are related by

(e 1)L
x

2

(6.27)

(6.28)

As in the case of a two-noded beam element, the flexure function v(x) in the y direction

can be written as
3

v(x) E Hi (Oui L E 777,i(e)Oi
	

(6.29)
i=1	 i=1,3

Under a similar system of constraints for Hi (e),m i (e) as in the two-noded beam ele-

ment, the shape functions Hi (e) and m(C) are quartic and have been found to be

1
(e) =	 + 4e 2 e3 20)

112(0 = 1 — 2C2 +

113 (e) = 711 ( 3C + 4e2 e3 2e4)

(6.30)

and

"11(e) =	 + e2 e3 e4)

Tn3(0 =	 — e2 e3 e4).
	 (6.31)



(6.32)

dV	 (6.33)

(6.34)

(6.35)

El

— L3
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The strain energy stored in the bar is given by equation (6.9),

U,	 f E 2 dV
2 V x

where
du 1 dv 2 d2v

cx = — — (—) ----.y
dx 2 dx	 dx2

and hence U, becomes

= E f {( d'u, 2 du (dvV (d2V) 2
U	

21
,

2 IV	 dx c;lx	 clx2

+ U2

where

Uj = 
EA fL {( du) 2 du (dvV

2 Jo	 dx)	 dx dx )} dx

and

U2	
E	 (d2v y2) 2 dx
2.j 	 dx2

fL (	
dx

d2V) 2

2	 Jo	 dx2

Following a similar procedure as described in the last section for a two-noded beam

element, it has been found that the stiffness matrix for the three-noded beam element in

local coordinates is

[K e ] = [Kg] + [KM

7 AL2	
0	 0	 8AL2	

0	
AL2	

0	 03/	 3/	 3/

0	 8(E) 8( F)L	 0	 8(—Y)	 0	 8(E) 8(-F)L

0	 8 ( E )L 8 ( fi )L2	0 8 (-q)L 0	 8 ( g )L 8(-t)L2
8AL2	 0	 0	 16AL2	 0	 8AL2	 0	 03/	 3/	 3/

0	 8(— V) 8( —V)L 0	 8(1P)	 0	 8(—T) 8(V)L

AL2	 0	 0	 8AL2	 0	 7AL2 
3/	 3/	 3/

o	 8 ( a ) 8 ( F )L 	 0	 8 ( -y ) 	0	 8(B) 8(—)L
0 8 ( - 4 ) L 8 (- )L2 0	 8 ( -y )L	 0 8 (- f- )L 8()L2
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00	 0 0 0 0 0	 0

	

0 127	 29 L 0 _128 0	 1

	

105	 210	 105	 105

0 29 L 16 L2 0 _ 8 L 0	 1L2210	 105	 105	 210	 21

00	 0 0 0 0 0	 0
(6.36)

	

0 _128	 8 L 0 256 0 _128	 8 7-

1./

	

105	 105	 105	 105	 105

00	 0 0 0 0 0	 0

ii 	 - 18 L0 -- 128 0 127	 29 L
105	 210	 105	 105	 210

0 13 / 1r 2 0 8 L 0 _ 29 L 16 L2
210	 21	 105	 210	 105

and the displacement vector that is associated with this stiffness matrix is

U = (U1 v1 01 U2 272 U3 v3 03)T (6.37)

As in the case of a two-noded beam element, the element stiffness matrix expressed

in (6.36) is only valid at the start of the computation in the first increment when the
du

factor —
dx 

is a constant. However, when deformations occur after the first increment step

is carried out, this factor becomes a variable and so the matrix [KM has to be evaluated

at each step by a numerical method, such as Gaussian quadrature.

The shape functions for the displacement functions u(x) and v(x) are quadratic and

quartic respectively, it is necessary to use three-point Gaussian quadrature formula to per-

form the integration, so that while accurate results can be obtained for the integral, the

overall accuracy of the method will not be affected by the computational error introduced

by this numerical method. For comparison, four- or more point formuluae have also been

used in this algorithm, and the overall results have been found to be almost identical.

Therefore it is fair to say that higher point Gaussian quadrature formula is deemed un-

neccessary.

By writing c = cos/3 and s = sini3, where is the inclined angle of the bar to the

global axes, the element stiffness matrix in global coordinates can be obtained from the

relationship

[Ke]O = QT [Ke]Q	 (6.38)
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where Q is the rotation matrix

123

-
C s	 0 0000 0

—s c 0 0 0 0 0 0

0 0	 1 0 0 0 0 0

000 c 8000
=Q

0 0 0 —8 c 0 0 0 

0 0 0 0 0 C s o

0 0 0 0 0 —s c 0

0 0	 0 0 0 0 0	 1- -

associated with the element e.

6.4 Incremental load

In the analysis of nonlinear deformation, loads are applied to the structure in a series of

increments, and it is assumed that the material of the structure is linearly elastic in each

increment step. The large displacement analysis for quadrilateral elements has been dis-

cussed in full in Chapter 4, and a similar approach is now being adopted for beam elements.

Suppose an incremental load Sf is applied to the system. Denote

6f = fn — f

Su = un — u	 (6.39)

SK = Kn — K

where Su is the displacement during any one increment step etc.

It has been shown that the incremental equilibrium equation used in Chapter 4 for

isoparametric elements provides a more realistic apporach to obtain a satisfactory solution

for large displacement analysis. However, the iterative process involved in this approach in

calculating residual loads requires the use of incremental stress, and there seems to be no

equation that involves incremental stress for the beam element. Therefore, an alternative

form for the incremental stiffness equation is proposed.

Consider the stiffness equation

K u = f.
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Substituting the incremental factors as defined in equation (6.39) into the stiffness

equation, it can be rewritten as

{K + 6K} {u + 6u} = f + Of	 (6.40)

Expanding equation (6.40),

K u + SK u + K 6u + 6K Su = f + 6f
	

(6.41)

or, after simplification,

SK u + K 6u + 6K 6u = Sf	 (6.42)

which is now the incremental stiffness equation for the incremental load Sf.

This is a nonlinear matrix equation in Su. To reduce it to an approximate linear

matrix equation, it can be observed that the third term SK Su in equation (6.42) is

infinitesimal and can be neglected, as this term involves product of two relatively small

incremental factors. The interest here is to find an approximate incremental stiffness

matrix. Therefore, the first term SK u of (6.42) can be neglected so that the approximate

incremental stiffness equation reduces to

KSu = H.	 (6.43)

Approximate solution to this linear matrix equation can now be improved by using a

procedure based on the idea of residual loads which has been described in detail in Chapter

4.

6.5 Convergence of large displacement analysis by using

Residual load

From the last section, the solution Su of the matrix equation

K6u = Sf

is the approximate solution of the incremental stiffness equation (6.42).

In Chapter 4, an iterative method based on the idea of residual load (or residual error)

has been used to refine this approximation, and appears to work well. That method will



0 (k)	 1114/1,°11 

	

IIrk-1
	 '
)11

(6.46)
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be adapted here to perform a similar task.

Suppose that in the kth iteration of the residual load when the nth incremental load

is being applied to the system, the incremental stiffness equation takes the form

f(6u(k)	 6f7(1k)
	

(6.44)

where

is the global stiffness matrix, as defined in equation (6.43), updated to the

kth iteration,

k) is displacement in the kth iteration, and

64,k) is the sum of the nth incremental load and all residual loads up to and

including the (k — 1)th iteration.

Then the accumulated displacement 1.4k) becomes

u (k)	 u(k-1)	 bu(k)

Define the residual load (or residual error) as

r(k)	 81(k) fE6u(k)	
(6.45)

where

(k)
rn	 is kth residual load.
6f(k) is the sum of the nth incremental load and all residual loads up to and

including the (k — 1)th iteration, and

is the updated stiffness matrix due to the accumulated displacement 1.4k).

and the residual ratio p(k) as

This ratio cart be used as a factor to monitor whether the iteration is converging or

not. It is necessary to prescribe a tolerance factor, so that when the residual ratio is less

than this factor, the iteration can be terminated and the next incremental step can be

proceeded. Otherwise, further iteration is necessary to refine the results.
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6.6 Examples of beam bending

The following examples in beam bending can illustrate how the algorithms developed in

this chapter will work in practice. Large (or small, if appropriate) displacement analysis

is implemented in the computer program, and the results are executed by the computer.

6.6.1 Column bending

Consider a very thin rod that is rigidly fixed in both the x and the y directions at one

end, although the bending angle at that end is not fixed, and is free to move in the other

(see Figure 6.5(a)). Initially the rod is hanging freely at A. To support the rod so that

it can lie in equilbrium horizontally, and that it will not merely rotate at its fixed point

A, it is imposed that the rod is rigidly supported at node B. The rod is uniform, and

it is assumed to be homogeneous, linearly elastic and istropic. A point load is applied

perpendicularly downwards at C, the free end of the rod, to initiate deformation.

For the finite element discretization, the rod is modelled by eight identical 3-noded

beam elements, and the finite element mesh is shown in Figure 6.5(b).

A

(a) Thin rod

A A	  C

(b) Element discretization of example

Figure 6.5: Example of column bending

Figure 6.6 shows the lateral displacement of the rod computed by the program and

according to the large displacement bending theory introduced in this chapter, together

with iterations performed on its residual loads. The results clearly show that, with the

addition of rotational degrees of freedom imposed on the two end-nodes of each beam
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element, the internal shear force and bending moments will be transmitted from element

to element, and hence the overall effect will give rise to a continuous curve bending shape

of the deformed rod. This deformation is in line and agrees with the natural bending phe-

nomenon of beams, and it shows a marked improvement over bar element discretization

of similar problems.
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Figure 6.6: Deformation of thin rod using a point load (with exeggeration factor = 5 x 1012)

With a point load of 0.1 x 10 -1 °N, the displacement for the free end obtained by the

large displacement formulation is 0.742 x 10 -13m, which works out to be 91% of the value

from the analytical formula derived by Meek in (5.33).
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6.6.2 Some observations

If the small displacement theory is used instead in the program, the bending characteristic

of the deformed thin rod will be very similar to the nonlinear case. However, it has been

found that when incremental loads are applied, displacement in each increment step is

linearly and directly proportional to the size of the incremental load.

Further experiments using small displacement theory with different point loads have

been carried out, and when these results are plotted in a displacement-load graph, a

straight line curve is thus obtained. It shows that the small displacement theory will

never break down, even when a point load with unrealistic large magnitude is applied to

the rod. Therefore, as in the case of the eight-noded isoparametric elements, the small

displacement theory can only be used as an approximation when the point load is small,

and it becomes increasing inaccurate when the point load becomes bigger. Further, it

cannot be used to predict the critical load and the collapse of the thin rod.

In section 6.3.1, the nonlinear stiffness matrix of an one-dimensional, two-noded beam

element has been established. To compare the effect of using this type of element directly

with its three-noded equivalent in a practical situation, the above column bending problem

has been repeated. In this problem, the same set of parameters for the material properties

of the thin rod and for the loadings is retained, except that the uniform thin rod in Fig-

ure 6.5 is now discretised by a mesh of eight identical one-dimensional, two-noded beam

elements.

From the computed displacements obtained from the modified program with the new

stiffness matrix given in (6.23), the results are shown in Fugure 6.7. It can be seen that the

bending characteristics of the rod is virtually the same as before, except that the angle of

rotation of each node becomes slightly flatter, although the difference is hardly noticeable.

If the number of two-noded beam elements is increased in the discretization, the bending

becomes smoother, and it approaches a similar curvilinear bending characteristics of the

three-noded beam elements.
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Figure 6.7: Deformation of a thin rod discretised by two-noded beam elements

6.6.3 Bending of a partly embedded thin bar

This example has been used in the last chapter when the thin bar was discretised by a

number of bar elements (see Figure 5.3). It was concluded that with this discretization,

the bar has been wrongly modelled as a pin-jointed truss, and that the stress were not

allowed to transmit between elements.

To investigate whether beam element discretization of the same example would im-

prove the overall bending characteristics, beam elements are used to model the thin bar,

while the ground soil is modelled by eight identical eight-noded isoparametric elements.

All parameters used here are the same as before, so that direct comparisons can be made.

Figure 6.8 shows the results of the deformation when small displacement formulation are
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Figure 6.8: Bending of a thin rod using a point load

used for both types of element.

From this Figure, it can be readily seen that the stress from the free end of the rod can

be transmitted into its embedded part and the ground soil, so that internal shear forces

and angular moments are being considered. This part of the rod and the ground soil are

now deformed in a natural curvilinear shape, so that it represents a marked improvement

over bar element discretization. This beam-soil interaction will be an important mecha-

nism in modelling rockbolts.

When large displacement theory is used, the model deforms with the same charac-

teristic, but the problem is found to be very sensitive to the use of point load. When a
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large point load is applied, one has to be very careful that this load does not exceed the

critical load, otherwise the iteration procedure for the residual load will not converge, thus

indicating the method fails, and that a total collapse has taken place. The problem of

predicting critical load will be discussed in the following section.

6.7 Prediction of critical load

In order to predict the critical load of the thin rod as shown in Figure 6.5, a procedure

similar to Section 4.5.2 is followed. Although the nature of this problem is different from

Euler buckling, it would be useful to predict when the thin rod will collapse.

In this experiment, large displacement theory is used. At the free hand of the thin

rod, trial values of point loads are increased gradually, and each time, the displacement

is noted. Initially this algorithm can always predict deformation similar to Figure 6.6.

However, after the point load reaches a certain value, the rod collapses very quickly and

suddenly when the load is increased very slightly. In the displacement-load graph thus

plotted in Figure 6.9, it can be seen that the first part of the curve behaves like a straight

line, and after a certain point is reached, the displacement suddenly goes to infinity. At

this point, the critical load is reached.
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Figure 6.9: Displacement-load graph of beam bending

When comparing this graph with Figure 4.6, when the thin rod is discretised by eight-

noded isoparametric elements, this sudden collapse may be caused by the fact that the

rod is made of very thin material. To demonstrate this point, the problem of column

buckling in Section 4.5 is repeated with a drastic reduction on the width of the column.

The resulting displacement-load curve will become less smooth near the critical load, and

it bears a similar characteristic to Figure 6.9. Further, it may worth pointing out that

it is imortant to relate the width of the beam to its length. If rod is relatively thin, the

beam is prone to collpase very easily, even if the applied load is relatively small.
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The same experiement is being repeated with the second example shown in Figure 5.3,

and the resulting displacement-load curve of the top node at the free end has the same

shape as in Figure 6.9. It confirms that great care is needed to predict the critical load of

a thin rod.

6.8 Discussion and practical implications

Beams are frequently connected together in both horizontal and vertical directions to form

rigidly-jointed framed structures. These frames are most commonly encountered in build-

ing structures, and transmit loads primarily by bending actions. Although axial forces

must always be present, their influence is usually small compared to the flexural effects.

With the development of beam elements in this chapter, the internal shear forces

and the bending monients are being considered. From the examples of rod bending with

bar element and beam element discretizations, it can be concluded that beam elements

are superior to bar elements, and the former should be preferred in the finite element

discretization of thin material. However it must be noted that because of the fine width

of the material, critical load can be easily reached even if the applied load is relatively

small. Therefore great care must be exercised when these elements are used. But its

clear advantage over oilier type of elements has made it worthwhile to spend more time

to experiment with its use. Of course, if beam elements are used as part of the element

discretization of an object, then the superiority of these elements can be more readily

seen. In Chapter 8, investigations will be carried out to examine the effect of using beam

elements to discretise part of a grouted rockbolt, and the results will be compared.



Chapter 7

Joint Element

In the finite element analysis of solid mechanics, situations arise where discontinuous be-

haviour occurs between finite elements. In geotechnical situations, the discontinuities are

intended to represent rock joints, faults and interfaces. The physical behaviour of such

systems involves debonding and slip along the discontinuity. The term debonding de-

scribes the separation of two blocks of continuum adjacent to the joint surface which were

initially in contact. Subsequent contact can also be developed by the movement of the

two blocks towards each other. The term slip defines the relative motion along the joint

surface or fault when the shearing force exceeds the shear strength of the joint. A joint

element discretises the space between these two interacting blocks.

The material model of the continuous part of the system may be linearly elastic, or

nonlinear with any specified properties. The slip and debonding phenomena make the

discontinuities physically nonlinear and therefore special techniques must be employed to

obtain a realistic solution.

Previous attempts have been made to develop discrete elements to represent the joint

behaviour. Goodman. Taylor k Brekke (1968) developed a simple rectangular two di-

mensional element with eight degrees of freedom. With this element, adjacent three-

dimensional blocks of continuous elements can penetrate into each other. Zienkiewicz et

al (1970) advocated the use of continuous isoparametric elements with a simple nonlinear

material property for shear and normal stress, assuming uniform strain in the thickness

direction. Numerical difficulties may arise from ill conditioning of the stiffness matrix due

to very large off-diagonal terms or very small diagonal terms which are generated by these

elements in certain cases. Beer (1985) developed a general small displacement algorithm
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which can be used for three-dimensional or two-dimensional shell-to-shell, shell-to-solid

or solid-to-solid elements. These elements have zero thickness, and they provide a good

platform for the modelling of rock mass and fractures.

7.1 Introduction

The algorithm under investigat ion in this chapter is based on the theory developed by Beer

(1985) for the three-diniensional shell-to-shell contact element for linearly elastic material.

This theory will be adapted to the types of one-dimensional solid-to-solid joint elements

that are going to be iinplemented throughout this project. Figure 7.1 shows how these

joint elements are structured in a two-dimensional rock mass system.

Figure 7.1: Structures of two-dimensional joint elements

The joint element is made up of two identical one-dimensional sub-elements. It is

assumed that the joint element has zero thickness, which has obvious advantages when

modelling rock joints and fractures.

As the joint element is structured to model the joint or the space between rock mass,

the two sub-elements initially lie in the same space and they are collinear with the overlying

edge of the two adjoining rock elements. However, as the two sub-elements are modelled

to be attached to different media which can have different material properties, or can be

subject to different stresses, they are liable to deform in a different manner under loads.

