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Introduction 

 

One of the features of the sub-prime crisis, that began in August 2007, was its unexpected 

nature. It came as a surprise not only to most financial market participants but also in some 

degree to the policy community. The latter is a paradox, since there has been extensive 

research both in universities and in policy institutions, notably since the Asian crisis of 1997, 

into the causes and predictors of financial crises. Furthermore, central banks and international 

organisations such as the IMF have for some years been producing and developing 

“macroprudential analyses” and publishing their current findings in “Financial Stability 

Reviews”. The latter are designed specifically to highlight current risks to financial stability 

as seen by the authorities, and to recommend appropriate evasive action by financial 

institutions under their remit. 

 

In this context, we seek to assess whether some of the early warning systems that have been 

developed in the literature (but rarely applied to banking crises) could have helped the 

prediction of the crisis. We specifically use the logit and binomial tree approaches on the UK 

and US economies, approaches that as described in Davis and Karim (2008) and Karim 

(2008) have been successful in predicting a majority of banking crises in emerging markets 

and advanced countries in 1970-2003. We also consider whether a simple indicator/checklist 

approach as in Davis (1995, 1999, 2003) could have helped to warn about the crisis.  

 

The article in structured as follows. In section 1 we look at the FSRs before the crisis for the 

major institutions (Bank of England, IMF, ECB) to see to what extent the crisis was predicted. 

In Section 2 we outline the early warning system methodologies. Section 3 shows the main 

results, while Section 4 briefly considers the “check list approach” of indicators based on 

history. Section 5 concludes. 

 

1 Financial stability reviews and the sub-prime crisis 

 

Hindsight is always beneficial and it is easy to criticise those undertaking the difficult task of 

macroprudential surveillance. This is not the aim of the current section. Rather, we seek to 

assess the degree to which the crisis was foreseen only with a view to considering whether 

successful early warning systems could have been a useful supplement to conventional 

macroprudential surveillance. We examine predictions in the FSRs of the IMF, ECB, Bank of 

England and the BIS for the Spring of 2007 for indications of concern over an imminent 

crisis. We only focus on the main policy messages in the overview/executive summaries. 

 

In its Global Financial Stability Report for April 2007, the IMF suggested there was a “strong 

foundation for global financial stability” but suggested that some market developments 

“warranted attention”. They did see short-term risks from “possible spillovers from a 

deterioration in credit quality in the US subprime mortgage markets”, that could spread to 

“structured mortgage credit products” but felt that “financial effects may also be contained”. 

Other risks seen were related to rises in corporate leverage due to buyouts, and rapidly rising 

capital inflows to emerging markets, but it was concluded that “none of the individually 

identified risks by themselves threaten financial stability” although it was noted that “a 

sustained rise in volatility could perturb a wide range of markets”, with a build-up of positions 

that could result in a disorderly correction when conditions change. 

 

In the ECB Financial Stability Review for June 2007 it was suggested that minor turmoil in 

March and April 2007 “reaffirm concerns about pre-existing vulnerabilities”. They noted 

evidence of direct exposures of some European institutions to the US sub prime market and 

the more general possibility that the “crisis” in the US sub prime mortgage market could 
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deepen and spread to other markets”. Growth in credit risk transfer (CRT) instruments were 

seen as partly underlying an increase in liquidity, but the risk was noted that liquidity may 

hide a “slippage in risk assessment standards”, and that history shows that “liquidity can 

vanish abruptly from financial markets when investor uncertainty and risk aversion rise”. 

Concerns were also expressed over leverage in the Euro area corporate and household sectors, 

although banks’ solvency was seen to be comfortable relative to regulatory requirements. 

Overall, they concluded that the most likely prospect is that “financial system stability will be 

maintained in the period ahead” with the likelihood of significant challenges “not high at 

present”. However, “the vulnerability of the financial system to an abrupt and unexpected loss 

of market liquidity appeared to be increasing”, and concerns were raised about the effect on 

buyers of structured products “if the CRT market were to be subjected to severe stress, 

possibly triggered by an adverse turn in the credit cycle”. 

 

The Bank of England in its Financial Stability Report for April 2007, while asserting that the 

“UK financial system remains highly resilient” noted that macroeconomic stability and 

competition in the financial sector have “encouraged a further increase in risk taking”, which 

had in turn led to a further development in credit risk transfer markets. The experience of the 

sub-prime market was seen as illustrative of risks if a “more significant market such as 

corporate credit” were to deteriorate. Risks were of weakened credit risk assessment, impaired 

risk monitoring and impaired market liquidity leading to “warehousing risk” as institutions 

piled up loans they were unable to securitise. These were held to compound pre-existing risks 

arising from high asset prices and vulnerabilities in risk premia, corporate debt and market 

infrastructure, as well as complacency by LCFIs over low volatility. There was seen to be a 

risk of unwinding of low risk premia, triggering a pickup in corporate defaults, an unwinding 

of leveraged positions in corporate credit markets and consequently lower market liquidity 

and further falls in asset prices. 

