
Design Reuse in a CAD Environment 

A thesis submitted for the degree of Doctor of Philosophy 

By 

Peter T. J. Andrews 

Department of Manufacturing and Engineering ystems, 
Brunel University 

January 1999 



Abstract 

For many companies, design related information mainly exists as rooms of paper- 
based archives, typically in the form of manufacturing drawings and technical 

specifications. This 'static' information cannot be easily reused. 

The work presented in this thesis proposes a methodology to ease this problem. It 
defines and implements a computer-based design tool that will enable existing 
design families to be transformed into 'dynamic' CAD-based models for the 

Conceptual, Embodiment and Detailed stages of the design process. 

Two novel concepts are proposed here, i) the use of a Function Means Tree to store 
Conceptual and Embodiment design and ii) a Variant Method to represent Detailed 

design. In this way a definite link between the more abstract conceptual and the 

concrete detailed design stages is realised by linking individual detailed designs to 

means in the Function Means Tree. The use of the Variant Method, incorporating 

'state-of-the-art' developments in Solid Modelling, Feature-Based Design and 
Parametric Design, allows an entire family of designs to be represented by a single 
Master Model. Therefore, instances of this Master Model need only be stored as a set 

of design parameters. This enables current design families and new design cases to 

be more created more efficiently. 

Industrial Case Studies, including a Lathe Chuck family, a Drive-End casting and a 
family of Filtration Systems are given to prove the methodology. 
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Chapter I 

Introduction 
1.1 Computer Aided Design 
The advent of computers in engineering has made significant progress in the past 
few decades. It has opened up several new opportunities, which would not have even 
been thought of with traditional design practices. As Besant and Lui (1986) rightly 

point out, in Computer Aided Design, man and machine work as a team where one 

complements the other. They identify the strengths and weaknesses of each of them 

in the following way: 

" The computer has three main functions: 

1) To serve as an extension to the memory of the designer. 

2) To enhance the analytical and logical power of the designer. 

3) To relieve the designer from routine, repetitious tasks. 

The designer is left to perform the following activities: 

1) Control of the design process in information distribution. 

2) Application of creativity, ingenuity and experience. 
3) Organisation of design information. " 

Besant and Lui (1986) 

In the early stages computers were mainly used for intensive, number crunching 

tasks. However, work by Sutherland (1963) at M. I. T. on the development of the 

'SKETCHPAD' interactive computer graphics system prompted the rapid 

development of computer technology into other areas of engineering. Initially, 

computer graphics concentrated on the development of techniques and software to 

facilitate the development of Engineering Drawings. Drafting packages such as 

AutoCAD (Autodesk) are implementations of this kind. Thus the computer was 

used, primarily, as a drafting tool. Further developments soon extended to using the 

computer as a Modelling Tool and an entirely new branch of study called 'Geometric 

Modelling' was born. The past few decades have witnessed the development of 

various types of modellers to address specific industrial needs. The combined 
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development of abundant computing power, display facilities, storage media, and 
input devices, together with evolutionary advances in 'Geometric Modelling' has 

resulted in a situation where the Computer System, constituting a partnership 
between hardware and software, has developed into a powerful tool, for the 

engineering industry. These advances in technology have now reached a state of 
transition; from regarding the computer as a tool for 'detailed' modelling and 

analysis, into a tool to assist design as a whole. Applications for this 'State of the 
Art' area of research include, computer-based Conceptual Design and Design Reuse. 

Increasingly innovative applications must be envisaged to exploit this powerful tool, 
(Shah et al, 1996). This research is aimed at developing such an application, 

where the 'Computer System' is used in a novel wa facilitating the traditional Y, 

engineering companies to computerise their operations with much less effort. This 

will enable them to reuse their past designs more efficiently, and develop next 

generation products built on their strengths through the latest developments in 

science and technology. 

1.2 The Need and Associated Problems 
The majority of Small and Medium Enterprises (SME's), deal with the design and 

manufacture of a specific range of products, from individual piece-parts to complex 

multi-part assemblies. These enterprises typically archive a large collection of 

manufacturing drawings, for both discontinued and current 'in-service' products, 

which must be maintained and made accessible, when needed. The problem for these 

companies is to successfully adopt computerisation of this library of drawings, so 
that they can enjoy the resultant benefits of computer technology. 

Thus the need here, is to establish an easy way of computerising these designs in a 

manner that will eirable specific information from various design cases to be 

accessed at th e press of ab uttou. 

The problems associated with meeting such a need are as follows: 

1. Establishing a structure for the information that will be required at various levels 

of design abstmction 
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2. Establishing a methodology to efficiently store the structured information. 

3. A mechanism to retrieve and use this information. 

1.3 The Project 

In this project, the structures of design information at different levels of abstraction 

were identified as: 

a) Solution concept described as a Function Tree 

b) Embodiment Design described as a Parts Tree 

C) Detailed Design represented as a geometric, solid model 

The principles, comprising a methodology for storing this information are as 
follows: 

a) The Function Means Tree to store the solution concept and 

embodiment designs, and 

A Variant Model and associated parameter database to store the 
detailed design. 

A retrieval mechanism for the detailed design was developed in the form of a 

skeletal 'Master Model'. The 'Master Model' reads the parameters of a specified 
instance from the database to build the corresponding geometric model (or instance). 

This novel method eliminates the creation of one geometric model for each design, 
from scratch, and creates all instances (or geometric models) of a family from the 

same master model. This instance can then be modified or utilised for the next 

generation of products. In this way, the activity of computerisation is made much 

simpler, and information relating to past designs is made available to the designer at 
different levels of abstraction. 

1.4 Structure of the Thesis 

This research follows the design model outlined by Jones (1980), an adaptation of 
which is shown in Figure 1.1. In the first stage, Divergence, all the data related to the 

project in terms of design representations and geometric and solid modelling is 

collated. This enabled the understanding of the state of the art, and was analysed 
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critically to select the important attributes, characteristics and methods for 
integration to the proposed method, and is described in Chapter 2. In the next stage, 
TranýfornmliO? 7, the elements identified as being important are developed and 

combined to form novel methods. The transformation process specifically looked at 
two possible methods for storing the detailed designs, the Generative and Variant 

methods, and two possible methods for storing conceptual and embodiment designs, 

the Chart-Based and Function-Means Tree methods. A combination of The Function 

Means Tree and Variant Model were selected as the novel method for development 

into a software system (Convergence). The methodology developed is described in 
Chapter 3. The software developed is given in Chapter 4. Three case studies, the 

Guindy Machine Tools Ltd. 'Lathe Chuck Family'. the Lucas Varity Drive-End- 

Shield Casting and the Hydroflow Rotary Drum Filter are presented in Chapter 5. 

Chapter 6 presents the conclusions drawn from this work, and discusses the merits 

and demerits of the method and finally highlights the areas for further work. 

DIVERGENCE 

DESIGN REPRESENTATM SCHEMES 

Fundion-Means Product Models 
STEP Parts Tree DFD 

Function Tree Concept Sketches 

6 EOMETRK M ODEWNG 

Graphical Models Parametric 
Feature Based Design Generative 

Variational Solid Modelling 

TRANSFORMATION 

Fundion-Means Tree v Chart Based Methods 
Variant v Generative 

CONVERGENCE 

Furoction-Means Tree 
Variant Model 

Figure 1.1 - The 3-Stage Design Model - Adapted from Jones (1980) 

4 



Chapter 2 

Background & Theory 

Overview 

This chapter will discuss the theoretical background of Traditional and Computer 

Aided Design methods that are relevant to this research. It will begin with a general 
discussion of the Design Process, what elements of this process need to be Captured 

to enable effective Design Reuse and how this information can be structured and 

stored for efficient retrieval. Methods for structuring Conceptual and Embodiment 

design shall be discussed, including the Function-Means Tree and Design Function 

Deployment (DFD). The representation of Detailed design involves the study of 

Geometric, and in particular, Solid Modelling systems. This will be followed by a 

review of Parametric and Variational Modelling, and Feature Based Design - both 

of which are techniques to assist in the design of adaptive, engineering models. An 

analysis of existing methods that aim to convert two-dimensional manufacturing 
drawings to fully-fledged three-dimensional solid models will also be given, 
including the Generative (or Procedural) method, and the Variant Method. In all 

cases, the applicability of these theories shall be assessed against the requirements of 

this project as-outlined in the previous chapter. 

2.1 Capturing Design for Reuse 
Traditional, existing design documentation is typically found in the form of 

manufacturing drawings. These structures contain the outcome of a design process, 

and are obvious candidates for Design Reuse. However, if a new engineer is to fully 

understand past designs, they will also need access to other, more descriptive, forms 

of design documentation, such as the initial design brief, ideas generated throughout 

the design, and lessons learnt by adopting a particular technique. This information 

requires the capture of information at various stages of the Design Process. Finger 

outlines the more specific needs to capture the design process. 
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Explanation - to explain how and why a particular decision was made, 
Verification - to determine if characteristics of the final design are consistent 

with the intended characteristics as represented by the top-level objectives, 
Modification - to predict the effect of making changes to the design, 

Reuse - to synthesise a design from a previous design with a similar 

specification and, 
Instruction - to guide novice designers. Finger (1998) 

These needs require the identification of which stages of the design process are 

relevant to computerisation of past designs. These are discussed in the following 

section. 

2.2 The Design Process 

Much of design research has viewed the Design Process from a synthesis, or top- 
down approach. However, the emphasis in this research is from a bottom-up 

direction, as the goal of this project is to store a design for reuse, using the finished 

product (the manufacturing drawings) as a starting point. Shigley (1977) outlines the 
idealised, top-down design process as a chain of events (figure 2.1a) with iteration. 

For this research, the Recognition, Definition and Synthesis stages can be 'refined' 

into a more manageable series of events, as outlined in figure 2.1b, by Evbuomwan 

et al (1996). 
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Definition of Problem Product Concept 

Synthesis Solution Concept 

is & Optimisation 
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Embodiment Design 
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Evaluation 
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Detailed De 

Figure 2.1 - The design process , (a) left: Shigley , (b) right E-*, buomA, an et al. 

Requirements - The starting-point of the design and development of a product is its 

societal need. This need is represented by a set of prioritised requirements. 

Therefore, in this context, a Requirement can be defined as an element of a need. 

V., Specifications - also tenned Pi-odua Concepts, are a list of functions, that the design 

or artefact should perform to realise the mentioned requirements. These descriptions 

include the limitations imposed by factors such as geometry, space, working 

environment, legal and other considerations, which are collectively termed as the 

design Constraints. Specifications are generally, not solution specific, i. e. their 

content does not rely on a particular solution. 

Solution Concepts - The list of functions to be perfon-ned as specified by the Product 

Concepts is broken into sub-groups, to which sub-solutions are proposed for their 

realisation. The combination of these sub-solutions, often termed Subsystems, form 

the design solution. Therefore, the Solution Concept may be defined as the 

combination of all conformable subsystems, which satisfy all listed functions and 

constraints in a holistic manner. 
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Embodiment Designs - The concept relating to a given subsystem can often be 

realised in more than one way, or means. For example, a subsystem to reduce the 

speed between two parallel shafts can be achieved by using either belt, chain or gear 
devices. It is therefore necessary to establish the physical parts that constitute a 

subsystem. Establishing the network of parts that form the design is termed the 

Embodiment Design. 

Detailed Designs - These define the geometry of individual parts, and their spatial 

relationships in assemblies. Traditionally, these are given by the set of 

manufacturing drawings. 

Strategies and methods of Design Theory, (Hubka 1982,1988) and (Pugh 1991), use 

these classifications to model design at its progressively decreasing levels of 

abstraction. These have been devised to assist the development of new products 

through analysis at each stage. In terms of capturing existing designs for reuse, only 
Solution Concept, Embodiment Design and Detailed Design are of major 

significance. This is because the initial requirements specified at the beginning of a 
'new' design process may differ somewhat to the functions the evolved design 

actually exhibits. Whether requirements are useful for design reuse or not, is 

somewhat trivialised by the fact that they are implicitly represented in the less 

abstract Solution Concepts, as functional requirements, (Malmqvist 1995). Similarly, 

the Product Concepts as outlined in the design process above, are of limited benefit 

to the less abstract representation of already formalised designs. Furthermore, the 

creativity and analysis activities of design are more heavily concentrated in the 

solution concept, embodiment and detailed stages of design, and therefore are more 
fruitful in terms of reuse. 

From the preceding analysis it can be said that, for the task of capturing existing 
design cases for reuse, the following stages of the design process are of greatest 

significance: 

a) Solution Concept, 

b) Embodiment Design, 

c) Detailed Design. 
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A substantial literature survey of design capture and reuse has shown that, to date, no 

commercial system to capture and reuse mechanical engineering designs, at all 
levels, has materialised. This subject is still the topic of much academic and Ooint) 

industrial research, (Duffy 1998) and (Shah et al, 1996). This statement is especially 
true for the less well defined area of conceptual design, as the complete design 

process is not yet fully understood (Maher et al, 1995). 

The following sections describe the prominent, existing techniques and theories 
developed to represent and capture infonnation relating to the areas of Conceptual, 

Embodiment and Detailed design. 

2.3 Conceptual Design 
A Conceptual Design is the outcome from the process of developing solution 

concepts. It is the first stage of design where creativity and innovation are exercised, 

obeying engineering and scientific principles. A poor solution concept can never be 

improved by good embodiment and detailed designs. Tberefore conceptual designs 

of existing products are a useful representation of successful designs, particularly for 

reuse. However, in real design situations, the conceptual design stage is rarely 

recorded. In this section, prominent methods for representing conceptual designs are 

reviewed. A concrete mixer design is used as an example in all cases. 

Although this research does not focus on the principle of creating a new design from 

scratch, many of the theories relating to both conceptual and embodiment designs do. 

Moreover, in the majority of cases, information relating to the traditional conceptual 

phase of past designs would have been discarded, leaving only the detailed 

manufacturing drawings as a record of past designs. However, if a design is to be 

adequately reused, some functional description of what the product and its 

components do is necessary. Therefore these theories are reviewed in the following 

subsections, with an emphasis to structuring concepts for reuse. 
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Figure 2.2 -A Conceptual Sketch for a Concrete Mixer 

2.3.1 Sketching 

The most obvious form of conceptual design is sketching (Cross 1991), which is 
both easily and universally understood. With suitable annotation, sketching is a 
leading candidate for recording design intent. Figure 2.2 shows an example of a 
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sketch for a Powered Concrete Mixer. Computer-based conceptual design systems 

that incorporate sketching, base their input methods through either scanning of 

manual sketches or by digitisation (using a puck / pen and graphics tablet). Methods 

involving the latter technique include Sutherland's Sketchpad (as previously 

mentioned), and are typically based upon Graphical Representation schemes, which 

will be discussed later, in section 2.8.1. This research is concerned with integrating 

conceptual information from existing designs into a computer model. In such a case, 

a sketch will most probably exist in the form of a rough hand drawing or rendering, 

on paper. Which will require scanning. Text relating to the sketch may be either 

automatically recognised (IEE) or manually entered, and stored in a database. 

However, the information given by sketches can be better obtained from the detailed 

design drawings, and hence scanning and archival of sketches does not serve any 

realistic purpose here. 

Despite being universally accepted as a straightforward representation for conceptual 
design, sketches are, on their own, unrelated pieces of a much broader, interrelated 

design. Universally legible sketches are often difficult to create, and are largely 

dependent on the artistic skill of the designer. In terms of reuse, they represent a 

similar but less rigorous degree of information than formalised manufacturing 

drawings. By themselves, sketches do not fully represent conceptual design. 

2.3.1 Function Family Tree 
An existing design cannot be effectively reused if its purpose or Function is not 
known. Therefore a system to create and structure the functions of parts, sub-systems 

and full product assemblies is required. Top-down design processes use Functional 

Decomposition, (Akiyama 1991), to determine what lower-level functions are 

required to satisfy the current function. The bottom-up approach, would therefore 

Compose higher order functions from those prescribed by lower-level parts and sub- 

systems. 
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Akiyama (1991) proposes the use of a hierarchical tree structure to represent the 

functional composition/decomposition at various levels of abstraction for a given 
design. Here, the highest (leftmost) function represents the overall objective of the 

design. This is decomposed into sub-ordinate functions, that must be met for its 

realisation, which are in-tum decomposed further. Figure 2.3 shows an example 
'Function Family Tree' for the Concrete Mixer example, where the overall function, 

mix and deliver concrete, is decomposed into three major sub-functions: a) to 

contain the mixture, b) to mix the concrete and c) to dispose of the concrete mixture. 
Each of these sub-functions can then be refined to provide more detailed 'functional 

requirements'. 

I 
Akiyama further proposes an extension to this structure, the 'Function Family Tree'. 

By keeping functions in a solution neutral format (i. e. by not implying their 

solution), the function tree structure can be seen to represent a family of designs. For 

example, a family of 'Mortar and Concrete Mixers'. 

This technique - representing the intent of a design, the relationships between 

these functions and the ability to represent a family of (similar) designs within a 

single data structure - is beneficial to the objectives of this project. This is 

because the method can be adopted as an underlying scheme to retrieve past 

designs on the basis of their function, whilst showing the context within which 

this function is based. 

2.4 Embodiment Design 

Whereas systems based on functional descriptions represent the 'whys' and 
(partially) the 'hows' of design, Embodiment Design involves the synthesis and 
analysis of combinations of parts of a real, achievable design. Thus, for the 

embodiment stage of the design process, methods of representing parts and sub- 
systems, through to combinations of these parts, as design variants (or families) are 
required. Little published work is available within this area. However, two 

established methods of representation do exist: The Parts Tree and Morphological 
Methods. 
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2.4.1 Parts Tree 

Pahl and Beitz (1988) identify the Parts Tree data structure as an ideal method of 

representing part and sub-system relationships, as a hierarchical tree. These relations 

are typically connectivity based, i. e. the hierarchical order in which parts and sub- 

systems are assembled. Such a scheme forms the natural representation of many 
commercial Assembly Modelling applications, and is also adept to kinematic 

analysis. Figure 2.4 shows a parts tree for a variant of the Concrete Mixer. By 

observation, it is evident that the highest node of the tree is the full product, and the 
leaves (the lowest nodes) relate to physical parts. Any node in-between these 

represents a sub-assembly, or sub-system. Therefore, the parts tree can be said to 

represent a design in terms of its manufacturing assembly layout. 

Figure 2.4 -A Parts Tree for a Concrete Mixer t5 

2.4.2 Morphological Methods 

Embodiment Design techniques involving morphological methods (as has been 

stated) are concerned with the synthesis and analysis of possible combinations of 

parts that can form a given design. As their name suggests, typical representations 

are pictorial and similar in appearance to conceptual sketches. Although this is not 

always the case, as some examples include purely textural representations, (Cross 
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1991). Two related morphological methods are prominent here, the Morphological 

Box (or Chart) and the Morphological Tree. 

2.4.3 The Morphological Box 

This method represents solutions for a given set of sub-functions as a two- 

dimensional array, (Grant 1977), and is also known as the Morphological Chart 

(Crossl991). In a Morphological Box, functions, known as the design 'parameters' 

each take-up a single row. The solutions (or variants) for each parameter sit in 

successive columns of their representative parameter. Thus the box is an unordered 

representation of all conceivable combinations of a design. Figure 2.5 shows an 

example morphological box for the Mortar and Concrete Mixer example, where a 

possible complete solution is given by the combination of the greyed-out boxes. 

As this is a representation for all solutions that can be conceived by the designer, a 

very large number of possible solutions is implied, which is the multiple of the 

number of solutions for each parameter. For example, in figure 2.5, the total number 

of complete solutions is: 2x4x2x2x3x3= 288 possible complete solutions. 
This is clearly a large number of combinations to handle. However, some 

combinations can be easily discarded, as they are meaningless or too difficult to 

implement. Also, Morphological Analysis techniques can be adopted to reduce the 

number of combinations to a number that is more manageable. A more detailed 

explanation of these morphological analysis methods is however of little relevance to 

this research. The emphasis here is that the Morphological Box is a useful and 

simple representation of all possible variants or combinations for a given design. For 

existing designs, the number of solutions per parameter will be much smaller. 
Therefore, this method allows the designer to 'pick and choose' elements from a 
database of existing components to synthesise a new design. 

This method can be effectively used to design the next generation of an existing 
product. 
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2.4.4 The Morphological Tree 

In the previous section, the morphological box was shown to be an unordered 

representation of possible embodiments, or solutions. The contents of this box can 

also be represented as a tree structure, to directly show the possible combinations of 

solutions, and is termed the Morphological Tree, or the Decision / Alternatives Tree. 

(Grant 1977). 

In this case, each level of the tree corresponds to a parameter, or row, in the 

morphological box. To begin with, each node for a given level represents the 

solutions for that level. However, for a given node, branches in the next level 

correspond only to compatible solutions, as demonstrated in figure 2.6. 
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Such a situation has definite application to the representation of a range (or family) 

of existing, similar designs. To be more specific, it can be used to represent more 

radical differences between product designs, where all products in the range do not 

use variants of all components, of a design family. 

Figure 2.6 -A Morphological Tree for the Mortar and Concrete Mixer 

2.5 Function Means Tree 
The Morphological Box and the Morphological Tree are established tools for 

representing both conceptual and embodiment design under a single data structure. 
However, they are sometimes implied, and not explicitly defined within these 

structures. Conversely, the Function Means Tree (Andreasen 1980) is a definitive 
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relationship between the function (or concept) and its satisfying means (or 

embodiment). It is essentially a combination of both the function tree and the parts 

tree, although it is structurally representative of the former, being a tool to aid design 

synthesis. Here, an overall function is fulfilled by its realising means, which is in- 

turn followed by sub-functions and means. As an implied 'rule', a function can only 
be realised by a single means, although a means can require the implementation of 

several sub-functions. Where a function branches-out to more than one means, these 

represent the possible variants that can be adopted to satisfy it. Figure 2.7 shows a 

function means tree for the Concrete Mixer, providing alternative (or variant) means 
for the power source: an electric motor, petrol motor, or hand crank. 

Of all conceptual and embodiment design systems, Andreasen's Function Means 

Tree structure is best suited to wholly model the design process. Also, and perhaps 
its most significant advantage is that it is simple to understand and implement, and is 

therefore a major contribution to this research. 

The Function Means Tree can be easily utilised as the source for a Function 

Family Tree, representing Conceptual Design, or a Parts Tree representing 
Embodiment Design. 
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Figure 2.7 -A Function Means Tree for the Concrete Mixer 

2.6 Design Function Deployment (DFD) 

The design methods outlined so far, do little to provide the designer with a system 

containing the required tools to quantitatively analyse various stages of the design 

process. Design Function Deployment, (Sivaloganathan et al 1995), takes the 
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approach of integrating qualitative techniques, such as ratings schemes with the 

evolutionary methods already described and detailed design analysis applications 

under a single umbrella. Shahin et al (1998) categorise Design Function Deployment 

as an underlying Product Modelling system for design reuse. Here, they identify 

the use of DFD's chart-based data structures to store and evaluate the 

Requirements, Product Concept, Solution Concept, Embodiment and Detailed 

levels of design (level 1 of figure 2.8). This is achieved though the use of an 

extensive tool base (level 2) and databases (level 3). Of the stages in level 1, stages 
1,2 and 3 are of greatest concern here, as they involve the processing of Conceptual, 

Embodiment and Detailed design. 

The following is therefore a brief summary of the design process prescribed by 

Design Function Deployment (Kimpton and Sivaloganathan 1998): 

Stage I- stores the prioritised requirements and the functions that deploy these 

requirements. This includes the constraints that have to be imposed on the product. 
The functions are expressed in a Solution Neutral form to facilitate the generation of 

a number of different conceptual solutions in stage 2, and are stored in a chart form, 

as outlined in figure 2.9. 

Stage 2- stores the Solution Concept. (Shahin et at 1998) outline the objectives of 

storing conceptual designs as: 

a) The overall list of fancti ons performed by the product as a whole, 
b) The list of subsystems which constitute the overall product, 

C) The list of functions performed by each of the subsystems, 
d) A description of the shape of the product, 

e) Optional importance ratings of the various functions required, and 
f) An optional measure of the 'level of achievement' to indicate whether the 

function is provided well by the concept or not. 
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A chart similar to that in figure 2.10 is used to store the conceptual solution, and 

each solution is stored in a separate chart. This chart relates the Functions of stage 1, 

along with their importance ratings, to sub-systems, that have been determined using 

the design methods outlined in level 2 of DFD, e. g. the morphological box. The 

result of this relation is another set of importance ratings per architecture (or 

conceptual design). 
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Stage 3- represents the Embodiment Design (figure 2.11). The Parts and 

Components required to define the Sub-Systerns, taken from stage 2, are related, to 

establish a further set of ratings. Detailed design of these parts and sub-systems is 

then undertaken, using the modelling and design tools available in levels 2 and 3 of 
DFD. 
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2.6.1 Design Reuse within DFD 

Shahin et al. also define Design Reuse as a tool available in level 2 of the DFD 

structure diagram (figure 2.8). Their method proposes a chart-based structure to 

represent Conceptual and Embodiment Designs (providing detailed designs) at 
different levels of abstraction, while maintaining a coherent connection between 

these levels. The DFD chart I provides the product concept, chart 2 provides the 

solution concept and chart 3 provides the embodiment design. A link at chart 3 opens 
up the geometric modeller, which contains the detailed design. This process is 

outlined in figure 2.12. 

Chart 2 

Figure 2.12 - Integration of the Design Process within DFD 
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The information contained in these charts is very detailed, for all stages of the design 

process. The DFD method provides a system to cope with every eventuality, but 

is therefore, somewhat cumbersome and difficult to use. As a result, many 

organisations, especially small and medium sized companies, may view DFD as 

a complicated means of re-defining what is already known, which is true for the 

case of many well understood, existing designs. Hence, DFD is not wholly suitable 
for the condition of simplifying the modelling of past designs. 

2.7 Detailed Design 

Detailed design is the final stage of the design process. Traditionally, the outcome of 
this stage is a set of drawings called the 'Manufacturing Drawings'. These provide 
information on the dimensions of individual parts, their materials, surface finishes 

and other related details. They also show how assemblies are arranged to construct 
the final product. BS308 (British Standards Institute), outlines the rules and 

conventions that govern the preparation of manufacturing drawings. In all companies 
involved with manufacturing, be they large or small, there is a large collection of 
legacy and current manufacturing drawings. This archive represents the 

organisation's largest accumulation of engineering creativity and effort. Industries 

that have been in operation for some years will often have a significant part of these 
drawings, stored in record rooms, with little referral or use. The principal reasons for 

their limited use can be recognised to be: 

1) A large amount of unstructured data, 

2) Considerable effort is needed to trace any particular design, and even more effort 
is needed to understand it. 

In order to make this 'large collection of creativity and effort' more exploitable, past 

designs should be structured and computerised so that they can be easily reused. 

The objectives of such a system are as follows: 

a) Retain some degree of design intent - Design intent can be represented in 

manufacturing drawings either directly by textural (annotated) descriptions, 

attached by labels to various elements of a drawing, or indirectly through 

particular dimensions that are characteristic of the design. Figure 2.13 illustrates 

examples of this. The 'Through Hole' (left) and 'Square Thread' (right), of a 

N 

25 



pipe-bending design, show how essential characteristics of a design are 

represented on manufacturing drawings. Initial techniques for modelling detailed 

design ignored these characteristics. Hence the use of labelled text and the 

engineering significance of an 'entity' should be preserved. 

Figure2.13 - Representing Design Intent in a Manufacturing Drawing of a Pipe- 

Bender: (left) Main Body and (right) Screw Shaft 

b) Similar parts and products should be grouped into families - Identifying and 

grouping similarities between designs has advantages in both design and 

manufacturing. As well as cataloguing benefits, duplication can be minimised, 

thereby reducing the effort required. 

c) Designs should be easily adaptable - Paper-based drawings are static, that is, 

they cannot be easily modified when a (sometimes minor) change is required. 
The adoption of computers in design was an attempt to overcome this deficiency. 

However, the degree to which computer generated models can be adapted varies 

widely. 
d) The models should be usefulforfuture developments - The emphasis behind this 

research is to allow companies to computerise their designs, with minimum 

effort, so that they can use the latest computer technology to improve and 

generate new designs. Therefore, the design representation should rcflect this 

desire, i. e. the design model should be in a format that can be easily used, or 

26 



transformed, for downstream applications, for example Finite Element Analysis 

or CNC manufacturing. 

In order to achieve these objectives, the following two important constituents 

are necessary: 
1) Models to store the detailed design, and 

2) An easy method of converting the paper-based drawings into these models. 

Section 2.8 represents a survey on Geometric Modelling systems, which is followed 

by the successive developments of Parametric and Variational Modelling (section 

2.9) and Feature Based design (section 2.10). Section 2.11 surveys the methods for 

converting paper drawings into computer models. 

2.8 Geometric Modelling 
Geometric Modelling can be defined as a branch of study which 'brings together and 

applies analytic geometry, vector calculus, topology, set theory, and an arsenal of 

computation methods to model geometric entities' 
Mortenson (1985) 

It essentially deals with the modelling of the following four constituent, geometric 

entities of an object: 
a) Vertices 

b) Edges 

c) Surfaces 

d) Solids 

Mathematical theories and techniques have been developed to represent each of 

these entities. The fundamental objective of their development is to have a 

representation scheme, which can be used to represent all members or varieties 

within a class (e. g. straight, circular and other edges), and their manipulations (e. g. 

extension, truncation etc. ). Homogenous co-ordinates have been developed to store 

points, or vertices. Parametric representations of curves were developed to represent 
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both simple and composite space curves and surfaces, several representative 

techniques to model solid objects have also been developed. 

The fundamental olýjective of Solid Modelling is to provide a complete 

representation of a solid object. Requicha defined solid modelling as: 

6 an emerging body of theory, techniques and systems focused on informally 

complete representations of solids - representations that permit (at least in principle) 

any well defined property of any represented object to be calculated automatically. ' 

Requicha (1980) 

A solid modelling system can be defined as being the combination of a modelling 

engine and a set of algorithms, which can answer geometric questions by scanning 

the geometric model. This definition is schematically represented in figure 2.14. 
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Solid Modelling System 
-------------- 

Figure 2.14 -A Solid Modelling System 

Outputs 

The effectiveness of this model and modelling system depends upon the number of 

algorithms that are available within the system to answer geometric questions. This 

concept is a key issue in selecting the most suitable representations to store part 
designs. 

The development of CAD systems has been incremental, and the motivation for this 

has stemmed from different industrial needs. The first application that saw the 

development of what are now termed Graphical Systems, used the computer as a 
drafting tool. This was followed by attempts to use the computer as a sophisticated 

modelling tool. This led to several such models that were developed to cater for 
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varying industrial requirements. In general, these models fall into the following 

categories: 

1) Graphical Models - to aid the generation of manufacturing 2D drawings. 

2) Shape Models - to represent raster (scanned) images for image processing. 
3) Surface Models - to create complex curves and surfaces. 
4) Solid Models - to capture complete representations of 3D geometry 

Of these categories, Graphical and Solid Modelling techniques are of particular 
interest to this research, since paper-based drawings are akin to graphical models, 

and solid models maintain a complete representation of the object. 

2.8.1 Graphical Models 

These models form the original definition of CAD, Computer Assisted Drafting. 

They are intended to represent 2-dimensional sketches and complete manufacturing 

drawings in an electronic, editable format. Until recently, these systems have been 

the most widespread form of CAD. 

Early drafting systems represented these drawings as a 'linked-list' of entities, where 

each node in the list contains information about an entity (a line, arc, circle etc. ). 

This information may include the entity's class (e. g. straight-line, arc, circle etc. ), the 
line-type (continuous, dashed etc. ), geometry (e. g. start-point, end-point co- 

ordinates) and connectivity etc,. A linked-list representation for a general geometric 

object is shown in figure 2.15. 

