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Abstract 

This research develops an analytical scientific approach for investigating the high 

precision surface generation and the quantitative analysis of the effects of direct 

factors in precision machining. The research focuses on 3D surface characterization 

with particular reference to the turning process and associated surface generation. The 

most important issue for this research is surface functionality which is becoming 

important in the current engineering industry. The surface functionality should match 

with the characterization parameters of the machined surface, which can be expressed 

in formula form as proposed in chapter 4. Modelling and simulation are extensively 

used in the research. The modelling approach integrates the cutting forces model, 

thermal mode% vibration model, tool wear model, machining system response model 

and surface topography model. All of those models are integrated as a whole model. 

The physical model with such as direct inputs is formed. The major inputs to the 

model are tooling geometry and the process variables. The outputs from the modelling 

approach are cutting force, surface texture parameters, dimensional errors, residual 

stress and material removal rate. MATLAB and Simulink are used as tools to 

implement the modelling and simulation. According to the simulation results, it is 

found that the feed rate has the most profound effect on in surface generation. The 

influence of the vibrations between the cutting tool and the workpiece on the surface 

roughness may be minimised by the small feed rate and large tool nose radius. 

Surface functionality simulation has been developed to model and simulate the 

surface generation in precision turning. The surface functionality simulation model 

covers the material and tool wear as well. It shows that chip formation is resulted 
from cutting forces. Cutting trials are conducted to validate the modelling and 

simulation developed. There are positive results that show the agreement between the 

simulation and experimental results. The analysis of the results of turning trials and 

simulations are conducted in order to find out the effects of process variables and 

tooling characteristics on surface texture and topography and machining instability. 

From the research, it can be concluded that the investigation on modelling and 
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Abstract 

simulation of precision surfaces generation in precision turning is performed well 

against the research objectives as proposed. Recommendations for future work are to 
improve the model parameters identification, including comprehensive tool wear, chip 
formation and using Neural Networks modelling in the engineering surface 
construction system. 
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q(, projected angle of t7o on the tool rake face plane(degree or rad) 

t7O. O5 surface height at 5% bearing area (mm) 

77C equivalent chip flow angle(degree or rad) 

77PI , qVI five highest surface summits and lowest surface valleys respectively 

(3D) 

77PI 77vi the five highest surface summits and lowest surface valleys 

respectively (3D) 

)7r residual surface 

19ijk bond angle between bonds ý and ik (degree or rad) 
00 initial approach angle(degree or rad) 

0/ end approach angle(degree or rad) 

/C thermal diffusivity of the workpiece material (K) 

A modification function; 

ks slope of the stiffness function at origin(degree or rad) 

A, slope parameter of the repulsive pair potential curve(degree or rad) 

A2 slope parameter of the attractive pair potential curve(degree or rad) 

113 slope parameter of the cut-off potential function(degree or rad) 

4ab damping ratio of the workpiece and tooling system in a-th direction 

due to a force acting in the b-th direction when the other two force 

components are zero (N / mm / s) 

I- c // 
damping ratio (N / mm / s) 
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Nomenclature 

electron density of the real lattice 

electron density of the reference lattice 

TA amplitude of the increment of the shear stress due to the hard 

grain (mm) 

TS shear yield stress 

-rs(') real shear stress in cutting processes 

(P C shear angle(degree or rad) 
On normal shear angle in oblique cutting(degree or rad) 
00 initial shear angle(degree or rad) 

Yff side cutting edge angle of the cutting tool(degree or rad) 

vij angular potential function(degree or rad) 

CO spindle angular speed (m / min) 

(OC chatter frequency (Hz) 

COnab structural natural frequency of the workpiece and tooling system in a- 

th direction due to a force acting in the b-th direction when the other 

two force components are zero (Hz) 

COa frequency of the generation and removal of B UE (Hz) 

Aa variation of rake angle due to BUE 

A Tf temperature rise in the tool flank - workpiece zone 

AV wear volume (K) 

Ay average distance between the shear-localized chips (mm) 

Ax, Ay deviation length (mm) 

Arl increment of the shear stress due to the hard grain 

Ax, Ay deviation length. (mm) 
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Abbreviations 

AACF Area Autocorrelation Function 

APSD Area Power Spectrum Density 

ANOVA Analysis Variance 

BP Back propagation 

BR Free forward-forward back regression 
BUE Build-up edge 

CNN Computer Neural Networks 

CNMA Tool inserts type 

CNC Computer Numerical Control 

Coef Coefficient 

DCFCs Dynamic Cutting Force Coefficients 

FFT Fast Fourier Transform 

MLE Maximum Likelihood Equation 

MCT Minimum Undeformed Chip Thickness 

MRR Material Removal Rate 

NN Neural Network 

OLS Ordinary Least Square 

PLS Partial Least Square 

RA Regression Analysis 

RMS Root-Mean-Square 

RSM Response Surface Method 

SE coef Standard Error coefficient 

SCMT Tool inserts type 

VBMT Tool inserts type 

VIF Variance inflation factor 
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Chapter I Introduction 

1.1 Back2round 

The area of surface functionality is becoming important for precision manufacturing 
industry because there is an increasingly high demand of components with precision 

surfaces and micro featured surfaces in the industry such as, braking disc, gear tooth 

profiling, bearings and medical devices as well [1]. High precision manufacturing 

potentially offers good quality control, reliability and desired functionality for these 

products. The product performance heavily depends on their surface quality such as 

lubrication capacity and wear and tear resistance, etc. Precision manufacturing 
development rapidly increases the need for high precision products and components in 

advanced science and technology, for instance, those in medical, computer and 

mechanical industry. 

1.2 Machine tool technolo2y 

To meet the requirement for manufacturing high precision products, many ultra-precision 

machining mechanical tools have been developed since 1970, which include the Large 

Optics Diamond Turning Machine (LODTM) [2] and the Cranfield nanocenter [3]. Fig 

1.1 shows that in the early 1970 are a number of surveys were carried out on the 

productivity of machine shops in the UK, Europe and the USA [4]. 
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Fig. 1.1 Unused and active times in batch manufacturing, from surveys circa 1970s 
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It was found that they were actually productive in removing metal, for only 10% to 20% 

of the time. For 40% to 60% of the time the machine tools were in use but not 

productively, i. e. they were being set up for manufacturing or being loaded and unloaded, 

or during manufacturing, tools were being moved and positioned for cutting but they 

were not removing metal. For 20% to 50% of the time they were totally unused. As far as 

work in progress was concerned the batches of components typically spent 70% to 95% 

of their time being inactive on the shop floor. So overwhelming was the clutter of partly 
finished work that a component required several different operations for its completion. 
On different machine tools, it might find these carried out at the rate of only one a week. 
For 10% to 20% of their time components were being positioned for machining and for 

only from 1% to 5% of the time metal was actually being removed. From the late 1960s 

to the early 1970s both forms of waste - the active, non-productive end the idle times - 
began significantly to be attacked, the former mainly by developing machine tool 

technology and the latter by new forms of manufacturing organization. 

In late 1980s it was even proved that nanometric chip removal is feasible by some 

researchers at Lawrence Livermore National Laboratory (LLNL) in the USA [5]. 

1.3 Turnini! machines techno 

From 1970s onwards, machine tools of new design started to be introduced in significant 

numbers into manufacturing industry, with the effect of greatly reducing the times for 

tool positioning and movement between cuts. This new, computer numerical control 

(CNC), design stemmed directly from the development of numerically controlled (NC) 

machine tools in the 1960s. Traditionally, in mechanically controlled machine tools, the 

coordination needed between the main rotary cutting motion of the work piece and the 

feed motions of the tool is obtained by driving all motions from a single motor. The feed 

motions are obtained from the main motion via a gear box and lead screw for thread 

cutting. With the exception of machines known as copying machines which derive the 

feed motion by following a copy of a shape to be made, only simple feed motions are 
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obtainable on a lathe. For example, these are in the axial and radial directions; to machine 
a radius on a lathe requires the use of a form tool. In addition, the large amount of 
backlash in the mechanical chain requires time and a skilled operator to set the tool at the 

right starting point for a particular cut. 

In a CNC machine tool, all the motions are mechanically separate, each driven by its own 

motor and each coordinated by the computer with the others. Not only is a much more 

complicated feed motion are possible, for example a combined radial and axial feed to 

create a radius or to take the shortest path between two points at different axial and radial 

positions, but also the requirement of coordination has led to the development of much 

more precise, backlash-free ball-screw feed drives. This precise numerical control of feed 

motions, with the ability also to drive the tools quickly between cuts, together with other 

reductions in set-up times has approximately halved machine tool non-productive cycle 
time, relative to its pre- I 970s levels. 

A further halving of non-productive cycle time has been possible since about 1980s 

onwards, with the spread throughout all manufacturing industry of new types of machine 
tools that have become called turning centres and machining centres. These new 

machines, first developed for mass production, individually can carry out operations that 

previously would have required several machine tools. For example, it is possible on a 

traditional lathe to present a variety of tools to the workpiece by mounting the tools on a 

turret. In a new turning centre, some of the tools may be power driven and the main 

power drive, usually used to rotate the workpiece in turning operations, may be used as a 
feed drive to enable milling and drilling as well as turning to be carried out on the one 

machine. 

Precision manufacturing concerns the creation of components with high form and 
dimensional accuracy and surface quality, which will affect the components specified 

functionality and performance. The surface accuracy may be at micrometer and even 

nanometric level., so both the machine design and process behaviour must be well 
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understood as well as the interaction between the process and machine, i. e. the interaction 

between the tool and workpiece surface and associated tool-workpiece loop [6]. The 

increased versatility of machine tools has been briefly considered: the freedom given by 

CNC to create more complicated feed motions, both by path and speed control; and the 

evolution of multi-function machine tools. The cost penalty has just been mentioned. As 

part of the continuing scene setting for the conditions in which metal cutting is carried 

out, this will be combined with systems and materials technology considerations. 

1.4, Surface functio 

Surface functionality in precision manufacturing takes an interest in the construction of 

surface texture or topography of components in addition to dimensional accuracy and 

surface quality, which will affect the component's function and performance. The surface 

precision could be at micrometer or nanometer level. 

Fig. 1.2 Four categories of factors influencing the surface functionality generation 
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The surface functionality control of precision machined surface is dependent on four 

categories of factors as shown in Fig. 1.2. They are compromise of the machined 

workpiece, machine tool, operation condition and cutting tool. A scientific research is 

really required to develop a theoretical basis to link the machined surface and the main 
factor from the four categories of factor and also to investigate the foundation to achieve 
the desired surface functionality. Hence it is important to look into the principles of 

surface functionalities generation from the precision machining. 

1.5 Aim and objectives of the research 

The overall aim of this research project is to develop a modelling and simulation 

approach for investigating the generation of surface functionality in relation with 

machining process and tooling geometry. The optimal control of surface generation and 

the associated functionality formation would significantly benefit the achievement of 

high quality surfaces and their functional performance. 

The distinct objectives of the research are: 

(1) To identify and define the functionality of engineering surfaces. 

(2) To characterize, model and simulate the generation of engineering surfaces. 

(3) To optimize the process variables and tooling geometry against the surface 

functionality as required. 

(4) To evaluate and validate the models and simulations above through well designed 

machining trials and case studies. 

1.6 Research scope 

The rapid development of sophisticated machine tool and advance control system has led 

to an increased efficiency of ultra precision turning technology. The selection of set up 

parameters for the turning process is done with aid of trial cutting test, which are both 

time consuming and costly. The modelling technique used in the present study could be 

extended to other machining process as well tool and workpiece combination. The three- 
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dimensional modelling techniques used in the present study could be extended the turning 

operation provided that a workpiece could be cut perpendicularly. 

The simulation model was evaluated through a series of the cutting experiments. All the 

experiments were carried out on Harisson M250 turning machine. The workpiece 

material is a steel and alloy. The three dimensional surface topography and surface 

roughness parameters of the machined surface were measured by Zygo 3D surface 

profiler. In order to ensure the compatibility and consistency between the predicted and 

measured result, all simulations and measurements were made athe centre of the 

workpiece. 

As we known, turning process is expensive process. The simulation model help to 

determine the optimal cutting conditions without need for costly trial and error cutting 

test. It also helps to identify the best surface quality that can be achieved under a 

particular vibration condition. 

From this research, it contribute to improve the environment and satisfying consumer's 

need for better and lower cost components. By improving the useful life of components, 

surface technology avoids society more frequent need to exhaust natural resources or 

consume energy. A painted garden seat look smarter and last much longer than unpainted 

one. 

In automotive engineering, motor vehicles are critically dependent on surface engineered 

components for their extended warranties and emission controls. A hardened engine 

valve will last a minimum of five years without replacement 
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1.6, ChaDter plan of the thesis 

Chapte r1 

Chapter 2 

Introduction 

Chapter 3 

Literature reviewl 
If 

Surfac ec har acte ris atio n 

inA Process 

Modelling 

Chap'ter 4 

Chapter 

Simulation III Machining validation 

r5 Chabter 6 

Optimiz atio n and co ntro II Chapter 8 

Conclusions and recommendations for future work 

Fig. 1.3 Structure of the thesis based on research flow and findings 

As illustrated in Fig. 1.3 the thesis is presented in eight chapters. Chapter I describes the 

determination and objectives of the work. Chapter 2 reviews the surface metrology, 

tribology for machining process including the machined surface generation, the surface 

generation modelling, simulation, optimisation and control. The literature review reveals 

the investigation of a new approach which is important to present useful and easy 

techniques in addition to acquiring technical knowledge of the surface functionality 

generation correlation to the surface machining processes. 
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Chapter 3 presents the characterization parameters for 2D and 3D surface functionalities 

on machined components. New parameters, such as 3D surface parameters are proposed 

to present the correlation of surface roughness and functionality. 

Chapter 4 uses the turning machine as a case to investigate an innovative modelling 

towards presenting the complicated surface functionality generation process. The 

modelling integrates cutting force model, vibration model, then-nal model and tool wear 

model, based on the cutting mechanics analysis of the machining process. The machine 

tool structural analysis is performed to develop a transfer function for the response of the 

cutting system to the cutting force such as the positive displacements between the cutting 

tool and machined component. 

Chapter 5 explains the simulation tools to achieve the simulation of the generation of 

surface machining system and the motivation to use MATLAB & Simulink programming 

in the research. This chapter begins with the main feature of MATLAB & Simulink. The 

entire modelling system includes the cutting process, machining system response and 

machine surfaces, is implemented using MATLAB & Simulink programming. The 

strength of the cutting system and effects of some linear aspects in the machining process 

on the precision generated surface are also discussed with the simulations. 

Chapter 6 focuses on the experimental evaluation and validation of the modelling 

approach proposed. This includes the method and understanding of turning trials. The 

cutting forces and machined surface are used to evaluate and validate the modelling 

approach and simulations. The effect of operation variables and tooling characteristics on 

the machined surface texture and topography generation is further investigated with the 

results from both machining trials and simulations. 

Chapter 7 concerns the optimization and control of surface functionalities in machining 

generation processes. The MATLAB Neural Networks and Minitab 1.5 ANOVA 

technique are proposed to control and optimizes the machining process. The influences of 
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the process on machined surface roughness are further investigated with the results from 

both machining trials and simulations. 

Chapter 8 draws up the conclusions and outcomes from this research and the 

recommendations are created for future work. 
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Chapter 2 Literature review 

2.1 Introduction 

Chapter 2 will focus on the overview of the state-of-art relevant to the work as 

presented in all the chapters. There are six sub topics to be discussed. Fig. 2.1 shows 
these topics including turning process, Zygo 3D surface profiler, simulation, 

optimization, control and modelling approach. 

Introduction 

Modelling Zygo -3)D 
approach surface proffler 

Chapter 2 

Theoretical 
Siirnulýation analysis 

Optimization Turning 

and control process 

Fig. 2.1 The flow of Chapter 2 

Machining 
process 

Control 
I 

Surface 
roughness Control and 

value optimization 

Optimize 

Workpiece 
functionality 

Fig. 2.2 Manufacturing of surface functionality 
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As a general rule measurement must take place in order to ensure that the workpiece 
will function as required for the time specified to guarantee its quality. Fig. 2.2 shows 
the block diagram representing surface characterisation can be set fairly to bridge the 
gap between the machining process, surface generation and workpiece function. In the 

machining process block it includes all aspects of the machining system such as 
machine performance, tool wear and chatter; whereas in the workpiece functionality 
block it includes all functional properties of the component surfaces such as the 
tribological attention of friction, wear and lubrication on the surfaces. The surface 
roughness value block includes the measurement of surface roughness and all other 
aspects of surface metrology. 

In fact the two blocks of the machining process and workpiece functionality are not 
totally determining each other as seen by the line joining the two in the figure. 

Historically the correct function of the workpiece was guaranteed by controlling the 

manufacture. In practice a workpiece was made and tried out. If it functions 

satisfactorily the same manufacturing conditions were used to make the next 

workpiece and all subsequent workpieces. It soon became apparent that the control of 
the surface was being used as an effective gauge for the process and hence the 
functionality; what obviously required is a much more flexible and less remote way of 

guaranteeing functional performance. It should be possible by measuring parameters 

of the surface texture to predict the functionality. This may seem an obvious statement 
but within it lies one of the main causes for everyday problems in engineering. The 

block diagram in Fig. 2.2 will be visible and it will bring to light by taking into 

account what has been revealed in previous research investigations. 

Fig. 2.2 also shows that the importance of surface texture and geometry should be 

recognized so as to control and optimize the functionality of workpiece surfaces. 
Researcher must understand the influence of the surface has on behaviour and specify 
it accordingly. It was generally thought that a fine surface is necessarily a smooth one, 
i. e the smoother the better. This is not exactly right in many application cases, 
however, it can even cause serious damage. 
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The research and practice has set out that there is fundamental influence between the 

surface and the machining process. Firstly the influence is attentive to the nature of 
the geometric characteristics created on the surface by the machining process. It is 

shown that the Fourier kernel and its derivatives such as the Wigner function can be 

used to great effect. In what follows the way in which most conventional machining 

processes and some less conventional processes affect the surface will be examined. 
In order to do this it is often necessary to describe the basic mechanisms of the 

process and sometimes to attempt to determine how these mechanisms are reflected in 

the surface characteristics. Consequently, although the process will be described, the 
investigation will only be carried out as far as necessary to explore the surface 
implications. 

2.2 Surface metrology and surface characterization 
Surface metrology is the evaluation of the variation of a workpiece from its planned 

form that is specified on the functionality. It includes the measurement of surface 

texture. It could be the method to design the role of surface metrology measured in 

order to enable a component to function according to the surface functionality. 

The dimensional metrology is a first aim because it ensures that the texture of the 

workpiece surface complies with the functionality as designed. This by itself is not 

sufficient to ensure that the workpiece will satisfy its function; it may not be able to 

turn or move, for example. This is where surface metrology becomes important. 

Surface metrology verifies that all aspects of the surface geometry are noted and 

ideally controlled. If the shape and surface texture of the workpiece are correct then it 

will be able to function as required and the dynamic characteristics therefore satisfied. 

The classification of measurements will deal with the physical and chemical condition 

of the workpiece. This will be called here physical metrology. It includes the hardness 

of the materials, both in the surface layers, and the residual stress of the surface, both 

in compression or left in the material by the machining process or the heat treatment. 

It also includes measurement of the metallurgical structure of the material, and its 

chemical construction. All these and more contribute to the durability of the 
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component, for example, its resistance to corrosion or fatigue. Physical metrology is 

therefore an important part of engineering metrology. As a general rule this must take 

place with other types of measurement in order to ensure that the workpiece will 
function as required for the time specified to guarantee its quality. 

2.3, Surface tribology in machining 
Tribology is defined as the science of interacting surfaces in relative motion. The 

word tribology comes from the Greek tribos, meaning rubbing. In any machine there 

are lots of machined components and parts that operate by interacting with each other 
and involving friction, wear and lubrication and other tribological issue. Some 

examples are bearings, gears, cams and tappets, tyres, brakes, and piston rings. All of 
these components and parts have machined surfaces which come into contact, 

supporting a load, or moving with respect to each other. Sometimes the surfaces 

machined have their own functionality requirement such as low friction, saving 

energy, or high friction, as in the case of brake surfaces. If the component needs to 

reduce the friction or wear they are lubricated. The knowledge of friction, wear, 
lubrication and contact mechanics are all parts of tribology. It is one of the important 

aspects of surface engineering because a machined component surface has to 
improve its function, for example by applying a surface coating, surface roughness, 

and rolling contact fatigue where repeated contacts cause fatigue to occur. 

Surface tribolgy is used to describe a number of industrial processes that can be 

applied to improve the surface of a machined component. The major reason to apply 

these processes is to improve surface interaction such as corrosion protection, wear 

resistance and friction control which are areas where performance can be enhanced by 

these processes. The machining operation is influenced by the dynamics of the 

machine tool structure and the cutting process. The dynamics of the machine tool 

structure is customarily analyzed using the general well-developed methods and 

theories of structural dynamics, and is at present better understood than the cutting 

process. The dynamics of the cutting process is much less tractable since theoretical 

and experimental methods for its study are still under development and many 

outstanding issues remain [10]. 
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One of the first analytical formulations of the dynamic cutting force variation due to 

chip thickness variation, the rate of penetration and the cutting velocity was 

established by Tobias and Fishwick [11]. They present the following important 

relationship: 

dp, =K, dQ 

dp, - variations of the cutting forces; 

ds - variations of the chip thickness; 

dr - variations of penetration rate; 

dQ - variations of the spindle speed; 

Kj, K2, K3 - constants. 

(2-1) 

Tlusty and Polacek [12] also developed dynamic cutting force model to model the 

dynamic cutting forces by using a proportional relation: 

dF = ke(, ds 

k, c - constant. 

(2-2) 

Equation (2-2) is the foundation of the of dynamic cutting force theory. Some 

dynamic cutting force models [13-15] developed laterjust follow the approach, even 

though the focus is on the prediction of the dynamic cutting force coefficients or the 

calculation of chip area. 

Experimental evidences clearly show that the dynamic cutting process is nonlinear 

[16]. Hanna and Tobias developed the theory of nonlinear regenerative chatter where 

the machining system structure was presented by an equivalent single degree of 

freedom system with nonlinear stiffness characteristics and the cutting force was 

approximated by athird order polynomial of the chip thickness [17]: 

d2+ CdS 3 (2-3) dF = C, ds+C2 s3 

C1, C2, C3- coefficients. 
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Recently the simulation and measurement of tool displacement show that chatter may 

even happen in diamond turning of aluminium because of the nonlinear regenerative 

vibration [18]. The loss of contact between tool and workpiece with increased 

vibrations was analyzed by Tlusty and Ismail [ 19]. With the wide application of high 

speed machining, the nonlinearities caused by the chip formation are attracting 

considerable interest - Hou and Komanduri. They have studied the shear instability in 

machining using a thermo-mechanical model [20]. 

Davies, Bum and Evans have explained the chip segmentation phenomenon in high 

speed machining by using a simplified one dimensional thermo-mechanical model 
[21 ] and carried out numerical simulation and machining trials to study the rule of the 

segmented chip formation [22]. Other nonlinearities, such as ploughing process [23] 

and tool chip interface [24] have also been studied by some researchers. 

The nonlinear effects will become evident because of the rise of specific cutting 

energy at small depth of cut [25]. The rotating of the resultant cutting force vector in 

light cutting depth may further increase the potential for chatter feedback to cutting 

tool [26]. Therefore, more attention should be paid to model the nonlinearities and 

their effects on machined surface quality in precision machining. The design of 

rolling bearings and gears is such that the load is supported on a small area. This leads 

to high stresses over small areas of the components. This can cause high friction, 

wear, and contact fatigue. Contact mechanics is therefore an important part of 

tribology. In the early study of nonlinearities of metal cutting, empirical approach has 

been used to predict the nonlinear cutting force by some researchers [ 17,27,28]. 

2.3.1 Surface contact and pressure on machined surface 

The machined surfaces may look smooth, but at the microscopic scale they are rough. 
When two surfaces are pressed together, contact is made at the peaks of the roughness 

or asperities. The real area of contact can be much less than the apparent or nominal 

area as shown in Fig. 2.3. At the points of intimate contact, adhesion, or even local 

welding, can take place. If we want to slide one surface over the other then we have to 

apply a force to break those junctions. 
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Fig. 2.3 Interaction between two machined surfaces 

2.3.2 Friction and force on machined surfaces 
As illustrated in Fig. 2.4. the friction force is the resistance encountered when one 
body moves relative to another body with which it is in contact. The static friction 

force is how hard you have to push something to make it move, whilst the dynamic 

friction force is how hard you push to keep it moving. The ratio of the frictional force 

F to the non-nal force P is called the coefficient of friction. 

F=wP 
p 

kjjLF 

Fig. 2.4 Friction and force diagram 

In a sample case low friction such as that in the car engine, for example, does not 

require excessive energy to it moving. However, in another case high friction is 

needed such as in brakes, for instance. Friction is also important for car tyres to grip 

the road and between shoes and the ground for walking. 

2.3.3 Lubrication for partition of two machined surface 
The layer of oil between the surfaces can separate them and easily slide one over the 

other with reduced friction and wear. Mineral oils are the most common lubricants, 

but other low shear strength materials are also used; for example graphite, PTFE, and 

soft metals like lead or gold. The selection of different type of lubricant viscosity and 
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understanding the mechanism by which it acts to separate surfaces in a bearing or 
other machine components is a major area for study in tribology. 

2.3.4 Machined surface wear off 
The sliding surface over another leads to the asperities coming into contact and there 
is a possibility that wear can take place. The breaking of the entire little junction can 
cause material removal called adhesive wear. Or the asperities of a hard surface can 
plough grooves in a soft surface called abrasive wear. Wear is usually unwelcome 
because it leads to increased clearances between moving components and increases 

mechanical loading and maybe even fatigue. But in grinding and polishing process the 

generation of high wear rates is desirable. 

As well as adhesive and abrasive wear, there are other mechanisms whereby material 
can be removed from a surface. Erosive wear occurs when particles or even water 
droplet strike a surface and break off a bit of the material. Hard particles can become 

trapped in contacts and cause material to be removed from one or both of the surfaces. 
One of the main reasons for frequent change of car engine oil is that it becomes 

contaminated with hard debris particles that can wear out the engine components. 

2.4. Surface functionality generation in ma 
In order to reshape raw material into a workpiece having the desired shape, size and 

surface quality, it has to be processed by some means. There are many different ways 
in which this reshape can be achieved. Every way has its own certain advantages and 
disadvantages. Some machined components are produced by one process and others 
by many. The shape and roughness implication will be focused on. The method of 

surface roughness produced will be one consideration but the importance is what the 

functionality can discover through the surface roughness. 
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The machining processes can be subcategorized into the following: 

(1) Cutting with single or multiple tool tips-this includes turning, milling, 
broaching and planning. 

(2) Abrasive machining-this includes grinding, polishing, honing. 

(3) Physical and chemical machining-this includes electrochemical machining, 

electrodischarge machining, etc. 
(4) Forming, casting, extrusion. 
(5) Other macroscopic machining includes laser machining, high-power waterjet. 
(6) Ultra-fine machining (nanomachining) include ion beam milling and energy 

beam machining. 

2.5 Theoretical 

2.5.1 Machining mechanics for cutting processes 
Machining mechanics for cutting process involves friction, plastic flow and fracture 

of materials under conditions more extreme than those normally found in materials 

testing or in other production processes. Investigators in the metal cutting field have 

attempted to develop an analysis of the cutting process which gives a clear 

understanding of the mechanism involved and enables the prediction of the important 

cutting parameters, without the need for empirical testing [8]. 
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Fig. 2.5 The illustration of orthogonal and oblique cutting processes [9]. 
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Fig. 2.5 (a) shows an orthogonal cutting model; the cutting edge is perpendicular to 

the relative cutting velocity between the tool and workpiece. The orthogonal cutting 

resembles a shaping process with a straight tool whose cutting edge is perpendicular 
to the cutting velocity (P). A metal chip with a width of cut (b) and uncut chip 

thickness (h) is sheared away from the workpiece. The cutting is assumed to be 

uniform along the cutting edge where it is a two-dimensional plane strain defon-nation 

process without side flow of the material. Instead, cutting forces are exerted only in 

the direction of velocity and uncut chip thickness, which are called tangential (F') and 
feed forces (Ff). Fig. 2.5 (b) shows a single cutting edge inclined to the cutting 

velocity in oblique cutting. The cutting edge is oriented with an inclination angle (i) 

and the additional third force acts in the radial direction (F, ). 

For this research, 3D or non - orthogonal cutting process has been chosen. Fig. 2.6 

shows a formation of the chip from the flat top surface of workpiece by cutting tool to 

reduce the height of the plate. It also shows that the tool is stationary and the plate is 

moving. The relative speed between the workpiece and cutting tool is expressed by 
U 

work * 

F 
fl 

H 
TOO 

E 
WORK UWORK 

Fig. 2.6 Formation of chip from the flat top surface [4]. 

It also showsUch. is the same but the tool is oriented in a different relative mode as 

the plate and a different geometrical aspect of the chip formation is introduced. 
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According to the Fig. 2.6 above the rotation of cutting edges is along with the axis of 
(AD)*. The section of removed material EFGH stays rectangular but U chip becomes 

inclined to the cutting edge. 

NeitherUivork norUchip is perpendicular to the cutting edge. Chip formation is then 

known as non-orthogonal. The rotation angle (AD)* is called the cutting edge 

inclination angle, A, The mechanics of non orthogonal chip formation is more 

complicated than those of orthogonal chip formation, because the direction of chip 

flow is not fixed bY, ý,. 

Fig. 2.7 A turning operation [4] 

Figure 2.7 shows a turning operation where the cutting too] moves an axial distancef 

(feed rate) to reduce the bar radius by an amount d (depth of cut). The figure also 

shows the cutting force acting on the cutting tool, the D (diameter) at which point the 

cutting process is taking place and both the angular speed Q at rotation and the 

consequent linear V (speed) at the diameter D. Material is removed in the form of 

chips, at the feed ratefdV. 

The torque T and power P that drive the main motor must support this turning 

operation by elementary mechanics, i. e expressed as: 

T= Fý, (D / 2) -= (Fý. * fd)(D / 2) 

P= FýX =- (F, - fd)V or F,. * (fdV) 

(2-4) 

(2-5) 

A new quantity Fc has been introduced. It is the cutting force per unit area of removed 

material. Called the specific cutting force, it depends on a first approximation mainly 
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on the material being cut. Equation (2-4) indicates that, for a constant area of cutfd, a 

turning machine should be fitted with a motor with a torque capacity proportional to 

the largest diameter being cut. It is shown later that for any combination of the work 

and tool there is a preferred linear cutting speed V. Equation (2.5) suggests that for a 

constant area of cut the required motor power should be independent of the diameter 

being cut. Observing what motors, with their torque and power capacities, are fitted to 

production machine tools can give insight into what duties the machine tools are 

expected to perform; and what forces the cutting tools are expected to withstand. This 

is going to be further explored below. 

2.6 Surface finished 

Although a turning machine is often used to remove enough material to get the 

workpiece down to the required size, it can also be used as a finishing process. 

Surface roughness values (R,, ) are typically in the range of 0.5 to 1.0 pm. 

There are two discrete types of surface finish produced by a turning operation relating 

to a single cutting tool. Firstly the surface roughness is due to the primary cutting 

edge and secondly the surface roughness due to the secondary cutting edge. The first 

usually refers to surface broaching and form turning. The second is conventional 

turning with a round-nosed tool. Fig. 2.8 shows the position of the cutting edges on a 

typical tool. 

-- --------- - -- -1 ---- 
Secondary cutting edge 

Primary cutting'edge 
Nose radius 

Fig. 2.8 Cutting tool with respect to the two cutting edges [4] 
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2.7 Effect of tool geometrv 
The tool could be thought of as a triangle. If f is the feed and d is the depth of cut, 
then there is 

Ra =d14 R, =d (2-6) 

The surface texture is independent of the too] feed if the tool tip is perfectly 

triangular. Equation (2-6) does not involvef the feed. However the triangular tip is 

hardly practical. It is more often used with a curved tip of radius R is as shown in Fig. 

2.10. In this case the roughness, at least in principle, is a function of the feed. 

4 Depth of cut 

Profileoftool Profile of surface 

Fig. 2.9 Surface finish produce by a triangular tool 

Assume that all the cutting takes place on the radius part of the tool as shown in the 

figure. The roughness can be given by 

RI=R-VR -jf'14=R(I-Vl-ýý 
ý14R) (2-7) 

fo r 
f :! ý R R, ;: tý f'/ 8R (2-8) 

I 

d Depth of cut 

T 

Profile of tool Profile of surface 

Fig. 2.10 Surface finish produced by curved tool 

From (2-8) it can be found that for a given tool tip radius the surface roughness can be 

improved quite dramatically, simply by reducing the feed. In fact the roughness is 
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very much more sensitive to feed than it is to the tip radius. Before the Ra can be 

found, the mean line has to be established. This is obviously trivial in the case of the 

triangu ar tip; it is half way down the depth of cut. In the case of the curved tip it is 

R, /8 from the bottom of the trough. 

Using the mean line the R,, value is approximately 

0.032f2 /R (2-9) 

which is about one-quarter of the P,, value as can be seen from Equation (2.8). This is 

the same ratio as for the triangular tip and can be assumed for most single-shaped tool 

tips. For the lowest ratio of R, / R,,, the surface has to be a square wave surface; then 

the ratio is 1: 1. For a sine wave surface the ratio is R, / R, =7r . 

Most often a round-nosed tool has straight flanks and, depending on the depth of cut, 

these flanks enter into the calculation of the theoretical surface roughness. Three 

conditions apply (Fig. 2.11): 

(1) round nose only producing the surface (case 1); 

(2) round nose and straight edge in primary cutting position (case 11); 

(3) round noise and straight edge in primary cutting position and straight edge in 

secondary cutting position (case 111). 

a 

or 
Tool radius 

Region 1 
Region 2 
01 Region 3 

Tool feed 

Fig. 2.11 Varied surface roughness produced by different regions 
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Thus in terms of the R and case 1, there is [9]: 

Equation (2-10) is the same as Equation (2.8). As more of the flank is included, the 

roughness ratio R, /R becomes more involved [2], as seen in Equation (2-6) below. 

Thus for case 11, there is [43]: 

Aj 

-)2 

1/2 

+ sin + 
AL 

-I+ cos, 8 cot, 8 (2-11) 
R 

f 
8 R 

(2-10) 

which can be extended to the more general case as [43]: 

R, fIR 
R tan a+ cot, 8 

Cos( 
7r 

-a-6 
-- 

422 

sin( 
7r +a +18 422 

(2-12) 

Equation (2-12) can be simplified to [43]: 

R, 
R 

fIR 
(tan a+ cot 

(2-13) 

Obviously in this treatment R is a theoretical value of roughness determined by the 

geometrical aspects of the tool tip. In practice the texture will not be equal to this for a 

number of reasons including built-up edge. A definition of efficiency of cutting has 

been used in the past. 

Checking the Equations against practical tests is very difficult if not impossible for 

conventional turning. For example, in case I the tool tends to break when it engages 

with the surface. For radius tools the agreement can be checked more readily because 

alignment of the tool is not too important. 