 

In its Annual Report for 2006-7 released in June 2007 (technically not an FSR, but covering 

financial stability concerns as part of its remit), the BIS noted that an “ever increasing number 

of economic and financial variables have been observed to deviate significantly from what 

might be deemed traditional norms” which might not be sustainable. They highlighted that the 

world seems “awash with liquidity” with mortgage credit available on unprecedented terms. 

Low risk free rates and intense competition were seen as underlying a high appetite for risk, 

but also the misperception of risk due to lack of due diligence in the originate and distribute 

model – related in turn to principal agent problems. Concerns were expressed about 

“irrational exuberance” and risk of overpricing assets, that might turn to undershooting of 

prices, if liquidity dries up and correlations of asset prices rise as has been seen “ many times 

in the past”. Such a pattern could give rise to risks for banks (warehousing risk) but also to 

holders of CRT instruments, especially hedge funds. More generally the BIS argued that there 

were signs of a fundamental change in the credit cycle – as took place shortly afterwards. 

They concluded that “a tail event affecting the global economy might at some point have 

much higher costs than is commonly supposed”. Furthermore, they discussed issues that 

would arise in that case, including the possibility that policymakers would need to restructure 

the banking system and close failing banks, not merely infuse liquidity. Excessive debt and 

investment needs to be eliminated and not allowed to be a drag on the economy as in Japan in 

the 1990s. 

 

It is clear that the authorities did foresee a number of features of the crisis, but not the extent 

of the crisis. Furthermore, in their headline sections, it is notable that none of the reports 

highlighted the conduits and special investment vehicles (SIVs) that were a key feature of the 

crisis. None foresaw the collapse of the interbank market or the overall magnitude of the 
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effects from the sub-prime crisis alone. None considered possible links from financial 

instability to the real economy that are being seen now.  

 

We now go on to consider whether statistical early warning systems could have supplemented 

qualitative analyses. However, we note in advance that the US subprime episode, associated 

with interbank liquidity risk, is a classic example of the distinctiveness of crisis episodes; 

each event is context dependent and driven by the non-linear interactions between a particular 

set of variables. Although some of these variables may be common to other crises, the 

particular thresholds at which they interact may differ and consequently the types and 

magnitudes of risks they generate will vary. Hence, early warning systems were unlikely even 

ex ante to predict any crisis in all its features. All they can do is to highlight increased 

vulnerability of the system. 

 

2 Early warning systems - Binary Recursive Trees and Logit Models 

 

To examine the extent to which the US subprime crisis was predicted by ex ante 

macroeconomic and financial data, we utilise two different early warning system approaches. 

One is the “traditional” multivariate logit method and the other is the binary recursive tree 

(BRT) technique. The latter approach is a new tool for banking crisis prediction, which has 

previously been applied to systemic banking crises only by Duttagupta and Cashin (2008). 

 

Once a baseline model is constructed, data prior to the actual crisis event can be used to 

generate a predicted banking crisis probability; if the crisis has not already materialised, this 

generates a pure prediction otherwise, as in the case of our experiment, the probability serves 

to demonstrate the difference between the ex-ante crisis probability and the ex-post crisis 

probability value of one. 

 

The logit approach is ideally suited to predicting a binary outcome (1 = banking crisis, 0 = no 

banking crisis) using multiple explanatory variables selected on the basis of their theoretical 

or observed associations with banking crises. One advantage of the logit approach is the fact 

that it has been “tried and tested” in the banking crisis literature (see Demirguc-Kunt and 

Detragiache (1998 and 2000) and Davis and Karim (2008)) hence it is possible to compare the 

importance of different indicators in several studies. The logistic approach is also parametric, 

generating confidence intervals attached to coefficient values and their significance. On the 

other hand the logit coefficients are not intuitive to interpret (see below) and they do not 

reflect the threshold effects that may be simultaneously exerted by other variables. 

Nevertheless, we contend that crisis predictions generated by logit models are able to 

significantly improve the policy maker’s arsenal against banking crises; assuming 

intervention against crises is informed on the basis of correct logit signals, taxpayers funds are 

less likely to be wasted than if no intervention had occurred because the bailout costs 

associated with non-averted crises are likely to be higher than intervention costs (see Karim, 

2008
a
). 