In finite element discretization, these two sub-elements are theoretically detached from

each other, with the top sub-element intuitively lying on top of the bottom one, and they
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share the same nodes on their common edge. Likewise, the bottom sub-element is at-

tached to the top element of 1 he underlying medium, and they share the same nodes on

their common edge. Therefore, the corresponding nodes of these two sub-elements must

be regarded as lying on different edges, and they are distinguished by the use of different

node numbers. The structures and the node details of a four-noded and a six-noded ele-

ment are shown in Figures 7A and 7.5 respectively.

In this study, the I op and I lie bottom media are continuous rock masses, and they are

assumed to be without cracks and inhomogeneities. They are modelled by eight-noded

isoparametric elements in the usual manner, while the two sub-elements that make up the

joint element are modelled by one-dimensional, two- or three-noded elements. Further,

every node in the joint element assumes two degrees of freedom.

7.2 Derivation of a general formula

In this chapter, the theory for the shell element will be investigated first. The shell-to-shell

contact element in three dimensions is the most complex case in the modelling of joints.

Details about the shell element have been described in full by Zienkiewicz .Y4 Taylor (1991).

7.2.1 Shell-to-shell element

Figure 7.2: Vector definition in a three-dimesional shell element (top surface)

Consider the top surface of a typical three-dimensional shell element as shown in Figure

7.2. The external faces of the element are curved, while the section across the thickness

is generated by straight lines. Pairs of corresponding points, itop and ibottomeach with

given Cartesian coordinates, lie on the top and the bottom surface of the element which
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has a certain thickness.

In a local coordinate system, it is usually convenient to define a vector between a

corresponding point on the top and the bottom surfaces of this shell element, and this

vector can be taken as the vector normal to the contact surface at the point of contact.

Thus, the normal v 3 can be obtained by simply taking

and the length of this vector is the thickness of the shell.

However, the shell is assumed to have no thickness here, and so the two points itop

and ibottom are taken to coincide. Hence the above form is no longer valid. To overcome

this problem, an alternative method for finding the normal vector can be obtained by

considering the cross product

After normalisation. the unit vector of this normal becomes

V3
n= —

L

where L is the length of this vector.

The two normalised tangent vectors s 1 and s 2 at the same contact point, which are

shown in Figure 7.2, can be constructed by taking the cross products

1

0

0

1

0



0

while the normalised tangent vector at the same contact point becomes

0

0

1

1

1
\A a802 + (68)2

n=
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so that they lie on the same contact plane which is tangential to the shell at the contact

point. Hence the vectors s l , s 2 , and v define the three axes at the contact point of the

shell.

7.2.2 Solid-to-solid element

V3	 Z, V

e

	 X, U

Figure 7.3: Two-dimensional joint element

In a two dimensional space shown in Figure 7.3, the y direction will no longer be consid-

ered. Hence, from equation (7.1), the normal vector v 3 at the contact point can be found

by taking the cross product

V3 =

Ox

0

0

0

1

ay

Ox

0

with its unit vector
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These two vectors can be simply taken as

1
n

when the third dimension is not considered.

The displacements in the directions normal and tangential to the contact surface can

be defined in matrix form by

T

1	

U 1 ,

V1 =

(7.3)

Further, the displacements at any point on the bottom surface of the top shell element

are given in the usual form

U Itop

	 N topatop,
	

(7.5)

where Mop is a matrix containing shape functions of a n-noded one-dimensional element,

and can be defined as

= [N1 N2 • • Nrdtop,

with

Ni = NJ,

and I is a 2 x 2 unit matrix, and the displacement vector

atop =

an
- top



(7.6)

(7.7)

and

ae =
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The bottom element is of the same form as the top element, and therefore it can be

similarly written

= Nbotabotl

bot

etc., with N t"	 Nbot-

The relative displacements at the interface are the difference in displacements between

the top and the bottom elements, and they can be expressed as

1881

6

	 _ [9.	 [11']

,,,	 v'
top	 bot

Combining (7.3) and (7.5), equation (7.6) becomes

1

6;ns = OT Ntopatop OT Nbotabot,

and it can be simplified in matrix algebra form as

= B ae	 (7.8)

where

B = OT N	 (7.9)

{ at op

with

N =[N t op — Nbot]	 (7.10)

For an elastic joint element, the relationship between the shear and normal forces per

unit length in the joint, and the relative displacement of the nodes is given by Goodman

et al (1968) as

Ps 1	 u
= D

Pn

where the associating elasticity matrix D is a diagonal material property matrix involving

ks and kri , the joint stiffness per unit length in the tangential and normal directions

respectively, and which are theoretically infinite. This matrix can be expressed as

[ks 0 1
D=

0 k„

abot
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The stiffness matrix of this joint element in the small displacement analysis can be

obtained from the standard procedure by minimizing the total potential energy U at the

interface, where
1

U —„ aeT (I BT DB dA) ae,
Z	 A

so that the stiffness matrix for the contact element becomes

K' = BT DB dA.
A

In this research project, I lie joint element is modelled by one-dimensional four-noded

or six-noded elements. It will be shown in the next several sections how the stiffness

matrix of this contact element can be obtained analytically by using direct integration.

7.3 Four-n.oded joint element

In Figure 7.4, a four-noded joint element is shown. This four-noded joint element is

modelled by two one-dimensional two-noded sub-elements, and the end nodes each have

two degrees of freedom.

Yi)	 (x2, Y2)

1 	  2	 Top

3 0	 0 4	 Bottom

( x3, Y3)	 (X4, Y4)

Figure 7.4: Four-noded joint element

These two sub-elements are of the same length and have the same characteristics.

They describe the same surface and hence initially their corresponding nodes have the

same coordinates, but they are distinguished by the use of different nodes with different

numbers.

Consider a single standard one-dimensional two-noded element. The shape functions

are defined by

1\7-1() = 1_

and

N2(e) =



(7.11)
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and any displacement along I lie two axes can be expressed in the form

and
2

= E Ni(nYi

Hence, the partial derivalives of x and y with respect to	 in the local coordinate

system become

and
ay

— Y2 —

As x l , x 2 are the x- coordinates of the two end nodes of the bar element, they are

related by

X 2 — X 1 = 80.
	 and	 Y2 = Y1

where so is the length of the element.

With this relationship, the above partial derivatives reduce to

and

— o
*	

(7.12)

Further, in equation (7.10), the two sub-elements are of the same length, and they

have the same characteristics, and so

Ntop = Nbot-

Together with (7.4), it can be seen that

and

N=

0

N1

0

1
= —

so

0	 N2

N1

bo	 0

0	 — so

0	 —N1

0	 N2	 0
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—N1

1

0

0

0

—1

—N2

0

0

—N2
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With equation (7.9), the element B matrix takes the form

B = O T N

1 0	 N1 0 N2 0 —N1 0 —N2 0

0 —1	 0 N1 0 N2 0 —N1 0 — N2

N1 0 N2 0 —N1 0 —N2 0
(7.13)

0 —N 1 0 —N2 0 N1 0 N2

so the matrix product B rDB becomes

	

k s N?	 0	 k, Ni N2	 0	 —k,N?	 0	 —k,Ni N2	 0

0	 knN?	 0	 kn Ni N2	 0	 —k,N?	 0	 —knNi N2

	

ksN i N2 	 0	 k,lq	 0	 —k,Ni N2	 0	 —k,N?	 0

0	 kn.N1N2	 0	 knArl?	 0	 —k,WcArz	 0	 —k.,1V.Z

	

—k,N?	 0	 —k, Ari N2	 0	 k,N?	 0	 ksNi N2 	 0

0	 —knNi'	 0	 —knNi N2	 0	 knN?	 0	 knNi N2

—k,Ni N2	 0	 —kslq	 0	 ks N1 N2	 0	 ks.lq	 0

0	 —kn N1 N2	 0	 —k,,,N?	 0	 knN1 N2	 0	 knArl

(7.14)

and the stiffness matrix K for this joint element can be obtained from the integral

K e = BTDB .

The analytical expression of this element stiffness matrix can be found by directly

integrating each entry ill the matrix (7.14), viz:

"II	 I N 2 ck = ks 	 (1 —	 =
JO

	

1	 1	 ks

	

V33 ks f	 ks e =

1	 1
k73 = k s	 NI N2 = ks	 (1 —) d = —6-

JO	 Jo

etc.

Thus the element stillness matrix becomes
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(7.15)

and the displacement vector I hat is associated with this element stiffness matrix is

U (U1 Vi 112 V2 U3 V3 U4 V4

The formulation expressed in (7.15) agrees with the one derived by Goodman (1968)

for the same four-noded joint element.

7.4 Six-noded joint element

This is an extension to the formulations developed in the last section, since a six-noded

joint element has the same sturcture and characteristics of a four-noded element.

The following figure shows details of a six-noded joint element. This joint element is

modelled by two one-dimensional three-noded elements, and each node has two degrees of

freedom.

Figure 7.5: Six-noded joint element
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For a standard one-dimensional three-noded element, the shape functions are given by

N1() =	 —1)

N2() = — e

and

N3() = —21 e(e+ 1)

Any displacement along the axes can be expressed by the displacement function

3
x = EN,(oxi

3

= ENi(oyi
i=1

Performing partial differentiation,

ax

De —

1, — 2ex 2 + (e + —
1

)x3 = —
1

(x3 _ x
2	 2 \

_ 1
1) — 28°

Oy	 1,
= —2°3 —Y1)—

Since x l , x 2 and x3 are the x- coordinates of the three nodes of the standard one-

dimensional element,

2x 2 = X1 + X37

and

X3 — Xi = So

where so denotes the length of the element, and likewise,

Therefore by

and

with

equations (7.4) and

,
=

2Y2 = Yi +

(7.10),

1
-28°	 0

1	 1=0	 SO

N1	0	 N2

0	 Ni	 0[

y3,

0

N2

0

N3

0

101
—1

0

N3 1

1
-2 SO

N top —

Nbot = Ntom
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since the two sub-elements are of the same type.

It follows that the element B matrix becomes

	

[ 1 0	 N1 0 N2 0 N3 0 —N1 0 —N2 0 —N3

	

0 —1	 0 N1 0 N2 0 N3 0 —N1 0 —N2 0

N1 0 N2 0 N3 0 —N1 0 —N2 0 —N3 0

0 —N1 0 —N2 0 —N3 0 N1 0 N2 0 N3

and the matrix product B TDB can be obtained as

ksMli	 0	 ksMi2	 0	 ks M13	 0 —kM11	0 —ks Mi2 0 —ksM13	 0

O kr,Mii	 0	 knAl12	 0	 kn, Mi3	 0	 —krt Mil	 0 —k, M2	 0	 —knMi3

kM1 2 	 0	 ks M22	 0	 ks M21	 0 —ks M12 0 —k3 M22 0 — ks M23 0

O k, V!12 0 	 kn. M22	 0	 lc,/ M23	 0 —kn M12	 0 —kn M22	 0 —kn M23

kMi3	 0	 ksAl21	 0	 k3 M33	 0	 —ksM13 	 0	 —k11423	 0	 — ks M33	 0

O knMil	 0	 knIVI21	 0	 kn. M33	 0 —kn M13 0 —kn M23 0 — kn M33

—k 3	 0 —ks Mi2 0 —ks M13 0	 kM11	 0	 ksM12	 0	 ks M13	 0

O —knMii 	0 —knMi2 0 —knM13 0	 knMil	 0	 knA412	 0	 knMi 3

— k 3 M12 0 —ksM22 0 —ks M23 0	 ks M12	 0	 ks M22	 0	 k5 M23	 0

O — kn M72	 0	 —A:, 11122 	 0	 krx M23	 U krziWt 2	 0	 kr, 	 0 kn

—ksAi i 	0	 —ksAl2 	0	 —ks M33	 0	 ks M13	 0	 k5 M23	 0	 ks M33	 0

O —kiW1	 0	 —k„/1121	 0	 —1c, M33	 0	 kn M13	 0	 kn M23	 k T1. M33

(7.17)

where

NiNj•

From the integral

K= f BTDB ,

each entry of this element stiffness matrix K e can be obtained analytically by using direct

integration:

= k81n I NNi de.

For example,

	

I 1	 4k,
=k5 I l‘q de = f — e (e — )2 de = 15

—1	 —1 4
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ke33 = ks 
j 

Aq	 =	
— 

(1 — 62)2	
16k8

= 15
1	 1

4k,
k F5' 5 = k, I	 = k, I

1 1

— 62 (1 + ) 2	= 15
—1	 _1 4

1	 1 1	 2k,
kj3 = k, I Ni N2 de =

	

	 — 6 (6 — 1)(1— 6 2 ) de = 15
—1 2

1	 1 1	 ks
k j5 —k I Ni N3 de = k. 9 I — ( e — 1 ) 6 (e + 1) de = --i.

-1	 _i 4
i	 11	 2ks

	

k3. 5 k, I N2 N3 ck =k5 f i i (1 — 6 2 ) 6 (6-	 0 de = 15
—1

Hence, the stiffness matrix K e for this joint element becomes
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(7.18)

with its associated displacement vector

U = (U1 V1 U2 V2 U3 V3 U4 V4 U5 V5 U6 V6)T.

etc.
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7.5 Examples

To validate the theory developed for joint elements in the last few sections of this chapter,

the following hypothetical models are now going to be investigated.

For a realistic analysis of the joint element in rock masses, it is appropriate to treat

the rock mass as an aggregate of massive rock blocks, separated by joints with special and

relevant material properties that as a rule will differ from the properties of the adjacent

blocks.

7.5.1 A simple example - joint between two rock blocks

The following is a very simple example that illustrates the effect of using a joint element

between two uniform rock blocks in the modelling of rock under loads.

hi this example, suppose that there exists a joint between the rock blocks. The rock

blocks are assumed to be linearly elastic, and they are represented by two blocks which

are identical in size and have the same material properties. One block is placed on top of

the other, and they are interconnected by a horizontal joint. It is assumed that the joint

is also made of linearly elastic material, although its material properties may differ from

those used for the rock blocks. In Figure 7.6(a), heavy lines are used to indicate the joint

between the two rectangular rock blocks. The bottom end of the bottom block is rigidly

fixed to the ground. A uniform surface traction is applied normally from the left to the

vertical left-hand side of the top block.

A

Figure 7.6(a): A simple example - joint between two rock blocks

For the finite element discretization, the mesh used in this example is shown in Figure
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7.6(b). The joint between the rock blocks are modelled by four identical joint elements,

while the two elastic rock blocks are each modelled by 16 identical eight-noded isoparamet-

ric elements, and the horizontal joint is modelled by four identical six-noded joint elements.

0	 0.4	 0.8	 1.2	 1.6	 2
IIIII11111111IllifiliiiiiiiiiiiIIIIIII111111111

Figure 7.6(b): Element mesh

For direct comparision, different sets of experimental values of horizontal and vertical

stiffness k s and kn are used, while the material properties for the blocks and the joint

remain the same throughout.

Two examples with different k, and kn are shown in Figure 7.7. Figures 7.7(a) and

7.7(b) show the deformation of the two blocks, with the same exaggeration factor of 70,

subject to the same surface traction of 200N, when algorithms for isoparametric elements
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and joint elements are used. In both cases, it can be seen that the bottom block remains

fairly stable, while the top block slides away slightly in the direction of the surface traction,

and create a tendency to rot ate at the centre of its lower end, thus causing the far bottom

right end of the top block penetrates downwards into the bottom block. The amount of

slide and penetration clearly depends on the values of the parameters k, and k,, used.

111111111111111111111111111111111111111111111111111i

0	 0.4	 0.8	 1.2	 1.6	 2	 2.4

tangential component of the joint stiffness ks = 2 x 106N/m2

normal component of the joint stiffness kr, = 5 x 105N/m2

Young's modulus of rock Er = 0.2 x106N/m2

Poisson's ratio of rock vr = 0.3

Figure 7.7(a): Example of deformation due to joint element (exaggerated)
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0	 0.4	 0.8	 1.2	 1.6	 2	 2.4

tangential component of the joint stiffness ks = 5 x 105N/m2

normal component of the joint stiffness km = 2 x 106N/m2

Young's modulus of rock Er = 0.2 x106N/m2

Poisson's ratio of rock vi. = 0.3

Figure 7.7(b): Example of deformation due to joint element (exaggerated)

With different values of joint stiffness, the amount of deformation (all units are in

meter) at different ends of the joint can be summarized in the following table.



Numerical modelling of cockbolts 	 152

A B C D

ks = 2 x 106 u 0.516 x 10 -3 0.440 x 10-3 0.265 x 10 -3 0.248 x 10-3

kri = 5 x 10 5 v 0.168 x 10 -2 —0.167 x 10 -2 0.187 x 10 -3 —0.176 x 10-3

ks = 10 6 u 0.769 x 10 -3 0.685 x 10 -3 0.264 x 10 -3 0.253 x 10-3

kr, = 106 v 0.932 x 10 -3 —0.923 x 10 -3 0.187 x 10 -3 —0.180 x 10-3

lc, = 5 x 10 5 u 0.127 x 10 -2 0.118 x 10 -2 0.263 x 10-3 0.257 x 10-3

lc, = 2 x 106 v 0.556 x 10 -3 —0.551 x 10 -3 0.186 x 10-3 —0.182 x 10-3

Table 7.1 Computed displacement values of Example 1

7.5.2 Goodman's joint examples

The following examples of the application of joint elements have been investigated by

Goodman et al (1968). The main purpose of these examples is to examine the freedom to

shift and rotate of blocks of arches and beams in a blocky rock system.

The behaviour in a complex structure must be analysed by a technique which can sim-

ulate block movements in a simple intersection. Figure 7.8 shows a mesh used to simulate

the intersection of a through going and a staggered joint set. In this model, three elastic

blocks are used, each comprises 16 isoparametric elements. The horizontal and vertical

joints are made up of eight joint elements. They are indicated by heavy lines.

To elaborate on the structure of the mesh near the joint, Figure 7.9 shows the initial

position of the eight joint elements and of the adjacent block elements.

At the intersection point, three nodal points with identical coordinates are used. In

the examples that follow. six-noded joint elements are used, and the nodes details of the

joints are shown in Figure 7.10.