As well as enabling the use of standard primitive types, e. g. lines, circles and arcs, a 

number of graphical systems have invoked the use of associative graphical 

primitives, enabling a Parametric form of drafting to be adopted. Parametric design 

(or in this case drafting) is a process where parameters (typically geometric 
dimensions) relating to elements of the design, can be modified. For example, the 

radius of a circle can be changed from I Omm to 5mm. This -is not the same as 
deleting the I Omm radius circle and creating a new 5 mm circle. Both Parametric and 
Variational Design techniques shall be discussed, in more depth, in section 2.9. 
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NULL 
edge Ia 
ýW: straigtt-line 
start vertex: 1 
end vertex: 2 

edge 5o 
ýpe: straight-line 
start vertex: 5 
end vertex: 6 

edge 9 0- 
type: straight-line 
start vertex: 4 
end vertex: 5 

edge 13 o 
type: straight-line 
start vertex: 2 
end vertex: 12 

edge 17 (>-- 
type: arc 
start vertex: 8 
end vertex: 10 
radius- 5 

edge 20 
ýpe: straigtt-line 
start vertex: 2 
end vertex: 3 

edge 6 o- 
type: straigIV 
start vertex: 6 
end vertex: 7 

edge 10 o- 
type: straigtt- 
start vertex: 3 
end vertex: 6 

edge 14 o 
type: straigtt-line 
start vertex: 12 
end vertex: 9 

edge 18 o- 
type: arc. 
start vertex: 7 
end vertex: 9 
radius- 5 

edge 3o 
type: straight-line 
start vertex: 3 
end vertex: 4 

edge 7o 
ýW: straiglVine 
start vertex: 7 
end vertex: 8 

edge 11 o-- 
type: straight-line 
start vertex: I 
end vertex: II 

edge 15 o-- 
type: straight-line 
start vertex: II 
end vertex: 12 

NULL 

edge 4 o- 
ýW: straigtt-line 
start vertex: 4 
end vertex: 1 

edge 8 o- 
type: straigtt-line 
start vertex: 8 
end vertex: 5 

edge 12 
type: straigtt-li 
start vertex: 11 
end vertex: 10 

ed2e 160 
type: straigtt-line 
start vertex: 10 
end vertex: 9 

Figure 2.15 - Linked-List Representation of a Graphical Model 
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Orcle 
Centre Point Aux line 

PoinL 

Arc 
Aux-line 2 Point-2 

Figure 2.16 -A Fillet and its Associative Primitives (Shah 1995) 

For the majority of these systems, primitives are represented internally using 
Associative Representation, where the construction process used to create the 

primitive is stored. For example, when constructing the fillet (a circular Arc) of 
figure 2.16, a further, associated primitive (a Circle) is required. Both of these 

primitives may be represented as: 

For the Arc: 

Construction technique: fillet 
- 

arc 
- 

between 
- 

straight_line_segments 
Point_I: intersection (Circle, Aux_line_l) 

Point_2: intersection (Circle, Aux_line_2) 

For the Circle: 

Construction technique: circle_touching_ýtwo_line_segments 
Radius: given_by__the_user 
Centre_point: (some computation involving the two lines) 

If the user of this system decides to say, change the Radius of the fillet, they can 
simply modify the Radius parameter, and re-execute the construction history 

representation. Unlike non-parametric situations, where the fillet-arc would have 
been deleted and replaced with a primitive of a different radius, associative 
information (i. e. to lines I and 2, and the circle) is maintained. 
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Which solid does the vAreframe represent 

Figure 2.17 Ambiguous 3D Graphical wireframes 

Three-dimensional graphical models are an extension of their two-dimensional 

parent, being represented essentially by the inclusion of an extra dimension (as x, y 

and z for a point). These are termed wireframe models, as they hold no direct 

volumetric interpretation. Hence, whilst being very fast to reproduce on a graphics 

terminal, they can be ambiguous. Examples of this include those shown in figure 

2.17. Enhancements to graphical models, through the use of layers and colours etc., 

only represent entities of an object, and not its solid form. This makes it difficult to 

visualise complex, and even simple objects (again see figure 2.17), and due to this 

weakness, graphical models are not wholly suitable from a design reuse perspective. 

2.8.2 Solid Models 

The aim of Solid Modelling is to create a complete and robust representation of a 3- 

dimensional geometric design, and in comparison to 3-dimensional, graphical 

models, in an unambiguous manner. There are a number of factors that influence the 

capability of a solid modelling system. Of these, two are prominent. The ability to 

maintain the integrity of a model, through an integrity-checking algorithm, or by 

limiting model construction to only integrity-preserving operations. Also, it is useful 
to handle large models at differing levels of complexity (or abstraction), which calls 
for the use of part and assembly modelling. Further characteristics of solid modelling 
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techniques can be used to classify various approaches to the requirements of this 

research: 

Expressive Poiver - indicates the degree to which a solid can be modelled, i. e. 

accurately or by approximation. 

Validity - is akin to the integrity (mentioned previously), where validity-checking 

algorithms can be executed, or the enforcement of validity-preserving modelling 

techniques undertaken. 

Unambiguity and Uniqueness - All solid models should be unambiguous. This 

requires that all valid representations correspond to a single solid. Furthermore, if 

only one representation of a solid exists, then that representation is said to be unique. 

Description Languages - specify the 'input method' for a given representation. 

Conciseness - characterises the amount of space required to store the representation. 
Clearly this should be kept to a minimum. 

Computational Ease and Applicability - are measures of the algorithms that 

can/must be written to realise the representation scheme, from an applications 

viewpoint. And also implies the suitability of a particular scheme to a given 

application. 

Almost two decades ago, Requicha (1980) defined six such schemes, suitable for the 

representation of unambiguous solid models. The following sections will discuss 

only the representation schemes related to this research, and their particular 

relevance to storing adaptive solid models, being a primary objective of this 

research. 

2.8.3 Pure Primitive Instancing 

This is a parameter-based scheme, where a generic primitive is created to represent a 
family of similar designs. The scheme is based around an implicit, or procedural, 
representation of the solid. Therefore individual family members can be instanced by 

specifying their parameters and re-executing the stored procedure. Pure Primitive 
Instancing has its roots in a concept known as Group Technology (Hyde 198 1). This 
is a technique used in Computer Integrated Manufacturing (CIM) to assist process 
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planning, design retrieval and scheduling (for example), by grouping similar parts 
into standardised families, thereby encouraging the use of standard parts and 

components. 

The underlying principle of grouping families of similar designs into a single generic 

model, is of considerable interest to this research. To this end, the author has 

developed a similar technique, Parametric Primitive Instancing (Andrews 1996). The 

goal of this application is to efficiently distribute solid models of standard 

(catalogue) parts. This involves the creation of generic, primitive models for 

standard component families, such as spur-gears and bearing-housings, which can be 

fed into an intelligent engine, to produce the required instances (figure 2.18). 

Figure 2.18 Example of the PPI application - Creating A Spur Gear Instance 

This representation scheme holds many advantages over traditional geometric 

modelling systems. Firstly, its ease of modifying the shape of a solid. It is also very 

efficient in terms of storage, requiring only the generic primitive and the set of 

necessary parameters to store an entire family of designs. The scheme is also 

unambiguous and unique. To some degree, the original intentions of the designer are 

maintained, as these are hard-coded within the generic primitive. However, a major 
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drawback of this scheme is that, being procedural, only the geometry (or shape) of 

the generic primitive can be changed. Major changes in the topology of solids is 

difficult to achieve, as there is no scope for conditional parameter definitions. Also, 

the scheme can be slow and resource consuming, as it requires the solid to be built 

from scratch (generated) each time it is instanced. 

Although this method has significant drawbacks, its foundations are relevant here. 

The ability to group a family of similar part designs into a single, generic model, is 

an efficient means of storing a family of past designs. Along with the ability to 

instance particular family members with a given set of parameters, Pure Primitive 

Instancing, in some form, can be used for this research. 

2.8.4 Constructive Solid Geometry 

Constructive models comprise a set-theoretic approach to representing solids by 

combining primitives using Boolean set operations. The history by which this is 

achieved is recorded as a binary tree. 

Half-Space models (Requicha 1977) define a volume bound by a combination of 

surfaces. These, in turn, are defined by inequality relations, such as z>O, which 
defines the three-dimensional Euclidean space for all points with aY co-ordinate 

greater than zero. Primitives are created by performing Boolean operations to a 

number of these inequalities. For example, the cylinder of figure 2.19 can be defined 

as follows: I 

H, :x2+y2_r2<0 
H2: Z> 0 

H3: z-h>O 
Cylinder = H, nH2nH3 

Figure 2.19 A Simple Half-Space Model 

(Mintylfi 1988) 
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By itself, the Half-Space model is of limited use, as it is often inconvenient to 

construct a model in terrns of complex inequalities. Hence these models are usually 

used as the basis of representation of other schemes. Constructive Solid Geometry 

(CSG) models (Voelcker and Requicha 1977) make use of Half-Space models as 
bounded, pre-defined and parametric primitives, analogous to Pure Primitive 

Instancing. These can be instanced and combined by the use of Union, Difference 

and Intersection Boolean operations, and simple transformations to represent a 

complete solid model, and are structurally represented by the CSG-tree (figure 2.20 

for example). The model of the 'L' bracket is formed by instancing two rectilinear 
blocks, using a union operation to create the L shape. A cylinder primitive is then 
instanced, and subtracted (by a difference operation) from the L. 

Figure 2.20 A CSG-tree for an L-bracket 
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The CSG representation scheme is very efficient in terms of storage requirements, 
being a high-level interpretation of the solids construction process. Its resultant solid 

models are unambiguous and valid, as they are based upon regularised set 

operations, which will always result in the interior closed volume of its set-theoretic 

operations. However, CSG is not unique. Also, being an implicit data structure, 

unforeseen future modifications to the CSG solid model are difficult to implement 

(Zuffante 1986). For example, figure 2.21 shows the 'parameterised' CSG-tree for 

the L-bracket (minus the hole). 

C 

-9 

C 

Figure 2.21 Parameterised CSG-tree for an L-bracket 

A block 'A' of dimensions 'c xdx e', and a block 'B' of dimensions 'f xgx h' are 

united to form the L-shape. However, the user of the system may wish to represent 
the bracket dimensions in terms of overall height and width (e. g. cx il). Such a 
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requirement cannot be fulfilled with the standard CSG representation scheme. Even 

if such parameterisation was possible, design intent can be lost, as CSG does not 

maintain information relating to mating of primitives (figure 2.22). 

010 

Figure 2.22 Lack of Primitive Relationships in the CSG-tree 

2.8.5 Boundary Representation 

The Boundary Representation (or B-Rep) model divides a solid, in terms of its 

bounding faces. In turn, these faces are defined in terms of their bounding edges and 

vertices. This represents a two-sided-mani fold (Mdntyld 1988), where the inside of 
this manifold represents the enclosed volume of the solid. Figure 2.23 shows an 

exploded view of the faces that make-up the L-bracket example. Faces are usually 
derived to lie on a surface that can be defined by planar, quadratic, toroidal or 

parametric expressions, which are also included in the B-rep data structure. Typical 
B-rep structures include: 
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Polygon-based Boundary Models - where all edges are straight lines and, therefore, 

all faces are planar (polygons). This structure is used extensively in graphics based 

applications. 

Vertex-based Boundary Models - the wasteful repetition of vertices, when defining 

faces in the polygon-based models, is eliminated by defining vertex entities, which 
can be referenced to define faces. 

Edge-based Boundary Models - for models where some edges are not straight lines. 

Here, edges are defined as entities, which are closed to form a loop (see figure 2.24). 
Examples of this model include the Winged-edge (Baumgart 1974,75) and Half-edge 

(Mdntyld 1988) data structures, as well as the Face-Adjacency-Hypergraph (FAH) 

which is a useful representation for automatic feature extraction. 

Figure 2.23 Faces Bounding the L-Bracket 

(ji, vertex 
Gil edge 
me loop 

face 

Figure 2.24 Various Entities of a B-rep model 
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Boundary Models can be created using a variety of techniques, of which the drafting 

interfaces of Graphical Representations are popular. Other techniques include Sweep 

Representations and CSG construction schemes. However, despite the expressive 

power of B-rep models, they are invariably difficult to validate. CSG conversion 

techniques can produce vulnerable results, and the use of incremental sweeping 

operations is considered unsafe (Braid 1979). Although the use of the Euler-Poincar6 

formula and its derived Euler operators (Mdntyld 1988) can be used to determine the 
integrity of Boundary Models. Further disadvantages of B-rep include the size of its 

models, and that its representations are not unique (Woo 1985). 

The ease with which Boundary Models can be constructed (or rather input) has made 

the use of B-rep, in some form or another, a popular choice for current geometric 

modelling kernels. To this extent, they are of relevance here. B-rep is an explicit 

representation scheme, i. e. its geometry is dependent upon related entities. It is 

therefore inherently parametric, implying that the shape of its models can be easily 

altered by changing the values of its vertex entities. 

2.8.5.1 Data Storage and Redundancy 

As has been stated, the fundamental objective of solid modelling is to provide a 

complete representation of a solid object. However, the effectiveness of boundary 

models is dependent upon the algorithms used to answer related geometric questions. 
Originally, it was thought that representing geometric and topological data explicitly 
enhanced the capability of these algorithms. 

Consider the representation of the three fundamental vertex, edge and face entities 
for a simple cube. Baer et al (1979) identify nine possible combinations for these 

representations, as outlined in figure 2.25. Various applications require (or rather 

prefer) the representation of a solid's topology in different forms, e. g. facets (or 

faces) are more useful for 'solid' rendering, whereas a vertex-only representation is 

more concise. It is therefore possible to state that no single data structure provides a 

completely satisfactory representation of topology in all practical cases, and some 

redundancy is inevitable. 
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e 

f: {q f: {v} f: {e} 

v-. {q V-{Vj 

e: {q e: {v} e: {e} 

Figure 2.25 - Nine Topological Relationships [Baer at al. ] 

2.8.6 Relevance of Solid Modelling Systems 

Of the representation schemes defined by Requicha. (1980), the following three have 

been discussed to be of relevence to this research: 

* Pure Primitive Instancing 

* Constructive Solid Geometry 

9 Boundary Representation 

Of these, CSG and B-rep hold major significance as they are successful and well 

established methods of representing solid models. In fact, current research and 

commercial solid modelling systems have combined the distinct advantages of these 

two schemes, to form hybrid modellers. Here, CSG is used primarily to validate 

representations, and B-rep is used to define loops and surfaces in a parametric 
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fashion. However, they do not readily facilitate the requirements of representing 
designs from a family range. On the other hand, Pure Primitive Instancing is based 

around this principle, be it typically only for piece parts. Although, it has the 

disadvantage of being limited to regularised shape changes. 

2.8.7 Enhanced Solid Modelling Schemes 

As they stand, CSG and B-rep schemes, and their hybrids, have evolved through four 

significant advances, as defined by Requicha and Voelcker (1983): 

1) Stored Input Definitions - only the inputs (i. e. the construction history) is stored, 

2) Volatile Input Definitions - is an initial attempt to store a useful representation of 
the solid, where the inputs are deemed unnecessary and discarded, 

3) Stored Input Definitions with Approximate Representations - is an application of 

an approximated B-rep scheme, 

4) Stored or Volatile Input Definitions together with Auxiliary Representations - 
here, auxiliary representations of the model are stored to assist validation and 

modification (for example), as well as the original input definition. 

The significance of these definitions (figure 2.26), and particularly for this research 
that of figure 2.26d, is the use of auxiliary representations. Although these 

representations add to the size and complexity of a model definition, their use can 

overcome some of the more static properties of Geometric Modelling systems 
(Nielson 1987 and Voelcker 1988). Research over the past decade, has seen the 

growing use of Parametric, Variational and Feature-based (auxiliary) representations, 
which shall be discussed in the following sections. 
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Volatile Input 
Definition 

Stored Input 
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27a 

Working 
Representation 

27b 

Stored 19put 
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Convert 

Approximate 
Boundary Rep. 

27c 

Stored or Volatile 
Input Definition 

Auxiliary 
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Ayroximate/Exad 
f epresentation 

27d 

Figure 2.26 Solid Modelling Schemes Requicha and Voelcker (1983) 

2.8.8 An Overview of Geometric Modelling 

M 
2. 

0 

0 

(I) 

The preceding subsections, from 2.8.1 to 2.8.7, described the development of the 

'Geometric Modelling' paradigm, and its applications. 

It started with the objective of having a complete representation of the object 

modelled. Initial attempts were concerned with issues of ensuring Validity, 

Uniqueness etc. Primitive Instancing, Half-Space models, CSG and Boundary 

Representations were developed as promising modelling techniques. 

Application algorithms were also developed with these schemes. Redundant 

data storage is seen as a method to resolve application issues. Finally, Hybrid 

Modellers (having more than one representation scheme) were developed to 

contain the accumulated benefits of the schemes included. This paradigm, even 
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with its significant developments, required further development to 

accommodate unforeseen, future requirements of solid modelling applications. 

It was felt that a significant leap was necessary. Parametric and Feature-based 

modelling were seen as the way forward. 

2.9 Parametric and Variational Modelling 

With the exception of Pure Primitive Instancing, the Geometric Solid Modelling 

systems defined so far can be described as static. In these cases, a representation is 

created, where no definitive relationships between primitives (and parts) exist. These 

are defined solely by geometry. Therefore, when the model requires modification, 

obstructing primitives or surfaces must be deleted, and the remaining and new 

geometry created. The aims of Parametric and Variational Modelling (or Design) are 

two-fold. Firstly, to adapt an existing model to satisfy a new design requirement, by 

the simple modification of a few parameters. And secondly, for the reuse and 

standardisation of existing designs as part and product families. Both of these aims 

are relevant and well suited to the objectives of this research. 

The terms Parametric Modelling and Variational Design have been used 
interchangeably in both acadernic and commercial domains (Kurland 1996). In fact, 

little or no distinction between the two may be apparent to the users of such systems, 

as their construction process is similar (figure 2.27): 
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1) Create a nominal model of the 

design using standard geometric 

modelling operations, but with no 

specific dimensions stated. 

2) Define geometric constraints 

between entities. These are 

generally in the fo rm of 

dimensional, or entity-to-entity 

constraints. E. g. set a line to be 

vertical, or set line A to be parallel 

to line B. 

3) Evaluate, or regenerate, the models 

constraints, by use of a general 

solution procedure. 

4) Create variants of the model, by 

changing parameter values and re- 

evaluating the general solution 

procedure. 

Figure 2.27 Constructing Parametric 

and Variant Models 

p2=25 Q 

pl =30 

7.5 r- 

25 

Ll 
: 1,0 

1 30 

10 

The difference between the Parametric and Variational techniques lies with the 

method(s) used for the general solution: 

Paranietric Modelling techniques make use of a Rigid Constraint Satisfaction 

procedure. In this case, the construction history, parameter assignments and 

constraints are stored in a defined, sequential order. Parameter assignments can 
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include both numerical values and simple relational expressions. The model is then 

solved according to this recorded sequence. The main advantages of this system are 
its simplicity to implement, and its speed of execution. However, the main 
disadvantage of Parametric Modelling is that the model must be fully constrained. 
As each entity in this sequential representation must be satisfied before the next one 

can be solved. 

Variational Modelling systems adopt a Flexible Constraint Satisfaction method. 

Constraints are represented by a set of simultaneous equations, which are solved to 

realise the design. The advantages of Variational Modelling are that, the order in 

which constraints are defined is not important. Hence the system is more flexible 

from the users perspective. Furthermore, under-constrained models can be solved, 
i. e. for models where the geometry is not completely defined. Here, the user can 

define which constraints are actually known, and evaluate the model to get-a-feel of 
how it will look and react to changes, and then proceed to achieve a fully constrained 

model. This also allows for a more intuitive design process. 

To illustrate this difference, Kurland (1996) defines two parallel lines (figure 2.28). 

A Parametric Modeller may define line-A as being parallel to line-B, and a distance 

Y apart. So when line-B is moved, line-A will move respectively. However, an 

attempt to move line-A will fail, due to the sequential nature of the Parametric 

system. For a Variant Modeller, a constraint such as 'let lines A and B be parallel, 

and a distance 'x' apart' may be given, allowing both lines to be moved whilst 

maintaining this constraint. 
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Parametdc Modelling 

A is constrained to lie parallel 
and a distance Y from B 

A 

x 

B 

Li 

1) B is moved, and a follows 

2) A is moved, but B does not follow 

A 

Vafiational Modelling 

A is constrained to lie parallel 
and a distanceYfrom B 

1) B is moved, and a follows 

2) A is moved, and B follows 

Figure 2.28 Difference between Parametric and Variational Systems 

Many authors use differing terminology for these approaches. For example, 

Parametric Modelling can also be described as an explicit form of Variational 

Design (Shah and Mdntyld 1995), or more generally as being Procedural. Whereas 

Variant Design is termed as being implicit. Moreover, both the procedural or 

Parametric, and implicit Variational Modelling techniques are suited to storing a 

family of similar designs as a single adaptive model. However, both of these 

techniques still do not express the engineering significance of a model. Therefore, 

the following section shall discuss the use of features in solid modelling and design. 
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2.10 Feature Based Design 

In their definition of features, Shah and Mdntyld (1995) state that a feature represents 

the engineering meaning or significance of the geometry of a part or assembly. 

Features can be thought of as building blocks for product definition, or for geometric 

reasoning. For example, consider the design represented in figure 2.29. 

Pin En 

Orank Ring 

Cranking Groove 

Balance Boss 

I-Section connecto 

Orank End 

Bearing Lock Notc 

Bolt Hole 

Figure 2.29 - Design Features of a Connecting Rod (Shah and Mlintylfi 1995) 

The figure shows the design features of a 'con-rod, and through the combination of 

these features a--complete definition of the design is achieved. Therefore, the 

characteristics of a feature can be listed as follows: 

a) a feature is a physical constituent of a part, 

b) a feature is mappable to a generic part, 

c) a feature has engineering significance, and 

d) a feature has predictable properties. 

A feature can be a single entity (or primitive), or a combination of related primitives, 

that perform a defined function. Features (should) also contain and maintain 

constraints to their surroundings. A simple example of a feature is a hole. In 

48 



geometric terms this can either be represented as a cylinder, subtracted from a given 
base model (for CSG), or as a cylindrical face, bound at both ends, but whose inner 

volume is void (for 13-rep). However, an engineer will typically define a hole as 
being 'a cut-out of a given diameter and depth, or as being drilled straight through 

the base model', for example, as shown in figure 2.30a and 2.30b. 

drilling 
depth direction 

fýýoffset 
2 

(C) 

er 

(b) 

Figure 2.30 A Simple (Blind) Hole Feature 

This feature should also contain information as to its location and position on the 
base model (figure 2.30c), and if, say, defined as a through-hole, should be able to 

automatically adapt itself according to changes in its parent entities, i. e. the base part 
to which it is attached (figure 2.3 1). 
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A feature model is a data structure that represents a given part or assembly, primarily 
in terms of its constituent features. Each feature in the feature model is an 

identifiable entity that has some explicit representation. The shape of a feature, as 

shown earlier, may be expressed in terms of dimensional parameters, enumeration of 

geometric and topological entities and relations, or, in terms of the constructional 

steps needed to produce the geometry corresponding to the feature. 

Shah and Mantyla (1995) enumerate the following feature properties, which indicate 

the range of properties that may be included in a feature model: 

a) General Shape (topology and/or shape), 
b) Dimensional Parameters (independent parameters), 

C) Constraint Parameters and Constraint Relations, 

d) Default Values for parameters, 

e) Location or Attachment Method, 

0 Location Parameters, 

g) Orientation Method, 

h) Orientation Parameters, 

i) Tolerances, 

j) Construction Procedure for the geometric model, 
k) Recognition Algorithm, 

1) Parameters computed on the basis of other features, 

M) Inheritance Rules or Procedures, 

n) Validation Rules or Procedures, 

0) Non-Geometric Attributes (part number or function etc. ). 

There are a number of commercial feature-based design applications in use today. 
Prominent examples include Pro/ENGINEER (Parametric Technology Corporation), 
Mechanical Desktop (Autodesk) and SolidWorks (SolidWorks Corp. ). All of these 

systems provide a subset of the above characteristics of modelling with features and 
thus make the detailed design process more flexible and useful. 
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2.10.1 Feature Creation Methods 

Features are clearly an integrated part of Computer Aided Design and Engineering. 

They possess reuse facilities for the design synthesis, manufacturing and adaptation 

stages. Therefore it is beneficial to represent the computer model, related to this 

research in terms of features. Shah (1991) and Feru et al (1992) define the two 

methods of feature creation as follows: 

Form Feature Recognition - where features are recognised and extracted, by some 

means, from an existing, defined geometric model, and 

Design by Features - the solid model is constructed as a combination of features. 

2.10.2 Form Feature Recognition 
With this method, a solid model, already created using the Geometric Modelling 

techniques described earlier in sections 2.8-2.9, is decomposed into form features. 

This process is governed by a Feature Recognition System and a Feature Database, 

which contains generic primitives of various features, to which elements of the solid 

model can be compared. This process can also be either interactive or fully 

automatic: 

Interactive Feature Recognition - Here the created geometric model is displayed via 

a suitable user-interface. The user then picks elements of this model, which they 

wish to be recognised as a feature. The feature recognition system then compares 

this geometry to what is stored in the (feature) database, and extracts the relevant 

geometry from the solid model, whilst adding the feature to an evolving feature 

model (figure 2.32). 
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Automatic Feature Recognition - This technique was originally developed as a 

method for Machining Region Recognition (a subset of CAPP). However, here 

interest lies in dealing with features bound by the interior volume of the solid model, 

and not from a machined volume. Therefore, we will discuss what is termed Pre- 

Defined Feature Recognition. This is a fully automated system (i. e. there is virtually 

no user-input to the recognition process). Again, the process starts with an existing 

solid model, which is processed through various recognition and extraction 

algorithms. These typically compare groupings of either B-rep or CSG-tree elements, 

to defined 'generic' features in the Feature Database, and perform the extraction to 

form a Feature Model (figure 2.33). 

Modeller Model 

User 

Feature Feature 

I# 

features 

Figure 2.33 Automatic Feature Definition 

Feature 
Model 

Both interactive and automatic systems are clearly beneficial, to solid modelling, as 

they allow the designer to create a solid model solely in terms of its shape, without 

having to think about 'which feature to use where', as the process of feature 
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recognition and extraction is generally the task of the computer. However, a 

recognition algorithm can only recognise features that are similar to the feature 

patterns stored in its database. Therefore, new features (e. g. those created by the 

designer for an innovative product) may either not be recognised, or interpreted as a 

collection of known features. Implying that true design intent is not realistically 

maintained. 

2.10.3 Design By Features 
As the title suggests, this is a more manual process, consisting of an interface to a 
library of pre-defined, generic features, including primitives such as holes, rounds, 
bosses and keyways. The two authoritative forms of design by features shall be 

described here, Destructive Modelling with Features and Synthesis by Features: 

Destructive Modelling with Features - (also termed Destructive or Deforming Solid 

Geometry) was originally proposed by Arbab (1982) and later by Cutkosky (1988) 

and Turner (1988). It is essentially a method of removing instanced features from a 

stock (or base) block. Such a process is akin to part machining operations, for which 
it was originally devised. Figure 2.34a shows an example of how the L-bracket can 
be created using this technique. 

Synthesis by Features - begins the modelling process with a 'clean sheet', into which 

a base feature is inserted. Further features are synthesised and either added or 

subtracted from the base. Figure 2.34b shows how the L-bracket can -be. created by 

synthesis. 

Of these two systems, Synthesis by Features is more popular amongst commercial 

systems vendors, as it is more intuitive to established solid modelling approaches. 
Destructive Modelling with Features is inherently a preferred for CAPP and NC part 

programming. 
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2.10.4 User-Def-ined Features 

The combination of Design by Features and Parametric and Variational Modelling 

techniques lend themselves to the natural progression of the construction of models 

using both standard and User-Defined features. This is enabled through the adoption 

of Parametric and/or Variational constraint satisfaction. Allowing features to be 

sketched topologically, constrained and then geometrically realised by providing 

parameters. This technique is the 'state-of-art' for current commercial modelling 

systems (Fowler 1996). 

p4 'Jrl 

Figure 2.35 A User-Derined Arch feature 

Figure 2.35 represents a typical example of a user-defined feature. Due to limitations 

of constraint satisfaction (discussed in section 2.9), they are typically the result of a 

constrained two-dimensional sketch, or profile, which is swept (e. g. extrusion, 

rotation etc. ) to form a solid. The parameters defining its geometry and location, with 

respect to its placement (base) feature, are used to alter its shape. 

In summary, it can be said that Feature Based Modelling is developed with the 
intention of using and modifying the model in downstream applications. Their 

requirements are introduced as parameters of the feature. 

55 



2.11 Commercial Feature Based Modelling Systems 
The past decade has seen an increasing acceptance of Feature Based Design and 
Parametric and Variational modelling techniques into the commercial CAD sector. 
This section will outline the features of three such modelling systems, covering the 

top, middle and lower-ground of computer-based mechanical design. 

ProlENGINEER 

At the top end of the market is Parametric Technology's Pro/ENGINEER package, 

which is considered to be the 'founding father' of commercial Parametric Modelling 

systems. As opposed to graphical modelling systems, Pro/ENGINEER adopts a 
design-by-solids (and surfaces) approach. The user, as discussed in the previous 

section, initiates modelling with the creation of a base feature (usually a datum), to 

which additional features can be constrained. All features created in 

Pro/ENGINEER, be they standard library features (such as rounds and chamfers), or 

user defined features, are parametric and are synthesised to a base feature. Figure 

2.36 shows the step-by-step procedure for creating the L-bracket model in 

Pro/ENGINEER. 

On the modelling side, Pro/ENGINEER has two useful features that are only 

partially available in other commercial CAD systems, these are: 

a) Feature Suppression and 
b) The Family Table. 

Feature Suppression allows chosen features of a given part to be turned on and off at 

will. This allows various design alternatives to be present within a single CAD 

model. An example of this can be to regenerate the L-bracket with, or without, its 

hole feature (figure 2.37). 
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The Family Table is where the essence of parametric design comes into play. Here, a 

spreadsheet can be created, within Pro/ENGINEER, containing the driving 

parameters relating to the family members of a given design. Figure 2.38 shows an 

example family table for the L-bracket family. Here, rows correspond to individual 

family members and columns refer to parameters, which can include feature 

suppression status, as well as geometric parameters. Individual family members are 

generated by instancing the appropriate row of the family table. Pro/ENGINEER 

also allows these concepts to be extended to full assembly modelling. Invoking the 

ability to concisely represent entire product ranges, which can be used for analysis 

purposes or automatically converted into 2-dimensional manufacturing drawings. 

Pro/ENGINEER is not only a modelling-based application. It comprises a number of 

applications, including Finite Element Analysis (Pro/MECHANICA) and kinematics 

(Pro/MOTION). On the whole, Pro/ENGINEER is marketed as a complete design to 

manufacture tool (for detailed design), and has proven itself to be one of the most 

robust and successful CAD packages of recent years. 
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Mechanical Desktop 

At the 'lower-end' of the market, Autodesk Mechanical Desktop (Autodesk) is a 
bolt-on product to the industry standard drafting package AutoCAD. Mechanical 

Desktop also adopts the modelling techniques of Feature Based Design, starting with 

a base feature, to which subsequent features can be added. Again these features are 

created from either a standard library, or as user defined (or sketched) features. One 

advantage of Mechanical Desktop is its easy to use user interface, where unlike 
Pro/ENGINEER, specific pictorial dialogs are used to assist the creation of library 

features, e. g. countersunk holes and extrusions etc. 

However, Mechanical Desktop's roots are not based on a parametric modelling 
kernel, and as such, it is less robust than competing packages. Also, its inability to 

readily suppress features and parts, and the lack of a structure to represent families of 
designs, make it a less capable, but significantly less expensive application. 

SolidWorks 

The Solidworks modeller lies somewhere in-between Pro/ENGINEER and 
Mechanical Desktop. Although in terms of modelling alone, it is functionally as 

capable as Pro/ENGINEER. Solidworks also uses Parameter-based variant 

modelling techniques. Figure 2.39, demonstrates the power of Solidworks with a 
fully parametric spring example. 

One of this package's major strengths is that it is a 'Native' Microsoft Windows 

application, i. e. unlike applications such as Pro/ENGINEER, it was not 'ported' from 

the workstation domains of Unix and Silicon Graphics based architectures. It is 

therefore well suited to the middle-ground of mechanical engineering industry. A 
further enhancement to Solidworks is its embodiment of an accessible API 

(Application Programming Interface) . The API can be used directly to automate the 
Solidworks application from an external source, for example, a database application 
or a custom coded application. 
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2.12 Working techniques for the Capture of Solid Geometry 

In an ideal world, old, manufacturing drawings could be scanned into the computer 

and automatically transformed into complete, parametric, feature-based 

representations. If this was the case, then the purpose of this research would be 

(almost) meaningless. In reality, a significant quantity of research, and hardly any 

commercial applications for the automatic construction of three-dimensional solid 

models form their two-dimensional representations exist. Partially automated 

methods, known as Interactive Systems, do exist, though these have been represented 

commercially for only a few years. The following sections will outline the state-of- 

art in this field, and determine whether any use of available conversion systems and 

techniques can be used for this research. 