Secondary cutting edge roughness is present in conventional turning. The secondary 

edge is separated from the primary edge by the nose radius as seen in Fig. 2.8. The 

use of the secondary edge to generate the roughness introduces several complications. 
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The most important ones are: 
(1) The geometry of the tool at its nose is replicated in the surface at feed mark 

intervals. 

(2) There is some uncertainty of the geometry of the cut at the trailing edge 
because the chip thickness goes gradually to a small value. 

(3) The metal at the trailing edge of the tool is subjected to unusually high normal 

stress and tends to flow to the side in order to relieve this stress. This can 

produce a furrow which can contribute to the roughness, especially in the case 

of a soft ductile metal. In this case the tool profile is not properly replicated in 

the surface. 

Surfaces generated by the secondary cutting edge are in general more complicated 

than those produced by a primary cutting edge. The surface roughness quoted is 

always taken as the maximum value. For the secondary edge, roughness is in the axial 

direction. 

2.8 Turning processes 
The turning process is simple for generating the main dimension of the part and, as 

the name implies, involves an axis of rotation somewhere in the generation. Figure 

2.12 shows the turning modes. 

Depth of cut 
Feed 

Chip 
/r Axis of rotation 

Tool 

workp le ce Chip 

4 Depth of cut 

Fee 

C 
A. 

d 

Fig. 2.12 Illustration of the turning modes 
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Typical variables are cutting speed, i. e. workpiece peripheral speed relative to the 

tool, axial feed-the advancement of the tool per revolution of the workpiece, the shape 

of the tool and the depth of cut of the tool into the workpiece material. 

There are some features which are not shown on the diagrams but contribute a 

considerable difference to the form and surface roughness. These include the non 

existence of coolant and the effect of the machine tool itself. In general, the actual 

value of the roughness can be estimated at least roughly in terms of height and form 

from knowledge of the basic process parameters. 

Normally as the turning process concerned, it is not often used for very fine finishing 

except in the case of diamond turning. It is a very practical process for removing 

material in order to manufacture the essential size and shape. As a common rule, the 

surface roughness has tendency to be too rough to be used in very critical applications 
in which high stresses could be damaging. But even so there are many applications 

where single-point machining is used because of the efficiency and flexibility of the 

process. 

2.9 Modeffin approach 
In the early study of nonlinearities in metal cutting, the empirical approach has been 

used to predict the nonlinear cutting force by some researchers [17,27,28]. Cutting 

force models have been assumed as a polynomial form including variables such as the 

undeformed chip thickness, relative vibration velocity and cutting speed. In order to 

predict surface roughness and instruct practical production, some researchers have 

also focused their work on the development of empirical surface roughness model 

using surface response methodology [29,30]. 

Surface roughness is a response to the cutting operational variables. The surface 

roughness model is thus always presented as a function of cutting speed, depth of cut, 
feed rate and tool nose radius, e. g. expressed as: 
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R ::::::: 
ka Vkbf k, d 

kd 

R k, 
ac0 

where k,,, kb, k, kd, k, - constants. 

(2-13) 

To build up the empirical surface roughness model, a set of designed machining trials 

need to be carried out for acquiring the surface roughness data under different 

machining conditions. By some algorithms, such as the least squares method, first 

order regression or second order regression, the constants in the roughness model will 
be acquired. The surface response method can also be used to predict tool life and 

cutting force [3 1 ]. 

Another kind of empirical surface roughness model was built by Grzesik, based on the 

theoretical surface roughness model and tribological analysis of the strong adhesion at 

the tool rake face-chip interface [32]. This simple empirical function would facilitate 

rapid data processing. However, the cost of machining experiments and the 

applicability of the model to the variation of machining conditions have limited the 

development of the approach. Although there is an effort to improve the applicability 

of the method by a reference-based model, the cost for obtaining the reference model 
is still very high, especially for precision machining [33]. 

A neural network is a kind of Artificial Intelligence method. It has been used in 

optimizing machining parameters [34-36]. Because the experimental data will be used 

to train the designed Neural Networks,, it can be classified in the empirical approach 

category. The Neural Networks model has somewhat intelligence, so it is robust to 

some extent to the variation of machining conditions. The accuracy of this notifies 

that the term computer simulation is broader than computer modelling, which implies 

that all aspects are being modelled in the computer representation. However, 

computer simulation also includes generating inputs from simulated users to run 

actual computer software or equipment, with only part of the system being modelled 

an example would be flight simulators which can run machines as well as actual flight 

software. 
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2.10 validation 
Zygo Corporation is a special equipment manufacturer that specializes in optical 
systems and equipment for areas such as optical metrology. Zygo's metrology systems 
are based on optical interferometry measuring displacement, surface figure, and 
optical wave front. Metrology and optical markets for end-user and OEM applications 
include semiconductor capital equipment, aerospace, automotive, and research. Now 
in its fourth decade, Zygo Corporation leverages its core competencies in metrology 
and optics to serve a worldwide customer base. Recognized as a valued partner by its 

customers for its innovation, technology, and responsiveness, the Company assists 
these customers in becoming leaders in their respective markets. 

In this research, a Zygo 3D surface profiler is substantially used for evaluation and 

validation of the models, simulation and the cutting trials. 

2.11 5imulations 

Traditionally, the formal modelling of systems has been via a mathematical model, 

which attempts to find analytical solutions to problems which enables the prediction 

of the behaviour of the system from a set of parameters and initial conditions. 

While computer simulations might use some algorithms from purely mathematical 

models, computers can combine simulations with reality of actual events, such as 

generating input responses, to simulate test subjects who are no longer present. 

Whereas the missing test subjects are being modeled, the system they use could be the 

actual equipment, revealing performance limits or defects in long-term use by the 

simulated users. 

2.12 Optimization and control 

2.12.1 Introduction of neural network 

An artificial neural network (ANN) is a mathematical model or computational model 

based on biological neural networks. It consists of an interconnected group of 

artificial neurons and processes information using a connectionist approach to 
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Computation as shown in Fig. 2.13. In most cases an ANN is an adaptive system that 

changes its structure based on external or internal information that flows through the 

network during the learning phase. In more practical terms neural networks are non- 
linear statistical data modelling tools. They can be used to model complex 

relationships between inputs and outputs. 

Hidden 
Input 

Output 

Fig. 2.13 Neural network structure 

There is no precise agreed definition among researchers as to what a neural network 

is, but most would agree that it involves a network of simple processing elements 

(neurons), which can exhibit complex global behaviour, determined by the 

connections between the processing elements and element parameters. The original 

inspiration for the technique was from examination of the central nervous system and 

the neurons (and their axons, dendrites and synapses) which constitute one of its most 

significant information processing elements. In a neural network model, simple nodes 

(called variously "neurons", "neurodes", "processing elements" or "units") are 

connected together to form a network of nodes - hence the term "neural network. " 

While a neural network does not have to be adaptive per se, its practical use comes 

with algorithms designed to alter the strength (weights) of the connections in the 

network to produce a desired signal flow. 

These networks are also similar to the biological neural networks in the sense that 

functions are performed collectively and in parallel by the units, rather than there 

being a clear delineation of subtasks to which various units are assigned. Currently, 

the term Artificial Neural Network (ANN) tends to refer mostly to neural network 

models employed in statistics, cognitive psychology and artificial intelligence. 
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In modem software implementations of artificial neural networks the approach 
inspired by biology has more or less been abandoned for a more practical approach 
based on statistics and signal processing. In some of these systems neural networks, or 

parts of neural networks (such as artificial neurons) are used as components in larger 

systems that combine both adaptive and non-adaptive elements. While the more 

general approach of such adaptive systems is more suitable for real-world problem 

solving, it has far less to do with the traditional artificial intelligence connectionist 

models. What they do, however, have in common is the principle of non-linear, 
distributed, parallel and local processing and adaptation, which is suit well to the 

complex scenario of precision machining processes and associated surface 

generations. 

2.12.2 ANOVA 
As first suggested by Conover and Iman in 1981 [37], in many cases when the data 

does not meet the assumptions of ANOVA (analysis of variance), one can replace 

each original data value by its rank from I for the smallest to N for the largest, then 

run a standard ANOVA calculation on the rank-transformed data. Where no 

equivalent nonparametric methods have yet been developed such as for the two-way 

design, rank transformation results in tests are more robust to non-normality, and 

resistant to outliers and non-constant variance, than ANOVA without the 

transformation. A variant of ran k-tran s formation is'quantile normalization' in which a 

further transformation is applied to the ranks such that the resulting values have some 

defined distribution (often a normal distribution with a specified mean and variance). 

Further analyses of quantile-normalized data may then assume the distribution to 

compute significance values [37- 40]. 

2.13. Conclusion 

This chapter has presented a review of research on surface functionality, modelling, 

simulation, control and optimisation. From this review, it was found that each method 

has its own advantages and disadvantages in investigation area. The analysis has 
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shown the main features of metal cutting in millimetre and micrometre scales. 
However, it cannot predict the details of some local stress and strain- But, it suffers 
from less computational power. Empirical approach in precision machining shows 
that it is simple but involves high cost. It may be helpful to model some intermediate 

phenomenon, such as wear. Surface functionality simulation is used to study the 

turning mechanism. However, it also suffers from the limitation of computational 

power. 

It is important to investigate theoretical analysis, empirical approach and simulation in 

a comprehensive and analytical way so as to utilize their individual advantages. The 

scope of the investigation will include the cutting actions between the workpiece and 

cutting tool at three aspects including, the turning process, machine tool structure and 

the nonlinear effects and to acquire quick simulations with acceptable accuracy. 
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Chapter 3 Characterizations of high precision 

machined surfaces 

3.1 Introduction 

The properties and performance of engineering products such as friction5 sealing, 
lubricant retention, load bearing capacity are related to their component surfaces. 
Therefore, the assessment of the product performance of the product is essential to check 

the dimensional accuracy and surface quality of the comprised component. 

During the machining process, the surface is only generated at the end stage of the 

machining. The surface consists of roughness, waviness and topography resulted from the 

effect of the cutting tool, the deflection of the machine tool or workpiece, vibrations, 

chatters, the flexibility of the machine or workpiece, the error in the slideway, etc. all will 
leave their signature marks on the machined surface. For the process control of the 

machined surface generation, all the infon-nation can be used as control parameters in 

order to get the achieved surface target. From the discussion and exploration presented in 

this chapter, it is clearly evident that the surface characterization can be used to control 

the machining process and thus ensure the desired component perfon-nance. 
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Fig. 3.1 Manufacturing stage process [68] 
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It is also found that all the effective factors are in need of each other for the required 
functional behaviour of the machined surface and the surface characterization. 
Furthermore,, of factors such as topography, metallographic, chemical composition, and 

residual stress interact, and all together accomplish the surface behaviour as illustrated in 

Fig. 3.1 [41,42]. 

In this chapter, the characterizations of surfaces are formulated. This formulation aims to 

bridge the gaps among the surface characterization, surface functionality and machining 

process. This chapter also presents the surface functionality in a generic form, with some 

characterization parameters proposed particularly for the surface functionality. 

3.2, Characterization of machined surfaces 

In the engineering surface, it can be categorized into two types which are surface 
integrity and surface texture as shown in Fig. 3.2. Generally, the surface integrity has 

much focus on the physical condition of the surface, whereas the surface texture 

represents the geometric properties of the surface. 

Surface 
texture 

Ail 
r 

Surface 
Integrity 

Deposits, Adsorption, Oxides 

Chemistry 
Roughness 
Waviness 
Form 
Lay & Texture 
Pitts & Tears 
Laps & Burrs 

Altered Sub-surface material 

Bulk Material 

Microstructure 
Hardness 
Cracks 
Residual Stress 
Transformations 
Plastic Deformation 
White Layer 

Fig. 3.2 Surface texture and surface integrity. 

3.2.1 3D characterization parameters for surface texture 

Nowadays, so many instruments with the powerful support from hardware and software 

of data acquisition, manipulation and visualization functions have been developed. 
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However the international standard for 3D surface texture measurement is still not 

covered yet. 

Professor Stout et al. have proposed fourteen 3D parameters in the research carried out 

within an European program [43]. These parameters are indicated by "S" instead of "R" 

calculated over a surface. They have been classified into the four categories and list in 

Table 3.1 

Table 3.1 Parameters for characterizing 3D surface topography [43] 

Amplitude Parameters Spatial Parameters 

Sq Root-mean-square deviation Sd, Density of summits 

S, Ten point height S, Surface texture aspect ratio 

Ssk Skewness of height distribution S', Fastest decay autocorrelation length 

Sku Kurtosis of height distribution Sid Texture direction 

Hybrid Parameters Functional Parameters 

SAq Root-mean- square slope Sbi Surface bearing index 

Sdr Developed interfacial area ratio S" Core fluid retention index 

S" Arithmetic mean summit curvature Sj Valley fluid retention index 

(1) Amplitude parameters 

Sq, the root-mean-square deviation of the surface, is the dispersion where the root-mean- 

square value of the surface departures within the sampling area. It expressed as: 

IN Al 
2 Sq -jjqr (Xi')Yj) 

MN 
J=j /= 

(3-1) 

M, N- sampling numbers in the X and Y directions within the sampling, area, 

respectively; 
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i, j - corresponding index of the sampling points; 

q,, - residual surface. 

Ten point height of the surface is an extreme parameter defined as the average value of 

the absolute height of the five highest peaks and the depths of the five deepest pits or 

valleys within the sampling area. It can be expressed as: 

s,. = 

55 
ý77pl + Y, 177,1 

5 
(I = 1,2, ..., (3-2) 

77v,, 77,1 - the five highest surface summits and lowest surface valleys respectively. 

Skewness of the topography height distribution is the measure of asymmetry of surface 
deviations about the mean plane. It is given by: 

N Al 
SA 11,11 

77' (XI, Yj mNs3 
q J=l 1=1 

(i = 1,2, ..., M) (j= 1,2, ..., N) (3-3) 

Kurtosis of the topography height distribution is a measure of the peakness or sharpness 

of the surface height distribution. It is described as: 

(3-4) 
iVms 4, q' (x,, yj ) (i = 1,2, ..., M (j= 1,2, ..., N) Sku 

q J=l 1=1 

(2) Spatial parameters 

The spatial parameters are used to describe the spatial property of the surfaces. Density of 

summits of the surface is the number of summits of a unit sampling area. It is described 

as: 

Sd, 
v 

- 
Number of summits (3-5) 

(M - 1)(N - 1) - Ax - Ay 

Ax, Ay - deviation length. 
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Three spatial parameters are devised for surface characterisation. These are based on the 

normalised area autocorrelation function (AACF) and the area power spectrum density 

(APSD). 

Sir, texture aspect ratio of the surface, is the ratio between the distance where the fastest 

AACF decay is 0.2 in any direction and the same function has the slowest distance decay 

0.2 in any direction. It is used to identify the texture pattern such as the uniform texture 

aspect. Sal, fastest autocorrelation length decay is the distance AACF has the fastest decay 

to 0.2 in any direction. Sid, is texture direction for angle measuring of direction for 

surface texture with respect to the y axis. SO,, is used to detennine the surface lay 

direction. 

(3) Hybrid Parameters 

The hybrid property is a combination of amplitude and spacing. Any changes which 

occur in either amplitude or spacing may have an effect on the hybrid property. SAq Root- 

mean-square slope of the surface, is the root-mean- square value of the surface slope 

within the sampling area. 

s", =, 
ýý 

[(", 
x , yj )- 77(X, 

-,, YJ 
+( 

q(x" yj )- q(x" yj-, (3-6) 
(A4 - 1)(N - 1) j=2 

17.2d Ax Ay 

Ss, is defined as the average of the principle curvature of the summits within the 

sampling area. It is expressed as: 

n 17(XP+l !I Yq) + 77(Xp-I Yq)- 217(xp, Yq) 77(Xp! l Yq+l + 17(Xp 
*yq-1 

)- 2q(xp lyq) SSC' I(2+2 

2n k=l Ax Ay 
(3-7) 

Hybrid parameter is the developed interfacial area ratio, i. e. the ratio of the increment of 

the interfacial area of a surface over the sampling area. It is given as: 
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N-1 M-1 
I ZCý - (M - 1)(N - I)Ax - Ay 

dr - 
J=l 1=1 

(M - 1)(N - I)Ax - Ay . 100% 

C, j - the interfacial area of the smallest sampling quadrilateral. 

(4) Functional parameters 

A large surface bearing index indicates a good bearing property. Surface bearing index is 

the ratio of the RMS deviation over the surface height at 5% bearing area, which is: 

Sbi --": 

sq 

770.05- surface height at 5% bearing area. 

Core fluid retention index is the ratio of the void volume of the unit sampling area at the 

core zone over the RMS deviation, i. e. it is: 

V, (ho. 
05) - V, (ho. 

8) 

Sci 
(M - 1)(N - 1) - Ax - Ay (3-10) 

Sq 

A bigger Sj indicates a good fluid retention in the core zone. 

Valley fluid retention index is the ratio of the void volume of the unit sampling area at 

270.05 

(3-8) 

(3-9) 

the valley zone over the RMS deviation, which can be expressed as: 

vi 

V, (ho. 
8) 

1)(N - 1) - Ax - Ay (3-11) 
sq 

A larger S,, indicates a good fluid retention in the valley zone. 

Generally speaking, there is a lack of the exhaustive experimental documentation for 

these parameters, which however represent the state-of-the-art in 3D parameters 

standardisation and most of the parameters are derived from the 2D parameters [44]. 

Some researchers have used some novel numerical analysis methods, such as Fourier 
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transform [45], fractal [46], wavelet [47] and hybrid fractal-wavelet [48] to characterize 

the 3D surface topography. Hybrid fractal-wavelet is the best suitable method to 

characterize tribological surfaces because it can address the multi-scale and non- 

stationary nature of tribological surfaces [49]. The characterization of surface 
functionality becomes difficult because of the failure of classification strategy with 

regard to the product performance term. Unfortunately there is no international standard 

that can be used as a guide to determine what the surface integrity is although there have 

been so many research that has been done. 

3.3 Machininp, system analysis 

Modem experimental analysis techniques have been reviewed by Schwarz and 
Richardson [76], in which the three main topics pertaining to modal testing was covered, 
i. e. on Frequency Response Function (FRF) measurement techniques, excitation 
techniques, parameter estimation (curve fining) methods. Modal testing is used as a 

simple and efficient means, for characterizing resonant vibrations. The majority of 

structures can be made to resonate under the proper conditions. A structure can be made 
to vibrate with excessive, sustained or oscillatory motion. Modes or resonances are 
inherent properties of a structure where resonances are determined by the mass, stiffness, 

and damping properties, and boundary conditions of the structure. Each mode is defined 

by a natural frequency, modal damping, and a mode shape. 

Schwarz and Richardson explained [76], if either the material properties or the boundary 

conditions of a structure change, its modes will change. The forces, which can be 

considered as the sum of steady, harmonic and random forces, act on the cutting tool and 

contribute to the modification of the dynamic response of the tool, by affecting its 

stiffness and damping. The focuses are on the collection and analysis of the data of 

cutting-force, tool-vibration and tool-modal parameter, generated by dry turning of mild 

carbon steel samples at different speeds, feeds, depths of cut, tool nose radii, tool lengths 

and workpiece lengths. Furthen-nore, this investigates the effect of each cutting parameter 
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on tool stiffness and damping, and yields an empirical model for predicting the behaviour 

of the tool stiffness variation 

Thomas and Beauchamp [77] have also mentioned that surface roughness does not 
depend solely on the feed rate, the tool nose radius and cutting speed; but can be 

deteriorated by excessive tool vibrations, the built-up edge, the friction of the cut surface 

against the tool point, and the embedding particles of the materials being machined. 

Tool vibrations have been described to affect surface profiles in microscopic level and in 

the form of flutes number, orientation, and spacing, as determined by the integer and 
fraction of the frequency ratio of the tool vibration to the spindle speed by Kim et al. 
[80]. They have also proposed a metrological scheme to identify any existence of tool 

vibrations with a minimum effort of surface measurement and analysis. As a systematic 

approach to identify the tool frequency from measured surface profiles, they have 

proposed two methods of spiral and radial-circumferential analysis using microscopic 

surface profile data obtained by phase measuring interferometry [80]. Concluded from 

[8 1 ], the computer simulation and experimental results have proved that their approach is 

capable of identifying any existence of tool vibration with a minimum effort of surface 

measurement and analysis. 

Cho and Eman [79] have proposed a work study in solving the main problems associated 

with the in-process identification of the instantaneous dynamics of a machining system. 

The main problems of that are related to the time variant nature of the process and the 

three dimensionality of the system, which leads to complex analytical procedures and 

both are closely associated with the experimental difficulties. During the cutting 

experiments, the parameters of the machining process changes due to factors. 

This in turn imposes the requirement for the identification of the instantaneous dynamics, 

relatively short data records must be used during which the system may be considered 

time invariant concluded that the three dimensional closed loop dynamics was formulated 
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in the form of a multi-variate time series model whose parameters can be estimated from 

relative displacements and force components measured under actual cutting conditions. 

3.4 Sur-face in 
Rao and Shunmugam [60] have elaborated that any metal-cutting process, the material is 

subject to plastic defon-nation, work hardening and heating of the surface layer so that the 

resulting geometrical form has certain physical properties. They also added that a definite 

relationship exists between the machining process employed and the functional 

characteristics of the component probably in terms of friction, wear, and load-carrying 

capacity, etc. Griffiths [61] has presented a description of surface integrity with its two 

divisions of topography and metallurgy. The functional and performance factors are 

affected by surface integrity. However, a large proportion of the industry still only 

specifies surface finish on drawings and it is on such surface parameters as Rr and Rq, 

that quality assurance is based. 

Surface integrity, also defined by Chevrier et al. [62] as a measure of the quality of a 

machined surface and is interpreted as an element that describes the actual structure of 
both surface and subsurface. The main objective is to obtain the best quality of machined 

surface, which depends on roughness, microhardness, residual stresses and material 

microstructure, but without neglecting productivity and workpiece cost. These 

characteristic parameters cover the crucial features that determine surface functionality. 

For instance, microhardness is responsible for the durability of the surface and its 

resistant to wear, and plastic and elastic deformation. 

Cheng, et al. take account of surface integrity as the surface properties affecting the 

functional performance of the product. They include surface roughness, microhardness, 

microstructure, residual stress and fatigue. These characteristics will determine the 

product performance. For instance, the residual stress has the effect on enhancing the 

wear and fatigue properties of the surface and improving the resistance to stress 
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corrosion. On the other hand, T6nshoff and Brinksmeier measured microhardness and 

residual stress to further quantity their effects [5 0,5 1 ]. 

Lonardo et al. addressed characterization of the surface microtopography [52] and 
Vorburger et al. presented the uses of STM and AFM [55]. Lucca summarized a variety 

of techniques employed for the characterization of surface and subsurface integrity. A 

review paper in 1998 [54]. Field and Kahles firstly coined "surface integrity" in 1964 

when they analysed the principal causes of the defects of critical components and the 

surface integrity is defined as "the inherent or enhanced condition of a surface produced 
in a machining or other surface generating operation". Surface integrity includes the 

changes of surface alterations including mechanical, metallurgical and chemical aspect, 

etc. These changes may limit component quality or render the component useless [49]. 

3.5 Surface functiona 
The surface functionality definition is different from the surface's operational 

performance. If translational surfaces are used, the tribological functionality will become 

dominant. Whitehouse [57] proposed a novel function map to express the function 

classification. It is classified according to the normal gap between two surfaces and their 

lateral movement. The function map lays its foundation for the classification of surface 

function. The joint stiffness, contact and adhesion functionality will behave significantly 

for static contact surfaces; finishing, reflective or hygiene functionalities are important 

for some non-contact surfaces, such as optical mirrors and precision lenses. Nevertheless, 

for some MEMS products, some special functional surfaces, such as anti -reflection, light 

distribution or self-cleaning will be required [56]. Therefore, the definition of the surface 

functionality should be acquired from the real working condition in which the product is 

in use. Based on the tribological mechanism, the generic term of surface functionality an 

express as: 

Bf (W, Vc) +A (1, E, T, h, SP) (3-12) 

SF - surface functionality; 
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B, f -a functional stands for the basic function of the component; 

W- the product working distance; 

Vc - working lateral velocity of the component; 

A- modification function; 

I- working load; 

E- environment pressure; 

h,, - humidity index of the working environment; 

SP - surface form parameter(s). 

The modification functional A is used to express the modification for the basic function 

because the surface functionalities are related to the system working environment. The 

surface form parameter(s) SP represents the form features of the product, such as 

cylindricity. The working distance W can vary from minus value or positive value, to 
infinity, which will stand for the plastic contact, elastic contact and light scatter 

respectively. 
The environment pressure, working temperature and air dampness will change the 

product function. The formulation indicates the potential of such an approach. The 

correct functionality of a product can therefore be determined easily by this approach and 
formulation. 

Surface functionality - the surface functionality should be acquired from the real 

working condition in which the product is in use 

Surfacefunction - the application of a workpiece surface. 

Surface texture - the geometry imparted 

Surface integrity - properties taken sometimes to mean ohysical and geometrical 

properties. 

Surface roughness - Irregularities in the surface texture which are inherent in 

manufacturing process but excluding waviness and errors of 

form 
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Surface topography - the study of surface feature 

Surface parameter - surface feature to be quatified 

3.6 Residual stress 
Griffiths [68] has stated that as a result of the unit event generating mechanisms, a 

surface can often be left in a stressed state after machining. Residual stresses in a 

structural material or component exist without the application of external load or other 

source of stress, such as thermal gradients. The causes of residual stress can be found in 

Park et al. article [69] where it has mentioned that manufacturing and fabrication 

processes such as casting, welding, machining, moulding, heat treatment are having the 

most common causes for residual stress. Futhermore, in-service repair or modification is 

also a common cause of the residual stress, albeit residual stress may also be induced 

later in the life of the structure. Compressive residual stresses are to be preferred since 

they will reduce externally applied tensile stresses and tend to close surface cracks. The 

formation of tensile residual stress may result in initiation of fatigue cracks, stress 

corrosion cracking, or other types of fracture [68]. According to Park et al. [69], residual 

stress state consists of two types which are the macro and microstresses. Macrostresses 

are those residual stresses which are in equilibrium within macro domains, covering 

volumes comparable in size to the part; and they concur with the concept of isotropic 

material. Macrostresses are the most commonly studied as they can affect the service 

performance of a component. Microstresses on the other hand, are crystal stresses within 

single metal grains or groups of grains in equilibrium within volumes comparable with 
dimensions of the grains. These include submicroscopic stresses which are related to 

distortions in atomic lattices of crystals. They tend to occur in multiphase alloys and 

composites due to differences in thermal expansion on coefficients between phases. 

The measurement techniques of residual stress have been reviewed by Withers and 

Bhadeshia [70] where some of the measurement techniques are destructive, while others 

can be used without significantly altering the component. Some have excellent spatial 
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resolution, whereas others are restricted to near-surface stresses or to specific classes of 

material. More work in this can be found in [71,72,73,74]. 

3.7 Conclusions 

This chapter focuses more on characterisations of 3D surface texture, surface integrity 

and critical review of the characterisation techniques. Surface functionality is important 

topic for the characterisation of high precision machined surfaces. The surface 
functionality can be expressed in the generic form of a versatile formulation. The 

characterisation parameters for high machined surfaces are categorized to match the 

surface functionality, which will be further discussed in Chapter 4 and 5. 
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Chapter 4 Modelling on the surfaces generation in 

precision turning processes 

4.1 Introduction 

The equation of turning processes is not taking into account any machining errors. In 

fact the factors from the dynamic cutting process, machine tool motions errors and 

environmental disturbances, will result in structural deformation and motion errors of 

the machine tool and cutting tool, and lead the tool path to deviate from the ideal tool 

path. For example, deformation of the machine tool structure under the action of 
dynamic cutting forces will deflect the cutting tool; the linear alignment error of the 

slideway will make the motion of the cutting tool away from the designed tool path. 
Environmental vibrations, even a fluctuation in temperature, can contribute to the 

deviation of the tool path as well. The calculation of the real tool path becomes the 

critical part in the modelling approach since the accuracy of the generated surface is 

largely determined by the relative motions between the cutting tool edge and the 

workpiece surface on a machine tool as proved by Lee and Cheung's studies [58,59]. 

Nevertheless, the tool edge quality is another important factor. 

A systematic modelling needs to identify the affecting factors and to model those 

factors which will contribute to the surface generation. Those factors will be the 

inputs to the process model. The cutting mechanics and cutting dynamics model, 

machine tool dynamics model will be integrated into the process model. The outputs 

will include 3D surface topography, characterization parameters and surface integrity 

parameters as shown in Fig. 4.1. Surface function according the application function 

scenario. 

To generate the surface, the complex material removal process will take place. The 

material removal processes have four factors which affect the result. They are the 

machine tool, cutting tool, workpiece material properties and operation conditions. 

This chapter will cover all the modelling that can be used to analytically predict the 
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surface generation, instead of investigation on the four main factors above. This 

chapter also discusses how the modelling approach is systematically developed. 

Surface Topography II Surface Function II Surface Texture 

Surface 
Functionality 

Fig. 4.1 Flow chart of the modelling approach 

4.2 A proposed modelling approach 

This research focuses on 3D surface functionality where five modelling elements are 

needed to form the modelling approach and they are tooling geometry, 3D kurtosis 

(Sku) modelling, machine parameter modelling, operation condition modelling and 

surface functionality modelling. The equation below shows the modelling approach 

representing the surface functionality: 

Sfc z Function (Ct + Mc) (4-1) 

Sfc - Sku parameters; 

Ct - Cutting tool; 

Mc - Machine condition. 
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Sfc is a straight forward Sku parameter used to describe and evaluate the machined 
surfaces in terms of the surface contact functionality. Sku is the mean for Kurtosis of 
Topography Height Distribution. This is a measure of the peakness or sharpness of the 

surface height distribution. It is given by the fon-nula: 

INM 

- -11,74 
(Xi, Yj Sku 

iýNs 4 
q 

(4-2) 

Fig. 4.2 shows the Gaussian surface has a kurtosis value of 3. A centrally distributed 

surface has a kurtosis value larger than 3, whereas the kurtosis of a well spread 
distribution is smaller than 3. For some practical engineering surfaces, e. g. ground, 
honed and plateau honed surfaces, the existence of outliers (pits and troughs) may 

cause very large values of kurtosis, sometimes achieving a value of over 100. 

Kurtosis >3 
Gaussian 

Kurto s is =3 

Kurtosis <3 

min 'q max 

Fig. 4.2 Kurtosis of surfaces 

Ct represents the cutting tool details including nose radius, initial side rake angle, side 

clearance angle, back rake angle and back clearance angle. Mc or machine condition 
is related with the machine operation during the process. 

Tool 
geometry 

Sku 
3D kurto s is 

Machine 
parameter 

Operation 

condition model 

CrJe ý 
., )JC 

Machined surface 
functionality model 

Fig. 4.3 Modelling surface generation to control surface functionality 
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The flow of the modelling approach can also be illustrated in the diagram Fig. 4.3. It 

shows the surface functionality modelling consists of three combinations factors. 

Those factors will be inputs to the investigation of the relationship between three 

element models. It is important to illustrate the model because from the illustration, 

the effecting factors can be identified. The outputs will include 3D surface 
topography, characterization parameters and surface functionality parameters. 

4.3 The inputs to the modellina surface izeneration 

4.3.1 Direct inputs 

4.3.1.1 Machine tool 

The main function of a machine tool in the turning process is to maintain the tool and 

workspiece position. It is also to keep the motion in the required path and thus 

important for rendering the machining accuracy. Usually the major motion error 

comes from the slideway. The straightness errors of the X axis and Z axis will 

significantly contribute to the linear motion errors of the slideway and result in the 

machining errors. The linear motion error of the slideway is a length based error. 

Formula below shows the linear motion error modelling based on the length based 

error. 
P =Rm (4-3) 

PI - slideway linear motion error; 

X axis and Z axis straightness errors; 

m- slideway moving distance. 

4.3.1.2 Mac ining system parameters 

In a machining system for the modal parameters, it is important to have high level of 

stiffness and damping. However, it is easier to get the poor damping property of the 

tooling structure because of the fast tool wear. In this research, the loop stiffness is 

considered as the stiffhess during the process in which the spindle, chuck and 

workpiece are all involved in the system. During the operation, the variety of tooling 

structure can cause movement. The static stiffness is adopted for this research and 
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known as stiffness coefficient Sjj (where i and j indicates X, Y or Z directions). 

However the stiffness coupling can only be found in two directions and not in three 
dimensions. The formula below show the stiffness of a workpiece structure in X, Y 

and Z directions. 

3E,, I,,, (3Lý, 2_ 12 
s cw (4-4) 

XXWP 21,,,, (2L,,,, 2 
_12 )(4L,, 2 12 

cw ew 

3E,, '., (3Lw 2_Ic2w 
SYYWP 

21,. - (2Lw 2 
_12 )(4L., 12 

(4-5) 

Cw clw 

SZZWP 
- 

EwAlv 
(4-6) 

Lw 

E,, - the workpiece material modulus elasticity; 

Aw - the workpiece cross-sectional area; 

L,, - length of the workpiece outside the chuck; 

1, - cutting distance; 

I,, - cross-sectional moment of inertia of the workpiece. 

In turning process the stiffness workpiece structure formula can be modelled as a 

cantilever beam with one fixed and one at the end acted on by three dimensional 

cutting forces. Therefore the three dimensional cutting forces can be described as: 

3E,,, I,, 
(4-7) 

xxisp 3 Llv 

s- 
3EýJll, 

(4-8) 
Y"VP 3 Llv 

sz. 
-vvp - 

E,,, A 
Iv (4-9) 

L 
14, 
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The stiffness matrix of the workpiece system, which is the equivalent stiffness of the 

workpiece, spindle and chuck arranged in series, can be described as: 

Sý,, w 
Sý, 

ý Sý.. 
IS. ] S, 

-,, 
s", S. 

ý, 
sz-, s 

ZYW S"w 
SxxspSxxch + SxxwpSxxch + SXXWP S 

XXSP 0 
s 

XXWP 
sxxspSxxch 0 

0 
SyppSyych + SyywpSyych + Syywpsyysp 

0 
SyywpSyyspSyych 

00 
szzspS.,, 

h 
+ Szzwpszzch +S 

l-WP 
s 

s 
Z-IWP 

S=spS., 
zc, h 

(4-10) 
Saasp 

-stiffness of the spindle in the "a" direction; 
Saach 

-stiffness of the chuck in the "a" direction. 

(Here a stands for the X, Y and Z directions respectively. ) 

Instead of cutting forces, the tooling structure includes the feed screw and nut-slide. 

The tool holder and cutting tool are also part of turning process inputs. The cutting 

tool can also be simplified as a cantilever beam with one end fixed at the tool holder. 

