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Abstract

This paper studies a vectorial problem in the calculus of variations arising in the

theory of martensitic microstructure. The functional has an integral representation

where the integrand is a nonconvex function of the gradient with exactly four min-

ima. We prove that the Young measure corresponding to a minimising sequence is

homogeneous and unique for certain linear boundary conditions. We also consider the

singular perturbation of the problem by higher-order gradients. We study an example

of microstructure involving infinite sequential lamination and calculate its energy and

length scales in the zero limit of the perturbation.

1 Introduction

This paper is concerned with the analysis of an example of microstructure which arises by

repeating a certain construction step, the so-called lamination again and again.
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Our interest in this problem arises from the modelling of martensitic phase transformations,

see e.g. the work by Khachaturyan and Shatalov [9], [10], and Roitburd [17] for a geomet-

rically linear approach or Ball and James [3], [4] for a geometrically nonlinear model. In

such transformations fine-scale mixtures of distinct phases or phase variants are possible.

The microstructures can be explained by elastic energy minimisation. Minimising the sum

of elastic and interfacial energy instead prevents infinite refinement and explains the length

scales which are observed in some experiments.

To explain the mathematical issues in more detail consider a variational problem of the form

(V P0):

minimise

I0(u) =
∫
Ω

W (∇u) dx (1.1)

among all functions u ∈ A where

A = {u ∈ W 1,∞(Ω) : u = Hx for x ∈ ∂Ω},

u : Ω ⊂ R2 → R2 and Ω is a bounded domain. The integrands W which arise in the study

of martensitic phase transformations are nonconvex (and not quasiconvex) in ∇u. Therefore

the functional is not lower semicontinuous and the problem typically possesses no minimisers

but minimising sequences. A minising sequence u(k) can develop spatial oscillations in its

gradients ∇u(k) which leads to weak rather than strong convergence as k → ∞. The central

idea of energy minimisation is that these oscillations model the microstructures observed in

real materials.

We are particularly interested in integrands W which have “multiple well structure”, i.e.

where W ≥ 0 and W = 0 on a known set K. The connected components of K are the

“elastic energy wells”. They represent preferred gradients, i.e. stress-free states.

Three different situations can arise. In the first case the minimum of (V P0) is achieved

and is zero. This occurs, if there is a Lipschitz-continuous deformation u(x) satisfying the

boundary condition, such that ∇u(x) ∈ K for almost every x. Such a deformation is called

stress-free.
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Second it can happen that the infimum of (V P0) might be 0 but is not achieved. Then a

minising sequence u(k) has the property that ∇u(k) is approximately in K except in a subset

of the domain whose measure tends to zero as k → ∞. (This will be formalised using the

notion of a Young measure.) We can think of ∇u(k) as determining a microstructure with a

length scale that gets finer as k → ∞. When k is large ∇u(k) subdivides the domain into

regions which are nearly stress-free, i.e. where ∇u(k) is near K and and in “transition layers”

where ∇u(k) is not near K but bounded independent of k and which are of small measure.

Such a microstructure is called essentially stress-free.

In the third situation the infimum of (V P0) is not 0. In this situation there may or may

not be a deformation u(x) for which the minimum is achieved. Such a system is typically

stressed.

Since we are interested in weakly convergent sequences, it is convenient to use the notion of

a Young measure, which is mainly an accounting device. Intuitively, the Young measure νx

associated to an oscillatory sequence is a family of probability measures parametrised with

respect to the points x ∈ Ω which gives the limiting probability distribution of the values

of the gradient of u near x, in the limit as k → ∞. (A more formal definition is given in

Lemma 2.1 below.)

The study of Young measures is linked to other fundamental mathematical questions. A

basic problem in the calculus of variations is to find necessary and sufficient conditions for

quasiconvexity. Kinderlehrer and Pedregal have shown that this is linked to determining the

set of possible Young measure limits of gradients [11].

A very important subclass of gradient Young measures consists of the laminates. Most of

the examples observed in experiments are of this type. We are not going to give a formal

and most general definition of a laminate (which can be found for example in the paper

of Pedregal [16]). Instead, we first define what we mean by a simple laminate and then

introduce an (infinitely) sequentially laminated microstructure by recursion.

If we have a deformation u : Ω ⊂ R2 → R2 whose gradient ∇u takes on the given values

A,B ∈ M2×2 (M2×2 is the set of all 2× 2 matrices). on either side of a planar interface then
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we need the two phases to be kinematically compatible, i.e. the difference matrix should be

of rank 1 or A−B = a⊗ n where a⊗ n is the matrix (a⊗ n)ij = ainj for a, n ∈ R2 and n is

the normal to the interface (see Ball and James [3]). Physically, this rank-one compatibility

gives continuity of u across the interface. For some λ ∈ (0, 1) set H = λA + (1 − λ)B.

Following Chipot and Kinderlehrer [7] let χ be the characteristic function of (0, λ) in (0, 1)

extended periodically to the real line R and write

f (k)(x) = χ(kn · x), k = 1, 2, . . . .

It is well-known that f (k) ∗
⇀ λ in L∞(Ω) for any bounded Ω ⊂ R2. Let

u(ξ) = Bξ +
∫ ξ·n

0
χ(t) dt · a

and

u(k)(x) =
1

k
u(kx).

Then

∇u(k) = (1 − f (k))A + f (k)B.

Note that the gradient ∇u(k) takes the values A and B in alternate layers of thickness λ/k

and (1 − λ)/k, i.e. the layer width tends to zero as k → ∞. Then ν = (1 − λ)δA + λδB is

the Young measure corresponding to the sequence {∇u(k)}, i.e. it satisfies

lim
k→∞

∫
E

ϕ(∇u(k)) dx + |E|((1 − λ)ϕ(A) + λϕ(B)) =
∫

E

∫
M2×2

ϕ(Y ) dνx(Y ) dx

for any continuous ϕ and measurable E ⊂ Ω. Throughout the paper δY stands for the Dirac

mass at Y ∈ M2×2.