In the finite element analysis of the blocks, the small displacement theory is first used.
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Figure 7.8: Element mesh of Goodman's joint
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-.4

Figure 7.9: Joint elements at intersection

Figure 7.10: Nodes details of joints at intersection

To simulate a real life situation, two problems were run. In Problem 1, the support of

the system was fixed in both the x and y directions in the outer corners at points A (see

Figure 7.11(a)). This creates an unstable situation in which the top block tends to drop

down with rotations about points A. In Problem 2, the supports were moved to points B

(see Figure 7.11(b)). This created the tendency for opposite sense of rotation. In both

problems, uniform surface traction is applied vertically downwards and normal to the top

side of the top elastic block to initiate deformation.
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tangential component of the joint stiffness ks = 106N/m2

normal component of the joint stiffness kr, ._ 106N/m2

Young's modulus of rock Er = 0.2 x106N/m2

Poisson's ratio of rock vr = 0.3

surface traction = lON

Figure 7.11(a): Problem 1 - Deformation of Goodman's joint (with exaggeration factor

300)
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tangential component of the joint stiffness lc, = 106N/m2

normal component of the joint stiffness kr, = 106N/m2

Young's modulus of rock ET = 0.2 x106N/m2

Poisson's ratio of rock v, = 0.3

surface traction = 20N

Figure 7.11(b): Problem 2 - Deformation of Goodman's joint (with exaggeration factor

2000)

For Problem 1, Figure 7.11(a) shows the partial opening of the lower part of the vertical

joint, together with the mutual penetration of horizontal block elements. The downward

movement of nodal points in the top side of the top elastic block is indicated by d.
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For Problem 2, Figure 7.11(b) shows high stresses are being developed normal to the

top elements of the vertical joint. It causes compression in all joint elements.
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Figure 7.12: Problem 2 - Deformation of Goodman's joint (with exaggeration factor

2000) with supports fixed in the vertical direction only.

To distinguish between the effect of using different types of support under the same

environment, the above two problems are run again. In both cases, the supports are placed

at the same points, but they are fixed in the vertical direction only, so that the structure

is free to slide horizontally at the supports. As before, a uniform surface tension of is

applied vertically downwards and normal to the top side of the top elastic block. All other

parameters, including the geometric properties of the rock mass and the stiffness of the
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joint, remain the same throughout.

Using the same exaggeration factor of 2000 as before for direct comparison, Figure

7.12 shows how the structure deforms in Problem 2. When compared with Figure 7.11(b)

when the supports are fixed in both x- and y-directions at points B, it can be seen that the

overall shape of the deformations in these two cases are very similar. The most noticable

difference is at the lower end of the vertical joint, where the structure opens up more than

in the previous case. This is of course very reasonable, as the joints at points B allows

the structure to slide horizontally and thus allows more horizontal movement sliding away

from the centre of the structure.

To experiment the use of different parameters under different criteria, Problem 1 is

executed again with the same set of parameters as before, but with the supports at points

A both fixed in the vertical direction only. This means that when loading is applied, the

supports and hence the base of the structure can slide freely along the horizontal direction.

The program fails to give any solution, which indicates that total collapse of the structure

has occured. Further experiments show that with careful choice of material properties

of the rock block and the joint, this problem may be able to give some reasonable re-

sults. It shows that the Goodman joint is quite sensitive to the use of parameters. For

example, if the wrong set of joint stiffness is used, the internal stress caused by the rock

mass may cause the joint to slide away infinitely and hence cause the structure to collapse.

To compare these results with the original program tested by Goodman (1968), Figure

7.12(a) shows his deformed meshes for Problems 1 and 2. In his experiment, point A and

B were supported by rollers which only allow horizontal movement at these points. Good-

man showed that in Problem 1, the bottom blocks rotated as initial failure was taking

place, thus total collapse was observed. In Problem 2, the upper three elements in the

vertical joint failed, while the other joint elements were in compression. This model were

found to be stable, despite the failure of the three joint elements. These findings had the

same characteristics of those obtained in this chapter.
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Problem 1
	

Problem 2

Figure 7.12(a) Results obtained by Goodman (1968)

Goodman's paper produces Figure 7.12(a), but does not give any values for displace-

ments. However, it can be seen that the deformation characteristics in both cases are

very similar. These similarities are indeed expected, since the formualtion of the stiffness

matrix for a four-noded joint element in both cases is identical.

7.6 Large displacement analysis

In order to obtain a more realistic effect of using joints in rock mechanics, large displace-

ment analysis must be used. However, because of the limitation of this thesis, only linear

load-displacement analysis for the rock joint has been established. Therefore, it is pro-

posed that, while linear analysis is used for joint elements, large displacement analysis is

used for rock and other types of elements hereafter.

7.6.1 Residual loads

In §4.4.3, it has been discussed in full how residual loads are calculated in the iterative

process in the large displacement analysis of eight-noded isoparametric rock elements. To

analyse the deformation of a rock mass together with rock joints, the large displacement

formulation, togef her with the algorithm for the residual load for rock elements, and the
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small displacement formulation for the joints are mixed together in the program.

The implementations of these two algorithms are not the same, therefore extreme

care must be exercised in order to make sure that residual loads are not considered for

joint elements. This can be achieved by setting the values of the residual load to zero

at all nodes of the joint elements with respect to the global displacement vector in all

subsequent iterations. It implies that the displacements of these nodes are always zero

during iteration, and hence the contribution from the joint elements for the whole system

only comes from the first step in each incremental step.

7.6.2 Goodman's joint - an example

As an example, Problem 1 of Goodman's joint examples (see Figure 7.8) is run again with

the above mixed algorithm. In this example, supports are placed at points A, and they are

rigidly fixed in both the x- and y- directions. All other parameters used in this example

are the same as before.

Figure 7.13 shows the results of the deformed mesh of Problem A in Goodman's joint,

according to the above proposed mixed algorithm, and computed by the computer pro-

gram. When compared with Figure 7.11(a), where small displacement analysis is used for

all elements, the deformed meshes in both cases share a very similar characteristic. Indeed

this should be the case, as nonlinear deformation of the rock mass should behave like a

linear one when a relatively small loading is applied. As the loading increases, difference

between the two analyses will become more significant. After some stage, the mixed algo-

rithm fails, which indicates that the critical load of the structure has been reached, and

total collapse has occurred. This situation only arises when large displacement analysis is

used for the rock mass.
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Figure 7.13: Problem 1 - Large displacement analysis of Goodman's joint (exaggeration

factor 300) with supports fixed in x- and y- directions.

7.7 Discussion and conclusion

The joint element presented and the method of analysis discussed in this chapter seems

to handle adequately such joint behavioral features as failure in tension, shear, rotation

of blocks, development of arches, and even, to a certain extent, the collapse pattern of

structures in jointed rock.

The formulation of the joint element introduced here can be used for shell-to-shell,

shell-to-solid and solid-to-solid interfaces in either two or three dimensions. In the context
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of this thesis, two-dimensional solid-to-solid type is used. One of the main properties of

this joint element is that it assumes zero thickness, which is particularly suited for mod-

elling rock joints and fractures. One of the main aims of developing this element is to

apply it to the modelling of excavations in rock, where rock mass is traversed by bedding

planes and fractures, and then the effect of using rockbolts as supports in jointed rocks.

The classification by means of stiffness, k ks , and strength seems profitable, as

these properties directly describe the potential behaviour of the joint and can be used in

finite element analysis. Direct measurements of the joint quantities mentioned is impor-

tant, perhaps even more so than measuring the rock block properties.

Due to the limitation of this thesis, only linear analysis of joint element has been con-

sidered. Ways to incorporate it into the large displacement analysis of rock mass have

been discussed, and although the overall results of the combined analyses are adequate,

it would be more realistic and meaningful if nonlinear analysis is used for all types of

elements throughout. This would, of course, open up a potential for further investigation.



Chapter 8

Rockbolt Element

In tunnel engineering, fully grouted untensioned rockbolts are one common type of support

system that is used to prevent structural failure of the tunnel during excavation. Adequate

analytical design methods for the length and spacing of rockbolts are not available for var-

ious ground conditions even though the use of these rockbolts is increasing. Numerical

modelling is one design approach. However, this method requires a better understanding

than is currently available of the mechanics involved in the transfer of load between the

bolt and the surrounding rock mass.

In the numerical simulation of tunnel engineering, some problems require an adequate

determination of rock properties and existing stresses, and an efficient modelling of the

discontinuities and the structure in the post-elastic phase. Rock mass reinforcement is one

such problem.

The action of the reinforcement system depends on the fixing conditions of the an-

choring elements to the rock mass. This can be acheived by either fixing extreme points

of the bolt (mechanically anchored), or continuously by grouting the whole length of the

bolt (fully grouted). Mechanically anchored rockbolts are mainly employed in temporary

short anchors in strong rock, while fully grouted rockbolts can be permanently used in

both loose and cohesive soils. The mechanics of these two types of rockbolt are illustrated

in Figure 8.1(a).
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(b) Fully grouted rockbolt

Figure 8.1: (a) Mechanics of rockbolts (from Pellet 1994)

Rockbolts have made possible several new construction designs in civil engineering,

and they can be used either as a temporary or permanent support measure.

To maximize the effect of using rockbolts as support in tunnel excavation, it is essential

that rockbolts should be:

1. able to withstand high tensile strength of the rock mass and the deformation of the

rockbolts;

2. corrosion resistant and durable, even under aggressive water and rock deformations;

3. made of materials appropriate to the particular characteristics of the applications;

4. flexible and can be set in most confined locations in tunnelling and mining sites.

Depending on the designs and intended uses, rockbolts come in different shapes and
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sizes. Figure 8.1(b) shows examples of some of today's most commonly used grouted

rockbolts in rock engineering.

Figure 8.1(b): Examples of some commonly used grouted rockbolts in tunnel engineering

(courtesy of H. Weidmann, Switzerland)

8.1 Introduction

Despite their popularity in tunnel engineering, the modelling of grouted rockbolts poses

some particular problems. For example, the bolt does not produce a significant effect on

the global model until a large amount of deflection has taken place. This occurs if the

rock may have joint discontinuities or be in a plastic phase.

Another problem with the numerical technique to simulate the effect of using grouted

rockbolts is the lack of an adequate global model of a grouted rockbolt. Development of

such a model necessitates adequate definition of the interaction machanics between the

rockbolt and the rock mass.

The finite element method has been established as an important numerical tool for

modelling tunnels and excavations, and much literature has been published on the finite

element modelling of grouted rockbolts. The purpose of this chapter is to further inves-

tigate the feasibility of using rockbolts as support in tunnel excavation, to explore its

potential, and to develop an efficient and accurate algorithm for a rockbolt element when
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the surrounding rock mass is under a full range of loadings. The final element will be

incorporated into a commerically used package, FESTA, for validation on real-life data.

8.2 Finite element modelling of rockbolts

The general approach of the finite element method consists of replacing the actual struc-

tural system by a system of a finite number of elements interconnected at a finite number

of nodal points. In earlier chapters, it has been shown how this method can be used to

model rock mass, thin rods, and joints by using appropriate types of elements. For a

rockbolt member, these finite elements have to be selected so that they can accurately

represent the behaviour of the rock, grout and the steel reinforcement, and the interac-

tions between the components.

The main aim of this chapter is focus on the finite element modelling of rockbolts,

together with steel reinforcement characterized by beam-type behaviour, and grout that

is attached to the rock mass. The rockbolts and their surrounding media are assumed

to be homogeneous and isotropic throughout, and to have linearly elastic stress-strain

relationships. The surrounding rock mass is discretised by two-dimensional eight-noded

isoparametric elements, and the discontinuities or the spaces between two interacting rock

blocks are discretised by two-dimensional six-noded joint elements; details of these types

of elements can be found in earlier chapters. A mesh of six-noded rockbolt elements is

used to discretise the rockbolt, as described in detail below.

8.2.1 Development of the rockbolt element - early models

Reinforcement of in .situ soils and rocks has always been the subject of the engineer's

considerations. Man had built superficial and underground structures for a long time, the

earliest form of rockbolt was made of wood and was used to prevent rock falls. During the

excavation of Mont-Cenis tunnel (1857-1871), Germain Sommeiller introduced the pneu-

matic hammer. This technique later evolved into the idea of installing steel bars for rock

rein forcement.

The first fundamental studies on rockbolts were undertaken by Panek (1956). His ef-

forts concentrated on the suspension and beam building effects of rockbolts. Works which

led to the introduction of rockbolts into the New Austrian Tunnelling Method were ini-
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tated by Rabcewicz (1964, 1965). II ugon & Costes (1959) derived formulae to calculate

the optimum fixing force for a mechanical base and the fixing strength of rock. Ewoldsen

k Goodman (1967) first used the finite element method to analyse rockbolts to investi-

gate the axial, radial, and tangential stress components around a bolt fixed into elastic

homogeneous rock.

Other early numerical models of rockbolt were considered by Barla and Cravero (1972),

and Zienkiewicz (1977). lIeuze & Goodman (1973) introduced the idea of the rein-

forcement effect of rockbolts at discontinuities. The rockbolts were represented by one-

dimensional elements with axial stiffness. St. John Sz van Dillen (1983) used a three-

dimensional element when the tangential stiffness of the bolt and the grout were taken

into account. Long (1985) also considered this problem, but difficulties arose in the inter-

pretation of real-life physical situations to reproduce the parameters used in this model.

8.2.2 Rockbolt element in coupled form

In a two-dimensional stress/strain problem, the use of rockbolt elements to simulate

grouted rockbolts in a rock mass is in fact an effect-dominated technique. Therefore,

rockbolt elements are only imaginary one-dimensional elastic elements that could have

different strength, although in reality, rockbolts are three-dimensional objects and have

physical weights etc.

In finite element analysis, the action of the rockbolt in the continuous rock mass near

the joint is so complex that it is necessary to use two sub-elements to model a rockbolt

element. This type of element was introduced by Aydan (1988). In its three-dimensional

form, it consisted of an eight-noded element, two nodes connected to the steel bolt and

six jointed onto the rock mass; the steel bolt was thus modelled by a one-dimensional

two-noded linear bar element. In a two-dimensional problem, only four nodes were in-

volved. This type of rockbolt has been widely adapted since, and based on this design,

many different versions have been proposed.

Swoboda Marene (1991, 1992, 1995) and Marene (1992) considered the special

problem of the rockbolt dowel effect at the crossing with joints in rocks, when a specific

type of element called the bolt crossing joint has been introduced. This element directly

connected bolt elements on both sides of the discontnuity (joint element). It was mod-
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oiled as springs that describe bolt resistance according to movement at the joint. A brief

description of this element can be found in Section 10.5

In another variation on Aydan's rockbolt element, Reed el al (1992a) used a three-

noded quadratic bar element to model the bolt. The nonlinear analysis was derived from

the fundamental nonlinear stress, strain and displacement relationships. Unfortunately the

paper was unfinished and was deprived of any numerical results to justify its analytical

approach. Egger & Pellet (1992) defined an interface element whose thickness corresponds

to the distance between the two plastic hinges in the bolt. Pellet (1994) studied in detail

the influence of the principal mechanical and geometrical characteristics on the shear

process of the reinforced joint.

8.2.3 Other recent related developments

Based on the usual ungrouted tensioned rockbolt theory, Labiouse (1996) made three im-

provements by considering the elastic compression of the carrying ring surrounding the

excavation due to the bolts preload; the transfer of the reaction force to the rock mass

in the bolts anchoring zone; and the relative displacement of the bolt ends, which has an

effect on their tension. Roy & Rajagopalan (1997) used the classical beam-column theory

for evaluating passive rockbolt roof reinforcement by modelling each rockbolt as a linear

spring and by .allowing in the model for non-uniform bolt spacing. The performance of

grouted rockbolts subject to close proximity blasting was evaluated by Stjern et al (1998).

This consisted of pull-out tests of bolts and vibration measurements on both the rock and

the bolts.

Unfortunately, the author cannot find any articles published in the past year or so

which contain further developments of Aydan's bolt model.

This thesis uses the idea introduced by Reed el al as a springboard; it examines the

viability of using a beam element to discretise the steel bolt, and it offers a different ap-

proach to establish a large displacement formulation for the new rockbolt element.

The use of bar and beam elements to discretise a thin rod has been discussed extensively

in Chapters 5 and 6, and it was concluded that the beam element gives a much more

realistic result than a bar element. In Aydan's rockbolt element, the steel bolt is discretised
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by bar elements. It can be envisaged that improvement can be made if beam elements are

chosen to model the steel bolt instead. In particular, a separate boll crossing joint element

should not be needed, a,s the beam element ensures continuity of curvature along the bolt.

8.2.4 Aydan's rockbolt element

Figure 8.2: The three-dimensional representation of Aydan's rockbolt (from Aydan(1989))

Figure 8.2 shows Aydan's rockbolt element in three dimensions. This element has eight

nodes, two connected to the bolt, and six jointed to the rock mass. The following mechan-

ical responses of the rockbolt and their governing equations were considered by Aydan

(1989):

1. Equilibrium equation for axial loading in the steel bar:

dUbzz	 0

dz

where a b is the axial stress in the bolt.ZZ

2. Equilibrium equation for shear loading in the steel bar:

drbZr	 0

dz

where	 is I be shear stress in the bolt.
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3. Equilibrium equation for shear loading in the grout annulus:

T'7?z = 0
dr	 r

where 7-7.?., is the shear stress in the annulus.

4. Equilibrium equation for normal loading in the grout annulus:

dcrg 	o-g

	

TT + TT	 0

dr	 r

where	 is the normal stress in the grout.

The local element stiffness matrix in cylindrical coordinates can be expressed as

Kb,g = 
[K]b

1KL

where [K] b describes the contribution from the bolt, and it takes the form

0 —KT 0

0 It 0 —IC;
[K] b =

—KT 0 IT 0

0 —A7 0 K;

with
GbA	 Eb A

KI; ==
L 	

and	 A = 71-q,
L 

and L is the length of the element.