So there are: 

s 
3T, Q, 

(4-11) 
xxcl H, 3 

syycl = 
3T, Q., (4-12) 
H, ' 

TC 
szzct -11 H, 

T, - workpiece material modulus elasticity; 

Qy - cross-sectional moments of inertia with respect to Y axis; 

Q, - cross-sectional moments of inertia with respect to X axis; 

H, - the length out tool holder; 

C, - the cutting tool cross-sectional area. 
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The static stiffness matrix of the tooling structure, which is the equivalent stiffness of 
feed screw, nut-slides, tool holder and cutting tool arranged in series, can be 

calculated as: 

S, 
XxI SXYI SxzI 

[S, S)rxI S)YI S), 
Z, 

S 
zxI 

S 
ZY1 S 

ZZI 

I 

I+I+I+I 

s -fv 
Sxxns Sxxth s 

XXC14 

0 

0 

0 

s 
Yyfv 

Syyns Syylh syycu 

0 

0 

0 

s 
zzfv 

Szzns Szzih 

where S,,,,, f, - stiffness of the feed crew in the "a" direction; 

S,,,,,,, - stiffness of the nut-slide in the "a" direction; 

syy, h- stiffness of the tool holder in the "a" direction. 

(Here a stands for the X, Y nd Z directions respectively. ) 

S, 
CU zz 

(4-14) 

The mass coefficient Rij is the force developed at coordinate i due to unit acceleration 

at X, Y or Z directions. It can be assumed that there is no mass coupling in the 

workpiece and tooling structural system. By using the consistent mass method, the 

mass coefficient of the workpiece and tooling structure in the three directions are 

nearly same, i. e. it is one third of the total mass of the system respectively. The mass 

matrixes of the workpiece system and tooling structure could be: 

r. 00 
r. 

y. r. 3 

ry,,,, ryyv r,, w 
0 rw 0 

3 

-r..,, 
? ýP, 

00 rv 
3 

(4-14) 
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L, oo r", ry, r.. -, 
3 

ry., ry, r,,, -, 
0 r, 

3 

00 

(4-15) 

R,, is the total mass of the workpiece system. While R, is the total mass of the tooling 

structural system. 

The damping coefficients of the cutting system are defined in a manner entirely 

parallel to the definition of the stiffness coefficient or the mass coefficient. 
Specifically, the damping coefficient Pjj is defined as the force developed at 

coordinate i due to a unit velocity at direction j (here, i and j stands for X, Y or Z 

directions). It can be calculated by the following formulation: 

2A pry ii VS. rij 
pij - critical damping coefficient; 

A, j - damping ratio. 

(4-16) 

The damping ratio is usually obtained experimentally. The damping matrix of the 

workpiece and tooling structural system can be calculated by formulation (4-15). 

4.3.1.3 Workpiece and tooling material properties 

Shear stress, thermal conductivity, heat specific and thermal expansion coefficients 

are mechanical and thermal properties of the workpiece material and cutting material. 

All these will becomes the inputs to modelling approach. 

4.3.1.4 Tooling geometric parameters 

The tooling geometric parameters include rake angle, clearance angle, cutting edge 

radius and tool nose radius. They are essential inputs to the modelling modelling 

approach in relation with tooling geometry. 
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4.3-1.5 Operation conditions 

The operational conditions play as the inputs to the modelling approach. They are 

spindle speed, feed rate, depth of cut and coolant type, etc. 

4.4 Indirect inputs 

4.4.1 Spindle motion error 
To get the accuracy of the machine, understanding the spindle synchronous error 

motion is very important. The errors forming the spindle error motions include the 

axial and radial synchronous with sinusoidal feature, depending on the spindle speed. 

They can be modelled in the forrn of sinusoidal function. 

T sin(ßt +F) 
ss 

S, - spindle synchronous error; 

T, - the amplitude of the error; 

P- spindle angular speed; 

t- revolution time of the spindle; 

F- phase shift. 

4.4.2 Coolant in turning process 

(4-17) 

The coolant is the main source which can change the friction coefficient or friction 

angle between the tool rake face and chip. The impact of coolant for the machining 

process is drastic particularly on the tool wear, tool life, surface quality and 

machining productivity, etc. It can be emulated in the modelling with a step function, 

such as: 

Au(t) = p(t) 

Au(t) - impact of coolant for the machining 

p (t) - step function. 
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This numerical modelling is used to emulate the switch on or off of the coolant in the 

machining process but in a quantitative manner. 

4.5 Cuttin2 mechanics 

Cllip/ 
F 

Ff 

h 
--Z ----------------- . --. 

cxittill 9 ". ed V 

x 

(a) Side view 

V 

(b) Top view 

Fig. 4.4 The side view and top view of the tool/workpiece contact area. 

The main function of cutting model in turning process is to calculate the cutting 

constant and the contact area. The contact area will act on the tool rake face, cutting 

edge and flank face. To detect the contact profile, it can be found that the thickness 

reduces continuously and meanwhile the cutting oblique can change the directions 

and the curved chip thickness segment. Fig. 4.4 shows the side view and top view of 

the tool/workpiece contact area. The side view of the contact area clearly shows that 

the cutting forces will act on the tool rake face, cutting edge and flank face. The top 

view of the contact area shows the contact profile, in which it can be seen that the 

chip thickness reduces continuously and the oblique cutting forces change their 

directions around the curved chip segment. The chip thickness can be calculated by 

integration along the chip area [9]: 

d-A- =A TdS =A TROdO 

-1 A aq - area of differential chip; 

AT - differential chip thickness; 

dS- profile length of differential chip; 

z 

RL 0 

Cif 
60 

Feed direction 
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dO- angle of differential chip. 

The differential chip thickness AT can be expressed as: 

AT = AO -TO (4-20) 

where AO equals to RO, and TO can be calculated by the law of cosines, which can be 

expressed as: 

TO = 
Vf + Ro - 2)7? 0 cos (4-2 1) 

where the angle ; vcan be calculated by the law of sines, and it can be expressed as: 

sin -'[1- sin(; T - 0)] =0- sin`( 
f 

sin 0) (4-22) 
Ro Ro 

Substituting RO and (4-21) into (4-20), the differential chip thickness can be further 

expressed as: 

AT = h(O) = RO - 
Vf' + RO - 2JR0 cosy (4-22) 

The tangential, radial and feed forces acting on the differential chip element can be 

expressed as: 

dF =K d4+KiedS + K, 
cdS = [K,,, h(O) + K, 

e + K,,. ]rdO 
I ia 

dFr = Kra dA + K, dS + K, dS Kra h(O) + K, + Krc ]rdO 

dFfý = Kf, 
ýd, 

4 + KfedS + KjýdS [Kfah(O) + Kfe + K,, ]rdO 

K'a -cutting constant at rake face in tangential direction; 

Kle - cutting constant at cutting edge in tangential direction; 

K, - cutting constant at flank face in tangential direction; 

K, a - cutting constant at rake face in radial direction; 

Kre - cutting constant at cutting edge in radial direction; 

(4-24) 
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K, - cutting constant at flank face in radial direction; 

Kf,, - cutting constant at rake face in feed direction; 

Kf, - cutting constant at cutting edge in feed direction; 

Kf, - cutting constant at flank face in feed direction. 

4.5.1 Cutting constants 

4.5.1.1 Rake face 

The cutting constants at the rake face can be deduced by coordinate transform from 

the shear plane force. Here the oblique cutting force model proposed by Armarego is 

adopted [8]. Fig. 4.5 shows the force components in oblique cutting. The shear force 

is inclined at angle q to the normal to the cutting edge in the shear plane. To analyze 

the forces in oblique cutting it is helpful to resolve the resultant force into two 

components, R' in a plane perpendicular to the cutting edge, and PR along the cutting 

edge. From Fig. 4.3, it can be found that R'can be further resolved, the resultant force 

is therefore given by: 

R+ (F, 'y = 
ý(F, ')' + (Ff + (F, )' = 

ýF, ' + F, ' + F, ' (4-2 5) Ry 

The direction of the shear force are found from the forces in Fig. 4.3, thus 

True view of rake face 

6 

F, 1-S 

True view of shear plane 

Fig. 4.5 The force components in oblique cutting 
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- Fu 
tan)7, 

q- chip flow angle; 

I F tanq 
R cos(o,, + 8,, -a, ) 

q'S - shear flow angle; 

, 
8,, - normal friction angle; 

tan q sin 8, 

cos(o, + 8, -a, ) 

normal shear angle in oblique cutting. 

The shear force in the shear plane is given by 

Fs =, r, As = r, 
bh 

sin 0,, cos i,, 

r, - shear yield stress; 
A, - the shear-plane area; 
b- cutting width; 
h- cutting thickness; 

i,, - oblique angle or inclination angle. 
The force component F, in Fig. 4.5 can be expressed as: 

F, 'cos i,, + F,, , sin i=F, , cos(, 8,, - a,, ) cosý-' 
+ 1ý, sin r7' sin i 0 cos(o,, + 8,, -a, ) S0 

cos(, 6,, - a,, ) cos i,, cos 77 
Fj 

cos(o,, +, 6,, -a,, ) 
s+ sin 77, sin 

(4-26) 

(4-27) 

(4-28) 

substituting Equations (4-26) and Equations (4-27) into (4-28), the tangential cutting 

force can be expressed as: 

rsbh cos(, 8,, - a,, ) + tan i,, tan 77 sin, 6,, 

sin 0,, cos'(O,, +, 6,, - a,, ) + tan' q sin' 6,, 

Similarly the feed force can be expressed as: 

Fjý = Fj- =R sin(, 8,, -a,, ) 
F sin(, 8, -a,, ) 

s 
cos(o,, + 6, -a,, ) 

(4-29) 

I 
cosq, sina,, 

COS(O,, + 8,, a,, ) 
(4-30) 
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Substituting Equations (4-26) and (4-27) into (4-30) gives: 

Ff - 
Ts bh sin(, 8,, -a,, ) 

sin 0,, cosiý Vcos'(O,, +, B, - aj + tan' 77 sin' 8, 

The radial cutting force can be written as: 

cos(co -a, ) cosp' sin iI F, = F, sin i,, - F. cosi = Fs nS0 sin ps cosio] (4-32) 
0 Sl COS(On + Con-an )- 

Substituting Equations (4-26) and (4-27) into Equation (4-32), the radial cutting force 

can further be expressed as: 

rs bh cos(, 8,, -a,, ) tan io - tan77 sin 8, 

sin 0,, cos'(O,, +, 8,, - a,, ) + tan' q sin' 8,, 
(4-33) 

Equations (4-29), (4-31) and (4-33) are the oblique cutting force proposed by 

Armarego [8]. 

For some practical cutting tools, which have the side rake angle and back rake angle, 

the Equivalent oblique angle and non-nal rake angle can be evaluated by the following 

Equation [37]: 

tan aO tan af Cos q1, + tan af sin Vf 
tan iO tan ap cosq/, + tan a,, sin V/, 
tan an= tan ao cos io 

where ap - back rake angle of the cutting tool; 

qI, - side cutting edge angle of the cutting tool. 

(4-34) 

For simplicity, the chip flow angle can be assumed to be equal to the oblique angle as 

suggested by Stabler [26]. 
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In the cutting process, some parameters, such as normal friction angle, normal rake 

angle, normal shear angle and shear stress, are all variant as functions of time. 

Bearing this in mind, the corresponding cutting constants at rake face can be 

expressed as: 

Kla =-T, 
Q) cos(, 8,, (t) - a,, (t)) + tan i tan qs in 8,, (t) 

sin 0,, (t) Vcos' (0,, (t) + 6,, (t) - a,, (t) + tan' q sin' 6,, (t) 

Kra = 
T, Q) cos(, 6,, (t) - a,, (t)) tan i- tan qs in 6,, (t) 

(4-35) 
sin0,, (t) Vcos' (0,, (t) + 6,, (t) - a, (t)) + tan 'qsin'8, (t) 

Kfa = 
Irl W sin(, 6,, (t) - a, (t)) 

sin 0,, (t) cos i VCOS' (0,, W+6, W-a,, (t)) + tan ' 77 sin'8,, (t) 

The expressions for those time dependent parameters will be deduced in the following 

part of this chapter. 

4.5.1.2 Cutting edge 
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Fig. 4.6 Interface stress acting on the cutting edge 

Fig. 4.6 shows the interface stress acting on the cutting edge. Here an empirical 

formula is adopted to express the tool/workpiece interface stress af, which is: 

(4-36) k1H, 

where k, -constant; 
H,, - material hardness of the workpiece. 
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Arcona and Dow have proved that ki = 4.1 is the best agreement with measured data 

[38]. 

The cutting constants in the tangential direction, radial and feed directions are derived 

using af consistent; i. e; 

KI, af (-7r + af )r[sin(-"T + 24 

K 7T 
re af (7r + ap)r[cos(- + 24 

Kfe cf (-g + af )r[cos(-17r + 24 

af )+ Pf COS( 7r + 
a,, )] 

242 
a jr a 

Pf COS(-+ , )] 
242 

af 
pf sin(7 + 

af 
242 

pf - coefficient between the tool flank and workpiece; 

r- cutting edge radius. 

4.5.1.3 Flank face 

(4-37) 

There is compression interaction between the tool flank face and workpiece material 
in the contact area. Arcona and Dow's work demonstrate that spring back in metal 

machining can be represented as a linear function of tool edge radius and the ratio of 

material hardness to elastic modulus [38]. 

Sb = k2r 
H" 

(4-38) 
Ew 

Sb -spring back of the machined surface; 
k2- spring back constant. 

The forces act on the clearance wear land and the straight flank area. The cutting 

constants in tangential, radial and feed directions can be expressed as: 

KI, cjý (1t, +3 
tan Cl, - 

)(sin Cl,, - pf cos Of ) 

Krc, cjý (111, +3 
tan CIP 

)(Cos CIP + pj Cos CIP) 

Kjý = aj- (11, +3 
tan Cl, 

)(Cos Of + Pf COS Of ) 

/,, - wear land length; 

(4-39) 
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Of - side clearance angle of the cutting tool; 
Clp - end clearance angle of the cutting tool. 

On the Cartesian coordinate, the cutting forces in the X, Y and Z directions are: 

F= 'F 
yf fcoso-r coso (4-40) 

F, = 
fF,. 

cos 0+ Iý sin 0 

Oo - initial approach angle; 

Oo =sin-( Ro 
(4-41) 

Oj - end approach angle. 

01 = 7r -COS-'( 
f 

(4-41) 
2RO 

4.6 Vibration model 

A stable machining process is desired for producing a good surface finish. But the 

disturbance from environment and some mechanisms inherent in the machining 

process may lead the innately stable machining system to work at a dynamic unstable 

status. This results in unsatisfactory workpiece surface quality. The unstable sources 

can be classified into two categories: chatter vibrations and random/free vibrations 

[176]. The vibration models are focused on some random and free vibrations in this 

part. The chatter vibrations will be discussed in the next section. 

Precision/ultra-precision machining is very sensitive to the environmental 
disturbances. This is the reason why more and more vibration isolation systems or 

measures are applied in the state-of-the-art ultra-precision machine tools. The 

environmental vibrations exist in the whole machining process. They can be modelled 
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as a sinusoidal function with the amplitude of 0.2 ýtm for the Harisson M250 turning 

machine, which can be described as: 

E, =0.2sin(27rft) (4-42) 

fe, - frequency of the environmental vibration. 

For face turning, the environmental disturbance in Z direction is significant to 

contribute to the surface finish and form errors. For cylindrical turning, the 

environmental disturbance in the X direction will become important. Therefore, in the 

modelling approach the environmental vibration will be applied in the X and Z 
direction respectively, which depends on the turning operations. 

A typical random vibration is the cutting tool vibration when the cutting tool strikes at 

a hard grain in the workpiece during the machining process. When it happens, the 

cutting tool will bounce or vibrate relative to the workpiece. The existence of this 

phenomenon depends on the workpiece material properties. The source of this kind of 

vibration comes from sudden increases in the shear stress, which can be expressed as: 

A 7-1 = TAPU'(t) (4-44) 

Arl - increment of the shear stress due to the hard grain; 

rA- amplitude of the increment of the shear stress due to the hard grain; 
Pul - Pulse function generating square wave with equal interval. 

Equation (4-44) will be an additional item in the shear stress calculation in Equation 

(4-35). 

Under some machining conditions, such as low cutting speed, a built-up edge (BUE) 

will be generated and it may be removed under changing machining conditions. The 

generation and removal of the BUE will change the effective rake angle and the 

variation of the cutting force, and result in the cutting tool vibration. The variation of 

effective rake angle can be modelled as: 
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Aa=aARse(w. t) 

Aa- variation of the rake angle due to the BUE; 

aA- amplitude of the variation of the rake angle due to the BUE; 

coa - frequency of the generation and removal of the BUE; 

Rse -a function to generate an arbitrarily shaped period signal. 

(4-45) 

The variation of the effective rake angle will be used to modify the rake angle in 

Equations (4-34). 

4.7 Chatter model 

Regenerative vibration is a typical chatter vibration. It is excited by the cutting forces, 

as a wavy surface finish left at the previous revolution, is removed during the 

successive revolution which also leaves a wavy surface owing to machine structural 

vibration. Regenerative vibration will result in the variation of the chip thickness and 

width and excite variations in cutting forces and vice versa. So the regenerative 

vibration is generated in cycles. It can be modelled as the variation of cutting 

thickness and width: 

Ac, = x(t) - x(t - 

Ac,,, = y(t) - y(t - 

(4-46) 

(4-47) 

Equations (4-46) and (4-47) will be used to update the real feed rate and depth of cut 

in the machining model to emulate the regenerative vibration. 

In the cutting process, the tangential cutting force and radial cutting force may be 

coupled and will result in shear angle oscillation. The shear angle oscillation will also 

cause the variance of cutting force and tool vibration thereafter. The variation of the 

shear angle can be expressed as: 

0� (t) = 0oChirp(t) (4-48) 
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Oo - initial shear angle; 
Chirp - chirp function to generate a sine wave with increasing frequency. 

Chip formation is a highly dynamic and nonlinear process involving a very complex 

thermoplastic flow of workpiece material. Experiments show that, for most ductile 

metals, as the cutting speed increases monotonically in orthogonal cutting, a transition 

takes place from continuous to shear-localized chip formation in the flow field of the 

material being cut. The research carried out in NIST indicates that the formation of 

shear-localized chips is periodic at high cutting speed [39]. The shear stress of the 

material under the tool tip will vary from 0 to a maximum value because of the period 

thermal softening and straining harden of the workpiece with the formation of a series 

of segmented chips. Basically, the change of shear stress is caused by the variation of 

dislocation density in the work. The real shear stress in the cutting process can be 

expressed as: 

(Vt)ky 
As 

-r, (t) - real shear stress in the cutting process; 

ky - yield stress of the workpiece material; 

As - average distance between the shear-localized chips; 

Vc - chip velocity in the direction parallel to the rake face. 

4.8 Thermal model 

(4-49) 

The heat sources in the cutting zones include the work of shear deformation in the 

shear zone, friction work at interfaces between tool rake face and chip, between tool 

flank face and machined surface, and elastic contact work between tool nose, cutting 

edge and workpiece material. Because the heat piled up at the interface of the tool 

flank face and the machined surface may have significant effects on tool wear and 

surface integrity, the thermal model is focused on the calculation of temperature rise 

in the tool flank face zone. 
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The heating resulted from flank-workpiece friction can be regarded as an elliptical 

shape heat source with uniform heat flux distribution. The temperature rise is given 
by: 

A Tj 
2qa, 

k, vF; r (I .3S, + P,, 

A Tf - temperature rise in the tool flank - workpiece zone; 

q- rate of heat supply per unit area; 

ai- flank-workpiece contact length; 

k, - thermal conductivity of the workpiece material; 
P, j - Peclet number of the workpiece material; 

4.9 Tool wear model 

(4-50) 

Flank wear is a ma or form of tool wear in precision turning process. It may result in 

the rubbing of the tool nose on the workpiece surface and bring forth the so called 

stick-slip oscillations. Generally speaking, tool flank wear is caused by the friction 

between the flank face of the tool and the machined surface. Its wear mechanism is 

very complex. At the tool flank-workpiece surface contact area, tool particles adhere 

to the workpiece surface and are periodically sheared off. Adhesion of the tool and 

workpiece increases at higher temperatures. Abrasive wear occurs when hard 

inclusions of work material or escaped tool particles scratch the flank and workpiece 

as they move across the contact area as well. Although adhesive and abrasive wear 

mechanisms are predominant in flank wear, some diffusion wear also exists [8]. Due 

to the complex mechanism of the tool flank wear, an empirical model is used to 

calculate the tool flank wear width, which is expressed as: 

1 
ý, 

(t) =AF, ý, +Bexp(_ 
E) 

(4-51) 
H, Vf RT, 

H, - hardness of the cutting tool material; 

V- cutting speed; 
V, - sliding speed; 

E- process activation energy; 
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R- universal gas constant; 
Tf - cutting temperature in the tool flank zone; 

constants. 

The first item in Equation (4-51) stands for the adhesive and abrasive wear [4], the 

last item stands for the diffusion wear [ 109]. 

4.10. Machinin system 
Fig. 4.7 shows the machining dynamics model. The workpiece and cutting tool are 

simplified as a second-order spring-damper vibratory system in the X, Y and Z 

directions. 

F 

Fig. 4.7 Machining system diagram 

The cutting forces excite the dynamic displacements of the cutting tool and the 

workpiece in the X, Y and Z directions respectively. According to the stiffness matrix, 

damping matrix and mass matrix of the tooling system and workpiece system, there is 

no axial coupling in the machining system. Therefore, the whole cutting system can 

be described as: 
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mxxi xt (1) + cxx, xt (t) + kxx, xt (t) Fý, (t) 

M, ýyj yt (t) + cyy, yt (t) + kyyl yt (t) F, (t) 

MZZI V. (t) + czz, zt(t) + kzz, zt (t) = F, (t) (4-52) 
mxxw xw(t) + cxxw x w(t) + kxxwxw(t) -Fx (t) 

m,, Yw yw(t) + c, yw(t) + k, yw(t) -Fy (t) 

mzzw zw(t) + czzw zw(t) + kzzlvzw(t) = -Fz (t) 

m,,,,, - the mass equivalent of the tooling system in the X, Y and Z directions; 

c,,,,, - damping coefficient of the tool system in the X, Y and Z directions; 

k,,,,, - stiffness of the tooling system in the X, Y and Z directions; 

m,,,,, - the mass equivalent of the workpiece system in the X, Y and Z 

directions; 

c,,,,, - damping coefficient of the workpiece system in the X, Y and Z 

irections; 
k,,,,,, - stiffness of the workpiece system in the X, Y and Z directions. 

(Here, a stands for X, Y and Z directions respectively. ) 

4.11 Machining system response 

The cutting system modelling Equation (4-52) can be transformed into frequency 

domain by Laplace transform, and then it is further rewritten as: 

xt(s) Gxx, 

YI(s) Gyx, 

zt(s) -sT 
Gzxl 

. xw(s) 
) 

0 

yw(s) 0 

-zw(s) - -0 

Gxyl Gxz, 0 0 0 (S) 
G, G, 0 0 0 O(S) 
Gzy, Gzzj 0 0 0 Fz (s) 
0 0 Gxxw Gxyw Gxzw - F., (s) 

0 0 Gyxlv Gyyw Gy, - Fy (s) 

0 0 Gznv Gy1v G, 
_ _- 

Fz(s)_ 

(4-53) 

In Equation (4-53), the machining system response model isjust the matrix below: 
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Gxx, Gxyl Gxz, 
Gyx, Gyyl Gy, 
Gzx, Gzyt Gzz, 

0 0 0 
0 0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 

Gxxw Gxyv Gxzw 
Gyxw Gyyw Gyzw 

Gzxw Gzyw Gzzw 

(4-54) 

The tooling response model and the workpiece response model are the sub-matrix in 

Equation (4-54): 

Gxx, Gxyl Gxz, 
Gyx, Gyyl Gyz, (4-55) 

_Gzxl 
Gzy, Gzz, 

G.,, Gxyw Gxns, 
Gyý,,, G., Gý,, (4-56) 

_Gzxw 
Gzyw Gzzw 

Gabi - corresponding response of the tooling structure in a-th direction due to 

the force acting in the b-th direction when the other two force components are 

zero; 
Gabw- corresponding response of the workpiece structure in a-th direction due 

to the force acting in the b-th direction when the other two force components 

are zero. 
(a and b stand for the X/Y/Z direction respectively). 

Here the assumption of linearity is accepted, i. e. the matrix G is symmetric (Gab ý 
Gba) 

- 

The transfer function can be expressed in the form of- 

2 

Gab 
(S2 

(t)nab 

+ (t) 
2 (4-57) 

Fab (S) Kab +2Cab O)nab 8 
n, b) 
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&b - structural stiffness of the workpiece and tooling system in a-th direction 

due to a force acting in the b-th direction when the other two force 

components are zero; 

60nab -structural natural frequency of the workpiece and tooling system in a-th 
direction due to a force acting in the b-th direction when the other two force 

components are zero; 

L, ab- damping ratio of the workpiece and tooling system in a-th direction due 

to a force acting in the b-th direction when the other two force components are 

zero. 

Structural natural frequency can be estimated by: 

Ct)nab = _ýýab 
2 ýab 2 

Mab 
(4-58) 

A modelling approach has been proposed to study the precision surface generation in 

precision turning processes. Basically, it is based on the cutting dynamics and 

machine tool dynamics analyses. The dynamic cutting force model is deduced to 

calculate the three dimensional cutting forces. The thermal model is developed to 

predict cutting temperature rise at tool flank-work zone. The vibration models are 

classified into two categories, random or free vibration, and chatter vibration. The 

dynamic displacements between the cutting tool and workpiece can be calculated by 

the machining system response model. The model enables to predict the cutting force 

and surface topography, and hence to study the machining factors on surface 

generation. But the descriptions of tool wear and chip formation are based on some 

experimental results. A more fundamental theoretical study is needed to explain the 

tool wear mechanism predictive control of the tool wear and vibrations within the 

cutting process. 

4.12 Conclusion 
During the research, a modelling approach has been proposed to study the precision 

surface generation in turning process. The modelling approach is basically based on 
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the machining process dynamics. The inputs to the modelling will cover direct and 
indirect inputs. The model enables to predict the dynamic cutting force, and the tool 
tip cutting path and surface topography. The modelling approach will enhance the 

study of the machining factors and their effects on the surface generation individually 
in collectively. 
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Chapter 5 Simulations on the surface generation 
in turning processes 

5.1 Introduction 

This chapter will present the simulations developed based on the modeling approach. 
The simulations will focus on the direct inputs, the surface generation and integration 

in the machining process. The effects of direct inputs on surface generation will be 
discussed by analyzing the simulation results. 

al machini 
process 

Physically 
modelling 

lathematical 
modelling 

Surface 
modelling 

Surface 
functionality 

Fig. 5.1 Illustration of this proposed simulation approach 

5.2 A proposed simulation approach 

MATLAB is a high performance programming tool for technical computing. This 

program is able to simulate the complex machining process and system efficienctly. 

Add Experimenitss 

o elling 

approach 

njulation 
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Furthermore, MATLAB can integrate computation, visualization and programming in 

a user friendly environment. It also offers users the intuitive language for expressing 

problems and their solutions mathematically and graphically. Fig. 5.1 illustrates the 

proposed simulation approach which aims to bridge the gap among the real machining 

process, physical modeling mathematical modeling and computational output in 

numerical and graphical modes. 

5.3 Selection of MATLAB as the simulation tool 

MATLAB can produce accurate results and undertake numeric computing quickly. 

This feature is suitable for the cutting process modeling and simulation. During this 

project MATLAB programming can help to give immediate access to high 

performances computing such as solving differential equation, programming 

statistical analysis function and matrix computation. 

The second feature that makes MATLAB a suitable programming tool it is a highly 

interactive and friendly programming tool. The programming, such as flow control 

and data structures, etc, is included in the MATLAB programming. 

The most interactive aspect of MATLAB programming is its graphics to visualize and 

analyze the data. 2-D, 3-D and 4-D can be easily plotted as required for engineering 

data. For visualization, the visual tools include surface rendering, lighting, image 

display and powerful application of specific graphics. Additionally, Simulink can be 

combined in MATLAB by cooperating algorithms and written as MATLAB m-files 

in Simulink block diagrams. This will be described in detail below. 

5.4 The simulation tool Simulink 

There are a few features Simulink additionally suitable for simulating machining 

processes. 

(1) Simulink has an extensive library of predefined blocks where the developers can 

build the models of the system easily. All the system can be built through block 
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diagrams and equations by "dropping" the components from the library and 
connecting them together. 

(2) Except the high level of information makes it easy to understand although the 
detail infon-nation can be hidden in the sub system within the model hierarchy. 

(3) Visualization of the system can be shown through the hierarchical models, blocks 

library, scalar and vector connections, signal and port labels, open architecture and 

quality graphics. The graphic also enable the visualization of the system 
dynamics. 

For this project, MATLAB and Simulink are the best tools, particularly for simulating 
the linear phenomenon during the turning process. The Simulink extensive blocks 

give an easy way to develop the system. Furthermore, Simulink can be a better solver 
for the equations and high accuracy as requested by the machining system. The user 
friendliness is also advantage with which the developer can develop the system easily 

and at the same time can understand the programming language easily as well. 
Simulink also has lots of statistical functions which can develop to calculate the 

surface characterization parameters. The results of the simulation can be shown 
through the cutting force, machined surfaces topography and defined surface 

parameters. 

5.5 Simulation of surfaces generation in turning processes 

5.5.1 Integrated simulation model 

Fig. 5.2 shows the whole simulation model of the surface generation implemented by 

Simulink. According to Fig. 5.2 cutting forces, turning process, wear, regenerative, 

vibrations and residual stress are a part of the simulation. All the system can be 

developed step by step. The colour codes represent the function of the system to some 

extent. 

The light blue colour blocks represent some indirect outputs and many of the inputs 

for nonlinear output connected with the machining response by manual switch blocks. 

It is a big advantage to develop or remove/add the effect model during the simulation 
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easily. The black colour blocks are a part of direct inputs and they represent 
temperature model. ) vibration model and wear model. All the details of the 
implementation models can be found in the respective subsystem which are hidden 

within the hierarchy. 
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Fig. 5.2 also shows, the turning process modeling which includes cutting forces model 
(the dark blue block), vibration model (the black block), temperature model or 
therrnal model (the black block) and tool wear model (the black block). The maroon 
block is the machining response model developed by using transfer function blocks in 

Simulink. 

The output module (the grey blocks) consists of the displacement of the work piece 

and the tooling system, residual stress sub-module and material removal sub - 

module. 

5.5.2 Cutting force simulation 

The main function of cutting force is to investigate the cutting constant. This model 
has direct and indirect input to generate the simulation for cutting constant. The direct 

to get the cutting constant, all inputs will be through the complex operation. The result 
from cutting constant will be combined with the real feed and depth of cut which is 

producing a cutting force in the X, Y and Z respectively. Fig. 5.3 below shows the 

simulation of cutting force model. 

Tool vibratory motion is mainly caused by the cutting force generated during 

machining as function of chip load, which represents the cutting area during 

75 

Fig. 5.3 Cutting force modelling or the sub-system level 



Chanter 5 Simulations on the surLace generation in turnina processes 

machining. The cutting area is expressed as the product of the width of cut of cut and 
the thickness of cut. The cutting force maybe assumed to be proportional to the chip 
load. Where the proportionality coefficient Equation is (4-35), (4-37) and (4-39) the 
detail of cutting force equation process. 

5.5.3 Chatter simulation 
Fig. 5.4 shows a regenerative vibration model where the vibration is simulated by 

Variable Transport Delay. The main reason it is simulated by Variable Transport 

Delay because of the varieties of feed rate and depth of cut deployed in the turning 

process. 

The cutting force coupling will result in shear angle. Except the cutting force 

coupling, the variation of shear stress can be simulated also by MATLAB general 
functions in Simulink. The factors that cause the variation of shear stress deformation 

is the thermal softening and strain hardening of the workpiece chip deformation. To 

get this deformation the frequency of vibration is around 43 Hz at Harrison M250 

turning machine. 

The relative vibration between the tool and the workpiece is steady simple harmonic 

motion with a small amplitude and low frequency. Only the relative vibration in the in 
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feed cutting Z direction is considered since its effect prevails in the generation of 
surface roughness. When the depth of cut is small, the influence of self excited chatter 
and tool wear can be neglected. Although the fluctuation of cutting force due to the 

variation of uncut chip thickness might influence the surface roughness, the ratio of 
the amplitude of vibration to the depth of cut is usually very small in machining. 
Equation (4-46) and (4-47) show the variation of cutting thickness and width. 

5.5.4 Tool wear simulation 

According to Fig. 5.5, the tool flank wear is an input to the cutting force simulator. 
For this process an indirect factor can be integrated easy to control where the manual 

switch can be used to remove the indirect factors from the simulation process. 
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Fig. 5.5 Tool wear simulation 

Wear maybe defined as the undesired cumulative change in dimensions brought about 

by the gradual removal of discrete particles from contacting surfaces in motion, due 

predominantly to mechanical action. The complexicity of the wear process may be 

better appreciated by recognizing that many variables including hardness, toughness, 
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ductility, modulus of elasticity, yield strength, fatigue properties and etc. The details 

of tool wear can be described in Equation (4-5 1). 

5.5.5 Machining response simulation 

Transfer blocks are used to build the machining system response simulation. The user 

only needs to change the parameters in the Transfer function block based on the 

modal parameter within the machining system response simulation as shown in Fig. 

5.6. 

scop, i 
77863 

2+108 77s+76353 6353 
rake angle Gainl r 

I9 
Scope Scope 

S cope4 
F 

91699 +3 
S2+58 14s-91699 VVD z VVD 

Gaing 
xz 

Fr 11 
friction angle 

91699 Scopel 

-1 10 
D-[/, 

- 
S ope5 S2,58 14S-91699 

IL 

-W + 

shear angle Gain5 xz1 
- -imp + WD xztxy 

68337 

s7+39 37s+68337 

xyl 

sine wave FI? 5 1 
U-sd 

Sine Wave 1 mom 
4 

77863 
go -I<- 

ýý 

s2+108 77sý715353 Scope7 
x/z motion error Gain7 

)c<2 

nSpe2 

68337 

sl+39.37s+68337 
L VVE) "Vxz 1 

XY2 

s ne wave 1 
'Copeo 

Fig. 5.6 Machining system simulation 

Figure 5.6 shows machining response simulation. The machining response simulation 

is referring to the machining system simulation. According to X. C. Luo et al [161], 

machining response is related to the tooling structure in direction due to the force 

acting in the opposite direction when the other two force component are zero. X. C. 

Luo et al, also estimated the structural natural frequency according to the tooling and 
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workpiece system structural dimensions and components specification provided by 

manufacturer. For more detail of transfer function refer to equation (4-57 and 4-58). 

5.5.6 Temperature simulation 
The temperature will rise at the interface between the tool flank face and the 

machined surface. However,, the increasing of temperature will occur in the 

simulation model shown in Fig. 5.7 when there are the inputs from material thermal 

properties and operation conditions. The simulated temperature will be an input to the 

tool wear model and surface integrity model [50]. 
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Fig. 5.7 Temperature simulation 

In turning process it is significant that temperature will rise in chip. This is without 

considering the additional heating due to friction between the chip and tool. It is 

important to understand how much of the heat generated in convicted in to the chip 
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and what are the additional temperature rises caused by friction with the tool. This can 
be referred to Equation (4-50) 

5.6 Discussion 

From the series of simulations, the cutting force, turning process and surface 

generation can be fully simulated and the effects of each factors individually and 

collectively. The results from the simulation can be used for process optimization and 
feed into the production practices. 