Assume now that B = θC + (1 − θ)D with C − D of rank one. Then we apply the process

of singe lamination again thus replacing the gradients B by gradients C and D with volume

proportions θ and 1 − θ. The resulting Young measure is

ν = λδA + (1 − λ)θδC + (1 − λ)(1 − θ)δD.

We have to do something slightly different in order to obtain a continuous deformation. But

these technical details can be taken care of and they do not affect the Young measure.
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We define an (infinitely) sequentially-laminated microstructure as one which can be obtained

by starting from a compact set K of matrices and repeating the lamination step (infinitely)

many times.

In this paper we revisit an example introduced independently by Aumann and Hart [1] and

Tartar [20]. It is an interesting example of the second situation mentioned above, i.e. of an

essentially stress-free microstructure. (This fact was proved in [8], Proposition 2.2.)

In [5] Bhattacharya, Firoozye, James, and Kohn explicitly give a minimising sequence based

on infinite sequential lamination and calculate its Young measure.

Now we introduce the mathematical framework for this study.

Conditions: 1. W (X) ≥ 0 for all 2 × 2 matrices X.

2. There exist four 2 × 2 matrices A,B,C and D such that

W (A) = W (B) = W (C) = W (D) = 0

and W > 0 elsewhere.

3. W is continuous.

4. There exist c, C > 0 and d,D real such that

c|A|2 + d ≤ W (A) ≤ C|A|2 + D

where |A|2 =
∑2

ι,κ=1 a2
ικ.

5. The matrices A, B, C, and D are incompatible, i.e. the difference between any pair of

them has rank two.

6. There exist matrices J1, J2, J3, and J4, vectors a, b, c, d ∈ IRm, vectors p, q, r, s ∈ IRn and

scalars α, β, γ, δ ∈ (0, 1) such that

J1 = αA + (1 − α)J2, J2 = βB + (1 − β)J3,

J3 = γC + (1 − γ)J4, J4 = δD + (1 − δ)J1;

(1.2)
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A − J2 = a ⊗ p, B − J3 = b ⊗ q,

C − J4 = c ⊗ r, D − J1 = d ⊗ s;

(1.3)

see Figure 1.

We present two new results. First we prove a theorem about the Young measure of the

gradients of any minimising sequence.

It is clear from the definition of the Young measure that it has to be supported on the

set {A, B, C, D}. We further assume certain linear boundary conditions and show that the

Young measure is homogeneous and unique and satisfies

νx = λ1δA + λ2δB + λ3δC + λ4δD a.e. in Ω. (1.4)

It is easy to see that the Young measure corresponding to the infinitely sequentially-laminated

construction is homogeneous. The theorem proves with mathematical rigour that this feature

must be shared by any minimising sequence.

Second we consider the following variational problem which arises from (V P0) by singular

perturbation with higher-order gradients and is denoted by (V Pε):

minimise

Iε(u) =
∫
Ω

W (∇u) + ε2|∇∇u|2 dx (1.5)

among all functions u ∈ AK where

AK = {u ∈ H2(Ω) : ∇u ∈ L∞(Ω), ‖∇u‖∞ ≤ K,

u = Hx on ∂Ω},

K ≥ 3, |∇∇u|2 =
∑2

ι,κ,ξ=1(∂ι∂κuξ)
2, and u : Ω ⊂ R2 → R2. This problem is physically

interesting since the perturbation terms correspond to surface energy. The inclusion of

surface energy terms into the problem introduces a length scale and, furthermore, because of

convexity and coercivity in the highest derivatives the problem now has a minimiser. Since

surface energy is typically very small it is physically meaningful to study the behaviour of

the energy minimum in the limit of zero surface energy.
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We study this question by introducing length scales into the infinitely sequentially-laminated

microstructure considered in [5].

Now we give a simplified presentation of the main ideas. The argument is based on appro-

priate scaling. For a (simply-)laminated microstructure on a two-dimensional domain the

energy behaves like

Eε ∼ ε1−α + εα as ε → 0

if the distance between two interfaces is of the order εα. (The symbol a ∼ b is a shorthand

for the following: There exist constants c, C > 0 such that cb ≤ a ≤ Cb.) The first term in

the energy represents surface energy of the interfaces, the second refinement near the domain

boundary. Choosing α = 1/2 we get

Eε ∼ ε1/2.

In [12], [13], [14] Kohn and Müller show that by choosing instead a two-dimensional con-

struction with refinement near the domain boundary the asymptotic behaviour Eε ∼ ε2/3

can be achieved and that the exponent is optimal. In [21] their model is revisited and a

Lavrentiev phenomenon is proved.

The present situation is more complex since simple lamination is not enough to achieve

gradients with small energy density W except at the interface regions and near the domain

boundary. Instead we now have to consider a construction which uses sequential lamination

and produces multiple scales. The corresponding energy is

Eε ∼ 1

2k
+

k−1∑
i=1

1

2i
(εαi+1−αi)

if we consider k different scales and choose the ith scale li such that

li ∼ εαi .

To minimise Eε in k, α0, . . . , αk for fixed ε we first balance the terms in the sum which results

in

αi = iµ − (i − 1)i

2
τ
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where

τ ≈ log 2

log(1/ε)
.

(Note that then
1

2i
(εαi+1−αi) ≈ εµ.)

Second we balance the first term and the terms in the sum, i.e. we choose k and µ such that

1

2k
≈ εµ

and choose the smallest length scale lk to be of the thickness ε of the interfaces, i.e.

αk ≈ 1.

The last two conditions can be rewritten as

µ = k
log 2

log(1/ε)

and
k2

2

log 2

log(1/ε)
≈ 1.

This implies

k ≈
√

2

log 2

√
log(1/ε)

and

µ ≈
√

2 log 2
1√

log(1/ε)
.

Then
1

2k
≈ exp

(
−
√

2 log 2
√

log(1/ε)
)

and

εµ ≈ exp
(
−
√

2 log 2
√

log(1/ε)
)

.

But the number of these terms increases to ∞ as ε approaches zero.

