
Young Measures in a Nonlocal Phase Transition

Problem

Xiaofeng Ren
Institute for Mathematics and its Applications

University of Minnesota
Minneapolis, USA

Matthias Winter
Department of Mathematics

Heriot-Watt University
Edinburgh, U.K.

October 12, 1995

Abstract

A nonlocal variational problem modelling phase transitions is studied
in the framework of Young measures. The existence of global minimisers
among functions with internal layers on an infinite tube is proved by
combining a weak convergence result for Young measures and the principle
of concentration-compactness. The regularity of such global minimisers
is discussed, and the nonlocal variational problem is also considered on
asymptotic tubes.

1 Introduction

We are concerned with a variational problem modelling phase transitions where
a nonlocal term is involved. We assume that u is a phase-field parameter defined
in an unbounded tube Ω in Rd. The values u = −1 and u = 1 represent two
configurations of a perfect crystal and u ∈ (−1, 1) represents a mixture. We
associate with u its free energy

E(u) =
1
4

∫
Ω

∫
Ω

J(x − y)(u(x) − u(y))2dxdy +
∫

Ω

W (u(x))dx. (1.1)

The function W in the second part of (1.1) is a balanced double-well potential
(see Figure 1) describing the bulk-energy density. It penalises u’s that take
values other than −1 or 1.
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Figure 1: The graph of W .
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The double integral in (1.1) characterises u’s self interaction energy. The
kernel J is a nonnegative function with J(−ξ) = J(ξ) and is normalised so
that

∫
Rd J(ξ)dξ = 1. The size of J(x − y) measures the intensity of interac-

tion between sites x and y. It takes both short and long range interaction into
account, and therefore the double integral differs from the traditional gradient
model, which describes the interaction energy by

∫
Ω
|∇u|2dx, in that the gra-

dient model ignores interaction at a distance. The dependence of J on x and
y through x − y suggests that the material is homogeneous. Since we do not
require that J(ξ) depends only on |ξ|, the material is allowed to be anisotropic.

We refer to Bates, Fife, Ren and Wang [4] for more about this model. The
Euler-Lagrange equation of (1.1) is∫

Ω

J(x − y)u(y)dy − K(x)u(x) − f(u(x)) = 0 in Ω (1.2)

as calculated in Fife [13] where K(x) =
∫
Ω

J(x − y)dy and f(u) = W ′(u)
(see Figure 2). In this paper we study (1.2) by directly minimising the energy
functional (1.1). Being a minimisation problem on an unbounded domain, our
work involves the concentration-compactness principle of Lions [15]. We require
that u is close to −1 at one end of the tube Ω and close to 1 at the other end
so that a transition of phase occurs somewhere in Ω. The precise meaning of
this boundary condition at infinity is given in (2.10). The nonlinear integral
equation (1.2) differs from the standard Allen-Cahn equation{

∆u − f(u) = 0 in Ω
∂u

∂ν
= 0 on ∂Ω,

which is often used to model phase transitions, in that the first term of (1.2) is
nonlocal. This nonlocal term together with −K(x)u(x) comes from the double
integral term in (1.1).

The main difficulty of our approach with regard to the existence question
arises from the lack of pointwise convergence of minimising sequences. It is
easy to show that a sequence {un} of bounded functions with more and more
rapid oscillations can have uniformly bounded energy. Therefore a minimising
sequence does not have to converge pointwise and its weak−∗ limit in L∞(Ω) is
not necessarily an energy minimiser. To overcome this problem we study (1.1)
in a much wider class of functions. We allow measure-valued functions to enter
the admissible set. Such generalised functions are known as families of Young
measures. In this new class the energy attains its minimum for a measure-
valued function. A key fact is the following: Given a sequence of bounded
measure-valued functions whose energy converges to a limit we can find another
measure-valued function whose energy is this limit. We utilise this fact together
with the concentration-compactness principle to prove the existence of global
minimisers in “thin” periodic tubes.
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Figure 2: The graph of f .
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Furthermore we discuss the regularity of the measure-valued solutions under
various conditions on J and W . Since our solutions are measure-valued functions
the first question to ask is whether they are “usual” functions. If yes, are they
continuous? We show that sometimes the global minimisers are usual functions,
and sometimes the global minimisers cannot be continuous, should they be usual
functions. Many questions concerning the regularity of global minimisers are
still open.

Finally we indicate how to prove existence of global minimisers for “fat”
tubes. We also discuss tubes that are only asymptotically periodic, and give a
sufficient condition for existence.

Let us comment on some related work. In [4] travelling waves in R1 of the
gradient flow of (1.1) are studied for not necessarily balanced W , meaning that
the two wells of W may have different depths, via a homotopy argument. One
result there says that in the case when W is balanced (1.2) has a stable solution
in R1 connecting −1 to 1. The argument relies on the monotonicity of the
solutions and cannot be generalised to treat less regular domains in Rd.

Bates et al approached (1.2) by truncation and formal approximation by
higher order differential, hence local, equations. Though the higher order lo-
cal equations can be studied via geometric singular perturbation ([2, 3, 14]),
the concentration-compactness principle ([5, 6]), and the deformation method
([17]), the convergence to the nonlocal equation remains open.

Other nonlocal problems in the literature include [7, 18] of Brandon et al
who studied ferromagnetic materials with the help of measure-valued functions,
and [8, 9, 10, 11, 16] of De Masi et al who studied a phase-transition problem
derived from statistical mechanics, for which stable travelling waves are found
by a perturbation argument.

The paper is organised as follows: in section 2 we provide some facts about
measure-valued functions and about the admissible class for our variational
problem. In section 3 we prove existence in thin tubes. In section 4 we discuss
the regularity of measure-valued minimisers. Finally in section 5 we indicate
how to prove existence in fat or asymptotically periodic tubes.

We use C to denote a generic constant that may change from line to line.
The domain Ω is always assumed smooth. We often do not explicitly mention
passing to subsequences.