The matrix [K]9 represents the contribution from the grout annulus, and it takes the

form

[K]; =

2Kr

0

Kr

0

0

2K z9

0

Kz

Kr

0

2Kr

0

0

Kz

0

2Kz
g _

with

K; = Eg 

3 ln (r h / rb) '

K =
231n(rh/rb)
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The disadvantage of this formulation is that only axial and shear stiffnesses are con-

sidered, thus neglecting the bending stiffness of the bolt.

There are two main modifications proposed in this thesis to the Aydan rockbolt ele-

ment, namely, to replace bar elements by beam elements in the discretization of the steel

bolt, and to consier dowel effect to model the transverse movements between the steel bolt

and the grout-rock interface.

8.2.5 Properties of the rockbolt element

In this modification, a number of one-dimensional four- or six-noded rockbolt elements are

normally used to model a grouted rockhoit. The number of rockbolt elements required in

the analysis depends on the length of the rockbolt, the accuracy of the analysis, and the

amount of storage space available in a computer. Figure 8.3(a) shows how a typical six-

noded element is modelled to join onto a rock element, and its detailed node arrangement

is shown in Figure 8.3(b).

bolt

grout

(ui ,	 , (u2, v2 ) (u3 , v3 , 03)
1
•

2
•

3
•

• • •
4 5 6

( u4, v4) (u5, v5 ) (u6, v6)

(a)
	

(b)

Figure 8.3: Details of a rockbolt element

In this finite element model, the grout is discretised by an interaction between bolt

nodes 1, 2, 3, and rock nodes 4,5 and 6. The latter share one edge of eight-noded isopara-

metric quadrilaterial elements which represents the rock mass that the rockbolt is grouted

onto, and each node has two translational degrees of freedom. Throughout this thesis,

the six-noded rockbolt element is strictly modelled to join onto one side of an eight-noded

isoparainetric rock element in the manner as shown in Figure 8.3(a).

One of the main concerns of this thesis is to use a beam element as the sub-element to
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model the steel bolt, so that when internal shear forces and bending moments are consid-

ered, the steel bolt can exhibit a natural curvilinear bending characteristic when loading

is applied to the rock mass. Therefore, in common with a beam element, the middle node

of 1 he beam element has two translational degrees of freedom, while each end-node has

in addition a rotational degree of freedom, as shown in Figure 8.3(b). Initially, the cor-

res)onding nodes of the sub-elements that model the steel bolt and the grout share the

same coordinates.

The new rockbolt element is based on Aydan's type of grouted rockbolt element, and

SO they share the same characteristics. Hence the properties of the latter can be essentially

carried forward to the new element, viz:

1. Nodes 1,2 and 3 are on the axis of the bolt, and they represent the steel bolt of the

grouted rockbolt;

2. Nodes 4, 5 and 6 are on the outside surface of the bolt, which are attached to the

rock mass;

3. Throughout this chapter, the numbering of these nodes for a rockbolt element is

arranged strictly in the order as shown in Figure 8.3(b);

4. The relative deformation between the outside nodes 4, 5 and b and the central nodes

1, 2 and 3 produces the shear stress in the grout, which transfers loads from the rock

mass around the grout to the steel bolt of the rockbolt.

The one-dimensional rockbolt element is uniform and is 'cylindrical', and the steel

bolt and the grout are `axisymmetricar, which means they both have measurable length

and non-zero radius, and their axes are collinear. Further, the element is assumed to

have no weight. The rockbolt is made of isotropic, homogeneous, and perfectly elastic

material, and it can produce either linear or nonlinear deformation under loadings. It is

also assumed that there is no slip in the interface between the steel bolt and the grout,

and the interface between the grout and the rock mass. Materially nonlinear behaviours

such as slip, debonding and plastic yield could be added to the element in later research,

once the basic elastic element has been proved to perform acceptably.



cos	 sin	 ui

— sin 13 cos	 Vi

(8. 1)= R2 Ili

Numerical modelling of rockbolts	 173

8.2.6 Geometry of the rockbolt element

In common with other one-dimensional elements, the mechanics of a rockbolt element is

generally described in relation to its local axial direction.

Initiallly the global x-axis is taken along the longitudinal direction of the element.

When loading is applied, the element deforms and suppose at some stage, it lies on the

local x'-axis, which is inclined at an angle to the global x-axis, as shown in Figure 8.4.

y, V

Figure 8.4: Element geometry

It has been seen in Chapter 5 that the angle 3 at a point can be obtained from equation

(5.3) by
a	 as

Y	sin 0 = 	 	 Or	 COS 13 = 	

	

Va2 + a 2

 	
1a2 + a2s	 Y	 s	 Y

where as and ay are the Cartesian derivatives of the displacement functions of the element

in the axial and the radial directions respectively.

Suppose that node i has two translational degrees of freedom. Its displacement vector

in terms of the rotated axes x', y' is related to the Cartesian displacement u i in the

global axis by

and likewise, in the case of a beam element when the end-node i has an additional rota-

tional degree of freedom 0, this relationship becomes

lli =

Ui

Vi

Oi

cos	 sin

—sin/3	 cos

0	 0 1

0

0

iti

Vi

0,

= R3 u1 . (8.2)
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Combining these relationships, for example, for a three-noded beam element e, the

element 8 x 8 rotational matrix becomes

R

I-	 R3

02x3

03x3

03x2

R2

03x2

03x3

02x3

R3

(8.3)

where Omx7, is an m x n zero matrix.

8.3 Mechanical responses of rockbolt element - bar element

discretization of steel bolt

The grout annulus together with the two interfaces between the bolt and the grout, and

between the grout and the rock, is an important element for the stress transfer between the

steel bar/beam and the surrounding medium. This transfer is mainly made through the

shear response of the grout annulus. The transverse response of the grout annulus is also

an important factor in evaluating the form of failure somewhere within the grout annulus

and the dilatancy which may arise during the debonding process. In a two-dimensional

elasticity problem, the following mechanical models are suggested to simulate the above

responses, and they are evolved from the theory investigated by Aydan, and its full de-

scription can be found in Aydan (1989). Here, following earlier researchers, a bar element

formulation for the bolt is used; a beam formulation will be considered in the following

section.

In this section, a two-dimensional elasticity problem is described. It is necessary to

first of all fully account for the effect of the mechanical responses of rockbolts, so that

equations derived from these mechanisms can be combined to establish the small displace-

ment formulations of the rockbolt element. This forms the fundamentals of the proposed

rockbolt element.

The grout annulus is assumed to be of cyclindrical and axisymmetrical shape. The

mechanical responses of the annulus against applied loads are assumed to consist of a

shear response parallel to the longitudinal axis of the steel bolt and a normal response

perpendicular to that axis.
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U2
(8.7)
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8.3.1 Axial loading

From the theory of mechanics, the equilibrium equation in the axial direction of the bar

is defined as
dub,
	  =0,
dx'

where asb / is the axial stress of the bolt, and x' is the local coordinate in the axial direction

of the rockbolt element.

(8.4)

Then equation (8.4) has a solution

b	 b
= Eb E

which defines the stress-strain relationship, where

du'b
Ex / = —

dx'

(8.5)

(8.6)

at a point, with u'b as the axial displacement of the steel bolt, which has Young's modulus

Eb/

Figure 8.5: Normal stress/strain in bolt

In the local coordinate system, the displacement function of the steel bolt along its

axial direction x' is defined by

u'b (e) =	 (e) u1' + N2()u2 i + N3()u3',

and so equation (8.6) can be written in matrix form as

Ex/ = [—NI/ — N —N J

/

U3

where NI is the Cartesian derivative of the shape function Ni().

For example, for a three-noded bar element of length L,

=	 =
dNi 2 dNi

AT!
dx'	 L



(8.8)

(8.9)

(8.10)
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8.3.2 Shear strain in the bolt

The steel bolt is modelled by a three-noded one-dimensional bar element with certain

bending and normal strength. This assumption is quite reasonable for thin steel bolts of

sinall cross-section.

With this assumption, the axial displacements of the steel bolt are considered to be

constant in the local transverse y' direction, and so it can be taken that

du'
0.

dy'

The shear strain in the bolt is restricted by the shear stiffness of the bolt, and hence

the equilibrium equation for the transverse direction of the bolt can be taken as

x'y' = 0,

where	 is the shear stress of the bolt. This equation has a solution

T t / == Li6	 ty	 x y

where the shear strain

„y6	 (174

' xiYi — dx'

at a point, and Gb is the shear modulus of the bolt.

dx'

The y-displacement function of a bar element can be expressed in the form

3

V lb () = E Ni(e)Vit,

i=1

and, as a bar element discretization is used here, this displacement functions also holds

true for the bolt sub-element.

Hence, equation (8.9) can be written in matrix form as

v'

(8.11)-ysb , y , =	 — N —



U5

U2

Ui3
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T9
'rxi

•
•

•

Figure 8.6: Shear stress in grout (in local coordinates)

8.3.3 Shear stress in the grout

By construction, the steel bolt and the grout are axisymmetric and cylindrical. Their

cross-sections are concentric with radii rb and rh respectively, as shown in Figures 8.6 and

8.7.

With the usual notations, the displacement functions of the grout and the bolt are

defined respectively by

u

= [N1 N2 N3]

and

u'b = [N1 N2 N3]

Aydan (1989) showed that the equilbrium equation for the shear stress of the grout

Tg is governed by the differential equation (in cylindrical coordinates)
TX

dr9 ,	 79 I

	

TX  + TX	 0
dr	 r

where r is the radial distance from the centre of the steel bolt, or

i d	 q
- (rT- /) = 0.

r dr '

The solution of the above differential equation can be written as

Tg = G -ygrx i 	rs'

(8.12)

(8.13)

(8.14)

where
du'=

irx'	 d; 7

(8.15)
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which in fact defines the constitutive equation for the linear relationship between shear

stress and strain.

The shear modulus of the grout Gg is a constant. Therefore, by combining the rela-

tionships in (8.14) and (8.15), equation (8.13) can be rewritten as

1 d o,)	 d2 u/	 1 dug'

	

( du'	 g 0 = — — r = =	 +	 (8.16)
r dr	 dr	 dr2	 r dr

Equation (8.13) has a simple solution

r -yrgx , = —k 1	(8.17)

where k i is a constant independent of r.

Figure 8.7: Radii of bolt and grout

To determine this constant, it can be observed that from equation (8.15), the boundary

condition gives rise to
frb	 Th

-Y9 , dr = — [u
i

'	 = U b — Ur,,rs grb

where u 	 u'r are the axial displacements of the bolt and the rock respectively.

From equation (8.17),

f
rhrh

lirgx , dr =	 —	 dr = —k 1 In (rhlrb)
Jrb	 frb —

which gives

=  14'
ln (rhlrb),

and therefore,
1 /	 /

Ub —Ur
n/g = 	 	 (8.18)— 1 f	 / \ 	 .

	in ri.,,Irb)	 r

In the plane strain finite element discretization of the rockbolt, the radius variable r

cannot be used directly, and -yrflx , must be treated as a constant through the cross-section.



-
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(rb + rh) 
It will be approximated by using the value at the mid-radius r = r = 	  so that

2

nrg	 =
—

=--

1
Ur')

— N1 — N2 — N3]

ui1

U2

U3

/
U4

Ui5

1	 /	 /	 \	 (14 —
r in	 7.iiirb)

1
—
7'1 

[N1 N2 N3

Uf6

where

or simply in matrix form,

i = ln (Th/rb)

1
= — N u.	 ri (8.19)

8.3.4 Dowel effect

\\T illie the differential axial movement between bolt and rock is governed by the grout

shear modelled above, it is equally important to greatly restrict differential transverse

movements, ie. to prevent the bolt from penetrating into the rock mass. The simplest

way of modelling this dowel effect is to introduce an artifically large stiffness modulus D

governing this movement. This stiffness can be thought of as a spring between the steel

bolt and the grout-rock interface nodes in transverse direction, as shown in Figure 8.8.

Figure 8.8: Dowel effect

The dowel effect is defined as the difference in the local transverse displacements of

the bolt and the grout, that is,

0 = Vb — Ur.
Yi

(8.20)



element defined by the matrix

—
Eb 0 0 0

0 Gb 0 0
D=

0 0 G9 0

0 0 0 D
_

(8.23)
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/V4

Vir = [N1 N2 N3] nliu5

and
IVi

= [N1 N2 N3]

/V3

and so equation (8.20) can be written as

_

ey , = [N1 N2 N3 — N1 — N2 — N3]

with constitutive equation

 — D E ,Y —	Y .

V2/

i) -

V2

VI5

,,,,
t/4

/v3
(8.21)

/V3

8.4 Element strain matrix - small displacement analysis

With the usual notation, the constitutive law for a linear elastic behaviour of the rockbolt

says that the displacement, strain and stress vectors of the whole system are related in

matrix forms by

e = 13' if

1

o- = D E. ,

In an arbitary rockbolt element e, D is the constitutive elasticity matrix of the rockbolt

where



(8.26)

with
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Lb	 is Young's modulus of the steel bolt,

Gb	 is the shear modulus of the steel bolt,

Gg	 is the shear modulus of the grout,

is stiffness modulus of the dowel effect,

with
c = (c	 -y

,yrb ,v, 77.9x, yg

(8.24)

= (ab, Tb, , 79 a
g

,x	 TS

with respect to the displacement vector (in the local coordinates) of the rockbolt element

u' =	 4 v /2 u'3 v3' u'4 v4' u'5 v'5 u'6 116 7 .	 (8.25)

By combining the matrices for the different mechanisms described in the last section,

the element strain matrix of the rockbolt element can be obtained in a manner described

below.

Let [B'b 't
]
t and [By' 

routii 
denote the strain sub-matrices related to the bolt and the

grout respectively for node i of the rockbolt element. By assembling equations (8.7),

(8.11), (8.19) and (8.21) according to (8.22) and (8.24) with respect to the displacement

vector u defined in (8.25),

[wbo it li =

—N[ 0

0 —NI

cNi	 0

1	 1
= 	 ,c = re

r m vhi rb

and

[13 g/ rout] i =

for any node i in the grout.

0	 0

0	 0

—c Ari 0

0 —Ni

(8.27)
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The strain matrix for the rockbolt element is written in the form

= [BLit I Blgrout

so that by assembling the above matrices for all nodes i in the element, it can be seen

I hat

B' =

—M 0 —M 0

0 —M 0 —M 0

cNi	 0	 cN2 	0	 cN3

0	 N1 	0	 N2	 0

0

—/q

0

N3

0

0

-cNi

0

0

0

0

-N1

0

0

-cN2

0

0

0

0

-N2

0

0

-cN3

0

0

0

0

-N3

(8.29)

This element strain matrix is expressed in the local axis, it will be necessary to trans-

form it into the global axis before the next step can be taken. This procedure will be

shown in section 8.7.

8.5 Mechanical responses of Tockbolt, element - bea-rn ele-

ment discretization of steel bolt

The element strain matrix derived in the last section is based on the mechanisms that

simulate various reponses of a rockbolt. The new rockbolt element proposed here shares

the same characteristics of the old one, and fundamentally, it is subject to the same re-

sponses. Consequently the mechanisms mentioned in Section 8.3 are still valid. However,

as the new element uses the three-noded beam element to model the steel bolt, modifica-

tions must be made to accomodate the different transverse displacement function in this

element discertization.

Recall from Section 6.3.2 that the axial displacement function of a three-noded beam

element can be expressed in the form

3
14g) = E Ni(0141,	 (8.30)

i=1

where Ni ()'s are the usual shape functions associated with the local x'-displacement of a

beam element, and in the transverse direction,

3

	

4(0 = EHi()Vii L E	 (8.31)
i=1	 i=1,3

(8.28)
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where //()'s and mi ()'s are the shape functions in the local y'-displacement of a beam

element, as defined in equations (6.30) and (6.31), and L is the length of the element.

The axial displacement functions of the bar and the beam elements are of the same

form, so there is no need to modify the two mechanical responses involved in the local

axial direction. However, it is necessary to interpret the transverse mechanical responses

under the new displacement function in this direction.

In the second mechanism described in Section 8.3.2 where the shear strain in the bolt

is simulated, the equilibrium equation for the transverse direction of the bolt in (8.7) is

given by
drbs'y' = 0,

dx1

By equation (8.30), its solution in -y!, y, can be modified to the form

(8.32)

V2 (8.33)

V!3

03

Further, in the fourth mechanism in Section 8.3.4 which simulates the daKcel effec

between the steel bolt and the grout-rock interface, the radial displacements become

V4

vr' = [Ni N2 N3]

and
v'

01

v'b = [H 1 Lrni H2 H3 LM3]

3

03

and therefore the equation that governs the dowel effect • n (8.20)

5

V6

V2

Ea = vb — 'Ury'
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can now be expressed in matrix form

V2

V3

03

( 8 .34)

v4

„ , /u5

V6_

Equations (8.33) and (8.34) essentially describe the differences between the two sub-

element discretizations. Each three-noded beam element involves two more degrees of

freedom, so there is an increase in size in the resulting element strain matrix and hence

the global stiffness matrix. however, it is worth noting that with today's ever increasing

computing power and storage space, this increase, in practice, will not dramatically affect

the overall efficiency of the method.

8.5.1 Element strain matrix

Since a beam element has in addition a rotational degree of freedom attached to its end-

nodes, the displacement vector (in the local coordinates) of the rockbolt element becomes

u' =	 U12 VI2
/	 / )T

U3 V3 03 U14 V 14 71 15 V15 14 V6) • (8.35)

Matrices expressed in (8.33) and (8.34) supercede those in (8.11) and (8.21) respec-

tively for the local transverse direction of the bolt, and by following the same procedure

for combining the matrices that represent the four mechanisms, the element strain matrix

of the new rockbolt element can be obtained.