An exact analysis reveals that in fact

Eε ≤ C exp
(
−τ

√
log(1/ε)

)
for some C > 0 and 0 < τ <

√
2 log 2
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and that the constant
√

2 log 2 is optimal. Note that the decay is slower than any power of

ε (which is the case for simple laminates) but faster than (any power of) the logarithm of

1/ε.

To make the presentation transparent but without loss of generality we choose the following

values for the eight matrices:

A =

⎛⎜⎜⎜⎝ 1 0

0 3

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝ 3 0

0 −1

⎞⎟⎟⎟⎠ , C =

⎛⎜⎜⎜⎝ −1 0

0 −3

⎞⎟⎟⎟⎠ , D =

⎛⎜⎜⎜⎝ −3 0

0 1

⎞⎟⎟⎟⎠ , (1.6)

and

J1 =

⎛⎜⎜⎜⎝ 1 0

0 1

⎞⎟⎟⎟⎠ , J2 =

⎛⎜⎜⎜⎝ 1 0

0 −1

⎞⎟⎟⎟⎠ , J3 =

⎛⎜⎜⎜⎝ −1 0

0 −1

⎞⎟⎟⎟⎠ , J4 =

⎛⎜⎜⎜⎝ −1 0

0 1

⎞⎟⎟⎟⎠ . (1.7)

In particular, all eight matrices are chosen to be 2× 2 and diagonal. As boundary condition

we consider

u = J1x on ∂Ω. (1.8)

This choice does not restrict generality, either. In fact, it is easy to see that the main results

of this paper, namely Theorems 2.1 and 3.1 hold for the boundary condition

u = Hx on ∂Ω

where H is any matrix on the boundary of the diagram given in Figure 1. Under the

assumptions (1.6) and (1.7) (or, more generally, if the matrices A,B,C,D, J1, J2, J3, J4 are

2× 2 matrices and diagonal) H can even lie inside or on the boundary of the diagram given

in Figure 1 (except for A,B,C,D of course). Furthermore, choose

Ω = RL,H = (0, L) × (0, H). (1.9)

Our results still hold for any smooth domain.

Note that the smallest number of incompatible matrices which can support a nontrivial

Young measure is four, as was proved in [5]. This is one of the reasons for choosing this
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example. This minimality property should be closely connected to the uniqueness of the

Young measure.

It was suggested in [5] to interpret the minimal energy of the perturbed problem as a quan-

titative “measure” for the complexity of the corresponding microstructure, which for our

infinitely sequentially-laminated microstructure is

C exp(−σ
√

log(1/ε))

where C > 0 and 0 < σ <
√

2 log 2 are both independent of ε. (At least this expression is

an upper bound for the minimal energy). We expect that such a result holds in general, i.e.

that the energy of any infinitely sequentially-laminated microstructure behaves like

C exp(−D
√

log(1/ε))

with positive real constants C and D, even if the microstructure does not arise from the

variational problem studied here, but from any singularly perturbed variational problem of

the form (1.5).

In a related paper [6] Cellina and Perrotta study the two-well problem. More precisely,

they assume that W is zero on two three-dimensional wells SO(3)A and SO(3)B where

A is positive definite symmetric and B is indefinite and symmetric. They assume zero

boundary conditions. An explicit construction is given using refinement near the boundary

of a Lipschitz function whose gradient is in the zero set of W for a.e. x ∈ Ω.

After the present paper was finished we learned about the work of Chipot [8]. It contains

numerical simulations for the unperturbed problem, which show an infinitely sequentially-

laminated microstructure similar to the one considered in Section 3. Furthermore, a unique-

ness result for Young measures is obtained, which is similar to ours.

The structure of the paper is as follows. In Section 2 we prove the theorem about Young

measures. In Section 3 we provide an upper bound for the asymptotic behaviour of the

energy minimum in the zero limit of surface energy. We also calculate the length scales of

the corresponding infinitely sequentially-laminated microstructure.
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2 Uniqueness of the Young measure

In this section we study the Young measure corresponding a minimising sequence of the

variational problem (V P0):

minimise

I0(u) =
∫
Ω

W (∇u) dx

among all functions u ∈ A where

A = {u ∈ W 1,∞(RL,H) : u = J1x for x ∈ ∂Ω}

and W satisfies (1.2) and (1.3). In particular, we prove that this Young measure is homoge-

neous and unique. First recall the existence theorem for Young measures.

Lemma 2.1 Suppose that F (k) ⊂ L∞(Ω, IRs) is a sequence of vector-valued functions on Ω.

Assume further that for some compact set K ⊂ IRs, the values of F (k) are “asymptotically in

K” in the sense that for every open U ⊃ K, meas {x ∈ Ω : F (k) /∈ U} → 0 as k → ∞. Then

there exists a subsequence (still denoted by F (k) for convenience) and an associated family of

probability measures νx on IRs (parametrised by x ∈ Ω), such that

i) νx is supported on K for a.e. x, and

ii) for any continuous function Ψ defined on IRs, Ψ(F (k)) converges to the function x �→∫
IRs Ψ(A) dνx(A) weak* in L∞(Ω).

See for example Ball [2] or Tartar [19] for proofs and discussion. In the variational problem

(V P0) the sequence {F (k)} has the form F (k) = ∇u(k) where u(k) is a minimising sequence.

Therefore the corresponding Young measure is called a gradient Young measure. Note that

the energy minimum of (V P0) is

lim
k→∞

∫
Ω

W (∇u(k)(x)) dx =
∫
Ω

∫
K

W (A) dνx(A) dx.

In particular, if W ≥ 0 and W (F ) = 0 exactly for F ∈ K, then
∫
Ω W (∇u(k)(x)) dx → 0

if and only if νx is supported on K for a.e. x ∈ Ω. The main result of this section is the

following:
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Theorem 2.1 Let νx be a gradient Young measure which

i) arises from a sequence u(k) defined on RL,H satisfying the boundary condition u(k) = J1x

at ∂RL,H and

ii) is supported on the four matrices A,B,C,D as defined in (1.6).

Then

νx = λ1δA + λ2δB + λ3δC + λ4δD a.e. in RL,H .