 

We propose the BRT technique as an alternative because of its ability to detect interactions 

between multiple explanatory variables. Moreover, this technique is able to discover non-

linear variable interactions, making it especially applicable to large banking crises datasets 

where many cross-sections are necessary to generate enough banking crisis observations and 

numerous factors determine the occurrence of systemic failure. 

 

An important feature of this non-parametric technique is that no specific statistical 

distribution needs be imposed on the explanatory variables (Katz, 2006). It is also not 

necessary to assume all variables follow identical distributions or that each variable adopts the 
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same distribution across cross-sections. Clearly, this is an advantage when analysing banking 

crises since we cannot assume macro variables (such as real interest rates) and institutional 

variables (such as deposit insurance) follow identical distributions across time or across 

countries. Although logistic regression does not require variables to follow any specific 

distribution, in Davis and Karim (2008) it was shown that standardising variables displaying 

heterogeneity across countries improved the predictive performance of logit models. 

 

Logistic regressions are also sensitive to outlier effects (Congdon, 2003), yet it is precisely the 

non-linear threshold effects exerted by some variables that could generate anomalous values 

in the data.
2
 In low risk, stable regimes, variables may conform to a particular distribution 

which subsequently jumps to a regime of financial instability. Non-parametric BRTs should 

handle such data patterns better than logistic regressions. 

 

Finally, the BRT is extremely intuitive to interpret. The model output is represented as a tree 

which is successively split at the threshold values of variables that are deemed as important 

contributors to banking crises. The multivariate logit and BRT methodologies are described in 

more detail below. 

 

2.1 The Multivariate Logit Approach 

 

Demirguc-Kunt and Detragiache (1998) used the multivariate logit technique to relate the 

probabilities of systemic banking crises to a vector of explanatory variables. The banking 

crisis dependent variable is represented by a binary banking crisis dummy which is defined in 

terms of observable stresses to a countries’ banking system, e.g. ratio of non-performing loans 

to total banking system assets exceeds 10%
3
. Demirguc-Kunt and Detragiache (2005) updated 

the banking crises list to include more years. We continue to utilise this version of the 

banking crisis dummy and henceforth refer to it as DD05.  

 

The logistic cumulative distribution relates the probability that the dummy takes a value of 

one to the logit of the vector of n explanatory variables:  
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where Yit is the banking crisis dummy for country i at time t, β is the vector of coefficients, 

Xit is the vector of explanatory variables and F(β Xit) is the cumulative logistic distribution. 

The log likelihood function which is used to obtain actual parameter estimates is given by:  
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Although the sign on the coefficients are easily interpreted as representing an increasing or 

decreasing effect on crisis probability, the values are not as intuitive to interpret. Equation (2) 

shows the coefficients on Xit are not constant marginal effects of the variable on banking 

crisis probability since the variable’s effect is conditional on the values of all other 

                                                 
2
 This is distinct from normal variation in the data which derives from the probability distributions of the 

explanatory variables and is required to explain the dependent variable.   
3
 Their actual criteria are: the proportion of non-performing loans to total banking system assets exceeded 10%, 

or the public bailout cost exceeded 2% of GDP, or systemic crisis caused large scale bank nationalisation, or 

extensive bank runs were visible and if not, emergency government intervention was visible. 
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explanatory variables at time t. Rather, the coefficient ßi represents the effect of Xi when all 

other variables are held at their sample mean values. This makes the detection of non-linear 

variable interactions difficult, unlike the BRT technique which we outline below. 

 

2.2 The Binary Recursive Tree Approach 

 

The statistical component of this study uses a proprietary software package known as 

“CART”
4
 to construct the BRT. We give a brief outline of the methodology here; a fuller 

explanation can be found in Breimen at al (1984) and Steinberg and Colla (1995) and 

economic applications can be found in Duttagupta and Cashin (2008) who examined banking 

crises, Manasse et al (2003) who examined sovereign debt crises and Ghosh and Ghosh 

(2002) who examined currency crises. 