The research of MW was supported by the European Union (contract ER-
BCHBICT930744). He also acknowledges the hospitality of the Institute for
Mathematics and Its Applications.

2 Preliminaries

We assume throughout this paper that J and W satisfy

H-1 J is bounded, Borel measurable and nonnegative on Rd with J(−ξ) = J(ξ),∫
Rd J(ξ)dξ = 1 and J(ξ) > c > 0 when |ξ| < η for some η > 0.
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H-2 W is a C2 function that has exactly two global minimisers at −1 and 1
where W (−1) = W (1) = 0, and W ′′(−1) > 0, W ′′(1) > 0.

Definition 2.1 A measure-valued function ν with range [−1, 1] is a family of
probability measures {νx} on [−1, 1] parametrised by x ∈ Ω such that for each
Borel set E ⊂ [−1, 1] νx(E) is Borel measurable with respect to x ∈ Ω.

General references for measure-valued functions include [1, 12, 19, 20]. A
measure-valued function is a usual function if νx = δ(u(x)) for some Borel
measurable function u. Here δ(u) denotes the Dirac delta function with its
support at the point u. Denote the set of all the measure-valued functions with
range [−1, 1] by M(Ω).

As a remark about the range [−1, 1] one could start with measure-valued
functions with the range, say (−∞,∞). For such a measure-valued function ν′

define a new measure-valued function ν with range [−1, 1] by

νx = ν′
x|[−1,1] + ν′

x((−∞,−1))δ(−1) + ν′
x((1,∞))δ(1)

where ν′
x|[−1,1] denotes the restriction measure of ν′

x on [−1, 1], i.e., for each
Borel set A ⊂ (−∞,∞)

ν′
x|[−1,1](A) = ν′

x(A ∩ [−1, 1]).

It easy to verify E(ν) ≤ E(ν′), so we only consider measure-valued functions
with range [−1, 1].

Lemma 2.2 On every open set Ω ⊂ Rd if {νn} ⊂ M(Ω), there exists ν ∈ M(Ω)
such that along a subsequence of {νn} again labeled by n

lim
n→∞[

∫
Ω

2

∫
[−1,1]2

F (x, y, a, b)dνn,xdνn,ydxdy +
∫

Ω

∫
[−1,1]

G(x, a)dνn,xdx]

=
∫

Ω
2

∫
[−1,1]2

F (x, y, a, b)dνxdνydxdy +
∫

Ω

∫
[−1,1]

G(x, a)dνxdx

for all continuous F defined on Ω
2 × [−1, 1]2 and for all continuous G defined

on Ω × [−1, 1], both with compact supports.

Note that we write dνn,x for dνn,x(a) and dνn,y for dνn,y(b) suppressing a and
b.

Proof. Define measures σn on Ω × [−1, 1] by

σn(E) =
∫

Ω

νn,x({a : (x, a) ∈ E})dx
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for each Borel set E ⊂ Ω × [−1, 1]. Note that {a : (x, a) ∈ E} is the x-slice
of E. Clearly {σn} is a sequence of Radon measures uniformly bounded on
each compact subset of Ω × [−1, 1]. Then there exists a Radon measure σ on
Ω× [−1, 1] such that for each continuous function G on Ω× [−1, 1] with compact
support

lim
n→∞

∫
Ω

∫
[−1,1]

G(x, a)dνn,xdx = lim
n→∞

∫
Ω×[−1,1]

Gdσn =
∫

Ω×[−1,1]

Gdσ.

Applying Theorem 10 and the second step of the proof of Theorem 11 in [12],
Chapter 1, we find a measure-valued function ν such that∫

Ω×[−1,1]

Gdσ =
∫

Ω

∫
[−1,1]

G(x, a)dνxdx.

Therefore

lim
n→∞

∫
Ω

∫
[−1,1]

G(x, a)dνn,xdx =
∫

Ω

∫
[−1,1]

G(x, a)dνxdx. (2.1)

Now take Σn to be the product measure σn ×σn. Identify Ω
2× [−1, 1]2 with

(Ω × [−1, 1])2. Then Σn → Σ = σ × σ in the sense that for every continuous F

on Ω
2 × [−1, 1]2 with compact support

lim
n→∞

∫
Ω

2×[−1,1]2
FdΣn =

∫
Ω

2×[−1,1]2
FdΣ.

Then by Fubini’s theorem

lim
n→∞

∫
Ω

2

∫
[−1,1]2

F (x, y, a, b)dνn,xdνn,ydxdy = lim
n→∞

∫
Ω

2×[−1,1]2
FdΣn

=
∫

Ω
2×[−1,1]2

FdΣ =
∫

Ω
2

∫
[−1,1]2

F (x, y, a, b)dνxdνydxdy,

which together with (2.1) proves the lemma. �

It is an easy exercise to show

Corollary 2.3 In Lemma 2.2 F and G need only to be bounded and Borel
measurable with compact support.

For each ν ∈ M(Ω) set

< νx >:=
∫

[−1,1]

a dνx, (2.2)

7



which stands for the mean of νx. Define an energy functional

E(ν) =
1
4

∫
Ω

2
J(x−y)

∫
[−1,1]2

(a−b)2dνxdνydxdy+
∫

Ω

∫
[−1,1]

W (a)dνxdx (2.3)

for each ν ∈ M(Ω), which generalises (1.1). Note that the energy of ν is not
necessarily finite. We set

A = {ν : E(ν) < ∞} (2.4)

so that E is a functional from A to the set of nonnegative real numbers.

Definition 2.4 A set Ω ⊂ Rd is a tube if there exists K > 0 so that Ω ⊂
R1 × [−K,K]d−1 ⊂ Rd and if there exists T = (T 1, 0, ..., 0) ∈ Rd such that
x + kT ∈ Ω if and only if x ∈ Ω for all integers k (see Figure 3 where the two
ends are denoted by e1 and e2).

We single out a simple case when the tube is “thin” compared to J .