Furthermore, the weights λ1, λ2, λ3, λ4 are unique.

Remark: The statement of Theorem 2.1 clearly implies that the Young measure is unique

and homogeneous.

Proof. Consider the function z ∈ W 1,∞(Ω, IR2) which satisfies

∇z(x) =
∫

M2×2
Adνx(A) a.e. in RL,H . (2.1)

(The existence of the function z was proved by Kinderlehrer and Pedregal [11]). Because νx

is by assumption supported on {A,B,C,D} we have

νx = λ1xδA + λ2xδB + λ3xδC + λ4xδD a.e. in RL,H .

In the sequel we determine the scalar measures λix for i = 1, 2, 3, 4. Because νx is a proba-

bility measure we have

λ1x + λ2x + λ3x + λ4x = 1 a.e. in RL,H . (2.2)

Using the specific values of the matrices A,B,C,D as defined in (1.6) we get

∇z(x) =

⎛⎜⎜⎜⎝ λ1x + 3λ2x − λ3x − 3λ4x 0

0 3λ1x − λ2x − 3λ3x + λ4x

⎞⎟⎟⎟⎠
a.e. in RL,H . This implies ∂z1

∂x2
= ∂z2

∂x1
= 0 a.e. in RL,H . By standard trace theorems

z(x) = J1x a.e. on ∂RL,H .
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Therefore

∂z1

∂x1

∣∣∣∣∣
x2=0

=
∂z1

∂x1

∣∣∣∣∣
x2=s

= 1 for 0 ≤ s ≤ H, a.e. on (0, L),

∂z2

∂x2

∣∣∣∣∣
x1=0

=
∂z2

∂x2

∣∣∣∣∣
x1=t

= 1 for 0 ≤ t ≤ L, a.e. on (0, H).

It follows that

λ1x + 3λ2x − λ3x − 3λ4x = 1 a.e. in RL,H , (2.3)

3λ1x − λ2x − 3λ3x + λ4x = 1 a.e. in RL,H . (2.4)

Finally we get a fourth equation for λix, i = 1, 2, 3, 4, the “minors relation”. This is a

consequence of the fact that νx is a gradient Young measure, see for example [5]. It is

λ1x det A + λ2x det B + λ3x det C + λ4x det D =

= det (λ1xA + λ2xB + λ3xC + λ4xD) a.e. in RL,H . (2.5)

Equations (2.2)-(2.4) are equivalent to the following three equations:

λ2x = − λ1x + 0.8 a.e. in RL,H , (2.6)

λ3x = λ1x − 0.4 a.e. in RL,H , (2.7)

λ4x = − λ1x + 0.6 a.e. in RL,H . (2.8)

Inserting (2.6)–(2.8) into (2.5) gives the linear equation

12λ1x − 6.4 = 0 a.e. (2.9)

The linear system (2.6)-(2.9) has a unique solution. Therefore the weights (λ1, λ2, λ3, λ4) are

independent of x and unique, i.e. the Young measure ν is homogeneous and unique. This

concludes the proof of Theorem 2.1. �

Note that the result of Theorem 2.1 holds if we take any matrices A, B, C, and D which

satisfy the equations given in condition 6 of the introduction even if they do not take on the

specific values chosen in (1.6).
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3 Energy minimum and length scales for the microstruc-

ture

In this section we calculate an upper bound for the scaling law of the energy minimum

of the variational problem (V Pε) as ε → 0. This will be accomplished by incorporating

length scales into an infinitely sequentially-laminated microstructure. Recall the variational

problem (V Pε):

minimise

Iε(u) =
∫
Ω

W (∇u) + ε2|∇∇u|2 dx

among all functions u ∈ AK where

AK = {u ∈ H2(RL,H) : ∇u ∈ L∞(RL,H), ‖∇u‖∞ ≤ K,

u = J1x on ∂RL,H}

and K ≥ 3.

As the class of admissible functions we choose

AK = {u ∈ H2(RL,H) : ∇u ∈ L∞(RL,H), ‖∇u‖∞ ≤ K,

u = J1x on ∂RL,H}

where K ≥ 3.

Proposition 3.1 For ε > 0, K ≥ 3 the variational problem

min {Iε(u) : u ∈ AK} (3.1)

attains its minimum.

Proof: The proof is a standard one in the direct calculus of variations. �

Let us now announce the main result of this section.
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Theorem 3.1 For every constant σ with 0 < σ <
√

2 log 2 there exist constants C > 0 and

ε0 > 0 such that for all 0 < ε < ε0 and K ≥ 3

min{Iε(u) : u ∈ AK} ≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ . (3.2)

Proof. We construct test functions u ∈ AK depending on ε such that for them the estimate

given in (3.2) holds true. To this end, we introduce a “sharp” variational problem which is

closely related to the “diffusional” one given in (V Pε) and is denoted by ˜(V Pε) :

minimise

Eε(v) =
∫

RL,H

W (∇v) + ε|∇∇v| dx

among all functions v ∈ BK where

BK = {v ∈ H1(RL,H) : ∇v ∈ L∞(RL,H), ‖∇v‖∞ ≤ K,

the components of ∇∇v are Radon measures on RL,H with finite mass,

v = J1x on ∂RL,H}.

The latter problem has advantages over the former: we can prove a result corresponding

to (3.2) by constructing ε-dependent test functions v that are piecewise linear and can be

defined explicitly.

Again we have existence of a minimiser:

Proposition 3.2 For ε > 0, K ≥ 3 the variational problem

min{Eε(v) : v ∈ BK}. (3.3)

attains its minimum.

Proof. The proof follows the same lines as the corresponding existence proof of Kohn and

Müller [13]. For completeness we briefly sketch the argument.
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Fix ε > 0. Let v(k) ⊂ BK be a minimising sequence for Eε. Then v(k) is bounded in H1 and

∇∇v(k) is bounded in M (the space of Radon measures). Passing to a subsequence one has

v(k) ⇀ v in H1(RL,H),

∇∇v(k) ∗
⇀ ∇∇v in M.