 

The BRT process analyses a sample of data to reveal the particular value of the explanatory 

variable that best explains the dependent variable. Hypothetically, it could be established that 

the level of real GDP growth best distinguishes between crisis and non-crisis episodes across 

the entire sample. CART would then search for the exact threshold level of GDP growth that 

separates crises from tranquil periods. Assuming this “splitting value” is 4%, all data will be 

split into two child nodes with observations associated with GDP growth <= 4% in the left 

child node and remaining observations associated with GDP growth > 4% in the right child 

node. If low GDP growth were detrimental to banking stability, we would expect the left child 

node to be concentrated with banking crisis observations relative to the right node; the CART 

algorithm will search through all possible splitting values of all explanatory variables to find 

the best discriminator between crises and non-crises across the entire sample. Once this 

“primary splitter” has been obtained, CART will apply the same procedure to further split the 

observations located in the two child nodes and in doing so will generate the BRT. This is 

schematically represented in figure 1 where the primary splitter is X1 and the corresponding 

threshold value is V1
*
. Subsequent splitter variables (and their threshold values) are given by 

X2 (V2) and X3 (V3); these values are used to partition the 72 crises in the sample. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4
 CART stands for “Classification and Regression Trees” and is developed by Salford Systems, www.salford-

systems.com 

Entire Sample: 72 
crises 
 
PARENT NODE  

Child Node 2:  
20 crises 

 

Child Node 1:  
52 crises 

Terminal Node 3:  
48 crises 

Terminal Node 3:  
4 crises 

Terminal Node 4:  
17 crises 

Terminal Node 5:  
3 crises 

Splitter Variable: X1 

 

X1≤ V1
* X1>V1

* 

Splitter Variable: X2 

X2≤ V2
* 

X2> V2
* X3≤ V3

* 

Figure 1: Schematic 

Diagram of Binary 

Recursive Tree (BRT) 

X3≥ V3
* 

Splitter Variable: X3 
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The choice between two potential splitters is made on the basis of their comparative abilities 

to increase node purity, i.e. to concentrate the node further with one type of observation. The 

change in impurity i  that arises from splitting (s) the data at a node (t) is defined as: 

 

RRLL tiPtiPtitsi ,       (3) 

 

where ti , Lti  and Rti  are the impurities associated with each existing node and the left 

and right child nodes respectively and PL and PR  are the probabilities of sending an 

observation in the left and right nodes respectively. To quantify the degree of impurity, we 

use a criterion called the Gini measure, which is applicable to binary dependent variables 

(Steinberg and Golovnya, 2007). The Gini measure is given by: 

 

tjPtiPji jicti ||, |      (4) 

 

where jic |  is the cost of misclassifying a non-crisis event given that it is a crisis event, 

tjp |   is the conditional probability that an observation takes class j given that it lies in node 

t and tip |  is the conditional probability that an observation takes class i given that it lies in 

node t (where j = crisis and i = no crisis). We next describe the data sample we use to estimate 

the logit and BRT models. 

 

3 Applying the models to the US in the 2000s 

 

3.1 The Data Sample 

 

Our sample consists of 105 countries covering the years 1979–2003. According to their 

association with banking crises, and as highlighted in previous studies, we select 12 

explanatory variables (see Davis and Karim, 2008). These 12 variables are macroeconomic, 

financial and institutional
5
 and are listed in Box 1. The DD05 banking crisis dummy yields 72 

systemic banking crisis
6
 episodes across the entire sample of which 7 are in advanced 

(OECD) countries
7
 and 65 in emerging markets. 

 

Box 1: List of Variables (with variable key) 

 

Macroeconomic 

Variables 

1. Real GDP Growth (%)   (GDP) 

2. Change in Terms of Trade (%)   (TOT) 

3. Nominal Depreciation (%)   (DEP) 

4. Real Interest Rate (%)   (RIR) 

5. Inflation (%)   (INF) 

6. Fiscal Surplus/ GDP (%)   (BB) 

Financial Variables 

7. M2/ Foreign Exchange Reserves (%)   (M2RES) 

8. Credit to Private Sector/ GDP (%)   (CREDGDP) 

9. Bank Liquid Reserves/ Total Bank Assets (%)   (RES2ASS) 

                                                 
5
 All data is obtained from the IMF International Financial Statistics Database or the World Bank Development 

Indicator set. See Demirguc-Kunt and Detragiache (1998) for a detailed sourcing of data. 
6
 This excludes the two out-of-sample banking crises which are tested later in this study. 

7
 Finland (1991), Italy (1990), Japan (1992), Norway (1987), Portugal (1986), Sweden (1990) and USA (1980). 
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10. Real Domestic Credit Growth (%)   (DCG) 

Institutional Variables 
11. Real GDP per Capita   (GDPCAP) 

12. Deposit Insurance (binary dummy)   (DI) 

  

 

The data are partitioned into a 1979–1999 sample which is used along with the DD05 banking 

crisis dummy to construct two baseline models: a logit model (called second tier logit (1)) and 

a BRT model (called second tier tree (2)). These baseline models are then applied to out of 

sample data for the years 2000 – 2007 for the USA to see if the sub-prime episode was 

detectable in advance. As a comparison, we also apply the two models to out of sample data 

for the UK (2000 – 2007). 