Definition 2.5 A set Ω ⊂ Rd is a thin tube if K in Definition 2.4 and η > 0
can be chosen so that J(ξ) > c > 0 for all ξ ∈ [−2η, 2η] × [−2K, 2K]d−1.

A segment S(z1, r) of Ω is defined by

S(z1, r) = {x ∈ Ω : |x1 − z1| < r}, (2.5)

where x = (x1, x′).
We now set

ν̂(x1) =
1

|S(x1, η)|
∫

z∈S(x1,η)

< νz > dz (2.6)

for x1 ∈ R1. Here η > 0 is chosen such that J(ξ) > c(η) > 0 for all |ξ| < 2η,
and |S(x1, η)| is the Lebesgue measure of S(x1, η). Clearly ν̂ is continuous.

Lemma 2.6 Suppose Ω is a thin tube. For every ε1 > 0 there is θ > 0 such
that for every ν ∈ A, z1 ∈ R1

1
4

∫
S2(z1,η)

J(x− y)
∫

[−1,1]2
(a− b)2dνxdνydxdy +

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx < θ

implies that either |ν̂(z1) + 1| < ε1 or |ν̂(z1) − 1| < ε1.

Proof. For each ν ∈ A, z1 ∈ R1 we estimate W (ν̂(z1)) as follows.

W (ν̂(z1)) =
1

|S(z1, η)|
∫

S(z1,η)

W (ν̂(z1))dx

=
1

|S(z1, η)|
∫

S(z1,η)

∫
[−1,1]

W (a + ν̂(z1) − a)dνxdx
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Figure 3: An example of tubes.
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=
1
|S|

∫
S(z1,η)

∫
[−1,1]

[W (a) + f(a)(ν̂(z1) − a) +
f ′(·)

2
(ν̂(z1) − a)2]dνxdx

≤ 1
|S|

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx +
1
|S| [

∫
S(z1,η)

∫
[−1,1]

f2(a)dνxdx]1/2·

[
∫

S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx]1/2 + C

∫
S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx

≤ 1
|S|

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx +
1
|S| [

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx]1/2·

[
∫

S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx]1/2 + C

∫
S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx

≤ C

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx + C

∫
S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx (2.7)

by Hölder’s inequality and H-2. On the other hand by the definition of η and
since we assume Ω to be thin∫

S2(z1,η)

J(x−y)
∫

[−1,1]2
(a− b)2dνxdνydxdy ≥ C

∫
S2

∫
[−1,1]2

(a− b)2dνxdνydxdy

= C

∫
S2

∫
[−1,1]2

[(a− ν̂(z1))2 +(b− ν̂(z1))2 −2(a− ν̂(z1))(b− ν̂(z1))]dνxdνydxdy

= C

∫
S2(z1,η)

∫
[−1,1]2

[(a − ν̂(z1))2 + (b − ν̂(z1))2]dνxdνydxdy

≥ C

∫
S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx.

In short we have ∫
S(z1,η)

∫
[−1,1]

(a − ν̂(z1))2dνxdx

≤ C

∫
S2(z1,η)

J(x − y)
∫

[−1,1]2
(a − b)2dνxdνydxdy. (2.8)

Combing (2.8) with (2.7) we find

W (ν̂(z1)) ≤ C[
1
4

∫
S2(z1,η)

J(x − y)
∫

[−1,1]2
(a − b)2dνxdνydxdy

+
∫

S(z1,η)

∫
[−1,1]

W (a)dνxdx], (2.9)

which immediately implies the lemma. �
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Corollary 2.7 For each ν ∈ A on a thin tube ν̂ has limits −1 or 1 at −∞ or
∞.

We then set

A1
−1 = {ν ∈ A : lim

x1→−∞
ν̂(x1) = −1 and lim

x1→∞
ν̂(x1) = 1}. (2.10)

We define A−1
−1, A−1

1 and A1
1 in similar ways, and clearly these subclasses are

mutually disjoint and

A = A−1
−1 ∪ A1

−1 ∪ A−1
1 ∪ A1

1.

We look for global minimisers of E in each of the four subclasses. Clearly
νx = δ(−1) is the only global minimum in A−1

−1 and νx = δ(1) is the only global
minimum in A1

1, so we only consider A1
−1 and the subclass A−1

1 can be treated
in the same way.

3 Existence of Measure-valued Solutions

We now state our main theorem about the existence. We consider thin tubes
(see Definition 2.5) in this section. General tubes are treated in Section 5.

Theorem 3.1 On each thin tube Ω there exists µ ∈ A1
−1 such that E(µ) =

inf
ν∈A1

−1

E(ν).

Let {νn} ⊂ A1
−1 be a minimising sequence, i.e.,

lim
n→∞E(νn) = inf

ν∈A1
−1

E(ν). (3.1)

Remark 3.2 One can assume that the νn’s are usual functions (see Theorem
1, [20]).

We will construct a minimiser from {νn}. To this end we prove a few lemmas.

Lemma 3.3 There exists c > 0 such that E(ν) > c for all ν ∈ A1
−1.

Proof. Suppose there exist νn ∈ A1
−1 such that lim

n→∞E(νn) = 0. Then Lemma

2.6 implies that for every small ε > 0 |ν̂n(x1) + 1| < ε or |ν̂n(x1)− 1| < ε for all
x1 ∈ R1 and large n. But ν̂n(x1

n) = 0 for some x1
n since

lim
x1→−∞

ν̂n(x1) = −1 and lim
x1→∞

ν̂n(x1) = 1.