2.12.1 Automatic Capture of Paper Based Manufacturing Drawings 

Techniques and algorithms to convert two-dimensional, scanned line drawings 

(termed raster or bitmap images), into coherent CAD-based drawings have been 
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available for some time. These methods typically invoke a combination of heuristic 

and analytical techniques, such as the Hough Transform (Leavers 1992) to convert 

the raster image into a form through which primitives (e. g. lines and arcs) can be 

recognised. This process is generally termed Vectorisation, and is not only limited to 

the recognition of primitive and composite geometric elements. For example, current 

commercial systems can differentiate between hidden, centre and continuous 

linetypes and thickness (Lanasami and Langrana 1990), as well as colour, and more 

significantly recognise text, Object Character Recognition, (Ogg 1992). Commercial 

applications demonstrating these capabilities include VP-Max by Softelec (1997). 

These systems, as is typical, allow export of converted drawings into popular 
formats, e. g. AutoCAD DXF and IGES, and although these systems may require a 

limited degree of user-interaction (for example, identifying objects of a given colour 

to be contained within a separate layer) they can be considered as automatic. 

However, despite the fact that these systems provide features to express design 

intent, they only partially realise our goal of being able to reuse a design's 

(geometric) model with the latest advances in CAD-based technology. For this, the 

representative three-dimensional solid model is generally required. The following 

sections discuss how this can be achieved. 

2.12.2 Automatic Conversion to Solid Geometry 

Research into the reconstruction / recognition of a three-dimensional object from its 

two-dimensional projections has been 'in-progress' for over thirty-years, from the 

stages when 2D sketching and drafting were also in their infancy, and can be defined 

as follows: 

'Reconstruction - involves determining the geometric and topological 

relationship of an object's basic parts, whereas, 
Recognition - deals with identifying an object by some form of template matching. ' 

(Wang 1992) 

Both of these fields bear relevance to the meaningful conversion of 2D paper-based 
drawings to solid CAD models. Reconstruction methods are best suited to forming 

the solid model (in typically Brep or CSG form), and Recognition methods are more 
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applicable to the identification of features. The following will discuss the former 

method (reconstruction), as feature-based recognition methods have already been 

tackled. 

The reconstruction problem can itself be categorised into several areas. Firstly, 

whether multiple (usually orthogonal) or a single, e. g. plan or perspective, view is 

given. Multiple views make the process significantly more manageable. Although 

many researchers have attempted the reconstruction of solids from single views, with 

some success. Examples of multi-view and single-view projections are given in 

figure 2.40. The second problem arises when choosing a representation scheme. Of 

the two established formats, Boundary Representation is perhaps the more naturally 

suited to this domain, as, like the projection from which it is formed, it is also 

structured from vertices, edges, curves and faces. On the other hand CSG-based 

approaches require the reconstruction of solid primitives. The third problem involves 

determining which of the, possibly many, interpretations is the true representation of 

the solid. 
Top 

10 

Front Right 

Isometric 

Figure 2.40 Orthogonal Projections (left) and Isometric (auxiliary) View (right) 

For the majority of mechanical engineering cases, manufacturing drawings are 

usually created with more than one view, and are virtually always orthographic. 
Hence, the discussion of the reconstruction of single view drawings is somewhat 
irrelevant. For the cases where only a single projection is given, this is treated as a 
21/21) problem, and is relatively simple to solve, as a lofting exercise. The 

reconstruction of isometric, or even perspective, views of mechanical designs is 

unrealistic, as these are typically viewed as being auxiliary, may be inaccurate, and 
do not portray the 'blind-side' of the object. The following shall therefore discuss 
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only the reconstruction of solids using multiple view projections. It is also 

convenient to discuss the techniques developed in terms of their representation 

schemes, e. g. B-Rep or CSG. 

21/2 D 
lofting 
E> 

Figure 2.41 A simple 2'/2D loft (left) and ambiguous isometric view (right) 

2.12.3 B-Rep Approaches 

These approaches, in general, follow a similar pattern: 
1) Transform the 2D vertices from their respective projections into 3D vertices. 
2) Join these 3D vertices to generate 3D line segments. 
3) Construct planar faces from these line segments. 
4) Build 3D solids from the faces. 

Initial work by Idesawa (1973) involves a mathematical approach to the problem. He 

determined that, despite the correspondence between views being known, the 

reconstruction process would possibly produce what are known as 'ghost figures', 

e. g. stray points, lines and faces; to which, various elimination criteria are 
introduced. However, Idesawa's method is only suitable for polyhedral designs. A 

similar approach was also taken by Wesley and Markowsky (1980), (198 1) in their 

'Fleshing-Out Wireframes' and 'Fleshing-Out Projections' papers. Although their 

work is also limited to polyhedra. the elimination of misrepresentative solutions is 

improved. A major advance from these methods is provided by Sakurai (1983), who 
introduced rotational ly-symmetrical objects into the process. These include spheres, 

cylinders and cones etc. Further work by Gu et al. (1985) reduced many of the 
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restrictions, such as the requirement of orthogonal alignment of cylinders, imposed 

by Sakurai. 

2.12.4 CSG-Based Approaches 

To a lesser extent, research has also been undertaken, assuming that a given design 

can be reconstructed from a series of primitives using the set theoretic approach. 
Here, Aldefeld (1983) initially introduced a method of comparing three orthogonal 
views to determine isolated rectangular primitives. However, this approach restricts 
these primitives to being fully visible in all three views, and is clearly limited to 

regýlar polyhedra. Aldefeld and Richter (1984) later extended this method to allow 
for partially obstructed (or defined) primitives, by taking an interactive approach. 
Here, the user adds 'missing' lines and arcs to realise individual primitives. A 

commercial implementation of an interactive method is the 'Make-IT 3D' package, 
EMT (1998). Ho (1986) further extends this work by providing a more intuitive 
CAD-based approach, where the user identifies primitives from a set of orthogonal 
views and identifies their sense, i. e. by addition or difference. This method 
significantly reduces the time required to extract partially visible primitives. 

2.12.5 Summary of Multi-View Reconstruction Approaches 

Both B-Rep and CSG approaches are only partial attempts for the successful 

conversion of 2D projections to a solid model. Their current limitations are 
therefore listed below: 

a) lack of recognising 'real-world'- designs - many designs contain complex 

curved surfaces and obscured views, only identifiable by cross-sections and 
hidden line auxiliary views. The reviewed systems cannot cope with these 

designs. 

b) Inability to capture design intent - manufacturing drawings also contain 

constructive information relating to such areas as dimensions, tolerances 

and even the inclusion of features that cannot be seen, e. g. small fillets. 

These are ignored by these approaches. 
It can therefore be concluded that automated reconstruction techniques, in 

their current state of development, are not suitable for the modelling of real, 

complex engineering products. 
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2.13 State of the Art - Feature-Based Semi-Automated Methods 

The semi-automated methods for capturing detailed designs are an attempt to 

incorporate the advantages of retaining a high level on design intent, whilst using 

techniques, such as Parametric and Variational Design and Feature Based Design, to 

automate the generation (or instancing) of 

similar designs, i. e. its variants. The two Identify all parameters 
principal 'State of the Art' techniques for 

the semi-automated capture of past (and 

the creation of new) designs, are the Break-down product 

Generative (sometimes called Procedural) 
into features 

and Variant Design Methods. 
U 

om 
Mathematically define 

2.13.1 Generative Method 

Egeoametry 

of each feature 

This method adopts a procedural technique V 

to create a parametric model for a given Manually build a solid 
model of the nominal design. The Generative Model is design 

essentially a sequential list of events, or II 

instructions, that represent the design's V-- 

construction process. Real numbers, 
Check reliability of model 

representing geometry, are replaced with 

variables, by editing this data structure. 
Other parameters, not necessarily relating I 

Tract a CSG tree Manuall write a 
to geometry can also be added. Individual f each feature macro 
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procedural data structure. 
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Shahin (1996) encompasses the generative 

method in his PhD thesis, outlining a 

methodology to create a series of similar 

solid models from a single Generative 

Model, with a goal towards design 

Build Model 

Figure 2.42 The Generative Z!, 
Methodology (Shahin) 
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optimisation. Figure 2.42 outlines the relevant sections of this methodology, whic is 

categorised by the following three objectives: 

Objective I- defines various elements of the design that are related to design intent, 

e. g. parameters, features and constraints. Note that the user of this system is required 
to manually define the geometry, constraints and relations for geometric elements 

and features. 

Objective 2- is concerned with the creation of a reliable model. The nominal solid 
model should be the best possible representation of all instances that are to be 

generated. 

Objective 3- describes a scheme to explicitly model each feature of the nominal 

model by, either writing an application-specific macro, or by extracting its 

representative data structure. This is then edited to include parameter definitions, 

constraints and relationships. Finally individual models are instanced by assigning a 

new set of parameter values and re-generating the model. 

Clearly the process of manually identifying parameters and features that form a 

given design is a distinct representation of design intent. Also, having to 

mathematically define these features places an intent retaining emphasis upon how 

their related elements will react when new parameters are declared. In his research, 
Shahin makes use of a hybrid CSG/B-Rep data structure, as the basis of his 

Generative model. This is formed by creating a nominal design using a suitable CAD 

modelling application. The hybrid data-structure may then be extracted, if such a 
feature is available within the application, and edited to include variables (or 

parameters) in the place of numerical geometry. Figure 2.43 outlines this process, 

using the L-Bracket example. 
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Nominal Model 

40 

Extracted CSG Tree 

Define: "entity-l" as 
Create_Solid_Block: (0,0,0) (40,10,40) 

End_definition_of "entity_l" 

Define: "entity-2" as 
Create_Solid_Block: (0,0,0) (10,40,40) 

End_definition_of "entity_2" 

Define: "entity-3" as 
Union: "entity_l" "entity_2" 

End_definition_of "entity_3" 

Redefine "entity_3" as 

Subtract: "entity_3" from 

Create_Through_Hole: (25,10,20) (0, -1,0) 20 

End_definition_of "entity_3" 

Parameter Definition 

height 

Desiqn Intent 
Place Hole centrally on the resultant face of the 'L-Bracket' 
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Editinq of Data Structure 

Declare_Variables: 

width = 40 

heig t= 40 

depth = 40 

tl = 10 

t2 = 10 
Hole_dia = 20 

End_Variables-declaration 

Define: "block_1" as 

Create 
- 

Solid 
- 

Block: (0,0,0) (width, tl, depth) 

End_definition_of "block-l" 

Define: "block_2" as 

Create_Solid_Block: (0,0,0) (t2, height, depth) 

End_definition_of "block_2" 

Define: "L_bracket" as 

Union: "block_11, "block_2" 

End_definition_of "L_bracket" 

Redefine "L_bracket" as 
Subtract: "L_bracket" from 

Create_Through_Hole: (width- (width -t2) /2, tl , depth/2) (0, -1,0) 
hole_dia 

End_definition_of "L_bracket" 

Figure 2.43 - Example of the Generative Method for the L-Bracket 

Therefore, by declaring the variables: width, height etc. with different values and re- 

executing the edited data structure, other instances of the L-bracket can be generated. 
This process is termed 'Interactive Design by Features' and can be further enhanced 
by customising the data structure, which is essentially a program listing, with 

rudimentary programming code. For example, by adding a loop to create a series of 

small holes on one of the L-brackets blocks. 

This discussion has, so far, touched only on the advantages of this method. It does, 

however, impose a number of restrictions with regard to its implementation. Firstly, 
it requires a degree of mathematical, geometric knowledge and programming skills. 
Both of these qualities may not be available within a typical SME, that is only just 

S. 
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beginning to adopt CAD. A further disadvantage of the generative method is that the 

construction of its models is time consuming, especially for models with complex 

curved parts, as these will require an exact mathematical definition to be provided by 

the user. Furthermore, this method is procedural, implying that the model must be re- 

generated from scratch every time a single parameter is modified. For large, 

complex, multi-part models this can also be time consuming. In conclusion, the 

Generative Method is well suited to geometrically modelling past designs, 

including that of design families under a single, 

adaptive model. It does, however, impose a heavy 
Identify driving pararneters 

resource burden on the designer. 

Break-dovm product 
2.13.2 Variant Method 

I 
into features 

Although similar in operation, the Variant approach 

to storing solid geometric models differs primarily in EDet-e 
mi b f t 

the construction of its models. Whereas the 
r ne ase ea ure 

-T-T 
generative approach involves the often tedious 

operation of editing a complex data structure to For each feature: 
enable parameterisation, the Variant Method makes 1) Create profile sketch 

2) (bristrain profile 
use of Parametric and Variant Modelling techniques 3) Create feature 
(see section 2.9) and Feature Based Design, in 

particular User Designed Features (section 2.10.5), to 

interactively draft a geometric model. It requires 
rTeate 

relations bebwen 
features 

virtually no complex mathematical and programming 

operations, and is typically implemented via an 

efficient and familiar user-interface (Kurland 1996). Create Global Parameters & 
Despite the difference in terminology, perhaps the 

relate to feature parametrs 

most well known commercial example of this 

technique is the 'Parametric Modeller', 
Specify Global and 

Pro/ENGINEER, which was pioneered in 1990. More feature parameters 

recently other applications vendors have adopted this 

technique, including Autodesk. with 'Mechanical 

Desktop' as an extension to AutoCAD, and 
Pegenerate kbdel 

'SolidWorks'. Figure 2.44 The Variant Method 
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The process of creating a variant model is initially similar to that of the generative 

model. Where. to begin with, the driving design parameters and features, are 

identified. 

The majority of current modelling systems work with a 'Synthesis by Features' 

approach, where features are constructed in a hierarchical fashion, thereby requiring 

the creation of a base feature. Here, features are created by either using predefined, 
library features (primitives), or by generating User Defined features. This 

construction process has already been described in section 2.10. However, to recap, 
it involves the creation of a 2D sketch (or profile) for each feature, which is 

parametrically dimensioned and constrained. (If this feature is not the base feature, 

then its profile must also be constrained to its parent feature, e. g. the base). This 

profile is then transformed, typically by parametric extrusion, to form a solid feature 

model. And the process is repeated for all identified features in the design. 

Gobal Parameter: Pl 
d3 = Pl 
d5 = Pl 

Figure 2.45 Use of Global Parameters 

Finally, relations between features can be established. These generally govern the 

control of a given feature's driving parameters, and can be either on a feature to 

feature basis, or defined globally. In this case a set of global parameters is typically 

created to oversee the declaration of (subordinate) feature parameters. For example, 

the block, of figure 2.45, requires the diameters of its two holes to be the same. 
Setting the relation 'd3 = d5' will not suffice, as this may still allow 'd5' to be 

modified independently. Therefore the use of the global parameter 'Pl' can be 

defined through relations as: 'let: 0= Pl' and 'let d5 = Pl'. Regeneration of tile 

models relations and constraints will always result in 0 and d5 being equal to Pi's 
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declared value. Variants of this model can now be instanced by modifying features 

and global parameters, and re-solving the models constraint set (regeneration). 

A ftirther feature, that is typical in many variant design systems, is the ability to 

momentarily hide, or Suppress, various child features, and Resume these features 

when desired. 

Variant based modelling systems are, on the whole much simpler to use than 

their generative counterparts. They also require less human resources to create 

a 'parametric', or adaptive, model for a given design. Furthermore, such 
systems based (even partially) on Flexible Constraint Satisfaction techniques (see 

2.9), allow for faster model regeneration, as here only the modified and directly 

related features and entities are updated. However, innovative application 

methods have to be developed to exploit this power. 

2.13.3 A Comparison of Generative and Variant Design Methods 

These two methods are divided by a fundamental difference in their creation. The 
Generative Method employs a programmatic approach, whereas the Variant Method 

provides a more naturally, concurrent approach. However, generative models are 
highly customisable. This is very favourable in the case of attempting to combine a 
number of topologically dissimilar designs within a single model. Here the 
generative model can be programmed to switch between various features depending 

upon which individual design is required. Trying to attempt this problem with the 
variant method is difficult, as the variant method inherently 'varies' a given model, 
and cannot invoke and respond to yes/no decisions, by itselE 
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2.14 Essential Findings from the Literature Survey 

2.14.1 Function Means Tree 

Unlike the Parts Tree and Function Family Tree, the Function Means Tree'relates 
both function and means (parts) under a single data structure. In particular, it directly 

relates a given function to it realising means, which is ideal for rapid component 
retrieval. Furthermore, a core consideration of this research is to simplify the process 
of storing past design cases. The Function Means Tree is a simple, clear and straight- 
forward structure to create for each past design case, as its elements are easy to 
identify (a means is a part or subsystem name, to which its function can be easily 
derived) and input. In comparison to the chart based methods, such as Design 
Function Deployment, it is less cumbersome, and does not overburden the designer 

too heavily. 

2.14.2 Annotated Sketches 
If available, sketches are highly regarded as a medium to express design intent, and 
demonstrate 'how things work'. Combined with suitable annotation (text), a given 

sketch can be stored along side its related function-means pair in the Function Means 

Tree. 

2.14.3 Variant CAD Model 
The traditional, static forms of geometric modelling do not allow existing CAD- 

based models to be easily adapted and modified. -Howe-ver, dynamic -systems, such as 

the combined Parametric and Feature-Based modellers that are commercially 

available facilitate this requirement to some degree. Of the existing methods that can 
be adopted to transform an organisations legacy manufacturing drawings into solid 
CAD models, the Semi-Automated methods (see section 2.12) are most relevant. 
Automatic and Interactive Recognition techniques for 2D Projections (section 2.11) 

are still in their infancy, and have been argued to be deficient in representing real, 

complex engineering designs. These methods also do not wholly express the degree 

of design intent present in a typical manufacturing drawing, as they only represent 

elements of the drawing(s) that can be recognised from a pre-defined database. 
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Of the reviewed Semi-Automated design representation methods, both the 

Generative and Variant methods incorporate feature-based and parametric 
techniques, which allow for rapid design modifications. It is apparent that the 

Generative method is best suited to the evolution, or synthesis, of complex, 
innovative designs. In contrast the Variant method is better applied to a more well 
defined design scenario. In terms of actual modelling, the Variant methods is much 

simpler. Therefore, it follows that the Variant method is more readily applicable to 

the reconstruction of existing, pre-defined engineering designs, and is chosen here to 

represent the Detailed Design. 

These findings were used in the development of the methodology for storing a 
family of detailed designs. 
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Chapter 3 

Generic Methodology 
Overview 
In chapter Ia number of objectives for this research were defined. These are: 
1) To determine suitable data-structures to store the Solution Concept, Embodiment 

and Detailed stages of the design process, 
2) To create a Methodology to store existing design families for efficient reuse, and, 
3) Implement the methodology as a Software Application. 

The previous chapter discussed the relevant data-structures to represent these stages 

of the design process. This chapter will discuss the proposal of two novel concepts, 
followed by a Generic Methodology, to realise these ob ectives. This will be 

subsequently illustrated using a simplified propeller-shaft example. 

3.1 Data Structures 

Before proposing a suitable data structure to effectively store past designs, it is 

useful to refresh, or identify, the underlying requirements of this research. Firstly, the 

chosen method(s) should represent a given design concisely, but with enough 
descriptive meaning, so that whole design, or parts of it can be retrieved by either 

name or descriptive function. This information should also be detailed enough to 

satisfactorily express the designer's original intent, so that new designers can 

understand and learn from past design cases. Secondly, designs should be stored in a 

manner that facilitates easy modification, which will allow existing designs to be 

readily modified to suit a new scenario of requirements. 

To this end, the following design methods have been chosen to represent solution 
concept, embodiment and detailed designs: 

a) Function Means Tree 
b) Variant CAD Model 
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3.2 The Two Novel Concepts 

The Generic Methodology proposed here, builds on two novel concepts, these are: 
1) the Hybrid Function Means / Parts Tree and 

2) the Variant Master Model. 

The Hybrid Function Means / Parts Tree accommodates the conceptual and 

embodiment stages of the design process, while the Variant Master Model accounts 
for detailed design. These concepts are further discussed below. 

3.2.1 The Hybrid Function Means / Parts Tree 

This section proposes a combination of both the function oriented Function Means 

Tree, and the assembly oriented Parts Tree. The union of these two structures allows 
the designer to build and view a structure to represent the conceptual and 

embodiment stages of design according to their individual context and preference. 
For example, when synthesising a new (or viewing an old) design, it is preferable to 
design by an evolution of functions (see the Function Family Tree, section 2.3.1). 

Whereas, when converting an existing design into a CAD based model, it is easier to 

structure this model in terms of its parts and order of assembly. 

Figures 3.1 a and b respectively, show a generalised Function Family Tree and Parts 

Tree for a simple product. The relationships between functions and means (parts) can 
be represented as two lists of information, for both functions and parts, as in figure 
3.2. This data structure is comprised of two linked-lists representing the structure of 
both trees, by storing the parent node indices (ID's) for each child node. 
Relationships between the lists (indicated by straight lines in figure 3.2) are also 

stored as the node ID's of the corresponding list. For example, the 'Tertiary Function 

A' (node/ID 2 in the Function Family Tree) is realised by 'Part B' (node/ID 3 in the 
Parts Tree). 
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Figure 3.1b A Generalised Parts Tree 

Figures 3.3 and 3.4 show the resulting Function oriented and Parts (assembly) 

oriented representations of the Hybrid Function Means/Parts Tree data structure, 

respectively. 
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Figure 3.4 A Parts Oriented Representation of the Hybrid Data Structure 

3.2.2 The Variant Master Model 

The concept of Parameter-Based Modelling can be extended to represent a family of 

similar mechanical designs under a single Variant Master Model. On a single-part 

basis, this can be achieved by instancing the Master Model with varying sets of 

parameters, as demonstrated by the spanner-set example of figure 3.5. This is a very 

simplistic example, and is representative of Pure Primitive Instancing (section 2.8-3). 

Families of part designs are often less similar, than in this example. Take an 

extended family of open-ended and ring spanners (figure 3.6) for example. A 

solution to representing this family is to define these differences as separate features, 

all contained within the single Master Model, and, depending upon which design 

case is required, by turning selected features on and off. 
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Figure 3.5 A Family of Spanner Designs 

Figure 3.6 Members of a more Complex Spanner Family 
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Assemblies of parts share similar characteristics to those of individual part designs, 

where two or more assemblies, whilst being on the whole similar, may contain (or 

not contain) particular parts, unique to each of their designs. 

It is therefore convenient to differentiate between these elements of a Master design 

model into Master Parts and Master Systems. 

A Master Part - is a single Variant CAD model containing all of the features of a 
family of similar part designs. Features that are always present, in all instances of the 
Master Part, shall be called its Persistent features, and the remaining features, which 

may or may-not be present in a particular instance of the Master Part, its Non- 

Persistent features. For example, consider a family of designs that contains parts PI, 

P2 and P3,, which are each defmed within separate families, and share enough similar 

PI features to warrant the creation of a Master Part, Pm. 

The Master Part, Pm, contains all of the features of 

parts PI, P2 and P3 combined, i. e. 

PZ Ps PM = PI U P2 U P3 

Pi 

With Persistent features, Fp, being the intersection of 
PI, P2 and P3: 

Fp = Pi r) P2 n P3 

And Non-Persistent features, FNp, being all 

PI combined features of Pm, apart from its Persistent 
features: 
FNp -,, = Pm n Fp' 

Figure 3.8 gives an example Master Part from a 
connector. 

Figure 3.7 A Venn Diagram Representation of a Master Part 
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Figure 3.8 Master Part from a Connector 

Figure 3.9 A Master System for a Connector and two Instances 

81 



A Master System - is a single Variant CAD model, made up of all Master Parts and 
Master (sub) Systems from a family of similar systems, or assemblies. (The terms 

assembly and system are used interchangeably here). The parts and sub-systems that 

make up this Master System are termed its Elements, and (again with similarities to 

the Master Part) they fall into both Persistent and Non-Persistent categories. A 

Master System, Sm, contains all elements from the set of similar systems that form a 
family of designs. For example, if systems SI and S2 share enough similar elements 
to warrant the creation of a Master System. 

sl S2 

Then this can be defined as the Master System, Sm, 

containing all of the elements of S, and S2: 

SM= Sl U S2 

With Persistent elements, Ep, the intersection of S1, 

andS2 

Ep = SiOS2 

And Non-Persistent elements, ENp : 

ENP = Sm r) Ep' 

Figure 3.9 shows an example Master System for a 

connector family 

Figure 3.10 A Venn Diagram Representation of a Master System 

With these definitions, the Variant Master Model can be defined as the 

combination of all Master Parts and Master Systems that form a family of 

similar designs, as a single Variant assembly model. As with the Master Systemg 

differences between family members of the Master Model can be 

accommodated by modifying part parameters values, and/or by turning Parts 

and Systems on and off (suppression). 
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3.3 The Generic Methodology 

This section presents a Generic Methodology to store Conceptual and Embodiment 
Designs as a combined Function Means / Parts Tree, and Detailed Designs under a 
Variant Master Model. The methodology (figure 3.11) is a step-by-step prescription, 
encompassed by the following objectives: 

1) Collate and organise the family of existing manufacturing drawings into Master 

Parts and Master Systems, 

2) Build the Variant Master Part, System and Family CAD models, and determine 

and create their driving parameters, 
3) Create a database representation of the Master Model in the form of a Parts Tree 

and link the part, system and family CAD models to respective elements of this 

tree, 

4) Determine the functions of each element of the design, and structure this 

representation in the database, along side the Parts Tree, to form a hybrid 

Function Means / Parts Tree. 

5) Create individual database records for each member of the design family. 

The following sections give a more detailed description of the stages of this method. 
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3.3.1 Organisation of Manufacturing Drawings 

The methodology begins by collating all manufacturing drawings for the entire 
family of designs to be modelled. From these part and assembly drawings, sets of 
Product (i. e. family members), Sub-Systems (or sub-assemblies) and Part 
(components) can be determined. These groupings can consequently be categorised 
into the Master Parts and Master Systems, by comparing similar part and assembly 
drawings across the design family. 

3.3.2 Creating Variant Master Models 

As stated earlier, the Master Part is a combined, variant model of all similar parts 

across a family of designs. Therefore various instances of the Master Part may differ 

by the definition of which features are and are-not present, as well as the values of its 

driving parameters. The Persistent and Non-Persistent features of the Master Part 

(section 3.2.2) can now be determined by examination of the concerned 

manufacturing part drawings. 

An important factor in the creation of a Variant (or parametric) model is to define the 

correct parameters to drive the model. These Global Parameters and the Persistent 

and Non-Persistent features, allow the Master Part to be adapted to suit the variety of 

specific configurations that are required. Some forethought, and knowledge of the 

design field, is required here, to ensure that design intent is maintained, and that 

these driving parameters are meaningful to the design's application. For example, the 

----channel of figure -3.12 may be better defined in terms of its width (w) rather than 

offsets from two sides. Also, it may be better to produce a model of a gear with its 

pitch (P) as a driving parameter rather than its number of teeth (N) as in figure 3.13. 
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Figure 3.12 Possible Parameter definitions of a Channel 

ýjý ý-, f: 

KI 

pitch P 

360" 
nx KDx P 

GOV N 

Better to relate gears, 
pitch P racks etc. 

in terms of pitch rather 
than number of teeth 

Figure 3.13 Parameter definitions for a Gear design 

Now that all modifiable elements have been defined, a Variant model of the Master 

Part can be created, using a suitable Variant CAD modelling system. This can be 

achieved by initially creating a base-part from all of the combined Persistent 

features. The Non-Persistent features can then be added and suppressed (hidden) as 

required. Global (or driving) Parameters can then be defined and related to the 

Master Parts own parameters. This procedure can be undertaken for all Master Parts 

of the design family. 

A Master System is the combination of all similar systems within the design family, 

and as such contains Persistent and Non-Persistent elements (again see section 
3.2.2). As with the Master Part, these elements of the Master System can be 
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determined by inspection of the manufacturing, assembly drawings. For the Master 

System, Global Parameters determine the correct dimensions between mating parts, 

and can also be used to specify, for example, 'how many times' a particular element 

is to be instanced. Figure 3.14 outlines how the Global Parameter, G I, can be used to 

control the diameters of both a hole and a peg (p3 and p9 respectively), through the 

use of two relations, so that the peg will fit exactly into the hole. In figure 3.15 a 
Global Parameter, G2, is used to state how many times the hole feature and the peg 

part, will be instanced, as well as the separation (angle) between instances, again 

through the use of relations. 

global parameter G1 = 10 
relation p3 = G1 
relation p9 = GI 

p3 

Figure 3.14 Global Parameters to retain Design Intent in an Assembly 

From this, a Variant assembly CAD Model can be created to form the Master 

System. All Persistent elements are combined to create a base system, and all Non- 

Persistent elements are added and suppressed. The Master Systems set of driving, 

Global Parameters are then related to those of its constituent parts and sub-systems. 

Again, this procedure is repeated for all Master Systems. 
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number of pegs = G2 
angle between pegs = 360"/ G2 

global parameter 

Figure 3.15 Use of Global Parameters to control Patterned Instancing 

The Master Family can be regarded as a 'top-level' analogy of the Master System, as 

it is also an assembly model of (Master) parts and sub-systems. Hence, the 

procedures to create the Master Family are consistent with those of the Master 

System, where family-level Persistent and Non-Persistent elements, Global 

Parameters and a Variant CAD Model (the Master Model) can be created. The major 

difference here lies with the importance of the Master Family Model, and 

particularly with its driving parameters, as these by definition, have the highest level 

of control over the design. 

3.3.3 Creating a Parts Related Database of the Master Model 

The next stage of the methodology is to structure the elements of the Variant Master 

Model, within a database environment. This is initially performed in terms of a Parts 

Tree, as this hierarchy is already present in the assembly structure of the Master 

88 

number of holes = G2 
angle between holes = 3600/ G2 



Model. Here, a tree structure (or a 'linked-list') is created, whose elements relate to 

the Master Parts, Master Systems and, at the highest node, the Master CAD Model. 

The associated CAD models, and their Global Parameters can then be 'linked' to the 

respective nodes of the Parts Tree, to form a Generic representation of the entire 
family of designs. How this is achieved will be discussed in Chapter 4- Software 

Implementation. 

3.3.4 Creating a Hybrid Function Means / Parts Tree 

The database structure developed above is Parts-ordered. For evaluation purposes it 

is desirable to view a design in terms of functional decomposition and the realising 

part, i. e. through a function ordered Function Means Tree. Hence the next stage is to 

produce a functional structure, in conjunction with the Parts Tree representation (i. e. 

a Function Family Tree) and link respective elements of this structure to individual 

parts to form a Function Means Tree. The resulting data structure can now be 

automatically re-ordered to display either a function or part ordered representation of 

the design family. 

3.3.5 Recording Individual Family Members 

At this stage, all Master CAD models have been created, and have been structured 

with their representative functional descriptions to form a hybrid Function Means / 
Parts oriented Tree. This is a Generic structure, representing the entire design family. 
Therefore parameters can now be entered for specific, individual products, as can 

product specific functions, and stored as records in a database. Along with this, 
information regarding which Non-Persistent Master Part features, Master-System, 

and Master Model elements are required, is also stored. Hence, each member of the 
family of designs is portrayed by a concise representation of its driving parameters, 

components and product specific functions. 
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3.4 An Illustrative Example 

The Generic Methodology presented describes how an existing, entire family of 
designs can be transformed into a single variant model. This section will take a 

simple example design to illustrate this principle with regard to the following 

criteria: 

Storing families of designs in a structured manner (i. e. creating (Master) parts, 

systems and family). 

Recording design intent, concepts and functional information. 

9 Creating a reusable CAD model of a design family. 

3.4.1 The Propeller - Shaft Assembly 

Figures 3.16 and 3.17 illustrate two design examples from a (hypothetical) simplified 

propeller-shaft family. Each design contains a functional description of its 

constituent parts and systems, annotated conceptual sketches and dimensioned 

manufacturing drawings for the piece parts. Both designs share a common, primary 

(or family) function, which is to 'propel a fluid using a rotary motor' as a power 

source. 

Design 'A' was created to move a high viscosity fluid (e. g. crude oil) at low speeds, 
hence the use of a greater number of deep blades. Conversely, the intention for 

Design 'B' was to propel a less viscous fluid (such as petrol) at a relatively higher 

speed, requiring fewer and narrower blades, to reduce inertia. The interference fit 

between the shaft and the hub of Design 'A' was found to be ineffective for Design 

'B' (due to a combination of high kinematic forces / torque produced in the contact 

area and the low viscosity of the fluid). So, it was decided to use a keyway between 

the shaft and hub. 
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Move High Viscosft fluid at Low ýpged 

Propeller Propel high viscosity fluid (convert rotary to linear motion) 
Shaft Link motor to propeller 
Blade Push high viscosity fluid at low speed 
Hub Fix blades to shaft 

Figure 3.16 Example Design 'A' for a Prop-Shaft assembly 
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Figure 3.17 Example Design 'B' for a Prop-Shaft assembly 
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3.4.2 Organisation of Manufacturing Drawings 

Both drawings show each product to consist of three Master Parts, the Shaft, Hub 

and Blade. (figure 3.18). Where each product contains only one shaft and hub and a 

variable number of blades. There is only one Master System in this example, the 
Hub-Blades assembly. This, combined with the shaft (Master Part) are the two 

elements that make-up the Master (family) Model (figure 3.19). 