 

3.2 Results: Baseline Tree 

 

Box 2 gives the results for the second tier logit (1) model whilst Figure 2 shows the second 

tier tree (2) including the splitting variables, their corresponding threshold values and the 

partitioning of crisis and non-crisis observations in each node. 

 

 

 

Box 2: Second Tier Logit (1): Davis and Karim (2008) 

Logit Specification Based on  1979-1999 Subsample 

D&D (2005) crisis dummy 

(1979 – 1999) 

105 countries, 68 crisis occurrences (1
st
 

crisis year only) 

p-values in brackets 

Real GDP Growth (t) 

 

-0.0950
*** 

(0.0054) 

Change in Terms of Trade (t) 
-0.0258

*** 

(0.0000) 

Depreciation (t) 
0.0000 

(0.9504) 

Real Interest Rate (t) 
-0.0026 

(0.8404) 

Inflation (t) 
-0.0004 

(0.6319) 

Real GDP per Capita (t)
 0.0418

** 

(0.0489) 

Fiscal Balance/ GDP (t) 
-0.0377 

(0.2755) 

M2/ International Reserves (t) 
0.0006

* 

(0.0897) 

Private Credit/ GDP (t) 
-0.0007 

(0.4866) 

Credit Growth (t-2) 
-0.0002 

(0.7918) 

Deposit Insurance (t) 
0.2173 

(0.5256) 

Wald Test Statistic 335.97 

(0.0000) 

AIC 0.3375 

Observations 1039 
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Figure 2: Second Tier Tree (2) Based on 1979-1999 Sub Sample 
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The results of logit specifications have been discussed extensively in Davis and Karim 

(2008); suffice to note that only a subset of the Demirguc-Kunt and Detragiache 

(2005) coefficients are significant determinants of banking crises in our re-estimate. 

These are real GDP growth, terms of trade, real GDP per capita and M2/reserves. 

Neither private credit/GDP, credit growth nor a deposit insurance dummy are 

significant. We now discuss in more detail the second tier tree (2) before applying 

both models to out-of-sample data for the USA. 

 

Across the entire sample, the tree selects real domestic credit growth as the main 

discriminator between crisis and non-crisis events; countries where credit contracts by 

more than 4 % are over twice as likely to experience banking crisis than countries 

where credit contraction is less severe or where credit growth occurs. For the latter 

class of countries real interest rates are the next most important splitter variable; 

interest rates in excess of 14% are associated with higher crisis likelihood and this is 

worsened if GDP per capita (which may be correlated with banking sector 

innovations) exceeds $806. 

 

If countries’ real interest rates are below 14%, the additional impact of currency 

depreciation in excess of 39% substantially increases crisis probability (from 1.7% to 

10.1%). In combination with lower (<14%) real interest rates, currency depreciation 

of less than 39% reduces crisis probability to 1.2% but this is offset by an inflation 

rate higher than 6.7%. This probability is worsened substantially if the currency 

appreciates by more than 6.5%; in this case the probability of banking crises rises to 

8% (terminal node 5). We next apply this tree model and the logit regression to out-

of-sample data for the USA.  

 

3.4 Results: Predicting the US Sub Prime Crisis 

 

    Box 3: Predicted Probabilities (%) of Banking Crisis in the US  

 
Second Tier Logit 

(1) 

Second Tier Tree 

(2) 

2000 
1.462 

 
0.596 

2001 
1.920 

 
0.596 

2002 
1.480 

 
0.596 

2003 
1.417 

 
0.596 

2004 
1.078 

 
0.596 

2005 
1.236 

 
0.596 

2006 
1.278 

 
0.596 

2007 0.985 0.596 
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Graph 1: Predicted Probailities of Banking Crisis in USA (2000 - 2007)
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Box 3 and the corresponding Graph 1 show the predicted crisis probabilities generated 

by the two models. The BRT approach yields a low crisis probability (0.6%) which 

does not change in the run up to the sub-prime episode; the placement of all the US 

observations into a common node results in a constant crisis probability (see section 

2.2). The BRT algorithm chose to place every observation in node 3 indicating the 

following dynamics: low credit contraction (or positive credit growth) combined with 

real interest rates below 14%. The other pathways in the second tier tree (2) were 

therefore not applicable in the US case.  