To study the turning process, the cutting forces are important, Since there are lots of 
information that can be found through cutting forces simulation especially in the 

material removal process. 

Cutting speed is the rate at which the material moves past the cutting edge of the tool. 

There will be an optimum cutting speed for a certain set of machining conditions and 
from this speed the spindle (RPM) can be calculated. Factors affecting the cutting 

speed are material being machined, the material and tool life of the cutter. Cutting 

speed is set on the assumption that optimum conditions exist including metal removal 

rate, full and constant flow of cooling and chip flushing, rigidity of the machine 

reduction of vibrations or chatters, continuity of cut and the condition of materials. 

Feed rate is set up depending on the surface finish desired. Spindle power, rigidity of 

the machine and tooling set up, strength of the workpiece and characteristics of the 

material being cut are also essential factors to be take account in the setup. 

The depth of cut directly influences the machine performance and tool life. If the 

depth of cut is too large for the width and the feed is too high, the tool insert may be 

overloaded and cause the breakage immediately. If the depth of cut relative to the feed 

is too small, the resulting side of forces will not be sufficient to properly defect tool, 

and vibration may be occurred. 
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The weakest loop can be as a control objective in the system. If it can be set in a 

stable state it can achieve the desired surface quality where the whole system will be 

stable. In the cutting system, the stability is very sensitive in the radial direction, and 
its effect prevails upon the generation of surface texture. Based on the mechanism of 

regenerative vibration, the chip thickness is: 

h(r) = ho - y(r) +e -"' y(r) (5-1) 

According to the transfer function between the radial cutting force and the workpiece 
displacement between cutting tool and workpiece, equation (5-1) can be rewritten as: 

h(r) = h, + (e-"' - I)K, bh(r)Gyy (5-2) 

The resulted transfer function between the dynamic and the reference chip loads 

becomes: 

h(r) I 
ho (r) I+ (I - e-*" )Kra(p(r) 

(5-3) 

The stability of this transfer function is deten-nined by the roots of its characteristic 

equation, that is: 

I+ (I -e-")Kaýo(r) = (5-4) 

Indirect factors have significant effects on the surface topography and texture 

produced. When indirect factors are not part of the system, the feed rate becomes the 

important factor affecting the machined surface finish. The significance of indirect 

effects on surface quality and accuracy can be assessed by: 

Nigx = Nx X100% (5-5) 

Nig, - significance of indirect factors; 
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N- value of characterization parameters of simulated surface; 
N, - indirect factors are turn on; 
No - indirect factors turn off. 

The significance of each nonlinear factor can be assessed by running simulations 

again with only the studied nonlinear factors turned on. 

Ni . &', =N 'i X100% (5-6) 
Nx 

Nig-, j - significance of i-th nonlinear factor; 

N, i - value of characterization parameters simulated surface when i-th indirect 

factor is turned on. 

Spindle error motion has significant effect on surface finish. The contributions of 
indirect chip formation and tool wear to surface finish are also remarkable, where tool 

wear makes a significant contribution to tensile residual stress. 

A series of simulations have been performed to study the cutting forces, machining 

operation and indirect factors on high precision surface generation and the stability 

analysis of the machining system in order to find out the operational condition for 

zero or minimum chatter. 

Simulink is able to develop a modelling and simulation of the complex machining 

process and visualization of the machined surfaces. The high frequency vibrations 

dominate the fluctuation of cutting forces. The first vibration mode is associated with 

the spindle rotation synchronous with the error motion and regenerative vibration 

frequency. It may also cause the vibrations between the cutting tool and the 

workpiece. The vibrations have lower amplitudes than the machined surface 

roughness, and low frequency as well. 

in surface generation feed rate plays an important role in precision which influences 

the relative vibration between the cutting tool and the workpiece on surface roughness 
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where it may diminish by the small feed rate. In precision turning the machining 
errors are mainly caused by spindle error motion and regenerative vibrations. 
Environmental vibration makes less contribution than spindle error motion and 
regenerative vibration. Spindle synchronous error motion has significant effect on 
surface finish. The contributions of nonlinear chip fon-nation and tool wear to surface 
finish are also remarkable. Tool wear has significant contribution to tensile residual 
stress. 

5.7 Conclusion 

The simulation of surface generation in precision turning process is implemented by 

MATLAB & Simulink. A series of simulations have been performed to study the 

effects of cutting forces, machining process and direct factors on high precision 

surface generation. Stability analysis is also carried out through this research. The 

findings of this investigation are: 

MATLAB & Simulink is a powerful development tool for modelling and 

simulation of the complex machining process and visualization of the machined 

surfaces. The extensive block library of Simulink eases the simulation of direct 

factors. 
(2) The fluctuation of cutting forces is dominated by high frequency vibrations. 

(3) The relative vibration between the cutting tool and the workpiece is mainly caused 
by spindle synchronous error motions, regenerative vibration and environmental 

vibrations. 
(4) The Feed rate influences relative vibrations between the cutting tool and the 

workpiece on the surface roughness. 

(5) The machining errors are mainly caused by spindle error motion and regenerative 

vibrations. The BUE and environmental vibrations make less contribution than 

spindle error motion and regenerative vibrations. Spindle synchronous error 

motion has significant effect on the surface roughness. 

83 



Cha )ter 6 Validation of the modelling and simulations through machining trials 

Chapter 6 Validation of the modelling and 

simulations through machining 

trials 

6.1 Introduction 

This chapter is concerned with the experimental studies on the surface generation in 

the turning process. There are 27 machining trials being carried out and the purposes 

of the experiment are: 

(1) To evaluate and make a validation of the modeling approach by measuring 

cutting forces and machined surfaces. 

(2) To investigate on the effects of direct and indirect factors on the surface 

generation. 

(3) To analyze the results of the experiment. 

(4) To investigate in-depth on the machining stability and effects on the 

surface topography. 

6.2 Facilities and workpiece materials for cutting experiments 

6.2.1 Facilities for turning experiments 

The facilities for this experimental study include a Lathe (Harrison M250) and a Zygo 

3D surface profiler. 

The lathe is shown in Fig. 6.1 has the cross slides in the X and Y directions. The lead 

screws will drive into those three directions. The spindle of the lathe machine has a 

variety of speed beginning with 250 rpm to 1500 rpm and spinning continuously. 

During the trials, the carbide and high speed steel cutting tools are used. The Carbide 

and high speed steel tools are purchased from Widia Valenite and West Yorkshire 

Steel Co. 
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Fig. 6.1 Harrison M250 tuming machine 

The machined surfaces from the trials will be measured and assessed by a 3D surface 

profiler - Zygo New View 5000 optical microscope. 

This 3D surface profiler can provide non - contact and high precision numerical 

measurement. The detailed specifications of the 3D surface profiler are presented in 

Appendix 1. 

The NewView 5000 System shown in Fig. 6.2 has two basic subsystems which are the 

optical microscope and computer analysis system. The raw data needed for the 

analysis can be acquired from the sample surface through the microscope. 

The computer analysis system can also play as the surface measurement controller 

during the measurement process. It performs the visualization, calculations and 

analysis visualizes the measurement results. The Zygo MetroPro, software is installed 

in the systems, which has the full set of 3D surface parameters covering amplitude, 
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spatial, hybrid 
, set of functional parameters and their functions in both graphical and 

numerical modes. Appendix 2 lists all the Zygo Metropro surface texture parameters 

and their detailed formulations and descriptions 

Fig. 6.2 Zygo NewView 5000 surface profiler 

6.2.2 Workpiece materials for turning experiments 

As listed in the Table 6.1, two types of workpiece materials are used for the turning 

experiments. They are Aluminum alloy and low carbon steel. The materials used in in 

turning trials are 50mm in diameter. The main reason for choosing those two 

materials because they have all the properties necessary for the process and they are 

the most commonly used material in the manufacturing industry. 

Table 6.1 Material properties for Aluminum alloy and low carbon steel 

Modulus of Yield Vickers Thermal Heat 

Material elasticity Stress Hardners; conductivity Capacity Diffusivity 

(GPa) (MPa) (GPa) (W/mK) (MJ/mI) (MM2/S) 

Aluminium 

alloy 69 270 1 200 2.5 13 

Low 

carbon 

steel 200 400 21 35 3.5 65 
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6.2.3 Cutting tools for turning experiments 
For cutting tools, only material coated carbide cutting inserts and high speed steel 

cutting tools are used. However, these tools have different rake angle, clearance angle 

and nose radius. 

Table 6.2 Tool nose radius 
Carbide tool inserts Tool nose radius (mm) 

VBMT 0.4,0.8,1.2 

SCIVIT 0.8,1.2,1.6 

CNMA 0.4,0.8,1.2 

High speed steel 1.2 

Table 6.3 Rake angle 
Carbide tool inserts Rake angle 

back side 
VBMT 10 10 

SCMT 10 10 

CNMA 10 10 

High speed steel 0, ± 10, ± 25 10 

Table 6.4 Clearance angle 

Carbide tool inserts Clearance angle (*) 

back side 

VBMT 6 0 

SCMT 6 7 

CNMA 6 5 

High speed steel 10 0,4,6,10 

6.3 The experiment plans 

6.3.1 Machine tool measurement 

To get a good result especially an accurate result, the rotational run-out must be 

measured by using dial gauge. The best average of radial run-out is 0.8 ýim be 
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measured. The average amplitude is then used as a parameter for the rotational run- 

out error function. The straightness of the slideway can be measured roughly by the 

spirit level method and to find the slideway straightness error. 

6.3.2 The machining trials plan 
As shown at the flow chart in Fig. 6.4 the experiments are carried out in two sections 

and particularly investigate the influences the speed level of the spindle and tool 

geometry during the turning process. Fig. 6.3 shows the machining trials process. 

During the turning process, the speed level will be varied at three levels which are 
low,, medium and high. For the influences of tool geometry, trials will be undertaken 
in two groups which are known as trial test A and trial B. 

The cylindrical turning process is carried out to evaluate the modelling approach and 
investigate the influences of direct and indirect factors under different stages of 

operational conditions. In this trial the spindle speed is fixed between 350 - 550 rpm. 

Table 6.5 lists the operational variables in the cylindrical trials. The trials plan can be 

found in appendix 3. 

Fig. 6.3 Machining trials process 
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Cylindrical tuming 
process 

Speed levels 

Low II Medium 

The influences of tool 
geometric 

High 
Trial A 

Side rake Side 
angle clearance 

angle 

-250 

250 
6' 

Fig. 6.4 Experiment flow chart 

Table 6.5 Variables in cylindrical turning trials 

Variables (1) Conditions 

Spindle speed (rpm) 320-550 

Feed rate (mm/rev) 0.1 

Depth of cut (mm) 0.2,0.3,0.4,1.0 

Tool nose radius (mm) 0.8 

Tria 

Side rake 
angle 

100 

Side 
clearance 
angle 

40 

The trials also plan a study on the influence of tooling geometric characteristics, 

including that of the side rake angle and side clearance angle. In trial (Trial A) the 

tool with side clearance angle of 6' is used with side rake angle varying from -25' to 

25' as listed in Table 6.6. 
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Another trial on machining the C50 uses a tool which the side rake angle of 10' fixed. 

However, the side rake angle will be ground to 00,40, and 10' respectively. The 

mineral soluble oil and water are used as a coolant in all trials. 

Table 6.6 The influence of tooling geometric characteristics 
Trial A Trial B 

Material C50 Material C 50 

Diameter (mm) 032 Diameter (mm) 032 

Side clearance angle 60 Side clearance angle 00,40,100 

Side rake angle -250 to 2511 Side rake angle 100 

Except studying the influence of tooling geometric characteristics, the trials also 
investigate the effect of cutting tool nose radius on the machining instability. During 

the process, the coolant is not taking a part. 

Table 6.7 Effect of the tool nose radius instability on the machining 
Variables (2) Conditions 

Spindle speed (rpm) 550 

Feed rate (mm/rev) 0.1 

Depth of cut (mm) 0.2,0.3,0.4,1.0 

Tool nose radius (mm) 0.8 

Table 6.7 shows the details of tool nose radius and their effect on machining 

instability. As listed in the Table, the tool nose radius used in the trial 0.8 mm, spindle 

speed 550 rpm, the feed rate 0.1 mm/rev and depth of cut are 0.2,0.3,0.4,1.0 mm 

respectively. Once again, there is no coolant applied in the trial. 

6.4, Results and discussions 

All the results are listed in Appendix 3, but with detailed descriptions in the following 

subsections. Those results are used to evaluate the modelling approach and further 

study on the effects of direct and indirect factors on surface generation in the turning 

process. 
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6.4.1 Cutting force validation 
Fig. 6.5 shows the comparison of the measured cutting forces in the depth of cut 
direction in the turning trials with their corresponding simulation ones under the same 

operational conditions. In turning the cutting force in the direction of depth of cut 

plays an important role in the generation of surface finish. The differences between 

measured cutting force and simulated cutting force are around 40.85% and 43.2%. 

351 
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Fig. 6.5 The comparison of measured and simulated cutting forces. 

Fig. 6.6 shows the results of simulated and measured cutting forces in the depth of cut 

direction when the cutting is undertaken at the same conditions. The cutting force in 

the depth cut direction is also very significant to surface finish. The differences 

between the measured and simulated value are 33.03% for machining alloy. Therefore 

the simulated cutting forces agree reasonable well with the measured results. The 

increase of cutting force with the increasing of feed rate can also be observed. This is 

because the removal volumes of workpiece material increases with increasing feed 

rate. 
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Fig. 6.6 The variation of the radial cutting forces with different feed rate. 

Fig. 6.7 illustrates the FFT of the measured cutting force under the same operational 

conditions as the simulation. They all show that the cutting forces are dominated by 

high frequency vibration. Remarkable vibration modes at frequencies of 799 Hz and 
187 HZ are observed. They are 34 and 8 times the spindle rotational frequency. There 

are no major differences between the measured and simulated vibration frequency. 
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Fig. 6.7 FFT transforms of the measured dynamic cutting force. 
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6.4.2 Machined surface validation 
The trial no. 6 shows that the direction of layout is evident in both the surface 

topography and the measured surface topography. According to the trials and 

simulation results, the difference between both types of results, may be caused by 

estimated static machining structural parameters. However, the simulation results are 

still in the deviation scale as illustrated in Fig. 6.8 and Fig. 6.9. 

Fig. 6.8 Machined surface 
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6.4.3 Effects of feed rate and tool nose radius 

(a) Surface topography (No. 5) (b) Amplitude power spectrum (No. 5) 

Fig. 6.10 Surface topographic characteristics under different feed rate 

Surface roughness R,, relates with feed rate and tool nose radius. Because of that, the 

effects of feed rate and tool nose radius on the machined surface topography are 

studied by the results of simulation trials. Fig. 6.10 shows the variation of surface 

topography and its power spectrum under small depth of cut when the feed rates are 

low, medium and high. It is clear that the width of tool mark in the surface topography 

increases with the increasing of feed rate. More amplitude power spectral peaks can 

be observed in low feed rate than that in high feed rate. The significant power 

amplitude can fall into the lower spatial frequency domain. It also shows that the 

machined surface can be affected by some factors with low spatial frequencies. 

The width and depth of tool mark and the spatial frequencies of significant amplitude 

power spectra of the machined surfaces are listed in Table 6.8. It shows that the width 

of the measured tool mark is smaller than their corresponding feed rate when the feed 
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rate is low. The machined surface profile is constructed by intersecting the tool tip 

profiles in every feed. The tangential vibrations may change the positions of cutting 

tool tip and the small feed rate will help to adjust the intersection points within the 
feed rate range to make the width of tool marks become smaller. The existence of 

elastic recovery of the machined surface also will decrease the width and depth of tool 

marks. In tests No. 5 and No. 6 power spectrum are significant in the power spectra of 

the machined surfaces. When feed rate is high, the width of tool mark is bigger than 

the feed rate. It is because the tangential vibrations become dominant when high feed 

rate is adopted, the cutting tool tip vibrates far away from the ideal feed positions, the 

width of tool marks become bigger than the feed rate. In the tests the depths of tool 

marks are very close to the maximum form heights of the machined surface. Although 

the power spectrum of feed rate is very significant when low feed rate is employed the 

effects of some nonlinear factors with low spatial frequencies, such as spindle run-out, 

built-up edge and environmental vibration cannot be omitted since their power spectra 

are also clearly observed. High feed rate is used the effect of regenerative vibration on 

surface roughness is more significant than that of feed rate since the power spectrum 

of regenerative vibration is much higher than that of feed rate. 

Table 6.8 Surface profiles characteristics and spatial frequencies 

Test No No. 5 No. 6 

Ra (pim) 0.338 0.481 

Tool mark width (mm) 0.0473 0.11 

Tool mark depth (ýtm) 1.3 3.03 

Max form height (ptm) 1.738 2.869 

Significant spatial frequencies 

(cycle/mm) 

19.6,37.3,17.8,10.7, 

7.1 12.4,8.9,5.3,30.2 

8.9,10.7,17.8,5.3, 

373.3,19.6 

For measured surface roughness, the width and depth of tool mark, maximum form 

heights and significant spatial frequencies are listed in Table 6.9. The measured value 

of tool profile proves that tool mark will be wide when cutting tool nose radius is big. 

The depth of tool mark decreases with the increasing of tool nose radius. It can be 

noticed that the spatial power spectrum of spindle rotational run-out. Fig. 6.10 (b) 
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shows the spatial power spectrum of regenerative vibration is not very significant, 

which the tool nose radius may have some influences on machining stability. 

Table 6.9 Surface roughness characteristics under different tool nose radius 
Tool nose radius (mm) 0.8 1.2 

Ra (ýtm) 1.8 1.942 

Tool mark width (mm) 0.174 0.185 

Tool mark depth (ýtm) 5.53 6.0 

Max form height (Vtm) 6.956 7.997 

Significant spatial frequencies 

(cycle/mm) 

6.3,5.6,3.5,2.8, 

0.7 

1.4,5.6,6.3,2.1 

In Fig. 6.11 it can be seen that the power spectrum of environmental vibration appears 

in the spatial power spectrum when tool nose radius of 1.2 mm is used. It may explain 

why the machined surface roughness is a little bit higher than that using tool nose 

radius of 0.8 mm. The influences of tool nose radius are studied by machining. Fig. 

6.11 shows the surface roughness profiles and power spectra when the cutting tool, 

with nose radius of 0.8 and 1.2 mm respectively, is used, which stands for the medium 

and big tool nose radius. The surface roughness profiles clearly show the width of tool 

mark increase with the increasing of tool nose radius. More high frequency 

components can be observed in the surface roughness profiles when cutting tools with 

medium and big size tool nose radius are used. 

The measured surface roughness, the width and depth of tool mark, maximum fon'n 

heights and significant spatial frequencies are listed in Table 6.9. The measured value 

of tool profile proves that tool mark will be wide when cutting tool nose radius is big. 

The depth of tool mark decreases with the increasing of tool nose radius. 
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(a) Surface profile (R = 0.8 mm) (b) Surface profile (R = 1.2 mm) 
Fig. 6.1 I Surface roughness characteristics under different tool nose radius 

Fig. 6.12 shows the influences of tool nose radius and feed rate. Both simulation and 

experimental results show the value of surface root-mean-square deviation Sq 

decreases as the decreasing of feed rate. The tendency is consistent with the 

conventional cutting theory. The decrement of feed rate will decrease the cutting force 

and then decrease the cutting system vibrations excited by the cutting force, so the 

surface finish is improved when the low feed rate is adopted. The feed rate has 

significant effects on the machined surface roughness. But the effect of the tool nose 

radius depends on the feed rate. The simulation results show that the root-mean- 

square deviation Sq decreases with the increase of the tool nose radius in all level of 
feed rates. The experimental results show that the surface root-mean-square deviation 

Sqdecreases with the increasing of the tool nose radius at low feed rate. 
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Fig. 6.12 The effects of feed rate and tool nose radius on the surface roughness 
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6.4.4 Influence of depth of cut 
Fig. 6.13 shows surface topography and histogram of the machined surface when the 

depth of cut varies under the same feed rate. Illustration of the normal distribution of 

surface heights can be achieved when small depth of cut is applied. A distribution 

with the shape of sharp peaks has a kurtosis value larger than 3. 

The results of simulation and experiment all show the tendency of Sk" increases with 

the increasing of depth of cut. It means a small depth of cut should be used if one 

intends to achieve prod uct/com ponent with wide distributed surface height on its 

surface. The results also show that medium feed rate with small depth of cut will 

benefit obtaining this kind of surface. Therefore depth of cut can be an important 

parameter for controlling some surface functionality. 

(d) Surface topography (d, =1.9844mm) (d) Roughness histogram (d, =1.9844mm) 

Fig. 6.13 Surface characteristics under low feed rate against different depth of cut 
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6.5 Conclusions 

This chapter aims to validate the modelling approach and simulation of surface 

generation. Precision turning trials have been undertaken to achieve this aim- Based 

on the comparison of results from machining trials and simulations, the following 

conclusions can be drawn: 

(1) The simulation results agree quite well with the machining trials results. The 

modelling and simulation proposed in the previous chapters can accurately predict 
the precision surfaces generation to some extent. 

(2) The feed rate and insert nose radius were remain influencing factors on the surface 
functionality. 

(3) Surface roughness increased with increasing feed rate but decreased with 
increasing insert tool nose radius. 

(4) Depth of cut was not informative than feed rate and insert tool nose radius. 
(5) Decreases in feed rate and increase of nose radius provided better surface 

functionality. 

(6) The negative rake angle (about -5') will be significant for the achievement of 

good surface finish in finish machining. A proper clearance angle (about 51-7) 

may introduce process damping in the machining process and can improve the 

surface finish and surface bearing ability of the machined surfaces. 
(7) Tool nose radius has effects on machining instability. Its influences should be 

included in developing the criterion for maintaining machining stability. 
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Chapter 7 Optimization and control of the surface 
functionality in precision machining 

7.1 Introduction 

Predicting the machinability and the process models and determining the optimal values 

of process parameters in machining system have been the areas of interest for researchers 

and manufacturing engineers alike. Machinability database system is essential for the 

selection of optimal process parameters during the process planning stage, which 

represents an important component in computer integrated manufacturing (CIM). 

7.2 Optimization control 

The surface of a machined component is defined by the surface roughness value. It is 

important to control the machining parameters and tooling geometry so as to achieve the 

required surface roughness as the component functionality and performance demand. 

Furthermore, it can help to increase the machining effectiveness, reduce the machining 

costs and to improve productivity. 

7.3, Optimization parameters 

Selection of process parameters has very significant impact on the product quality, 

production costs and production times. The quality and costs are much related to tool life, 

surface roughness and cutting forces which they are functions of process parameters such 

as cutting speed, feed rate, depth of cut and tooling geometry. In this chapter, the 

optimization model is developed against the requirement for tool life, surface roughness 

and cutting forces. Model is the basis for the optimization, although it is carried out 

through back-propagation in a non-continuous mode. 
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Response surface method (RSM) and neural networks (NN) data mining techniques are 

used for the optimization purpose. The data of 27 experiments have been used to 

generate, compare and evaluate the proposed model against the requirement on tool life, 

cutting force and surface roughness for a selected cutting tool. 

7.4 Optimization modellini! 
Taylor tool life equations have been expanded to determine the proper machining 

conditions based on the minimum production cost, maximum production rate and 

maximum profit rate per item. These criteria have been considered in both constrained 

and unconstrained problems of machining economics. 

Considerable research has been undertaken on the general effect of process parameters 

such as cutting speed, feed rate, depth of cut, on the process functions, including tool life, 

cutting force and surface roughness. Most of these models are based on Regression 

analysis (RA). There are only a few papers presenting using computer neural network 
(NN) [185-190]. 

Tool life, surface roughness and cutting force have been important for cost, time, design 

feature and quality measure in machining operations. Their modelling and modes are 

critical constraints for process parameter selections in process planning systems. These 

models can only be evaluated and validated with experimental work on specific materials 

under specified conditions. The ideal tool life equation used by researchers is [ 191-197]: 

vt-"f Yd' =C 

v- cutting speed; 

t- time; 

f- feed rate; 
d- depth of cut; 

x, y, z- tool life exponents; 

(7-1) 
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constant. 
The following surface roughness and cutting force model are generally for surface 
roughness [198]: 

Ra 
f 

32r 

r- the nose radius; 
f- cutting feed rate. 

For cutting force, there is [ 198]: 

Fc = Kf nIdn2 

K -constant; 

n- cutting force exponents; 
f- feed rate; 
d- depth of cut. 

(7-2) 

(7-3) 

Tool life, surface roughness and cutting force are functions of the process and tooling 

geometrical variables using different data mining techniques and model building 

methods. The relationships between machining functions and variables are commonly 

approximated by polynomial functions. Response surface method (RSM) and 

computational neural network (NN) are used to represent the models and thus these 

process functions. 

In this research the data of Box-Behnken design of three responses such as tool life, 

cutting force and surface roughness when Harrison M250 turning machine is used to 

predict the machineability models using response surface method (RSM) and neural 

network (NN). The obtained machineability models are compared against each other 

using the relative error analysis, descriptive statistics and hypothesis testing. 
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A non linear optimization model is used to determine the optimum values of the process 

parameters when minimizing the total production cost per workpiece, and the associated 

production time per workpiece. The suggested model considered the tool selection base 

on the optimum selected tool nose radius when determining the optimal values of process 

parameters. 

7.5 Design experiments 

7.5.1 Introduction 

Design of experiment is a test or series of tests where purposeful changes are made to the 

input variables of processes so that we may observe and identify corresponding changes 
in the output of responses. The process variables are known as controllable and 

uncontrollable. However, sometimes uncontrollable variables are known as noise factors. 

The objectives of the experiment are to: 

(1) Determine which variables are the most influential on the response y; 
(2) Confirm where to set the influential x, therefore y is near nominal requirement; 
(3) Decide where to set the influential x so that the variability in y is very small; 

(4) Determine where to set the influential x so that the effect of the uncontrollable 

variable z is minimized. 

Therefore, the experimental design method may be used either in process development or 

process troubleshooting to improve process performance or to obtain a process that is 

robust or insensitive to external source of variability. Experimental design method can 

also be very useful in establishing statistical control of a process and be used to identify 

these process influence variables. This is a critically important engineering tool to 

improve a manufacturing process. It also has extensive application in the development of 

these techniques early in process development, which can result in: 

(a) Improved yield; 
(b) Reduce variability and closer conformance to nominal; 

(c) Reduce development time-, 

103 



Chgpter OntiMi7fllin. 
n and control of the sur: fiace functionality in precision machiniu 

(d) Reduce overall cost. 

Experimental design method can also play a major role in engineering design activities, 

where products are developed and existing ones improved. Some application of statistical 

experiment design includes: 

(1) Evaluation and comparison of basic design configurations; 
(2) Evaluation of material alternatives; 
(3) Determination of key product design parameters of performance. 

7.5.2 Design of experiments 
Design of experiments is a powerful method to approach improvement of the process. It 

is important to have an idea for the experiments at the first stage. Therefore, the objective 

of the research can be identified clearly, know what are the factors, how the experiment 

will be conducted and understanding how the data will be analyzed. Montgomery gives 

an outline of the recommended procedure [148]. 

I. Recognition of and statement of the 
Pre- experimental problem 

planning 
2. Choice of factors and levels 
3. Selection of the response variablel 
4. Choice of the experimental design 
5. Performing the experiment 
6. Data analysis 
7. Conclusion and recommendations 

Often done 
simultaneously, or 
in reverse order 

Fig. 7.1 Procedure of designing an experiment 

(1) Recognition of problem 
Design of experiments is needed to fully develop all ideas about the problem and the 

specific objectives of the experiment. However, a clear statement of the problem and 

objectives of the experiment often contribute substantially to better understanding and 

eventual solution of the problem. 
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(2) Factor and level 

The factors must be chosen to be varied and the specific level at which these factors will 
be varied and the specific level at which runs will be made. Process knowledge is 

required to do this. The process knowledge is usually a combination of practical 

experience and theoretical understanding. All factors must be investigated that may be of 
importance and to avoid being overly influenced by past experience, particularly in the 

early stages of experimentation or when the process is not very mature. 

27 experiments have been conducted on Harrison M250 with 050 mm diameter and 500 

mm length. We considered four machining parameters including cutting speed (v m/s), 

feed rate (f mm/rev), depth of cut (d mm) and tool nose radius (r mm). The considered 

outputs are tool life (T min), cutting force (Fc N) and surface finish (Ra pm). The 

parameters were considered at three levels (-1,0 andl) as shown in Table 7.1. Table 7.1 

shows factors and levels for experiments. There are four factors for the experiment and 

three levels for factors. These are medium low, low and high. (-1) indicates low level, (0) 

for medium and (1) for high. The experiments are conducted based on Box Behnken 

design as illustrated in Table 7.2. This design is rotational and consists of blocks in an 

orthogonal arrangement. 

Table 7.1 Factors and level of the experiments for the model constructions 
Factors Level 

low -1 medium 0 high 1 

Cutting speed v (m/s) 25 60 144 

Feed f (mm/rev) 0.1 0.25 0.75 

Depth of cut d (mm) 0.3 0.4 0.5 

Nose radius r (mm) 0.4 0.8 1.6 

(3) Response factors and variables 

It is important to ensure that the variables really provide useful infon-nation about the 

process under investigation. For this research, the average of the measured 
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characteristics will be the response variable. However, multiple responses are not 

unusual. Gauge capability is also an important factor. If gauge capability is poor, then 

only relatively large factors will be detected by the experiment or additional replication 

will be required. 

Table 7.2 Box-Behken design for experiment construction 

(m/min) d (MM) t (mm/r) r (mm) T (min) Ra (pm) Fc (N) 

-1 -1 0 0 18.729 1.25 872 

A 1 0 0 5.71 11.25 157 

1 A 0 0 17.56 6.25 1785 

1 1 0 0 12.11 2.25 1201 

0 0 A -1 18.85 2.25 188 

0 0 -1 1 12.73 6.25 1327 

0 0 1 A 6.547 21.25 654 

0 0 1 1 11.42 11.25 1314 

-1 0 0 -1 1.190 11.25 419 

-1 0 0 1 1.42 2.25 314 

1 0 0 -1 5.25 11.25 452 

1 0 0 1 1.42 11.25 1314 

0 -1 A 0 8.380 2.25 838 

0 -1 1 0 10.05 11.25 100 

0 1 A 0 15.71 11.25 157 

0 1 1 0 3.928 11.25 392 

A 0 A 0 3.491 0.45 1349 

A 0 1 0 11.1 11.25 113 

1 0 -1 0 4.190 16.25 419 

1 0 1 0 15.71 11.25 157 

0 A 0 A 10.28 06.25 502 

0 A 0 1 2.73 11.25 327 

0 1 0 -1 18.85 11.25 1188 

0 1 0 1 20.95 06.25 1209 

0 0 0 0 8.729 11.25 872 

0 0 0 0 3.491 11.25 340 

0 0 0 0 25.25 0.45 452 
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(4) Performing the experiment 
It is important to monitor the process to ensure that everything is carried out according to 

the plan. The error in the experimental procedure at this stage will usually destroy 

experiment validity. 

(5) Data analysis 

Statistical methods should be used to analyze the data so that the result and conclusion 

are objective rather then judgmental. If the experiment has been designed correctly and if 

it has been performed according to the design, the type of statistical methods required is 

not elaborate. Many experiment software packages are available to assist the data 

analysis and simple graphical methods play an important role in data interpretation. 

Residual analysis and model validity checking are also important. 

(6) Conclusion and recommendations 
Once the data have been analyzed, the experiment must draw practical conclusions about 

result and recommend a course of actions. Graphical methods are often used in these 

stages, particularly in presenting the results. Follow up runs and confirmation testing 

should be performed to validate the conclusion from the experiment 

7.6 Response surface methodoloey (RSM) 

Response Surface Methodology (RSM) is used to examine the relationship between one 

or more response variable and a set of quantitative experimental variables. The method is 

often employed after identifying the controllable factors and the objective is to find 

factors settings that optimize the response. Designs of this type are usually chosen when 

there is suspecting curvature in the response surface. In this research, RSM is use to 

examine the relationship between the surface machined, process parameters and tooling 

geometry as variables. The relationship is then used for the process optimization and 

surface functionality control. 
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7.6.1 MINITAB 15 software 
7.6.1.1 Software features 

Minitab 15 is simple to use and also contains the depth and breadth of tools and guidance 

to satisfy the rigorous quality improvement in a project. Minitab is one of the most 

popular choices on solving problems. In summary, the software tool has the following 

features: 

Minitab makes it easy to use data from outside sources and manages work 

automatically. 

(2) It is easy to import (or copy and paste) data from any number of sources such as 

Excel, HTML spreadsheet, or even Notepad for quick analysis. 

(3) Minitab's Project Manager will automatically organize the worksheet into a 

single, convenient project file. The password protection can be used to keep 

sensitive projects under wraps. 

(4) The Minitab data window offers many advanced features like associating 

formulae with columns. Sophisticated yet simple data manipulation allows 

organizing the data in any manner possible. 

(5) Regression analysis allows investigating and modelling the relationship between a 

response variable and one or more predictors. Minitab offers a broad range of 

regression commands including least squares, partial least squares, and logistic 

regression procedures. 

(6) Minitab's DOE gives the tools to create experimental designs and analyze and plot 

the results to improve the processes quickly and efficiently. 

(7) Minitab offers a full suite of Measurement Systems Analysis commands to help 

determine if the measurement system makes the grade, as well as how to go about 

correcting it if it doesn't. 

(8) Minitab's collection of ANOVA (Analysis of Variance) capabilities include 

procedures for choosing ANOVA models, for fitting MANOVA models (multiple 

response), and ANOM models (analysis of means). It also includes graphs for 
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testing equal variances, confidence interval plots, and graphs of main effects and 
interactions. 

(10) Minitab gives the tools to: 

(a) Identify the factors most responsible for the data's underlying structure 
(b) Group observations in "clusters" to discover the simple structures in 

complex data, or to investigate how the predictors contribute to the 

groupings 

(c) Examine how the categories of different variables are related to one 

another 

7.6.2 Regression equation 

The regression equation is an algebraic representation of the regression line and is used to 

describe the relationship between the response and predictor variables. The regression 

equation takes the form of-. 

Response = constant + coefficient (predictor) + ... + coefficient (predictor) 

b. + bX, + b2 X2 + ... + bAXk (7-4) 

y- value of the response 

&- value of the response variable when predictor is zero, 

X- value of the predictor variable, 

bj. b2-.., bk - estimated change in mean response for each unit change in predictor 

value 

Using the Equation 7-4, the regression analysis is carried out on the tool life, cutting 

force in the process, and the process roughness generated. . It 
is clear from the literature 

that the tool life, cutting force and surface finish equations are not linear and they could 
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be predicted using the response surface method. The initial analysis of the developed 

models based on RSM is shown Table 7.3- 7.5. The models are reduced by neglecting the 

elements which have no significant effect on responses. The revised RSM analysis is 

illustrated in Table 7.6- 7.8. 