Thus, the strain matrix for the middle-node of the bolt becomes

N' 0

0

	

cNi 	 0

	

0	 Hi

(8.36)
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and for the end-nodes,

[Bibolti =

—Al,! 	 0	 0

0 —/ri —L774

cNi 	0	 0

Lmi

(8.37)

with
1	 1

r = — = 	
ri	 r ln (rhlrb)'

while for any node in the rock,

0	 0

0	 0
[Birockl (8.38)

—cN,	 0

0	 _

The element strain matrix is expressed in the partition form

(8.39)B 1 = [BlboltI Bir °cid 4x14

and it call be seen by combining equations (8.36), (8.37) and (8.38) with respect to the

displacement vector defined in (8.35) for all nodes i in the element,

—Aq	 0 0 —M 0 —M 0 0

Blbolt
0 —Lm4 0 0 —Lrn/3

(8.40)
cN i 	 0 0 cAT2 0 cN3 0 0

0	 H 1 Lm i 0 H2 0 H3 Lrn3

and
0 0 0 0 0 0

0 0 0 0 0 0
Brock = (8.41)

—cNi 0 —c N2 0 —cAT3 0

0 —N1 0 —N2 0 —N3

This strain matrix is significantly different from the one defined in (8.29), and it high-

lights the essential difference between the finite element modelling of the steel bolt by the

bar and the beam element. We have seen in earlier chapters the advantages of introduc-

ing rotational degrees of freedom to the end-nodes to transmit bending moments, and it

will be interesting to see how much effect it will have on the steel bolt and hence on the

rockbolt.
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8.6 Element stiffness matrix in local axis

For the purpose of illustration, the beam element is taken as the sub-element to model

the steel bolt throughout the rest of this chapter, so that all formulations thus derived are

based on the new rockbolt element. For an equivalent formulation and analysis for the

bar element discretization, the same procedure can be followed.

To determine the stiffness matrix of a rockbolt element, it is convenient to write the

matrix product B'TDB  in the partition form

I s
Mbolt livigrout

NIT	 I "1 k rock

—14 x14

where, for the ease of illustration, it can be written

Ni twit = rv1 + 1\4 2 .
	 (8.42)

In the local axis with the element strain matrix B' defined in (8.39) and the constitutive

matrix D defined in (8.23), it can be readily shown that after matrix multiplications, the

sub-matrices M 1 and M2 can be written respectively as

1\4 1 =

EbAT

o

0

EbMN

0

EbN A'

0

0

0	 0

Gb1-1;2	 Gb LI-1;rn

Gb LI-1;m1	 Gb L2 m 2

0	 0

GO-1;N Gb L.N7n

0	 0

GbHH4	 Gb LI14771

GbLI-1;n4GbL27711771/3

Eb

0

0

EbN2

0

EbMAT..

0

0

0

GbM.II

Gb LI--Irn

0

GbN2

0

GbHH

GbLI-1m",

EblVOr.

0

0

EbNN

0

EbM2

0

0

0	 0

GbMI-P, GbLHm

GbLI-1.7n1GbL2m'im",

0	 0

GbNN GbLN7rt,

0	 0

GbH42	 GbLI-14m1,

GbLIP,rn.13 GbL2m?
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Gg c2 N? o	 0 G9c2 N1 N2 0 G gC2 NiN3 0	 o

o Dll?	 DLHi m i 0 Dill H2 0 DH1H3 DLHi m3

0 DLHimi DL2 m1 0 DLH2m1 0 D LH3 m i DL27n 1 m3

G9 (.2 N1 N2 0	 0 G g c2 I q 0 G g C2 N2 N3 0	 0
M2 = ,	 (8.43)

0 DH1H2 DLH27711 0 arq 0 DH21-13 DLH2m3

G9 c2 N1 N3 0	 0 G9C2 N2N3 0 G9c2N? 0	 0

0 D Hi Hi DLII3 m 1 0 DH2H3 0 DH.?	 DLH3ral

0 DLI-Iinil DL 2 mi m3 0 DLH2 m3 0 DLH3rn3 DL2m3

while

_ Gg c2 N? 0 —G9c2 N1 N2 0 —G9e2 Ni N3 0

o —DN1111 o —DN2H1 0 —DN3 Hi

o

—G 9 c2 N1N2

—DLN1 M 1

o

0

—Ggc2 Aq

—DLN2 M 1

0

0

—GgC2 N2N3

—DLN3 M1

o
Mgrout

o —DN1112 o —DN2H2 o —DN3H2

—G g c2 MN o —G9 c2 N2 N3 0 _G g c2 Aq 0

o —DNi H3 o —DN2H3 o —DN3H3

o —DLNiml 0 —DLN2m1 0 —DLN3m3i

and

Mrock =

G gC2 N

0

G ge2 N1N2

0

G 9 C2 N1N3

0

0

DN?

0

DN1N2

0

D N N3

G g C 2 N1N2

0

Ggc2N

0

G g C 2 N2N3

0

0

DN1N2

0

DN

0

DN2N3

G ge2 Ni N3

0

G 9 c2 N2 Ni

0

Ggc2N.

0

0

DN1N3

0

DN2N3

0

D

(8.44)

where H i , //3 , m 1 and m 3 are the shape functions of a beam element in the local y-

displacement.

Each entry in this matrix product involves product of stiffness factors, shape functions

and their derivatives. All of these are known functions and parameters so that it can be

integrated term by term to form the element stiff-ness matrix. This procedure can be



[Bbord i =

and likewise for the end - nodes,

[Bboid i = (8.46)
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carried out either analytically or numerically by some standard accurate algorithms. This

integration process will be described later in this chapter.

8.7 Element stiffness matrix in global axis

After the first incremental load is applied to the structure, deformation occurs and it

is assumed that at some stage, the rockbolt element lies along the local axis, which is

inclined at an angle of /3 to the global axis (see Figure 8.4). In finite element analysis,

element stiffness matrices obtained in the local axes have to be converted to the global

axis before it can be assembled to form the global stiffness matrix for the complete system.

In view of the rotational matrices introduced in equations (8.1) and (8.2) in the first

section of this chapter, the strain sub-matrices for node i in the local and the global axes

are related by

[Bbo/di = [Bboit]

etc.

Using these relationships, equations (8.36), (8.37) and (3.38) can be modified to become

the strain sub-matrix for the middle-node of the bolt as

—N: 0

0 —H"	 cos f3 sin

cNi	 0	 —sin/3 cos/

0	 Hi

—NI cos 0	 sin 0

H" sin 0 —H" cos 0

cNi cos i@ cNi sin 0

—Hi sin 0 Hi cos 0

- cos 0 —NI sin	 0

H i' sin 0 —H" cos 0 —Lm

cN cosB cNi sin	 0

—Hi sin /3 Hi cos i@	 Lrni

(8.45)



(8.47)
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while, for the rock,

[Brockii
0	 0

	

—cNi cos	 --eNi sin

	

Ni sin p	 - Ni cos /3

These strain sub-matrices can replace their preceding ones so that by considering all

nodes iii the rockbolt element, the element strain matrix

B = P3bou 
F Brock}4x14

can take the form

B bo	 =

—N; cos fl —N; sin g	 0	 —M cos /3 —M sin g -N4 cos /3 —1q sin fl

H; sin /I —H; cos #—Ln-1,	 _N sin jI —H cos # H sin /I	 cos p

cNi cos /3 cNi sin fl	 0	 cN2 cos /3 cN2 sin # cN1 cos i3 cN3 sin #

— Il l sin # H 1 cos #	 Lm l —11 2 sin p B 2 cos p	 3 sin 13 H1 cos

0

0

Lm3

(8.48)

and

0 0 0 0 0 0

0 0 0 0 0 0
Brock =

—cNi cos/3 —cAri sin (8 —cN2 cos ,3 —6.11'2 sin Ig —c11/3 cos /1 —cN3 sin iY

N1 sin )3 —N1 cos 0 N2 sin 0 —N2 cos p N3 sin [3 —N3 cos p _

(8.49)

This element strain matrix is now expressed in the global axis, and we are ready to

form the matrix multiplication and hence the element stiffness matrix. The next step is

to examine the matrix integral Iv BTDB dV which advocates the use of some accurate

numerical methods.

8.7.1 Integration

The stiffness matrix for the rockbolt element can be obtained by integrating term by term

in the matrix integral

BTDB dV.

The integration is performed over the whole domain of the element, so it is necessary

to first of all investigate its domain first.
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Unlike other types of elements, the rorkbolt element consists of two sub-elements, and

they are of different shapes and sizes. The integration of this matrix product over volumes

of these sub-elements must therefore be considered seperately, so that the operation can

be performed over different domains under different schemes.

In the mechanisms for calculating the normal and the shear strain for the bolt, the

bolt is assumed to be axisymmetrical and cylindrical, and it has a cross-sectional area of

Ab = 7rr,

over which the integrand is constant.

hence in these two cases, the area Ab can be taken as the 'integration area', and

the matrix integral reduces to a simple integral that involves only one variable (the bolt

length), whence it can be evaluated numerically by some standard accurate numerical

methods, such as Gaussian quadrature.

For the shear stress in the grout along the axial direction of the element, it has been

seen from equation (8.19) that
1

r s
, = — N U.
 ft

For convenience, the strain matrix can be written in the form

1	 1
B(r,)= —

rt 
N = B(0

where

N = [Ni N2 N3 — —N2 — N3

(8.50)

so that B() = N is the matrix that primarily involves the shape functions Nis in the

axial direction of the beam element.

The domain of the integral is over the grout, and hence the stiffness matrix for this

component becomes

Iv
BTDB dV = 1 BTDB dA dxI A

27r
 f

L 
BT DB dx,

o
(8.51)



i.e.

Or, from equation (8.50),

hence,

B = reti,

r-
B = —

r
B,

(8.54)

(8.55)

27r27riJc
0 

BT 
DB dx =

L
= 271-.6.2	 BTDB dx.

Jo

j
v B T DB dV =

f

r2,E2T D dx
0

(8.56)
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since

f
A B TDB dA =

pr
BTDB r dr

rb
rh 1

= 27r I	 BTDB r dr
rb r

27r
BTDB. (8.52)

Technically B() is not the 'true' shear strain-displacement matrix B(r, as it would

not be possible to include the radius variable T in this analysis. Hence B can only be

approximated (and also the term 7(r)) at the mid-radius

1,
r = —

2
(7'5+ rh)•

The approximate strain matrix h can then be related by

=	 =
	 (8.53)

1
B TDB = r2i2 BTDB.

and it follows from (8.51) that the integral becomes

The approximated matrix B and hence the matrix product in (8.56) involve only one

variable x (or so that the integral is reduced to a single integral. Hence the 'integration

area' of 27rr 2 In (rh lrb ) can be assumed here.

The intergal expressed in (8.56) can be integrated numerically term by term, for ex-

ample, by Gaussian quadrature by rewriting it in the form

BT DB dV = 7r.er2 L	 BTDB
	

(8.57)

27r

In the mechadism that simulates the dowel effect, the integration is over the space be-

tween the steel bolt and the grout-rock interface. This space has a uniform cross-sectional
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grout area which is the area between the 'concentric' grout and the bolt, and therefore

the 'integration area' of 7r(r?, — 7 .1) can be used.

Alternatively, by following the same arguments, integrals that relate the four mecha-

nisms can be expressed in single integral forms that involve one variable. All entries in

the matrices B and D are known, so that every entry in the matrix product f3Tp ft only

involves product of known functions. Consequently they can be integrated analytically

term by term. Of course this method is only efficient during the first incremental load,

when the local axis is the same as the global axis. The formulation will get increasingly

complicated after deformation occurs, whence the numerical method is much preferred.

8.8 Large displacement analysis

8.8.1 Introduction

Starting with a linear stress-strain relationship, the stiffness matrix of the rockbolt ele-

ment has been derived in the last few sections. This formulation is a linear one, and it can

only be used to predict linear deformation of a structure. In this section, a corresponding

formulation for large displacement will be established.

Qu and Reed (1992b) carried out a full investigation on a rockbolt element. This ele-

ment was of the same coupled form, except that bar element discretization was used for

the steel bolt. The analysis started with the fundamental nonlinear displacement, strain

and stress relationships, and these formulae were applied to the equilibrium equation and

other fundamental laws in mechanics to derive the nonlinear element strain matrix.

Although these nonlinear relationships have already been considered earlier in estab-

lishing the large displacement analyses of other types of elements, including those of a

beam element, it would be more practical and efficient if formulations of these analyses

can be adapted directly for the rockbolt element. In particular, as it has been suggested

that beam element discretization is used for modelling the steel bolt in a rockbolt, it seems

appropriate that the large displacement formulation of a beam element can somehow be

made use of in the new algorithm.



Numerical modelling of rorkbolls 	 193

8.8.2 Stiffness matrix for the grout

In Section 8.5, the matrix product BTDB for small displacement of a standard six-noded

rockbolt has been written in the block matrix form

I, a
Mbolt Iv-I-grout

rTAi
'"grout ivirock

—14 x 14

where Mbolt is the linear matrix associated with a beam sub-element.

The nonlinear stiffness matrix for the rockbolt element is made up of a linear part and

a nonlinear part. For the linear part, since the grout is connected to the surrounding rock

interface, therefore the sub-matrices Mgrout and Mrock remain unchanged, and they can

be retained here. For the nonlinear part of this interface, the grout can be combined with

the surrounding rock element, whence the established iteration scheme for the nonlinear

part of an eight-noded isoparametric element can be brought in to deal with the grout.

However, it is still required to find a suitable large displacement formulation for the steel

bolt.

8.8.3 Stiffness matrix for the steel bolt

To bring in the large displacement formulation in the axial direction of the steel bolt, the

simplest approach appears to be directly replacing 	 Mbolt dV e by the nonlinear stiff-
V''

ness matrix of a beam element as given in equation (6.32), taking F = EA—
du 

as a variable.
dx

however, from equation (8.42), it can be seen that

Mbolt M1+1\42)

where the two matrices M 1 and M2 involve factors Eb,Gb, C9 , and D, which means that

Mbolt contains contributions not only from the bolt, but also from the grout-rock interface.

Thus, if Mbolt is replaced by the stiffness matrix of a beam element only, all contributions

from the grout in this sub-matrix will be removed, and hence the resulting matrix only

consists of contribution from the bolt, and therefore it cannot appropriately describe the
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full effect of the grout.

In the partition form of the element stiffness matrix, the difficulty here is to find a way

of replacing the linear stiffness matrix of the bar sub-element by a nonlinear one of the

beam sub-element, while retaining contributions from the grout in Mboit•

In Swoboda MarenCe's (1992, 1992, 1995) investigation of the bolt crossing joint

element, it was suggested that in the two-dimensional form of Aydan's four-noded rockbolt

element (with the node order starting from the grout, as opposed to starting from the bolt,

which is assumed throughout in this thesis), the stiffness matrix of this element could be

modified to

K=

—
2k9

0

kg

0

—2k g

0

—kg

0

0

k, + kd

0

—k,

0

—kd

0

0

kg

0

2k9

0

—kg

0

—2k9

0

0

—k,

0

k, + kd

0

0

0

—kd

—2k9

0

—kg

0

kb + 2k9

0

—kb+ kg

0

0

—kd

0

0

0

kd

0

0

—kg

0

—2k0

0

—k b + kg

0

kb + 2k9

0

0

0

0

—kd

0

0

0

kd

(8.58)

with stiffness factors

EbAb	 G6A3
k b =	 k, =	 kg =	 Gg 	 (8.59)

L	 L	 3	 TO'

and from the formula suggested by Brady Sz Long (1988),

3/4

kd = Eb l [	 z	 (8.60)
2.r.,b1(rhub — 1)]

where Eb, G b are respectively the Young's modulus and the shear modulus of the bolt,

Gg, D the respective shear modulus and the Young's modulus of the grout, Ab the cross-

sectional area of the bolt, L the length of the element, r b and rh are respectively the radii

of the bolt and the grout, and kd is the dowel stiffness.

Extracting the relevant part of (8.58) that relates to node i of the bolt

kb + 2kg 0 1

0	 kd

and comparing it with the equivalent part of Mbolt in (8.43)

Eb NI 2 + Gge 2 N?[ 0

0	 Gb.HP + DHi2

(8.61)

(8.62)
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it can be seen that both of them combine contributions from the bolt and the grout. In

particular, in the first entries, the terms k b and Eb N"2 describe the contributions from the

axial direction of the bolt. Therefore it seems appropriate that the term Eb NP in (8.62)

can be directly replaced by k b , while retaining all other entries in the sub-matrix Mbolt•

Specifically, k b can be taken as the large displacement formulation of a beam element so

that nonlinearity can be introduced without affecting contributions from the grout.

To execute this replacement in (8.43), the Young's modulus of the steel bolt, Eb, in

the constitutive matrix of the rockbolt as defined in (8.4) can be simply set to zero, thus

removing contributions from the axial direction of the bolt, whence the nonlinear stiffness

matrix of the beam element can be added directly to this sub-matrix.

This replacement seems to work well, and in practice can produce satisfactory results.

The significant advantage of this method is that it allows the use of some existing theories

on various types of elements, so that the formulation and the manipulation of the rockbolt

element carried out by computer can be kept as s'nnp)e as gessibe, wHe cetaiaias t?‘%

overall properties and accuracies. In a computer program, the subroutines that are written

to compute the deformations of isoparametric and beam elements can be recalled and

re-used inside the rockbolt element subroutine, so that there is no need to write extra

algorithms for this element.

8.8.4 Integration for the residual load

To calculate the elemental residual load in large displacement analysis, the integral

=
 fB

T 6c d9, e	(8.63)
ct

over the domain Sr for each element has to be considered in each incremental load.

Essentially, in a mesh of finite elements, the integral for calculating the residual in

each iteration has to be carried out for each element by an appropriate accurate numerical

scheme before it can be assembled into the global residual load vector. Therefore, an

iteration scheme must be adapted for a rockbolt element.

Two sub-elements of different domains are used in this rockbolt element discretiza-

tion, so it is necessary to consider these two integrals separately. The large displacement
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formulation for beam element has been considered in Chapter 6, and as the steel bolt is

modelled by a beam element, its iteration scheme can be used for the bolt sub-element for

this purpose.

For the grout interface, the integral defined in (8.63) becomes

IR, = IL 271 - 	 BT So- r dr dx,	 (8.64)
rh

Jr,.

which can be further simplified by (8.55)

f

rh	 Th
B T8o- r dr =	 r •	 Scr dr

rb	 frb

r (rh — rb)f318°- (8.65)

Therefore, the integral associated with the grout for the iteration scheme carries an

'integration area' of

1 ,
27rr (rh — rb ) = 271- • —

2 
vh rb)(rh — rb) = 7r (r

which ill fact is the true cross-sectional area of the grout.