 

By construction we allowed the sub-prime crisis to start in 2007, so that this is the 

only year when the DD05 dummy takes a value of 1. On this basis, the out-of-sample 

probability of crisis = 12.5%
8
 so that the BRT was correctly able to classify 87.5% of 

observations, assuming that a crisis probability of 0.6% is interpreted to mean no 

crisis will occur. This implies that within the category of crisis classification, the BRT 

was 100% unsuccessful since the ex-ante crisis probability of 0.6% fails to match the 

ex-post probability of 1. Within the category of non-crisis classification, the BRT 

model scored 100% success; the model’s overall ability to correctly classify the out-

of-sample data was therefore 87.5%. 

 

The second tier logit model (1) actually predicts the highest chance of banking crisis 

in 2001 at almost 2% (linked to the peak of the equity bubble and the start of the bear 

market). The predicted probabilities decline until 2004 (1.08%) but interestingly begin 

to rise after this with another peak probability occurring in 2006 (1.28%). However, 

the logit model then predicts the lowest crisis probability in 2007 (0.99%). Given the 

failure to identify the start of crisis in 2007 and the over identification of crisis 

episode during the previous years, the logit approach slightly underperforms relative 

                                                 
8
 For observations for 2000-2007, a banking crisis in one year yields an in sample crisis probability of 

1/8 = 12.5%. 
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to the BRT approach, although if the policy maker interprets the 2000–2006 

probabilities to mean that no crisis will occur, the logit model has exactly the same 

overall performance as the BRT. 

 

Interestingly, in-sample, the second tier tree (2) shows a heightened crisis probability 

for the USA during the years 1986 – 1989 and 1990 – 1992 broadly in line with the 

Savings and Loans episode and the “Credit Crunch” (albeit only signalling an 8% 

chance of a crisis). In contrast, the second tier logit (1) model fails to signal potential 

crises during the same years; the generated probabilities are not significantly different 

from zero. Graph 2 shows the in-sample crisis probabilities generated by the second 

tier tree (2).  

 

 

Graph 2: In Sample (1979 - 1999) Crisis Probabilities 

for the US Generated by the Second Tier Tree(2)
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The failure of this second tier tree (2) to detect the sub-prime crisis underlines the fact 

that it was a unique episode which was not contained in the information carried by ex-

ante macroeconomic indicators. To further illustrate this point, we show the out-of-

sample (2000 – 2007) predicted crisis probabilities for the UK in Box 4; again the 

second tier tree (2) evaluates the probability of banking crisis as under 1% and 

unchanging in the run up to the crisis event
9
. The information contained in the 

macroeconomic data foretells no major aberrant behaviour in the fundamentals and 

consequently the tree places all UK observations in one node associated with a low 

crisis probability. On the other hand, the second tier logit (1) model is able to detect 

an increase in crisis probability during the years 2000 – 2005 although the probability 

declines during 2006 and 2007. 

 

                                                 
9
 As with the US, we set the start date of the UK banking crisis in 2007. 
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For further information, we provide comparative out-of-sample banking crisis 

predictions for 5 OECD countries in the Appendix (Graph A.1) which are based on 

the two model specifications we use in this study alongside two additional logit and 

tree specifications detailed in Karim (2008
b
). For the majority of countries, there is no 

appreciable increase in crisis probabilities in the two years preceding the sub prime 

episode; in some cases there are actual decreases in probabilities. 

 

 

 

 

 

Box 4: Predicted Probabilities (%) of Banking Crisis in the UK  

 
Second Tier Logit 

(1) 

Second Tier Tree 

(2) 

2000 5.04 0.60 

2001 6.41 0.60 

2002 6.88 0.60 

2003 7.57 0.60 

2004 5.37 0.60 

2005 5.91 0.60 

2006 3.23 0.60 

2007 3.35 0.60 

 

 

Although the results show the sub-prime crisis was not clearly identifiable by the logit 

and BRT models we use, we contend that this does not make the models redundant; 

they should be assessed in the light of the following points. Firstly, in Davis and 

Karim (2008) we highlighted the possibility of type II errors being generated by the 

logit early warning system due to crisis over prediction (whereby the model classifies 

non-crisis observations as crisis observations). Unlike equation (4), the maximum 

likelihood function (equation 2) does not contain any jic |  term (which is the cost 

of misclassifying non-crises events as crises) and so the logit model does not 

explicitly penalise such misclassifications
10

.  