Mager Part: Shaft 
SHAFT'A' SHAFTS' 

2-0-- 
-110 5 

15 
70 50 

Master Part: Blade 
BLADE 'A' 

Master Nrt: Hub 
HUBW 

0 
LI) 

BLADE 'B' 

HUBS' 
A 

V L-. j 
40 ý- 

Figure 3.18 The Master Parts 
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kbster ýjstem: Propeller Assembly 
PROP-ASSEMBLY'A' PROP-ASSEMBLYS' 

Farrily: Propeller Shaft Assembly 
PROP-SHAFT'A' PROP-SHAFTV 

Figure 3.19 The Single Master System (above) and Master Model (below) 

3.4.3 Creating the Variant CAD Models 
Starting with the simplest Master Part, the blade has only one feature -a block, 

which must be persistent. The shaft contains one Persistent base feature, a cylinder, 

and a Non-Persistent slot feature. Similarly the hub contains a Persistent cylindrical 

base feature, a Persistent hole feature to fit the shaft and a Persistent slot feature to fit 

a blade. A further Persistent feature is the pattern (or array) of slots to hold multiple 

blades. Leaving only a Non-Persistent key feature. Figure 3.20 shows the Persistent 

and Non-Persistent feature sets for each product. Driving Parameters for each Master 

Part can now be determined, as per figure 3.21. 
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PART FEATURE DRAWING 1 DRAWING 2 PERSISTENT NOW 

PFRSTSTfNI- 
Blade Block V/ V/ 

Shaft Cylinder V/ V/ 

Slot V/ 

Hub Cylinder V/ 

Hole V/ V/ V/ 

Slot V/ V/ V/ 

Pattern V/ V/ V/ 

Key V/ V/ 

Figure 3.20 Table of Feature Persistence for each Product 

PART FEATURE PARAMETER 

Blade Block Overall height 

Overall width 

Overall depth 

Shaft Cylinder Overall diameter 

Overall length 

Slot Height of key slot 

Depth of key slot 

Hub Cylinder Overall diameter 

Overall depth 

Hole Diameter 

Slot Height of blade slot 

Width of blade slot 

Pattern Total number of slots (blades) 

Key Height of keyway 

Figure 3.21 Table of Driving Parameters 
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The three Master Parts can now be created using a suitable variant modelling 

package. Here, Pro/ENGINEER is used, which is capable of feature suppression, for 

the two Non-Persistent Shaft-Slot and Hub-Key features. Figure 3.22 shows the 

Pro/ENG]NEER CAD models for each Master Part 

4P,, 
e, 

W HUb 

of the Master Parts 

Each Master Part is driven by a set of Global Parameters. These, along with a set of 
Non-Persistent features, are the parameters that drive the part model when linked to 

its Parts Tree node. Lists of the parameters are given below. 

BLADE SHAFr HUB 

B_height S- dia H_ dla 

B_width S_ Iength H_ depth 

B_depth S_ key_slot_height H_ hole_dia 

S 
-key_slot_depth 

H_ blade_slot_dia 

H 
_blade_slot_width 

H 
_number-of slots 

H 
_key_height 

Figure 3.23 Table of Master Part Global Parameters 
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The single (Master) System in the prop-shaft family is the Propeller assembly model, 
in which all elements, the Hub part and the Blade part are Persistent, i. e. they exist in 

all products. So, there are no Non-Persistent elements in this Master System. A new 

assembly model can now be created, containing the Hub and Blade parts, and the 

blade constrained to a respective slot in the hub. It can then be 'insert-patterned' 

around the hub for the number of slots in the hub (figure 3.24) 

Figure 3.24 Pro/ENGINEER model of the Propeller Assembly 

As for the Master Part model, a set of driving Global Parameters must be created to: 

relate parameters between parts in the system, and 
2) link the Master System CAD model to its Node in the Parts Tree. 
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For the Propeller system, the following Global Parameters were created : 

GLOBAL PARAMETER 

Sys_ hub_dia 

Sys_ depth 

Sys- hub hole dia 

Sys_ hub_blade_slot_height 

Sys_ hub_key_height 

Sys 
_blade_height 

Sys 
_blade_width 

Sys 
_number_of 

blades 

Therefore, the following System to Part relationships can be created to ensure 

respective dimensions between connecting parts can be controlled by a single 

parameter at the system level: 

PART SYSTEM RELATIONSHIP 

for the Blade B_height Sys_blade_height 

B_width Sys_blade_width 

B_depth Sys_depth 

for the Hub H_dia Sys_hub_dia 

H_depth Sys_depth 

H_hole_dia Sys_hub_hole_dia 

H_blade_slot_height Sys_hub_blade_slot_height 

H_blade_slot_width Sys_blade_width 

H_number-of slots Sys_number_of blades 

H_key_height Sys_hub_key_lieiglit 
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ml. 

The Master Model can be viewed as a top-level Master System. Hence the procedure 

for developing a Master System is adopted. The two (sub-ordinate) elements that 

form the Master Family are the Shaft Master Part and the Propeller Master System, 

both of which are Persistent. Now, the final CAD model, the Family assembly, can 

be created by constraining the Propeller system assembly model to the Shaft part, as 

a new Pro/ENGINEER assembly model (figure 3.25). 

Figure K. nily assembly 

The set of Global Parameters created for this model will control all of the parameters 

the designer may wish to modify, for the entire design. Below are the nine Master 

Family Global Parameters, created for the Propeller-Shaft model, and their 

corresponding Shaft part and Hub-Blades system relations. 

GLOBAL PARAMETER GLOBAL PARAMETER 

Fam 
-shaft-diameter 

Fam- blade_depth 

Fam 
-shaft-length 

Fam- hub_diameter 

Fam 
-keyway_height 

Fam_ hub_blade_slot_height 

Fam 
-blade-width 

Fam- number_of blades 

Fam 
-blade_height 
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ELEMENT FAMILY RELATIONSHIP 

for the Shaft S-dia Fam-shaft-diameter 

S_length Fam-shaft length 

S_key_height = Fam_keyway_height 

S-key_length = Fam-blade_depth 

for the Hub - Sys_hub_dia Fam-hub_diameter 

Blade assembly Sys_depth = Fam-blade_depth 

Sys_hub_hole_dia Fam-shaft-diameter 

Sys_hub_blade_slot_height Fam-hub_blade_slot_height 

Sys_hub_key_height Fam_keyWay_height 

Sys_blade_height Fam-blade_height 

Sys_blade_width Fam-blade_width 

Sys_number_of blades Fam-number_of blades 

3.4.4 Linking the Master Model to a Parts Oriented Database 

Now the completed CAD models can be represented in a parts tree, as a database. 

Chapter 4 will deal with the specific (software) implementation of how this is 

achieved, but for the purposes of illustration we shall consider the linked Parts Tree 

of figure 3.26. As well as linking the actual CAD model, the lists of Global 

Parameters for each Master Part, Master System and Master Model are also linked. 

This enables the CAD models parameters to be changed from within the database. 

3.4.5 Creating a Function Means Tree 

The next stage is to identify the functional structure of the design. Figure 3.27 

illustrates a Function Family Tree for the Propeller Shaft Assembly. Therefore, the 

Means (or Parts) of figure 3.26 can be related to these functions to form a Function 

Means Tree (figure 3.28). 
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Figure 3.26 (left) 

A Parts Tree 

Representation 

of the Master 

Model. 

Figure 3.27 

(below) 

A Function Tree 

Representation 
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Figure 3.28 The Function Means Tree for the Propeller-Shaft Design 
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3.4.6 Entering Data for the Family Members 

To complete the Variant Design Model, parameter values, suppressed feature status, 

and functional descriptions are entered. We can now create any propeller-shaft 

design from the features, parts and systems defined in the Master Model. As all 

Global Parameters relate to those of the Master Model, only these need to be given, 

as below: 

GLOBAL PARAMETER DESIGN'A' D ESIG N 'B' 

Fam-shaft-diameter 20 15 

Fam-shaft-length 70 50 

Fam_keyway_height 5 5 

Fam-blade_width 10 5 

Fam_blade_height 35 25 

Fam-blade_depth 30 10 

Fam-hub_diameter 50 40 

Fam_hLib_blade_slot_heiglit 10 10 

Fam-number_of blades 5 4 

Also, the feature suppression status for both designs can be set to: 

FEATURE DESIGN'A' DESIGNB' 

Shaft : cut_keyway SUPPRESSED RESUMED 

HLib : protrLision_key SUPPRESSED ESUMED 

The functional and means descriptions of figures 3.16 and 3.17 can now be re- 

entered, to meet the specific requirements of each design. 
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Chapter 4 

Software Implementation 
Overview 
This chapter outlines the data structures, algorithms and principles used for the 

software implementation of the Variant Methodology. The intention here is not to 

meticulously describe the line-by-line execution of each procedure, but to outline the 

methods used to achieve a computer-based implementation of the methodology 

proposed. A listing of the software code is, however, given in Appendix I. 

4.1 Objectives of the Software 

In essence, the software presented here covers the latter three stages of the Variant 

Methodology (figure 3.11, section 3.3), namely to: 

a) link the, already created, variant CAD models to a parts oriented database (or 

structure) 
b) create a function-based representation of this design family, and 

c) create database records (or instances) for each member of a family of related 
products. 

Consequential objectives of this software therefore also include the capability to: 

a) use a hybrid Parts Tree and Function Family Tree structure to represent 
Conceptual and Embodiment design, 

b) use the principles of the Variant Method to represent modifiable detailed designs, 

c) make use of existing Variant and Parametric solid modelling systems to realise 

the detailed designs, 
d) store the combined Conceptual, Embodiment and Detailed designs together, as a 

'Generic Master Model', from which instances (the family members) can be 

created. 
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A key issue with regard to the applicability of this research is its industrial relevance 

and usability, particularly for small to medium enterprises, undergoing the transition 

of accepting computer-based design tools. This requires the software to act as an 

automated interface to the solid modelling packages, allowing the modification of 

existing detailed designs to be fully integrated with the reuse of conceptual and 

embodiment design. 

4.2 Software Solution 

The above objectives require the software to be designed from a users-viewpoint, i. e. 
from the information or 'Process Flow' prescribed by the Variant Methodology, 

which is represented in figure 4.1. 

4.3 Achievable Solutions 

This Process Flow can be broken down into realisable tasks (solutions to the 

objectives) that must be embodied in the software. They are: 

1. Create a User-Interface to Create and Edit a Parts Tree structure, 
2. Allow Parameter Names and Values and Feature Suppression to be displayed and 

edited for each part, 
3. Allow a relevant CAD model to be 'linked' to each node in the Parts Tree, 

4. Allow this CAD model to be modified according to changes in the Parameters 

and Feature Suppression Status, outlined in (2), 

5. Create a User-Interface to Create and Edit a Function Family Tree structure, 
6. Allow Part to Function Relationships to be created, 

7. Allow the Parts (Means) Tree to be regenerated as a Parts Oriented 
Function/Means Tree, 

8. Allow the Function Family Tree to be regenerated as a Function Oriented 

Function/Means Tree, 

9. Allow Instances to be created from this 'Generic Instance' (the Master Model), 
10. Create Auxiliary commands, such as: 

Output manufacturing drawings for a given part, Create a solid rendering, 
Output the Parts Tree, Function Family Tree and Part or Function-Oricntcd 

Function Means Tree. 
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Create a Parts Tree representing the 
Assembly of the Master Parts and Master Nstems that encompass the 

entire product family. 

Link each Master Part and Master 
Sýstem model its corresponding Node 

in the Parts Tree 

For each Part Node: 

Enter its Parameters and default Values, 
Enter its Feature, Sib-Part and Sib 
System Suppression Status. 

(Yeate a Function Family Tree for the 
Master Model, to represent the entire 

product family. 

Ove Relations between Parts (Means) 
in the Parts Tree and Functions in the 

Function Farnily Tree. 

Oreate Instances of the Gýneric 
Instance for each family menter of the 

product range 

FDr each family mefter in the 
proclud range 

Create an Instance of the (1-neric Instance, 
Enter member-specific: 

Name and Details, 
Parameter values, 
Feature & Sub-Part/Systern suppression status 

Figure 4.1 General Process Flowchart 
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4.3 Data Structures 

The objectives and solutions outlined in the previous sections indicate the need for a 

well-defined data structure to maintain the information stored in a product family. 

The Variant Method proposes the use of a single 'Generic Data Structure' to store 

the skeleton structure of this family. Instances, or copies, of this structure can then be 

created and varied at will to suit the characteristics of each family member. In this 

respect, a scherna of this data structure is given in figure 4.2. 

adlitreime NIMM 

ME-Zim. im# M 

Fe. ature 
MEDIZIN- M- 

Figure 4.2 Elements Comprising a Product Family of Instances 

4.3.1 The Part Node 

This data structure contains the information relating to each Part of the Master 

Design. A Part in this sense can be either a single component, a sub-assembly or the 

full assembled product. In general terms, the Part structure stores a link to its 

respective CAD file, the parameters the designer wishes to modify in that part, and 

which features can be suppressed. 

4.3.2 Parts Tree 

This is essentially a linked list of Part Nodes, Linked by their index in a one- 
dimensional array. For example, a Part's Children can be expressed as a list of their 

array indices. 
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'Part - Member Name Type 
Name string 
Number of Parents integer 

List of Parent's Part I[Ys list of integers 
Number of Children integer 

List of Children's Part I[Ys list of integers 
Number of Suppressed Entities integer 

List of Suppressed Entity Names list of integers 
Number of Function Relations integer 

Obs List of Function Wations Function Tree list of integers 
Level integer 
CADfilename 
CADfiletype string 

ameters Number of Par integer 
____ List of Parameter Names - list of strings 

List of Parameter Values list of doubles 
List of Parameter . Units list of s tr ings 

0 arts Suppression Status boolean 

Figure 4.3 Part Node Data Structure 

I Nane 

List of Parent's Part I[Ys list Of 
, nber of Children 1 integý 

--I-, -... -- List d Children's"Aifibi ist of 
Tber of Wans Pelations I integ( 
04'-d-W-anis' -%-ation-'s-F-u-n-ct-io-n'-T-r-e--e-l-[Ys I list of 

I, 

Figure 4.5 Function Node Data Structure 
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Figure 4.6 Function Family Tree Data Structure 



4.3.3 Function Node 

This is a limited version of the Part Node, comprising only Name, Parent, Child and 
Relations data. 

4.3.4 Function Family Tree 

Again, this is similar in construction to the Parts 'Free, as a linked-list of Function 

Nodes. 

4.3.5 Hybrid Function/Means(Parts) Tree 

Defining relationships between the Parts 'Free Nodes and Function Family Tree 
Nodes allows these structures to be regenerated to directly show the Function Means 
'Free, in either a Parts Oriented or Function Oriented fashion. Figure 4.7 outlines the 
data structure representing these relations. 

FEATIONS 

Figure 4.7 Hybrid Function/Means Data Structure 

4.3.6 The Generic Instance 
Each Product in a family can be represented by its combined Parts and Function 

Family Tree (the Function Means Tree), its CAD models and its parameters. This 

structure is defined as the Generic Instance, figure 4.8. 
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Figure 4.8 Generic Instance Data Structure 

4.3.7 The Product Family 

Finally, an entire family of products (or instances of the Generic form) can be stored 

as a linked list of instance types, as shown below: 

ID= ID= 111 ID= 211 ID= 3 

Figure 4.9 Product Family Data Structure 

4.4 Application Development Environment 

The implementation of this research is intended to be applicable to as wide a range 

of industrial environments as possible, this especially includes SME's. Therefore the 
following implementation details were chosen: 

Operating System - Microsoft Windows 95/98/NT4 

Development Language - Microsoft Visual Basic 

CAD software - Pro/ENGINEER rel20 
SolidWorks 98PIus 

Autodesk Mechanical Desktop 1.2 and above. 
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4.5 User Interface 

Using the appropriate buttons in the toolbar, the user can create and move part nodes 

to form a parts tree. When a given node is selected, its particular Parameters and 

Feature Suppression Status are displayed, and can be edited. The linked CAD file 

can also be updated to accommodate parameter modifications using the methods 
discussed in the following section. 

Parts Tree Toolbar - 
SMtch between Parts Tree 
and Parts-Oriented 
Function Wans Tree 
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Figure 4.10 The User Interface 

A Function Family Tree of Function Nodes can also be created and related to the 

Parts Tree (i. e. the selected function is realised by the selected means). In this way a 

list of Function to Means (Part) relations can be established. By clicking on the 

'switches' at the top of the Parts Tree and Function Family Tree windows, these 
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structures can be combined to display a Parts Oriented Function Means Tree and a 

Function Oriented Function Means Tree, respectively. 

This process constitutes the creation of the 'Generic Instance' from which all child 
instances can be modelled. New instances are created by selecting a 'Parent' instance 

in the 'Instances list' from which the child will be an exact copy of the selected 

parent. The Product Name and other details can also be entered for each instance. 

4.6 Interfacing to CAD Modellers 

The principal concerns for linking a commercial CAD package to a database or 

external application include: 

1) Getting the parameters for each Part and Assembly, 

2) Getting the Features, Parts and Sub-assemblies to be Suppressed, 

3) Changing the Parameter values in the CAD model, 

4) Suppressing entities in the CAD model. 

Each of the solid modellers that are implemented here, vary with regard as to how 

these concerns can be overcome. The following is a brief description of how a link 

between these packages and a development language, such as Microsoft Visual Basic 

can be achieved. 

Interfacing to ProlENGINEER 

a) Create a Family Table in Pro/ENGINEER containing all elements of the CAD 

model that are to be modified, 
b) Parse the Family Table into the software application (database) and extract the 

parameters and features etc. 

c) Write back the modified parameter values etc, to the Family Table, 

d) Send a command to Pro/ENGINEER to re-load the family table and update the 

models for this instance. 
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Interfacing to SolidWorks 

a) Enter Parameter names, values and features etc. to be changed. 
b) Use the SolidWorks API commands to directly modify the parameter values and 

suppression status of features, parts and assemblies. 

Interfacing to Mechanical Desktop 

a) Save a Parameter List in Mechanical Desktop (this is a built-in function of the 
CAD software) 

b) Parse this file into the software and select the desired parameters to modify, 

c) Write back the modified Parameters List 

d) Send commands to Mechanical Desktop to re-load the Parameters List and 
Update. 

4.7 An Illustrative example - the Propeller Shaft 

This section illustrates the use of the software for the Propeller Shaft example, used 
originally to illustrate the Variant Methodology in Chapter 3. 

Issues regarding the determination of what comprises the Master Parts and Systems 

has been covered in the previous chapter, and will not be discussed here. At this 

stage it is assumed that these parts have been established and created as variant CAD 

models. 

The following five screenshots show the Generic Master Parts and Systems, linked 

to their respective nodes in the Parts Tree: 
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Figure 4.11 a The Master Blade Part, 

Figure 4.11 b The Master Hub Part, 

114 



NONE= 
Flo E& Ve- I, w Twft Alrdw lisiP iwl-ý 

It V4 It 

Pwu 1ý c 

Eq.. bý 

Pi 
rl-l 

HOW I 
DowEwdi t 

4 -wtý&2 

1 A-Mab- 

C ýP7\V, ' Sh5tOp, * FEATURE SLW14WSSKM 

VAI sel 

NEW OEL Op. CAL) We updo. 0,. -g F*%der UpdaleALL DEL NEW 

9MU6 12tisIge 1?, 20 AM Eft" Mloftty 

Figure 4.1 Ic (top) The Master Propeller Assembly, 

-IIIJAJ 

ý 
Ek F& "i- ý'80't Took wmw ti. 1, -Le 

LIZ 

-ýJ-LLIJ -! 

ý! j NJ a G$12 a rl ý-. 00 Ovo 

PWI. Tý 

1'ý hatt 
q. 01 
riq., 
H-3 

Lw. %- 

-Vý 

+ 
NVW OCI Opw CAD Me UpdIft Dmmq A- Updoe ALL na rJEw 

I 

as 1211-tva 12 22 AM 

Figure 4.11 d (above) The Master Shaft Part, 

115 



Figure 4.1 le The Master Propeller Shaft Assembly 

Figure 4.12 shows the Function Family Tree for the Propeller Shaft design, followed 

by figure 4.13, which gives the Parts Oriented representation of the Function Means 

Tree. 
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Figure 4.13 The Parts Oriented Function Means Tree 

With the Generic Instance complete, two instances can be created to represent 
Designs A and B (see section 3.4.1). This is achieved by simply instancing the 

Generic Instance and changing a few parameter values. Figures 4.14 and 4.15 

show these instances. 
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Figure 4.15 Instance for Design 13 

4.7.1 Reuse of the Propeller Shaft Model for a Modified Blade 

'I tic example. so far. show, ho%% the sol'(%%arc can tx- Liscd to effilciently and more 

rapidly computcrise a family of similar designs. However. these designs will 

probably have to be reused. and hence modified at some later stage. The following is 

an example showing how the blade part can be adapted to meet a new requirement, 
i. e. to contain a fin-clemcrit. 

Initially. the blade part is adapted to include an additional fin feature. For Designs A 

and B this feature must be suppressed. But for the New Design. it can remain 

unsupprcsscd. as shown in figures 4.16 and 4.17. 
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Figure 4.16 A Modified Made Part (vvith fin feature) 

Figure 4.17 The Updated Propeller Shaft Assembly model for the New Design 
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Chapter 5 

Case Studies 
Overview 
This chapter presents three industrial case studies with the intention of proving the 

Variant Methodology as an effective design reuse tool. Each case has been 

developed in conjunction with the related companies: Guindy Machine Tools Ltd., 

Lucas Varity and Hydroflow Europe Ltd., using real, in service products. As a result 

of this, and to maintain company confidentiality, the examples presented here are 

only representative of the true products. In all cases this is only amounts to the 

adjustment of a few parameters, with a minor deviation of the normal dimensions. 

5.1 Guindy Machine Tools Ltd. Lathe Chuck Family 

Lathe chucks are the main product of Guindy Machine Tools, of Madras, India. 
GMT is a medium sized company, with production facilities in three sites across 
southern India. As with many companies of a similar size, in Asia and Europe alike, 
their entire product line has been developed using conventional, manual methods. 
Having seen the benefits of CAD enjoyed by large organisations, the design team at 

GMT have adopted computer-based design tools for areas such as drafting and 

process planning, and are currently attempting to expand into areas such as finite 

element analysis, in order to quantify and improve on their existing products. 
Inherently these designs exist as paper-based drawings, and hence their immediate 

need is the rapid and effective computerisation of this vast design family. 

The chuck family is comprised of a collection of approximately 70 chuck products, 

whose applications range from manual lathe operation through to high-speed CNC 

machines. The individual designs reflect these applications. For example, high-speed 

chucks for CNC operation require some means of counteracting the high centrifugal 
forces, whereas a manual lathe does not require this facility. 

There are however, clear similarities throughout the GMT lathe chuck range, i. e. all 

chucks are connected to a 'Body' part and all hold the job using a number of 'Jaws'. 
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Hard (or Soft) Jaw 
% 

Wedge Adapter 

Balancing Weight 
Lever 

"P-Nut 

Figure 5.1.1 The Generic Section View of the GMT Lathe Chuck 

Hence, the chuck family can be readily modelled using the Variant Method, whilst 

preserving the application of each chuck type (its solution concept and embodiment) 

through the Function Means Tree. Figure 5.1.1 shows an example of the 'Generic 

Chuck'. Details of each of the components from which it is comprised are listed 

below. Further details. including Global Parameters, are given in Appendix 11. 
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1) Body -Locate all parts together and guide wedge and jaw movement. 
2) Wedge - Transform linear pulling movement to radial movement ofjaws. 
3) Wedge Adapter - Fix pulling collar to the wedge. 
4) Base Jaw - Medium between the body, wedge and 'T'-nut and jaws. 

5) 'T'-Nut - enable jaws to be adjusted for irregular job sizes. 
6) Hard Jaw - provide a rough grip onto a job. 

7) Soft Jaw - provide a distortion-free grip into a job. 

8) Collar - Medium between pulling mechanism and the chuck. 
9) Cover - Prevents jaws from clashing and covers front the bore. 

10) Balancing Weight - Counteract centrifugal force ofjaws at high speeds. 
11) Lever - Link balancing weight to the base-jaw. 

12) Back Plate - Guide and hold the balancing weights. 

These components also yield the following assemblies: 

1) Jaw Assembly - Base Jaw, 'T'-Nut, Hard Jaw and the Soft Jaw 
2) Wedge Assembly - Wedge and Jaw Assembly 
3) Puller Assembly - Collar and Wedge Adapter 
4) Gripping Assembly - Wedge Assembly and Puller Assembly 
5) Balancing Assembly - Lever and the Balancing Weight 
6) Chuck Assembly - Body, Gripping Assembly, Balancing Assembly, Back Plate 

and Cover. 

Having studied the vast collection of chuck drawings, and visited and consulted the 
design team at GMT Madras, it was decided to model the chuck family using 
Pro/ENGINEER, being a well established and reliable application. Individual piece 

parts were modelled and defined various 'driving' (or global) parameters, as 

previously mentioned. The most important decisive parameters that can be changed 
in the resulting Variant Model is the Number of Jaws (Nurn 

- 
Jaws). Figures 5.1-2, 

5.1.3 and 5.1.4 show examples of this for a 2-jaw, 3-jaw and 4-jaw chuck. 
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Figure 5.1.3 A 3-Jaw Chuck Figure 5.1.4 A 4-Jaw Chuck 
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Figure 5.1.2 A 2-Jaw Chuck 



Figures 5.1.5 and 5.1.6 show the generated Parts Tree and Function Means Tree 

structures frorn the Fm, r software. 

Figure 5.1.5 Parts Tree for the Generic Chuck 
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Figure 5.1.6 Function Means Tree for the Generic Chuck 
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5.2 Lucas Varity Drive End Shield Casting 

This case study, a Lucas Varity 'Drive End Shield' casting, is used as a simple 
demonstration of the ease of generating new instances from a single master model. 
The Drive- End- Shield product is used to house the coil and support the end-shaft of 

a family of automotive DC motors, and is cast from S. G. Iron with a typical draft 

angle of 1.5'. Being a single piece product, the casting forms a combined family of 

seventeen similar designs, and is, in general, a simple product to model, containing 

only one non-persistent feature (a boss) and various persistent features that differ 

only by dimensional parameter values. Also, as a single part, both the Parts tree and 
Function Family Tree contain only one node, as is shown in figure 5.2.1. 

Figure 5.2.1 - FMT application for the Drive-End-Shield Casting 
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Figure 5.2.2 shows a typical manufacturing drawing for the Drive-End-Shield 

moulding. These drawings are of the traditional (manually drafted) form. A 

comparison of the representative family of manufacturing drawings yields the 

persistent and non-persistent parameters and features. This is given in figure 5.2.3. 

Bump angle and radius 
and Key angle not show 
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Figure 5.2.3 A Schematic Representation of the Generic Casting. 

The casting was modelled using the Autodesk Mechanical Desktop package, which 

is suitable for the limited variance of this product. Figure 5.2.4 shows the Generic 

manufacturing drawing, generated automatically by Mechanical Desktop, via the 

FMT software. The Generic Instance of the Drive-End-Shield, containing all of the 

combined features of the casting family, is given in figure 5.2.5. 

Further instances of the casting are given in Appendix 11. 
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Figure 5.2.4 - Manufacturing Drawing for the Generic Drive-End-Shield 
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paramet6r AfV6101 
Luq Separation 75mm 
Luq Diameter 28mm 
Luq Angle 900 
Fillet 2 14mm 
Wedge Diameter 102mm 
Wedqe_Depth 39mm 
Base Depth 12.7mm 
Cvlinder Heiqht 94.4mm 
Cylinder Bottom Diamet 114.3MM 
Top Boss Heiqht 23.8mm 
Top Boss Diameter 92.2mm 
Middle Boss Heiqht 5mm 
Middle Boss Diameter 96.05mm 
Centre Hole Diameter 26.5mm 
Bump Angle 300 
Bump_Radius 12mm 
Key Angle 450 

Non-Persistent-Feature. I. Status'l., I 
I supp 

0. 
- 

Figure 5.2.5 - Drive-End-Shield No. V6211-673 - CAD Model & Parameter 
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5.3 Hydroflow Rotary Drum Filter System 

The Rotary Drum Filter, from Hydroflow Europe Ltd., is a modular sub-system, 
typically inserted into large conveyor filtration units, also manufactured by 

Hydroflow. The sole application for these systems is machining fluid filtration. This 

case study is itself a sub-set of ongoing research, undertaken by the author, to 
improve the design of Hydroflow's family of filtration systems. The key objectives 

of this study are to: 

a) Reduce the cost of manufacture, 
b) Reduce the size of the systems. 

Establishing a high degree of modularisation within their design systems can 

substantially realise both of these objectives. Such a characteristic is inherent of the 

Variant Method, where existing designs can be combined into core (or Master) 

models, which can be varied to suit the particular design requirements. 

Figure 5.3.1 shows an example assembly drawing for a typical filtration system. It 

consists of a number of 'Cleanliness Stages', e. g., Clean, Very Clean and Ultra 

Clean. Fluid is passed through each of these stages and finally extracted, for reuse, at 
the Ultra Clean stage. The main feature of this system is the Rotary Drum Filter, 

which, according to the size of the system can vary in drum length between 750mm. 

and I 000mm. This case study will focus only on the Drum Filter module. 
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Figure 5.3.1 - Assembly Drawing of a Hydroflow Rotary Drum Filtration 

System 
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The Rotary Drum Module is essentially a cylindrical mesh filter and constituted of 

the following parts: 

1) Drum Body - Holds fluid and Drum Unit. 

2) Mesh Clamp - Fixes Mesh Roll on the Drum. 

3) Drum Flush Pipe - Flushes the Drum internally 

4) Drum Flush Pipe End - Provides periodical tilting of the Flush Pipe 

5) Drum Endplate - Supporting end of the Drum 

6) Viewing Hood - Lift-up hood for inspection 

7) Drum Viewing Window - Perspex window for viewing Drum 

8) Mesh - fine mesh roll for filtering 

9) End Plate - Rolled, lipped ring to fix mesh to Drum Endplate 

10) Rolled Ring - simple clamping ring to fix Mesh to Endplate 

11) Drum End Guard - Enclosure for the open end of the Drum Body 

Although Hydroflow use drafting systems, such as AutoCAD (in which the 

manufacturing drawings were supplied), solid modelling of this system is generally 
beyond the scope of Mechanical Desktop. Therefore parts and assemblies were 

modelled using SolidWorks, and are given in Appendix II. 

Two variants of the Rotary Drum Module are given here, the 1000mm and 750mm 

length units. These are shown in figures 5.3.2 and 5.3.3 respectively. (Note that for 

both of these models the Drum Body and Mesh are shown as transparent, so that the 
inner detail can be seen). In reality (through the FMT software), only the major 
length variable need be adjusted to perform this variance, as the remaining, linked 

parameters have been defined as functions of this 'driving parameter'. For example, 
the length of the actual Drum Mesh is always 80mm. less than the stated drum length, 

namely 920mm for the 1000mm unit and 670mm for the 750mm unit. Such relations 
allow more rapid design permutations to be considered. 
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Figure 5.3.2 - Solidworks Model of a Hydroflow Rotary Drum Module - 
450xlOOOmm unit 
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A 

Figure 5.3.3 - Solidworks Model of a Hydroflow Rotary Drum Module - 
450x750mm unit 
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Chapter 6 

Discussion & Conclusions 

6.1 Discussion 

This thesis began in Chapter I with the statement of a problem, namely to facilitate a 

need in industry to easily computerise existing design cases, allowing for their future 

modification in reuse. Chapter 2 continued by discussing the relevant background 

and theory in the domains of engineering design throughout the design process. 
Initially the design process was categorised into the design Requirements, Product 

Concept, Solution Concept, Embodiment and Detailed Design. It was then argued 

that only the Solution Concept, Embodiment and Detailed Design stages are of 

significant interest here. 

Various methods and techniques for representing Conceptual and Embodiment 

Design were reviewed, and it was discussed that, to satisfy the aims of this research, 

the Function Family Tree is best suited to represent Conceptual Design, and the Parts 

Tree to represent Embodiment Design. Both of these can be integrally represented by 

a hybrid of the Function Family and Parts Tree, The Function Means Tree. An 

extensive survey of representation methods to capture and store adaptable Detailed 

Designs was also discussed. This included solid representation schemes such as 
Constructive Solid Geometry and Boundary Representation, and a review of Feature- 

Based Design. It was concluded that an implementation of Parametric and 

Variational solid modelling methods, combined with Feature-Based Design, is best 

suited to represent families of designs in an efficient manner. 