As before, the matrix B has to be approximated at the mid-radius r = r = —
1 

(rh rb),
2

so that ti and hence the integrand in (8.63) involves only one variable e. Hence, (8.63)

can be integrated numerically, for example, by Gaussian quadrature.

Therefore, the aggregate 'integrating area' of

71" (11 —	 x — =
1	 27r (rh — rb)

ri

can be used to integrate BTScr.

When the above methods are implemented, the residual load for the grout interface

can be found by

re = Sfe + I BT So- dCle

where f is the element load vector, so that the iteration scheme for examining the con-

vergence of all subsequent residual loads in this sub-element can be carried out in exactly

111e same way as before.

This algorithm has proved to be a very efficient one in a practical sense. In the com-

puter program that simulates deformation of rock mass, the iteration scheme for the grout
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interface is the same as the one for the rock mass, and therefore it has the convenience

of sharing the same subroutine without any need of writing an extra subroutine for the

sub-element.

8.9 Examples

The purpose of using rockbolts in jointed rock is to increase its strength, so that partial or

total collapse can be prevented. In the two-dimensional example described in section 7.5.1,

a rock mass with internal cracks has been examined. When this rock mass is subject to a

range of loadings, it has been demonstrated how the joint rocks are liable to slide away or

penetrate into each other; and when the loadings are big enough, part of the jointed rock

may slide away indefintely, thus causing instability in the structure.

To appreciate the effectiveness of using rockbolts as support in a rock mass, Figure 8.9

shows a two-dimensional model that is being used as a hypothetical example here. This

model is very similar in construction to the first example used in Chapter 7 for examining

joint elements, except that through the discontinuities between the rock mass, a rockbolt

is bolted to serve as a reinforcement, so that direct comparisons can be made.

In this model, the two rock blocks, the joint and the grouted rockbolt are all assumed

to be made of linearly elastic, homogeneous and isotropic materials with different mate-

rial properties. The surrounding rock mass is modelled by two uniform rectangular rock

blocks which are identical in size and have the same material properties. One rock block

is rigidly placed on a rough horizontal plane, so that no sliding or tilting is allowed at the

bottom end of the block. The other rock block is placed directly on top of the first block,

so that the gap between these two blocks creates discontinuities within the rock mass, and

the space can be characterized by a smooth horizontal joint. This joint assumes a certain

set of moduli ks and kn , which are the joint stiffness per unit length in the tangential and

normal directions respectively. With this joint, the two blocks can penetrate into each

other, and/or the top block can slide away when the structure is subject to some loadings,

as investigated in the previous chapter.

To restrict and stabilize the movement of these two rock blocks, a grouted rockbolt is

bolted through them via the joint at an angle of to the horizontal, as shown in Figure



joint element

Numerical modelling of rockbolts 	 198

8.9. To initiate deformation, a uniform surface traction is applied horizontally from the

left, and is normal to the vertical left hand surface of the top block .

rockbolt

Figure 8.9: A simple example involving rockbolts

For finite element discretization, each rock block is modelled by a mesh of 32 eight-

noded isoparametric elements, while the joint and the grouted rockbolt are respectively

modelled by meshes of eight identical six-noded joint elements and eight identical six-

noded grouted rockbolt elements. The rockbolt is bolted onto the rock, and is connected

to the rock mass in a manner shown in Figure 8.3(a). It is also assumed that the rockbolt

is rigidly fixed at its lower end. In this representation, the bolt shares one side of the

neighbouring eight-noded isoparametric rock element, and hence initially the nodes of the

bolt coincide with the corresponding nodes on the interface of this rock element.

rockbolt
element

Figure 8.10: Element details of structure

The sub-elements that discretise the steel bolt are connected to the rock at the end-

nodes. To elaborate on the element construction of the mesh where the rock block, the

joints, and the grouted rockbolts meet, Figure 8.10 shows the initial details in the vicinity

of this area. At this intersection, the nodes of these elements are inter-connected in the
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mariner shown in Figure 8.11. That is, the bolt is continuous across the joint, but the rock

nodes are not.

steel bolt

Figure 8.11: Node details at intersection

For direct comparision, two problems are run. In Problem 1, the steel bolt is modelled

by a mesh of bar elements, while in Problem 2, beam elements are used. In both problems,

the same mesh is used for the structure. All materials used are assumed to be linearly

elastic, isotropic and homogeneous. The tangential and the normal components of the joint

stiffness are both taken to be 10 6 N/m 2 . The following table gives the material property

values for the rock masses and the rockbolt used in both problems:

Elasticity

modulus

KN/m 2

Poisson's

ratio

Shear

modulus

EN/m2

Radius

m

Rock 400.00 0.30

Bolt 1600.00 0.30 0.04

Grout 800.00 0.30 400 0.08

Table 8.1: Material properties of the rockbolt

The purpose of this exercise is to use numerical simulation to examine the viability of

the new rockbolt element by comparing the bar and beam element discretizations of steel

bolt under identical situation. It is hoped that with the help of the results of these two

problems, the performance of the new algorithm can be evaluated, and that the new algo-

rithm can prove to be competitive and can offer greater finesse in the design of rockbolt

models in tunnel engineering.
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Note that in all experiments carried out in this section, an exaggeration factor of 300

is used throughout to produce the deformed mesh.

8.9.1 Problem 1: bar element discretization of steel bolt

This problem creates the situation where the original Aydan's type rockbolt element is

modelled in the analysis to evaluate the use of rockbolts in jointed rocks, and the formu-

lations are based on the algorithms derived from its simulated mechanical responses.

In the finite element discretization, the rockbolt is jointed onto the neighbouring rock

element as shown in Figure 8.3(a), with its element details shown in Figure 8.3(b), except

that the end-nodes of the steel bolt only have two translational degrees of freedom. For

simplicity, only small displacement formulations are used.

From the linear strain matrix expressed in (8.29), a similar procedure as described in

sections 8.4 and 8.5 has been followed to form the stiffness matrix for a rockbolt element

in the global axis. For all other types of element, formulations are taken directly from

those described in earlier chapters. With this arrangement, Figure 8.12 shows the results

of this formulation, as executed by the computer.

The figure shows that, although the two rock blocks between joints can be stablised

by the use of rockbolt, the overall effect is not entirely a satisfactory one, with a tendency

for top rock block to rotate at the point where the rockbolt is bolted through the two

rock blocks, while the bottom rock block remains relatively stable in relation to the top

block. It can be seen that the left hand side of the top block tends to move away from

the bottom block to open up a space between the joint, and in the right, the top block

penetrates slightly into the bottom one.

It can be argued that the amount of rotation can somehow be reduced by increasing

the stiffness of the joint, but in general, the existence of the rotation and the space between

the two blocks in the left hand side suggests that the stability of the rock mass looks quite

questionable, especially as these results are obtained in the small displacement analysis.

lithe loadings are increased slightly, it can be envisaged that further rotation may occur,

and although the top rockbolt may not slide away completely, instability may occur in the

rock mass.
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Figure 8.12: Problem 1 - bar element discretization of steel bolt

Further, it is interesting to note that the top half of the deformed rockbolt exhibits

disjoint behaviour between its members. The deformation between members is not strictly

strut like, but it owes more to the fact that the neighbouring rock element that the grout

is attached to exhibits a natural deforming phenomenon. These 'discontinuities' between

rockbolt elements echo the difficulties encountered before, and they reflect the unsatis-

factory results obtained when bar elements are used to model a thin rod (please refer to

Chapter 5). It confirms that bar elements may not be the ideal elements to model the

steel bolt in rockbolt element.

Higher Gauss point integrating rules have also been used in this problem, but no
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improvement could be observed.

8.9.2 Problem 2: beam element discretization of steel bolt

In this problem, the new rockbolt element replaces Aydan's element in the last Problem,

while all other conditions are the same as before. Here, two trial runs are made. The

first run uses small displacment formulations, while in the second, large displacement

formulations are used.

1. Small displacement analysis

01/111110111111111111

2	 3	 4	 5	 6

Figure 8.13: Problem 2 - beam element discretization of steel bolt (small displacement)

Figure 8.13 shows the results of the small displacement analysis, as executed by the

computer. It suggests that the whole structure deforms as one unit, which effectively
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means that the rockbolt has totally compensated the joint within the rock mass, so

that no discontinuities within the rock mass have any effect on the structure. Con-

sequently, the deformations between elements are much smoother, and the rockbolt

can hold the rock blocks between the joints very well without rotation or penetration.

Further, it can be seen that the rockbolt is connected by its members to form a

rigidly jointed frame, so that the rockbolt in this representation offers much more

satisfactory results without exhibiting any 'discontinuities' between members. This is

mainly because an additional rotational degree of freedom is allowed at the end-node

of each beam element, and the bolt sub-elements are allowed to transmit bending

actions between them. With the total absence of the strut like behaviour, together

with a smooth deformation of the whole structure, it suggests that beam element

discretization of the steel bolt offers greater flexibilty and stability than in Problem

1, and it reflects a much more realistic real life situation.

2. Large displacement analysis

To give a more realistic representation, Problem 2 is run again using large displace-

ment formulations for all elements. Figure 8.14 shows the results of the computed

results, and it can be seen that the general shape of the deformed body is very simi-

lar to Figure 8.13 when small displacement analysis is used, except that a very slight

rotation of the top rock block is noticed. However, the amount of this rotation is

very small, and it should not affect the stabilty of the whole structure. This confirms

the superiority of beam element discretization, as the smoothness of the deformed

structure offers greater stability, and in real life, this rockbolt system can act as a

good support system to prevent structural failure of the tunnel during excavation.

8.9.3 Comparisons between trial examples using different parame-

ters

As an experiment, further trial parameters are used in Problem 2. In particular,

Figure 8.15 shows the results of the large displacement analysis when identical pa-

rameters are used in the same mesh, except that loadings are now applied to the

structure from the right. The direction of the surface traction is against the inclina-

tion of the rockbolt, so that the rockbolt is subject to higher tensile strength of the

rock mass. Again, it can be seen that the rockbolt can hold the rock blocks and the
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Figure 8.14: Problem 2 - beam element discretization of steel bolt (large displacement)

joint quite well with very small amount of rotation, and the whole structure deforms

smoothly, as in Problem 2.

Comparisons between other trial values used in the same example were carried out,

and it is found that the results are very similar. However, it must be pointed out that the

use of parameters and material properties in this example plays a vital part in the overall

results, as these quantities contribute significantly to the stiffness matrix of the structure,

and hence the outcome of the deformation.

With a carefully chosen set of parameters which resembles closely a real-life situation,

it can be concluded that the new algorithm proposed here represents a better mechanism

to discretise rockbolts in tunnel engineering, and the use of beam elements is seen as a
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Figure 8.15: Problem 2a - uniform surface traction applying from the left

more desirable finite element discretization of the steel bolt.

8.9.4 Limitations of the joint element in these examples

Throughout this thesis, cracks and discontinuities between rock masses are discretised

by joint elements as described in detail in Chapter 7. One of the main disadvantages

of using this algorithm is that only small displacement formulation for joint element has

been derived. Further, the two parameters which govern the movement of the joint are

its normal and tangential stiffness. Although these linear factors can adequately control

movement in the axial and the transverse directions, there is no mechanism to deal with

the case when the rock masses start to seperate or to penetrate into each other between

the joints. These phenomena are clearly evident in all examples set in this section, and
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nonlinear mechanisms to govern joint opening and to prevent interpenetration are needed,

10 produce more realistic results.

8.10 Conclusions

In this Chapter, a new rockbolt element has been proposed. This element is in coupled

form, and is based on the rockbolt element introduced by Aydan. It shares the same

characteristics as Aydan's element, and it also has the same properties.

When the surrounding rock mass is subject to loadings, careful considerations have

been made to the responses of the rockbolt due to the high tensile strength exerted by the

rock mass. These considerations form the essential part of the algorithms of the proposed

new rockbolt element.

In the last section, comparisons between the bar and the beam discretizations of steel

bolt have been presented. Under an identical situation, it clearly shows that the new algo-

rithm proposed in this chapter enjoys a better representation of a real-life situation, and

the rockbolt performs its duty well as an effective reinforcement between discontinuities

within the rock mass. With the help of an extra degree of freedom at the end-node of

each beam element, internal shear forces and bending moments are allowed to transmit

between elements, so that the resulting effects are much more realistic. Although the

bar element discretization can also prevent the rock mass from sliding or collapsing, the

rockbolt deforms as a strut-like structure, which is the problem highlighted in Chapter 5.

Further, there is an absence of some smoothness between rock masses after deformation,

when the gap between the joint within the rock masses start to open up, and the rock

masses starts to rotate and penetrate into each other.

Geometric linearity and nonlinearity of the rockbolt element have also been presented.

The small displacement formulation of the new rockbolt element is extended, so that it

combines with the algorithms derived earlier for a beam element to form its large displace-

ment equivalent. This method reduces the amount of algebraic manipulation considerably,

and it calls for efficient use of all available formulae. Further, it would eliminate the need

to derive new algorithms and to write a new subroutine in the computer program to sim-

ulate the analysis.
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In order to keep the manipulation of data as simple as possible, it is intended through-

out that simple algorithms are employed to solve the global stiffness equation and to

conduct the iterative process for the residual loads in large displacement analysis. Al-

I hough these algorithms are quite straightward and easy to understand, it may require

many computations and iterations, which may in turn demand a large memory space and

long computation time during execution, especially when a large number of elements is

used in the analysis. This problem becomes more prominent when the loading applied to

the structure is close to the critical load. Therefore, in order to maximize the efficiency

of the analysis as a whole, it would be of benefit if efficient algorithms could be included

within the analysis. This idea will be introduced in detail in the next chapter.

With the aid of an example, it can be observed that when the algorithm for the new

rockbolt is used, the actual difference between geometric linearity and nonlinearity is quite

small. Although there exist discontinuities within the rock mass, A,Ifie small displacement

analysis allows the rock masses to deform as one unit, whereas the large displacement

analysis allows a small rotation between the two rock masses. In both cases, it can be

taken that the new rockbolt element provides a better algorithm in finite element analysis

to stabilise a discontinuous rock mass.

This study has clearly shown that it is possible to evaluate the effect of vs)22g rock-

bolts as reinforcement in rock mass both qualitatively and quantitatively, provided that

the rockholt, the surrounding rock mass and the stiffness of the joint are properly mod-

elled by parameters which are closely related to a real-life situation. It is of paramount

importance to study and understand the relationships between the materials and their

properties of all the component involved in the body of the structure under investigation,

otherwise it is possible to obtain results which may bear no significance to the real world.

The algorithm for the new rockbolt element is based on a two-dimensional elasticity

problem. Naturally, the rockbolt element proposed here can be extended to deal with

three-dimensional problems. Further, from the outset, the linear stress-strain relationship

is used. While most materials exhibit this linear relationship up to the yield stress level,

nonlinear behaviour is observed at higher stress levels. This phenomenon is called the

plastic behaviour of material, and it can be characterized by an irreversible strain which

is not time-dependent and which can only be sustained once a certain level of stress has
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been reached.

The plastic behaviour of soil and metals allow a rational treatment of bearing capacities

of foundations and the failure of slopes, excavations and tunnels. It also allows complete

description of the stress-strain behaviour of soils so that soil deformations can be predicted

right up to failure. Admittedly the behaviour of nonlinearity is more complex than elastic-

ity. Therefore it is natural that the next stage of developement of the proposed algorithm

is to adapt it to materials that exhibit plastic or nonlinear behaviour. Slip and debond-

ing between bolt and grout, and between grout and rock, are other nonlinear mechanisms

which it would be important to incorporate in future development of the rockbolt element.

Rockbolts have long been playing a big part in rock engineering as a practical way

to stabilize the rock mass in tunnel excavations. It is hoped that the proposed algorithm

for the new rockbolt element can be applied under most practical situations, so that

the present study can be more widely and readily applied to other areas that involve

rockbolting.



Chapter 9

Quasi-Newton methods

9.1 Introduction

In this thesis, the problem of large deformation of a perfectly elastic body under loadings

has been investigated by the use of the finite element displacement method, and it is very

often that one has to solve the resulting nonlinear stiffness equation

Ku = f

where K is the nonlinear global stiffness matrix.

Methods of solving this equation using residual loads have been discussed in full in

the last few chapters, and they have been used extensively throughout. Although these

methods are easy to understand and are fairly reliable, they are often not efficient enough

and may require a large number of iterations to achieve reasonable accuracy.

Reed (1990, 1992) has proposed the use of variants of quasi-Newton minimization al-

gorithms as an alternative to solve this nonlinear matrix equation in the finite element

system. In this chapter, theories of these algorithms are summarized, and their perfor-

mance will be compared with the aid of a standard problem in elasticity.

9.2 General quasi-Newton minimization algorithm

At present, variants of limited storage quasi-Newton algorithms have been widely used for

minimizing any given function f(x), where x E ri , assuming that f(x) is at least twice

continuously diffe rentiable Vx E 40.



(9.5)

(9.6)

where

uk = sk, Vk = Hkgk,
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In the full general quasi-Newton method, if x l is a given starting point, the kth iteration

is defined by

Xk 4-1 = X k	 AkPk
	 (9. 1)

where Ak is the steplength which is to be found by a line search, and Pk is the search

direction given by

Pk = —Hkgk,
	 (9.2)

with g(x) = vf (x) and Hk is the approximation to the inverse Hessian of f(x), or the

inverse of V 2f(x), and is defined recursively from a symmetric positive definite matrix

11 1 , which is the initial approximation of the inverse Hessian and is usually diagonal, by

Hk+1 = Hk	 Uk,
	 k = 1,2,3,...,	 (9.3)

where U k is a symmetric rank one or rank two update.