This contradiction proves the lemma. �

11



To handle the possible loss of compactness due to the unboundedness of Ω
we proceed as in [5, 6]. Define Lévy concentration functions Qn associated with
νn by

Qn(t) = sup
z1∈R1

[
1
4

∫
S2(z1,t)

J(x − y)∫
[−1,1]2

(a − b)2dνn,xdνn,ydxdy +
∫

S(z1,t)

∫
[−1,1]

W (a)dνn,xdx] (3.2)

for t ≥ 0. Clearly {Qn} is a sequence of nonnegative nondecreasing functions
such that

lim
n→∞ lim

t→∞Qn(t) = lim
n→∞E(νn) = inf

ν∈A1
−1

E(ν) > 0. (3.3)

Note that the last inequality follows from Lemma 3.3. By a classical lemma
there exists a nonnegative nondecreasing function Q(t) such that along a suitable
subsequence of {νn}, again denoted by {νn},

lim
n→∞Qn(t) = Q(t) (3.4)

for all t ≥ 0. Set λ = lim
t→∞Q(t). Clearly 0 ≤ λ ≤ inf

ν∈A1
−1

E(ν). By (3.2), (3.3)

and (3.4) we make the following three statements (see [15] for details).

I If λ = inf
ν∈A1

−1

E(ν), there exist a subsequence of {νn} labeled by the same

index and z1
n ∈ R1 so that for every ε > 0 there exists r > 0 satisfying

1
4

∫
S2(z1

n,r)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xνn,ydxdy

+
∫

S(z1
n,r)

∫
[−1,1]

W (a)dνn,xdx > inf
ν∈A1

−1

E(ν) − ε.

II If λ = 0, then for all r > 0

lim
n→∞ sup

z1∈R1
[
1
4

∫
S2(z1,r)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

S(z1,r)

∫
[−1,1]

W (a)dνn,xdx] = 0.

III If 0 < λ < inf
ν∈A1

−1

E(ν), there exist a subsequence of {νn} labeled by the

same index such that for every ε > 0 there exist r > 0, rn → ∞, and a
positive integer n1 such that for all n > n1

λ − ε < Qn(r), Qn(rn) < λ + ε.
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Lemma 3.4 The case λ = 0 cannot occur.

Proof. The proof is the same as that of Lemma 3.3. �

Lemma 3.5 The case 0 < λ < inf
ν∈A1

−1

E(ν) cannot occur.

We postpone the proof of this lemma to the end of this section.
We now deduce from Statement I and Lemma 2.6 that there exist integers

kn such that for every ε1 > 0 there exists r > 0 so that for all n

|ν̂n(x1−knT 1)+1| < ε1 for x1 < −r, |ν̂n(x1−knT 1)−1| < ε1 for x1 > r. (3.5)

We introduce a shift operator τ so that

(τkν)x = νx−kT (3.6)

where k is an integer. Consider the shifted sequence {τkn
νn}. (3.5) becomes

|τ̂kn
νn(x1) + 1| < ε1 for x1 < −r, |τ̂kn

νn(x1) − 1| < ε1 for x1 > r. (3.7)

Set µ ∈ M(Ω) to be the limit of {τkn
νn} in the sense of Lemma 2.2. Corollary

2.3 and (3.7) imply for x1 < −r

µ̂(x1) =
1

|S(x1, η)|
∫

S(x1,η)

∫
[−1,1]

a dµydy

= lim
n→∞

1
|S(x1, η)|

∫
S(x1,η)

∫
[−1,1]

a d(τkn
νn)ydy ∈ (−1 − ε1,−1 + ε1).

The same argument shows that for x1 > r µ̂(x1) ∈ (1 − ε1, 1 + ε1). Therefore

lim
x1→−∞

µ̂(x1) = −1 and lim
x1→∞

µ̂(x1) = 1. (3.8)

Corollary 2.3 implies

1
4

∫
S2(0,r)

J(x − y)
∫

[−1,1]2
(a − b)2dµxdµydxdy +

∫
S(0,r)

∫
[−1,1]

W (a)dµxdx

= lim
n→∞[

1
4

∫
S2(0,r)

J(x − y)
∫

[−1,1]2
(a − b)2d(τkn

νn)xd(τkn
νn)ydxdy

+
∫

S(0,r)

∫
[−1,1]

W (a)d(τkn
νn)xdx] ≤ inf

ν∈A1
−1

E(ν).

By sending r → ∞ we find E(µ) ≤ inf
ν∈A1

−1

E(ν). This and (3.8) imply µ ∈ A1
−1

and E(µ) = inf
ν∈A1

−1

E(ν). This proves Theorem 3.1. �
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We close this section by proving Lemma 3.5.

Proof of Lemma 3.5. It follows from Statement III that for every ε > 0 we have
r > 0 and a sequence rn → ∞, such that Qn(r), Qn(rn) ∈ (λ − ε, λ + ε) for
large n. Therefore we can find z1

n so that

1
4

∫
S2(z1

n,r)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

S(z1
n,r)

∫
[−1,1]

W (a)dνn,xdx ∈ (λ − ε, λ + ε), (3.9)

1
4

∫
(Ω×Ω)\(S(z1

n,rn)×S(z1
n,rn))

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

Ω\S(z1
n,rn)

W (a)dνn,xdx ∈ ( inf
ν∈A1

−1

E(ν) − λ − ε, inf
ν∈A1

−1

E(ν) − λ + ε) (3.10)

for large n.
Let us denote the two segments of S(z1

n, rn)\S(z1
n, r) by D1n and D2n with

the first one lying to the left of the second one. Note D1n = S(z1
n − (rn +

r)/2, (rn−r)/2) and D2n = S(z1
n+(rn+r)/2, (rn−r)/2). Clearly |D1n|, |D2n| →

∞ as n → ∞. Also denote Ω\S(z1
n, r) by M1n and M2n with D1n ⊂ M1n and

D2n ⊂ M2n. For large n

1
4

∫
D2

1n

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy +

∫
D1n

∫
[−1,1]

Wdνn,xdx < 2ε

and a similar inequality holds for D2n. Then Lemma 2.6 implies that the
ν̂n(x1)’s stay close to −1 or 1 on D1n and D2n. We consider three cases

Case 1 Suppose, choosing a subsequence if necessary, the ν̂n(x1)’s stay close
to −1 on D2n in the sense of Lemma 2.6.