  

Secondly, the explanatory variables we use are broad in the sense that subtle risks 

associated with banking instability may not be detected (see graph 3). For example, if 

there is no major shift in monetary policy, credit growth or the overall 

macroeconomic environment, the early warning system may be unable to detect 

banking vulnerabilities. Our underlying logit model is a global model which relies on 

readily available macro data for developed and developing countries; and as shown in 

the Appendix most crises were in developing countries, where crises may have a 

different pattern to OECD countries. However it would be possible to construct a 

regional model for advanced countries using both techniques that would enable more 

                                                 
10

 General goodness-of-fit tests are available to compare the fitted probabilities of crises to actual crises 

probabilities; they do not discriminate between types of misclassification (crises versus non-crises). For 

a policy maker who has an aversion to unnecessary intervention against banking crisis, the cost of a 

false alarm may be high but she would have to manually control for this by setting a high cut-off 

probability threshold (see Karim, 2008
b
). 
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bank specific data as inputs, such as credit default swap rates for major OECD banks 

or LIBOR rates. This may improve the detection of banking sector risks typical of 

advanced countries and make episodes such as the US sub-prime crisis better 

detectable. Possibly a more serious problem is that the sub prime was one of the first 

global crises, making it hard to capture by regressions focused on crises in individual 

countries. At least, further research could include cross country as well as within-

country variables. 

 

 

Graph 3: Behaviour of US Variables (2000 - 2007) Used as Tree Splitters
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Third, the models highlight variables that are worthy of interest by the authorities 

even in qualitative macroprudential surveillance, while the BRT model is rich in 

detecting patterns that may precede crises. For example, although the actual model did 

not give a formal detection for 2007, it did highlight how low real interest rates plus 

currency depreciation can worsen crisis probabilities, as did in due course occur in the 

United States (see Graph 3). 

 

Finally, the logit and BRT approaches are complementary. Applying both models to 

the same data yields different insights into banking crises: the logit model is able to 

generate confidence intervals for variables that are significant contributors to crises 

and can be used to compute the marginal changes to crisis likelihood when only one 

variable is varied whilst the BRT approach is better able to map the evolution of 

crises conditional on the co-movements of multiple variables.  

 

4 A checklist approach - generic features of financial instability and the 

sub-prime crisis 

 

Drawing on theory and experience, Davis (1995, 1999, 2003) identifies certain 

common features to all types of crisis, which are helpful in anticipating crisis events. 



 16 

Indeed, he argues that examination of the features of diverse financial crises, suggests 

that there are common generic patterns in advance of crises. Key aspects are:  

 

 Regime shifts, first to laxity (such as deregulation) which provokes a credit 

cycle, later to rigour (e.g. monetary tightening) that triggers a crisis;  

 Easing of entry conditions to financial markets, leading to heightened 

competition and risk taking;  

 Debt accumulation and asset price booms, generating vulnerable balance 

sheets in the financial and non financial sectors;  

 Innovation in financial markets, which increases uncertainty during the crisis; 

and  

 Risk concentration and lower capital adequacy for banks, which reduces 

robustness to shocks.  

 

He saw these as providing the most basic dataset of indicators common to crises
11

, 

acknowledging that many of these features have occurred separately without entailing 

a crisis, and indeed are part of the normal functioning of a market economy. It is their 

combination and acuteness (i.e. the degree of deviation from norms) that is crucial to 

the occurrence of financial instability. And many of them are encapsulated in 

financial soundness or macroprudential indicators.  

 

As regards regime shifts to laxity, the monetary policy stance of most countries was 

relaxed from 2001 onwards, as policy sought to stimulate growth in the wake of the 

equity bear market in the absence of significant inflationary pressures. Underlying this 

was the additional regime shift of globalisation and the growth of China, the low price 

of whose goods helped to keep inflation low. In terms of risk of a regime shift to 

rigour, monetary tightening was indeed on the cards in 2007 owing to shrinking 

output gaps and higher energy prices, although it is harder to suggest that this feature 

actually triggered the crisis. 

 

There was clearly an easing of entry conditions to financial markets, leading to 

heightened competition and risk taking. Easy financing of hedge funds is one 

example; another is the growth of SIVs and conduits to hold securitised assets, an 

innovation that facilitated entry. Furthermore, origination of lending to US sub prime 

households was often by non banks not previously active in that market. 

 

Debt accumulation and asset price booms, generating vulnerable balance sheets in the 

financial and non-financial sectors; rises in debt of both the corporate and household 

sectors in the US and much of Europe took place over the mid 2000s, with prices of 

equities and real estate rising alongside. These were, as noted, potentially 

unsustainable and the more recent fall in asset prices combined with high debt has led 

to weak balance sheets and widespread defaults and insolvency. 