By standard lower semicontinuity results

Eε(v) ≤ lim inf
k→∞

Eε(v
(k)).

The only subtle point is to show that v ∈ BK . By assumption ∇v(k) is bounded in L∞

so that ∇∇v(k) is bounded in M ∩ W−1,∞. By Murat’s lemma (see [15]) ∇∇v(k) lies in a

compact set of H−1. This implies that ∇v(k) → ∇v in L2
loc(RL,H) (as was proved in [13] in

a lemma). Passing to a further subsequence one sees that that ∇v ≤ K a.e. We also have

that v = J1x by standard trace theorems. Hence v ∈ BK and the proposition is proved. �

We finish the proof of Theorem 3.1 in three steps. First, we define a sequence of functions

v(1), v(2), . . . ∈ BK by infinite sequential lamination. Second, we define v by fixing k = k(ε)

and setting v = v(k(ε)) where the integer k(ε) is chosen such that v(k(ε)) satisfies the following

Lemma.

Lemma 3.1 For every constant σ with 0 < σ <
√

2 log 2 there exist constants C > 0 and

ε0 > 0 such that for all 0 < ε < ε0 and K ≥ 3

Eε(v
(k(ε))) ≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ . (3.4)

Third, we define u ∈ AK by convolution of v with a mollifier kernel and show that the

resulting u satisfies an estimate analog to (3.4).

Step 1. The sequence v(i)

We define the functions v(i) recursively by sequential lamination. In each refinement step

triangulation on a smaller scale is introduced at part of the boundary to make sure that

v(i) ∈ W 1,∞(RL,H) and that the boundary conditions are satisfied. We make this construction
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explicit and calculate the corresponding energy. Let us begin by defining the zig–zag function

z as follows:

z(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s if 0 ≤ s ≤ 1

2

1 − s if 1
2
≤ s ≤ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = min{s, 1 − s} for 0 ≤ s ≤ 1,

and z is continued 1-periodically onto the real axis. Then, for a positive integer n1 and

l1 = H/n1, we introduce

v(1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1x + l1z(x2/l1)

(
0

2

)
if l1z(x2/l1) ≤ x1 ≤ L − l1z (x2/l1) ,

J1x + x1

(
0

2

)
if 0 ≤ x1 ≤ l1z (x2/l1) ,

J1x + (L − x1)

(
0

2

)
if L − l1z (x2/l1) ≤ x1 ≤ L;

see Figure 2. The value for n1 will be chosen later. Note that v(1) is an example of single

lamination. This means that the domain RL,H is divided into periodically alternating layers

of width H/(2n1) where ∇v(1) takes on the values A and J2, respectively. This is expressed

by the first equation in the definition of v(1). Furthermore, some triangulation near the

left and right boundaries of RL,H is required to make sure that v(1) satisfies the boundary

conditions. This is done in the last two equations. The function v(1) is piecewise linear with

∇v(1) attaining (only) the values A, J2,

⎛⎜⎜⎜⎝ 1 0

2 1

⎞⎟⎟⎟⎠, or

⎛⎜⎜⎜⎝ 1 0

−2 1

⎞⎟⎟⎟⎠ .

We now calculate the energy Eε(v
(1)) is as follows. The elastic energy consists of three terms

corresponding to the last three values of ∇v(1), respectively, the main contribution coming

from the set where ∇v(1) = J2. The surface energy is “ε× (total length of interfaces) ×
(change of ∇v(1))”. Its main contribution comes from the interfaces created by layering

between the gradients A and J2 plus a smaller contribution coming from triangulation near

the left and right boundaries. To estimate the energy of v(1) it is important to know that by
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the continuity of W there exist constants c, C > 0 such that

c ≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩J1, J2, J3, J4, W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 0

2 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 0

−2 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ −1 0

2 −1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ −1 0

−2 −1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 2

0 −1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 −2

0 −1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ −1 2

0 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ −1 −2

0 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ C. (3.5)

Furthermore, bear in mind that the width of the layers and the sides of the triangles near

the boundary are both of order l1, up to a multiplicative constant. Therefore

Eε(v
(1)) = W (J2)|{∇v(1) = J2}| + W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 0

2 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩∇v(1) =

⎛⎜⎜⎜⎝ 1 0

2 1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
∣∣∣∣∣∣∣∣∣

+ W

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ 1 0

−2 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩∇v(1) =

⎛⎜⎜⎜⎝ 1 0

−2 1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
∣∣∣∣∣∣∣∣∣

+ ε(# jumps of ∇v(1) between A and J2) ×
× (length of interfaces) × (change of ∇v(1))

+ε(# triangles near left and right boundaries) ×
×(length of triangle sides which lie inside RL,H) ×
× (change of ∇v(1))

≤ C
{(

1

2
LH − 1

4
l1H +

1

2
l1H

)
+ε

((
H

l1
− 1

)
L +

H

l1
(L − l1)

)
+ ε

(
2
H

l1
l1
√

2
)}

≤ C
(
LH + l1H + ε

LH

l1

)
+ O(ε) as ε → 0

≤ C
(
LH + ε

LH

l1

)
as ε → 0 by (3.7).
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Furthermore, these estimates are sharp up to a multiplicative constant. Now we present

the infinite sequential lamination in a rigorous setting. To get geometric intuition of the

construction the reader should study the relatively complex formal framework in connection

with Figures 3 and 4. To begin with, we have to introduce some notation. Define

l1 = H/n1,

l2 = (L − l1)/n2,

li+1 = (li−1/2 − li)/ni+1, i = 2, 3, . . .

where the integers n1, n2, . . . will be chosen later.

We are studying a microstructure with multiple length scales which are denoted by li. The

following is a rigorous formulation of this fact.

Assumption: Assume that

li+1

li
→ 0 as ε → 0 for i = 1, 2, . . . (3.6)

and
H

l1
→ 0 as ε → 0. (3.7)

We define now sets [0, L] ⊃ X1 ⊃ X2 ⊃ . . . and [0, H] ⊃ Y1 ⊃ Y2 ⊃ . . . by recursion.