We will show that in this case the νn’s already have energies at least not
much less than inf

ν∈A1
−1

E(ν) in M2n, so the total energy is by (3.9) is at least

not much less than inf
ν∈A1

−1

E(ν)+λ. This shows that νn cannot be a minimising

sequence.
To this end we truncate νn at z1

n + r. Set

ν′
n,x =

{
νn,x if x1 ≥ z1

n + r
δ(−1) if x1 < z1

n + r
(3.11)

where x = (x1, x′). Clearly ν′
n ∈ A1

−1, so

E(ν′
n) ≥ inf

ν∈A1
−1

E(ν). (3.12)
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We proceed to show that E(ν′
n) and

1
4

∫
M2

2n

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy +

∫
M2n

∫
[−1,1]

W (a)dνn,xdx

are comparable. First we note by (3.11)∫
Ω

∫
[−1,1]

W (a)dν′
n,xdx =

∫
M2n

∫
[−1,1]

W (a)dνn,xdx. (3.13)

The other part of E(ν′
n) is estimated as follows. Write, denoting {x ∈ Ω :

x1 < z1
n + r} by x1 < z1

n + r where x = (x1, x′),∫
Ω

2
J(x − y)

∫
[−1,1]2

(a − b)2dν′
n,xdν′

n.ydxdy

=
∫

M2
2n

... +
∫

M2n

∫
y1<z1

n+r

... +
∫

x1<z1
n+r

∫
M2n

... +
∫

x1<z1
n+r

∫
y1<z1

n+r

...

=
∫

M2
2n

... +
∫

M2n

∫
y1<z1

n+r

... +
∫

x1<z1
n+r

∫
M2n

... (3.14)

since ∫
x1<z1

n+r

∫
y1<z1

n+r

∫
[−1,1]2

(a − b)2dν′
n,xdν′

n,y = 0

by (3.11). We need to show that the last two terms are small (of order ε) as
n → ∞. Since they are symmetric, we only consider∫

M2n

∫
y1<z1

n+r

... =
∫

x1≥z1
n+rn

∫
y1<z1

n+r

... +
∫

D2n

∫
y1<z1

n+r

...

≤ C

∫
x1≥zn

∫
y1<z1

n+r

J(x − y)dxdy +
∫

D2n

∫
y1<z1

n+r

....

The first term approaches 0 as n → ∞ since rn → ∞. The last line is therefore
bounded by∫

D2n

∫
y1<z1

n+r

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdδ(−1)dxdy + o(1)

≤ C

∫
D2n

∫
[−1,1]

(a + 1)2dνn,xdx + o(1)

since function x → ∫
y1<z1

n+r
J(x − y)dy ≤ 1 by H-2 is uniformly bounded.
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Cover D2n with m many mutually disjoint S(tn,1, η), S(tn,2, η),..., S(tn,m, η)
with D2n = ∪m

i=1S(tn,i, η). This can be done if we choose rn appropriately in
the first place. Then

C

∫
D2n

∫
[−1,1]

(a + 1)2dνn,xdx + o(1)

= C

m∑
i=1

∫
S(tn,i,η)

∫
[−1,1]

(a + 1)2dνn,xdx + o(1)

= C
m∑

i=1

∫
S(tn,i,η)

∫
[−1,1]

(a − ν̂(tn,i) + ν̂(tn,i) + 1)2dνn,xdx + o(1)

= C

m∑
i=1

[
∫

S(tn,i,η)

∫
[−1,1]

(a − ν̂(tn,i))2dνn,xdx + |S(tn,i, η)|(ν̂(tn,i) + 1)2] + o(1)

≤ C

m∑
i=1

[
∫

S(tn,i,η)

∫
[−1,1]

(a − ν̂(tn,i))2dνn,xdx + W (ν̂(tn,i))] + o(1)

by H-1 since ν̂(tn,i) is close to −1 on D2n. Applying (2.8) and (2.9) we find
that the last line is bounded by

C

m∑
i=1

[
1
4

∫
S2(tn,i,η)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

S(tn,i,η)

∫
[−1,1]

W (a)dνn,xdx] + o(1) ≤ C[
1
4

∫
D2

2n

... +
∫

D2n

...] + o(1).

Applying (3.9) and (3.10) we find∫
M2n

∫
y1<z1

n+r

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy ≤ 3ε (3.15)

for large n. We deduce from (3.13), (3.14) and (3.15) that

E(ν′
n) ≤ 1

4

∫
M2

2n

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

M2n

∫
[−1,1]

W (a)dνn,xdx + 6ε

for large n. This, (3.9) and (3.12) imply

E(νn) ≥ λ − ε + [
1
4

∫
Ω

2\S2(z1
n,r)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

16



+
∫

Ω\S(z1
n,r)

∫
[−1,1]

W (a)dνn,xdx] ≥ λ − ε + [
1
4

∫
M2

2n

... +
∫

M2n

...]

≥ λ − ε + E(ν′
n) − 6ε ≥ λ − 7ε + inf

ν∈A1
−1

E(ν).

By choosing 7ε < λ/2 we find that {νn} can not be a minimising sequence in
A1

−1. This rules out case 1.

Case 2 Suppose, choosing a subsequence if necessary, the ν̂n(x1)’s stay close
to 1 on D1n in the sense of Lemma 2.6.

This case is handled along the same line. One shows that νn already has
large energy on M1n.

Case 3 Suppose, choosing a subsequence if necessary, the ν̂n(x1)’s stay close
to −1 on D1n and close to 1 on D2n in the sense of Lemma 2.6.

We will show that νn has large energy on S(z1
n, rn). To this end we truncate

νn at z1
n − rn and z1

n + rn. Set

ν′
n,x =

⎧⎨⎩
δ(−1) if x1 < z1

n − rn

νn,x if z1
n − rn ≤ x1 ≤ z1

n + rn

δ(1) if x1 > z1
n + rn

(3.16)

where x = (x1, x′). Clearly ν′
n ∈ A1

−1, so

E(ν′
n) ≥ inf

ν∈A1
−1

E(ν). (3.17)

We compare E(ν′
n) with

1
4

∫
S2(z1

n,rn)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy +

∫
S

∫
[−1,1]

W (a)dνn,xdx.