Let

Sk xk+1 xk
	 and	 yk =	 —

then at each iteration, it is required that

kgk = Sk — Hk gk •
	 (9.4)

Some of the most commonly used formulae derived from this algorithm are defined for

U k by the following:

1. Symmetric Rank One (SR1) method

1
Uk = —ukuk

ak

where

ILk = Sk — HkYk
	 and	 ak = uk yk •

2. The Broyden family of rank-two updates

1 T	 1 „, T	 TUk = —ukuk — vkuk	
„

ak	 Pk

1	 1
ak = Tgk, )3k = vk gk, and Wk = —uk — —vk.

ak	 13k

The value of 7k in (9.6) characterizes the following different methods:
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(a) DFP: 7k	 0;

(I)) BEGS: -yk	 18k•

In the BEGS method, the updating in (9.3) and (9.6) can be rearranged to take

the multiplicative form;

Hk+i = 177:11k Vk Pk8k871;

	
(9.7)

1
where Pk = — and V k =	 PkYkski

r-Ek

aki3k 
(c) Boshino:

Ok

In all of these algorithms, the whole n x n matrix Hk, or, when making use of the

symmetry, the upper triangle of Ilk, is stored.

Full details of the above and their convergence properties can be found in the standard

texts such as Fletcher (1987) and Dennis tCz Schnabel (1983).

9.3 Limited storage algorithms

9.3.1 Introduction

Although the quasi-Newton methods described in the Iast section work well in practice,

they require an approximation for the Hessian of f, or its inverse, an thus "it 25 necessacK

to store an n x n matrix as the iteration proceeds. This will make the computation very

expensive and thus the methods become impractical when n is large. Therefore, variants

of the standard quasi-Newton algorithms are introduced in order to reduce the amount of

storage.

In these limited storage quasi-Newton algorithms, the initial matrix, which is usually

diagonal, is stored in compact form, together with a certain number of individual updates.

9.3.2 Approximation to the inverse Hessian of f(x)

In this section, the aim is to construct an iteration scheme to form Hk as an approximation

to the inverse Hessian of f(x).
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In limited storage quasi-Newton algorithms, H i and the information for the individual

updates Ui are stored separately. Then when it is required, Il k can be constructed from
k—f

= H +	 Ui ,	 (9.8)
i=1

if the Broyden family of rank-two updates in the additive updating form of (9.6) is used,

where U i = Ui (s i , yi,Hiyi).

Assuming that storage for m updates are available, the two most commonly used

limited storage algorithms are briefly described below:

1. In the VSCG algorithm of Buckley and LeNir (1983, 1985) where the additive form

(9.6) is used, once all of the m update storages are filled, information on the first

in-1 updates is retained, and at each subsequent iteration, the most recently formed

one is replaced. Thus,

Hk+i = Hm Uk
	 k=m,m+1,...	 (9.9)

2. In the L-BFGS algorithm of Liu and Nocedal (1989) where the multiplicative form

is used, once the storage is filled, the m most recently formed updates are retained,

and at each subsequent iteration, the oldest update is replaced. Thus

11k+1 = (Vi . . 	 )Hi ( 17"k-m+1 • • • Vk)

Pk-m-I-1 ( VT • • VkT.-m+2 ) 8k-m+1	 (Vk-m-F2 • Vk)

+ pk sks7k:	 k = m,m+ 1, ...	 (9.10)

Note that because of the criteria laid down by the line search (sTy > 0), the QN

matrices H retain are always positive definiteness.

9.4 Update condensation algorithm

9.4.1 Introduction

The update condensation algorithm offers an alternative approach to the limited storage

quasi-Newton methods. The idea of this approach is to discard all updates when the

available storage is filled, and to replace them by an 'artifical update' which contains

condensed information of previous updates. This approach can be applied to any quasi-

Newton method, but for the purpose of illustration, a rank two update such as BFGS is

used here.
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9.4.2 The method

In this limited storage approach, suppose that storage for m updates is available. All but

one storages are available for the usual quasi-Newton updates in additive form, such as

those in the VSCG algorithm, while one storage is reserved.

After m — 1 iterations, when the evaluations of x m + i = xn,— A m Hm gm and gm + 1 are

being carried out, the reserved storage is filled by the update defined by

m-1
Hm =	 E U.	 (9.11)

Before proceeding with the mth iteration, Hm, is replaced by a restart matrix 121 of the

form

(9.12)

where b > 0 is a scaling factor which is chosen to ensure that 1:1 is positive definite,

while 1̂1 is a rank two `artifical update' constructed from the existing 'natural' updates

U i , U2, ..., This `artifical update' is obtained by condensing the infomation held

in the 'natural updates'. The information defining U is placed in the reserved storage

space, and all the natural updates are then deleted.

Subsequent 'natural' updates are constructed by the Broyden updating formula (9.6),

but with H replacing H m in the construction of Um , defined by the iteration

lik+1 =	 Uk,	 k = rn,m+ 1,...	 (9.13)

it is then stored in the space thus freed. When this storage becomes full again, form a new

condensation by (9.12), as before, delete the 'natural' updates, and repeat this prodedure.

Thus, after every m — 1 iterations, a condensation occurs and this cycle repeats.

In this algorithm, the restart matrix H must satisfy the following equations:

flYm =
	

(9.14)

and

Hym+ 1 = H,ngm 1 .	 (9.15)

These relationdlips ensure that U m (sm , ym,Hrnym ) = Um (sm , yrn , ym ), and so fol-

lowing the condensation the search direction 73m+1 = —11m+1.9m1-1 is the same as would
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have been obtained from the full quasi-Newton method.

Further discussion of these conditions and a full account of this algorithm can be found

in Reed (1997).

9.5 Application in the solution of finite element systems

Using an iterative method, the incremental residual load of a finite element system during

the kth iteration in the nth load increment can be written in the general form

= KkAUk - AF	 (9.16)

where Kk is the nonlinear stiffness matrix defined either in the general form (4.35), or

(6.38) for the beam element.

At the start of load increment, it is taken that

Auo = 0
	

and	 K1Au1 = AF.

9.5.1 Quasi-Newton method

In a quasi-Newton method, the equation

nP(Au) = 0

can be solved by defining the algorithm

Au(k+1) = Al4k) + AkPk, (9.17)

where the steplength A k may be determined by aline search, and the quasi-Newton method

for the search vector Pk is given by

Pk = -1-1 1,41,,	 (9.18)

where H A, is the matrix approximating the inverse Jacobian of 4 . , and is formed from the

successive updating relationship

Il1,+1 = Ilk + U ( S k, IlkYk) .
	 (9.19)

In this application, the starting matrix H i is taken as Ki-1 , where K 1 is the nonlinear

stiffness matrix evaluated at the start of the current load increment.
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As all computations are carried out at the nth load increment, the displacement term

( k+ I ) is denoted as u k+ i for convenience.tin

Let

s k -= Auk+i — Auk,	 Yk = k+1 — k
	 and	 Vk = Sk —11kYk,

then (9.5) and (9.8) give

Ilk = KT1 
k—
 1 T	 (9.20)

iQ

To avoid a line-search iterative algorithm, (b k+ 1 may be approximated by the term

K k Auk+ i — AF. Then this, (9.17) and the exact line-search condition p 7k4k-F 1 = 0 lead

to the steplength

A k = TIT 	 •
	 (9.21)

9.6 Performance comparison and discussion

In this section, the example described in section 3.7 is used as a sample test to compare

the performance of the variants of quasi-Newton algorithms. The parameters are the same

as before, but a coarse mesh is used to discretise the elastic block.

It has been observed that identical results have been obtainesi ag i5->e,s& TnEAlias,

The main aim of this exercise is to compare the efficiency in terms of computational time

required. However, as the mesh is coarse, the computational time is very short and hence

it is very difficult to detect the difference.

This exercise has been repeated by the use of some other simple models, and it has

been found that all algorithms give rise to identical results, and the performance in terms

of the required computational times is very similar. However, it must be point out that

although these algorithms work well with sample models with coarse mesh, none of them

can give convergent results for a model with a more complicated mesh which may include a

combination of various types of element, or a finer mesh with a large number of elements.

This may be caused by an inadequte convergence criterion, or becasue there are some

problems with convergence within each increment, namely:

1. K i may not be a good initial approximation;
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2. the steplength Ak is not evaluated accurately enough. It may require a line-search

algorithm to evaluate;

3. it may require to re-start if Pk is not sufficiently 'downhill'.

However, from the examples that have been carried out, the signs are very positive,

and it is hoped that with some modifications made to these quasi-Newton algorithms, this

problems can be fully overcome in the near future.



Chapter 10

Applications

In this chapter, a wedge stability problem is presented as a model application. This

problem can often lead to the more practical situation where rock slope stabilization is

involved, and it also contributes to the stability problem of a cavern wall.

10.1 Wedge stability problem

The stability of a slope is one of the most frequent problems that a civil engineerer has to

consider. The stabilty failure of this problem is mostly attributed to the weakness in the

discontinuities between rock mass, when sliding, toppling, or a combination of these two

phenomena occurs.

One of the most common solutions to this problem is to install appropriate rockbolts

between discontinuities to increase the strength of support and thus the saftey factor. This

is due to the fact that rockbolts are generally cheap, durable, and easy to install. In this

application, untensioned grouted rockbolts are used as support to stabilize the sliding of

the rock mass.

10.1.1 The problem

The two-dimensional wedge stability problem has been extensively analysed by MarenCe

(1992), although his treatment of this problem has concentrated on the stiffness analysis,

where the bolt crossing joint and the grout are treated as a sub-structure which is added

to the stiffness of the rock, while the main objective of this exercise is to analyse the

deformation of the rock. A comparison between these two algorithms in this problem can

be found at the end of this chapter.
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2.31 m
K	 >I

Figure 10.1: Geometry of the wedge problem

In this problem, a rectangular rock block is used as a model to test the stability of a

vertical excavation or a cavern wall. The block is 5 m high and 8 m long. The 'slope' of

the discontinuity, or the joint, is inclined at 60° to the horizontal, and the wedge is at the

top left hand corner of the block. The vertical edge of the wedge is of height 4 m.

A horizontal grouted rockbolt of length 4 m is placed through the wedge and the dis-

continuity, and is secured to the rock mass. It sits 2 m from the top end of the wedge, as

shown in Figure 10.1, and the details of its finite element mesh are shown in Figure 10.2.

The rockbolt is a standard untensioned grouted rockbolt, and is subject to deformation in

a inanner described in Chapter 7. Here, the problem is identified as a plane strain problem.

In this model, if the support of the rockbolt is removed from the wedge, the wedge

is liable to slide along the slope of the discontinuity or penetrate into the surrounding

rock, and the amount of deformation depends on the material property of the rock, the

rockbolt, and the stiffness of the joint, which is defined by its tangential lc, and normal

kn components. To initiate deformation, a uniform surface traction is applied normally

downwards along the top edge of the wedge.

All materials used here are taken to be perfectly elastic, and are assumed to be weight-

less, uniform, homogeneous and isotopic. The rock mass has an elasticity modulus of 10

GN/m 2 and a Poisson's ratio of 0.3, while the rockbolt has a dowel modulus of 10 8 . The

tangential and the normal stiffness of the joint are taken as 2 x 10 5 N /m 2 and 107 N /m2



3
3

2 2

1 1

0 0

warAproP-_,
5

4

5

4

0 1 2 3 4 5 6 7 8

8 8

7 7

6
6

0 1 2 3 4 5 6 7 8

Numerical modelling of rockbolls	 219

Figure 10.2: Mesh details of the wedge problem

respectively. Other parameters of the rockbolt used in this model are given in the following

table.

Elasticity

modulus

GN/m 2

Poisson's

ratio

Shear

modulus

GN/m2

Radius

m

Bolt 210.00 0.30 0.013

Grout 20.00 0.30 8.33 0.020

Table 10.1: Material properties

For comparison, the wedge problem is repeated several times using large displacement

formulation. The above set of parameters is referred to as the 'standard' set, and it will be
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used as a base for testing the same model in the following section, and only modifications

made to this set will be mentioned henceforth.

No exaggeration factor is used in all examples in this section, ie. deformed meshes

shown are of their actual sizes.

10.2 Without the support of the rockbolt

Figure 10.3: (a) Wedge problem without the rockbolt as a support

The following results are obtained with the standard set of parameters and with the

rockbolt removed from the wedge problem. It can be seen in Figure 10.3(a) that the wedge

penetrates directly into the rock mass, and the amount of penetration depends heavily on

the stiffness of the joint.
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In order to control the amount of penetration between the wedge and the rock mass,

the tangential and the normal components of the stiffness of the joint have been increased

to 2 x 10 6 N/m 2 and 108 N/m 2 respectively. With this modification, the results are shown

in Figure 10.3(b).

Figure 10.3(b): Wedge problem without the rockbolt, but with increased joint stiffness

Note that as the formulation governing the mechanics of the joint element is in linear

form, it would be not be possible to find the critical load applied on the wedge before it

collapses.
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10.3 Bar element discretization

The following results are obtained when the rockbolt using bar element discretization of

the steel bolt is used. The deformation theory of this test is based on the original idea of

a rockbolt introduced by Aydan (1989).

APIP
IItr,"'
0411

Figure 10.4: Bar element discretization of steel bolt

From the results, it can be seen that the rockbolt elements are discontinuous in slope at

the ends nodes, and it reflects a similar type of problem encountered with the bar element

discretization of a thin rod when the thin rod behaves like a strut. Further, the left hand

end of the bolt is deformed in a 'parabolic shape'. This is perhaps caused by the two-point

Gauss integration rule which is used to obtain the stiffness matrix of the bolt. Similar

parabolic distributions are observed for stresses in quadratic elements in undrained con-
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solidation or in nearly-incompressible materials (reference Reed (1984), Naylor (1974)).

The same phenomenon is evident in Figure 8.12, for bar elements.

Higher order Gauss rule has been used, but it is noted that no improvement can be

made.

10.4 Beam element discretization of steel bolt

In this section, the beam element discretization for the bolt, as described in Section 8.8,

is used for all tests here.

10.4.1 Standard parameters

Figure 10.5: Wedge problem with the standard set of parameters
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In this analysis, the small deformation theory of the joint element is mixed with the

large deformation theories of other types of element, and hence in effect, the joint element

deforms in a slightly different way. Therefore it is natural that in this test, the deforma-

tion at both ends of the joint along the wedge does not appear to be very smooth. To

overcome this problem, a large deformation theory for the joint element is needed. The

rockbolt itself, modelled by beam elements, deforms in a realistic mariner, and limits the

niovement of the wedge along the joint.

It has also been found that this analysis fails when the left hand end of the bolt is

modelled to be fixed to the rock in order to simulate a plate being attached at that point.

This situation can be simulated when the bolt and the rock nodes are discretised to be

the same node in the mesh.
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10.4.2 Increasing the stiffness of the joint

0	 1	 2
	

3	 4	 5	 6	 7	 8

Figure 10.6: Wedge problem - joint with higher stiffness moduli

In this test, the normal and the tangential stiffness of the joint are taken to be

10 9 N/m 2 and 2 x 10 7N/m 2 respectively. Here, the wedge is successfully held in place

by the rockbolt.

10.4.3 Modifying the parameters of the rockbolt

In this test, the radii of the bolt and the grout are increased to 0.05m and 0.08m respec-

tively. Further, the Young's modulus of the bolt has also been increased to 300Gm/m2.

It can be seen that with the increase of its stiffness, the rockbolt deforms less, and it

can in general offer better support to the wedge. This in broad agreement with logical
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expectation.

Figure 10.7: Wedge problem - rockbolt with increased stiffness and diameter

10.5 Comparison with Maren6e and his associates' results

This wedge problem has also been investigated fully by Maren'ee and his associates at the

Institut fiir Baustatik in the Universitat Innsbruck. In their work, the rockbolt element

used in the problem is based on the algorithm proposed by Swoboda Sz Maren -6e (1991,

1992, 1995) and MarenC'e (1992).
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10.5.1 Bolt Crossing Joint

The boll crossing point (BCJ) element has been designed to connect the holt elements on

both sides of the discontinuity. The element assumed two nodes, one on each side of the

discontinuity, and they connected the bar nodes of the bolt element. In the grout-rock

interface, the other nodes of the element were connected through an interface element

representing the joint. Figure 10.8 shows details of this BCJ element.

Figure 10.8: Bolt crossing joint element and conncetion with finite element mesh (from

Swoboda Maren'ae (1 9 95).

The BCJ element was modelled as springs which describe the bolt resistance according

to the movements on the joint. The stiffness marix of the BCJ can be written as

k72

k22

k12

k22

kT2

k11

k12

—

—k22

k22

where k11 was a shear stiffness, k 22 was a normal stiffness, and ki* 2 was the mean of

a connection between a shear displacement and a normal force k 12 , and a connection
k i2 + k21 between a normal displacement and a shear force k21, je k i2 = 2
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10.5.2 Wedge stability problem

In order to evaluate the performance of the new rockbolt element, parameters used in the

example in Section 10.1 have been specifically chosen to match those used by MarenEe

and his associates at the Institut fiir Baustatik at the Universitat Innsbruck as closely

as possible. In particular, all material properties of the rock mass, the elasticity moduli,

Poisson's ratios, shear moduli and the radii of the bolt and the grout, as listed in Table

10.1, are taken to be the same. However, in the BCJ element, the stiffness of the grout

varies according to displacement. These values are shown in Table 10.2 and in Figure 10.9.

Direction

transverse

axial

Stiffness (N/m2)

V 1 = 1.7028 x 108

V3 ,--- 1.1016 x 108

V5 -= 0

V12 = 0.4

V7 = 1.3693 x 104

v8 = 5.477 x 103

Displacement (m)

V2 = 5 x 10-6

V4 = 6 x 10-3

vs = 10-2

V9 = 10-3

vie = 3 x 10-3

vui = 10-2

Table 10.2: Grout stiffness

Figure 10.9: Variable grout stiffness for BCJ element

Figure 10.10 shows the results obtained by them when a set of closely matched pa-

rameters is used. It can be seen that the general shape of the deformed wedge is very

similar, indicating that the two algorithms for modelling rockbolts give very similar re-

sults. however, due to the different emphasis of these two analyses, direct comparisons
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between these two algorithms cannot be obtained.