Two prominent methods, the Generative Method and the Variant Method were 

compared, and it was decided that the Variant Method will allow existing design 

cases to be efficiently modelled, with less effort and overhead that the Generative 

Method. 
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Chapter 3 proposed a Generic Variant Methodology to store families of existing 
designs. The Methodology allows the designer to encompass an entire family of 

desiins, combining conceptual, embodiment and detailed design within a single 

Variant model. Chapter 4 implements the methodology as a software application, 
incorporating three established Parametric solid Modelling CAD systems; 
Pro/ENGINEER, SolidWorks and Mechanical Desktop. The software allows the 

designer to create a Parts Tree based representation of a family of designs, which is 

linked to a representative set of CAD models. These models can also be adapted, via 
driving parameters, in this database. This enables the system to store afamily of 
designs, using just a single model, as it only requires the parameters for each 
instance to be stored. The database (termed an intelligent engine) handles 

regeneration of the model to satisfy the instance specific parameters. 

The methodology and software are substantiated with three industrial case-studies; a 

Machine Tool - Lathe Chuck family, Drive-End-Shield Motor Casting and a 
Filtration System. 

6.2 Conclusions 

The implementation of the Variant Methodology has proven the usefulness of this 

research for a number of companies. It has enabled these companies to transform 2- 

dimensional manufacturing drawings (which are of limited use) into 3-dimensional 

solid models. Thus enabling them to use the full benefits of Computer Aided Design. 
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6.3 Recommendations for Future Work 
In spite of the fact that the software implementation is a very useful industrial tool, 

there are a number of issues that will enhance this research further. One particular 

area is the lack of coherence between Functions and Parts. The study, of even a 

minor product, such as the Propeller Shaft example, highlights that many functions 
do not directly map to Parts. It would be more beneficial to provide an intermediate 

means, such as 'Features of Parts'. This idea is ffirther enhanced by the use of 
Feature-based modelling. 

Another area of interest is expanding the Variant Principle to embodiment and even 

conceptual design. This would raise the Variant Method to a level more suitable for 

'Innovative Design', which has to date been the domain of the Generative Method. 

In this respect the author will be employed in the industrial sector to implement such 

a system. 

Other, more immediate, concerns include the handling of constraint satisfaction 

within the software. As it stands, constraint satisfaction between parts and 

assemblies, is the responsibility of the CAD package being used. This does pose 

problems where the designer would expect constraints to be solved concurrently (see 

section 2.9) rather than sequentially. 
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Appendix I 

Software Code Listing 

Overview 

This chapter outlines the data structures, algorithms and principles used for the 

software implementation of the Variant Methodology. The software was written 

using Microsoft Visual Basic version 5.0. This compiler (or programming 

environment) undertakes the task of 'automatically' producing a large quantity of 

code or areas such as the user-interface etc. Hence, these sections of code have been 

omitted here, leaving only the relevant subroutines relating to the methodology itself 

The program makes use of two 'User Defined Controls' (termed Active-X Controls). 

These controls are visual representations of the Part Node of a Parts Tree, and the 

Function Node of a Function Family Tree. In essence both of these are simply a 

shape (a rectangle for the Part Node and a rhombus for the Function Node) into 

which text can be entered. The definition of how these controls were created is of no 

relevance here. 

Furthermore, this implementation of the Variant Methodology is purely for research 

purposes, and can be made available on request, either as source code or as, an 
executable. Contact the author at uA-' for further details. 
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AM - Definition of Data Sructures and Global Variables 

Structures for both Functions and Means are defined here, as well as the structures 

outlined in Chapter 4. 

Modulel. bas 
Defines the core Data Structures, the Means and Function Nodes, and the Instance structure. 

Attribute VB-Name = "Modulel" 

Public Const myCol = &HFFDDBB 

Public fMainForm As frmMain 

'Create user-defined type for MEANS 

'This is the MEANS NODE 

Type Means 

Nodell) As Integer 

Name As String 

CADfiletype As String 

Xpos As Long 

Ypos As Long 

NumParents As Integer 

Parentso As Integer 

NumChildren As Integer 

Children() As Integer 

NumFunctions As Integer 

Functions() As Integer 

NumOfParams As Integer 

ParamName() As String 

ParamValueo As Double 

ParamUnito As String 

NumOfSupps As Integer 

SuppEntity() As String 

SuppType() As String 

SuppStatuso As String 

MyPathAndFile As String 

MyFileNarne As String 

MyCADfileType As Integer 

MyDrawing As String 

PartSuppression As String 

Level As Integer 

End Type 
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' Create user-defined type for FUNCTION 

'This is the FUNCTION NODE 

Type Fund 

NodelD As Integer 

Name As String 

Xpos As Long 

Ypos As Long 

NumParents As Integer 

Parents() As Integer 

NumChildren As Integer 

Children() As Integer 

NumMeans As Integer 

Meanso As Integer 

Level As Integer 

End Type 

'Create user-defined type for an INSTANCE 

Type Docinstance 

DocType As String 

Name As String 

DrgNo As String 

Date As String 

By As String 

Description As String 

'Path As String 

'FileName As String 

PartsTreeo As Means 

FunctTreeo As Fund 

ReIM () As Integer 

ReIFO As Integer 

NumParts As Integer 

NumFuncts As Integer 

NumRels As Integer 

Lixi As Integer 

Llyl As Integer 

Ll x2 As Integer 

Ll y2 As Integer 

L2x I As Integer 

1-2y I As Integer 
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LWO As Integer 

L2y2() As Integer 

End Type 

Sub Main() 

frmSplash. Show 

frm5plash. Refresh 

Set I'MainForm = New frmMain 

Load fMainForm 

Unload frmSplash 

fMainForm. Show 

End Sub 

149 



Al. 2 - Form Document 

The main section of code, containing various subroutines to create and contol the 
Parts and Function Trees. 

FrmDocument. frm 

VERSION 5.00 

' Load AxtiveX Control 

Object = "(805FMMA46-1 I D2-927F-004A8CO000001#46.0#0"; "NodeMeans. ocx" 
Object = "{C077CE62-8A41 -11 D2-927F-004A8CO000001#49.0#0"; "NodeFunction. ocx" 

'Global Variables Declarations 

Attribute VB-Name = "frmDocument" 

Attribute VELGIobalNameSpace = False 

Attribute VELCreatable = False 

Attribute VB_Predeclaredld = True 

Attribute VLExposed = False 

Dim MoveSplit As Boolean 

Dim Split As Double 

Dim LeftDisplay As String 

Dim RightDisplay As String 

Dim SelPart As Integer 

Dim SelFunct As Integer 

Dim VGap, HGap, MGap As Integer 

Dim DoWhat As String 

Dim ParamsPart As Integer 

Dim vi, v2, hi, h2 As Integer 

Dim RelMeans, RelFunct As Integer 

Dim NumFunc2 As Integer 

Dim NumLine5 As Integer 

Dim NumMeans2 As Integer 

Dim Numl-ineG As Integer 

Dim DocType As String 

Dim Numinstances As Integer 'Includes Generic Instance 

'THE FAMILY OF PRODUCTS (INSTANCES) 

Dim Instances() As Docinstance 

Dim Thislnst As Integer 

Dim WhichPart As Integer 

Dim Dispinstances As Boolean 
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'INMALISATION DEFAULTS 

Private Sub Form-Load 

Dim c As Integer 

DocType = "GENERIC" 

Dispinstances = True 

Thisinst =0 
Numinstances =I 
ReDirn Instances (Numlnstances) 

'Instances (Thisinst). NumSuppParts =0 
Instances (Thislnst). DocType = "GENERIC" 

Instances (Thisinst). By = "Unknown" 

Instances (Th isInst). Date = "Unknown" 

Instances (Thislnst). Description = "None" 

Instances (Thislnst). DrgNo Str(ThisInst) 

Instances (Th isl nst). Name "Untitled" 

'Instances (Thislnst). FileName = "Untitled. fmt" 

'Instances (Thislnst). Path = "c. \PT\FMT-Documents\" 

Me. Caption = Instances (Thisinst). Name 

DoWhat = "NOTHING" 

WhichPart = -1 
ParamsPart = -1 
MGap = 122 
VGap = 488 
HGap = 244 
Instances (Thisinst). NumParts =I 
Instances (Thisinst). NumFuncts =I 
SelPart = -1 
SelFunct = -1 
MoveSplit = False 
Split = 0.5 
LeftDisplay = "Parts Tree" 
Command I O. Caption = LeftDisplay 

RightDisplay = "Function Family Tree" 

Command I I. Caption = RightDisplay 
Form_Resize 

'Init first nodes 
ReDim Preserve Instances (Thislnst). PartsTree (Instances (Thisinst). NumParts - 1) 

Instances (Thislnst). PartsTree (0). PartSuppression = "False" 

Instances (Thislnst). PartsTree (0). myDrawing = "None" 
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Instances (Thisinst). PartsTree(0). NodelD =0 
Instances (Thisinst). PartsTree (0). Name "Main Assembly" 

Instances (Thisinst). PartsTree(0). Xpos Picturel. Width /2- MNodel (0). Width /2+ 32768 /2 

Instances (Thisinst). PartsTree(0). Ypos 500 

Instances (Thislnst). PartsTree (0). NumParents 0 

Instances (Thislnst). PartsTree(0). NumChildren 0 
Instances (Thisinst). PartsTree(0). NumFundions =0 
Instances (Thisinst). PartsTree (0). Level =0 
UpdateMeansNode (0) 

ReDirn Preserve Instances (Thislnst). FunctTree (Instances (Thislnst). NumFuncts - 1) 

Instances (Thisinst). FunctTree(O). NodelD =0 
Instances (Thislnst). FunctTree (0). Name "Primary Function" 

Instances (Thisinst). FunctTree(0). Xpos Picture2. Width /2- FNodel (0). Width /2+ 32768 /2 

Instances (Thislnst). FunctTree (0). Ypos 500 

Instances (Thislnst). FunctTree (0). NumParents 0 

Instances (Thislnst). FunctTree (0). NumChildren 0 

Instances (Thisinst). FunctTree (0). NumMeans =0 
Instances (Thisinst). FunctTree (0). Level =0 
TNodell (0). Colour-- 

UpdateFunctNode (0) 

'SCROLL BARS 

VScroill. Value 0 

VI =0 
VScrolll. Min 0 

VScrolll. Max 32767 
VScrolli. LargeChange = 1024 

VScroill. SmaliChange = 128 

VScro112. Value 0 
Q=0 

VScro112. Min 0 
VScro[12. Max 32767 
VScroll2largeChange = 1024 
VScro112. SmaliChange = 128 

HScrolll. Value 32768 /2 
hl = 32768 2 
HScrolll. Min 0 
HScroill. Max 32767 
HScrolli. LargeChange = 1024 
HScrolli. SmallChange = 128 
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HScroll2. Value = 32768 /2 

h2 = 32768 /2 

HScro112. Min 0 

HScroll2. Max 32767 

HScrollZ. LargeChange = 1024 

HScroll2. SmallChange = 128 

'Setup Parameters & Suppress window 
ParamsGdd. ColWidth(0) = 3250 

ParamsGHd. ColWidth(1) = ParamsGrid. Width - 450 - 3250 - 105 

ParamsGdd. ColWidth(2) = 450 

SuppGdd. ColWidth (0) = 450 
SuppGdd. ColWidth(1) = 3100 

SuppGHd. ColWidth (2) = SuppGrid. Width - 450 - 3100 - 105 

ParamsGrid. Rows =1 
ParamsGdd. Row =0 
ParamsGrid. Col =0 
ParamsGrid. Text = "Parameter" 

ParamsGrid. Col =1 
ParamsGricl. Text = "Value" 

ParamsGrid. Col =2 
ParamsGricl. Text = "Unit" 

PararnsGrid. Rows =I 
SuppGrid. Row =0 

'Relations 

RelMeans = -1 
RelFunct = -1 
RelsGrid. Row =0 
RelsGrid. Col =0 
RelsGrid. Text = "Means / Part" 

RelsGrid. Col =1 
RelsGrid. Text = "Function" 

Instances (This In st). Nu mRels =0 
' Instancing 

For c=0 To Numinstances -I 
UpdateInstance (c) 

Next c 
UpdateInstance (ThisInst) 

End Sub 
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'Toggle between Parts Tree and Parts Oriented FMT 

Private Sub Command I Q--Click () 

If (LeftDisplay = "Parts Tree") Then 

LeftDisplay = "Part Oriented Function/Means Tree" 

Elself (LeftDisplay = "Part Oriented Function/Means Tree") Then 

LeftDisplay = "Parts Tree" 

End If 

CommandlO. Caption = LeftDisplay 

Command9. SetFocus 

RedrawLeftDisplay 

End Sub 

'Toggle between Function Tree and Function Oriented FMT 

Private Sub Commandl I-Clicko 

If (RightDisplay "Function Family Tree") Then 

RightDisplay "Function Oriented Function/Means Tree" 

Elself (RightDisplay = "Function Oriented Function/Means Tree") Then 

RightDisplay = "Function Family Tree" 

End If 

Commandl I. Caption = RightDisplay 

Command9. SetFocus 

RedrawRightDisplay 

End Sub 

'Reset Parts Tree - Function Tree Split screen sizes 
Private Sub Command 1 

-Click() 
Split = 0.5 

Form-Resize 

End Sub 

'Print a CAD DRAWING of the current selected mea 
Private Sub Commandl 3-Clicko 

Const swDocDRAWING =3 
Dim RetVal 

Dim swApp As Object'Def variable to hold app object 
Dim myDraWinq As Object'Define variable to hold part object 
If (SelPart >= 0) Then 

' Set CancelError is True 

CommonDialog I Cancel Error = True 

On Error GoTo ErrHandler 
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'Set flags 

CommonDialogi. Flags = cdlOFNHideReadOnly 
' Set filters 

CommonDialogi. Filter = "All Files 

Pro/ENGIN EER Dramdng (*. asm) J *. asm" 
Mechanical Desktop (*. dwg) I *. dwg" &- 

SoliclWorks Dravving (*. SLDDRW) I *. SLDDRW" 

Specify default filter 

CommonDialogi. Filterindex =4 
'Default filename 

If (instances (Thislnst). PartsTree (Sel Part). myDrawing <> "None") Then 

CommonDialogl. filename = Instances (Thislnst). PartsTree (SelPart). myDraving 
End If 

' Display the Open dialog box 

CommonDialogi. Show0pen 

' Display name of selected file 

Instances (Thislnst). PartsTree (SeIPart). myDrawing = CommonDialogi. filename 

'This will attach to current SolidWorks; session or start up new session in background. 

Set swApp = CreateObject("SidWorks. Application") 

swApp. Visible (True) 

Load file from current directory. 

Set myDrawing = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). myDraVing, swDocDRAWING) 
If myDrawing Is Nothing Then 

Exit Sub 

Else 

'Set myDravdng = swApp. ActivateDoc(CommonDialogl. FileTitle) 

myDravAng. EditRebuild 

'Pdnt ITI II 

myDrawing. PdntDirect 

swApp. UserControl (True) 

Beep 

End If 

'Exit Sub 

Else 

MsgBox ("Select a Part Node First") 

End If 

ErrHandler: 

'User pressed the Cancel button 

Exit Sub 

End Sub 

155 



'UPDATE Parameters in ALL CAD files 

Private Sub Command 1 5Jlick 

Dim oldPart As Integer 

Dim RetVal 

Const swDocPART =I 'These definitions are consistent with type names 
Const swDocASSEMBLY =2 'defined in \SldWorks\samples\appComm\swconst. h 

Const swDocDRAWING =3 
Dim swApp As Object' Define variable used to hold the app object 
Dim Part As Object ' Define variable used to hold the part object 
Dim c, d, e As Integer 

Dim WhatType As Integer 

Dim myUnit As String 

Dim myVal As Double 

Dim nParts; As Integer 

Dim maxLevel, thisLevel As Integer 

Dim tParts () As Integer 

nParts = Instances (Thisinst). NumParts 

oldPart = SelPart 

maxLevel =0 
For e=0 To nParts -1 

thisLevel = Instances (Thislnst). PartsTree(e). Level 

If (thisLevel > maxLevel) Then 

maxLevel = thisLevel 

End If 

Next e 
ReDim tParts (nParts) 

For e=0 To maxLevel 
For d=0 To nParts -1 
If ((Instances (Thisinst). PartsTree (d). Level = e) Or (Instances (Thislnst). PartsTree (d). NumChildren <= 0)) 

Then 

SelPart =d 
If (SelPart >= 0) Then 

'MakePartSelected (SelPart) 

'AdivateParams (SelPart) 

'Code example will be given for SOLIDWORKS only 
If ((Instances (This I nst). PartsTree (Sel Part). M yCADfileType = 5) Or 

(instances (This Inst). PartsTree(SelPart). MyCADfileType = 6)) 

Then 

If (Instances (Thislnst). PartsTree(SelPart). MyCADfileType = 5) Then 
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WhatType = swDocPART 
Elself (instances (Thisinst). PartsTree (SelPart). MyCADfileType = 6) Then 

WhatType = swDocASSEMBLY 
End If 

' This will attach to current SolidWorks session or start up new session in background. 
Set swApp = CreateObject("SIdWorks. Application") 

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session visible 
' Load file from current directory. This is currently hardcoded to cAtemp 
Set Part = swApp. Ope n Doc (Instances (This I nst). PartsTree (Sel Part). My PathAnd File, WhatType) 

If Part Is Nothing Then 

Exit Sub 

Else 

Set Part= swApp. ActivateDoc (Instances (Thislnst). PartsTree (SelPart). MyFileName) 

End If 

For c0 To Instances (Thisl nst). PartsTree (Sel Part). Nu mOf Params -1 
'Sort Out UNITS 

myUnit = Instances (Thisinst). PartsTree(SelPart). ParamUnit(c) 

Select Case myUnit 
Case "MM" 

myVal = Instances (Thislnst). PartsTree (Sel Part). PararnVal ue (c) / 1000 
Case "M" 

myVal = Instances (Thislnst). PartsTree(SelPart). ParamValue(c) 
Case "IN" 

myVal = (Instances (Thislnst). PartsTree (SelPart). ParamValue (c) 1000) * 25.4 
Case "DEG" 

myVal = Instances (Thisinst). PartsTree (Sel Part). PararnValue (c) (3.141592654 / 180) 

Case "RAD" 

myVal = Instances (Thisinst). PartsTree(Sel Part). PararnValu e(c) 
Case "VAI! 

myVal = Instances (This I nst). PartsTree(SelPart). ParamValue(c) 

End Select 

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemValue = myVal 
Next c 
For c=0 To Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps 

'FeatureSuppression Instances (Thislnst). PartsTree (SelPart). SuppEntity (c), 
Instances (Thisinst). PartsTree (SelPart). SuppStatus (c) 

Next c 
'Part. EditRebuil d 

swApp. UserControl (False) 

End If 
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End If 

End If 

Next d 

Next e 
SelPart = oldPart 
'MakePartSelected (SelPart) 

'ActivateParams (SelPart) 

nParts = Instances (Thisinst). NumParts 

oldPart = SelPart 

maxLevel =0 
For e=0 To nParts -1 

thisLevel = Instances (Thislnst). PartsTree(e). Level 

If (thisLevel > maxLevel) Then 

maxLevel = thisLevel 

End If 

Next e 
ReDim tParts(nParts) 

For e=0 To maxLevel 
For d= nParts -I To 0 Step -1 
If ((Instances (Thislnst). PartsTree (d). Level e) Or (Instances (Thisinst). PartsTree (d). NumChildren <= 0)) 

Then 

SelPart =d 
If (SelPart >= 0) Then 

'MakePartSelected (SelPart) 

'ActivateParams (SelPart) 

'ONLY CODE FOR SOLIDWORKS WILL BE GIVEN HERE 

If ((Instances (Thisinst). PartsTree (SelPart). MyCADfileType = 5) Or 

(Instances (Thisinst). PartsTree (SelPart). MyCADfileType = 6)) Then 

If (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 5) Then 

WhatType = swDocPART 
Elself (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 6) Then 

WhatType = swDocASSEMBLY 
End If 

' This will attach to current SolidWorks session or start up new session in background. 

Set swApp = CreateObject("SIdWorks. Application") 

swApp. Visible (True) Uncomment this if you wish to make the new SolidWorks session 
visible 

Load file from current directory. This is currently hardcoded to cAtemp 
Set Part = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). My PathAnd File, WhatType) 
If Part Is Nothing Then 
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Exit Sub 

Else 

Set Part = swApp. ActivateDoc (instances (Thisinst). PartsTree(Sel Part). M yFi le Name) 

End If 

For c=0 To Instances (Thisinst). PartsTree(SelPart). NumOfParams -I 
'Sort Out UNITS 

myUnit = Instances (Thislnst). PartsTree (Sel Part). ParamU nit (c) 
Select Case myUnit 

Case "MM" 

myVal = Instances (This Inst). PartsTree (SelPart). ParamValue (c) / 1000 
Case "M" 

myVal = Instances (Thisinst). PartsTree(SelPart). ParamValue(c) 

Case "IN" 

myVal = (instances (Thisinst). PartsTree (Sel Part). ParamValue (c) / 1000) 25.4 

Case "DEG" 

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c) * (3A 41592654 180) 

Case "RAD" 

myVal = Instances (Thislnst). PartsTree (SelPart). ParamValue (c) 

Case "VAV 

myVal = Instances (This Inst). PartsTree (Sel Part). ParamVallue (c) 

End Select 

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemVal ue myVal 
Next c 
For c=0 To Instances (Thislnst). PartsTree (Sel Part). Nu mOfSupps -I 

FeatureSuppression Instances (Thisinst). PartsTree(SelPart). SuppEntity(c), 

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c) 

Next c 
Part. EclitRebui Id 

swApp. UserControl (False) 

End If 

End If 

End If 

Next d 

Next e 
SelPart = oldPart 

End Sub 

'ADD NEW PARAMETER 

Pdvate Sub Command I 6-Clicko 

If (ParamsPart >= 0) Then 
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MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

Instances (Thislnst). PartsTree(Sel Part). Nu mOf Params 

Instances (This] nst). PartsTree (Sel Part). Nu mOf Params+ I 

ReDim Preserve 

Instances (Thislnst). PartsTree (Sel Part). ParamName (Instances (Thislnst). PartsTree (Sel Part). Nu mOfParam 
S) 
ReDirn Preserve 

Instances (Thislnst). PartsTree (SelPart). ParamValue (Instances (Thisinst). PartsTree (SelPart). NumOfParam 

S) 
ReDim Preserve 

Instances (Thisl nst). PartsTree (Sel Part). ParamU nit (Instances (This Inst). PartsTree (Sel Part). Nu mOf Params 

ParamsGrid. Rows = ParamsGrid. Rows +I 

ParamsGfid. Row = ParamsGrid. Rows -I 
ParamsGrid. Col =0 
Instances (Thislnst). PartsTree (Sel Part). ParamName (Instances (Thisinst). PartsTree (SelPart). NumOfParams - 

1) = "Param "+ Str(ParamsGrid. Row) 

ParamsGrid. Text = "Pararn + Str(ParamsGrid. Row) 

ParamsGdd. Col =I 
Instances (Thislnst). PartsTree (Sel Part). ParamValu e (Instances (Thisinst). PartsTree (Sel Part). Nu mOf Params; - 

1) = ParamsGrid. Row 

ParamsGrid. Text = Str(ParamsGHd. Row) 

ParamsGrid. Col =2 
Instances (ThisInst). PartsTree (Sel Part). ParamU nit (Instances (Thisinst). PartsTree (Sel Part). N umOf Params - 1) 

Command 3. Caption 

ParamsGrid. Text = Command 3. Caption 

End If 

End Sub 

'TOGGLE SUPPRESSION TYPE BUTTON 

Pflvate Sub Commandl7_Clicko 

If (Commandl7. Caption = "FEATURE") Then 

Command I 7. Caption = "PART" 

Elself (Command I 7. Caption = "PART") Then 

Commandl7. Caption = "ASSEMBLY" 

Elself (Commandl7. Caption = "ASSEMBLY") Then 
Command17. Caption = "FEATURE" 

End If 

End Sub 
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'ADD NEW SUPPRESS 

Pflvate Sub Command 1 8LClick () 

If (PararnsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (PararnsPart) 

Instances (Thisinst). PartsTree (SelPart). NumOfSupps = Instances (This Inst). PartsTree (Sel Part). Nu mOf Supps 

+1 
ReDim Preserve 

Instances (Thislnst). PartsTree (SelPart). SuppEntity (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps) 
ReDim Preserve 

Instances (Thisinst). PartsTree (SelPart). SuppType (Instances (Thislnst). PartsTree (SelPart). NumOfSupps) 

ReDim Preserve 

Instances (Thislnst). PartsTree (SelPart). SuppStatus (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSu pps) 

SuppGfld. Rows = SuppGrid. Rows +I 
SuppGfld. Row = SuppGdd. Rows -1 
SuppGfld. Col =0 
SuppGfld. Text = Str(SuppGrid. Row) 

SuppGdd. Col =I 
Instances (Thislnst). PartsTree (Sel Part). Supp Entity (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps - 1) 

"Entity "+ Str(SuppG(id. Row) 

SuppGrid. Text = "Entity + Str(SuppGrid. Row) 

SuppGrid. Col =2 
Instances (Thisinst). PartsTree (SelPart). SuppStatus (Instances (Thisinst). PartsTree (Se]Part). NumOfSupps - 1) 

= "SUPPRESS" 

SuppGfld. Text = "SUPPRESS" 

Instances (Thisinst). PartsTree (SelPart). SuppType (Instances (Thisinst). PartsTree (SelPart). NumOfSupps - 1) 

="FEATURE" 
Commandl7. Caption = "FEATURE" 

End If 

End Sub 
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'DELETE SELECTED ROW (S! LPPS, I 

Nvate Sub CommandZCLClicko 

Dim c, RowToDelete, OIdNumOfRows As Integer 

Dim tempStrl, tempStrZ As String 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

RowToDelete = SuppGrid. Row 

OldNumOfRows = SuppGrid. Rows 

For c= RowToDelete To OldNumOfRows -2 

SuppGfid. Row =c+I 
SuppGdd. Col =I 
tempStrl = SuppGfld. Text 

SuppGrid. Col =2 
tempStr2 = SuppGdd. Text 

SuppGdd. Row =c 
SuppGeid. Col =1 
SuppGrid. Text = tempStrl 

SuppGrid. Col =2 
SuppGrid. Text = tempStr2 

Instances (Thisinst). PartsTree (SelPart). SuppEntity (c - 1) 

Instances (Thislnst). PartsTree (Sel Part) SuppEntity (c) 

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c - 1) 

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c) 

Next c 

Instances (Thislnst). PartsTree (SelPart). NumOfSupps = Instances (Thisinst). PartsTree (SelPart). NumOfSupps -1 
SuppGrid. Rows = SuppGriid. Rows -I 
ReDim Preserve 

Instances (Thisinst). PartsTree (SelPart). SuppEntity (Instances (Thislnst). PartsTree (SelPart). NumOfSupps) 

ReDim Preserve 

Instances (Thisinst). PartsTree (SelPart). SuppStatus (Instances (Thislnst). PartsTree (SelPart). NumOfSupps) 

End If 

End Sub 
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'DELETE SELECTED ROW (RELATIONS) 

Pflvate Sub Command2Z_Clicko 

Dim c, RowToDelete, OldNumOfRows As Integer 

Dim tempStrl, tempStr2 As String 

If (NumRels > 0) Then 

RowToDelete = RelsGrid. Row 

OldNumOfRows = ReisGdd. Rows 

For c= RowToDelete To OldNumOfRows -2 

RelsGrid. Row =c+I 
RelsGrid. Col =0 
tempStrl = RelsGfld. Text 

RelsGrid. Col =I 
tempStrZ = RelsGHd. Text 

ReIsGrid. Row =c 
ReIsGrid. Col =0 
ReIsGrid. Text = tempStri 

ReIsGrid. Col =1 
ReIsGrid. Text = tempStr2 

Instances (Thislnst). ReIM (c - 1) Instances (Thisinst). ReIM (c) 

Instances (Thisinst). ReIF(c - 1) Instances (Thisinst). ReIF(c) 

Next c 
Instances (Thislnst). NumRels = Instances (Thisinst). NumRels -I 

ReIsGrid. Rows = ReIsGrid. Rows -1 
ReDim Preserve Instances (Thisinst). ReIM (Instances (Thislnst). NumRels) 

ReDim Preserve Instances (Thisinst). RelF (Instances (Thisinst). NumRels) 

End If 

End Sub 
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'SET PARAMETER NAME & VALUE 

Pflvate Sub Command3-Clicko 

If (Command3. Caption = "MM") Then 

CommandlCaption = "DEG" 

Elself (Command3. Caption = "DEG") Then 

Command3. Capfion =W 
Elself (Command3. Caption = W) Then 

CommandlCaption = "IN" 

Elself (Command3. Caption = "IN") Then 

CommandlCaption = "VAL! 

Elself (Command 3. Caption = "VAV) Then 

CommandlCaption = "MM" 

End If 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

PararnsGrid. Col =0 
ParamsGrid. Text = Text2. Text 

Instances (Thislnst). PartsTree (Sel Part). ParamName (ParamsGrid. Row - 1) Text2. Text 

PararnsGrid. Col =I 
ParamsGrid. Text = TextI. Text 

Instances (This Inst). PartsTree (SelPart). ParamValue (ParamsGrid. Row - 1) Val (Texti Jext) 

PararnsGrid. Col =2 
ParamsGrid. Text = CommandlCaption 

Instances (Thislnst). PartsTree (SelPart). ParamUnit(ParamsGdd. Row - 1) =Command 3. Caption 

End If 

End Sub 
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'SET SUPPRESS ENTITYTYPE and STATUS 

Pflvate Sub Command5jlicko 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

SuppGfld. Col =I 
SuppGdd. Text = Text3Jext 

Instances (Thisinst). PartsTree (SelPart). SuppEnfity (SuppGrid. Row - 1) = Text3. Text 

SuppGfld. Col =2 

- SuppGfld. Text = Command8. Caption 

Instances (Thislnst). PartsTree (SelPart). SuppStatus (SuppGrid. Row - 1) = Command 8. Caption 

Instances (Thislnst). PartsTree (SelPart). SuppType (SuppGrid. Row - 1) = Command i 7. Caption 

End If 

End Sub 

'UPDATE Parameters in CAD file 

Private Sub Command9-Clicko 

Dim RetVal 

'AppActivate "SolidWorks 98PIus" 

Const swDocPART =1 'These definitions are consistent vvith type names 
Const swDocASSEMBLY =2 'defined in \$IdWorkýýamples\appComm\swconst. h 

Const swDocDRAWING =3 
Dim swApp As Object Define variable used to hold the application object 
Dim Part As Object Define variable used to hold the part object 
Dim c As Integer 

Dim WhatType As Integer 

Dim myUnit As String 

Dim myVal As Double 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

'SOLIDWORKS 

If ((Instances (Thisinst). PartsTree(Sel Part). MyCADfileType = 5) Or 
(Instances (Thisinst). PartsTree(SelPart). MyCADfileType 6)) Then 

If (Instances (Thislnst). PartsTree (Sel Part). MyCADfil eType 5) Then 
WhatType = swDocPART 

Elself (Instances (Thisinst). PartsTree(SelPart). MyCADfileType = 6) Then 
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WhatType = swDocASSEMBLY 
End If 

' This Vill attach to current SolidWorks session or start up new session in background. 