Clearly by (3.16)∫
Ω

∫
[−1,1]

W (a)dν′
n,xdx =

∫
S(z1

n,rn)

∫
[−1,1]

W (a)dνn,xdx (3.18)

The other part of E(ν′
n) is estimated as follows.∫

Ω
2
... =

∫
S2(z1

n,rn)

... +
∫

x1<z1
n−rn

∫
y1<z1

n−rn

...

+
∫

x1>z1
n+rn

∫
y1>z1

n+rn

... +
∫

x1<z1
n−rn

∫
y1>z1

n+rn

... +
∫

x1>z1
n+rn

∫
y1<z1

n−rn

...
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+
∫

S

∫
y1<z1

n−rn

... +
∫

S

∫
y1>z1

n+rn

... +
∫

x1<z1
n−rn

∫
S

... +
∫

x1>z1
n+rn

∫
S

...

=
∫

S2
... +

∫
x1<z1

n−rn

∫
y1>z1

n+rn

... +
∫

x1>z1
n+rn

∫
y1<z1

n−rn

...

+
∫

S

∫
y1<z1

n−rn

... +
∫

S

∫
y1>z1

n+rn

... +
∫

x1<z1
n−rn

∫
S

... +
∫

x1>z1
n+rn

∫
S

...

by (3.16). The second and third terms are again symmetric, so we only consider∫
x1<z1

n−rn

∫
y1>z1

n+rn

... ≤ C

∫
x1<z1

n−rn

∫
y1>z1

n+rn

J(x − y)dxdy → 0 (3.19)

as n → ∞ since rn → ∞. The last four terms are estimated in a way similar to
that leading to (3.15) and each of them is bounded by, say, 3ε. Together with
(3.18) and (3.19) we find

E(ν′
n) ≤ 1

4

∫
S2(z1

n,rn)

J(x − y)
∫

[−1,1]2
(a − b)2dνn,xdνn,ydxdy

+
∫

S(z1
n,rn)

∫
[−1,1]

W (a)dνn,xdx + ε + 12ε

for large n. This, (3.10) and (3.17) imply

E(νn) ≥ ( inf
ν∈A1

−1

E(ν)−λ)−ε+E(ν′
n)−13ε ≥ ( inf

ν∈A1
−1

E(ν)−λ)+ inf
ν∈A1

−1

E(ν)−14ε.

By choosing 14ε < ( inf
ν∈A1

−1

E(ν) − λ)/2 we deduce that {νn} cannot be a min-

imising sequence in A1
−1. This rules out case 3 and the proof of Lemma 3.5 is

complete. �

4 Regularity of Global Minimisers

In this section we assume that Ω is a thin tube and µ is a global minimiser of
E in A1

−1. The “thinness” condition on Ω will be removed in the next section.
We first derive an alternative formula of E(ν) for each ν ∈ A. Note that for
each x ∈ Ω ∫

[−1,1]2
(a − b)2dνxdνy

=
∫

[−1,1]2
[(a− < νx >) − (b− < νy >) + (< νx > − < νy >)]2dνxdνy

= (< νx > − < νy >)2 + 2
∫

[−1,1]

(a− < νx >)2dνx

18



= (< νx > − < νy >)2 + 2
∫

[−1,1]

a2dνx − 2 < νx >2 .

We deduce
E(ν) =

1
4

∫
Ω

2
J(x − y)(< νx > − < νy >)2dxdy

+
∫

Ω

[
∫

[−1,1]

(W (a) + K(x)
a2

2
)dνx − K(x)

< νx >2

2
]dx, (4.1)

where
K(x) =

∫
Ω

J(x − y) dy. (4.2)

Note that 0 < c ≤ K(x) ≤ 1 for x ∈ Ω by H-1 and the smoothness of Ω, and
K(x) ≡ 1 if Ω = R1. An immediate consequence of (4.1) is

Proposition 4.1 If W (a) + K(x)a2/2 is convex in a ∈ [−1, 1] for all x ∈ Ω,
there is a usual function as global minimiser. If W (a) + K(x)a2/2 is strictly
convex for all x ∈ Ω, every global minimiser is a usual continuous function.

Recall that for x ∈ Ω W (a) + K(x)a2/2 is strictly convex if W ((a + b)/2) +
K(x)((a + b)/2)2/2 < [W (a) + K(x)a2/2 + W (b) + K(x)b2/2]/2 for −1 ≤ a <
b ≤ 1.

Proof. Suppose µ is a global minimiser constructed in Section 3. Set µ′ = δ(<
µx >). Clearly µ′ ∈ A1

−1 and by (4.1)

E(µ′) − E(µ)

=
∫

Ω

[W (< µx >) + K(x)
< µx >2

2
−

∫
[−1,1]

(W (a) + K(x)
a2

2
)dµx]dx ≤ 0 (4.3)

since by the convexity

W (< µx >) + K(x)
< µx >2

2
≤

∫
[−1,1]

(W (a) + K(x)
a2

2
)dµx.

Therefore the usual function µ′ is a global minimiser.
If W (a) + K(x)a2/2 is strictly convex and µ is a global minimiser, then the

equality in (4.3) holds if and only if µx = δ(< µx >) for almost every x ∈ Ω,
which implies that µ is a usual function. Then < µ > solves the Euler-Lagrange
equation (1.2). Since

∫
Ω

J(x − y) < µydy is continuous in x and f(a) + K(x)a
is continuously invertible in a by the strict convexity assumption, < µx > is
continuous in x ∈ Ω. �

Next we consider a case where W (a) + K(x)a2/2 is not convex in a.