Figure 10.10: Wedge problem - results obtained at Universitat Innsbruck



Chapter 11

Conclusions

11.1 A brief summary

Rockbolts have become one of the most fundamental support members of modern tun-

nelling technology in recent years. Because of their well-confirmed reinforcement effect in

practice, their popularity is set to continue, and many researchers have conducted studies

in the numerical simulation of rockbolt behaviour in the past and present.

11.1.1 The design philosophy

Before the development of a specialized rockbolt element, engineers used elastic bar or

truss elements to represent the reinforcing effect of rockbolts. The design of some of the

later generations of rockbolt model is based on the rockbolt element introduced by Aydan

in 1989. This element in its coupled form could offer greater flexibility, and could more

appropriately represent the mechanics of a rockbolt, so that the axial and shear loading

can be accounted for by the steel bar, and the shear stress and the dowel effect by the

interface and the grout annulus. The new rockbolt element proposed in this research is

a modification of this original rockbolt element, when the beam element replaces the bar

element in the discretization of the steel bolt.

In this study, a geometrically nonlinear finite element analysis is carried out to inves-

tigate the validity of a plane strain analysis in simulating the rockbolt as support in the

two-dimensional tunnelling in rock mass. Further, linear material behaviour correspond-

ing to perfectly elastic and isotropic materials has been assumed. As shown in much of the

literature, plasticity or visco-plasticity might be considered as a better theory which can

more realistically represent the material characteristics of the rock mass and rockbolt, but
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because of the limitation of this research, this option has been omitted. It is, of course,

possible to consider and implement this, and other types of nonlinear material, in the

future.

The effects of using rockbolts as reinforcement within discontinuous rock mass de-

pends not only on the design of the rockbolts, but also, to quite a large degree, on the

rock strength, the stiffness of the joints, and the deformability of the rockbolts. The sen-

sitivity of these factors can dramatically affect the behaviour of the rock mass and the

efficiency of the rockbolts. This sensitivity is more evident when geometric nonlinearity

is considered in the numerical model, because the nonlinear behaviour may cause collapse

when the applied load exceeds the critical load. Therefore in the computer simulation of

tunnelling problems, great care must be exercised in the use of these factors.

The finite element method has been one of the most commonly used numerical methods

to analyse problems in tunnel excavation. To represent a structure of complicated shape

and construction, it advocates the use of a finite element mesh which includes several dif-

ferent types of element. Because of the difference in geometry and mechanical responses,

each type of element requires the use of a different nonlinear stiffness matrix in the small

and the large displacement analysis.

The large displacement formulations of some elements, such as the eight-noded isopara-

metric element, have been well established in the past, and they have been documented

and implemented by many researchers, while for others, such as the beam element and the

proposed new rockbolt element, the algorithms have been established analytically in this

research from the fundamental theories. To verify the validity of these formulae, some hy-

pothetical examples are used to test these elements, so that evaluation of the performance

of the algorithms can be made, and the results can be directly compared.

11.2 Main conclusions

At the end of each chapter, conclusion has been made so that the results could be sum-

inarized, and any features and/or shortcomings of the algorithms could be pointed out.

This thesis has been organised in such a way that different types of element are presented

in order so that the new rockbolt element can be readily constructed.
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1. In the finite element approach to investigate a tunnelling problem, eight-node isopara-

metric elements are used to discretise the rock mass, and six-noded joint elements are

used to discretise the discontinuities or the space between the rock mass. The small

deformation theory of the joint element has been well developed by Beer (1985),

for the cases of shell-shell, shell-solid, solid-solid contacts. In this thesis, the three-

dimensional solid-solid contact theory was adopted to two-dimensional analysis.

2. The large displacement formulations for the bar and the beam element have been

established arid compared in some practical examples, and it has been concluded

that when a structure, such as a uniform thin rod, is discretised by these elements

under identical situations, the beam element gives more realistic results because it

includes angular bending moments, ensuring continuity of curvature along the beam.

3. To simulate the effect of rockbolts as support in tunnel excavation, an Aydan type

rockbolt element has been scrutinized. In the first instance, the steel bolt is dis-

cretised by a bar element, and in the second, a beam element is used for the same

purpose, while the grout discretization remains the same throughout. Large displace-

ment formulations of these two different forms are then established and compared,

and it has been found that the superiority of the beam element found earlier in the

deformation theory does carry forward to the rockbolt element, indicating that the

new element attains a marked improvement over the original one.

11.3 Suggestions for possible further development

Limitations of the current studies have been discussed in previous chapters, and there are

several areas in which the present research can be further developed. To improve on the

efficiency and accuracy of the algorithm, and to enhance the generality of this research,

the following suggestions are made.

1. Material nonlinearity

The effect of modelling the rock mass and the rockbolt by nonlinear material has not

been considered in this work. Elasto-plastic and visco-plastic models are generally

considered to possess a more realistic hehaviour than the perfectly elastic mater-

ial. Further, the material is assumed to be homogeneous and isotropic. Therefore

the effect of material nonlinearity and behaviours of different material could be in-

vestigated in the future. Of particular importance would be slip and debonding
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mechanisms in the grout, and yield in the bolt.

2. Three-dimensional analysis

Throughout this thesis, a two-dimensional plane strain analysis has been used. Ay-

clan (1989) has shown that this analysis can be extended to three-dimensional, when

the extra dimension of the new rockbolt element can be constructed in a similar

manner. Although it would inevitably increase the size of the problem, and hence

demand a longer computational time, it would allow the method to analyse more

complex problems.

3. Large displacement formulations for a joint element

The joint element used in this work is based on the small displacement analysis sug-

gested by Beer (1985). A full account on how this linear behaviour can be combined

with nonlinear behaviour of the other types of elements has been fully described in

Chapter 7. For completeness and for a more realistic representation, it is necessary

to develop a new large displacement formulation for the joint element.

4. Rockbolt element with four or five nodes

By construction, the new rockbolt element is one-dimensional, with the steel bolt

and the grout each represented by a sub-element with three nodes. In Chapter 6,

the large deformation theories of a two-noded and a three-noded beam element have

been established. It can be shown that, although a three-noded element exhibits

a slightly more natural bending characteristics than its two-noded counterpart, the

difference is not very significant. If this phenomenon holds in most other cases,

it may be worthwhile to consider a similar rockbolt element with five nodes as an

alternative, with two nodes representing the steel bolt and three representing the

grout, or four nodes if two nodes can be used to join to linear rock elements. In either

one of these representations, the accuracy of the results may be slightly reduced, but,

as the number of degrees of freedom involved in each rockbolt element reduces, so

does the overall size of the global stiffness matrix of the structure. Whence, the

solution procedure will gain in faster computational time.

5. Other supporting media

The rockbolt is the only supporting medium in tunnel excavation under consideration

in this thesis. In Chapter 1, however, other common types of rock mass supporting

media have been briefly described, and in general, if they can be combined, the
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overall effiency of the support will be greatly increased. In particular, Maren .Ce (1992)

modelled the use of mylonit and crushed rock, shotcrete lining and pre-stressed bolts,

as well as grouted rockbolts to simulate the excavation and stabilization problem of

a cavern. Therefore, in the computer simulation of tunnelling problems, it would

be useful if these and other media can be discretised by the use of other types of

element or algorithms in the finite element analysis of the tunnel.

6. Residual load

In large displacement analysis, the assembly of nonlinear stiffness matrices of the ele-

ments involved in the mesh will give rise to a system of nonlinear algebraic equations.

The solution procedure of this system using residual loads advocates the conversion

of the nonlinear system into an approximate linear system of equations, whereby the

results of this approximate system are refined by iterative methods. The iterative

solution procedure has converged in the simple examples presented here (provided

that the applied load does not cause collapse), but an analysis of convergence is

lacking. Although this iterative method works well, and has proved to be fairly re-

liable and accurate, it is nevertheless too inefficient and time consuming. It will be

interesting to investigate some better algorithms to deal with residual load in order

to significantly increase the efficiency of the analysis as a whole.

7. Quasi-Newton methods

To provide a more efficient alternative to the iterative method used in this work,

attempts have been made to incorporate limited storage quasi-Newton algorithms,

where the solution of the nonlinear system of stiffness equations is solved directly by

iterative methods, into the program. Although these methods work and can provide

identical results, at present only structures with a simple mesh or a coarse mesh with

only a small number of elements involved, can give convergent results. However, the

signs are quite encouraging and it is clear that these quasi-Newton methods need

further refinement so that they can be readily adapted to solve problems when

structures with complex mesh are involved.
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2. The small deformation theory of joint element has been adapted from works pub-

lished by Beer. This algorithm has been mixed with large displacement theories of

other types of element.

3. A new rockbolt element which incorporates a beam element, instead of the bar ele-

ment, to model the steel bolt has been introduced. Again, Lagrangian formulations

have been used. This new rockbolt element can be compared directly with the orig-

inal element, and the program of the latter is written in a sister program ELAST1.

4. A choice of solution procedures for the nonlinear equilibrium equation has been

offered in the program. This allows the use of either the conventional iterative

method that involves residual loads, or one of the variants of the limited storage

Quasi-Newton minimization methods.

Figure A1.1 shows the flowchart of ELAST. It illustrates how the input procedure,

the main program, the subroutines and the output procedure are linked in this program.

New routines are written and relevant subroutines are modified, and they are incorpo-

rated into the program ELAST. These include:

ELAST	 the main program to control the new computing procedure;

POSITION	 to establish the global displacement vector for the mesh;

STEPV1 to calculate and accumulate incremental strains and stresses in

large displacement analysis, so that these values can be used in

the next iteration/increment;

STEPV3	 to calcuate residual loads;

BARB	 to calculate stiffness matrix of beam element;

JNTB	 to calculate stiffness matrix of joint element;

B LT B	 to calculate stiffness matrix of rockbolt element;

SR F	 to generate shape functions and their derivatives of various

types of element.

A.2 Input from data file

A supplementary program PREFEL is used as a pre-processor of ELAST. This program

generates the mesh and the loadings. and associates each element with its appropriate
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material property. It also assigns node number and element number to the mesh in order

to minimize the overall size of the resulting global stiffness matrix. The details are then

stored in a data file *.dat, and it can be retrieved before the analysis begins.

(1) Input data arrays from data file *.dat

INFILE	 name of input data file

LNODN	 number of node in an element

LNODS	 global node numbers around element

LPROS	 material property set number of a single element

LSIDN	 number of side of an element

NELEM	 total number of elements in mesh (max. = MELEM)

NKODE	 fixity code of each node

NNODE	 number of nodes in a single element (max. = MNODE):-

2 or 3 - one-sided bar or beam element;

4 or 6 - one-sided rockbolt element or two-sided joint element;

8 - quadratic serendipity element;

	

NPOIN	 total number of nodes in mesh (max. = MPOIN)

	

NPROS	 number of material property sets

	

NTO CV	 total number of degrees of freedom (max. = MTOTV)

	

NTYPS	 element type

1 - two sided joint element

2 - one-sided rockbolt element

3,4 - one sided bar or beam element

9 - eight-noded isoparametric element

	

OUI FIL	 name of output data file (*.out)

PROPS(LSET,1)	 Young's modulus of material property set LSET

PROPS(LSET,2)	 Poisson's ratio of material property set LSET

TITLE	 title of the problem (maximum 80 characters)

(2) Input loadings from data file *.dat

FX
	 3-component of nodal load

FY
	

y-component of nodal load



Numerical modelling of rock,bolis 	 239

ISET1	 set-number of uniform surface traction

LCA RD	 a flag to indicate the status of the loading data:-

() - start of data

1 - end of data

Ni, N3	 nodes along the edge where uniform surface traction is applied

NP	 global node number at which point node is applied

PRESS(1,N1)	 normal-component of surface traction

PRESS(2,N1)	 tangential-component of surface traction

An example of the data file is shown below:

15
•

14 13

16 12 Sock eiement - elemeat 3

9
• 10

•
11

joint element - element 2• •
7 6

4 rock element - element 1

2 3

Figure A.2: Mesh details of an example

In the following example that investigates the effect of a joint between rock masses,

a very simple mesh is shown in Fiqure A.2. Element 1 and 3 are the rock (eight-noded

isoparametric) elements, while element 2 is the six-noded joint element. Point node with

magnitude 0.2 x 103 in both the x- and y-directions are applied to node 15, together with

an uniform surface traction of 0.1 x 10 5 applying normally at the top edge of the top rock

element. In this analysis, four incremental loads of equal size are used.

The following is the details of t he data file of this mesh:
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An example of joint element

npoin nelem mstyp npros

16	 3	 10	 1

nside nset elt nodes

0 4	 1 1	 1 2	 3 4 5 6 7 8

0 2	 1 2	 9 10	 11 7 6 5

1 4	 1 3	 9 10	 11 12 13 14 15 16

kode node x-coord y-coord

0 11	 1 0.00000 0.00000

0 11	 2 2.00000 0.00000

0 11	 3 4.00000 0.00000

0 00	 4 4.00000 1.00000

0 00	 5 4.00000 2.00000

0 00	 6 2.00000 2.00000

0 00	 7 0.00000 2.00000

0 00	 8 0.00000 1.00000

0 00	 9 0.00000 2.00000

0 00	 10 2.00000 2.00000

0 00	 11 4.00000 2.00000

0 00	 12 4.00000 3.00000

0 00	 13 4.00000 4.00000

0 00	 14 2.00000 4.00000

0 00	 15 0.00000 4.00000

1 00	 16 0.00000 3.00000

set cmpnt	 value

0	 1	 1
	

0.200E+06

0	 1	 2
	

0.300E+00

1

nbset npset

0	 1

ld node x-cmpnt y-cmpnt

0	 1	 15 0.200E+03 0.200E+03

1

set forces:	 normal	 tangential
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1	 1	 1 2	 0.100E+04 0.000E+00

nnas elt n set	 n set

0	 3	 3 13 1	 151

1

nincs	 increment sizes

4 0.25 0.25 0.25 0.25

Note that:

1. node numbers of the loaded edge are listed in anti-clockwise sequence;

2. in a six-noded joint element, i lie first three nodes discretise the bottom edge of the

top sub-element, while the last three discretise the top edge of the bottom sub-

element ; and the node numbei s are listed in the direction from left to right;

3. in a six-noded rockbolt element, the first three nodes discretise the steel bolt, while

the last I hree discretise the grout; the node numbers are listed in the direction from

left to right;

4. the surface traction applied to the edge of an element is always assumed to be

uniform, and its contribution to the nodes concerned is automatically computed by

the program. Further, the element edges to be loaded can be arranged in any order;

5. variables such as NELEM, NN ODE, NPOIN, NTOTV etc. are generated by PREFEL.

A.3 Input instructions for the program ELAST

Upon retrieving data from the data set, ELAST will carry out the computation, and

some of the most important variable names or arrays used within the program are listed

below:

(1) Input option

IMETII
	

Quasi-Newton method type

0 - initial:

1- VSC(::
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2 - update condensation;

3 - L-BFGS;

4 - tangential stiffness;

5 - inexact Quasi-Newton

	

NINCS	 number of increment steps used

	

NITER	 maximum number of iterations allowed for calculating residuals

	

NLAPS	 deformat ion type :-

1 - small displacement theory;

2 - large displacement theroy.

	

NPSTR	 problem type :-

1 - plane stress;

2 - plane	 rain.

	

NUMUS	 number of updates stored in limited storage QN algorithm

	

TOLL!?	 tolerance factor

(2) Node coordinates and shape functions

ASDIS	 global di placement vector

ASLOD	 global I( ad vector

BMATX	 element train matrix

CARTD(1,0	 .r-deriva live of shape function in Cartesian coordinates x,y

CARTD(2,I)	 y-derivative of shape function in Cartesian coordinates x,y

COORD(NP,1)	 X coordinate of node NP

COORD(NP,2)	 y coordinate of node NP

COORD(NP,3)	 0 coordinate of node NP (for beam element or steel bolt only)

DER IV( 1.1)	 derivaike of shape function in local coordinates e,

DERIV(2.1)	 i derivai • \ p of shape function in local coordinates e,

DMA L'X	 element elasticity matrix

ESTIF	 element stiffness matrix

GSTIF	 global stiffness matrix in condensed form

RESLD	 global residual vector

SHAPE	 shape functions of an element in local coordinates e,77

STRSG	 l ress al (,auss points (in Cartesian coordinates)
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(3) Other input details provided in ELAST

(a) in subroutine ,INTB

	

Si INS	 horizoMal stiffness of joint

	

STIKN	 verl ( stiffness of joint

(b) in subroutine BLTI3

dowel effect modulus of rockbolt

	

ET3()LT	 Young's modulus of steel bolt

	

130LT	 sheaf modulus of steel bolt

GGR OUT	 sheal modulus of grout

	

I? 130LT	 radius of rockbolt

	

I? 110LE	 radius of grout

(4) Gauss quadrature rule

	

GPEPS	 Gauss p ii strain

	

GPSIG	 Gauss po . nt stress

	

GPNV 1 S	 Gauss weight

	

GPLOC	 values of Gauss point local coordinates

	

NGTOT	 order of Gauss quadrature for numerical integration

Note that:

1. the size of the increment st( p need not be equal, and the size value can be stored

iii t he array FINCS;

2. the results for each incremental load are stored in the print file *.prt, so that they

can be referred to if and when required;

3. when the stiffness matrix EST1F for each element has been formed, it is written in

a temporary scratch file.

The sequence of subroutines in STIFF to obtain ESTIF is run for each element.

Therefore, if there are NELMI number of elements in the body, the sequence will
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be repeated NELEM times. when one element stiffness matrix will be created in a

scratch file in each loop;

4. the order of Gauss quadrature is the minimum number of points required, and it is

set automatically according to the type of each element.

A.4 Output

After the program is executed, the final results are prepared and stored in an output file

*. out. A post-processor FELVUE has been specifically written to read data from this

output file, and then plot the deformation or stress field graph accordingly. As a complete

package, PREFEL and FELVUE form part of FELIPE.

In order to scrutinize the deform ation graph more closely, a zoom facility is available,

and an exaggeration factor can be used to magnify the amount of deformation. Postscript

files of these graphs can also be prepared using this program, so that hardcopies can be

readily available.

Note that except for the extension, the name of the output file is the same as the input

file and the print file.
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