 

Innovation in financial markets, which increases uncertainty during the crisis was a 

key aspect of the sub prime crisis. All financial innovations give rise to a risk of 

financial instability, because their behaviour in a period of turbulence is unknown. 

The innovation of structured products was by its nature likely to generate such 

uncertainty in extreme form given the opacity and difficulty of pricing the instruments 

                                                 
11

 See also Demirguc Kunt and Detragiache (1998a and b) and Kaminsky (1999). 
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even in good times, despite which they benefited from a liquidity premium as 

securities, while investors were apparently unconcerned with the principal agent 

problems which are fundamental to that innovation. 

 

Risk concentration and lower capital adequacy for banks, which reduces robustness to 

shocks is the final indicator. Banks’ risk adjusted capital ratios seemed sound in 2007, 

but the conduits and SIVs generated hidden difficulties for banks, as did warehousing 

risk with failure to dispose of loans by securitisation in a manner expected.  

 

We contend that such a checklist would have been usefully applied to the sub prime 

crisis, capturing in particular an a priori suspicion of financial innovation as well as 

the new entry implicit in securitisation and sub prime lending. However, a weakness 

is that these factors had for the most part also been present for 2005 and 2006 also. 

The approach highlights vulnerability but needs supplementing in respect of possible 

triggers of a crisis by early warning models and detailed macroprudential analysis. 

 

Conclusion 

 

We have shown that the US sub-prime crisis was only partly foreseen by the policy 

community; although all had important insights, perhaps the BIS had the most 

forward looking analysis of events and possible policy responses, reflecting its longer 

term concern over the build-up of debt, risks in structured products and rising asset 

prices. Even they failed to see some of the consequences of the crisis, notably the 

seizing up of interbank markets. Among global early warning systems for the US and 

UK the logit performed best but was still only marginally able to help predict the 

crisis (although the BRT model had a higher average crisis prediction score). These 

results to some extent show that the sub prime crisis had specific features that were 

not typical of the average banking crisis in both advanced and emerging economies. 

However, we contend that rather than rejecting such models, the results how they 

should be better adapted for the specific features of advanced countries, that may also 

include aspects of securities market instability. That would be a step towards making 

them a useful supplement for macroprudential analysis. Equally, we maintain that a 

generic features checklist would also be useful complement for such analysis. 
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Appendix 

 

Graph A.1: OECD Crisis Predictions by Logit and Tree Models: 2004 – 2006 

Data 
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Table A.1: Banking Crisis Dates and Countries (Source Demirgüc Kunt and 

Detragiache 2005) 
 
Algeria 1990-92 Madagascar 1988-1991

** 

Argentina 

1980-82 

1989-90 

1995 

2001-2003 Malaysia 

1985-1988 

1997-2001 

Burundi 1994-1997
** 

Mali 1987-1989 

Bolivia 

1986-1988 

1994-1997
** 

2001-2002
* 

Mexico 

1982 

1994-1997 

Brazil 

1990 

1994-99 Nepal 1988-1991
**

 

Cameroon 

1987-1993 

1995-1998 Niger 1983-1986
** 

Chile 1981-1987 Nigeria 1991-1995 

Congo (Rep of) 1992-2002
* 

Norway 1987-1993 

Colombia 

1982-1995 

1999-2000 PNG 1989-1992
** 

Costa Rica 1994-1997
** 

Paraguay 1995-1999 

Ecuador 1995-2002
* 

Peru 1983-1990 

El Salvador 1989 Philippines 

1981-1987 

1998-2002
* 

Finland 1991-1994 Portugal 1986-1989 

Ghana 

1982-1989 

1997-2002
* 

Senegal 1983-1988 

Guinea Bissau 1994-1997
** 

South Africa 1985 

Guyana 1993-1995 Sri Lanka 1989-1993 

Indonesia 

1992-1995
** 

1997-2002
* 

Sweden 1990-1993 

Israel 1983-1984 Swaziland 1995 

Italy 1990-1995 Tanzania 1988-1991
** 

Jamaica 1996-2000 Thailand 

1983-1997 

1997-2002
* 

Japan 1992-2002
* 

Turkey 

1982 

1991 

1994 

2000-2002
* 

Jordan 1989-1990 Uganda 1994-1997
** 

Kenya 1993-1995 USA 1980-1992 

Korea 1997-2002 Uruguay 

1981-1985 

2002
* 

Lebanon 1988-1990 Venezuela 1993-1997 

 

 