Set swApp = CreateObject("SIdWorks. Application") 

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session Visible 

' Load file from current directory. This is currently hardcoded to cAtemp 
Set Part = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). MyPathAndFile, WhatType) 

If Part Is Nothing Then 

Exit Sub 

Else 

Set Part = swApp. ActivateDoc (Instances (Thislnst). PartsTree(SelPart). MyFileName) 

End If 

For c=0 To Instances (Thislnst). PartsTree (SelPart). NumOfParams -I 
'Sort Out UNITS 

myUnit = Instances (Thislnst). PartsTree(SelPart). ParamUnit(c) 

Select Case myUnit 
Case "MM" 

myVal = Instances (Thislnst). PartsTree (Sel Part). PararnVal ue (c) / 1000 

Case "M" 

myVal = Instances (Thislnst). PartsTree(Sel Part). ParamVal u e(c) 
Case "IN" 

myVal = (Instances (Thislnst). PartsTree (SelPart). ParamValue (c) / 1000) * 25.4 

Case "DEG" 

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c) * (3.141592654 / 180) 

Case "RAD" 

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c) 

Case "VAV 

myVal = Instances (Thislnst). PartsTree(Sel Part). ParamValu e(c) 
End Select 

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemValue myVal 
Next c 
For c=0 To Instances (Thisinst). PartsTree (SelPart). NumOfSupps -1 

FeatureSuppression Instances (This Inst). PartsTree(SelPart). SuppEntity(c), 

Instances (Thisinst). PartsTree (SelPart). SuppStatus (c) 

Next c 
Part. EditRebuild 

swApp. UserControl (True) 

End If 

End If 

End Sub 

166 



' IF A CELL IN THE INSTANCES PANEL 15 CUCKED THENSET THE CURRENT INSTANCE TO THAT INSTANCE 

Private Sub InstGdcLClicko 

Dim c As Integer 

Dim OldInst As Integer 

Dim Newinst As Integer 

NewInst = lnstGdd. Row 

Oldlnst = Thisinst 

'Instances (Oldlnst). Name Text4(0). Text 

'Instances (Oldlnst). DrgNo Text4(1). Text 

'Instances (Oldlnst). By = Text4 (2). Text 

'Instances (Oldlnst). Date = Text4 (3). Text 

'Instances (Oldlnst). Descdption = Text4(4)Jext 

InstGfld. Col =0 

For c=0 To InstGfid. Rows -1 
InstGrid. Row =c 
If (InstGfid. CellBackColor = &H55DDFF) Then 

InstGfid. CellBackColor = vbWhite 
End If 

Next c 
InstGfid. Row = Newlnst 

lnstGHd. CeliBackColor = &H55DDFF 

Updateinstance (NewInst) 

' Load All Data for NewInst into the form 

ShowCurrentlnstance Oldlnst, Newinst 

ShowRelations Newinst 

ShowParams Newlnst 

Thislnst = Newinst 

Caption = Instances (Thislnst). Name 

Make PartSelected SelPart 

End Sub 
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' IF A CELL IN THE PARAMS GRID IS CUCK SET THAT PARAMErER FOR EDITING 

Pflvate Sub ParamsGflcLClicko 

'DISPLAY SELECTED PARAM DETAILS 

If (PararnsPart >= 0) Then 

MakePartSelected (ParamsPart) 

AdvateParams (ParamsPart) 

If (ParamsGrid. Row >= 1) Then 

'Labell. Caption = "Parameter + Str(ParamsGrid. Row) 

ParamsGrid. Col =0 
Text2. Text = Instances (Thislnst). PartsTree (SelPart). ParamName (ParamsGHd. Row - 1) 
ParamsGrid. Col =I 
Textl. Text = Val (Instances (Thislnst). PartsTree (SelPart). ParamValue(ParamsG(id. Row - 1)) 

ParamsGrid. Col =2 
CommandlCaption = Instances (Thisinst). PartsTree (SelPart). ParamUnit (ParamsGrid. Row - 1) 

End If 

End If 

End Sub 
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'DELETE SELECTED ROW (PARAMETER) 

Private Sub Command 1 ý-Click () 

Dim c, RowToDelete, OIdNumOfRows As Integer 

Dim tempStrl, tempStrZ As String 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

RowToDelete = ParamsGrid. Row 

OldNumOfRows = ParamsGrid. Rows 

For c= RowToDelete To OIdNumOfRows -2 
PararnsGrid. Row =c+I 
PararnsGrid. Col =I 
tempStrl = ParamsGrid. Text 

PararnsGrid. Col =2 
tempStrZ = ParamsGdd. Text 

ParamsGfid. Row =c 
ParamsGfld. Col =I 
ParamsGfld. Text = tempStrl 

ParamsGfid. Col =2 
ParamsGrid. Text = tempStr2 

Instances (Thisinst). PartsTree (SelPart). ParamName (c - 1) 

Instances (Thisinst). PartsTree (SelPart). ParamName (c) 

Instances (Thisinst). PartsTree (S el Part). PararnValue (c - 1) 

Instances (Thisinst). PartsTree (SelPart). ParamValue (c) 

Next c 
Instances (Thislnst). PartsTree (Sel Part). Nu mOf Params = Instances (Thislnst). PartsTree (SelPart). NumOfParams -1 
ParamsGrid. Rows = ParamsGrid. Rows -1 
ReDim Preserve 

Instances (Thisinst). PartsTree (Sel Part). ParamN ame (Instances (Thisinst). PartsTree (SelPart). NumOfParams) 

ReDim Preserve 

Instances (Thislnst). PartsTree (SelPart). ParamValue (Instances (Thisinst). PartsTree (SelPart). NumOfParams) 

End If 

End Sub 

Private Sub Command4jlicko 

Dim dy, dx As Integer 

Dim c As Integer 
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VScro112. Value =0 
HScro112. Value = 32768 /2 

dy = v2 - VScroII2. Value 

dx = h2 - HScro112. Value 

V2 =0 
h2 = 32768 /2 

For c=0 To Instances (Thislnst). NumFuncts -I 
Model (c). Move Model (c). Left + dx, Model (c). Top + dy, Model (c). Width, Model (c). Height 

Next c 
End Sub 

Private Sub Command I 2LClicko 

Dim dy, dx As Integer 

Dim c As Integer 

VScroill. Value =0 
HScrolll. Value = 32768 /2 

dy =A- VScrolli. Value 

dx = hl - HScrolli. Value 

V1 =0 
hl = 32768 /2 

For c=0 To Instances (Thisinst). NumParts -I 
Model (c). Move Model (c). Left + dx, Model (c)Jop + dy, Model (c). Width, Model (c). Height 

Next c 
End Sub 
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'SET OPERATION TO BE DONE DEPENDING ON WHAT BUTTON HAS BEN CLICKED 

Public Sub ToolbarClicks(buttonID As Integer) 

Select Case buttonID 

Case I 

SelPart -1 
DoWhat "ADOLCQJEFr" 

Case 2 

SelPart -1 
DoWhat "ADOLCHILD" 

Case 3 

SelPart -1 
DoWhat "AD0LCQ_RIGHT" 

Case 5 

SelPart -1 
DoWhat "MOVE-DOWN" 

Case 6 

SelPart -1 
DoWhat "MOVE-UP" 

Case 7 

SelPart -1 
DoWhat "MOVE-LEFT" 

Case 8 

SelPart -i 
DoWhat "MOVE-RIGHT" 

Case 10 

DoWhat = "NOTHING" 

Case II 

DoWhat = "DELETE" 

Case 13 

DoWhat = "ADELRELATION" 

Case 14 

DoWhat = "REMOVE-RELATION" 

Case 16 

AddNewinstance 

DoWhat = "NOTHING" 

Case 17 

DeleteSelected Instance 

DoWhat = "NOTHING" 

Case 19 

If (ThisInst = 0) Then 
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MsgBox ("Cannot Suppress Parts/Systems for the Generic Instance") 

DoWhat = "NOTHING" 

Else 

DoWhat = "SUPPRESS" 

End If 

Case 20 

If (Thislnst = 0) Then 

MsgBox ("Cannot Resume Parts/Systems for the Generic Instance") 

DoWhat = "NOTHING" 

Else 

DoWhat = "RESUME" 

End If 

End Select 

End Sub 
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'ADD A NEW CHILD MEANS 

Private Sub AddChildMeans (Parent As Integer) 

Dim c, Child As Integer 

Instances (Thisinst). NumParts = Instances (Thisinst). Nu m Parts +1 

Child = Instances (Thisinst). NumParts -1 
ReDim Preserve Instances (Thisinst). PartsTree (Child) 

Load Model (Child) 

Instances (Thisinst). PartsTree (Child). Name "New Part" 

Instances (Thislnst). PartsTree (Child). Xpos Instances (Thisinst). PartsTree (Parent). Xpos 

Instances (This Inst). PartsTree (Child). Ypos Instances (This I nst). PartsTree (Parent). Ypos + 
Model (Instances (Th isInst). PartsTree (Parent). Node ID). Height + VGap 

Instances (Thisinst). PartsTree (Child). N odelD = Child 

Instances (Thislnst). PartsTree (Child). PartSuppression = Instances (ThisInst). PartsTree (Parent). PartSu ppression 
UpdateMeansNode (Child) 

'Setup Parent and Child relationships 
Instances (Thislnst). PartsTree (Pare nt). Nu mChild re n= Instances (Thislnst). PartsTree (Parent). NumChi Id ren +I 

ReDim Preserve 

Instances (Thislnst). PartsTree (Parent). Children (Instances (Thislnst). PartsTree (Parent). NumChildren - 1) 

Instances (Thisinst). PartsTree (Parent). Children (Instances (Thisinst). PartsTree (Parent). NumChildren - 1) Child 

Instances (Thisl nst). PartsTree (Child). Nu mChi ld ren =0 
Instances (Thisinst). PartsTree (Child). NumParents =I 
ReDim Preserve Instances (Thisinst). PartsTree (Child). Parents (0) 

Instances (Thisl nst). PartsTree (Child). Parents (0) = Parent 

Instances (Thislnst). PartsTree(Child). NumOfParams =0 
Instances (This Inst). PartsTree (Child). Nu mOfSu pps =0 
Instances (Thisinst). PartsTree (Child). NumFunctions =0 
Instances (Thisinst). PartsTree (Chi ld). Level = Instances (Thisl nst). PartsTree (Parent). Level +I 

For c=0 To Instances (Thislnst). NumParts -1M Node I (Instances (ThisInst). PartsTree (c). Node I D). BackColor 

vbWhite 
Next c 
SelPart = -1 
'LinkLme 

Load Linel (Child) 

Linel (Child). Xi = Instances (Thisinst). PartsTree (Parent). Xpos + 
Model (Instances (Thislnst). PartsTree (Parent). Nod el D). W idth /2 

Linel (Child). Y1 = Instances (Thislnst). PartsTree (Parent). Ypos + 
MNodei (Instances (Th isInst). PartsTree (Parent). Node I D). Height 

Linel (Child). X2 = Instances (This I nst). PartsTree (Child). Xpos + 
Model (Instances (Thisinst). PartsTree(Child). NodeID). Width /2 

Linel (Child). Y2 = Instances (Thislnst). PartsTree (Child). Ypos 
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Linel (Child). Visible = True 

UpdateLinesArrays Thisinst 

End Sub 

'ADD A MEANS NODE TO THE LEFT OR RIGHT 

Private Sub AddCoMeans(Co As Integer) 

Dim c, NewCo, Parent As Integer 

Instances (Thislnst). NumParts = Instances (Thisinst). Num Parts +I 
NewCo = Instances (Thislnst). NumParts -I 
ReDim Preserve Instances (Thislnst). PartsTree (NewCo) 

Load Model (NewCo) 

Instances (Thislnst). PartsTree (NewCo). Name = "New Part" 

If (DoWhat = "ADD_CO_LEFT") Then 

Instances (Thisinst). PartsTree (NewCo). Xpos = Instances (Thisinst). PartsTree (Co). Xpos - 
Model (Instances (Thisinst). PartsTree (Co). NodeID). Width - HGap 

Elself (DoWhat = "ADDJO-RIGHT") Then 

Instances (Thislnst). PartsTree (NewCo). Xpos = Instances (Thislnst). PartsTree (Co). Xpos + 

Model (Instances (Thisinst). PartsTree (Co). NodeID). Width + HGap 

End If 

Instances (Thisinst). PartsTree (NewCo). Ypos = Instances (Thisinst). PartsTree (Co). Ypos 

Instances (Thisinst). PartsTree (NewCo). NodelD = NewCo 

Instances (Thisinst). PartsTree (NewCo). PartSuppression = Instances (Thislnst). PartsTree (Co). PartSuppression 

UpdateMeansNode (NewCo) 

'Setup Parent and Child relationships 
Parent = Instances (Thislnst). PartsTree (Co). Parents (0) 

Instances (Thislnst). PartsTree (Parent). NumChildren = Instances (Thisinst). PartsTree (Parent). NumChildren +I 

ReDim Preserve 

Instances (Thislnst). PartsTree (Pare nt). Child ren (Instances (Thisinst). PartsTree (Parent). NumChildren - 1) 

Instances (Thisl nst). PartsTree (Pare nt). Chi ldren (Instances (Th isinst). PartsTree (Parent). Nu mChi Id ren - 1) Newco 

Instances (Thislnst). PartsTree (NewCo). NumChildren =0 
Instances (Thisinst). PartsTree(NewCo). NumParents =1 
ReDim Preserve Instances (Thislnst). PartsTree(NewCo). Parents(0) 

Instances (Th isl nst). PartsTree (NewCo). Parents (0) = Parent 

Instances (Thislnst). PartsTree (NewCo). Level = Instances (Thislnst). PartsTree (Co). Level 
For c=0 To Instances (Thislnst). NumParts -1 

Model (Instances (Thisinst). PartsTree (c). NodeID). BackColor = vbWhite 
Next c 
SelPart = -1 
'LinkLine 
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Load Linel (NewCo) 

Linel (NewCo). Xi =Instances (Thisinst). PartsTree (Parent). Xpos + 

Model (Instances (Thislnst). PartsTree (Parent). Nod el D). Width /2 

Unel (NewCo). Yl = Instances (Thisinst). PartsTree (Parent). Ypos + 

Model (Instances (Thisinst). PartsTree (Parent). Nod el D). Height 

Linel (NewCo). X2 = Instances (Thislnst). PartsTree (NewCo). Xpos + 

Model (Instances (Thislnst). PartsTree(NewCo). NodeID). Width /2 

Unel (NewCo). Y2 = Instances (Thisinst). PartsTree (NewCo). Ypos 

Linel (NewCo). Visible = True 

Updatel-inesArrays ThisInst: 

End Sub 

'UPDATE MEANS NODE 

Private Sub UpdateMeansNode(myTreelD As Integer) 

Dim myNodelD As Integer 

myNodelD = Instances (Thislnst). PartsTree(myTreeID). NodelD 

Model (myNodeID). Text = Instances (Thislnst). PartsTree (myTreeID). Name 

Model (myNodeID). Move Instances (Thislnst). PartsTree (myTreeID). Xpos, 

Instances (Thisinst). PartsTree (myTreeID). Ypos, Model (myNodeID). Width, Model (myNodeID). Height 

Model (myNodeID). Visible = True 

MNodei (myNodeID). Refresh 

End Sub 

'ADD A NEW CHILD FUNCTION 

Private Sub Add Child Fu nct (Parent As Integer) 

Dim c, Child As Integer 

Instances (Thislnst). NumFuncts = Instances (Thislnst). NumFuncts +1 

Child = Instances (Thislnst). NumFuncts -I 
ReDim Preserve Instances (Thislnst). FunctTree (Child) 

Load Model (Child) 

Instances (Thislnst). FunctTree (Child). Name = "New Function" 

Instances (Thislnst). FunctTree (Child). Xpos = Instances (Thisinst). FunctTree (Parent). Xpos 

Instances (Thislnst). FunctTree (Child). Ypos = Instances (Thisinst). FunctTree (Parent). Ypos 

Model (Instances (Thisl nst). Fu nctTree (Parent). Nodel D). H eight + VGap 

Instances (Thislnst). FunctTree (Child). NodelD = Child 

UpdateFunctNode (Child) 

'Setup Parent and Child relationships 
Instances (Thislnst). FunctTree (Parent). NumChildren = Instances (Thisinst). FunctTree (Parent). NumChildren +I 

ReDim Preserve 

Instances (Thisinst). FunctTree (Parent). Children (Instances (Thislnst). FunctTree (Parent). Nu mChi Id ren - 1) 
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Instances (Thisinst). Fun ctTree (Parent). Child ren (Instances (ThisInst). Fu nctTree (Parent). Nu mCh ildren - 1) 

Child 

'Instances (Thislnst). FunctTree (Child). Nu mChild ren 0 

Instances (Thislnst). FunctTree(Child). NumParents I 

ReDim Preserve Instances (Thisinst). FunctTree(Child). Parents(0) 

Instances (Thislnst). FunctTree(Child). Parents(0) = Parent 

Instances (Thislnst). FunctTree (Child). Level = Instances (Thisinst). FunctTree (Parent). Level 1 

For c=0 To Instances (Thislnst). NumFuncts -I 
Model (Instances (Thisinst). FunctTree (c). Node I D). BackColo r= myCol 

Next c 
SelFunct = -1 
'LinkLine 

Load Line2 (Child) 

Line2(Child). X1 = Instances (Thislnst). FunctTree(Parent). Xpos + 

Mod e1 (Instances (Th isl nst). Fun ctTree (Pare nt). Nodel D). Width/ 2 

Line2 (Child). Y1 = Instances (Thislnst). FunctTree (Parent). Ypos + 
Model (Instances (Thisinst). Fun ctTree (Parent). Nod el D). H eight 

Line2(Child). X2 = Instances (Thislnst). FunctTree(Child). Xpos + 
Model (Instances (Thislnst). FunctTree (Child). NodeID). Width /2 

Line2(Child). Y2 = Instances (Thisinst). FunctTree(Child). Ypos 
Line2(Child). Visible = True 

Updatel-inesArrays ThisInst 

End Sub 

'ADD A FUNTION NODE TO THE LEFT OR RIGHT 

Private Sub AddCoFunct(Co As Integer) 

Dim c, NewCo, Parent As Integer 

Instances (Thislnst). NumFuncts = Instances (Thislnst). NumFuncts +I 

NewCo = Instances (Thisinst). NumFuncts -I 
ReDim Preserve Instances (Thisinst). FunctTree (NewCo) 

Load Model (NewCo) 

Instances (Thislnst). FunctTree (NewCo). Name = "New Function" 

If (DoWhat = "ADOLCOJEFT") Then 

Instances (Thislnst). FunctTree (NewCo). Xpos = Instances (Thisinst). FunctTree (Co). Xpos - 
Model (Instances (Thislnst). FunctTree (Co). NodeID). Width - HGap 

Elself (DoWhat = "ADCLCQ-RIGHT") Then 

Instances (Thisinst). FunctTree (NewCo). Xpos = Instances (ThisInst). FunctTree (Co). Xpos + 
Model (Instances (Thislnst). FunctTree (Co). Node[D). Width + HGap 

End If 
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Instances (Thislnst). FunctTree(NewCo). Ypos = Instances (Thisinst). FunctTree (Co). Ypos 

Instances (Thisinst). FunctTree (NewCo). NodelD = NewCo 

UpdatefunctNocle (NewCo) 

'Setup Parent and Child relationships 
Parent = Instances (Thisinst). FunctTree(Co). Parents(0) 

Instances (Thisinst). Fu nctTree (Parent). Nu mChild ren = Instances (Thislnst). FunctTree (Parent). NumChildren +I 
ReDim Preserve 

Instances (Thisinst). FunctTree (Parent). Children (Instances (Thisinst). FunctTree (Parent). NumChildren - 1) 

Instances (Thislnst). FunctTree (Pare nt). Child ren (Instances (Thisinst). FunctTree (Parent). NumChildren - 1) 

NewCo 

Instances (Thisinst). FunctTree (NewCo). NumChildren 0 
Instances (Thislnst). FunctTree(NewCo). NumParents I 

ReDim Preserve Instances (Thisinst). FunctTree(NewCo). Parents(0) 

Instances (Thisl n st). Fu nctTree (NewCo). Parents (0) = Parent 

Instances (Thislnst). FunctTree (NewCo). Level = Instances (Thislnst). FunctTree (Co). Level 

For c=0 To Instances (Thisinst). NumFuncts -I 
Model (Instances (Thisinst). FunctTree (c). NodeID). BackColor = myCol 

Next c 
SelFunct = -1 
Unkl-ine 

Load Line2(NewCo) 

LineZ (NewCo). X1 = Instances (This I nst). Fun ctTree (Parent). Xpos + 
Model (Instances (This Inst). FunctTree (Parent). Nod el D). W idth /2 

Line2(NewCo). Y1 = Instances (Thisinst). FunctTree (Parent). Ypos + 
Model (Instances (Thislnst). FunctTree (Parent). NodeID). Height 

Line2(NewCo). X2 = Instances (Thisinst). FunctTree (NewCo). Xpos + 
Model (Instances (Thisinst). FunctTree (NewCo). NodeID). Width /2 

Ljne2(NewCo). Y2 = Instances (Thisinst). FunctTree (NewCo). Ypos 

Line2(NewCo). Visible = True 

Updatel-inesArrays Thislnst 

End Sub 

'UPDATE FUNCIION NODE 

Private Sub UpdateFunctNode(myTreelD As Integer) 

Dim myNodelD As Integer 

myNodell) = Instances (Thislnst). FunctTree (myTreeID). NodelD 

FNode I (myNodeID). Text = Instances (Thislnst). FunctTree(myTreeID). Name 

Model (myNodeID). Move Instances (Thisinst). FunctTree (myTreeID). Xpos, 

Instances (Thislnst). FunctTree (myTreeID). Ypos, Model (myNodeID). Width, Model (myNodeID). Height 

Model (myNodeID). Visible = True 
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FNodel (myNodeID). Refresh 

End Sub 

Private Sub MoveMeans(mylD As Integer) 

Dim c, NodelD, dy, dx As Integer 

NodelD = Instances (Thislnst). PartsTree (mylD). NodelD 

dy =0 
dx =0 
If (DoWhat = "MOVE-UP") Then 

dy = dy - (MNodel (0). Height /2+ VGap / 2) 

Elself (DoWhat = "MOVE-DOWN") Then 

dy = dy + (MNodel (0). Height /2+ VGap / 2) 

Elself (DoWhat = "MOVE-LEFT") Then 

dx = dx - (MNodel (0). Width /2+ HGap / 2) 

Elself (DoWhat = "MOVE-RIGHT") Then 

dx = dx + (MNodel (0). Width /2+ HGap / 2) 

End If 

Instances (Thislnst). PartsTree (myID). Xpos = Instances (Thisinst). PartsTree (mylD). Xpos + dx 

Instances (Thisinst). PartsTree (myID). Ypos = Instances (Thisinst). PartsTree (mylD). Ypos + dy 

MNodel (NodeID). Left = MNodel (NodeID). Left + dx 

MNodel (NodeID)Jop = MNodel (NodeID). Top + dy 

Linell (NodeID). X2 = Linel (NodeID). X2 + dx 

Unel (NodeID). Y2 = Unel (NodeID). Y2 + dy 

If (Instances (Thisinst). PartsTree (mylD). NumChildren > 0) Then 

For c=0 To Instances (Thisinst). PartsTree (mylD). NumChildren -I 
Linei (Instances (Thisinst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Xi 

Linel (Instances (Thislnst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Xj + dx 

Linel (Instances (Thisinst). PartsTree (Instances (Thisinst). PartsTree (mylD). Children (c)). NodeID). Yl 

Linel (Instances (Thisinst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Yl + dy 

Next c 
End If 

End Sub 

Private Sub MoveFunct(myll) As Integer) 

Dim c, myNodelD, dy, dx As Integer 

myNodell) = Instances (Thislnst). FunctTree (mylD). NodelD 

dy =0 
dx =0 
If (DoWhat = "MOVLUP") Then 

dy = dy - (Model (0). Height /2+ VGap / 2) 

Elself (DoWhat = "MOVE. 
-DOWN") 

Then 

dy = dy + (FNodel (0). Height /2+ VGap / 2) 
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Elself (DoWhat = "MOVE-LEFT") Then 

dx = dx - (FNodel (0). Width /2+ HGap / 2) 

Elself (DoWhat = "MOVE-RIGHT") Then 

dx = dx + (FNodel (0). Width /2+ HGap / 2) 

End If 

Instances (Thisinst). FunctTree (mylD). Xpos = Instances (Thisinst). FunctTree (mylD). Xpos + dx 

Instances (Thisinst). FunctTree (mylD). Ypos = Instances (Thisinst). FunctTree (mylD). Ypos + dy 

Rodel (myNodeID). Left = Rodel (myNode[D). Left + dx 

FNodel (myNode[D). Top = Rodel (myNodeID). Top + dy 

Line2(myNodeID). X2 = Line2(myNodeID). X2 + dx 

Une2 (myNodeID). Y2 = Line2 (myNodeID). Y2 + dy 

If (Instances (Thislnst). FunctTree(mylD). NumChildren > 0) Then 

For c=0 To Instances (Thislnst). FunctTree (mylD). NumChildren -I 
Line2 (Instances (Thislnst). FunctTree (Instances (Thislnst). FunctTree (mylD). Children (c)). NodeID). Xi 

Une2 (Instances (Thisinst). FunctTree (Instances (Thisinst). FunctTree (mylD). Children (c)). NodeID). Xi + dx 

Line2 (Instances (Thislnst). FunctTree (Instances (Thislnst). FunctTree (mylD). Children (c)). NodeID). Yl 

Line2 (Instances (Thislnst). FunctTree (Instances (Thisinst). FunctTree (mylD). Children (c)). Nodell)). Yl + dy 

Next c 
End If 

End Sub 

' RESIZE AND UPDATE DISPLAY 

Pdvate Sub Form-Resize() 

Dim c, dx, dy As Integer 

Dim RealWidth As Integer 

On Error Resume Next 

If (Dispinstances = True) Then 

RealWidth = ScaleWidth - Frame2. Width 

Else 

RealWidth = ScaleWidth - 120 

End If 

Framel. Left =0 
Framel. Top = ScaleHeight - Framel. Height 

Framel. Width RealWidth 

Picture3. Width VScroII1. Width /2 

Picture3. Left = Split * RealWidth 

PictureMeight = Framel. Top - Picture3. Top 
Picturel. Width = Picture3. Left - VScroII1. Left VScroII1. Width 
Picturel. Height = PictureMeight - HScrolli. Height - Command I O. Height 
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VScrolll. Height = Picturel. Height 

HScrolll. Top = PicturelJop + Picturel. Height 

HScrolll. Width = Pidurei. Width 

Commandl. Top = HScroIIl. Top 

VScroII2. Left = RealWidth - VScro112. Width 

VScrolIZ. Height = VScrolll. Height 

Picture2left = Picturell-eft + Picture3. Width 

Picture2. Width = VScro112. Left - Picture2left 

Picture2. Height = Picturel. Height 

HScroll2left = Picture2left + 10 

HScroII2. Width = Picture2. Width - 10 

HScroII2. Top = HScrolll. Top 

Command2left = VScroII2. Left 

Command2. Top = Command I Jop 

Command4left = VScroII2. Left 

Command I Oleft = Picture I. Left 

CommandlO. Width = Picturel. Width 

Command 1 I. Left = Picture2left + 10 

Command I l. Width = Picture2. Width - 10 

ReIsGrid. Width = VScroII2. Left + VScroII2. Width - ReIsGridleft 

ReIsGrid. CoIWidth (0) = ReIsGrid. Width /2- 50 

ReIsGrid. CoIWidth (1) = ReIsGdd. Width /2- 50 

If ((Label3. Width + Command22. Width) < ReIsGrid. Width) Then 

Command22. Width = RelsGrid. Width - Label3. Width 

Command22. Left = ReIsGrid. Left + ReIsGfid. Width - Command22. Width 

Else 

Command22. Width =0 
Command22. Left = ReIsGrid. Left + ReIsGdd. Width 

End If 

If (DispInstances = True) Then 

Frame2. Left = ScaleWidth - FrameZ. Width 

Frame2. Height = ScaleHeight 

Frame3. Top = ScaleHeight - Frame3. Height 

InstGrid. Height = Frame3. Top - 240 

End If 

End Sub 

180 



'PERFORM DO-WHAT WHEN A MEANS NODE IS CLICKED 

Private Sub MNodeljlick(Index As Integer) 

Dim c As Integer 

If ((DoWhat = "NOTHING") And (MNodel (Index). BackColor = vbYellow)) Then 

Model (Index). BackColor = vbWhite 
SelPart = -1 'ie NO parts selected 

Else 

For c=0 To (Instances (Thislnst). NumParts - 1) 

If (Instances (Thislnst). PartsTree (c). PartSuppression = "False") Then 

Model (Instances (Thisinst). PartsTree (c). NodeID). BackColor = vbWhite 
Else 

Model (Instances (This Inst). PartsTree (c). Node I D). BackColor = myCol 
End If 

If (Instances (Thislnst). PartsTree (c). NodelD = Index) Then 

SelPart =c 
End If 

Next c 
If (Instances (Thislnst). PartsTree(Index). PartSuppression = "False") Then 

MNodel (index). BackColor = Mellow 

End If 

If (DoWhat = "NOTHING") Then 

ActivateParams (SelPart) 

Display PartsParams (ParamsPart) 

End If 

End If 

If (DoWhat = "ADELCHILD") Then 

AddChildMeans (Sell'art) 

DoWhat = "NOTHING" 

End If 

If ((DoWhat = "ADD-CO-LEFT") Or (DoWhat = "ADELCCLRIGHT")) Then 

AddCoMeans (SelPart) 

DoWhat = "NOTHING" 

End If 

If ((DoWhat = "MOVE-UP") Or (DoWhat = "MULDOWN") Or (DoWhat "MOVEJEFT") Or (DoWhat 

"MOVE-RIGHT")) Then 

MoveMeans (SelPart) 

End If 

If (DoWhat = "DELETE") Then 

DeletePart (SelPart) 
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DoWhat = "NOTHING" 

End If 

If (DoWhat <> "ADD-RELATION") Then 

RelMeans = -1 
Rell'unct -1 

End If 

If (DoWhat "ADOLRELATION") Then 

Beep 

RelMeans = SelPart 

AddNewRelation 

End If 

If (DoWhat = "SUPPRESS") Then 

Beep 

SuppressPart (SelPart) 

DoWhat "NOTHING" 

End If 

If (DoWhat "RESUME") Then 

ResurnePart (SelPart) 

DoWhat = "NOTHING" 

End If 

End Sub 

'PERFORM DO-WHAT WHEN FUNCTION NODE IS CUCKED 

Private Sub FNode I 
-Click 

(Index As Integer) 

Dim c As Integer 

Beep 

If ((DoWhat = "NOTHING") And (Rodel (Index). Colour = "Yellow")) Then 

Model (Index). Colour = "White" 

Model (index). Refresh 

SelFunct = -1 'ie NO functions selected 
Else 

For c=0 To (instances (Thislnst). NumFuncts - 1) 

Model (instances (Thislnst). FunctTree (c). NodeID). Colour = "White" 

Model (Instances (Thisinst). FunctTree (c). NodeID). Refresh 

If (Instances (Thisinst). FunctTree (c). NodelD = Index) Then 

Sell'unct =c 
End If 

Next c 
Model (Index). Colour = "Yellow" 

Model (Index). Refresh 
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End If 

If (DoWhat = "ADELCHILD") Then 

AddChildFunct (SelFunct) 

DoWhat = "NOTHING" 

End If 

If ((DoWhat = "ADCLCOJEFT") Or (DoWhat = "ADELCOJIGHT")) Then 

AddCoFunct (SelFunct) 

DoWhat = "NOTHING" 

End If 

If ((DoWhat = "MOVE-UP") Or (DoWhat "MOVE-DOWN") Or (DoWhat "MOVLLEFT") Or (DoWhat 

"MOVE-RIGHT")) Then 

MoveFunct (SelFunct) 

End If 

If (DoWhat = "DELETE") Then 

DeleteFunct (SelFunct) 

DoWhat = "NOTHING" 

End If 

If (DoWhat <> "ADELRELATION") Then 

RelMeans = -1 
RelFunct -1 

End If 

If (DoWhat "ADD-RELATION") Then 

RelFunct SelFunct 

AddNewRelation 

End If 

End Sub 

' DESELECT NODE 

Private Sub Picture I 
-Click() 

If (SelPart >= 0) Then 

If (Instances (Thisinst). PartsTree(SelPart). PartSuppression = "False") Then 

Model (Instances (Thislnst). PartsTree (Sel Part). Nod eID). BackColor = vbWhite 

Else 

Model (instances (Thislnst). PartsTree (Sel Part). NodeID). BackColor = myCol 
End If 

SelPart = -1 'ie NO parts selected 
LineMisible = False 

Une4. Visible = False 

End If 

End Sub 
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' DESELECT NODE 

Pflvate Sub PictureLClicko 

If (Sell'unct >= 0) Then 

Model (Instances (Th isinst). FunctTree (Sel Fu nct). Node ID). Colour = "White" 

Model (Instances (Thislnst). FunctTree (Sel Funct). Node I D). Refresh 

SelFunct = -1 'ie NO functions selected 
LineMisible = False 

Line4. Visible = False 

End If 

End Sub 

'OPEN A SOLIDWORKS PART OR ASSEMBLY 

Private Sub OpenSolidWorksFile() 

Dim RetVal 

'AppActivate "SolidWorks 98PIus" 

Const swDocPART =1 'These definitions are consistent with type names 
Const swDocASSEMBLY =2 'defined in \SldWorks\samples\appComm\swconst. h 

Const swDocDRAWING =3 
Dim swApp As Object Define variable used to hold the application object 
Dim Part As Object Define variable used to hold the part object 
Dim c As Integer 

Dim WhatType As Integer 

If (instances (Thislnst). PartsTree(Sel Part). MyCADfileType = 5) Then 

WhatType = swDocPART 
Elself (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 6) Then 

WhatType = swDocASSEMBLY 
End If 

This will attach to current SolidWorks session or start up new session in background. 