Definition 3.1 Define Xi, i = 1, 2, . . . as follows:

i) X1 = [0, L].

ii) X2 = {x ∈ [0, L] : dist(x, {0, L}) ≥ l1/2,

iii) X2k+1 = {x ∈ X2k : dist(x, sup{t /∈ X2k : t ≤ x})/l2k)mod 1 ∈ [1/2, 1]}, k = 1, 2, . . .

iv) X2k = {x ∈ X2k−1 : dist(x, [0, L] \ X2k−1) ≥ l2k−1/2}, k = 2, 3 . . .

Set s2k(x) = sup{t /∈ X2k : t ≤ x}.
Define Yi, i = 1, 2, . . . as follows:

i) Y1 = [0, H].

ii) Y2k = {y ∈ Y2k−1 : dist(y, sup{t /∈ Y2k : t ≤ y})/l2k−1)mod 1 ∈ [1/2, 1]}, k = 1, 2, . . .

iii) Y2k+1 = {y ∈ Y2k : dist(y, [0, H] \ Y2k) ≥ l2k/2}, k = 1, 2, . . .

Set s2k−1(y) = sup{t /∈ Y2k−1 : t ≤ y}.
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Remark: We have for example

X2 = [l1/2, L − l1/2],

X3 =
n2⋃

i2=1

[l1/2 + (i2 − 1/2)l2, l1/2 + i2l2],

X4 =
n2⋃

i2=1

[l1/2 + (i2 − 1/2)l2 + l3/2, l1/2 + i2l2 − l3/2],

Y2 =
n1⋃

i1=1

[(i1 − 1/2)l1, i1l1],

Y3 =
n1⋃

i1=1

[(i1 − 1/2)l1 + l2/2, i1l1 − l2/2],

Y4 =
n1⋃

i1=1

n3⋃
i3=1

[(i1 − 1/2)l1 + l2/2 + (i3 − 1/2)l3, (i1 − 1/2)l1 + l2/2 + i3l3].

Using the sets from Definition 3.1 we are now in a position to define the functions v(2k) and

v(2k+1) recursively:

v(2k)(x) = v(2k−1)(x) + (−1)k−1

(
2

0

)
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x1 /∈ X2k or x2 /∈ Y2k

l2kz((x1 − s2k(x1))/l2k) if x1 ∈ X2k, x2 ∈ Y2k, and

s2k−1(x2) + l2kz((x1 − s2k(x1))/l2k) ≤ x2 ≤

≤ s2k−1(x2) + l2k−1/2 − l2kz((x1 − s2k(x1))/l2k)

x2 − s2k−1(x2) if x1 ∈ X2k, x2 ∈ Y2k, and

s2k−1(x2) ≤ x2 ≤ s2k−1(x2) + l2kz((x1 − s2k(x1))/l2k)

s2k−1(x2) + l2k−1/2 − x2 if x1 ∈ X2k, x2 ∈ Y2k, and

s2k−1(x2) + l2k−1/2 − l2kz((x1 − s2k(x1))/l2k) ≤ x2 ≤

≤ s2k−1(x2) + l2k−1/2

and

v(2k+1)(x) = v(2k)(x) + (−1)k

(
0

2

)
×
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×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x1 /∈ X2k+1 or x2 /∈ Y2k+1

l2k+1z((x2 − s2k+1(x2))/l2k+1) if x1 ∈ X2k+1, x2 ∈ Y2k+1, and

s2k(x1) + l2k+1z((x2 − s2k+1(x2))/l2k+1) ≤ x1 ≤

≤ s2k(x1) + l2k/2 − l2k+1z((x2 − s2k+1(x2))/l2k+1)

x1 − s2k(x1) if x1 ∈ X2k+1, x2 ∈ Y2k+1, and

s2k(x1) ≤ x1

≤ s2k(x1) + l2k+1z((x2 − s2k+1(x2))/l2k+1)

s2k(x1) + l2k/2 − x1 if x1 ∈ X2k+1, x2 ∈ Y2k+1, and

s2k(x1) + l2k/2 − l2k+1z((x2 − s2k+1(x2))/l2k+1)

≤ x1 ≤≤ s2k(x1) + l2k/2.

Note that in each of the previous two formulae the second line describes the new lamination

step. The last two lines correspond to triangulation which is required to make the function

continuous. We can now calculate the general formula for Eε(v
(i)), i = 1, 2, . . . by induction.

Note that this can be done in a unified way and no distinction has to be made between odd

and even values for i. Let us first calculate the difference Eε(v
(i+1)) − Eε(v

(i)). Going from

v(i) to v(i+1) refinements have to be made on

#i =
H

l1

L − l1
l2

l1/2 − l2
l3

· · · li−2/2 − li−1

li

=
1

2i−2
LH

(
1 − l1

L

)(
1 − 2l2

l1

)
· · ·

(
1 − 2li−1

li−2

)
1

li−1li

=
1

2i−2

LH

li−1li
Pi

rectangles whose sides are of the length li/2 and li−1/2 − li, respectively. Here

Pi =

(
1 − l1

L

)
·
(

1 − 2l2
l1

)
· · ·

(
1 − 2li

li−1

)
, i = 1, 2, . . . .

The upper bound of the contribution (which is sharp up to multiplicative constant) of each

of these rectangles to the elastic energy changes from

C(li−1/2 − li)(li/2)
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to

C{(li−1/4 − li/2)(li/2 − li+1/2)

+ (li−1/2 − li)(li+1/2)},

the last expression consisting of contributions from lamination and triangulation, respec-

tively. In each of these rectangles new interfaces have to be created, and their total length

(per rectangle) is

2
√

2(li−1/2 − li) +
li−1/2 − li

li+1

(li/2 − li+1) +

(
li−1/2 − li

li+1

+ 1

)
1

2
li ≤ C

li−1li
li+1

.

Therefore the total contribution of these rectangles to the upper bound for the total energy

changes from

Eε(v
(i)) ≤ C LH

1

2i−3
Pi−1

to

Eε(v
(i+1)) ≤ C

(
LH

1

2i−2
Pi + LH

1

2i−3
Pi

li+1

li
+ εLH

1

2i
Pi−1

1

li

)
.