Table 7.3 Initial response surface regression analysis: T versus v; f d; r 

Response Surface Regression Analysis: T versus v; f; d; r. 
The analysis was undertaken using uncoded units. 

Estimated regression coefficients for T 

Predictor 

Constant 

v 

f 

d 

r 

V*v 

f*f 

d*d 

r*r 

V*d 

v*r 

f*d 

f*r 

d*r 

Coef 

59.001 

-0.19723 

-18.535 

-17.00 

-0.850 
0.0016 

35.042 

22. -748 

0.248 

0.08587 

-0.09293 
9.719 

-10.859 
10.022 

SE Coef 

3.784 

0.04295 

9.823 

9.110 

4.588 

0.0002227 

9.822 

8.505 

2.02ý 

0.02674 

0.01205 

5.238 

2.361 

2.677 

Tp 

12.380 0.000 

-14.590 0.000 

-1.317 0.000 

-1.19 0.852 

0.19 0.853 

7.27 0.000 

3.706 1.000 

4 . 597 1.000 

0.129 1.000 

6.95 0.043 

--7 . 71 0.874 

7.58 0.119 

-8.41 0.830 

-0.636 0.986 

S=1.68087 R-Sq = 92.8% R-Sq(adj) =94.8% 
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Table 7.4 Initial response analysis: Ra versus v; f, - d; r 

Response Surface Regression Analysis: Ra versus v; f; d; r. 
The analysis was done undertaken uncoded units. 
Estimated regression coefficients for Ra 

Predictor Coef SE Coef T P 

Constant 1.3467 5.662 0.148 0.018 

v 0.029512 0.06426 0.322 0.000 

f 27.73 14.70 1.587 0.160 

d 1.254 13.63 0.096 0.852 

r -0.1272 6.865 -0.863 0.453 

V*v -0.00024222 0.0003332 -0.491 0.620 

f*f 28.748 14.70 1.926 0.076 

d*d -1.476 1.273 -0.189 0.853 

r*r 4.2019 3.033 1.377 0.112 

v*d 0.007811 0.04002 -0.391 0.702 

v*r 0.003905 0.01804 0.023 0.982 

f*d -5.9430 7.838 0.172 0.886 

f*r 29.715 3.532 -0.305 0.003 

d*r 0.5470 4.005 0.121 0.905 

S=2.325 R-Sq = 94.0% R-Sq(adj) = 87 . 5% 
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Table 7.5 Initial response analysis: Fc versus v; f d; r 

Response Surface Regression Analysis: Fc versus v; f; d; r. 

The analysis was undertaken using uncoded units. 

Estimated regression coefficients for Fc 

Predictor Coef SE Coef T P 

Constant 588.22 637.09 2.38 0.323 

v -1.9332 4.210 -4.59 0.786 

f -181.67 1296.28 -1.89 0.895 

d -166.6 890.30 -0.19 0.125 

r 283.30 440.97 -0.19 0.668 

V*v 0.015867 0.02183 7.27 0.819 

f*f 2147.60 1196.27 0.00 0.093 

d*d 1576.83 830.36 0.00 0.024 

r*r -81.43 190.87 0.00 0.742 

v*d -1.8217 2.621 -6.95 0.715 

v*r -0.9109 11.81 -7.71 0.990 

f*d 1389.30 513.4 7.58 0.979 

f*r -194.65 231.4 8.41 0.724 

d*r 66.84 262.4 6.36 0.820 

S= 184.3 R-Sq = 94.6% R-Sq(adj) = 87.5% 
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Table 7.6 Updated response analysis: T versus v; f d; r 

Response Surface Regression Analysis: T versus v, f, d, r. 
The analysis was undertaken using uncoded units. 
Estimated regression coefficients for T 

Predictor Coef SE Coef T p 

Constant 30.602 6.693 14.57 0.000 

v -0.64233 0.08791 -7.31 0.000 

f -51.9747 0.76 -6.00 0.000 

d -40.9756 6.26 -6.00 0.000 

v*v 0.0028049 0.0004685 5.99 0.000 

f*f 34.2576 10.50 4.00 0.001 

d*d 22.3558 4.86 -5.00 0.000 

V*f 0.1263 0.03229 3.912 0.001 

v*d 0.0680 0.02693 2.525 0.021 

f*d 4.540 50.418 2.61 0.030 

S=4.23 R- Sq = 93.6% R-Sq(ad j) = 92 . 2% 

Analysis of Variance 

Source DF SS ms Fp 

Regression 7 17090 1 95.84 73.06 0.000 

Residual Er ror 15 421.832 17.95 

Lack of Fit 9 15.07 6.32 3.86 0.045 

Pure Error 6 8.25 4.58 

113 



Chapt 

Table 7.7 Updated response analysis: Fc versus v; f, - d; r 

Response Surface Regression Analysis: Fc versus v, f, d, r. 

The analysis was undertaken using uncoded units. 

Estimated regression coefficients for Fc 

Predictor Coef SE Coef 

Constant 100.64 142.60 

f 158.8 565.30 

d -1644.0 691.3 

f*f 2185.6 936.6 

d*d 1615.8 502.4 

f*d 1379.3 625.0 

S=2.172 R-Sq = 93.0% 

Analysis of Variance 

Source DF SS 

Regression 4 693907 

Residual Error 20 47392 

Lack of Fit 4 233213 

Pure Error 14 144179 

T 

2.75 

-0.280 

-2.241 

2.268 

3.216 

2.207 

R-Sq (adj) 

ms 

123477 

553560 

371803 

173608 

p 

0.456 

0.779 

0.048 

0.033 

0.004 

0.038 

98.5% 

Fp 

65.90 0.000 

13.59 0.000 
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Table 7.8 Updated response analysis: Ra versus v; f d; r 

Response Surface Regression Analysis: Ra versus v, f, d, r. 
The analysis undertaken using uncoded units. 
Estimated regression coefficients for Ra 

Predictor Coef SE Coef 

Constant -5.459 1.041 

f 45.590 1.696 

r 2.780 1.911 

f*r -25.228 1.313 

S=2.53 R-Sq = 95.4% R-S 

Analysis of Variance 

Source DF SS 

Regression 3 1276.38 

Residual Error 23 534.33 

Lack of Fit 5 104.19 

Pure Error 14 8.33 

Total 27 1168.85 

Tp 

-2.978 0.007 

8.990 0.000 

1.455 0.159 

3.98 0.001 

q(adj) = 94.7% 

ms F 

425.46 66.27 

6.42 

120.838 44.05 

0.56 

p 

0.000 

0.000 

P value- Determines the appropriateness of rejecting the null hypothesis in a hypothesis 

test. P-values range from 0 to 1. The smaller the p-value, the smaller the probability that 

rejecting the null hypothesis is a mistake. The p-value is calculated from the observed 

sample and represents the probability of incorrectly rejecting the null hypothesis when it 

is actually true. In other words, it is the probability of obtaining a difference at least as 

large as the one between the observed value and the hypothesized value through random 

ý-rror alone. 
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SE coeff- The standard deviation of the estimate of a regression coefficient. It measures 
how precisely the data can estimate the coefficient's unknown value. Its value is always 

positive, and smaller values indicate a more precise estimate. 
The standard error of a coefficient helps determine whether the value of the coefficient is 

significantly different than zero - in other words, whether the predictor has a significant 

effect on the response 

Coeff- The numbers by which the variables in an equation are multiplied. When 

calculating a regression equation to model data, Minitab estimates the coefficients for 

each predictor variable based on the sample. 

T- Test statistic for the Mest family, it measures the difference between an observed 

statistic and its hypothesized population parameter in units of standard error. A t-test 

compares this observed t-value to a critical value on the t-distribution with (n-1) degrees 

of freedom to determine whether the difference between the estimated and hypothesized 

values of the population parameter is statistically significant. 

R- Sq- Coefficient of determination; indicates how much variation in the response is 

explained by the model. The higher the R2 , the better the model fits the data. 

MS- Represents an estimate of population variance. It is calculated by dividing the 

corresponding sum of squares by the degrees of freedom. 

In regression, mean squares are used to determine whether terms in the model are 

significant. The term mean square is obtained by dividing the term sum of squares by the 

degrees of freedom. The error mean square is obtained by dividing the error sum of 

squares by the degrees of freedom. The error mean square is the variance (s2) around the 

fitted regression line. 

S- The most common measure of dispersion, or how spread out the data are from the 

mean. While the range estimates the spread of the data by subtracting the minimum value 
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from the maximum value, the standard deviation roughly estimates the "average" distance 

of the individual observations from the mean. The greater the standard deviation, the 

greater the spread in the data. 

F- If the calculated F -value is greater than the F-critical value from the F-distribution, 

then at least one of the coefficients is not equal to zero. The F-value is used to determine 

the p-value. 

SS- Represents a measure of variation or deviation from the mean. It is calculated as a 

summation of the squares of the differences from the mean. The calculation of the total 

sum of squares considers both the sum of squares from the factors and from random 

chance or error. 

adj - Adjusted 

From the above analysis and results at tables 7.6-7.8, the empirical models of the tool 

life, cutting force and surface roughness are formulated as follows: 

T= 30.602 - 0.64233v -51.97475f -40.9756d + 0.0028049v-? +34.2576f- 

22.3558d 2+0.1263vf + 0.0680vd + 4.540fd (7-5) 

Fc =I 00.64 + 158.8f- 1644. Od + 2185.6f- + 1615.8d 2+ 13 79.3fd (7-6) 

Ra = -5.459 + 45.590f + 2.780r - 25.228fr (7-7) 

7.7. MATLAB neural network 

Computational neural networks posses a number of attractive features, for modelling 

complex machining operations, such as universal function approximation capability, 
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resistance to noise of missing data, accommodation of multiple non-linear variables', 

unknown interaction for good generalization capability. The data mining used by CNN is 

a feed forward back propagation (BP) multilayer network. 

7.7.1 Design of experiments 

Fig. 7.2 Shows the design of experiments using Box-Behnken design. From the table it is 

found, there are four factors such as cutting speeds (v), depth of cut (d), feed rate (f) and 

tool nose radius (r). All variables have been written as three level of (-1), (0) and (1), 

where (-1) indicates low, (0) medium and (1) high. 

Design Tree 
F& 60 Designs 

rý"2j, Actual Design 
V d 1 

0 
r 

0 
Genefic Design 2 0 

, 3_ 
4 

-1 
1 

0 
0 

0 
0 

5 0 0 -1 
6 0 0 -1 1 
7 0 0 1 

8 0 0 1 
91 -1 0 

0 0 

01 

0 0 

-1 

1 -1 

12 1 0 0 1 
-- -- 13 - ---------------- - 0 -1 

- 
-1 0 

14 0 -1 1 0 

is 0 1 -1 0 

16 0 1 1 0 
17 -1 0 -1 0 
18 -1 0 1 0 
19 1 0 -1 0 

, Properties -Generic Design 20 1 0 1 0 
Design Style Box-Behnken 21 0 -1 0 -1 
ýNumber of Points 27 22 -- ----------- 0 -1 0 

-. 
1- 

Number of Constraints 0 23 0 1 0 -1 
Last Changed 06-Feb-2008,12: 59: 31 24 0 1 0 

Model nnetJ20,15] 25 0 0 0 1 ____O. i 26 0 0 0 ! 0 
27 0 0 0 

Fig. 7.2 Design Of experiments using Box- Behnken design 
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7.7.2 Modelling data plot 

Fig. 7.3 shows views of data modelling for feed rate, cutting speed, cutting force and 
depth of cut. The data have been viewed as 3D data plots. There are colours indicating 

three different types of factors in green, blue and red. All factors will be allocated at x, y 

and z axes. 

Cutting speed Feed rate 
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(a) Feed rate 
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Depth of cut 

0.71 

0.63 06 
0.54 

z 0.4 10 . 0.45 
0.2 

0.6 
0.37 

40 0.28 0.4 
so lod 

A 

Feedjate .2 40 6Ung-speed 

X-axis factor: Y-axis factor: Z-axis factor: 

Tool-n... Depth_... FCL*ting-. 
- 

(b) cutting speed 
-- - --- ------ -- - 

nose radius 

1.54 

0.5 

0.6 
0ýý 

Depth_of_ctA 0.2 

X-axis factor: Y-axis factor: Z-axis factor: 

Cutting... Feed_r... : 
W] 

FF-epth_... 

nfoi it 

X-axis factor: 

Cutting... 

1.52 

1.33 

1.14 

0.95 

0.77 

0.58 -- ()d 
A 40 

40 6ý. 80 Ct 
. Utting_speed 
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Depth_... Tool_n. --: ] 

f= feed rate (mm/rev), 
v= cutting speed (m/min) 
d= depth of cut (mm) 
r= tool nose radius (mm) 

(d) Tool nose radius 

Fig. 7.3 3D views of data modelling for feed rate, cutting speed, depth of cut and tool 

nose radius 
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7.7.2.1 Level of the input set up 
Test plan is the main function in developing MATLAB Neural Network test. Fig. 7.4 

shows one stage plan where one input, one model and response will be produced. 

Number of steam iII 

Cwrenl selection : Set up ff*cW ancl desgn expermert 
Sk4glested nag blovic Respomw 

model 
VPAS Respmsas 

rrMJ141 

culbng_ýspecd (v) [ff~j 

D_ 

tooi-nose-rodus (r) Imml 
OOM_91_P%A (d) Iffirril 
feed-rate (1) ["vnkl 

culting_force [N) 
roughness [urnj 

tool_ife Iminj 

Fig. 7.4. One stage plan 

Factor settings 

Number of factors: 4 

Symbol Min Max Transform Signal 

v 
Icutting speed None 

None epth of cut 

f if eed rate None 

Ir 11 None F: )oI nose radius 

OK Cancel Help 
I 

Fig. 7.5 Factors and level of the experiment for the model construction using MATLAB 

Neural Network 
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There are four members of factors: 
(1) Cutting speed 
(2) Depth of cut 
(3) Feed rate 
(4) Tool nose radius 

The symbol for each factor is v for vibration, d for depth of cut, f for Feed rate and r for 

tool nose radius respectively. All factors have been set into minimum and maximum 

value which are (-I) and (1). Fig. 7.7 show details. 

7.7.2.2 Model set up 

xl 

Model class: I Neural network 

Network architecture 

Number of hidden layers: F 

Number of neurons in layer 1: 

Training 

Training algorithm: TrainSR 

Algorithm options: 

Mu (Marquardt adjustment paramet. 

Decrease factor for mu: 

Increase factor for mu: 

-ir 

Maximum number of iterations: F-5 00 

OK Cancel Help 

Fig. 7.6 Free forward-forward back regression (BR) multilayer network 
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Fig. 7.6 shows the free forward-forward back regression (BR) multi layer network, which 
has been created in the model setup. Model class for this experiment is Neural Network 

architecture, which as one hidden layers. The training algorithms has been chosen with 
0.005 Mu-Marquard adjustment parameters, 0.2 for decrease factor Mu and 3 increases 

for Mu. The maximum number of iteration for this test is 500. It consists of one hidden 

hyperbolic tangent sigmoid and non-nalized to a range of -1.0 until 1.0. 

Computational neural networks possess a number of attractive features for modelling 

complex manufacturing operations: universal function approximation capability, 

resistance to noise of missing data, accommodation of multiple non-linear variables for 

unknown interactions and good generalisation capability [ 199]. The neural network used 

for data mining is a feed-forward back-propagation (13P) multilayer network. It consists 

of one-hidden hyperbolic tangent sigmoid (tansig) layer. This neural network is chosen, 

because it can be trained to approximate most functions arbitrarily well [200-202]. The 

Tan-Sigmoid hidden layer have 73 and the purelin output layer has three neurons for the 

three outputs. The number of hidden layer and the neurons in hidden layer are subject to 

the complexity of the computer memory, computation time and the desired data control 

effect. Too many neurons result in a waste of computer memory and computation time, 

while too few neurons may not provide the desired data control effect. 

Table 7.9 Legend for one two hidden layer neural network structure 

Legend 

symbol signal 

P input vector 
R number of input 

S number of neurons 

a outputs 

F1 hyperbolic tangent sigmoid 
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Fig. 7.7 One hidden layer BP neural network 

Fig. 7.8 One hidden layer neural network structure 

Table 7.9 shows the legend for one hidden layer of neural network structure as created by 

using MATLAB simulink as shown in Fig. 7.8. Fig. 7.7 shows four factors such as the 

cutting speed, feed rate, depth of cut and tool nose radius and all considered as an input s. 

There are three outputs that will be produced such as cutting force (Fc), surface 

roughness (Ra) and tool life (T). Figure 7.8 shows the subsystem of tone hidden layer BP 

of Neural network structure. Fig. 7.8 shows the stage of one layer. 
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7.7.4 Results from the neural network 
7.7.4.1 Cutting force 
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Fig. 7.9 Cutting force result from MATLAB neural network 
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Fig. 7.10 Predicted cutting force result from MATLAB neural network 

Fig. 7.9 shows cutting force result from MATLAB neural network. The result has been 

taken from 250 experiments, but only 27 experiments have been selected for observation. 

The result has been shown in 2D graph where x indicates the number of observations and 
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y is the cutting force. Meanwhile Fig. 7.10 shows the predicted cutting force result from 

the neural network. From the figure, it is found that the predicted cutting force results are 

more organized as compared with the results shown in Fig. 7.10. 
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Fig. 7.11 3D views of data modelling for cutting force 

Fig. 7.11 also shows the cutting force result in 3D graph, where x indicates cutting 

speeds, and y is depth of cut and z is cutting force. The results have been shown in 

MATLAB modelling data editor. 

3000 

--- --- --------- ------------------------- - ----------- --- -------------------- -------------------------------------------- Experiment 

RSM 

Neural Network 

.................................................. ... ..... ..... ....... ...... ................................................... 1600 
------------- - 

LL 

inm - 

--------- --- -------------------------- ----- -------- --- .... .... ..... .... ---------------------------- 
-------------- ---------------------------------------- -,, Z .................... I ......... 7 --------- .............. 

------------------ 

10 15 20 25 30 

no of expen"wrds 

Fig. 7.12 The predicted observed value of cutting force result. 
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Fig. 7.12 shows the predicted observed value of cutting force result. Three results out are 

calculated from three different method such as cutting trail experiments, RSM and Neural 

Network. According to the graph, light blue colour indicates cutting trial experiment 

results, pink colour line is RSM results and dark blue colour represents Neural Network 

results. The numbers of 27 experiments have been selected. The maximum cutting force 

has been detected in between 15th to 20th number of experiments, and then it's become 

decreased follow by fluctuated and gradually flat at end of experiment session. 

7.7.4.2 Tool life 

Fig. 7.13 shows tool life from the MATLAB neural network. The result shows tool life 

versus observation number and y indicates tool life data. Fig 7.14 shows that the result 

from predicted tool life is more organized compare to experiment results. The position of 

tool life in modelling data can be found in Fig 7.15, which shows the results data in 3D. 
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Fig. 7.13 Tool life result from MATLAB neural network 
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Fig. 7.14 Predicted tool life result from MATLAB neural network 
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Fig 7.15 The tool life results data in 3D 

Fig. 7.16 shows the predicted observed value result of tool life. The graph combines the 

result from three type's experiments such as cutting trail experiment, RSM and Neural 

Network. There are three different colour represent each type of experiment. According 
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to the graph, the purple line indicates neural Network result, light blue colour represent 
RSM results and dark blue represent cutting trial experimental result. 
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Fig. 7.16 Predicted observed value results of tool life 

7.7.4.3 Surface roughness 
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Fig. 7.17 Surface roughness result from MATLAB neural network 
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Fig. 7.19 3D plot surface roughness result from MATLAB modeling data neural network 

Fig 7.17 and Fig. 7.18 show the surface roughness results from MATLAB neural 

network. The comparison results are shown in Fig. 7.20 show the comparison result 

between the cutting trial experiment, RSM and Neural Network. The graph explains the 

value of surface roughness can be achieved by different type of experimental method. 
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7.7.5 Evaluation and comparison 
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Fig. 7.21 Training Error result from MATLAB neural network 

Fig. 7.21 shows training error during running the neural network (NN) data. From the 

Figure the error can be found at the beginning of the process and flat after 10 Epochs. 
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Table 7.10 shows the Neural Network and RSM methods for the prediction of the 

machineability are evaluated and compared against each other to deten-nine the best 

prediction method that can provides high accuracy and better results. 

The relative percentage error between the fitted values predicted by RSM and neural 

network (NN) methods and the observed value of the three values of outputs are 

computed. The relative error is computed using the following formula: 

Relative error (model predicted value- observed value) x 100 (7-8) 

Observed value 

Table 7.11 illustrated the relative errors for the two modeling techniques. It is found that 

the neural network (NN) is better than the response surface method (RSM) within 

machineability models. However, response surface method (RSM) has a better tool life 

but not the cutting force model. Overall, it can be concluded that the neural network (NN) 

method is better than the response surface method (RSM) in predicting machineabilty 

models. Fig 7.14, Fig 7.18 and Fig. 7.22 show the comparison of those methods. 
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Table 7.10 Result of two building model techniques 

The results from the two buildi g model techniques 
No. of Predicted values using atlab NN Pred ict values using RSM 

experiment T(min) Fc(N) Ra(pm) T1(min) Flc(N) Rla(pm) 
1 18.72 12.50 8.72 8.73 28.13 8.73 
2 5.71 11.25 1.57 15.71 11.25 15.71 
3 17.56 6.25 17.85 78.57 14.06 78.57 
4 12.11 22.50 12.01 20.11 22.50 20.11 
5 18.85 22.50 1.88 18.86 22.50 18.86 
6 12.73 6.250 13.27 32.74 14.06 32.74 
7 6.54 21.25 6.54 6.55 28.13 6.55 
8 11.42 11.00 13.14 31.43 11.25 31.43 
9 1.19 11.25 4.19 4.19 11.25 4.19 
10 1.42 22.50 3.14 31.43 22.50 31.43 
11 5.25 11.25 4.52 45.26 11.25 45.26 
12 1.42 11.25 13.14 31.43 11.25 31.43 
13 8.38 22.50 8.38 8.381 22.50 8.38 
14 10.05 11.25 1.00 10.06 28.13 10.06 
15 15.71 11.25 1.57 15.71 28.13 15.71 
16 3.93 11.25 3.92 3.93 28.13 3.93 
17 3.49 45.00 13.49 3.49 45.00 3.49 
18 11.1 11.25 1.13 11.31 50.31 113.14 
19 4.19 16.25 4.19 4.19 56.25 4.19 
20 15.71 11.25 1.57 15.71 11.25 15.71 
21 10.28 6.25 5.02 50.29 14.06 50.28 
22 2.73 11.25 3.27 32.74 50.31 32.74 
23 18.85 11.00 11.88 18.86 11.25 18.86 
24 20.95 6.25 12.09 20.95 14.06 20.95 

25 8.73 11.25 8.72 8.73 28.12 8.73 

26 3.49 11.25 3.40 3.49 11.25 3.49 

27 25.25 45.00 1 4.52 45.26 45.00 45.26 
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Table 7.11 Relative error of using RSM and the neural network (NN) 

The relative errors for the two modelling technique 
Relative error (%) of the Relative error (%) of the 
predict d values of RSM predic ed values of NN 

T Fc Ra T Fc Ra 
3.59 34.00 16.14 1.14 20.11 11.42 
1.85 22.14 7.02 2.49 22.50 6.86 
18.46 42.00 4.04 24.06 30.73 3.27 
8.23 13.78 9.77 6.54 12.70 6.30 
19.45 41.80 4.36 21.25 34.56 3.14 
12.84 10.39 5.00 1.25 9.41 4.19 
21.46 7.30 4.60 24.82 11.59 3.45 
14.54 16.09 6.50 1.43 8.13 4.53 
4.51 9.30 6.14 1.58 4.13 5.43 
8.13 3.68 8.67 5.98 1.52 5.07 
14.22 14.00 3.29 10.23 9.90 1.01 
6.90 6.04 17.29 3.13 5.30 14.31 
2.50 5.90 5.69 9.40 3.67 3.93 
14.84 10.39 14.54 12.93 7.31 13-14 
1.75 13.14 6.12 1.40 8.77 4.82 
4.58 6.50 15.74 2.49 4.00 18.93 
5.82 17.39 14.64 2.50 22.90 12.64 
10.84 14.19 7.51 8.70 7.82 5.28 
2.51 18.20 14.00 4.00 12.40 10.06 
3.75 5.14 4.32 5.34 3.96 2.97 
7.73 35.77 2.31 4.22 30.64 0.95 
4.90 15.84 10.09 2.97 8.13 8.73 
13.25 4.97 5.41 5.40 3.37 3.77 
6.30 8.63 12.21 4.70 6.80 9.00 
15.42 3.78 1.31 10.62 3.27 0.99 
7.43 11.87 13.23 2.87 9.82 8.83 
8.2 3 1 3.78 1.77 1 6.22 1.98 0.67 
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Fig. 7.22 Comparison graph of relative error using RSM and the neural network (NN) 
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7.8 Optimization model 

The machineability model is further explored in this section to fon-nulate an optimization 

model for multi pass turning operations based upon minimum production cost criterion. 
The total production cost per workpiece is given by Yeo [55] as: 

cl- = 
CO ZL (mD� - m(m - ])dj + (C�t, + Cj ZL (mD� - m(m - 1)d u) v 1? fle v� fl? Tj? 

C"7rL 
(DL + 2df + (C,, + C, 

Vf ff - 
IrL (DL +2df + Cuth 

Vf ff Tf 

(7-9) 

The first term in Equation (7-9) is used to calculate the machining cost of rough passes. 

The second term determines the tool change cost for the rough passes. The third and 
fourth terms are for the machining costs and tool costs for the finish pass respectively. 

The last term is to calculate loading and unloading costs. The total production time per 

workpiece is given by: 

Tpr 
v 
7rL (mDo - m(m - I)dl, ) + tr 

v 
ITL 

T 
(mDo -m(m-l)djý) 

n 
fu 

R 
fR 

R 

+ 
)TL (DI, + 2df + tr ; rL (DI. +2df)+th 

v v, fT f ff J, f 

(7-10) 

In the same manner, the first tenn in the above Equation (7-10) is used to calculate the 

machining time rough passes. The second term deten-nines the tool change time for the 

rough passes. The third and the fourth terms are for machining time and tool change time 

for the finish pass. The last term is to calculate the loading and unloading time. The 

objective of the modeling optimization is to minimize the total production cost. Therefore 

the developed mathematical model is as follows: 

minCpr 

for rough passes 

(7-11) 
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Vmin Vr Vmax (7-12) 

fmin fR fmax (7-13) 

d rnin 
dR d max (7-14) 

F,,, ý F,, 
_, 

(7-15) 

plý P,,,.. (7-16) 

for finish pass 

Vmin Vr Vmax (7-17) 

fmin fl? fmax (7-18) 

d min 
dR dmax (7-19) 

R, !! ý Rmax (7-20) 

F,, f 
(7-21) 

'ý, :! ý P, 
-, max 

(7-22) 

Do - 2(mdR + 2df DI, (7-23) 

n, 

xp [p = r, f (7-24) 
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The objective function (7-11) is described in equation (7-9). There are two sets of 

constraints which represent the boundaries and limitations of the machining process. The 

first set represents the rough passes constraints (7-12)-(7-16). The second set is 

represented by sets (7-17)-(7-22) which are related to the finish pass. The constraints sets 
(7-12H7-14) ensure that values of roughing cutting speed, feed rate, and depth of cuts 

are within allowable ranges. Force and power constraints of rough passes are represented 
by constraints (7-15) and (7-16). The constraints sets (7-17)-(7-19) ensures that values of 
finish cutting speed, feed rate, and depth of cuts are within allowable ranges. Constraint 

(7-20) ensures that the surface roughness produced is not exceeding the maximum 

allowable surface roughness. Force and power constraints of finish pass are represented 
by (-21) and (7-22). The constraint set (7-23) ensures that the total subdivisions of depths 

of cut in finishing and rough passes are equal to the total depth of cut. Finally, we 

introduce a new constraint to this optimization model as prediction and optimization 

models for turning operations illustrated in the constraint (7-24). This constraint ensures 

that only one tool is selected for every operation to select the appropriate tool for the 

machining operation (based on its nose radius). The above optimization model is a 

generic for any turning operation and can be used to find the optimal process parameters 

based on the data obtained from the considered machining operation. 

Mozher constructed three models of tool life, cutting force and surface finish, using 

regression analysis (RA) technique and the logarithmic transformation of their first order 

models and evaluated these models using the analysis of lack of fit [8 1 

The three models are as follows: 

T= 
406.423ro 038 

(7-25) 
v0 

1051 f0 28'd 0219 

4182.220f 
062 'd 0363 

r) 
116 

(7-26) fýI =0 108 

R_ 
31.254 1.347 

(7-27) 
t7 vo 

159do "9ro 605 
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In order to utilize the suggested machineability models in optimization for selected tools, 

Equations (7-25), (7-26) and (7-27) are modified to include the tool selection. So there 

are; 

T 
406.423(r, x� +r2 X2p + r, X3p ) 0038 

v0 1051 f 02 '9 d 0219 
(7-28) 

F, = 
4182.220f &62 'd 0 563 (r, x� +r2X2p +r3X3p )0 116 

(7-29) 
0 108 

v 

Ra =0 
15 

31.254f 1.347 

) Oý605 v 9d' "' (r, x, p+ 
r2X2p + r3X3p 

(7-30) 

where r,. ) r2 and r3 are the three different tool nose radius used in the experiments, and 

X, X2x andX3 are binary decision variables. In total, there are eight decision variables in 

the developed model. These variables are vr, ft, dr, vf , 
ff 

, 
df, xir, and xif 

7.9 Conclusion 

In this chapter, empirical models for the prediction of machineability models such as tool 

life, cutting force and surface roughness have been presented based on turning 

experiments. The response surface methodology and neural networks are used to 

construct new machineabilty models. The methodologies of RSM and NN are discussed 

in details. The developed neural networks can predict the tool life, cutting force. 
) and 

surface roughness altogether. The models based on the two methods are compared and 

evaluated using descriptive statistics and hypothesis testing. It is found that the neural 

networks models are better than RSM based models. 

The developed machibeability models are utilized to formulate an optimization model for 

optimizing the machined surface functionality economic. The suggested optimization 

model is a multi pass model which minimizes the total production cost per workpiece 

with practical constraints. The selection of tool, when determining the optimal values of 
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process parameters for the minimum production cost criterion, is introduced based on the 
tool nose radius. The optimization is further explored against the desired surface 

roughness, tool life and machining stability. 
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Appendix 2 

Understanding Surface Texture Parameters 
Every part's sariace is made up of textuire and roughness wh&.. 
varies due to manufacturing techniques and the part svucture ftelf. 
To unclerstand a co-mponet*s surface and to cowdrol the 
manufacturing process to the degree required m today's modern 
world, it is necessary to quantify the surface in both two and three 
dimensions. 
Surface texture parameters can be grouped into these basic 
categories- Roughness, Waviness, Spacing, and Hybrid. 

Terminology 
Areall- A ihree do*nVonal surface area. 
Cutoff Filter- Determines the wavelength at which the surface 
svucture is clifferentlarted between roughness and waviness data. 
Proper selection of the correct filter cutoff in software is critical to 
measurement accuracy. 
Evaluation Length- The area from which data is obtmned- It is a 
three dimensional area that corresponds to the instrument field of 
view, or a two dirrsensional profile that corresponds to the length of 
the slice as deftned in the filled plot. 
Hybrid Parameters- These parameters are combinations of 
spacing and roughness parameters. 
Mean Line- A str&ght line that 19 generated by calculating a 
weighted average for each data pomt resulltirig in equal areas above 
and beow the lim- Also known as center iine. 
Profile- A two dimensional siice through an atea. 
Roughness Parameters - The finer irregularities in the surface 
texture wh-ch are inherent in the production process- These are a 
meas ire of the vert4cal ctiatacteristics; of the surface. 
Sampling Length- The area selected fcw assesv-nent and 
eval jaiion of the roughness para meter Kaving the cutoff wavelength 
Any surface irregularities spaced fartfier apart than the samoling 
length are considered waviness. Nso known as cutoff length. 
Spacing Parameters- A measuire of the horizontal or latera 

characteristics of the surface. 
Surface Texture- The topography of a surface composed of cert&n 
de, oattons that are Wical of the real surface- It includes roughness 
and waviness. 

.W component of surface texture Waviness Parameters -A Ian 
upon wh ých roughness is &4wimposed. 
rl "0 

VVhen two parameter namies are shown, the name in 
parentheses IS the name used in ZYGO software, 
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Roughness Parameters 
H ISO RaVwsr. Pt ISO R3z 
R3z ISO Ra Rku Rq Rmax ISC Rp 
Rpm ISO Rq Rt Rtrn Rtrn ISO 
Rv Rvm ISO Ry Rz Rz ISO 
SPi ISO SR3z ISO SRrnax ISO SRpm ISC 
SRtf-, ISO SRvm ISO SRz 
SRz ISO S, RzX SRzY 

Waviness Parameters 
Wa Wq Wy 

Spacing Parameters 
Pc Peak Denso Peak Spacing S Sm 
Sumn-, 4s Surninst Density Summit Spacing 
Val *ys Valley Density Valley Spacing 

Hybrid Parameters 
Aq At,,, la Iq ly 

Rvolume RSurfAreaRat,; o 
WSurfAreaRatio I SurfAreaRatio 
Bearing Ratio Parameters 

Becanng Ratio (TpJ Rk Rk Midpomt 
Rp, k Rok 7hreshold Rv,,, < Rvic Threshold 
NO IvIr2 V1 V2 Stpl : ý%) W2 N 
Stp3 (%', Upper Stp (%', Lower Stp (%) 
De; ta Stp (%, . Stpl Height qlp2 Height Sip3 Height 
Upper Stp Height Lower Stp Height SHtp Me-an SHtp 
tp I (%) tp2 (%) tO (%) Upper tp ý%) Lower tp (V 
Dela tp (%) V-1 Height tp2 Height tp3 Height 
Upper tp He ghi -ower tp Height Htp Mean Hip 

Matenal Probaoibry Parameters 
Rpq Rvq Rnýq (%) Height UPL 
Heýqht LPL Height UVL Heig)-4 LVIL 
Sici JPL Std LPL Sici UVL Std LVL 

Rsk AC;: 
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H Swedsh helgrit. The 
toughness between two 
predefined reference lines. 
The upper line exposes 5% 
of the data, and the lower line 
exposes 9C% 

- 
His less 

senstýve to data spikes, than 
Rt. Avaliabie for profile and 
areal data 

ISO Areai 9ainess dc-viation "ý, e 
Flatness measure of surface deviation 

from perfectly flcffAL It jr. the 

Pt ISO Total peak-ic>-valley prcfle 

I SAC) 

Fiatness 

11 . -- 

Ru Base toughness depth- The tot 

v \/V. 