Set swApp = CreateObject("SIdWorks. Application") 

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session visible 
Load file from current directory. This is currently hardcoded to cAtemp 
Set Part= swApp. OpenDoc (Instances (Thisinst). PartsTree (SelPart). MyPathAnd File, WhatType) 

If Part Is Nothing Then 

Exit Sub 

Else 

Set Part= swApp. ActivateDoc (Instances (Thislnst). PartsTree (SelPart). MyFileName) 
End If 

swApp. UserControl (True) 

End Sub 
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'Get CAD filename 

Private Sub Command6jlicko 

Dim RetVal 

If (SelPart >= 0) Then 

' Set CancelError is True 

CommonDialogl. CancelError = True 

On Error GoTo Erri-landler 

' Set flags 

CommonDialogI. Flags = cdlOFNHideReadOnly 
' Set filters 

CommonDialogI. Filter = "All Files & 

Pro/ENGINEER Part (*. prt) I *. prt" &- 

Pro/ENGIN EER Assembly (*. asm) I *. asm" & 

Mechanical Desktop (*. dwg) *. dwg" &- 

SoliclWorks Part (*. SLDPRT) *. SLDPRT" & 

SoliclWorks Assembly (*. SLDASM) I *. SLDASM" 

Specify default filter 

CommonDialogl. Filterindex =5 
' Display the Open dialog box 

CommonDialogi. Show0pen 

' Display name of selected file 

Instances (Thisinst). PartsTree (SelPart). MyFileName CommonDialogi. FileTitle 

Instances (Thisinst). PartsTree(SelPart). MyPathAndFile = CommonDialogi. filename 

'Exit Sub 

Text5. Text = CommonDialog1l. filename 

Instances (Th isl nst). PartsTree (Sel Part). MyCADfileType = CommonDialogi. Filterlndex 

Else 

MsgBox ("Select a Part Node First") 

End If 

ErrHandler: 

'User pressed the Cancel button 

Exit Sub 

End Sub 
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'OPEN CAD FILE button 

Nivate Sub Command7_Clicko 

If (ParamsPart >= 0) Then 

MakePartSelected (ParamsPart) 

If ((Instances (Thisinst). PartsTree (ParamsPart). MyCADfileType = 5) Or 

(Instances (Thisinst). PartsTree (ParamsPart). MyCADfileType = 6)) Then 

OpenSolidWorksFile 

End If 

End If 

End Sub 

' GET FEATURE SUPPRESSION STATUS 

Private Sub Command8LClicko 

If (Command8. Caption = "SUPPRESS") Then 

Command8. Caption = "RESUME" 

Elself (Command8. Caption = "RESUME") Then 

Command8. Caption = "SUPPRESS" 

End If 

End Sub 

Private Sub ActivateParams(myPart As Integer) 

ParamsPart = myPart 
SelPart = myPart 
Text5. Text = Instances (Thislnst). PartsTree(Se I Part). M yPathAnd File 

End Sub 

'SHOW THE SELECTED PARTS PARAMETERS 

Private Sub DisplayPartsParams(myPart As Integer) 

Dim c As Integer 

Texti. Text = 
Text2. Text = 
ParamsGrid. Rows =I 
If (instances (Thislnst). PartsTree(SelPart). NumOfParams > 0) Then 

ParamsGrid. Rows = Instances (Thisinst). PartsTree (SelPart). NumOfParams +I 
For c=0 To Instances (Thisinst). PartsTree (SelPart). NumOfParams -1 

ParamsGdd. Row =c+I 
ParamsGfld. Col =0 
ParamsGHd. Text = Instances (Thislnst). PartsTree (SelPart). ParamName (c) 
ParamsGfld. Col =1 
ParamsGrid. Text = Instances (This I nst). PartsTree (SelPart) -PararnValue (c) 
ParamsGfld. Col =2 
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PararnsGrid. Text = Instances (This I nst). PartsTree (Sel Part). ParamU nit (c) 

Next c 
End If 

Text3. Text 

SuppGfld. Rows =I 
If (Instances (Thislnst). PartsTree (Sel Part). Nu mOfSu pps > 0) Then 

SuppGrid. Rows = Instances (This I nst). PartsTree (Sel Part). Nu mOfSupps +I 

For c=0 To Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps -I 
SuppGrid. Row =c+I 
SuppGrid. Col =0 
SuppGrid. Text =c+I 
SuppGrid. Col =1 
SuppGrid. Text = Instances (Thislnst). PartsTree (SelPart). SuppEntity (c) 

SuppGrid. Col =2 
SuppGrid. Text = Instances (Thisinst). PartsTree (Se[Part). SuppStatus (c) 

Next c 
End If 

End Sub 

'SELECT A PART AND UPDATE DISPLAY 

Private Sub MakePartSelected (myPart As Integer) 

Dim c As Integer 

For c=0 To Instances (Thisinst). NumParts -I 
If (MNodel (c). BackColor <> vbWhite) Then 

If (Instances (Thisinst). PartsTree (c). PartSuppression "False") Then 

Model (c). BackColor = vbWhite 
End If 

End If 

Next c 
If (myPart >= 0) Then 

If (Instances (Thisl nst). PartsTree (my Part). PartSu ppressio n "False") Then 

Model (myPart). BackColor = vbYellow 
End If 

End If 

SelPart = myPart 
End Sub 
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' MOVE THE SPUT SCREEN 

Private Sub Picture3-MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single) 

Dim dx As Integer 

Dim RealWidth As Integer 

If (Dispinstances = True) Then 

RealWidth = ScaleWidth - FrameZ. Width 

Else 

RealWidth = ScaleWidth 

End If 

Picture3. MousePointer = vbCustorn 
If (MoveSplit = True) Then 

'If (Imagel. Left < (VScrollZ. Left + VScroII2. Width)) Then 

' Beep 

'Elself (Imagel. Left > (VScroill. Left - VScrolli. Width)) Then 

1 Beep 

'Else 

dx =X- Image I. Width /2 

PictureMove Picture3. Left +X- Picture3. Width / 2, Picture3. Top, Picture3. Width, PictureMeight 

Split = Picture3. Left / RealWidth 

Form_Resize 

Command 1 O. Refresh 

Commandl I. Refresh 

HScroll I Refresh 

HScro112. Refresh 

Picture I. Ref resh 
Picture2. Refresh 

'End If 

End If 

End Sub 

'DISPLAY SELECTED PARAM DETAILS 

Private Sub SuppGrid-Slicko 

If (PararnsPart >= 0) Then 

MakePartSelected (ParamsPart) 

ActivateParams (ParamsPart) 

If (SuppGrid. Row >= 1) Then 

'Labell. Caption = "Parameter + Str(ParamsGrid. Row) 
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SuppGHd. CoI =I 
Text3Jext = Instances (Thislnst). PartsTree (SelPart). SuppEntity (SuppGrid. Row -I 
SuppGfid. Col =2 
Command8. Caption = Instances (Thisinst). PartsTree (SelPart). SuppStatus (SuppGCid. Row - 1) 

Command I 7. Caption = Instances (Thisinst). PartsTree (SelPart). SuppType (SuppGeid. Row - 1) 

End If 

End If 

End Sub 

'UPDATE INSTANCE TEXT 

Private Sub Text4_Change (Index As Integer) 

Dim myInst: As Integer 

myInst = InstGrid. Row 

Select Case Index 

Case 0 

Instances (mylnst). Name = Text4(index). Text 

InstGdd. Text = Text4(index). Text 

Case I 

Instances (mylnst). DrgNo = Text4(1 ). Text 

Case 2 

Instances (myInst). By = Text4(2). Text 

Case 3 

Instances (myInst). Date = Text4(3). Text 

Case 4 

Instances (mylnst). Descflption = Text4(4). Text 

End Select 

End Sub 

Pdvate Sub VScroll 1 
_Change() 

Dim dy As Integer 

Dim c As Integer 

dy =A- VScroill. Value 

A= VScrolli. Value 
If (LeftDisplay = "Parts Tree") Then 

For c=0 To Instances (Thisinst). NumParts -1 
Model (c). Move Model (c). Left, MNodei (c). Top + dy, Model (c). Width, MNodel (c). Height 
Instances (Thisinst). PartsTree (c). Ypos = Instances (Thisinst) -PartsTree (c). Ypos + dy 

Unel (c). Yl = Unel (c). Yl + dy 

Unel (c). Y2 = Unel (c). Y2 + dy 
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Next c 
End If 

If (LeftDisplay = "Part Oriented Functiton/Means Tree") Then 

For c=0 To Instances (Thisinst). NumParts -1 
Model (c). Move Model (c). Left, Model (c). Top + dy, Model (c). Width, Model (c). Height 

Next c 
For c=I To NumLine5 

Line5 (c). Yl = Une5 (c). Yl + dy 

Line5 (c). Y2 = Uine5 (c). Y2 + dy 

Next c 
For c=1 To NumFunc2 

FNode2(c). Move Mode2(c). Left, FNode2(c). Top + dy, FNode2(c). Width, FNode2(c). Height 

Next c 
End If 

End Sub 

Private Sub HScroll 1 
-Change() 

Dim X As Long 

Dim dx As Integer 

Dim c As Integer 

dx = hl - HScrolll. Value 

hl = HScrolll. Value 

If (LeftDisplay = "Parts Tree") Then 

For c=0 To Instances (Thislnst). NumParts -I 
MNodel (c). Move MNodel (c). Left + dx, MNodel (c). Top, MNodel (c). Width, MNodel (c). Height 

Instances (Thisinst). PartsTree (c). Xpos = Instances (Thislnst). PartsTree (c) -Xpos + dx 

Linel (c). Xi = Linel (c). X1 + dx 

Linel (c). X2 = Linel (c). X2 + dx 

Next c 
End If 

If (LeftDisplay = "Part Oriented Function/Means Tree") Then 

For c=0 To Instances (Thisinst). NumParts -1 
MNodel (c). Move MNodel (c). Left + dx, MNodel (c). Top, MNodel (c). Width, MNodel (c). Height 

Next c 
For c=1 To NumLine5 

Uine5 (c). Xl = Une5 (c). X1 + dx 

Line5 (c). X2 = Une5 (c). X2 + dx 

Next c 
For c=I To NumFunc2 

FNode2 (c). Move FNode2 (c). Left + dx, FNode2 (c). Top, FNode2 (c). Width, FNode2 (c). Height 

Next c 
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End If 

End Sub 

Pflvate Sub VScro112-Change() 

Dim dy As Integer 

Dim c As Integer 

dy = v2 - VScro[12. Value 

v2 = VScro112. Value 

For c=0 To Instances (Thislnst). NumFuncts -I 
Model (c). Move Model (c). Left, Model (c). Top + dy, Model (c). Width, Model (c). Height 

Instances (Thislnst). FunctTree (c). Ypos = Instances (Thisinst). FunctTree (c). Ypos + dy 

Une2 (c). Yl = Une2 (c). Yl + dy 

Une2 (c). Y2 = I-me2 (c). Y2 + dy 

Next c 
End Sub 

Private Sub HScroIl2LChange() 

Dim dx As Integer 

Dim c As Integer 

dx = h2 - HScro112. Value 

h2 = HScrolIZ. Value 

For c=0 To Instances (Thisinst). NumFuncts -I 
Model (c). Move Model (c). Left + dx, Model (c). Top, Model (c). Width, Model (c) Height 

Instances (Thisinst). FunctTree (c). Xpos = Instances (Thisinst). FunctTree (c). Xpos + dx 

Uine2(c). Xl = Une2(c). Xl + dx 

Une2(c). X2 = Une2(c). X2 + dx 

Next c 
End Sub 

' INSERT NEW MEANS - FUNCTION RELATION 

Private Sub AddNewRelation 

Dim xA, K As Integer 

Dim yA, yB, yC As Integer 

Dim w, h As Integer 

Dim M, f As Integer 

Dim R As Integer 

Dim c As Integer 

w= Model (0). Width /2 

h= Model (0). Height /2 
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If ((RelMeans >= 0) And (Rell'unct >= 0)) Then 

Model (RelMeans). BackColor = vbBlue 
Model (RelFunct). Colour = "Blue" 

Model (RelFunct). Refresh 

xA = Instances (Thislnst). PartsTree(RelMeans). Xpos +w 

yA = Instances (Thislnst). PartsTree (RelMeans). Ypos +h 

xC = Instances (Thisinst). FunctTree(RelFunct). Xpos +w 

yC = Instances (Thisinst). FunctTree (RelFunct). Ypos +h 

yB = yA + (yC - yA) /2 

Line3. X1 = xA 
Line3. Y1 = yA 
Line3. X2 = xA + 6000 

Line3. Y2 = yB 
Line4. X1 = xC 
L1ne4. Y1 = yC 
Ijne4. X2 = xC - 6000 

Line4. Y2 = yB 
UlneMisible = True 

Une4. Visible = True 

f= Instances (Thisinst). PartsTree (RelMeans). NumFunctions 

M= Instances (Thislnst). FunctTree(RelFunct). NumMeans 

'check to see if relation already exists 
If (f > 0) Then 

For c=0 To f-1 

If (instances (Thislnst). ParisTree (RelMeans). Functions (c) = Rell'unct) Then 

MsgBox ("This Relationship Already Existsl") 

DoWhat = "NOTHING" 

RelMeans = -1 
Rell'unct = -1 
Exit Sub 

End If 

Next c 
End If 

Instances (Thisinst). NumRels = Instances (Thisl nst). N um Reis +I 
Instances (Thislnst). PartsTree (RelMeans). NumFunctions =f+1 
Instances (Thisinst). FunctTree (RelFunct). NumMeans =M+I 
ReDim Preserve Instances (Thisinst). PartsTree (RelMeans). Functions (1) 
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ReDim Preserve Instances (Thisinst). Fu nctTree (RelFund). Means (M) 

Instances (Thisinst). PartsTree (RelMeans). Fundions (1) = Rell'unct 

Instances (Thislnst). FunctTree (RelFund). Means(M) = RelMeans 

ReDim Preserve Instances (Thisinst). ReIM (Instances (Thisinst). NumRels - 1) 

ReDim Preserve Instances (Thislnst). ReIF (Instances (Thislnst). NumRels - 1) 

Instances (Thislnst). ReIM (Instances (Thislnst). NumRels - 1) RelMeans 

Instances (Thislnst). ReIF (Instances (Thisl nst). Nu m Reis - 1) Rell'und 

ReIsGrid. Rows = ReIsGrid. Rows +I 

RelsGHd. Row = Instances (Thislnst). NumRels 

RelsGrid. Col =0 
ReIsGrid. Text = Instances (This Inst). PartsTree (RelMeans). Name 

ReIsGrid. Col =I 
RelsGHd. Text = Instances (Thisinst). FunctTree (RelFunct). Name 

DoWhat = "NOTHING" 

RelMeans -1 
Rell'unct -1 

End If 

End Sub 

'UPDATE DISPLAY 

Private Sub RedrawLeftDisplay() 

Dim c, d, e, f, g As Integer 

Dim Vert As Integer 

Dim maxLevel As Integer 

Dim ThisWidth, MaxWidth As Long 

Dim ThisNumFuncts As Integer 

Dim WidestLevel As Integer 

Dim OldTop, ThisTop, Middle, Left As Integer 

Dim SorteclMeans () As Integer 

Dim SectWidth As Integer 

Dim NumFunctAtLevel As Integer 

Dim NumMeansAtLevel As Integer 

Dim thisLevel As Integer 

Dim myParent As Integer 

If (LeftDisplay = "Part Oriented Function/Means Tree") Then 
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'Hide all Unel's 

For c=0 To Instances (Thislnst). NumParts -I 
Unel (c). Visible = False 

Next c 
LineMisible = False 

Line4. Visible = False 

NumFunc2 0 

NumUine5 0 

'Get highest level no 

maxLevel =0 
For c=0 To Instances (Thislnst). NumParts -I 

If (Instances (Thislnst). PartsTree (c). Level > maxLevel) Then 

maxLevel = Instances (Thisinst). PartsTree (c). Level 

End If 

Next c 

For thisLevel =0 To maxLevel 

'Get NumFunctAtLevel and NumMeansAtLevel 

NumFunctAtLevel =0 
NumMeansAtLevel =0 

'Find width of level's functions 

MaxWidth =0 
ThisNumFuncts =0 
For c=0 To Instances (Thisinst). NumParts -I 

If (Instances (Thisinst). PartsTree (c). Level = thisLevel) Then 

ThisNumFuncts = ThisNumFuncts + Instances (Thislnst). PartsTree (c). NumFunctions 

End If 

Next c 
MaxWidth = ThisNumFuncts * Model (0). Width + (ThisNumFuncts - 1) * HGap 

OldTop MNodel (0). Top 

Middle MNoclel (0). Left + MNodel (0). Width /2 

For c=0 To Instances (Thislnst). NumPatts -I 
If (Instances (Thislnst). PartsTree (c). Level = thisLevel) Then 

NumMeansAtLevel NumMeansAtLevel +I 

NumFunctAtLevel NumFunctAtLevel + Instances (Thislnst). PartsTree(c). NumFunctions 
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End If 

Next c 
'Make Ust of Means/Parts at ThisLevel 

ReDim SortedMeans(NumMeansAtLevel) 

d=0 

For c=0 To Instances (Thisinst). NumParts -I 
If (Instances (This] nst). PartsTree (c). Level = thisLevel) Then 

SortedMeans(d) =c 
d=d+1 

End If 

Next c 
'Sort u1st 

For c=0 To 1000 

For d=0 To NumMeansAtLevel -2 
e= Instances (Thislnst). PartsTree(SortedMeans(d)). Xpos 

f= Instances (Thisinst). PartsTree (SortedMeans (d + 1)). Xpos 

If (e >Q Then 

g= SortedMeans(d + 1) 

SortedMeans(d + 1) = SortedMeans(d) 

SortedMeans(d) =g 
End If 

Next d 

Next c 

d= NumMeansAtLevel 

'display means for ThisLevel 

ThisTop = FNodel (0). Height * (thisLevel + 1) + MNodel (0). Height * thisLevel + VGap * (thisLevel *2 

1) + FNodel (0). Height - VGap 

Left = Middle - MaxWidth /2 

For c=0 Tod -1 
If (Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions > 0) Then 

SectWidth = Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions Model (0). Width 
(Instances (Thisinst). PartsTree (SortedMeans (c)). NumFunctions - 1) * HGap 

Model (SortedMeans(c)). Left = Left + SectWidth /2- MNodei (0). Width 2 
Else 

SectWidth =0 
Model (SortedMeans(c)). Left = Left 

End If 

Model (SortedMeans(c)). Top = ThisTop 

Left = Left + SectWidth + HGap 
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Next c 
'display functions for ThisLevel 

Left = Middle - MaxWidth /2 

ThisTop = ThisTop, - VGap - Rodel (0). Height 

For c=0 To d-1 

If (instances (Thisinst). PartsTree (SortedMeans (c)). NumFunctions > 0) Then 

Fore =0 To Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions -1 
NumFunc2 = NumFuncZ +1 

NumLine5 = NumLineS +I 
Load FNode2(NumFuncZ) 

FNodeZ(NumFunc2). Visible = True 

FNode2(NumFunc2). Top = ThisTop 

FNode2(NumFunc2). Left = Left 

FNode2 (NumFunc2). Text = 
FNodel (instances (Thislnst). PartsTree (SortedMeans (c)). Functions (e)). Text 

Left = Left + Rodel (0). Width + HGap 

Load Line5(Numl-ine5) 

Line5(Numl-ine5). Visible = True 

Line5 (NumUine5). Xl = FNode2 (NumFunc2). Left + FNode2 (NumFunc2). Width /2 

Line5(NumUne5). Yl = FNode2(NumFunc2). Top + FNode2(NumFunc2). Height 

Line5 (NumLine5). X2 = MNodel (instances (Thislnst). PartsTree (SortedMeans (c)). NodeID). Left 

MNodel (Instances (Thisinst). PartsTree (Sorted Means (c)). Nod el D). Width /2 

Ljne5 (NumLine5). Y2 = MNode 1 (Instances (Thisinst). PartsTree (SortedMeans (c)). NodeID). Top 

If (SortedMeans(c) > 0) Then 

NumUne5 = NumLine5 +I 

Load Uine5(Numl-ine5) 

Line5(NumLine5). Visible = True 

Line5 (NumLine5). Xi = Line5 (NumLine5 - 1). Xl 

Uine5 (NumUne5). Yl = Line5 (NumLine5 - 1). Yl - FNodel (0). Height 

Line5(NumLine5). X2 = 
MNodel (Instances (Thisinst). PartsTree (Instances (Thisl nst). PartsTree (Sorted Means (c)). Parents (0)). NodeID). Left 

+ MNodel (0). Width /2 

Line5 (NumLine5). Y2 = Line5 (NumLine5 - 1). Yl - MNodel (0). Height - VGap 

End If 

Next e 
Else 

NumUne5 = NumLine5 +I 
Load Ljne5 (NumLIne5) 
Ljne5 (NumLine5). Visible = True 
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Line5(NumLine5). Xl = MNodel (SortedMeans(c)). Left + MNodel (0). Width /2 

Line5 (NumLine5). Yl = MNodel (SortedMeans (c)). Top 

Line5(NumUne5). X2 = 
MNodel (Instances (Thislnst). PartsTree (Instances (This I nst). PartsTree (SortedMeans (c)). Parents (0)). Nodell)). Left 

+ MNodel (0). Width /2 

Line5(NumLine5). Y2 

MNodel (Instances (Thisinst). PartsTree (Instances (Thisinst). PartsTree (Sorted Means (c) ). Parents (0) ). Node I D). Top 

+ MNodel (0). Height 

End If 

Next c 

Next thisLevel 

End If 

If (LeftDisplay = "Parts Tree") Then 

'First cleanup from previous 
Beep 

For c=I To NumFunc2 

Unload FNode2(c) 

Next c 
NumFunc2 =0 
For c=I To NumLine5 

Unload Lme5(c) 

Next c 
NumLine5 =0 
For c=0 To Instances (Thisinst). Num Parts -I 

Linel (c). Visible = True 

UpdateMeansNode (c) 

Next c 
End If 

End Sub 

End Sub 

Public Sub PrintThisTree 

VScrollI. Visible = False 

HScroll I Nisible = False 

PflntForm 

VScrollI. Visible = True 

HScroll I Nisible = True 

End Sub 
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'OPEN A NEW FMT FILE 

Public Sub OpenThisTree 

Dim sFile As String 

Dim c, d As Integer 

Dim sPicFile, sCADFile As String 

Dim Truel'alse, Title As String 

Dim t As Integer 

Dim tmp As String 

With CommonDialogi 

filter = "All Files (*. fmt) I *. fmt" 

. Show0pen 

If Len (. filename) =0 Then 

Exit Sub 

End If 

sFile = fiename 

End With 

Caption = sFile 
Open sFile For Input As #1 'Open file for Input. 

'INPUT DOCUMENT TYPE - GENERIC / INSTANCE 

Input #1, DocType 

If (DocType = "GENERIC") Then 

Input #1, Numinstances 

ReDim Instances (Numinstances) 

For 1=0 To NumInstances -1 
Input # 1, Instances (i) -By 
Input #1, Instances (i). Date 

Input #1, Instances (i). Description 

Input #1, Instances (i). DrgNo 

Input # 1, Instances (i). Name 

'input #1, Instances (i). FileName 

'input #1, Instances (i). Path 

Me. Caption = Instances (0). Name 

'INPUT PARTS TREE 

Input #1, tmp 

Input #1, Instances (i). NumParts 

ReDim Instances (i). PartsTree (Instances (i). NumParts) 

For c=0 To Instances (i). NumParts -1 
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Input #1, tmp 

Input #1, Instances (i). PartsTree (c). NodelD 

Input #1, Instances (i). PartsTree (c). Name 

Input #1, Instances (i). PartsTree(c). CADfiletype 

Input #1, Instances (i). PartsTree(c). Xpos 

Input #1, Instances (i). PartsTree (c). Ypos 

Input #1, Instances (i). PartsTree (c). NumParents 

ReDim Instances (i). PartsTree (c). Parents (Instances (i). PartsTree (c). NumParents) 

For d=0 To Instances (i). PartsTree (c). NumParents -I 
Input #1, Instances (i). PartsTree (c). Parents (d) 

Next d 

Input #1, Instances (i). PartsTree (c). NumChildren 

ReDim Instances (i). PartsTree (c). Children (Instances (i). PartsTree (c). NumChildren) 

For d=0 To Instances (i). PartsTree (c). NumChildren -I 
Input #1, Instances (i). PartsTree (c). Children (d) 

Next d 

Input #1, Instances (i). PartsTree (c). NumFunctions 

ReDim Instances (i). PartsTree (c). Functions (Instances (i). PartsTree (c). Nu m Functions) 

For d=0 To Instances (i). PartsTree (c). NumFunctions -I 
Input # 1, Instances (i). PartsTree (c). Functions (d) 

Next d 

Input #1, Instances (i). PartsTree (c). NumOfParams 

ReDim Instances (i). PartsTree (c). ParamName (Instances (i). PartsTree (c). NumOfParams) 

ReDim Instances (i). PartsTree (c). ParamValue (Instances (i). PartsTree (c). NumOfParams) 

ReDim Instances (i). PartsTree (c). Param Unit (Instances (i). PartsTree (c). Nu mOf Params) 

For d=0 To Instances (i). PartsTree (c). NumOfParams -I 
Input # 1, Instances (i). PartsTree (c). ParamName (d) 

Input #1, Instances (i). PartsTree (c). ParamValue (d) 

Input #1, Instances (i). PartsTree (c). ParamUnit (d) 

Next d 

Input #1, Instances (i). PartsTree (c). NumOfSupps 

ReDim Instances (i). PartsTree (c). SuppEntity (Instances (i). PartsTree (c). NumOtSupps) 

ReDim Instances (i). PartsTree (c). SuppType (Instances (i). PartsTree (c). NumOfSupps) 

ReDim Instances (i). PartsTree (c). SuppStatus (Instances (i). PartsTree (c). NumOfSupps) 
For d=0 To Instances (i). PartsTree (c). NumOfSupps -1 

Input #1, Instances (i). PartsTree(c). SuppEntity(d) 

Input # 1, Instances (i). PartsTree (c). SuppType (d) 
Input #1, Instances (i). PartsTree (c). SuppStatus (d) 

Next d 

Input #1, Instances (i). PartsTree (c) -MyPathAndFile 
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Input #1, Instances (i). PartsTree(c). MyFileName 

Input #1, Instances (i). PartsTree(c). MyCADfileType 

Input #1, Instances (i). PartsTree(c). Level 

Input #1, Instances (i). PartsTree (c). PartSuppression 

Input M, Instances (i). PartsTree (c). myDravAng 
'Instances (i). PartsTree (c). Name = Instances (i). PartsTree (c). PartSuppression 

'If (c > 0) Then 

' Load Model (c) 

'End If 

'UpdateMeansNode (c) 

Next c 

'INPUT FUNCTION FAMILY TREE 

Input W, tmp 

Input #1, Instances (i). NumFuncts 

ReDim Instances (i). FunctTree (Instances (i). NumFuncts) 

For c=0 To Instances (i). NumFuncts -I 
Input #1, tmp 

Input# 1, Instances (i). FunctTree (c). NodelD 

Input #1, Instances (i). FunctTree (c). Name 

Input # 1, Instances (i). FunctTree (c). Xpos 

Input# 1, Instances (i). FundTree (c). Ypos 

Input #1, Instances (i). FunctTree (c). NumParents 

ReDim Instances (i). FunctTree (c). Parents (Instances (i). FunctTree (c). NumParents) 

For d=0 To Instances (i). FunctTree (c). NumParents -1 
Input #1, Instances (i). FunctTree (c). Parents (d) 

Next d 

Input #1, Instances (i). FunctTree (c). NumChildren 

ReDim Instances (i). FunctTree (c). Children (Instances (i). FunctTree (c). NumChildren) 

For d=0 To Instances (i). FunctTree (c). NumChildren -I 
Input #1, Instances (i). FunctTree (c). Children (d) 

Next d 

Input #1, Instances (i). FunctTree (c). NumMeans 

ReDim Instances (i). FunctTree (c). Means (Instances (i). FunctTree (c). NumMeans) 

For d=0 To Instances (i). FunctTree (c). NumMeans -1 
Input # 1, Instances (i). FunctTree (c). Means (d) 

Next d 

Input #1, Instances (i). FunctTree (c). Level 

'If (c > 0) Then 
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' Load Model (c) 

'End If 

'Update FunctNode (c) 

Next c 

'INPUT RELATIONS 

Input #1, tmp 

Input # 1, Instances (i). NumRels 

ReDim Instances (i). ReIM (Instances (i). NumRels) 

ReDim Instances (i). Rel F (Instances (i). Nu m Reis) 
ReIsGrid. Rows = Instances (i). NumRels +1 
For c=0 To Instances (i). NumRels -I 

Input # 1, Instances (i). ReIM (c) 

Input #1, Instances (i). ReIF(c) 

ReIsGrid. Row =c+I 
ReIsGrid. Col =0 
ReIsGrid. Text = Instances (i). PartsTree (Instances (i). ReIM (c)). Name 

ReIsGrid. Col =I 
ReIsGrid. Text = Instances (i). FunctTree (Instances (i). ReIF(c)). Name 

Next c 
'Parts Tree Link-Lines 

Input #1, tmp 

ReDim Instances (i). Ll xl (Instances (i). NumParts) 

ReDim Instances (i). 1-1 yl (Instances (i). NumParts) 

ReDim Instances (i). Ll x2 (Instances (i). NumParts) 

ReDim Instances (i). Ll yZ (Instances (i). NumParts) 

For c=I To Instances (i). NumParts -1 
'Load Linel (c) 

'Linel (c). Visible = True 

Input # 1, Instances (i). 1-1 xl (c) 

'Linel (c). X1 = Instances (i). Ll xl (c) 

Input #1, Instances (i). Llyl (c) 

'Linel (c). Yl =Instances (i). Ll yl (c) 

Input # 1, Instances (i). Ll xZ (c) 

'Line I (c). X2 = Instances (i). Ll x2 (c) 

Input # 1, Instances (i). 1-1 y2 (c) 

'Linel (c). YZ = Instances (i). Lly2(c) 

Next c 
'Function Tree Link-Lines 

Input #1, tmp 
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ReDim Instances (i). L2xl (Instances (i). NumFuncts) 

ReDim Instances (i). L2yl (Instances (i). NumFuncts) 

ReDim Instances (i). L2x2 (Instances (i). NumFuncts) 

ReDim Instances (i). L2y2 (Instances (i). NumFuncts) 

For c=I To Instances (i). NumFuncts -I 
'Load Une2(c) 

'Line2(c). Visible = True 

Input #1, Instances (i). L2xl (c) 

'Line2(c). Xi =Instances (i). L2xl (c) 

Input #1, Instances (i). L2yl (c) 

line2(c). Yl = Instances (i). L2yl (c) 

Input #1, Instances (i). I-W(c) 

'Line2(c). X2 = Instances (i). L2-x2(c) 

Input #1, Instances (i). L2y2(c) 

'Line2(c). Y2 = Instances (i). L2y2(c) 

Next c 
'INPUT SUPPRESSED PARTS 

'Input # 1, Instances (i). NumSuppParts 

'if (Instances (i). NumSuppParts > 0) Then 

ReDim Instances (i). SuppParts (Instances (i). NumSuppParts) 

For c=0 To Instances (i). NumSuppParts -1 
Input #1, Instances (i). SuppParts (c) 

' Next c 
'End If 

Next i 

'Elself (DocType = "INSTANCE") Then 

input # 1, Instances (0). By 

input # 1, Instances (0). Date 

input #1, Instances (0). Description 

input #1, Instances (0). DrgNo 

input #1, Instances (0). Name 

'input #1, Instances (0). FileName 

'input #1, Instances (0). Path 

End If 

Close #1 ' Close file. 