Note that the last two expressions are sharp up to a multiplicative constant. Using the

expansion for Eε(v
(1)) and the previous formulae it follows by induction that

Eε(v
(k)) ≤ CFε(v

(k)) + O(ε) as ε → 0

where

Fε(v
(k)) =

1

2k
LH + LH

{
l1
L

+
l2
l1

+
l3
2l2

+ . . . +
lk

2k−2lk−1

}

+ εLH
{

1

l1
+

1

2l2
+ . . . +

1

2k−1lk

}
+ O(ε) as ε → 0.

All these estimates are sharp up to a multiplicative constant. Note that the expression for

Fε(v
(k)) was obtained from Eε(v

(k)) by neglecting the factors (1− l1/L) and (1−2li+1/li), i =

1, 2, . . . which are smaller than 1 and converge to 1 as ε → 0.

Step 2. The function v

We now choose the integer k = k(ε) in such a way that for v = v(k(ε)) the asymptotic

behaviour of Fε(v) as ε → 0 will be optimal. The following lemma states an upper bound

for the asymptotic behaviour of Fε(v
(k)) as ε → 0.
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Lemma 3.2 For every σ with 0 < σ <
√

2 log 2 there exist numbers C > 0 and ε0 > 0 such

that

inf{Fε(v
(k)) : k = 1, 2, . . .} ≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ (3.8)

for 0 < ε < ε0.

Proof. Set

li = εαi , (3.9)

where αi = αi(ε). Inserting these terms in the expansion for Fε(v
(k)) implies

Fε(v
(k)) ≤ C

{
1

2k
+ εα1 + εα2−α1 +

1

2
εα3−α2 + . . . +

1

2k−2
εαk−αk−1

+ ε1−α1 +
1

2
ε1−α2 + . . . +

1

2k−1
ε1−αk

}
.

Let us now first derive condition for σ which is necessary for (3.8) to hold. Afterwards we

show that a slightly weakened condition is also sufficient.

Because every term must be smaller than C exp
(
−σ

√
log(1/ε)

)
by taking logarithms we

obtain that the following conditions are necessary for (3.8):

σ

log 2
≤ k

ρ
+

C

ρ
, (3.10)

σ ≤ ρα1 +
C

ρ
, (3.11)

σ ≤ i

ρ
log 2 + ρ(αi+1 − αi) +

C

ρ
, i = 1, 2, . . . , k − 1 (3.12)

σ ≤ i

ρ
log 2 + ρ(1 − αi) +

C

ρ
, i = 1, 2, . . . , k (3.13)

for i = 1, 2, . . . where ρ = ρ(ε) =
√

log(1/ε). Adding (3.11) and (3.12) for i = 1, 2, . . . , k − 1

we deduce

αk ≥ σ
k

ρ
− log 2

2

(
k

ρ

)2

− C
k

ρ2
(3.14)

where C is independent of k. It follows from (3.13) for i = k that

αk ≤ 1 − σ

ρ
+

k

ρ2
log 2 +

C

ρ2
(3.15)
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where C is independent of k. Therefore

σ
k

ρ
− log 2

2

(
k

ρ

)2

≤ 1 + C
1

ρ

(
1 +

k

ρ

)
(3.16)

where C is independent of k. The left-hand side of (3.16) attains its minimum if

k

ρ
=

σ

log 2

and has the value σ2/(2 log 2). Choose k = [ρσ/ log 2] where [·] is the integer function.

Inserting this into (3.16) implies that

σ2

2 log 2
≤ 1 + o(1)

as ε → 0. Therefore, a necessary condition for the solvability of system (3.10)–(3.13) is

σ ≤
√

2 log 2. (3.17)

For σ <
√

2 log 2 we are now giving a solution of (3.8). We again make the substitution

(3.9). Furthermore, we set

αi = iµ − (i − 1)i

2
τ, i = 1, 2, . . . , k (3.18)

where the positive real numbers µ and τ are still to be determined. This implies

Fε(v
(k)) ≤ C

(
1

2k
+

{
εµ + 2εµ

k−1∑
i=1

(
ε−τ

2

)i }

+
1

2k−1
ε1−kµ+(k−1)kτ/2

{
k−1∑
i=0

2iεiµ−((k−1)k−(k−i−1)(k−i))τ/2

})

≤ C

(
1

2k
+

{
εµ + 2εµ

k−1∑
i=1

(
ε−τ

2

)i }

+
1

2k−1
ε1−kµ+(k−1)kτ/2

{
k−1∑
i=0

(
2εµ−kτ

)i
})

. (3.19)

Again we set ρ(ε) =
√

log(1/ε). Choose the parameters as follows:

k(ρ) =

[
σρ

log 2

]
(3.20)

µ(ρ) =
σ

ρ
(3.21)

τ(ρ) <
log 2

ρ2
. (3.22)
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Furthermore, by choosing τ(ρ) such that τ(ρ)ρ2 is sufficiently close to log 2, we have

1 − kµ + (k − 1)k
τ

2
= 1 − σ2

log 2
+

σ2ρ2

2(log 2)2
τ + O

(
1

ρ

)
> 0 (3.23)

for all ρ > ρ0 where ρ0 > 0 is fixed. The equations (3.20)–(3.23) imply

1

2k
≤ C exp

(
−σ

√
log(1/ε)

)
,

εµ = exp
(
−σ

√
log(1/ε)

)
,

µ − kτ > 0,

1 − kµ + (k − 1)kτ/2 > 0.