. kv U-Vmuf oft, 
4F, of, 
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Roughness Parameters 
R3m Base roughness peofile Rm, ISO 
mo depth. The h6gH of the 3rd 

highoest peak from the 3rd 
, V2 Zý JR1, - 0. A 

-3&!, lowest valley per san-pling sw", * WOO 
length. The base roughness MhAtka bmk* j 

depth is found in f ve 
sm*Ing lengths and then 
averaged. 

R. Arithmetical mean deviation. 
The avefage toughness or 
deviaton of all pcirft trom a 
plane fit to the iest part 
surface. Available for prof ie 
and areal data. 

I 

R., = 
, 
L U 

R4. Kurtosis & a, -, ea-,:: ure of tine randomne&i; of heignts, ard 
o" +, e sha rpness of a surface, A perfe-cfly random 
sar+ace has a value af 3; 0* farther 1he result is frcxr 3, 
the less random and more repetitrve the surface a. 
Surfaces with spikes aire higher values; bampy surfaces 
are lower. Available for profile and areal data. 

P-0 
Rx, =1 N- 

Ily I* 

Rn= Maximum peaoý-tcvalley 
ISO proile height- The greatest 

peak-to-val oey distance wAhin 
any one samp , ng leno. -0,410- ý+4" bm4M 

41 -a 
f: t 

ý 
ISO WWAAMW woom 

Rp -fighevt peak The maximum 
(Peak) distance between the mean 

hne and the highest pomt 
wthin the sample. It Is the 
maximum data point heght 
above the mean line 1hrougF, 
the entire data set, Available 
for prof le and areal data. 

R,. l 
it 

R%, l 

ux 
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.W 
F12.2 01*1 Rw. Mean peak profile height. ki ftý P ISO The mean peak height based AAAGAA-. "Alk 

on one peak per sampling ITVYTTV"VFYVT 
a- length. The single hkjhest 

peak is found in five sampling Ft, ISO 
lengft and then averaged. 

Rq Root-mean-square (rms) roughness. The average of the 
(rms) measured height deviations taken within the evaluation 

length or area and measured from the mean hnear 
staface - 

Available for prcyfile and areal data. Rq is the 
mys parametei corresponding to Ra. 

I rL R4= z ix) dx 

R4 Maximum peax-to-valley neight. The abso4ute valje 
(PV) between the highest and lowest peaks- Avatiabie for 

profile and areal data. 
R= Rr, +R, 

P14M k1lear peax-tcý-, valiey 
roughness. It is determined 
by the difference between the 
highest peak and the lowest 
valley within multiple samples 
in the evaluation area. For 

profile data it is based on five 
sample lengths. Available for 

profile and areal data. 
Zi +Z2... +Zn R, =n 

zi Z" z3 zi Z! 

Rj, Mear peak-to-valiey profiie 
ISO roughness. The mear. PeaN- 

to-valley roughness based on 
one peak and one valley per 
sampling length. The single 
largest deviaton is found in 
five san-pling lengths and 
then averaged. 

Pif -F VD 

R. ISO 
boo 

Ril +Rt2- -Rt5 R, ISO =5 
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Roughness Parameters 
R-,, -owest valley. The rraximum distance between the 
(Valley) mean kne and the lowest potnt within the sarnple. It is 

the maxlmwn data point height below the mean line 
thmugh the entire data set- Available for profile and 
areal data. See Rp 

Rwin Mear valley profile depth. A, & ki tAt it A.,, AA 
ISO The mean valley depth based V 

on one peak per sampling 
length. The single deepest 
vailley is found in five kF; t,,, ISO 
sampling lengths and then 
averaged. 

within the sampling length, It 
is the maxIMUM of all the 
peak-to-yalicy values. 

Rz Ten-point heght The 
average absolute va4ue, of the 
five highest peaks and the 
five iowest valleys over the 
evaiumion ltmgth- Available 
for profile and areal, data, 

Pl t'->4 

(Pl +P2- P5)-tVl +V2--. V5) 
5 

R,, Average peak-to-vadley 
[so Profile roijgnness- The 

avefage peak-to--vafley 
rcugl, ýess baseed on one 
peak and one valley per 
sampling length. The single 
largest devabw is found in 
We samphng k!! ngrths and 
then averaged. Identical to 
Rtm ISO. 

-4 0. *-" VWOW 
0 -Aw 

RJSO mWommom vwvo, ý 
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Roughness Parameters 

For S- ISO parameters, a surface area is 
anakyzed by Wng a minAmum enclosing 
rectang4e and applying a5x5 sampling grid, for 
a malof 25 samlo4ing areas. All sampling areas 
together make up the evauaton area. 

SP, Total peak-to-valley areal rieght- The distance between 
ISO the highest peak and the deepest va4ley over The eftre 

evaiuation area - 
S1b2 Baze roughness areal depth. The height of the 3rd 
[so highest peak from the 3rd lowest vahey per sar*ing 

area, The base rouqhness depth ir. found in each 
sampiing area and then averaged. 

SRnrag Maximum peak-tc"alley height over tl, ýe ert%, e areal 
ISO eva4uation area - 
SR. WR Mean peak areal height. The mean peak height based 
ISO on one peak per sampling area. The single highest peak 

is found in each sampung area and then averaged. 
SR. Mean peak-to-valley areal roughness. The, mean peak- 
ISO to-valiey toughness based or one peak and one val ýey 

per sampl ng area. The single largest dewlation is. found 
in each sampting area and 1hen averaged. 

SRvv" Mean valley areal deiDth, The mean valley ciepih based 
ISO on one peak per sampling area. The single deepest 

valley is found in each sampling area and then 
averaged. 

,ý-ý.. Ie SP. z Average radial peak-to-valley 
. 4-14yowd by areal roughness. The average ý. 411600 SWAN 

of the largest half of many 
-91-ijwsl Imp 

individual Rz resuft 
determined by slicing the area! 
data array about its center th rough 36C degrees 

- 
The Rz 

results are sorted by magnitude and SRz IS calculated by 
averaging the largest 50% of the Rz values- A ime- 
generattOr. algorithm is used to determine the actjaý 
pixei-to-pixel path of each skx-,; there is no interpolation 
between pixels. SRz covers the entire array, and due to 
its radial generatior it is lay independert 
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Roughness Parameters 
S Pta Average peak-to-vajley areal roughness. The average 
[so peak to vcMley roughness based on one peak and one 

valley per sampling area. The singile largest devotion is 
found in each sampling area and #-ten averaged. 

SRA The average of many incliAdual Rz msults, determined 
by silcing the data array In 0* x-axis- The individual Rz 
results are each based on a profie s1ice one pixei Wide. 
SRzX is based on the entfte array. See SRz. 

May The average of mary individual Rz results, cleter! runed 
by sAcing 1he data array in *e y-axis- The individual Rz 
results are each based on a profile siice one plXe'wýcle. 
SRzY is based on the entire a rray. . -: )ee SRz. 

Waviness Parameters 

W2 The arithmelic average W. 
roughness, or average 
cle-viation, of all points frorr a 
plane fit lo the waviness data. 

1 ýL 
0 

W", 

Wq The root-mear-square (rms) iroughness of all points from 
a plane fit to the waviness data - 

F-i r -L 
W, =I-Z%xI (I x 

L 

ý" f. 
WIP, Tne ma)umum heigm of the 
(W. ) waviness data. 
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SRA The average of many indWidual Rz results, deterrnined 
by sficing 1he data array in the x-axic- The individual Rz 
results aLre each based on a profile stice one pixe4 Wide. 
SRzX is based on the er4re array- See SRz. 

SR. Y The average of many individual Rz results, deter-nined 
by sficing the data array Ir the y-axis- The individual Rz 
results are each based on a profile sitce one pIxe4 wide. 
SRzY is based on the enue array See SRz. 

Waviness Parameters 

Wa The arýhmetc average Wd 

roughness, or average 
deviation, of all points from a 
plane fit tD the waviness. data. 

I -L WJ17 L 
ju lz(x)lctx 

WA The rooz-mear. -square; rms'i roughness of all points from 
a plane fit to the wavinýss data. 

ý 
F, -., -L W"= z ýXý fix 

Lf 

W7. The maximurn height of the 
(WMM) waviness data 
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Spacing Parameters 
PC Peak count or ti-e numbe- of 
(Peaks) peaks mcluded in the 

arWysis. A peak is defned 
as a data point whose height 
is above a software sekw-led 

Peak The nurrber of peaks per unit area, Density 
Peak The average c[mance between peaks. Spacing 
8 

sm 

The average spacing 
between local peaks over the 
evaluation length. A bcal 
peak is the highest pcxnt 
between iwo adjacent 
minima. The average 
spacing for the example 
shcwn is calculated by- 

S1 +S2. - +S6 
6 

The average spacing 
between peaks at the mean 
line over the evaliation 
length 

ýA peak G the highest 
point between an upwards 
and downwards crossing of 
the mean hne- It is 
calculated by summing all 
the peak spacrig and 
dividing toy the number of 

51 S2 5,3 S-L Sfi 

04W*- 71 

51 S2 S3 

SUMMU The number of sumirrits included in the anaysis A 
summit is a point that ts higPw than tne four nearest 
data pcmnts as. determined by a software threshoid 
value The higher *e threshold, ihe fewer and steeper 
Me sumnvts 

summit The riumber of summits per inil area. 
Density 
Summit The average al; stance berween simmits. 
Spacing 
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Valleys The r-umber of valleys included ir the analysis. A valiey 
is defined as a data point whose height is below a 
software se4ected bandwidth. See Pc, 

Valley The number of valleys per urit area. Density 
Valley The average d, s: tance between valleys- Spacing 

Hybrid Parameters 

Aa The ariihmetic average surface wope of the entre 
(Slope Ft. ) data matnx. Skj>es are direcliy related to the 

reflectwe propeites of the surface. They are useftA 
for cordrolling cosmetc appearances of surfaces, as 
well as in controlling reflective surfaces- Results are 
av& 11 dable for overa i slopes and ir, jist the x or y axes. 
In mathematical syn*ols- 

L 
11% A=' 

'I 
C 

L 

'd"x 
x 

Aq The georreinc average &ýope of the eribre data 
matnx. "his resul is similar to A., except ifýat (SIOPe r-m) ,i- 
individual slopes are averaged by the rrrrb me. *-jod 
rather than antiNmetically, emphas zng more e,, drerne 
slopes Resilts are avallable ýor c(v-era; l slopes and 
in just the x or y axes 

Atm The average peak-to-valley slope of nine sarriple 
(SIOPe Rim) areas or 0* entire data matrix. Results are available 

for ove-? al slopes and in just the x cr y axes. 

12 The average surface heigh, or average dev anon of 
ali points frorn a plane fit to the input data- Iriputdata 
is the data obilamed by the instrumer4. it includes 
rougýhnesz and waviness information. 

Iq The root-mean-square deviation of al i points from a 
plane fit to +e input data. Input data mcludes 
rou0ness and waviness inforrrz-jon. 

The maximu-) height of the npit data Invu-data 
ind ider. roughness and waviness information. 
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Hybrid Parameters 
R. mu, st The volume of the 

Vý Above 
roighne" data as 
specified by software as 

i? , 'Oixm above or below the 
surface. Bet" 

R9., -Ama^xs, c The ratio of toughness surface area to tine planar 
area occupied by the data. 

Wq. rWfARzliO The atic of waviness sirface area m ihe plarar a-ea 
occupied by +& data. 

"Maftý*Q The -atio of input r., urface area to the planar area 
occupied by the data. 

0- 

_z»rifing 
Rado Parameters 

Bearing Bearing -alic is the ratýo texpressed as a percentage,, 
Ratio (Tp) of the length of the bearing surface at any specified 

depth in the evaluation area.. h simulates the effect of 
wear on a bearing surface. Bearing Rato resuft are 

Opl and s arf ace area (Stp). available f6r profile dala 

R& Core Rc,. jghnerz Deptb - 
The long term running from 
surface, which wýl influence PON* RV& 
the perfoffnance and life of 
the oearing surface. 

Ri, Tbe middle point &I the R#, reglon; it is an aasolute 
Midfx>int Fieight. 

Rto Redu. <*d Peak Height - The ýop ponlor, o-ý the surface 
that w 1ý be wcm away Ir fl-e. min-in penod . 

R; * The threshoid between the 
Thresho4d Rp. and FR* regtons. it is an 

absoiate hexjht 

ok 

'k 

144 Wý 

R. ik Reduced Valley Depth - The lowest part of the 
surface that retains lubricant. 

R. i, 1-he threshold between the Rk and R., k regions it is an 
Threshold abed ute heght. 
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Mr, Materia Component - The material rabo at 
which Rpk and Rk meet It represents the upper kmit 
of the core roughness profile. This parameter is 
derived from the bearing ratio plot. 

K2 Valley Material Com; xwsent - The material ratio at 
which RA and Rk meet It represents the lower hrnk 
of the core roughness profile. This parammeter is 
derived Irom the bearing ratio p4ot. 

V1 Volume 1-#, k- vvume of the material that wA be 
removed during the run-in penod. Part of the bearing 
rabo analysis- 

V2 Volume 2- The potential volume of retained lubricant. 
Part of te bearing ratio analysis 

SVIN The areal bearing ratio 
(expressed as a 
percentage) at 1he heght 
specified by the Sip 1 
Height controi, relative to 
the selected Stp 
Reference location and 
Stpl (%) OfEw value 

Stp2 (%) The areal bearing ratio (exprmsed as a percentage) 
at the heoght qmcified by the Stp2 Hetght control, 
relabw to the selected Sip Refeftrwme locabon and 
Stp2 (%) Offse valuee. 

SW(%) The areal bearing ratio (expressed as a percentage) 
at the height spec&ed by the Stp3 Height Cor*ol, 
te4ative to the selected Sip Reference location and 
StP3 N Offset value. 

Upper The areal bearing ratio (expressed as a percentage) 
Stp M at the location spoem6ed by the Upper Sip Height 

control, relabve to thie selected Stp Reference 
location 

Lower The areal bearing ratio (expressed as a percentage) 
SV N at the locabon specilied by the Lower Stp Height 

control, relative to the selected Stp Reference 
location 

186 



Appendix 2 

Hybrid Parameters 
Deka The &ffeterce in the areaýl beating ra6o,, expressed 
stp N as a percentaW., bet*vm the Upper and -owc-, Sip (%) values- 
Stol The hei* of the areal 
He ight bearing ratio curve where 

a witersects the percentage 
' specifed by the Stpl (% , 

control, relatwe to the 
selec*d Stp Reference 
location. 

Stp2 The height of the areal bearing ratio curve where it 
Height intersects the percentage specified by the Stp2 (%I'ý 

control, relative to the selected Stp Reference 
location. 

StP3 The heigiht of the areal beaning ratio curve where it 
Height inter-sects the peromage specified by the Stp3 

control, relative io the selected So Reierence 
location- 

Upper The height of the areal beanng ratio curve at the 
Stp Height location spec4ed by the Jpper Stp (%) control, 

refav, ve to the selected Sip Reference location 

Lower The ýeijht of the areal beari'rg ratio curve at the 
Stp Height location speof*d by the Lower Stp N control, 

relatwe to the selected Sip Referer ce location 
- 

SHIP Height between two points on the areal oeatirg ratio 
curve as specified by the Upper Sip (, %) and Lower 
Sip (%) controls. It is used to help determine -iateral 
removal over mullipie processes 

Mean The average of all the height -values oetween the two 
SHtP points on the areaA beating ratio, cuirve specified by 

ýi 'and -ower 
Sip (%, ý controls. 'N ý the Upper Sip 
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Hybrid Parameters 

tP1 N The profile bearing ratio 
(expressed as a 
pefoentage) at 1he hev*it 
swified by the tpl 
HeqM contr6, relative lo 
the seleýed tP Reference 
locaton and the ip 1 
Cff set contrcA va iue. 

tP2 M The prolle bearing f-ano %expressed as a percentage) 
at Ihe heqhl spectfied by the tp2 Height controi, 
relatrwe to fl, ýe selected tP Reference location and Ihe 
tp2 N) Cffset contro, vaiue. 

tp3 The profle bearing ratio (expressed as a percentage) 
at +ve hetght specified by the tp3 Height controý 
relative to the selected tp Reference location and the 
tp3 (%) Offset controý vaiue. 

Upper The profile bearing ratio (expressed as a percentage) 
Ip M) at 1he location specified by the Jpper tpl-Heigi-t 

control, relative io these-lected ip Reference location 

Lawer The profile bearing ratio (expressed as a percentage) 
tP at ** locadion specified by the Lower ip Height 

control, relabve to the selected tp Reference location 

Defta The cifferenc. e. n the profile bearing ratio ie)(Pressed 
tP as a percertage:, oeiween the JpW and Lower tp 

(%, ', values. 

tpI Height The ý, eight of the arofile 
tP bearng rabo curve where 

0 intersects the 
pe, cer"e spec4ed by 
the tpl (%) control, 

41 1%) rw"rTO) RAM 1%1 

relative to +& selected tP 
Reference location. 

tp2 Height The Feight of Ihe prof le oeanrg rAo curve where it 
imersects- the percentage speaýe-d by tme tp2 . ýIb) 
control, relatve to ihe selected tp Reference locator 

tp3 Height The Feight of the profile beanng raýo curve where it 
intersects the percentage speciýed by the tP. % 
control, relative to the selected ip Reference locabon 
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Hybrid Parameters 

Upper The height of the profile bearing rafio curve where it 
tp Height intersects the percentage specAed by the Upper 

tp (%) control, relative to the selected tp Reference 
local=_ 

Lower The height of the p"Ale bearing ratio curve where i! 
tp Height intersects the percentage specified by the Lower 

tp (%) control, relative to the selected tp Reference 
k)catx>n 

HIP Feight between two points on the profile bearing ratio 
cirve as specified by the Upper tp (%, and Lower 
tp (%') controls 

Mean Htp The average of all the height values between the two 
pmts on the profile bearing ratio curve specified by 
the Upper Ip N) and Lower tp (%. - comro,, ri. 

Material Probability Parameters 

P. pq The root-mean-square 
average of the height 
deviatiom in the peak or 
plateau portion of the 
klaterial Probability plot. emit CAW 

R. q The root-mean-square average of the hel9k 
deviations in the valley poftion of the Material 
Probability plot. This resuftMi useful as a predictor of 
original sur4ace roughness before the removal of 
more materal in subsequent processes. See Rpq. 

R,,,, q The material ratio 
(expressed as a 
percentage', at the peak- 
to-wahey transditm. 

He ight 
UPL 

The heignt at the ipper 
peak or plateau imit. UPL 
is set with inspectors ir thoe 
Material Probabilfty pot. 

EWO-- 
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Hybrid Parameters 

Height The height at d-*-- owe, peasc or plateau I, mt as 
LK located by the software im the Malenal, Probability 

analysis. 
He ight The height at the upper vabey imit, as located by Ihe 
UVL software in 1he Material Probabiidy analysis. 
Height The height at the ýýower 
LVIL 'valley I irnit. LVL is set with 

mspectors m the Material 
Probability plot. I Sm Dow 

0%-j UK 
ate The standard deviatýor, at 

the upper peak or plateau LPL 
limit- LIPL IS set wi+ 
inspectors m the Mate6al 
Probability plot. 

Stcl LPL The standard deviation at Ihe lower peaKor plateau 
limit, as k"ed by the software in the Matenal 
Probability analysis. 

Std UVL The standard deviation at the upper valley I imit, as 
bcated by te software ir the Materal Pobabi Ay 
analysis. 

Stcl LVL The standard deviation at 
tie lower valley lima. LVL 
is set with inspectors, in the 
%katerial Probability plot. 
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Hybrid Parameters 

Oth& HyMd Patanpeters 

Rz& SkewrTss. A measure of symme" of the profile 
about ** mean line. Nega6ve skew indicates a 
predominance of valleys, w6ile povtve skew 
indaicates a 'peaky' surface. Bearing surfaces should 
have negatwe skew- 

R-. 

ACIF AutDcorrelafion functior or 
(Auto- AutDcovartance. Used to 
covariarbim) determine 1he periodicity of 

a wrface; a shows the I U-1 dorrmant spatial frequencies OftlEnm WIV OW Sko 

along a cross section of the 
test surface. ACF is a measure of 'self-similaW of 
a ProMe - the extent to which a surface waveform 
pattern repeats If the surface is random, the plot 
drops rapidty to zero. If the piot oscillates around 
zero in a penockc manner, ten the surface has a 
dorrinaint spatsal frequency. Correlalbon Length is the 
ength along the x-axis where the Autocovariance 
funcbon first crosses zero. 

N-4" 

ACF=yy Y, +m 
'. 1 
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Appendix 3 Machining trail plans and details 
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Table 1: Machining trial plan for A] alloy 

Workpiece material: Al alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 
Side clearance angle: 6' 
Tool nose radius: 1.2 mm 

Nose radius Feed rate Spindle speed Depth of cut 
Trial No. (MM) (mm/min) (rpm) (MM) 

1 0.4 0.1587 1300 0.1 
2 0.1587 1300 0.3 
3 0.8 0.1587 1300 0.3 
4 0.1587 1300 0.5 
5 1.2 0.1587 1300 0.5 
6 0.1587 1300 0.3 

Table 2: Machining trial plan for AI alloy 

Workpiece material: A] alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 
Tool nose radius: 0.4 mm 

Trial No. Conditions 
Feed rate 
(mm/min) 

Spindle speed 
(rpm) 

Depth of cut 
(mm) 

1 Without coolant 0.1587 1300 0.2 

2 Without coolant 0.1587 1300 0.2 

3 Low dumping 0.1587 1300 0.2 

4 Low dumping 0.1587 1300 0.2 
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Table3: Machining trial plan for AI alloy 

Workpiece material: AI alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 

Trial No. 
Nose radius 

(mm) 
Feed rate 
(mm/min) 

Spindle speed 
(rpm) 

Depth of cut 
(MM) 

1 0.4 0.0388 1300 0.5 
2 0.4 0.0762 1300 0.5 
3 0.4 0.1587 1300 0.5 
4 0.4 0.3286 1300 0.5 
5 0.4 0.1587 989 0.5 
6 0.4 0.0388 709 0.5 
7 0.4 0.0388 480 0.5 
8 0.8 0.0388 1300 0.5 
9 0.8 0.0762 1300 0.5 
10 0.8 0.1587 1300 0.5 
11 1.2 0.388 1300 0.5 
12 1.2 0.0762 1300 0.5 
13 1.2 0.1587 1300 0.5 

Table 4: Machining trial plan for AI alloy 

Workpiece material: AI alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 

Trial No. 
Nose radius 

(mm) 
Feed rate 
(mm/min) 

Spindle speed 
(rpm) 

Depth of cut 
(mm) 

1 1.2 0.0388 1300 0.2 
2 1.2 0.0388 1300 0.5 
3 1.2 0.0388 1300 0.1 
4 1.2 0.0762 1300 0.2 
5 1.2 0.0762 989 0.5 
6 1.2 0.0762 1300 0.1 
7 1.2 0.1587 1300 0.2 
8 1.2 0.1587 1300 0.5 
9 1.2 0.1587 1300 0.1 
10 1.2 0.1587 1300 0.3 
11 1.2 0.3286 1300 0.2 
12 1.2 0.0388 989 0.2 
13 1.2 0.0388 709 0.2 

14 1.2 0.0388 480 0.2 

Table 5: Machining trial plan for AI alloy 
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Workpiece material: AI alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 
Side clearance angle: 6' 

Trial No. side rake angle 
Feed rate 
(mm/min) 

Spindle speed 
(rpm) 

Depth of cut 
(MM) 

1 -25 0.0388 1300 0.2 
2 -10 0.0388 1300 0.2 
3 0 0.0388 1300 0.2 
4 10 0.0388 1300 0.2 
5 25 0.0388 1300 0.2 

Table 6: Machining trial plan for AI alloy 

Workpiece material: AI alloy 
Diameter: 50 mm 
Cutting distance: 20 mm 
Cutting edge radius: 0.6 mm 
Side clearance angle: 10' 
Tool nose radius: 1.2mm 

Trial No. side rake angle 
Feed rate 
(mm/min) 

Spindle speed 
(rpm) 

Depth of cut 
(mm) 

_ 1 0 0.0388 1300 0.2 

2 41 0.0388 1300 0.2 

3 10 1 0.0388 1300 0.2 
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Appendix 4 MATLAB programming 
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%machine condition 
cs= I 300; %cuting speed rpm 
fr--0.5; %I'eed rate, mm/rev 
dc=0.397; %deepth of cut, mm 

wr--25; %workpiece radius, mm 

tnr--i. 2; %tool nose radius 

w=(cs/60)*2*pi; cutting speed 1300r/min angular velocity 50pi/s 

frl=fr*cs/60; feed rate mm/s 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%parameters of simulation 

Nr--50; %round(wr/fr); % round of turning 

N P= I 00; %n Lim ber of sampl ing point 

NN=Nr*(Np+l); %nei-nber of measured point 

deta=2*pi/Np; %sample space in angular 

dett=deta. /w; %time step 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%The ideal tool tip x, y dierection 

for i=I: Nr%roLind number 

for j= I: Np+l %sample point number per round 

)-fr*0- 1)*dett)*sin(w*0- ])*dett; 

iy(ij)=(wr-fr*(i- I )-fr*0- 1)*dett)*cos(w*0 -I) *dett; 

end 

end 

afi ne=1 i nespace(0,2.4,5050); 

kyout=length(yout); 

sx=yout( I: kyout, I ); 

reax(interp I (aout, sx, afine); 

reax=reshape(reax, Nr, Np+ 1), 
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IX=ix+reax; %yout(I: N-N, 1); %real tool tip position in x direction 

IX=reshape(IX, Nr, Np+ I ); %real matrix 
ix=zeros(Nr, Np+]); 

sy=out(l: kyout, 2); 

reay=interp] (aout, sy, afine); 

reay=reshape(reay, Nr, Np+ I); 

IY=iy+reay; 

IY=iy+yout(]: NN, 2); %real tool tip position in x direction 

IY =reshape(I Y, N r, N p+); %real matrix 
iY=: zeros(Nr, Np+]); 

sz=yout(]: kyout, 3); 

reaz=interp, I (aout, sy, afine); 

reaz=reshape(reaz, Nr, Np+]); %i-nachine condition 

cs= I 300; %cuting speed rpm 
fr--0.5; %feed rate, mm/rev 
dc=0.397; %deepth of cut, mm 

wr--25; %workpiece radius, mm 

tnr--l. 2; %tool nose radius 

w=(cs/60)*2*pi; cutting speed 1300r/min angular velocity 50pi/s 

fr I =fr*cs/60; feed rate inm/s 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%parameters of simulation 

Nr--50; %round(wr/fr); % round of turning 

NP=100; %nLImber of sampling point 

NN=Nr*(Np+]); %nei-nber of measured point 

deta=2*pi/Np; %sample space in angular 

dett=deta/w; %time step 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%The ideal tool tip x, y dierection 

for i=I: Nr%round number 
for j=I: Np+] %sample point number per round 

ix(i, j)=(wr-fr*(i- I )-fr*0- ])*dett)*sin(w*6- 1)*dett; 

)-fr*0- 1)*dett)*cos(w*0- ])*dett; 

end 

end 

afi ne=l inespace(0,2.4,5050); 

kyout=length(yout); 

sx=yout( I: kyout, I ); 

reax(interp I (aout, sx, afine); 

reax=reshape(reax, Nr, Np+ I 

[X=ix+reax; %yout(I: NN, 1); %real tool tip position in x direction 

I X=reshape(I X, N r, N p+ I ); %real matrix 
ix=zeros(Nr, Np+]); 

sY-: --out( I: kyout, 2); 

reay=interp I (aout, sy, afine); 

reay=reshape(reay, N r, N p+ I); 

IY=iy+reay; 

IY=iy+yout(I: NN, 2); %real tool tip position in x direction 

IY=reshape(IY, Nr, Np+); %real rnatrix 

iy=zeros(Nr, Np+l); 

sz=yout(l: kyout, 3); 

reaz=interp I (aout9sy. )afine); 
reaz=reshape(reaz, Nr, Np+l); 

IZ=reaz; 

Iz=yout(l: NN, 3); %real tool tip position In z direction 

IZ=reshape(lz, Nr, Np+); %real matrix 

iz=zeros(Nr, Np+]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

IZ=reaz; 

lz=yout(I: NN, 3); %real tool tip position in z direction 

IZ=reshape(lz, Nr, Np+); %real matrix 
iz=zeros(Nr, Np+]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%intersection point 
for j= I: Np+l %sample point number per round 

for i=I: Nr-]%roiind number 

r(i, j)=(tnr*(IZ(i+ lj)-IZ(ij))+(i-0.5)* fr/2)/fr: calcu late the radius of polar position 

xx(2*i, j)=r(i, j)*sin(w*6-1)*dett)%position of x- intersection point 

yy(2 * ij)=r(ij) *cos(w* 0- 1)* dett)%pos it ion of y-intersection point 

zz(2*i, j)=(IZ(i+l, j)((2*tnr*(IZ(i+lj)-IZ(i, j))-fr"2)/12)/(8*tnr*fr/'2); %z postion of 

intersection point 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%machine accuracy 

errf=dc-Min(zz) 

, ýý%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%, ý/0%%%% 

%surface topography 

m=linespace(1,9,127) 

n=linespace(1,9,127) 

[mi, ni]=meshgrid(p, t) 

qq=griddata(xx, yy, zz, pi, ti) 

surf(pi, ti, ss) 
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xlabel('tagential direction(pp)'); 

ylabel(feed direction (pp)'); 

zlabel('depth Of'CLIt direction (pp)'); 

axis[090900.5]; 

colorbar 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%, ý10% 

%surface characterization 

N=127; %sampling number y dierction 

M= I 27; %sarnpling number x direction 

detx=6(M- ]); %distance 

dety=6(N- 1); %distance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% the linear least sqUare plane parameter tnr(x. y)=b+dx+ey 

a=o 
for I=I: N 

for k =]: M 

u=u+(k-])*qq(k, l); 

end 

end 

V=O 
for I=I: N 

fork= IN 

v=v+(l - ])*qq(k, l); 

end 

end 

zz=reshape(qq, M*N, 1); 

w=sum(zz); 

pw=(mean(zz); 
d=(l I/detx)*(a-(M-I)*w/2)/(M*N*(M-])*(M+])), 

e=(l I/detx)*(v-(N-I)*w/2)/(M*N*(N-I)*(N+I)), 
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b=((6*M*N+M+N-5)*w-6*(N+I)*u-6*(M+I)*v/(M*N*(M+I)*(N+I)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(Yo%%%% 

%root -mean-square deviation 

res=reshape(resf, M*N, I); 

pr--sum(res/12); 

Sq=sqrt(pr/(M*N)) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Ske\vness of surface height distribution 

ps=sum(res. ̂ 3); 

Ssk=ps/(M*N*Sq"3) 

%%%%%%%%%%%%%%%%%%%%IYO%%%%%%%%%%%IYO%%%%O/o IYOO/0% 

%Kurtosis of surface height distribution 

pk=sum(res. ̂ 4); 

Sku=pk/(M*N*Sq/'4) 

%%%%%%%%%%%IYO%%%%%%%%%%O/O%%%%%O//O%O/"O%%%O/Olýý%"/O%%% 
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Welcome to Minitab, press Fl for help. 
Executing from file: C: \Program Files\Minitab 15\English\Macros\Startup. mac 

This Software was purchased for academic use only. 
Commercial use of the Software is prohibited. 

* NOTE * Command canceled. 