H-3 Assume W (a) + K(x)a2/2 achieves its minimal value exactly at pc(x) and
qc(x) with −1 < pc(x) < qc(x) < 1 (see Figure 4) and W (a) + K(x)a2/2
is strictly convex on [−1, pc(x)] and [qc(x), 1].
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Figure 4: The graph of W (a) + K(x)a2/2.
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From now on we often drop the x-dependence of pc(x) and qc(x). Let µ be a
global minimiser in A1

−1. Define a new measure-valued function µ′ by

µ′
x = µx|[−1,pc] + µx|[qc,1]

+
µx((pc, qc))qc −

∫
(pc,qc)

adµx

qc − pc
δ(pc) +

∫
(pc,qc)

adµx − µx((pc, qc))pc

qc − pc
δ(qc) (4.4)

for each x ∈ Ω. Clearly µ′ ∈ A1
−1, < µ′

x >=< µx > and E(µ′) ≤ E(µ) by (4.1),
where equality holds if and only if µx = µ′

x for almost every x ∈ Ω. We have
proved

Proposition 4.2 Under H-3 for each global minimiser µ ∈ A1
−1

supp µx ∩ (pc(x), qc(x)) = ∅
for almost every x ∈ Ω where supp µx denotes the support of the measure µx.

A consequence is the following irregularity result that has already appeared in
a simpler case in [4]. Here we interpret it from an energy viewpoint.

Corollary 4.3 Under H-3 if u(x) is a usual function minimising E in A1
−1, u

cannot be continuous.

Since supp µx ⊂ [−1, pc(x)]∪ [qc(x), 1] for a.e. x, we further simplify µ with
the help of the convexity of W (a) + K(x)a2/2 on [−1, pc(x)] and [qc(x), 1]. Set
µ′ so that

µ′
x = µx([−1, pc(x)])δ(p(x)) + µx([qc(x), 1])δ(q(x)),

where

p(x) =

⎧⎪⎪⎨⎪⎪⎩
∫

[−1,pc(x)]

adµx/µ([−1, pc(x)]) if µ([−1, pc(x)]) = 0

pc(x) if µ([−1, pc(x)]) = 0

and

q(x) =

⎧⎪⎪⎨⎪⎪⎩
∫

[qc(x),1]

adµx/µ([qc(x), 1]) if µ([qc(x), 1]) = 0

qc(x) if µ([qc(x), 1]) = 0.

Again by (4.1) E(µ′) < E(µ) unless µ′
x = µx for a.e. x. Therefore we may write

µx = (1 − θ(x))δ(p(x)) + θ(x)δ(q(x)) (4.5)

at a.e. x for some θ(x) ∈ [0, 1], p(x) ∈ [−1, pc(x)] and q(x) ∈ [qc(x), 1].

21



Let µ written in the form (4.5) be a global minimiser in A1
−1. We derive

its Euler-Lagrange equation. Fix two smooth functions φ and ψ on R1 with
compact supports. Define a deformation µt of µ by

µt,x = (1 − θ(x))δ(p(x) + tφ(x)) + θ(x)δ(q(x) + tψ(x)) (4.6)

for t near 0. Clearly µ0 = µ. Since µt is a measure-valued function with
range, say [−2, 2] (note the remark before Lemma 2.2), we have E(µ0) ≤ E(µt).
Therefore after some calculation

0 =
dE(µt)

dt
|t=0 =

∫
Ω

{(1−θ(x))[p(x)−
∫

Ω

J(x−y)((1−θ)p+θq)(y)dy+f(p(x))]

φ(x) + θ(x)[q(x) −
∫

Ω

J(x − y)((1 − θ)p + θq)(y)dy + f(q(x))]ψ(x)}dx.

Since this is true for all φ and ψ, we conclude⎧⎪⎨⎪⎩
(1 − θ(x))[

∫
Ω

(J(x − y)((1 − θ)p + θq)(y)dy − K(x)p(x) − f(p(x))] = 0

θ(x)[
∫

Ω

J(x − y)((1 − θ)p + θq)(y)dy − K(x)q(x) − f(q(x))] = 0

(4.7)
for a.e. x ∈ Ω. If θ(x) ∈ (0, 1) then⎧⎪⎨⎪⎩

∫
Ω

J(x − y)((1 − θ)p + θq)(y)dy − K(x)p(x) − f(p(x)) = 0∫
Ω

J(x − y)((1 − θ)p + θq)(y)dy − K(x)q(x) − f(q(x)) = 0

which implies

K(x)p(x) + f(p(x)) = K(x)q(x) + f(q(x)).

According to H-3 and the fact p(x) ∈ [−1, pc(x)] and q(x) ∈ [qc(x), 1], we have

K(x)p(x) + f(p(x)) ≤ 0 and K(x)q(x) + f(q(x)) ≥ 0.

Therefore K(x)p(x) + f(p(x)) = K(x)q(x) + f(q(x)) = 0 that implies

Proposition 4.4 Under H-3 the representation (4.5) of a global minimiser µ
satisfies p(x) = pc(x), q(x) = qc(x) when θ(x) ∈ (0, 1) for a.e. x ∈ Ω.

We note ((1 − θ)p + θq)(x) =< µx > and

Claim
∫

Ω

J(x − y)((1 − θ)p + θq)(x) + K(x) → 0 as x1 → −∞.
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To see this we first approximate J in the L1-norm by step functions. Then
the claim holds if it holds when J is replaced by step functions and K is changed
in the same way, where a step function is a linear combination of characteristic
functions. For each characteristic function χS on a segment S ⊂ Ω Corollary
2.7 implies

lim
x1→−∞

∫
Ω

χS(x − y)((1 − θ)p + θq)(y)dy = −|S|.

The claim is then proved by the usual approximation argument.
The claim and the second equation of (4.7) imply that θ(x) = 0 for x1

sufficiently close to −∞, i.e., µx = δ(p(x)) there. Now note that for such x∫
Ω

J(x − y)((1 − θ)p + θq)(y)dx − K(x)p(x) − f(p(x)) = 0.

Since p(x) ∈ [−1, pc(x)] and a → K(x)a + f(a) is continuously invertible on
[−1, pc(x)] by H-3, we find that p(x) is continuous with p(x) → −1 as x1 → −∞.
Applying the same argument in the case x1 → ∞ we deduce the following about
the continuity of µ near infinity.