Therefore we see from (3.19) that the conditions (3.20)–(3.23) are sufficient for the estimate

(3.8). This concludes the proof of Lemma 3.2. �

Step 3. The function u

Now we go back to the original variational problem (3.1). We define test functions u(k) =

u(k(ε)) by convolution of v(k) = v(k(ε)) with a mollifier kernel Φε. In the sequel we omit the

argument ε of k(ε) where this does not cause confusion. That is we introduce

u(k)(x) =
∫

RL,H

v(k)(s)Φε (|x − s|) ds (3.24)

(in each component) where

Φε(t) =
1

ε2
Φ (t/ε) for all t ∈ R

Φ ∈ C∞
0 ([0, 1])∫

B(0,1)
Φ(x) dx = 1

0 ≤ Φ ≤ 1

with B(0, 1) the two dimensional (closed) unit ball. It follows that (again in each component)

∇u(k)(x) =
∫

RL,H

∇v(k)(s)Φε (|x − s|) ds (3.25)

∇∇u(k)(x) =
∫

RL,H

∇v(k)(s)∇xΦε (|x − s|) ds (3.26)

= −∑
ν

∫
Ω

(k)
ν

∇v(k)(s)∇sΦε |x − s|) ds (3.27)

=
∑
ν

∫
∂Ω

(k)
ν

∇v(k)(s(l))Φε (|x − s(l)|) n dl (3.28)
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where Ω(k)
ν are the subsets of RL,H where ∇v(k) is constant, n is the interior unit normal

vector on ∂Ω(k)
ν , dl is the one-dimensional Hausdorff measure on ∂Ω(k)

ν . Note that ν is finite

for fixed k(ε). The elastic energy of u(k) can be estimated as follows.∫
RL,H

W (∇u(k)) dx =
∫

RL,H

W (∇v(k)) dx

+

(∫
RL,H

W (∇u(k)) dx −
∫

RL,H

W (∇v(k)) dx

)

≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ + C meas{x ∈ RL,H : ∇v(k) �= ∇u(k)}

≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ + ε2C|Γ(k)|

≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠
by (3.8). We have used the notation Γ(k) =

⋃
ν ∂Ω(k)

ν . It is clear that the estimate for

{x ∈ RL,H : ∇v(k) �= ∇u(k)} is correct if Γ(k) is a straight line. Furthermore, note that

near corners of Γ(k) the estimate for {x ∈ RL,H : ∇v(k) �= ∇u(k)} is correct. Note also

that the same is true if three or more lines meet in one point. (In both cases there is some

“overlap”.) With (3.8) and since ε|Γ(k)| is the contribution of the surface energy to Fε(v
(k))

the last inequality above follows. Since ε|Γ(k)| is the contribution of the surface energy to

Fε(v
(k)) the last inequality follows from (3.8). Let us now estimate the surface energy. By

the divergence theorem

ε2‖∇∇u(k)‖2 =

= ε2
∫

RL,H

2∑
ι,κ,ξ=1

(∫
∂Ω

(k)
ν

∂κv
(k)
ι (s(l))Φε (|x − s(l)|) nξ dl

)2

dx

= ε2
∫

RL,H

2∑
ι,κ,ξ=1

(∫
Γ(k)

(
∂κv

(k)
ι+ (s(l)) − ∂κv

(k)
ι− (s(l))

)
×

× Φε (|x − s(l)|) nξ dl

)2

dx

where ∂κv
(k)
ι± denote the limits of ∂κv

(k)
ι (s) as s approaches the interface Γ (from either side).

Note that Γ(k) belongs to two sets of the type ∂Ω(k)
ν unless Γ(k) ⊂ ∂RL,H . Because of

‖∂κv
(k)
ι ‖2 ≤ C
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with C independent of k it follows by Fubini’s theorem that

ε2‖∇∇u(k)‖2 ≤ Cε2
∫ ε

δ=0

∫
Γ

(k)
δ

(∫
Γ(k)

Φε (|x − s(l)|) dl
)2

dl dδ (3.29)

where

Γ
(k)
δ = {x : dist(x, Γ(k)) = δ}.

The smallest length scale of the length of the interfaces of Γ(k) is

lk = εσ2/(2 log 2). (3.30)

If σ <
√

2 log 2, then lk � ε as ε → 0. Furthermore, by the construction of the microstructure

dist(Γi, Γi+2) ≥ li+1

2
√

2
i = 0, 1, . . . , k − 2. (3.31)

Therefore the number of interfaces having nonempty intersection with an ε-neighbourhood

B(x, ε) of x is bounded uniformly in x and ε. (We have used the notation

B(x, r) = {s ∈ R2 : |x − s| ≤ r}.)

Using the properties of the mollifier Φε this implies(∫
Γ(k)

Φε (|x − s(l)|) dl
)2

≤

≤ ‖Φ‖2
∞

ε4

(∫
Γ(k)∩B(x,ε)

1 dl

)2

≤ C
‖Φ‖2

∞
ε2

.

Since |Γ(k)
δ | ≤ 2|Γ(k)| we obtain from (3.29)

ε2‖∇∇u(k)‖2 ≤ εC|Γ(k)|.

With (3.8) and since ε|Γ(k)| is the contribution of the surface energy to Fε(v
(k)) we finally

obtain

ε2‖∇∇v(k)‖2 ≤ C exp

⎛⎝−σ

√
log

1

ε

⎞⎠ . (3.32)

This concludes the proof of Theorem 3.1. �
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4 Discussion

The achievement of the paper is twofold.

First we have presented a result of a general nature, which gives a restriction for any possible

microstructure, namely that its Young measure is unique and homogeneous.

Second an infinitely sequentially-laminated microstructure has been constructed. The pa-

rameters such as length scales and the number of layerings are chosen to depend on ε so as

to achieve an optimal asymptotic behaviour of the corresponding energy. We do, however,

not show that this is the only microstructure giving such an asymptotic behaviour (or that

there is no microstructure that has an even better asymptotic behaviour). But we expect

that our microstructure is optimal in this sense. This is also supported by the numerical

results in [8].

Although the configuration under consideration seems special we do expect similar behaviour

for a wide range of variational problems leading to infinitely sequentially-laminated mi-

crostructure. We would like to conclude with the remark that the microstructure involved

is very complex. Up to now only the singular perturbation problem for single laminates

is well understood. To obtain lower bounds of the energy we believe that one should first

study situations which lead to finite laminates. The experience gained there should give new

insight for infinite laminates and hopefully lead to the derivation of lower bounds for the

energy in this complex situation.
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