Multilevel Factorial Design 

Factors: 4 Replicates: 3 
Base runs: 81 Total runs: 243 
Base blocks: 1 Total blocks: I 

Number of levels: 3,3,3,3 

Design Table (randomized) 

Run Blk A B C D 
1 1 2 2 1 3 
2 1 3 2 3 3 
3 1 1 2 3 3 
4 1 3 1 2 1 
5 1 3 1 2 1 
6 1 2 2 1 2 
7 1 3 2 2 3 
8 1 1 3 2 1 
9 1 1 3 2 1 

10 1 2 3 1 1 
11 1 2 1 1 3 
12 1 3 3 2 2 
13 1 1 2 3 1 
14 1 3 3 2 1 
15 1 3 3 1 1 
16 1 1 3 3 3 
17 1 2 1 1 3 
18 1 2 3 1 3 
19 1 2 2 3 3 
20 1 1 1 1 2 

Results for: Worksheet 2 

Multilevel Factorial Design 

Factors: 4 Replicates: 3 
Base runs: 81 Total runs: 243 

Base blocks: 1 Total blocks: 1 

Number of levels: 3,3,3,3 
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Design Table (randomized) 

Run Blk A B C D 
1 1 1 3 1 3 
2 1 2 1 3 3 
3 1 2 3 3 2 
4 1 3 2 1 2 
5 1 2 2 2 2 
6 1 1 3 3 2 
7 1 1 1 3 1 
8 1 2 2 3 1 
9 1 2 1 1 3 

10 1 2 2 3 2 
11 1 3 2 2 1 
12 1 2 2 3 1 
13 1 2 2 1 2 
14 1 3 1 1 1 
15 1 2 1 3 1 
16 1 1 1 2 1 
17 1 1 2 1 3 
18 1 3 3 2 1 
19 1 2 1 1 2 
20 1 2 1 3 3 

Regression Analysis: T versus v, f, d, r 

The regression equation is 
T=- 66.3 + 0.435 v+ 82.9 f+ 71.1 d+0.00 r 

Predictor Coef SE Coef T p 
Constant -66.342 5.065 -13.10 0.000 
v 0.43456 0.02750 15.80 0.000 
f 82.928 5.386 15.40 0.000 
d 71.081 6.107 11.64 0.000 
r 0.000 2.752 0.00 1.000 

S= 21.4059 R-Sq = 72.3% R-Sq(adj) = 71.996 

PRESS = 115 041 R- Sq(pred) = 70.81% 

Analysis of Variance 

Source DF Ss ms Fp 
Regression 4 285116 71279 155.56 0.000 
Residual Error 238 109054 458 
Total 242 394171 

Regression Analysis: T versus v*v, f*f, d*d, r*r 

The regression equation is 
T=- 26.0 + 0.00242 v*v + 87.3 f*f + 72.2 d*d + 0.00 r*r 

Predictor Coef SE Coef TP 
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Constant -25.988 3.289 -7.90 0.000 
V*v 0.0024199 0.0001592 15.20 0.000 
f*f 87.292 5.872 14.87 0.000 
d*d 72.239 6.461 11.18 0.000 
r*r 0.000 1.360 0.00 1.000 

S= 21.9 898 R-Sq = 70.8% R-Sq(adj) = 70.3% 

PRESS = 121488 R-Sq(pred) = 69. 18% 

Analy3i3 of Variance 

Source DF SS ms Fp 
Regression 4 279086 69771 144.29 0.000 
Residual Error 238 115085 484 
Total 242 394171 

Regression Analysis: T versus v*d, v*r, f*d, f*r, d*r 

The regression equation is 
T=- 17.5 + 0.731 v*d + 0.0852 v*r + 137 f*d + 17.1 f*r - 30.9 d*r 

Predictor Coef 
Constant -17.511 
v*d 0.73052 
v*r 0.08519 
f*d 137.36 
f*r 17.125 
d*r -30.866 

S= 16.7789 R-Sq 

PRESS = 72626.2 

SE Coef 
2.145 

0.05465 
0.02675 

10.54 
5.158 
3.913 

83.1% 

R-Sq (pred) 

Tp 

-8.16 0.000 
13.37 0.000 

3.18 0.002 
13.03 0.000 

3.32 0.001 

-7.89 0.000 

R-Sq(adj) = 82.7% 

= 81.57% 

Analysis of Variance 

Source DF SS ms Fp 
Regression 5 327448 65490 232.62 0.000 
Residual Error 237 66723 282 
Total 242 394171 

Regression Analysis: Ra versus v, f, d, r 

The regression equation is 
Ra =-0.0109 + 0.000000 v+0.0273 f+0.00000 d+0.00703 r 

Predictor Coef SE Coef T P 
Constant -0.0109038 0.0009205 -11.85 0.000 

v 0.00000000 0.00000500 0.00 1.000 
f 0.0272596 0.0009788 27.85 0.000 
d 0.000000 0.001110 0.00 1.000 

r 0.0070313 0.0005002 14.06 0.000 
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S=0.00389022 R-Sq = 80.3% R-Sq(adj) = 80.0% 

PRESS = 0.00378449 R-Sq(pred) = 79.35% 

Analysis of Variance 

Source DF SS ms Fp 
Regression 4 0.0147271 0.0036818 243.28 0.000 
Residual Error 238 0.0036018 0.0000151 
Total 242 0.0183289 

Regression Analysis: Ra versus v*v, f*f, d*d, r*r 

The regression equation is 
Ra =-0.003ý5 - 0.000000 v*v + 0.0292 f*f + 0.00000 d*d + 0.00335 r*r 

Predictor Coef SE Coef T P 
Constant -0.003-7500 0.0005711 -6.57 0.000 

V*v -0-00000000 0.00000003 -0.00 1.000 
f*f 0.029167 0.001020 28.61 0.000 
d*d 0.000000 0.001122 0.00 1.000 
r*r 0.0033482 0.0002362 14.17 0.000 

S=0.00381817 R-Sq = 81.1% R- Sq(adj) = 80.8% 

PRESS = 0.00364724 R -Sq(pred) = 80.10% 

Analysis of Variance 

Source DF SS ms Fp 
Regression 4 0.0148593 0.0037148 254.82 0.000 
Residual Error 238 0.0034697 0.0000146 
Total 242 0.0183289 

Regression Analysis: Ra versus v*d, v*r, f*d, f*r, d*r 

The regression equation is 
Ra 0.00226 + 0.000023 v*d - 0.000013 v*r + 0.00468 f*d + 0.0266 f*r 

0.00427 d*r 

Predictor 
Constant 
v*d 
v*r 
f*d 
f*r 
d*r 

Coef 
-0.0022622 
0.00002327 

-0.00001313 
0.0046776 
0.0265669 

-0.0042705 

SE Coef 
0.0001696 

0.00000432 
0.00000212 

0.0008334 
0.0004079 
0.0003094 

T 

-13.34 
5.38 

-6.21 
5.61 

65.13 

-13.80 

p 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

S=0.00132686 R-Sq = 97.7% R-Sq(adj) = 97.7% 
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PRESS = 0.000438922 R-Sq(pred) = 97.61% 

Analysis of Variance 

Source DF Ss ms Fp 
Regression 5 0.0179117 0.0035823 2034.78 0.000 
Residual Error 237 0.0004173 0.0000018 
Total 242 0.0183289 

Regression Analysis: Fc versus v, f, d, r 

The regre33ion equation i3 
Fc =- 82.7 + 0.326 v+ 103 f+ 88.7 d+0.00 r 

Predictor Coef SE Coef T P 
Constant -82.708 8.157 -10.14 0.000 

v 0.32557 0.04429 7.35 0.000 
f 103.230 8.674 11-90 0.000 
d 88.748 9.836 9.02 0.000 

r 0.000 4.433 0.00 1.000 

S= 34.4736 R-Sq = 53.8% R-Sq(adj) = 53.0% 

PRESS = 298 815 R- Sq(pred) = 51.19% 

Analysis of Variance 

Source DF SS ms Fp 
Regression 4 329305 82326 69.27 0.000 
Residual Error 238 282846 1188 
Total 242 612151 

Regression Analysis: Fc versus v*v, f*f, d*d, r*r 

The regression equation is 
Fc =- 39.9 + 0.00181 v*v + 110 f*f + 92.6 d*d + 0.00 r*r 

Predictor Coef SE Coef T p 
Con3tant -39.936 5.120 -7-80 0.000 

V*v 0.0018130 0.0002478 7.32 0.000 
f*f 110.452 9.142 12.08 0.000 
d*d 92.62 10.06 9.21 0.000 

r*r 0.000 2.118 0.00 1.000 

S= 34.2362 R-Sq = 54.4% R- Sq(adj) = 53.7% 

PRESS = 295 274 R-Sq(pred) =5 1.76% 

Analysis of Variance 

Source DF ss ms Fp 
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Regression 4 333188 83297 71.07 0.000 
Residual Error 238 278964 1172 
Total 242 612151 

Regression Analysis: Fc versus v*d, v*r, f*d, f*r, d*r 

The regression equation is 
Fc =- 32.4 + 0.555 v*d + 0.0820 v*r + 220 f*d + 5.75 f*r - 26.7 d*r 

Predictor Coef 
Constant -32.380 
v*d 0.55546 

v*r 0.08196 
f*d 220.20 
f*r 5.754 
d*r -26.736 

S= 26.7798 R-Sq 

PRESS = 185601 R 

SE Coef 
3.423 

0.08722 
0.04269 

16.82 
8.233 
6.245 

- 72.2% 

Sq (pred) 

Tp 

-9.46 0.000 
6.37 0.000 
1.92 0.056 

13.09 0.000 
0.70 0.485 

-4.28 0.000 

R-Sq(adj) = 71.6% 

69.68% 

Analy3i3 of Variance 

Source DF SS ms Fp 
Regression 5 442184 88437 123.32 0.000 
Residual Error 237 169967 717 
Total 242 612151 

Regression Analysis: T versus v, f, ... 
The regression equation is 
T=0.0 + 0.000 v-0.0 f 71.1 d+0.0 r-0.000000 v*v + 0.0 f*f - 0.0 d*d 

- 0.00 r*r + 0.931 v*d 0.0000 v*r + 178 f*d - 0.00 f*r - 0.00 d*r 

Predictor Coef SE Coef TP 
Constant 0.00 12.79 0.00 1.000 

v 0.0000 0.1451 0.00 1.000 
f -0.00 33.19 -0.00 1.000 
d -71.08 30.78 -2.31 0.022 

r 0.00 15.50 0.00 1.000 

V*v -0.0000000 0.0007524 -0.00 1.000 
f*f 0.00 33.19 0.00 1.000 
d*d -0.00 28.73 -0.00 1.000 

r*r -0.000 6.849 -0.00 1.000 

v*d 0.93119 0.09036 10.31 0.000 

v*r -0.00000 0.04072 -0.00 1.000 
f*d 177.70 17.70 10.04 0.000 
f*r -0.000 7.976 -0.00 1.000 
d*r -0.000 9.044 -0.00 1.000 

S= 15.8149 R-Sq = 85.5% R-Sq(adj) = 84.6% 

PRESS = 66129.4 R-Sq(pred) = 83.22% 
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Analysis of Variance 

Source DF SS ms Fp 
Regression 13 336895 25915 103.61 0.000 
Residual Error 229 57276 250 
Total 242 394171 

Regression Analysis: Ra versus v, f, ... 
The regression equation is 
Ra = 0.00434 - 0.000000 v-0.0273 f+0.000000 d-0.00465 r+0.000000 v*v 

+ 0.0292 f*f - 0.000000 d*d - 0.000000 r*r - 0.000000 v*d - 0.000000 v*r 
- 0.000000 f*d + 0.0292 f*r - 0.000000 d*r 

Predictor Coef SE Coef T p 
Constant 0.0043413 0.0003969 10.94 0.000 

v -0-00000000 0.00000450 -0.00 1.000 
f -0.027260 0.001030 -26.46 0.000 
d 0.0000000 0.0009556 0.00 1.000 
r -0.0046514 0.0004812 -9.67 0.000 

V*v 0.00000000 0.00000002 0.00 1.000 
f*f 0.029167 0.001030 28.31 0.000 
d*d -0.0000000 0.0008921 -0.00 1.000 
r*r -0.0000000 0.0002126 -0.00 1.000 

v*d -0.00000000 0.00000281 -0.00 1.000 

v*r -0.00000000 0.00000126 -0.00 1.000 
f*d -0.0000000 0.0005494 -0.00 1.000 
f*r 0.0292067 0.0002476 117.95 0.000 
d*r -0.0000000 0.0002808 -0.00 1.000 

S=0.0004 90970 R-Sq 99.7% R- Sq(adj) = 99.7% 

PRESS = 0. 0000623301 R-Sq(pred) = 99.66% 

Analy3i3 of Variance 

Source DF SS ms Fp 
Regression 13 0.0182737 0.0014057 5831.43 0.000 

Residual Error 229 0.0000552 0.0000002 
Total 242 0.0183289 

Regression Analysis: Fc versus v, f, ... 
The regression equation is 
Fc = 60.5 - 0.217 v- 172 f- 236 d+ 

- 0.0 r*r + 1.16 v*d - 0.0000 v* 

Predictor Coef SE Coef T 
Constant 60.53 19.08 3.17 

v -0.2170 0.2165 -1.00 
f -172.03 49.53 -3.47 
d -236.21 45.93 -5.14 

0.0 r-0.00000 v*v + 110 f*f + 92.6 d*d 
r+ 369 f*d - 0.0 f*r - 0.0 d*r 

p 
0.002 
0.317 
0.001 
0.000 
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r 0.00 23.13 0.00 1.000 

V*v -0.000000 0.001123 -0.00 1.000 
f*f 110.45 4q. ý2 41. ý3 U. Uý)'/ 
d*d L12 . 61, 4, ' . 'ýH I. -, (; U 

r*r c "1 0 '1 U, .22 -0C 
v*d -1 11 c 0.134H ý" 11 

v*r -0.00000 0.0607-/ -0. oll, i. 11 11 u 
f*d 368.65 26.41 13.96 0.000 
f*r -0.00 11.90 -0.00 i. 000 
d*r -0.00 13.50 -0.0e i. 000 

S- 23. 6006 R-Sq = '79.2' R - Iq (ad 
_i 

H. 

PRESS = 148401 R-S q(pred) = 75.7C-ý 

Analysis of Varýance 

Source DF -, ýO ySF 

Regression 13 484601 37277 U. 93 0 

Residual Error 229 12-ý551 5ý7 

Total 242 612151 

Regression Analysis: Fc versus v, f, ... 

The regression equation is 
Fc = 60.5 - 0.217 v- 1'72 f- 236 d+ 

- 0.0 r*r + 1.16 v*d - 0.0000 v*r 

Predictor Coef SE Coef 
Constant 60.53 1-9.09 3. '. j 
v -0.21ýO 0.2165 -1.00 
f -172.03 49.53 -3.47 
d -236.21 45.93 -5.14 
r 0.00 23.13 0.00 
V*v -0.000000 0.0011,23 
f*f 11-0.45 4 1; . 1)2 2 

. 
23 

d*d 92.62 42 . 
88 2. II C, 

r*r -0.00 10.22 -0.00 
V*d 1.1626 0.1348 8.62 

v*r -0.00000 0.06077 -0.00 
f*d 368.65 26.41 13.96 
f*r -0.00 11.90 -0.00 
d*r -0.00 13.50 -0.00 

S= 23.6006 R-Sq ý 79.2% R-Sq(adj) 

PRESS = 148401 R-Sq(pred) = 75.70 

3.0 r-0. u000u v*V t f*I t 11 ll .G (i , (1 
+ 3ü9 f*d -U. 0t*rU d* t 

i, 
Li .0 L', 2 
0.3 -' 

-7 
0. ÜÜ1 
0.000 
1 . 000 

uu32 

0. OC)0 
1.000 
0.000 

Analys's of Var-4ance 

Source DF SS ms F, p 

Regression 13 484601 3727-; 66.93 0.000 

Residual Error 229 127551 55-7 

Total 242 612151 
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Regression Analysis: T1 versus v, f, ... 

The regression equation is 
TI=9.00 -0 . 19'7 v- 18.5 f-I. '70 d-0.85 r+0.001 Gýl v* v 

+0.00 d*d + 0.00 r*r -0- '-HC v*d - '2. v* II ý"- '! '11'"-"! ': 

+ 17.0 d*r 

Predictor Coef SE Coef T P 

Constant 9.0011 3.784 2.38 0.018 

v -0.19723 0.0429'j -4.59 0.0,00 

f -18 . 
535 

d -I. ý00 

r -0.850 4.589 -U. 9 0. H3 

V*v 0.00116188 0.000222-7 3.2ý 0.000 

f*f 0.000 9.822 0.00 1.000 

d*d 0.000 8.505 0.00 1.000 

r*r 0.000 2.027 0.00 i. 000 

v*d -0 . 118587 
0. IJ2 C74 -( . 

q'i "I - '' 0 ý, 

V*r -0.09293 10 . ul 20 0 
f*d 31ý 

. 
'7 lq 23 

f*r 19.859 2.36,1 41 C, .uu li 
d*r 17.022 2.67ý 6.36 0.000 

S=4.68087 R-Sq = 82.9ý R- Sq(adý) 

PRESS ý 586 3.33 R-S q(predý ý 7q. HB', 

Analysis of Variance 

Source DF SS ms Fp 

Regression 13 2411-7.1 ! 855.2 84.6ý U. IjOLI 

Residual Error 229 501-7.5 2-1.9 

Total 242 29134.7 

Regression Analysis: Ral versus v, f, ... 
The regression equation is 
Ral = 1.35 - 0.0295 v-2.77 f-0.25 d-0.12-1 r+ v*v 

* 0.00 d*d + 0.000 r*r - 0.0278 v*d - 0.0139 v*r ! *d 
* 2.55 d*r 

Predictor Coef SE Coef T p 
Constant 1.346' 0.5662 2.38 0.018 

v -0.029512 0.006426 -4.59 0.000 
f -2. -773 1.470 -1.89 0.060 
d -0.254 1.363 -0.19 0.852 

r -0.1272 0.6865 -0.19 0.853 

V*v 0.00024222 0.00003332 7.2ý 0.000 
f*f 0.000 1-470 0.00 1.000 
d*d 0.000 1.273 0.00 1.000 
r*r 0.000L, 0.3033 0.00 i. OLIC 

V*d -0.027811 0.004002 -L. 95 0.000 
v*r -0.01390S 0.001804 --7.71 O. UOO 
f*d 5.9430 0. ý838 -7.58 0.000 
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f*r2.9715 0.3532 8 . 41 0.000 
d*r 2.547'-' 0.4005 6.36 0.000 

S=0.700391 R-Sq = 82.8% R-Sq(adj) = 81.8% 

PRESS = 131.272 R-Sq(pred) = ý9.88ý 

Analysis of variance 

Source DF SS ms Fp 

Regression 13 539.950 41.535 84.67 0.000 

Residual Error 229 112.335 0.491 

Total 242 652.285 

Regression Analysis: Fc1 versus v, f, ... 

The regression equation is 
Fcl = 88.2 - 1.93 v- 182 f- 16. ý d-8.3 r+0.0.5q v*v 

+0.0 r*r- -. 82v*d- 0.9'] v*'- + 3ý', f*d 

Predictor Coef SE Coef Tp 
Constant 88.22 37.09 2.38 0.018 

v -1.9332 0.4210 -4.59 0.000 

f -181.6-7 96.28 -1.89 0.060 

d -16.66 Aq. 30 -e . 19 0. HD2 

r 33 44 

V*v 0.015867 0.0021R3 -, 0 
f*f0.00 9(,. 2- 0. U OUL) 
d*d 0.00 93.36 0.00 i. 000 

r*r 0.00 19.87 0.00 1.000 

v*d -1.8217 0.2621 -6.95 0.000 

v*r -0.9109 0.1181 -7.71 0.000 
f*d 389.30 51 . 34 7.5H 0.00L, 
f*r '194.65 23.14 8.41 U. 000 
d*r 166.84 26.24 6.36 0.000 

S= 45.8788 R-Sq 82.8% R-Sq(adj) = 81.81 

PRESS = 563268 R-Sq(pred) = "79.961 

Analysis of Variance 

Source DF SS ms Fp 

Regression 13 2316844 178219 84.67 0.000 

Residual Error 229 492014 21-05 

Total 242 2-7 9PS 5q 

lix 5 
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Appendix 6 

Table 6.1 The regression result by Minitab software 
CI C2 C3 C4 CS C7 C-1 Ce CIO 

Std0fdof RunOnhw, PtType Block& vfdr V^v 
Iý 183,1 25,0.75 020 15 625 05626 
2 i17ý 

_2 
60 t Oý75 1.6 3600 00225 
06f - __R, 

15, 
_4 3 53 3110., 075 0.3WO 05626 

4 146 4f 144' 019i 020,0.81 20736 Oý0900 
5, i6-3-- 

_11 
60 010ý 045 0 5; 1 36W 0 OWO 

4 26 811 25 O. 75i 0.75 081 525 05825 
7 169 711 25 015 0,75 04; 625 00225 
8 124 811 60 bý30 075 0 4; MO 0 09M 
0,192 9,1 60 0 15 020 -1 iý 3800 00225 

10' 44- 10" 1ý -- I --- 60 t 030ý 0.75' 64! 3600 0 09M 
11 229' 11,1 1 144 0 36' 0,45 0.4 20735 0 OWD 
ii, 12 11 60 030 075 041 3600 00900 

-i3 13.1 -1 60.030.020, oaý 3600 0 09W 
144 015 0.20 04 20736 00225 

is 961 015 075 3600 C 0225 04 
let 1 25 0 15 825 00225 0.45 04. 

1 93ý 17 1 25,030 16 626 0 09W 0.20: 

. 
18 18ý 1.144 075,045,04 20738 05625 
19 11OF 19! 11 60ý 015.020 05 360C 0 0225 
20 IN 

_20,1 
00ý 0 15ý 0 75ý 16 3600 00225 

21 
,1 

21.1, 
-I --- -- 

11"I 
- 

075.0 20ý 06 20736.0 5625 ý 
22 187! 22,1 1 261 0 75 075 04 625,05625 
23 2021 23 1 60 0,30 0 45i 04 MOO, 0 D90C. 
24 2061 24 1, I so 0,75 1 02 -0 08 - 3600 05625 
25 21' 25 

--I'- 
! 1- 26 1 075,020,16 626 05625 

26 172,26 1 25ý 030,020,04 625 0 090C 
27 150 27' 144 030 045 16 20736 0 090C 
28 97 28 

-- ---I 
1 254 030.075,04 M0 0900 

29 120, ii, IIW0, 
-30. -- -- -0 

18.3600.00900 
t1- -- _Iq 30 2D6 30,1.1 0.30 

-0M 
08 36DO 00900 

31 174 31 1 25.0.30ý 020,1.6 62t, 0 D900 

32 221 1 144 0.15 045 0.8 20736 00225 
33 2ý 33,1 11 25 0,15 UO; 0.8,625.0,0226 
34 48 34,1 Iý 60 075 020 1.6 3600 0.5625 
35 39' 35 030 020 1.6 36M 00900 

T 36 36 25,0.30 1 0.75 0.4 626 U vWUU 
17 214 37: 1 60 0.75 075 0A MO 0.5625 
38 212 3f 1 001 06 045 08 3600 05825 
39 '75 39 -1 1 1441 676 020- a 20736 05625 
40' 147 40. 

-- 
11 144 0.20- 116,20736 0 09DO 

41 132 41.1 1 0751 0.45 1,6. MOO, 05625 
42 1W 42 TI U4 6751 -6-is, 6-4,20736 05825 
43 125 43 1 60' 0,36t 0.75- Of 3600 O. Lvx)u 
44 118,44 60,0 is! 075 of 3600: 00225 
45 160 

_45 
1 25 030,075 16 625': 00900 

46 166, - 4- -I : i- 
1 25 015 0.20 1.6 625 00225 

[? 7 
48 

1 25 045 Is 625' 0 ow 
48 86,1 1 25 015ý 0 45' 04 625ý 00225 
ill -- -- -- -629 Si*- 49 

-, 11 25' 
-0 

15 1. 
- 

04' 6261 00225 
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Table 6.2 The regression result by Minitab software 
C1 C2 C3 C4 CS CG C7 CS CS Cill 

Stdordw RunOrdw PtTyl)* Block* Wfdr 
so 50 1 60 015 020 04 36M 00225 
51 22.51 1.1 25 0 75 045 04 825 05625 
52 69 52 1 1: la! 20736 0 OOM 0. ýqj 045 
63 159! 53' 11 144' 4.75 ý 04ý- 1-8 20736' 05625 

54 11 54' lit- 25* 010' 0 45' 0.4 625 0 09M 
55 114 55 11 0151 0 45' 3600.00225 
59 100ý 25 076,0 20' 04,625 05625 

5i 57 291 V, I* - --T -' -"-' 60' 01 020 08' 3600' 00225 
ss 128' 58 1'1 00 075 020 08,3600' 05625 

-_4 52 84ý leý 825 00225 
0 030 0 60 200 i 60' 1 80 0,20 08 360C 00900' 

61' 239; 61 144 076 0 iý; 4- - 06 - 20736 . 05625 
62' 20 f 62' 25 075 0 201 08' - 625 05625 
63 19; 53 11 25 0 75 020 04 625 05625 

i 
64 lei 04' 1 144 075 015 ZOT30 00023 
65 2 05ý 1 60 0.30 0,01 16 36DO 0 DOOC 

81,1441 0 76,075 16 20738 0 5625' 
67 1864 67 251 0,75' 045 06 625 05625 
as 1091 W4,0'15ý 0 20i 0A. 36M, 00225 
69 10,69 11 26i 030 0 20i 04 625 00900 
70 2011 70 11W0: 30 020 16 36M 00900 
71 151,71 11 144 030 075 0.4 20736 00900 
72 137 72' 144' 015 0 20' 0.8,20736 00225 
73 30' 73' 1 60' 015' 0 20ý 16' 3600 00225 
74 63' 74' 144' 615- O'S' 16,20736' 00225 
75 41 75' 25 0ý 15 045 0.4 625' 00225 
76 154 76 1 075 020 0.4 20736 0.5625 
77 80ý 77' 11 144 075,0 75.08,20736 05825 
78 

' 
121 

- 
78 

-- 
I--1.60ý 0.30i 045,0.4.3600.00900 

79 133' 79,1 50,075,075 OA 36M 0%25 
so 144 66- -1,144 0 75' 1.5 20736 0.0225 0151 
81 155 81 1 11 144 0751 020 08 20736 0.5825 
82 40.82' 60' 030 0,45 04' 3W, 0 09DO 
83' 11 199. $3.25ý' 0 75 0.75, i. e. 625: 05625 
84 112 84 60 i 0' 15; 045 04 3600 00225 
as 115 85 11 io' is, 076 04 3600 00225 
86 25 86.25 0751 0.75 04 626 0 5625 
87 186 87 25 0751.045 16,625; 06625 

58 &a!. -'144 0151 045 04,20736,00225 
79 99t 144 0 75i 075.04.20738 06825 

90 101 sot, 25' 075 0 2C 0,8 625,05625 
91 -91 1 0,30 046,18 - 20738 00900 
92 Sa 9ý 0.30 0 76ý 08 525 0 090C 
93 119, wII 1ý- 00 0.30 020 08 3800 0 090C 
94 210 C-4 O, i-b-- 020 18 3800 , 05825 
96 157 95 045- 0 4' 20736' 05625 
96 216 qeý 11' So -0 YC - 075* 16- 3600' 05625 
97 Z27 144 1 0.30' 020 0.8ý 20736' 0 09DO 
is 140' 144 0.15' 046 081 20736 00225 
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Table 6.3 The regression result by Minitab software 

IN 9 99 1 1 25 015 075 6 625 00225 
IN 138 00 1 1 144 015 020 16 20736 00225 
101 103 

' 
101 Iý 1 25 076 045 04 625 05625 

102 237 W2 144 0.75 020 Is 20738 05625 
103 

' 
91 

' 
103 

* 
1 1 

- 
25 030 020 04 625 

. 
00900 

104 ?2 ICM 
' 

I i- 144 0 30 0,75' 167 20736 
. 

00900 
105 122 ý 105 1, i- 60 0 30 * 0 45' o 8: 3600 0 o9w 
106 136! 106 1 1 

+ 
144 016 020 04 20736 00225 

107 45! lo 1 1 60" 030 0 75 16 3600 00900. 
108 lie 108 1 60 030 020 04 

' 
3600 ODOM 

109 54 109 1 do 075 o 16 3600 05825 
110 217 11110 1 144 0 15 0 2C 04 20736 0 0225 
111 238 111 1 144 0 75 020 08 20136 05625 
112 223 112 1 1 144 015 075 0.4 20736 0 0225 
113 6 113' 1 25* 015' 045 08 825 00225 
114 234 114 1 1 144 030 075 16 20736 0 ONG 
116 182 115 1 26 0 75 020 08 625 0 5625 
lie 199 116 1, 60 030 020 04 3600 0 0900 
117 ID 117 1 26 030 075 08 625 00900 
lie 64 lisi 11 144 0,30 020 04 

' 
20136 00900 

11119 37 119ý I 1, 60' 030 0 20' 04 
' 

36M 00900 
120 IN -, 126 1 1 26' D 75' 045' 

-08 
625 0 5625 

121 46 121 1 60 075 020. 0.4ý 36M 05025 
122 78' 1221 1 1441 075 

' 
045 

' 
16. 20736 05625 

123 3* 1V3- I - 25 015 020 16 625 00225 
124 1 124 1 1 25 015 020 04 625 00225 
125 123 125 1 1 so 0.30 045 1.6 3600 00900 
126 92 126 1 25 010ý 020 0.8 625 00900 
127 148 127 1 1 1" 030 045 04 20736 0 ODOU 
128 28' 120 -1 1 60 0.1 5i 0.20 OA 3600 00225 
129 241- 1" 0751 0 75 0.4' 20736 05625 

130 34 130'ý 1 1 . 60 0 15! 0 75 0.4 3600 00225 

131 242 1 11 144 9751 075 08 20738 05825 
132 171 1321 1 1 . 25 0 0,75 Is' 025' 00225 
133 83 133 1 1 25 0151 020 08 625 

' 
00225 

134 N8, 144' 030, 010 1e 20736 
, ' 

0M 
135 143 135, 1 1 1,44 0 16: D 75 oe. 20738 00225 
136 139 138 1 144 0 151 . 045 04. 20736. 00225 
137 164. 137 1 25- o 020 625 C 0225 
138 is i38i I 1 25 0 30: 0,45 I. A 625 00900 
139 71 130 ý I 1 1 144 030 075 . 08 , 20736 00900 
140 162 140 1 1 144 075 075 1Z 20136 05625 
141 218 141 144 0 is 020 08 20736 00225 
142 232 142 1 1 144 030 075 04 20736 00900 
143 197 143 1 1 SO! 0.15 075 01 3600 00225 
144 168 1441 1 1 25 0 15. 045 1.6, 625 00225 
146 77 145 1 1 1W 0 75 045 0.8 20736 05825 
146 155 145( 5 

L 
1 
- - 
L 11 144 

' 
D. 75 045 

' 
0.8 20736 05625 

147 152' 14i 
_ _I 

L__ 
__ 

I L__ 144 030 075 08' 20738 00900 
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Table 6.4 The regression result by Minitab software 

MOMM RUfVOF04w. PITY" 

148 a 148 11 25ý 
711- 149 207 149 1 

ISO 20l5 150 1 
151 24 151 1 25 
152 243 152 144 
153 N' Ml- -- 1 60 
154 94 Im -1 25 
155 134' 155 50 
156 96* 56 25 
157 173 J! 
is$ 87 158,1 25 
159 145ý 150t 144 
160 14 i6o, 1 25 
161 so; 161,1 144 

25 162 23 
163 Sol 163 144 
164 1 164 25' 
1165 a 165 11 25 
Ise 129 ISO I1 60 
167 181 167 11 25 
168 219* 11 144' 
169 36' leg I1 1"' 2- 

170 17 16- 25' 
M 73 171: 1v 
172 167 172 1 25 
173 65 1731 11 144 
174 if 174 11 60 
175 49' -- i75' Go* 
176 Z24: 176' 11 144' 
177 1m; 177 11 Go 
178 70 178 1' 
179 47' 179' so 
Igo go! 2f 
181 -66,144 * 

182 loo! 182' 1 25* 
M 

iT7--- m' 144 
194 1021 44 25 
las 144 
186 1-91, 
1$7 95: 107 1 25 
las is lea 25 
189 621 189* 144' 
190 233 190.144 

191 149 191 144' 
192 154,192. M. 
193 ill 193 1 25 

IS4 Iii-194* I 

195 195,25* 
196 196 1 25 

drv, v rf 
0 lb* 615,08 625 00225 
oý io , 0,7ý* -1 -i 3600 00900 
030,075,04,3800,00900 
0 75 045 ial 625 05625 
0 75 075 le. 20736; 05625 
0 15 045 06.3600,00225 
0 30; 045,04 825 00900 
0 75; 0 75 08,3600 ý 05625 
0 30 ý 045 le, 625 00900 
0 30! 02o* D e' _ä25, o Gooo 
0 15 0.45' iß' 625' 00225 
0 30: 020 04,20736,001)00 
030,045 251 00900 

20738 00225 0 15 0.45 0 
075 045 08 625,05825 
0 30ý 0.20* - 1,6 - 207384ý 00900 
0 15! 0 75' os . 625 00225 
0 15! 0.45,1.6 6251 0,0225' 
0 75ý 020 

, 
li -- 

- 
3600: 05825 

0 75 ý 020 0.4 625 05625 
6. W 0.20' 20738' 0.0225 
0 30!, 045 0 8? 20738,009m 
0 30! 045 081 625.0.0900 
075,020 0.4 ý 20736 05825 
0 15i 045* (). U 625 * 00225 
0.30 020 0. eý 20736 0,0900 
0 30' 046,9. a 36W OOWO 
0 7s* Deý 36w 05825 
015 075 0.820736. 

-0M5 075 045 0.4 3600 0.5826 
030,6 0. -4 20736 00900 

0 075 0 caý 3W0 0 b625 
OM (10900 

015 020 0.8,20736 00225 
015 075 äw 05625 
d. Wo 046 0.4 20736,00900 
0.75 020 18 625.05625 
030 0 45: 0ßý 20736.00900 
015.0 20 ý os, 3600.00225 
03,0 0 45! 0. a. 625 00900 
0.30ý 0 75' 1.6; 626.00900 
0 15 0 75! OA 20736 0,0225 
030 0 08* 20736 00000 
OX 0451 os. 20735.00900 
075 645 04 825 05625 
030 

_020ý - 
OJ. 625.00900 

030 0-45; le 3000,00900 
0.15 00 M 00225 
0.75,0751t te 625 j C. m25 
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Table 6.5 The regression result by Minitab software 
Ci C2 C3 C4 CS ce C? : ce C9 Cie 

StdOrder, RunOrder, PIType, 
ý 

Bkxft vfdr V*V f*f 
1$7 lu 19.11 11 25! 075 075 08 6251 05525 
198 90 198 1 1' 0150751a 625 00225 
11"ý 113 199! 1 ao 6,45 08 3600,00225 
200 17 200: ji i, 25 0.30 075 09 625: 0 OWO 

--26 015 046 08 625 00225 201 86 201 
202 188' 2024 26 0 75' 0 08 025' 05625 
203 127 203' 11W 075,020 04 3600 05625 
204 135 204! W 0-75,075,18 3600.06625 
205' 246' i6s: ij 1 144.0.751 045,16.20738,05625 
206' 33, i0a I 0.115'i 045 1a 3600 00225 
207 153 207,1 1 144 O. io 0 75* 1 ý' 20730' 0 D9(X 
208 36 208' 1 6.16' 0 75' - 1-6,3600' 0 0225 
m 51 209 i11 50 075 045 1a 3500 05625 
210 213 210ý; Iý W1 0,75 045.16 3600.05625 
211 215 211 11 60 0.75 075 Do 3600 0 M25 
Z12 158' 212! 1 W! 075' 020 16 20735,05825 
213 238' 213 iI1 144 , 075' 0 46' D4* 2,07361 05625 
214' 142 214' 1 144' 0 15' 075' 04 20738' 00225 
218 60 215: 11 1" 015" 045 16' 70738' 00225 
216 7 218 11 25 015 075 04 625 00225 
217 175 217 11 25 D 30 045 04 625,0 0900 
2111 105 218, Ii 1 25 075 0.45 Ia 625' 05625 
219 el 219ý 11 

1 

1 .111 144 015 075 04.20738.00225 
220 31 220: 11 Go DIS 0.46 04 3600 00225 
221 16 221' 1 25 0- 30 0.75 04 625 0 OOCA 
222 236' 222 144 075 0.20 04,20738 05625 
223 62 223 11 so 075 0.75 04 3600 0 562b 
224 57 224 11W 015 0,20 16 20736 00225 

225 208 225 11 60 075 0.20 04 3000 05825 
60' 0151 0.45.16,360C.. 00225 226 195 226 1 

227 126 227 11W 030i 075 Is 3600,00900 
1 60 075 045 ()4 C, 226 21* 228 1 3600, j 6825 

229 220 229' 11 144 615ý 045 64 20736 0022S 
'iý 25' -07s", - 230 108.230ý 0.75' 16,625,06625 

231 ill 231 11 50 0 15! 020' Ia, 3600 00225 
232 

1 
13* 232 11 60' 6 75 1 045 08 3600 05625 

1 0.75. laý 20736,00225 233 225 233 11 144 15-r 
234 163 234 11 25 0,15 0,20.04.625; 00225 

235 194 235 11 60 015 045 08 3000 00225 

236 222 236 144 0 15 045 16 20736' 00225 

237 a$ 23? 11 25 0 is! 0.75' 04' 625' 00225 

238 35 238 11 60 OW 0.75 00 3000 00225 

239 193 239' 11 60" 0 IS! OAS 04 3600 00225 

240 12 240 1 25' 0301 0.20. Ia. 025,0 090D 

241 226 241 1 144' 030,020 04 20738 00900 

14*' 15 045' 16 . 20738 0.0225 242 242 1 144 0 
243 50 243 11 io, 0.751,0.45* 68' 3600' 0.5625 
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Table 6.6 The regression result by Minitab software 

d*d r*r v*d V*r fd rr dr Ra T Fc 
00400 256 5 fyý 4C 0 

' 
01500 120 0 32 D 0281250 $730 3033 

05625 258 4500 96 0 0 1125 024 1 20 ý0 0011250 ! 5714 4095 
05825 064 4500 480 05825 0,60 0 50 0 0140625 '8569 102.372 
00400 064 2880 00600 024 016 00022500 20 '14 2 T95 
02025 664 

, , 
2700 0 0 1360 024 C 36 0 0022600 18657 5897 

0 5625 
' 

6 64 1051 204 0 5525 i coo 0 014D625 060 . 32 737 42655 
ý 5625 tif 751 1 00 0 11 , . 030 00002812 ý 6,547 1 706 
05625 018 45.00 14 n - 09750 0.12 . 1 0 30; 0 00 1 125ri . 31.426 16380 
00400 256 1200 960 0 03W 024 0 32: 0 00112NJ 4 19U u 291 
05625 064 4500 460 02250 0,24 060 0 D022500 31 428: 16 38C 

02025 0.16 64,50 57.6 01350 0 12 0 18 0 D01 1250 45256 14 152 
'15625 ols 46,00 240 0,2250 012 0 30 0 0011250 31 426 16 38C 

04DO 0,64 1200 480 0 06M 024 016 0 D022500 8 381 1 165 
00400 016 2880 5761 00-100' , 006 0 OB'D 0002812 . 10 057 060 
0 5625' 616* 46m, -iýýO' 6i Ifs, 606, 0 30'0 0002812 15714 4005 
32026 016 11 25 10.01 9 ov; ý- 096- 0 16 U OU02812 3 928 0614 

00400 
' 

256 
' 

500 
' 

40 
,0 -- 

00800 
, 

048 
. , - 

012 0 00450DO , 3492, 
' 

0485 

0 2026 0.16 64 80 
.6 0 Viý- - - -6 30 0 18 0 0070313 113 14C 

* 
88 45ýD 

0 040C * 6. fjý* 1ý 60 
- 

4.0* 0.6 0 1ý' 0.16 0 0005626 4 190 
' 

0,29, 
0 5625' j, ý6' -- 4606 M. 0, 01 45ý 0.24' 1 ý20 0 0011250 15 714 4095 
0 040C 

' 
0,64 2880 

, 
115.2 0 ISM! 060. 0 16 0 0140525 60284, 17.412 

0 5625 0,16 18 75 io. 0 0ý5625ý 0.30 0.30 00070313 32 737, 42 655 
02025 0ý 16 2700 24.0 01350 012 0 18 0 0011250 18,851, 5.897 
00400 

' 
0.64 1200 460 

' 
01500, 060 0 16 0 0140625 20952 

' 
7,280 

C 0400 256 500 40 0 o 1500: 1,20' 0 32 0 0281250 8 730 3033 
C 0400' 0 16 500 100 0 0600ý 0.12' 

' 
006 00011260 

' ' 
3 492' 

' 
0485 

c 2025' 256 6480 2304' 0 13501 0 48 0 72 0 O(AbDOO 45 256 
- 

14162 
c 5625 016 . 18,75 , 100' 0 2250 

ý 
012 a 30 0 ODI 125C, ', 3.095 tM 

0 0400 256, 1200 goo 00800, 0,48 0 32 0.004600-D 5.381 1 165 
05625 0 64 45 00, 48 0 02250 24 0 0 60 D 00225CO 31428 16 380 

- - , ' -- . - 1 , ' 00400 2 N iý, 670 406 00660 0.48 
' 

0 32 0 OD45UOO 
' 

3.492 
- 

0.485, 
0 2025' -664ý - -6480' 1152 00675 1 0.12 0 36 0 OD05625 22.626 - 3.538: 
ta 0400 0 64 500 200 C 03001 012 0 16'0.0005625 1.746 * 0121 
C, 0400 258 1200 960 0 1500ýý 1.20 0 32 0.0201250' 20.952' 7200 
00400 2 56 ' 11OD' 960' 0 OSM! 048 C 32 0 OD45000 8381 1 165 

05625 016 ' 1875 100 C 2250! 012 0 30 0 0011250 13.095' 6025 
05625 016 4500 240 05625 0,30 0 30 0,0070313 78589 102 372 
02025 064 2700 480 033751, 0.60 0 36 0.0140625 47 142. 36854 
00400 256 28.80 2304 0 1500i 1.20 , 0 32 0,0201250 50,284 17 47ý 

' * 1 00400 2 58 28.80 
' 

2304 
' 

00600 0.48 0 32 0 OD45000 20 114 2 795 
02025 256 77 00 960 03375 1 20 0 72 OM81266 47 14ý iO 854' 
0 6W5 016 

, 
108.00 576. 0 6825 030 0 30.0 0070313 168 566 245694 

0 582 5 
- 

064 , 
, 

45ý00_ 480 
. 