Proposition 4.5 Under H-3 for x1 sufficiently close to −∞ (∞, respectively)
µx = δ(p(x)) (µx = δ(q(x)), respectively) where p(x) (q(x), respectively) is con-
tinuous with p(x) → −1 (q(x) → 1, respectively) as x1 → −∞ (∞, respectively).

5 Further Results

We first extend Theorem 3.1 to general tubes. Given a tube Ω let us divide
it into the union of thin tubes Ω1, Ω2,...,Ωl so that Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωl

and Ωi ∩ Ωj = ∅ if i = j. On each Ωi a segment Si(z1, r) is defined to be
{x ∈ Ωi : |x1 − z1| < r}. Define for each ν ∈ A

ν̂i(x1) =
1

|Si(x1, η)|
∫

Si(x1,η)

< νz > dz.

Analogous to Lemma 2.6 we have

Lemma 5.1 In a tube Ω for every given ε1 there is θ > 0 such that for every
ν ∈ A, z1 ∈ R1

1
4

∫
S2(z1,η)

J(x− y)
∫

[−1,1]2
(a− b)2dνxdνydxdy +

∫
S(z1,η)

∫
[−1,1]

W (a)dνxdx < θ

implies either |ν̂i(z1) + 1| < ε1 for all i = 1, 2, ..., l, or |ν̂i(z1) − 1| < ε1 for all
i = 1, 2, ..., l.
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Proof. Applying Lemma 2.6 on each Ωi we find that given ε1

|ν̂i(z1) + 1| < ε1 or |ν̂i(z1) − 1| < ε1

if θ is chosen small enough. Suppose without loss of generality that |ν̂1(z1)+1| <
ε1. We need to show that |ν̂i(z1) + 1| < ε1 for i = 2, 3, ..., l. To this end choose
a deformation from Ω1 to Ω2, i.e., for each t ∈ [1, 2] find a thin tube Ω(t) with
Ω(1) = Ω1 and Ω(2) = Ω2. On each Ω(t) set

S(t)(z1, η) = {x ∈ Ω(t) : |x1 − z1| < η} and

ν̂(t)(z1) =
1

|S(t)(z1, η)|
∫

S(t)(z1,η)

< νx > dx.

We assume that t → |S(t)(z1, η)| is continuous for each z1 and η. By Lemma
2.6, |ν̂(t)(z1) + 1| < ε1 or |ν̂(t)(z1) − 1| < ε1. But since ν̂(t)(z1) is continuous in
t, we find |ν̂2(z1) + 1| = |ν̂(2)(z1) + 1| < ε1. Repeating this argument we find
|ν̂i(z1) + 1| < ε1 for i = 2, 3, ..., l. This proves Lemma 5.1. �

Corollary 5.2 For each ν ∈ A either lim
z1→−∞

ν̂i(z1) = −1 for all i = 1, 2, ..., l

or lim
z1→−∞

ν̂i(z1) = 1 for all i = 1, 2, ..., l. A similar statement holds for z1 → ∞.

We can now define unambiguously A1
−1 to be

{ν ∈ A : lim
z1→−∞

ν̂i(z1) = −1, i = 1, ..., l and lim
z1→∞

ν̂i(z1) = 1, i = 1, ..., l}.
(5.1)

Theorem 5.3 On each tube Ω there is µ ∈ A1
−1 such that E(µ) = inf

ν∈A1
−1

E(ν).

To prove this theorem one follows the argument in Section 3 using Lemma 5.1
instead of Lemma 2.6. One needs to modify the argument leading to (3.15) by
modifying (2.8) and (2.9) accordingly. We leave the details to the reader.

Next we relax the periodicity condition on Ω a little to consider asymptoti-
cally periodic Ω.

Definition 5.4 Ω is an asymptotic tube if it can be divided into three disjoint
open domains, Ω1, Ω2 and Ω0, such that Ω = Ω1 ∪Ω2 ∪Ω0, Ω0 is bounded and
Ω1 and Ω2 are “half-periodic”.

We say Ωm, m = 1, 2, is half-periodic if there exists Tm ∈ Rd, m = 1, 2, such
that for every xm ∈ Ωm, xm + Tm ∈ Ωm, and for every xm ∈ Ωm there exist
ym ∈ Ω0 and a non-negative integer nm satisfying xm = ym + nmTm. Ω1 and
Ω2 are indeed the two half-periodic tails of Ω. We associate the end e1 to Ω1

and the other end e2 to Ω2 (see Figure 5).
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Figure 5: An example of Ω, G1 and G2.
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Define A by (2.4) and A1
−1 by a formula similar to (5.1). Set Gm, m = 1, 2,

to be the periodic extension of Ωm, i.e.,

Gm = {x ∈ Rd : x + nmTm ∈ Ωm for some integer nm}.
Denote the other end of Gm by e′m (see Figure 5). Define two auxiliary func-
tionals Em by (2.3) on Gm. Take A1

−1(m) to be

{ν ∈ M(Gm) : Em(ν) < ∞, lim
x→em

ν(x) = (−1)m, lim
x→e′

m

ν(x) = (−1)m+1}

where the limits are interpreted in a way similar to (5.1). The following theorem
gives a sufficient condition for the existence of a global minimiser in A1

−1.

Theorem 5.5 If Ω is an asymptotic tube, then

inf
ν∈A1

−1

E(ν) ≤ min{ inf
ν∈A1

−1(1)
E1(ν), inf

ν∈A1
−1(2)

E2(ν)}.

If the strict inequality

inf
ν∈A1

−1

E(ν) < min{ inf
ν∈A1

−1(1)
E1(ν), inf

ν∈A1
−1(2)

E2(ν)}

holds, then there is µ ∈ A1
−1 such that E(µ) = inf

ν∈A1
−1

E(ν).

We omit the proof of this theorem, which is a combination of the techniques in
this paper and the ones in [6]. Applications of this theorem can also be found
there.
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