02250, 024 0 6c U, OD225CK) 31.428 16 380 
6625 

' 
664 
- 

45, OD 
'- - , 

48 0 01 -1 125 0.12 060 . O. OD06625 
' 

15 714 4095 
5625 2 56 4 75 40 0 0 22501 040 1 20 0 OD45000 13095 6825 

,. -. 0400 256 5.00 400 003001 024 0 32'0.0011210* 1 746 0121 
D 2025 256 11,25 400 

4 
01350 048 0 72 0.0045CW 7,957 2457, 

220 
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Table 6.7 The regression result by Minitab software 

Cil 
d'd 

50 00400 0 16 
61' 0 2025 a 16' 
52 02025 256 
53 02025 2 56 
54 0 2025" 0 16 
55 02025 256 
so J 0400 D 16 
57 1.0400 064 
58 OX400 064 
59 00400 256 
50 0 0400 C 64 
61 0 2025 064 
62 C, 0400 054 
63 00400 0 15 
64 C 5625 084 
65 1,2025 256 
66 C 5625 256 

97 02025 064 

se 0 D400 0,16 
99 U 040() 016 
70 U 0400 Z56 
71 05625 0.16 
72 1) ; )400 0.64 
73 00400 258 
74 05625 256 
75 0 2125 016 

76 0 CA 00 0,16 
77 Z) ! 625 064 
78 02025 016 
79' D 5625 old' 
80 D 5625 256 
81 C 0400 C 64 
82 C 2025 0 16 
83 C 5625 256 
84 Q1 2025 016 
86 US625 016 
86 05625 016 
87 02025 258 
"D 2025 0,16 
89 35625 016 
90 J 0400 064 
91 2025 2 56: 
92 5625 064 
93 0 CA00 064 
94 0 C4)0 256 
96 C 2025 016 
96 c 5625 256 
97 00400 064 

es 02026 064. 

v'd vIr rd rr crr ; Ra T Fc 
12 ao> 240 0,0300 

'- 
0061 0 0810 0=812' 4190.0.291 

l' 25i 100 0M75 0.301 
-0 

18 ý0 0070313,19.642.15. l" 
6480 2304 01350 0.481 0 72 0 0045D00 45256 14 152 
64 80' 230.4 0,3375' 1.20 0 72-0 0281250 113 140 u450 
11 25 10,0 0 13k 0121 0.18 0 001 i 250 7 a6-, 2457 
7700 9to 0.0675 t 0241 74 10 72.0 0011250,9428.14 

5D0 lo 00 15w- 0301,0 08 0 0070313 8730.3033ý 
1230 480 00300 0 12 ý0 16 0 0005625 4 190,0291 
1200 480 01566,0 60: 0 16 0V4C625 20952 7280 
5 clo 400 00300 024 032 00011250 1 746 c 121, 

12.00 480 c 06001 --024-- 01-6 0 00225W 8381 1 165 
64.80 1152 0 3375ýý 6. ÖÖ' C 36 3.0140625 , '13 140 88450 

5.00 200 0 1500! ý 0.60 0 16 3.014062b 8730 3 n33, 
500 100 0 1500 030 008 0.0070313 8.730 3033 

10800 1152 0 5625 0.60 0 60"0 0140625 188566 245694 
2700 960,0135011 048 0,72 0,0045000 18.857 5897 

10800 230.4 0 5626' 120 120 00281250 1885m, 245694 
1125 20.0 0.3375 e60 0 36 0 0140625 19,642 15356 
1200, -- -240 003D01 , 006 008 00002812 4 190 0291 
500,60 0 0600! 012 008 00011250 3492 0485 

1200 95.01 oýLEW 048 032 00045000 8 381 1 165 
10800 57 e 02250 012 03,3 G 00 11250 75 426.39311 
2860 115.2 OOWO 0 12 016 00005625 1005,1 0699 
12 00 96, oý 0.0300 024 032 00011250 4 190 0291 

10800 230,4 01125 024 120 0 0011250 37713,9828 
11 25 10.0,0 0675' 0 WO 0002812 3928 0614 
2880 576.01500 0 30,0 08* 0 0070313 50 284 ý 17 472 

10800,115 2' 0 SU5 060,0 60: 0 0140625 188 566: 245694 
2700 24 01350', 012,0 1810 0011250 16657 5897 
4500 24 00 552ý" 0.30 0 30 0 0070313' 78 ffl 102 372 

« 06 00 230 4 011251 024 1 20! 0 00 11250 37,713' 9828 
2880' M2; 01500+--- 060 0 16! 0 0140625 . 50,284 17472 

oý 012, 
-- 

0 18 
10 

0011250 ý 'ßý85', 5.897 
18 75ý 400,0 5432e�" 1.20 1 20 j0 028125c ý 32 737 42655 
27,00' 00 C675 

4 
0()6 0 18 ý0 NO2812' 9428 1474 

45 0(1 -ii 0 0,1125 0 06 030 0 0C02812 15714 4. M 
le '5ý 100,05625' 32 737 42ýM 
11251 400 03375 1-26 0.72 0 0281250 19642 15356 
64 80 576 0 0675 000 -0. iä'ü 0002812 22628 3 538ý 

108D0 576 05625 03D1 010 0 0070313 188566 245694 

500 200 01500- OW 0 16'0 0140U5 8 730 3033, 
64,80,230 4! 01350,0 Wý 0 72 0M46000 45256 14 152' 
1875 200 0 2250' 024,0 50 0 0022500 13D95 6 625, 
1200 480.006m 0.24 0 16 0 0022500 8381.1 165 
12.00 960 0 1500ý 1 20_ 0 32,0.0281250.20952,7200 
6480 576 C 3376ý 30.. G 18,0,0070313 113140.88450 
4500 960 05625 120 1 20 D 0281250 78569 102372 
28.80> 1157,0 QQW* 916 D. OOU5(KI 2oý 114 2 T95 
G4A0 1152 0 Do? "; 012 0 30 'Z, 000502,5 22 626' 3538 
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Table 6.8 The regression result by Minitab software 

05625' 256' 18,75 400' 0 1125' 024 1 2U 0 0011250' 6547 1 706 
100 

., 0466- 2 56 28 80 230 4ý 00300 0,24 0 32 0 0011250; 10057 0699 
101 32025 016 

' 
11 25, 100 

' 
03375 030 

- - 
0 18 0 0070313 i 

- 
19642 15356 

102 00400 2 56 28 aO 236 4 01500' 120 6 32 10 02512501 50284 17472 
103 0 D400 016 5.00 100 00600 6,12 0 08 0 0011250 3492 

' 
0485 

104 C 5625 2 56 
' 

10800 2304 
' 

02250 1 010CA5006, 75 426 39311 
105 02025 0 64 2700 48 0 

' 
0 1360' 0 3610 022500* 18857 5807 

106 0 D400 0 16' 2880 576 00300 006 0 08 ý0 0002012 1: 10057 u 699 
107 " 5625 256' 45, CC 960' 0 2250 0.48' 1 20'0. CO45000' 31428 16380 
108 : _1 OAM 016. 12 W 240 00600 0.12 0 08 0 0011250, 8ý381 t165 
109 -i 5625 256 4500 960 05625 120 1 20 0 0281250 78569 102372 
lio G 0400 0 16 28 66' 578' 0 0300' -- -C Ci 0 08,0 OD02812 10057 0699 
111 0 0400 064 , 29,80 -I Iý -4 2 01500 080 0 16 i0 0140625, 50294 17 4T2 
112 05625 0 16* 10000' 57 8' 0 1125' - 6. 0 30 ý0 0002812 ý 37 713 9828 

M 02025 064 '125 200 0 0675 012 0 36 0 0005625, 3 928 0614 

114 0,5625- 2 W, ýA, 00' 2304' 0 226C, -6.4e IN0.004 5000 75A26 39311 

115 ý 0400 064 5.00 200 0 1500 0.60 0 16 0.0140625 8730 3033 

116 ý 0400 016. 1200. 24 0ý 00600 012 
ý 

0 08 ý0 001 1250ý 8381 1 165 
117 05625 064 18,75 200 , 02250 0.24 0 6010,0022600, 13095 6 525 
118 ID 0400 , 0 IF 2580 . 576 . 00600 012 0 WO 0011250 20114 2 195 
119 0 NOD 016 12.00 240' 0 060C. 6*12' 0 08! 0.0011250 8.381 1 165 
120 ý 2025 064 1125 200 0 3375 010 0 36 0 0140625 19642 15 356 
121 0 G400 (116 1200 240 o 1500t '0,30 0 08: 0 0070313. 20 952. 7 280 
122 2 02 5 . 256 6480 230 4 0 3376* "i. 20' 0 72 0 0281250 113 140 88450 
123 D 0400 256 5,00 400 00300 024 032 0 0011250 1 746 0121 
IN C400 016 5 00 100, 00300 006 0 08': 0 0002812 1 U6 0121 
125 2025 256 ý 27 DD 96 0 . 013-50 48 0 72 0 0045000 18857, 5897 
126 -, A00 . 064 _ 560 _ ko, o 0600, . - 6,16 ý 0,0022500 3492 0405 
127 . 12025 )10 64,80 5ý. G' 01350, 0ý 12 0 18 0 00 112 50 

' 
45256 

' 
14 152 

123 0 CADO 016 1200 24 Oý 0 034: ýqi- 0 0 08,0 0002812 4 190 0291 

129 : ). %25 016 10800 5? 6 056251 010 0 30 0,007031 a 
' ' 

188566 245 694 
130 01-%25 016 4500 246 0 1125 0.06, - 0, DOOM, 2 0 30 15714 4095 
131 ý %25 064 ioBý00 1152 0 5625 0,60' 0,60: 0 0140625 1085-56, 245894 
132 D 5825 258 15.115 400 0 1125 0 24' 1 20'0 D01 1250 6 547 1 706 
133 D 0400 0 64 500 200 00300 012 0 16 ý0 0005626 1 746: 0 121 

, 134 1 C400 256 . 28 &0 2304 0 06CO 048 0 32 j& D045WO 20 114; 2 795 
135 -5625 064 10000 1152 0 1125' , 012 0,60 0 0005625 

' 
37 713 9828 

136 D 2025 0 16 6A bO 57 6i 006751 
- 

0 06; 0 ll! ýO, DOD2812 
- - - - - - 

22628, 
- 

3538 
- - 137 * , D c4m ý 064 . 500 46 0ý 6 63-06 1 -0 12: 5 16 1 0ý 000582 0 1 746 01 2 1 

138 . -, 2025 266 11,25 460, o IM4- - Q'I 0,721 0 0045000 7 857 2457 
139 _ 

, %25 0 64' 10866, - lis-i 0 2250 ý 0 24' 0 60 i0 0022 500 79 426' 39311 

m D 5025 256 10800 2304 05152 1-20 1,20 0,0281250 188 ý, 66 24! 694 
141 1 ý400' 014* A 50' 16 2* 0G ---- 6-12 ---- 6. idi 0.0005625 , 10057 0699 
142 1 5625 0 16: 10800 57 6 022561 

, 
0 12 0 0011250 0 30 '5 426 39311 

143 D W-5 064 4500 480 01 0 12 . 0 60 0 0005625 15 '14 4095 
I" D 202b 2,56 11,25 

' 
40.0 0.0675 

' 
024 072 0,0011250 3 928 0614 

14S 0,2025 0.64 6480 115.2 0.3375 060 036 0 014C625 
. 

113 140 
, 

88450 
146 j 2025 064 64 80' 115 2' 0 3375* 060 . 0,36 0 U14062b 113 140 88460 
147 Ill b626 004' 10800' -TiS. 2 0 2266-- 0.60 0 0022500 75426, 39 3 11 
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Table 6.9 The regression result by Minitab software 

1" 05625 0 64 ý-- 1-k-75-20WO-7 ---6 fl; 8T 

149' 05625 2 561 45.00* 960' 0 225C' 
150 05625 0 let 4500 240 0 225C 
151 0 2025' 2 Set 11.25 400 Q 3375 
152 05825 256 106.00 2304 05625 
153 02025 064,27.00 480 00675 
154 0 2025 0 IW 11,25 IGO 0 1350 
155 0 66A o 6i r 4500,480 0 5625' 
156 02025- 2-561- 11.25 400 01350 
157 00400 0 64: 5.00.200 0 OBCO 
158 32025 256,11,25.400 0 0675 
169 00400 Ole 20,80 576 00600 
160 02025 064 11.25 200 01350 
141 2025 664,64.80 115 2' 0,0675 
142 0 2025 0643 1125 20 O_ 

_ _O 
3375ý 

163 00400 2,56 28.80 2304 00600 
144 05625 064,18,75 200 01125 
165* 0 2025' 256' 1125 40 0 00675 
166' 0 0400ý -I ? ýý! lZOO_ 96 C, 01500. 
1$? 00400 016 500 100 01500 
is$' 00400 --i5e 28.66 230A 6 ONO, 
1411 02025' T1541,4.96 It52' 0 1360 
170 D 2025 0 64 1125 200 01350 
171 00400 016,2880 576 01500 
172 0 2625 0 U, 11 A, k 0' 0 0675' 
173 3.0406' 064' 28.80 11,51 0 OeAO 
174 3.2025 064 27 DO 480 01350 
17S 32025 016 2700 240 03375 
176 0,5625' 0 64' 108 DO 115 2' 0 1125 
177 0 2Q25 018 27 

- 
00 

-+ 
240. C) 3375 

ITS 0 562f. 016' 
- t-1 --- I -jqkqo 

1 576, -: ) 22bO 
IT9 0 0400' 054 12.00 480 01500 
190 0 56: 2fiý 2561 18 75'4 400 02250 
181 0 04DO -6 64' 26-66,1152 00300 
182' 0 562i 016' 1875' IOC 05625 
183 D. 26ii: 0 16i 64.80 576 ID 13K 
184 3.044X_)4i, 2,56. -. 5 DO, 400 0 1500 
185 J 2025 064 6430 1152 01350 
186 0 0406ý; 0 64'ý 1200 480 00300 
187 0.202fi 0 64 11.25 200 0 1350 
is$ 0 5625 i 2,56 18.75 400 02250 

5 1152 0 =ý' 
_C 

1125ý 189 064 1 CIS Go 
190 1) 064 108-00 1152 C22 150 
191 

'0 
2025 0 64 6410 1152 01350 

192 0 20; *E 0161 1125 166' 0 3Mý 
5.66- 26 0' 0 6606' 193 0 0400, 

_ 
0 41 

194 0 2bQ5, IýSf 27.00 960.01350, 
195 05025,0 54 15,75 200.01125, 
1" 05625 2 56' 1875 400 06625 

- 0,12- -1 - dG0'0.0DQ5625' 6 5-47 ý 1-ýCoj 
0.48 20 O. CfA50C,: - 3-1.42-0- 16 300 

0', 012 030 00011250 31. ý2i* 16 0', 
1.20 0 72 0.0251250 19642 15 356: 
120' 1 20'0 0281250' 188,566' 245 694 
0 li 0 36 '0.000562 5' 9.428 1474 
0,12 018 0,0011250,7 $57 2 467: 
060 060 0,0140625 78.589 102 372 
0 4ý 0 '12 00045000.7857 2 457 
0.24 0 16 0.0022500 3.492 0 485; 
0,24 072 O. Nl 1250 3.928 0 614 
0 12 008 00011250 20.114 2795! 
024 036 000225400 7857 2 457 
0 12 036 O. DD05625 22.828 3 538 
060 036 D0140625 19842 15356 
048 ON 00046006 20 114 2 796 
0 12 0 60 0.0005625 6ý547 1 706'ý 
0.24 072 0,0011250: 3 928' 0 014 1 
1,20 6 32'0 0281250' 20 952 7 280ý 
0 30' -6 66'0 

-0070313' 8 730 3 033' 
V 

ý24 
0.32 0,0011250 10.057,06991 

6 ý4' 636 0 00225OD' 45 256' 14 152 
0 24 ý0 36 0 0022500* 7 557' 2 457: 
0 30' 6.08'0.007C313 50 284' 17 472; 
0 12' --b. 36* 0 0005625 3 928' 0614, 
024 0.16 00022500 20 114 2 795: 
024 036 00022500 IS $57 5897 
030 Oia 00070313 47 142 36654 
0 12: 0,60 0 00CM25' 37 713' 9828 
0 30,018 0 007.03ii- 142 36854 
a 12t-o j6'o 00 11250 75426 3931' 
060 i 0.16 0 014062ý' iC 952 7 28*' 

48 1.20 0 OG45000 13096 6 025 
012 0,16 o 0005625 10 U57 0699 
0 3-0,0,30.0 0070113 32737,42655 
6 iý 1 0.18 0 0011250.45256 14 152 
1 20 0.32 0 0281250 a 730,3033 
024 0 36 0 0022100 45256 14152 
0 12' 0,16 00005625 4190 0291 
0 N' 6.36 OM225W T857 2457 
0.48' 1120'0 0045000 13 D95 6825 
012 0 60 0 0005625 37713 9828 
024 0 60 0,00225M. 75426 

1 
39311 

024 0 36 0 00225M. 45256.14 152 
0 18'0 0070313 

- 
19642,16356 

6A6'U 0022500 3492 0485 
0045000' 18857 5897 

0 12 0 60 0 0005625 5 r>47 1 706 
120 V20 0 0281250 32,737 42655 
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Table 6.10 The regression result by Minitab software 

Cil C12 C13 C14 cis CU 
ord er V'd v'r td f'r 

197 05625,0.64.1875 20.0,05625 06C 
198 05625,256 1675 40ýOý 0 ", 25 C 24' i M 02025 064 27 00 48.0! ýý, 0675 012 
200 05625 0.64 1875 200' 0 k250 024 
201 02025 0.64 11 25 20 0' 00675 012 
202 05625,0,64,1875,20 0 05625 060. 
203 00400 0 iB 1200 24,0; 01500 030 
204 05625 256 45 00 9601 05825 1 20 
205 02025.158,04.100' 23041- 03375.1 20. 
206 02025 256 27.00 Wo 00675 024 
207 0.5625 256 10500 2304 C 2250 048 
206 05625 2,56 4500 96 0ý 01125 0,24 
209 ZI 2025 .2 56' 27 00' 96 01 0 3375' 120' 
210 ý' 2025' 216ý 27,00' 1 26 Oý 0 3375' 120' 
211 5625 004t 4&00 4801 

- 
05625 0450' 

212 00400 iW* 28 86' 230 41 0 1500 120' 
213 02025 Ole 64.60 576 03375 030 
214 

-'5825 
916 10800 57 60 1125' 006 

215 -ý 2025 255,64.80 23041 00675 024 
21G 05625 ais, 1875 100 01125 000' 
217' ) 2M, ---, 0 16 11.25 - 100 

1, -0 13K 0 12' 
218 02025.256 1125 40 0 03375 120 
219 ý 5625 Old ios 00 57 5ý 01125 006 
220 0 2025 018,2700 2401 0 W75.0 W 
221 Ole 1&75 1001 02250 012 

222 ý D400 0 16* 28.66 57 C0 1ý00' 0 

223 .1 5625 016' 45,00' 24 0: 0 5625' 0. m, 

224 ) 0" 256 2880 230 41 00300 024 
225 00400 Ole 1200 24 0: 0 1500ý 030 
226 C, 2025 256.2700. ge Oi 00575,024 
227 : 'ý 5625 66 

- 
4500 960' 02250.048 

228 02025 Ole, 27 00ý 240.03375 030 
t aw 5761 005 229 2625 

to 

- ---- -, --- 
9 0675. 

230 05825 2 5a' 18.751 40 0! 0,5825 120 
231.0 0400 256.1_2 N 0,0.0300 0,24. 
232 02025 064 27,001 480 03375 060 
233 05625 256' 108 00 43C. A. 0 1125.0,24 
Z34 00400 016.5 00 

- 
MO, 0.0300.006. 

235 02025 064 27 00i 46.0 0.0575 0.12 
236 02025 2.56 6480,2304 0.0875 024 
237 05625 016- 18 75ý 10,0 0.1125 006, 
238 U 5625 064 45 DO! 480 0.1125' 012 
239 02025 0,27 00' 240 00575 006 
240 00400 2.56 Soo 400 0.0600 048 
241 03400 0,16 28 "41 

. 
57 6 0ý0600 012 

242 02025 2.56 64.801 2304,00675,024 
243 0.2025 0.641 2T. Ob F 48.0! 0.33751 6 60, 

CIT cis C19 C21 
d'r Ra T Fc 

0 80 001 4C625 32737 42 
120 0 DOI 1250 5647 1 
6.36 0 D006625' 9 428 1 
0.60-0 0022VJU' 130961 5 
0.36 0 00OW25 3 

iik 0 
050 00140625 32 di 

1 42 
008 0 D070313.20 952; 7 
120 0 0281250 78569' 102 
072 00281250 113 140ý 88 
072 0 DOI 1250 9 420 ýI 
I X'O D046000- 76 420' 30 
1.2010 0011250 15'7141 4 
072 00281250 47 142 36 
072 U 0281250 47 142 38 
0 so 0.0140625 78569 102 
0 32 0 028125,0 50284 17 
018 0 0070313 113140 as 
030 0 0002812_ 37 713.9 
0 72 0 0011250 22628 3 
030 0 D002812 6547 1 
0 18'0 D01 1250 7 $57 2 

0 0281250- 1-9,12-ý-, -- 16 
030 00002812 17 713 ii 
018 0 OOD28 ?29 428! 1 
030 00011250 13005 a 
C De 00070313 502S4 17 
0 30 0,0070313 78569 102 
032 0 OD1 1260 10057 
0 as 0 0070313 20952 7 
0 72 0 0011250 9.428 1 
1 20 0 0045000 31,428 16 
a 18ý00070313' 47142 36. 
0 le: 0 C002012' 22 628 3 
1 20 0 0231250 32 737 42 
0 32 0 00' 1250 4ý100 0. 
a 36 0 014D625 47142 36 
120'0 001 125C' V 713' 9 
0 o8 0 OOD2812 1.746 0. 
0,36 0 OOD5625 9.428 
072 0 0011250: 22 528ý 3, 
0.30 0 0002812 rS 547 1. 
0,60 0 0005625 16.71-4-- Af. 

0 le 00002812,9428,1 . 
0.32 0 0046-000 3492 0 
0 08 0 0011250 20 114 2 
0 72 0 0011250,22628, 

-3 0 36 6014OB25 47 142 ii 
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Table 6.11 The tool life, surface finish and cutting force result by Minitab sottware 

1 192672 28829 188.844 
2ý 60210 0,9009' 59 0'4 
3 'S 0525 22523 147.534 
4 D 5690 01001 6557 
5 36126 05466 35 4D6 
8 36 1259 54065 3M C83 
7 3.6126 0 5405 35.408 
8 30105 04505 29,507 
9 16056 02402 15.737 

10 6.0210 0 9009 59.014 
11 D75 2-5 0 1126 7.377 
12 3 0105 04505 29,507 
13 16056 02402 15 73' 
14ý 01672 0 3250 1639 
16 15052. 02252 14.753 
16 21676 03243 21,245 
17 7069 1 1532 75.530 
Is 1,6816 C 2815 18.442 
19 08028. 01201 TOM 
20 60210 09009 59014 
21 1.6725 C 2603 16,393 
22 180630 2 70227 177,041 
23 1 SW3 02703 17704 
24 40140 3 6OC6 39 343 
25 192672 28829 188 844 
26 1,9267 2883 ISB84 
27 30105 04505 29507 
25 72252 10811 70 517 
29 32112 04805 31 474 
30 6 0210 D9009 59014 
31 77069 1 1532 75538 
32 07626 01126 377 

33 
' 

1 9267 02883 18884 
34 8 0280' 

' 
1 2012' 78685 

35 3 2112 0 4605 31474 
36 12252 10611 70817 
37 75262 11261 73787 
38 90315 1ý 3514 58521 
39 33450 0 SW5 3278 5 
40 1 33W 02002 13114 
41 180630 27027, 177041 
42 3 1359 04892 30736 

' 43 6 021Cý 09069 59.014 
44 30105 04505 29507 
45 289007 43244 283266 
46 38534 05766 3" 769 
47 173404 2 SW 169.960 
48 2 1678 0 , 212 = 
40 00634 4 04 

225 
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Table 6.12 The tool life, surface finish and cutting force result by Minitab software 

a 04014 

62, 3.0105. 0 4505 
_ 

29.507, 
63 75262 11261 73767 
54 43351 owr A2 49C 
55 36126 05405 35408 
ss 48168 07207 47211 
57 08028 01201 7069 
So 4,0140 0,6005 39343 
59 38534 6,6766' 37 Mý 
60 1 866i, 62402 15 73" 
61 37631 0.5631 36884 
62 96336 1,4415 94422 

64 6 2719" 0.93m, 61473 
65 72252 1,0611 70817 
es 125437 1,8769 122946, 
67 216756 32433 212450 
68 04014, 0.0601 3934, 
69 1 9267' 0.2883' i8884 
70 32112 

- 
04805 31 474 

71 
> 

12544 . 0,1877 12.2q5 
72 0 äus 0 0501 1279 
73, 1 50W 0 2402 15717 
74 25067 0 

-37514 
745M 

75 21670 1 03243 21,24b 
t77 

6.2719 09384 61.473 
78 18063! 02703 17 704 
79 7 5m , 11261 73.767 
80 25087 0 3754 24.589 
ei 16725 02503 16393 
82 ý 1 afflý . 02703 17 7104 
43 72 251ä1 ioalog m8166 
84 0 9031 i 01351 8852 
es 1 1 505V 02252 14 753 
84 18 063Öl 

- 
ýj7M 7 177 341 

47 43 35i I1 8.48m 424 899 
88 0 376iý 0 eß63 3688 
89 3 1359ý: 0 4r: k92 30736 
90 963361 14415 94422 
el 30165, 

' 
0.4505 29507 

92 14 4504 21622 141 633 
93 16086, 02402 16737 
94 80280 1.2012 78585 
es 16818 02815 18442 
96 30 1c49ý 45046ý 2960W 
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Table 6.13 The tool life, surface finish and cutting force result by Minitab software 

Rai 

100 06690 0.1001 
101 108378 16216 
102 33450 0,5005 
103 1 9267 02983 
104 50175 07508 
105 36126 05405 

1.8018 

16125 
06272 
43 35 1 
50176 
96336 
08028 

119 
, 

08028 
" 

0.1201. 
,7 120 21 6756 3.2433 4ý 212 

121: 2 0070' 0.3003' 19 
122 5262' 1,1261' 73 
123 3 WU 0.5766, V 
124: 0963.4 0.1441 9 
125 72252 10811 70 
126 38534 05766 37. 
127 0 75M 01126 7 
128 04014 00501' & 
129 31359 04692 30, 
I"i 15052 02252,14. 
131 62719 0084 61 
132 t4 4504 2 1622 141. 
133' 926" 0 2883 *- '4 

134* 3380' 0 2W2 *- ---'i-3. 
135' 2544 -0 1877' 
136' 03763' 00563' 
137 IM? 02083 Is 
138' 17 3404! 2 SWS' 16. 
i3t* 2 5087 0 3754' 24 
140' 12 5437 1 8769' 122 
Ul 1 033451 0 0501 *3 

301D5 0 4. ' 
86102 1Z 
3 761 OU 
37031 9 5t 
25087 031 
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Table 6.14 The tool life, surface finish and cutting force result by Minitab software 

C21 C22 
TI Rai 
72252 1 call 70817 

, 12 D420 18018 
' 

118026 
3 0105, 0 4505 29 50 t' 

433511 6 4w 424899 
125437 8769 122 945 
1 8063 0 27,03 17704 
4 3351 0 6"7 42 490 

150625 2 Ah 147 634 
1-1 3404: 2,5W 169 96C 
38534, 05766 

' 
37765 

8 6702 1 2973 84980 
0 3345 0 owl 32N 
86702 1 2973 84 98C 
07526 0 1126 7377 

216756 32433 212 450 
1 3380 02002 13 114 
72252, 1 0811 70817 
8 67C2 , 12973 84 980 
80280 1 2012 78685 
48168 

* 
0 7207 47211 

G 6690 0 1001 656, - 
i 505.1 02252 14753 
8 67,02 12973 84980 
08362 & 1251 8196 
43351 M4877 42490 
0 6M 01001 655, 
3 6126 05405 35 40, B 
4 5157 0 6757' 44260 

2544 0 1877, '2 295 
4 5157 06757 44 MY) 
' 2544 0 18771 12296 
4 0140 06006 IS 34 3 

181 C, 3345 00501 3279 
182 180630 2 7027 17 7041 
183 2,7526 0.1126 7,377 
184 192672 22.8829 188844 
185 ' 5052 0 22b2 14 753 
186 C 8028 01201, 869 
187 8 6e02 1,2973 84980 
Is$ 28 9CC7 43244 283 28C, 
189 ' 2544 0 187' 12 296 
190 2 5087 03754 24 58fo 
191 5052 02252 14 753 
192 L; 8378 1,6216 106225 
193 J 85-34 0.5786 37,769 
194 2252 10811 70817 
195 2252 1 Qell 7Q al 7 

196 -2 2519 10.8100 708 165 
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Table 6.15 The tool life, surface finish and cutting force result by Minitab software 

361259,5 
14 "5i 2 

200 14 4504 2,16 
201 43351 064 

202 361259 540 
203 23070 030 
204 30 1D491 450 
M 752621 1 12, 

, 204 36126 054 
. 207 , 5olm vs 

17 704 

210 1806301 27027 177 041 
211 150525 22523 147.534 
212 3 34W 05M 32 785 
213 1 evol 02815 la 442 
214 06272 

1 
00936 6147 

215 15052,0 2M 14 753 
216 3 6126! 05405 35408 
217 43351 0,6487 42490 
218 43 3511 64866 424899 
219 0 6272,; 00938,8 147 
220 000311 0 1361' 8862 
221 7 2252* 1,0811! 70817 
222 G 8362,0ý1251 

4,8196 
223 752521 1,1201 73 76 7 
224 0 6690 0.1001 6657 
225 2 0076' 0.3003 1967! 
226 36126 05405 35408 
227 120420 18018 118029 
228 .4 547' 6,6757' -44160 

229 03763.0.0563,3M8 
230 72 2519 108109 708 1 ý5 
231 16066 02402,15737 

01441 

3 

229 



Apj2endix 7 

Appendix 7 Simulation programming structure 
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IcI 

Fig. 7.1 The whole simulation process 
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Fig. 7.2 The cutting force simulation process 
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Fig. 7.3 The machining response simulation process 
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Fig. 7.4 The material removal rate simulation process 
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Fig. 7.5 The regenerative vibration simulation process 
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machl 

Fig. 7.6 The depth of cut and feed rate simulation process 
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Fig. 7.7 The wear simulation process 
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Fig. 7.8 The temperature simulation process 
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sub 

Fig. 7.9 The motion error simulation process 
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Fig. 7.10 The residual stress simulation process 
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