Regenerateinstances (0) 

Updatelnstance (0) 

ShowCurrentInstance -1,0 
Form_Resize 

End Sub 
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'SAVE CURRENT FMT FILE 

Public Sub SaveThisTree 

Dim sFile As String 

Dim c, d, I As Integer 

Dim sPicFile As String 

Dim mX, mY As Integer 

With CommonDialogi 

'To Do 

'set the flags and attributes of the 

'common dialog control 

. Filter = "All Files (*. fmt) I *. fmt" 

. ShowSave 

If Len (. filename) =0 Then 

Exit Sub 

End If 

sFile = fiename 

End With 

Caption = sFile 
Open sFile For Output As #1 ' Open file for output. 

sPicFile = Mid (sFile, 1, Len (sFile) - 4) 

UpdateUnesArrays (Thislnst) 

'OUTPUT DOCUMENT TYPE - GENERIC / INSTANCE 

Pfint #1, DocType 

If (DocType = "GENERIC") Then 

PHnt #1, Numinstances 

For i=0 To NumInstances -I 
Hint W, Instances (i). By 

Hint # 1, Instances (i). Date 

Pfint #1, Instances (i). Description 

Pfint #1, Instances (i). DrgNo 

PHnt #1, Instances (i). Name 

'Pdnt #1, Instances (i). FileName 

'Pdnt # 1, Instances (i). Path 

'OUTPUT PARTS TREE 
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Priint #1, "PARTS_TREE" 

Print #1, Instances (i). NumParts 

For c=0 To Instances (i). NumParts; -I 
Print #1, "NODU + Str(c) 

Print # 1, Instances (i). PartsTree (c). NodelD 

Print #1, Instances (i). PartsTree(c). Name 

Print #1, Instances (i). PartsTree (c). CADfiletype 

Print #1, Instances (i). PartsTree (c). Xpos 

Print #1, Instances (i). PartsTree (c). Ypos 

Print #1, Instances (i). PartsTree (c). NumParents 

For d=0 To Instances (i). PartsTree (c). NumParents -I 
Print # 1, Instances (i). PartsTree (c). Parents (d) 

Next d 

Print #1, Instances (i). PartsTree (c). NumChildren 

For d=0 To Instances (i). PartsTree (c). NumChildren -I 
Print # 1, Instances (i). PartsTree (c). Children (d) 

Next d 

Print #1, Instances (i). PartsTree (c). NumFunctions 

For d=0 To Instances (i). PartsTree (c). NumFuncfions -I 
Print #1, Instances (i). PartsTree(c). Functions(d) 

Next d 

Print #1, Instances (i). PartsTree (c). NumOfParams 

For d=0 To Instances (i). PartsTree (c). NumOfParams -I 
Print # 1, Instances (i). PartsTree (c). ParamName (d) 
Print #1, Instances (i). PartsTree (c). ParamValue (d) 
Print # 1, Instances (i). PartsTree (c). ParamUnit (d) 

Next d 
Print #1, Instances (i). PartsTree (c). NumOfSupps 

For d=0 To Instances (i). PartsTree (c). NumOfSupps -1 
Print # 1, Instances (i). PartsTree (c). SuppEntity (d) 

Print #1, Instances (i). PartsTree (c). SuppType (d) 

Print # 1, Instances (i). PartsTree (c). SuppStatus (d) 

Next d 

Print #1, Instances (i). PartsTree (c). MyPathAndFile 

Print #1, Instances (i). PartsTree (c). MyFileName 

Print # 1, Instances (i). PartsTree (c). MyCADfileType 

Print #11, Instances (i). PartsTree (c). Level 

Print #1, Instances (i). PartsTree (c). PartSuppression 

Priint # 1, Instances (i). PartsTree (c). myDraMng 
Next c 
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'OUTPUT FUNCTION FAMILY TREE 

Print #1, "FUNCTION-TREE" 

Print #1, Instances (i). NumFuncts 

For c=0 To Instances (i). NumFuncts -1 
Print #1, "NODU + Str(c) 

Print #1, Instances (i). FunctTree (c). NodelD 

Print #1, Instances (i). FunctTree (c). Name 

Print #1, Instances (i). FunctTree (c). Xpos 

Print #1, Instances (i). FunctTree (c). Ypos 

Print # 1, Instances (i). FunctTree (c). NumParents 

For d=0 To Instances (i). FunctTree (c). NumParents -1 
Print #1, Instances (i). FunctTree(c). Parents(d) 

Next d 

Print #1, Instances (i). FunctTree (c). NumChildren 

Ford =0 To Instances (i). FunctTree (c). NumChildren -I 
Print #1, Instances (i). FunctTree (c). Children (d) 

Next d 

Print #1, Instances (i). FunctTree (c). NumMeans 

For d=0 To Instances (i). FunctTree (c). NumMeans 

Print #1, Instances (i). FunctTree (c). Means (d) 

Next d 

Pflnt #1, Instances (i). FunctTree (c). Level 

Next c 

'OUTPUT RELATIONS 

Print #1, "RELATIONS" 

Print #1, Instances (i). NumRels 

For c=0 To Instances (i). NumRels -I 
Print #1, Instances (i). ReIM (c) 

Print #1, Instances (i). ReIF (c) 

Next c 

'Parts Tree Link-Unes 

Pflnt #1, "LINEI" 

For c=1 To Instances (i). NumParts -I 
Print #1, Instances (i). Ll xl (c) 

Print #1, Instances (i). Llyl (c) 

Print # 1, Instances (i). Ll x2 (c) 

Print #1, Instances (i). Lly2(c) 
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Next c 
'Function Tree Link-Unes 

Print #1, "LINE2" 

For c=I To Instances (i). NumFuncts -I 
Print #1, Instances (i). L2xl (c) 

Print W, Instances (i). L2yl (c) 

Print #1, Instances (i). L2x2 (c) 

Print #1, Instances (i). L2y2 (c) 

Next c 

'OUTPUT SUPPRESSED PARTS 

'Print #1, Instances (i). NumSuppParts 

'If (Instances (i). NumSuppParts > 0) Then 

For c=0 To Instances (i). NumSuppParts -I 
Print #1, Instances (i). SuppParts (c) 

Next c 
'End If 

Next i 

'Elself (DocType = "INSTANCE") Then 

Pdnt #1, Instances (0). By 

Nint #1, Instances (0). Date 

Pdnt #1, Instances (0). Description 

PHnt #1, Instances (0). DrgNo 

Pdnt #1, Instances (0). Name 

'Pdnt #1, Instances (0). FileName 

'Pdnt #1, Instances (0). Path 

End If 

Close #1 'Close file. 

Me. Caption = sPicFile 
End Sub 

'ADD A NEW INSTANCE 

Public Sub AddNewInstance 

Dim c, d As Integer 

Dim Copy0f As Integer 

Copy0f = InstGrid. Row 

NumInstances = NumInstances +I 
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ReDim Preserve Instances (Numinstances - i) 

Thislnst = NumInstances -1 

'Copy contents of instance Copy0f to Thisinst 

Instances (Thisinst). By = Instances (Copy Of). By 

Instances (Thisl nst). Date = Instances (Copy0q. Date 

Instances (Thislnst). DescCiption = Instances (CopyOf). Description 

Instances (Thisinst). DocType = "INSTANCE" 

Instances (Thislnst). DrgNo Str(Thisinst) 

Instances (Thislnst). Name "COPY OF (" + Str(CopyOq ++ Instances (Copy0q. Name 

Me. Caption = Instances (0). Name 

Instances (Thisinst). NumFuncts = Instances (Copy0q. NumFuncts 

Instances (Thislnst). NumParts = Instances (Copy0q. NumParts 

Instances (Thisinst). NumRels = Instances (Copy0q. NumRels 

ReDim Instances (Thislnst). PartsTree (Instances (Thisinst). NumParts) 

For c=0 To Instances (Thisinst). NumParts -I 
Instances (Thisinst). PartsTree (c). NodelD = Instances (Copy Of). PartsTree (c). NodelD 

Instances (Thislnst). PartsTree (c). Name = Instances (Copy0q. PartsTree (c). Name 

Instances (This] nst). PartsTree (c). CADfiletype = Instances (Copy0q. PartsTree (c). CADfiletype 

Instances (Thisinst). PartsTree (c). Xpos = Instances (CopyOQ. PartsTree (c). Xpos 

Instances (Thislnst). PartsTree (c). Ypos = Instances (CopyOQ. PartsTree (c). Ypos 

Instances (Thisinst). PartsTree (c). NumParents = Instances (CopyOQ. PartsTree (c). NumParents 

ReDim Instances (Thisinst). PartsTree (c). Parents (Instances (Thisinst). PartsTree (c). NumParents) 

For d=0 To Instances (Thisinst). PartsTree (c). NumParents -I 
Instances (ThisInst). PartsTree (c). Parents (d) = Instances (CopyOQ. PartsTree (c). Parents (d) 

Next d 

Instances (Thislnst). PartsTree (c). NumChildren = Instances (CopyOQ. PartsTree (c). NumChildren 

ReDim Instances (Thisinst). PartsTree (c). Children (Instances (Thislnst). PartsTree (c). NumChildren) 

For d=0 To Instances (Thisinst). PartsTree (c). NumChildren -I 
Instances (Thisinst). PartsTree (c). Children (d) = Instances (CopyOQ. PartsTree (c). Children (d) 

Next d 

Instances (Thislnst). PartsTree (c). NumFunctions = Instances (CopyOQ. PartsTree (c). NumFunctions 

ReDim Instances (Thisinst). PartsTree (c). Functions (Instances (Thislnst). PartsTree (c). NumFunctions) 

For d=0 To Instances (Thislnst). PartsTree (c). NumFunctions -1 
Instances (Thisinst). PartsTree (c). Functions (d) = Instances (CopyOQ. PartsTree (c). Functions (d) 

Next d 

Instances (Thislnst). PartsTree (c). NumOfParams = Instances (CopyOQ. PartsTree (c). NumOfParams 

ReDim Instances (Thisinst). PartsTree (c). ParamName (Instances (Thislnst). PartsTree (c). NumOfParams) 

ReDim Instances (Thisinst). PartsTree (c). ParamValue (Instances (Thislnst). PartsTree (c). NumOfParams) 
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ReDirn Instances (Thislnst). PartsTree (c). ParamUnit (Instances (Thisinst). PartsTree (c). NumOfParams) 

Ford =0 To Instances (Thislnst). PartsTree (c). NumOfParams -1 
Instances (Thisinst). PartsTree (c). Param Name (d) = Instances (Copy0f). PartsTree (c). ParamName (d) 

Instances (Thislnst). PartsTree (c). ParamValue (d) = Instances (CopyOQ. PartsTree(c). ParamValue (d) 

Instances (Thislnst). PartsTree (c). ParamUnit(d) = Instances (CopyOQ. PartsTree (c). ParamUnit(d) 

Next d 

Instances (Thislnst). PartsTree (c). NumOfSupps = Instances (CopyOQ. PartsTree (c). NumOfSupps 

ReDim Instances (Thislnst). PartsTree (c). SuppEntity (Instances (Thislnst). PartsTree (c). NumOfSupps) 

ReDim Instances (Thislnst). PartsTree (c). SuppType (Instances (Thisinst). PartsTree (c). NumOfSupps) 

ReDirn Instances (Thisinst). PartsTree (c). SuppStatus (Instances (Thislnst). PartsTree (c). NumOfSupps) 

For d=0 To Instances (Thislnst). PartsTree (c). NumOfSupps -1 
Instances (Thisinst). PartsTree (c). SuppEntity (d) = Instances (CopyOQ. PartsTree (c). SuppEntity (d) 

Instances (Thislnst). PartsTree (c). SuppType (d) = Instances (Copy0q. PartsTree (c). SuppType (d) 

Instances (Thislnst). PartsTree (c). SuppStatus (d) = Instances (CopyOQ. PartsTree (c). SuppStatus (d) 

Next d 

Instances (Thislnst). PartsTree (c). MyPathAndFile = Instances (Copy0l). PartsTree (c). MyPathAnd File 

Instances (Thisl nst). PartsTree (c). MyFil e Name = Instances (CopyOQ. PartsTree (c). MyFileName 

Instances (Thislnst). PartsTree (c). MyCADfileType = Instances (CopyOQ. PartsTree (c). MyCADfileType 

Instances (Thislnst). PartsTree (c). Level = Instances (CopyOQ. PartsTree (c). Level 

Instances (Thislnst). PartsTree (c). PartSuppression = Instances (Copy0l). PartsTree (c). PartSuppression 

Instances (Thisinst). PartsTree (c). myDraiming = Instances (CopyOQ. PartsTree (c). myDravving 
Next c: 
ReDim Instances (Thislnst). FunctTree (Instances (Thislnst). NumFuncts) 

For c=0 To Instances (Thisinst). NumFuncts -I 
Instances (Thisinst). FunctTree (c). NodelD = Instances (CopyOQ. FunctTree (c). NodelD 
Instances (Thisinst). FunctTree (c). Name Instances (Copy0o. FunctTree (c). Name 

Instances (Thisl nst). Fun ctTree (c). Xpos Instances (CopyOQ. FunctTree (c). Xpos 

Instances (Thisinst). FundTree (c). Ypos Instances (Copy 00. Fu nctTree (c). Ypos 

Instances (Thisinst). FunctTree (c). NumParents = Instances (Copy0o. FunctTree (c). NumParents 

ReDirn Instances (Thislnst). FunctTree (c). Parents (Instances (Thislnst). FunctTree (c). NumParents) 

For d=0 To Instances (Thislnst). FunctTree (c). NumParents -I 
Instances (Thislnst). FundTree (c). Parents (d) Instances (Copy0l). FunctTree (c). Parents (d) 

Next d 

Instances (Thisinst). FunctTree (c). NumChildren Instances (CopyOQ. FunctTree (c). NumChildren 

ReDirn Instances (Thisinst). FunctTree (c). Children (Instances (Thisinst). FunctTree (c). NumChildren) 

For d=0 To Instances (Thislnst). FunctTree (c). NumChildren -I 
Instances (Thislnst). FunctTree (c). Children (d) = Instances (Copy0q. FunctTree (c). Children (d) 

Next d 

Instances (Thisinst). FundTree (c). NumMeans = Instances (CopyOQ. FunctTree (c). NumMeans 
ReDirn Instances (Thisinst). FunctTree (c). Means (Instances (Thislnst). FunctTree (c). NumMeans) 
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Ford= 0 To Instances (Thisinst). FunctTree(c). NumMeans -I 
Instances (Thisinst). FunctTree (c). Means (d) = Instances (CopyOQ. FunctTree (c). Means (d) 

Next d 

Instances (Thislnst). FunctTree (c). Level = Instances (Copy0q. FunctTree (c). Level 

Next c 
ReDim Instances (Thislnst). ReIM (Instances (This I nst). N u mRels) 
ReDim Instances (Thisinst). RelF (Instances (Thisinst). NumRels) 

For c=0 To Instances (Thisinst). NumRels -I 
Instances (Thisinst). ReIM (c) = Instances (Copy0f). ReIM (c) 

Instances (Thisinst). ReIF(c) = Instances (CopyOQ. ReIF(c) 

Next c 
ReDim Instances (Thisinst). Ll xi (Instances (Thislnst). NumParts) 

ReDim Instances (Thisinst). Liyl (Instances (Thislnst). NumParts) 

ReDim Instances (Thisinst). Ll x2 (Instances (Thisl nst). N um Parts) 

ReDim Instances (ThisInst). Ll yZ (Instances (Thislnst). NumParts) 

For c=1 To Instances (Thisinst). NumParts -I 
Instances (Thislnst). Ll xl (c) = Linel (c). X1 

Instances (Thisinst). Li yl (c) = Linel (c). Yl 

Instances (Thislnst). Ll xZ(c) = Unel (c). X2 

Instances (Thisinst). Ll yZ (c) = Linel (c). Y2 

Next c 
ReDim Instances (This I nst). L2x I (Instances (Thislnst). NumFuncts) 

ReDim Instances (Thislnst). L2yl (Instances (Thisinst). NumFuncts) 

ReDim Instances (Thislnst). L2x2 (Instances (Thisinst). NumFuncts) 

ReDim Instances (Thislnst). L2y2 (Instances (Thisinst). NumFuncts) 

For c=I To Instances (Thisinst). NumFuncts -I 
Instances (Thislnst) -L2xl (c) = LineZ (c). X1 

Instances (Thisinst). L2yi (c) = Line2(c). Yl 

Instances (Thislnst). L2x2 (c) = Line2 (c). X2 

Instances (Thisinst). L2y2(c) = Line2(c). Y2 

Next c 
'Instances (Thisinst). NumSuppParts = Instances (CopyOQ. NumSuppParts 

'If (Instances (Thislnst). NumSuppParts > 0) Then 

ReDim Instances (Thislnst). SuppParts (Instances (Thislnst). NumSuppPatts) 

For c=0 To Instances (Thislnst). NumSuppParts -1 
Instances (Thislnst). SuppParts (c) = Instances (CopyOQ. SuppParts (c) 

Next c 
'End If 

'Instances (ThisInst) = Instances (Copy0f) 

Instances (Thisinst). Name = "Instance "+ Str(ThisInst) 
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lnstGdd. Rows = InstGHd. Rows +I 

InstGdd. Row = InstGfld. Rows -1 
InstGfld. Text = Instances (Thisinst). Name 

Updateinstance (Thislnst) 

'ShowCurrentinstance Thisinst, ThisInst: 

End Sub 

Pfivate Sub DeleteSelectedinstance 

'UPDATE LINK LINES 

End Sub 

Private Sub UpdateLinesArrays (myInst As Integer) 

Dim c As Integer 

ReDim Instances (myInst). L1 A (Instances (mylnst). NumParts) 

ReDim Instances (myInst). L1 yl (Instances (mylnst). NumParts) 

ReDim Instances (myInst). L1 x2 (Instances (myl nst). N um Parts) 

ReDim Instances (myInst). L1 y2 (Instances (mylnst). NumParts) 

For c=1 To Instances (myInst). NumParts; -I 
Instances (mylnst). Llxl (c) = linel (c). X1 

Instances (myInst). L1 yl (c) = Linel (c). Y1 

Instances (myInsQ. L1 x2 (c) = Linel (c). X2 

Instances (mylnst). L1 y2 (c) = Linel (c). Y2 

Next c 
ReDim Instances (mylnst). L2xl (Instances (mylnst). NumFuncts) 

ReDim Instances (mylnst). L2yl (Instances (mylnst). NumFuncts) 

ReDim Instances (mylnst). L2x2 (Instances (mylnst). NumFuncts) 

ReDim Instances (myInst). L2y2 (Instances (mylnst). NumFuncts) 

For c=1 To Instances (mylnst). NumFuncts -I 
Instances (mylnst). L2xi (c) = Line2 (c). X1 

Instances (myInst). L2y1 (c) = Une2 (c). Y1 

Instances (mylnst). L2x2 (c) = Line2(c). X2 

Instances (mylnst). L2y2 (c) = Lme2(c). Y2 

Next c 
End Sub 

Public Sub Viewlnstances(TrueOrFalse As Boolean) 

DispInstances = TrueOrFalse 

If (DispInstances = True) Then 

Frame2. Visible = True 

Elself (DispInstances = False) Then 
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Frame2. Visible = False 

End If 

Form_Resize 

End Sub 

Private Sub Updateinstance (myInst As Integer) 

'Instancing Layout 

Text4 (0). Text = Instances (myInst). Name 

Text4(i). Text = Instances (mylnst). DrgNo 

Text4 (2). Text = Instances (myInst). By 

Text4 (3). Text = Instances (myInst). Date 

Text4(4). Text = Instances (myInst). Description 

lnstGdd. ColWidth(O) = InstGrid. Width 

'InstGfld. Col =0 
'InstGrid. Row = myInst 
'InstGrid. Text = Instances (myInst). Name 

End Sub 

'DISPLAY THE SELECTED INSTANCE 

Private Sub ShowCurrentinstance (Oldinst As Integer, NewInst As Integer) 

Dim c As Integer 

If (Oldinst = Newlnst) Then 

Exit Sub 

End If 

'Unload Old Instance 

If ((Oldlnst >= 0) And (Oldlnst <> Newinst)) Then 

UpdatelinesArrays (Oldlnst) 

For c: =I To Instances (Oldinst). NumParts -1 
Unload Model (c) 

Unload Linel (c) 

Next c 
For c=1 To Instances (Oldinst). NumFuncts -1 

Unload Model (c) 

Unload Line2(c) 

Next c 

If (LeftDisplay = "Part Oriented Function/Means Tree") Then 

For c=I To NumFunc2 

Unload FNode2(c) 
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Next c 
For c=I To NumLine5 

Unload Line5(c) 

Next c 
End If 

If (RightDisplay = "Function Oriented Function/Means Tree") Then 

For c=I To NumMeans2 

Unload MNode2(c) 

Next c 
For c=I To NumLineG 

Unload Line6(c) 

Next c 
End If 

End If 

'Load New Instance 

Thisinst = Newlnst 

If (Oldlnst <> Newlnst) Then 

For c=1 To Instances (Newinst). NumParts -I 
Load Model (c) 

Load Unel (c) 

Unel (c). Visible = True 

Unel (c). Xl = Instances (Thisinst). Llxl (c) 

Unel (c). Yl = Instances (Thislnst). Ll yl (c) 

Une I (c). X2 = Instances (ThisInst). Ll x2 (c) 

Une I (c). Y2 = Instances (Thisinst). Li y2 (c) 

Next c 
For c=1 To Instances (Newinst). NumFuncts -I 

Load Model (c) 

Load Line2(c) 

Une2(c). Visible = True 

Une2 (c). Xl = Instances (Thisinst). L2xi (c) 

Une2(c). Yl = Instances (ThisInst). L2yl (c) 

Une2(c). X2 = Instances (Thislnst). L2x2(c) 

Line2(c). Y2 = Instances (Thisinst). L2y2(c) 

Next c 

For c=0 To Instances (Newinst). NumParts -I 
UpdateMeansNode (c) 
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If (Instances (Newinst). PartsTree(c). PartSuppression = "True") Then 

Model (c). BackColor = myCol 
Else 

'MNodel (c). BackColor = vbWhite 
End If 

Next c 
For c=0 To Instances (Newlnst). NumFuncts -I 

UpdateFunctNode (c) 

Next c 
End If 

RedrawLeftDisplay 

RedrawRightDisplay 

End Sub 

'UPDATEINSTANCES 

Private Sub Regeneratelnstances(Sellnst As Integer) 

Dim c As Integer 

InstGdd. Rows = Numinstances 

InstGHd. Col =0 
For c=0 To Numinstances -I 

InstGrid. Row =c 
InstGrid. Text = Instances (c). Name 

Next c 

InstGrid. Row = Selinst 

End Sub 

Private Sub SuppressPart(myPart As Integer) 

Dim c As Integer 

'First ckeck to see if it is already suppressed 

If (Instances (Thislnst). PartsTree(myPatt). PartSuppression "True") Then 

MsgBox ("Part is ALREADY SUPPRESSED") 

'Part is NOT suppressed, so find all children to suppress too 

Else 

Instances (Thisinst). PartsTree (myPart). PartSuppression = "True" 

Model (Instances (Thisinst). PartsTree (myPart). NodeID). BackColor = myCol 

End If 

End Sub 
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' UNSUPPRESS A PART 

Private Sub ResumePart(myPart As Integer) 

Dim c As Integer 

Dim Suppressed As Boolean 

'First ckeck to see if it is already resumed 
If (Instances (Thislnst). PartsTree (myPart). PartSuppression = "False") Then 

MsgBox ("Part is NOT SUPPRESSED") 

'Part is suppressed, so find all children to resume too 
Else 

Instances (Thisinst). PartsTree (myPart). PartSuppression = "False" 

Model (Instances (Thisinst). PartsTree (myPart). NodeID). BackColor vbWhite 
End If 

End Sub 

Private Sub ShowParams (myInst As Integer) 

'Dim c, nParams As Integer 

nParams = Instances (mylnst). PartsTree(Se I Part). Nu m OfParams 

ParamsGrid. Rows = nParams +I 

If (nParams > 0) Then 

For c=0 To nParams -1 
ParamsGHd. Row =c+I 
ParamsGHd. Col =0 

If (SelPart >= 0) Then 

DisplayPartsParams SelPart 

End If 

End Sub 

Private Sub ShowRelations (mylnst As Integer) 

Dim c, nRels As Integer 

nRels = Instances (mylnst). NumRels 

ReIsGrid. Rows = nRels +I 

If (nRels > 0) Then 

For c=0 To nRels -I 
ReisGdd. Row =c+I 

ReIsGdd. Col =0 
ReIsGfldJext = Instances (mylnst). PartsTree (Instances (mylnst). ReIM (c)). Name 
ReIsGHd. CoI =I 
ReIsGHd. Text = Instances (mylnst). FunctTree (Instances (mylnst). RelF (c)). Name 

Next c 
End If 

End Sub 
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'SUPPRESS FEATURE 

Sub FeatureSuppression (SearchStr, Action) 

Dim swApp As Object 'Variable used to hold the SIdWorks object 

Dim Model As Object 'Variable used to hold the ModelDoc object 
Dim feat As Object 'Variable used to hold the current Feature object 
Dim featureName As String 

Const swDocPART =I 'These definitions are consistent with type names 

Const swDocASSEMBLY =2 'defined in swconst. bas 

Const swDocDRAWING =3 
Set swApp CreateObject ("Sid Works. Appl ication") 

Set Model swApp. ActiveDoc 'Attach to the active document 

If Model Is Nothing Then Exit if no model is active 

Exit Sub 

End If 

If (Model. GetType <> swDocPART) Then 'Do not allow drawings or assemblies 

Msg = "Only Allowed on Parts" 'Define message 
Style vbOKOnly ' OK Button only 

Title "Error" Define title 

Call MsgBox(Msg, Style, Title) ' Display error message 
Exit Sub Exit this program 

End If 

Set feat = Model. FirstFeature Get the I st feature in part 
Do While Not feat Is Nothing 'While we have a valid feature 

Let featureName = feat. Name Get the name of the feature 

If InStr(l, featureName, SearchStr, 1) Then ' See if the feature name 

res = Model. SelectByID(featureName, "BODYFEATURE", 0,0,0) 

If (Action = "SUPPRESS") Then User chose to suppress 

res = Model. EditSuppress() ' Suppress the feature 

Elself (Action = "RESUME") Then ' User chose to unsuppress 

res Model. EditUnsuppresso Unsuppress the feature 

End If 

End If 

Set feat feat. GetNextFeature Get the next feature 

Loop 'Continue until no more features exist 
End Sub 
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Appendix 11 

Case Studies - Further Examples 

AIIA Guindy Machine Tools Ltd. Lathe Chuck 

This section contains thefollowing material: 

1) Figures Aff. 1.1 - AII 1.13, sample manufacturing drawings for a Production 

GMT Lathe Chuck; 

2) Figures AIII. 14 - AIII. 25, the Generic Master Parts created in 

ProlENGINEERfor the Chuckjamily, 

3) Figures AII. I. 26-AII. I. 38, manufacturing drawings created in ProlENGINEER 

for a sample Chuck; 

4) Figures AILI. 39 - AILI. 4Z variants of the Master Model representing actual 
Production Chucks, 
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Figure A11.1.1 - GMT Chuck Assembly - Example Manufacturing Drawing 
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Figure A11.1.2 - GMT Chuck Back-Plate - Example Manufacturing Drawing 
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Figure A11.1.5 - GMT Chuck Body - Example Manufacturing Drawing 
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Outer Diameter 200mm 
Back Seat Diameter 170mm 
Back Seat Depth 6mm 
Back Bore Diameter 102mm 
Front Bore Diameter 111mm 
Front Bore Depth 19mm 
Body Seat Diameter 19mm 
Body Seat Depth 8.3mm 
Lever Hole PCD 133.4mm 
Lock Bolt Offset 15mm 
Depth 33mm 
Fix Bolt PCD 160mm 
Fix Bolt Diameter lomm 
Fix Bolt Offset Angle 200 
Lock Bolt Diameter lomm 
Lock Bolt Depth 20mm 
Weight Depth 22mm 
Weigh Height 60mm 
Num Jaws 3 

Figure 5.1.14 - GMT Generic Back Plate - CAD Model & Parameters 

Par'ampiteit 4,., 
Width 60mm 
Depth 22mm 
Chuck Diameter 200mm 
Seat Diameter 185mm 
Bore Diameter 16mm 
Straight Bore_Depth lomm 
Seat Offset 14mm 
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P-11 ow-ft 14 
Length 67.5mm 
Width 60mm 
Height 65mm 
Body Contact Width 35mm 
T Nut Width mm 
Cut Out Width 14mm 
Wedge Separation 19mm 
Nose Major Width 
Nose Minor Width 
Wedge Angle 
Jaw Contact Length 
Bore Horiz Offset 
Bore Vertical Offset 
Bore Diameter 
Bore Depth 
Nose Depth 
Major Conatct Height 
Minor Contact H -I-ht Lever Offset 

Figure 5.1.16 - GMT Generic Base Jaw - CAD Model & Parameters 

Patýameter valuLi. ý.:, 
Length 70mm 
Width 35mm 
Height 40mm 
Fillet 2 

_14MM Major Bolt Diameter 20mm 
Minor Bolt Diameter 14mm 
Bolt Separation 19mm 

Non-Persistent Feature'l Status 
Back Plate Bolt Hole Resume 
Lever Pivot Hole Resume 

Figure 5.1.17 - GMT Generic Body - CAD Model & Parameters 

232 



tk zi-VaI6 
Lip Diameter 67mm 
Seat Diameter 55.5mm 
Top Bore Diameter 49mm 
Heig ht 34mm 
Lip Depth 6 
Core Diameter 55mm 
Cylinder Diameter 62mm 
Cut Width lomm 
Cut Height 4.5mm 
PCD 60mm 

-Non - Persittetit . -, Feature 
Icut Out lResume 

Figure 5.1.18 - GMT Generic Collar - CAD Model & Parameters 

Parameter Value 
Outer Diameter 82mm 
Chamfer End _ 76.7mm 
Bore Diameter 48mm 
Cylinder Diameter 53mm 
Chamfer Offset 3mm 
Height 51mm 
Lip Offset 44mm 
Bolt Major Diameter llmm 
Bolt Major Depth 5.7mm 
Bolt Minor Diameter 6.6mm 
Loc Hole Diameter 6mm 
Loc Hole Offset Angle 160 
Bolt PCD 68mm- 
Num Jaws 3 

Non-Persistent Fea=ture Status 
.......... Pin.. Holes IResume 

I 

Figure 5.1.19 - GMT Generic Cover - CAD Model & Parameters 
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"I Paraoiefte 
Length 75.07mm 
Width 35mm 
Height 50mm 
Major Bolt Diameter 20mm 
Minor Bolt Diameter 14mm 
Bolt Separation 19mm 

Non-Persistent Feature Status 

Figure 5.1.20 - GMT Generic Hard Jaw - CAD Model & Parameters 

Value 
Length 55mm 
Centre Ball Diameter 20mm 
Rear Ball Diameter 16mm 
Front Ball Diameter 18mm 
Centre Offset 17mm 

Non- ersistent Feature Status 

Figure 5.1.21 - GMT Generic Lever - CAD Model & Parameters 
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Length 70mm 
Width 35mm 
Height 40mm 
Major Bolt Diameter 20mm 
Minor Bolt Diameter 14mm 
Bolt Separation 19mm 

Figure 5.1.22 - GMT Generic Soft Jaw - CAD Model & Parameters 

parameter value 
Leng th 40mm 
Heig ht 21.5mm 
Base Width 17mm 
Top Width 23mm 
Nose Width llmm 
Bore Diameter - - 12mm 
Hole Separation _ 19mm 
Back Hole offset 9mm 

Figure 5.1.23 - GMT Generic 'T'-Nut - CAD Model & Parameters 
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Petameter. 4,. Vajue. -, 
Outer Diameter 102mm 
Bolt Offset Angle 35" 
Wedge Width 27mm 
Num Bolts 3mm 
Num Jaws 3mm 
Minor Bolt Diameter 9mm 
Major Bolt Diameter 14mm 
Major Bolt Depth 8.5mm 
Seat Diameter 67mm 
Seat Depth 6 
Bore Diameter 62mm 
Height 13.5mm 
Wedge Offset 35.6mm 

Non-Persistent Feature-I Status I 
lResume 

Figure 5.1.24 - GMT Generic Wedge - CAD Model & Paramete 

Paeameter., 
- Value 

, Outer Diameter 102mm 
Bolt Offset Angle 350 
Wedge Width 27mm 
Num Bolts 3mm 
Num Jaws 3mm 
Minor Bolt Diameter 9mm 
Major Bolt Diameter 14mm 
Major Bolt Depth 8.5mm 
Seat Diameter 67mm 
Seat Depth 6mm 
Bore Diameter 62mm 
Height 13.5mm 
Wedge Offset 35.6mm 

Figure 5.1.25 - GMT Generic Wedge Adaptor - CAD Model & Parameters 
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Figure A11.1.26 - GMT Chuck Assembly - Pro/ENGINEER Drawing 
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Figure AII. 1.27 - GMT Back Plate - Pro/ENGINEER Drawing 
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Figure A11.128 - GMT Balancing Weight - Pro/ENGINEER Drawing 
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Figure AII. 129 - GNIT Base Jaw - Pro/ENGINEER Drawing 
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Figure AII. 130 - GMT Body - Pro/ENGINEER Drawing 
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Figure AII. 131 - GNIT Collar - Pro/ENGINEER Drawing 
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Figure AII. 132 - GMT Cover - Pro/ENGINEER Drawing 
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Figure AII. 133 - GMT Hard Jaw - Pro/ENGINEER Drawing 
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Figure AII. 134 - GMT Lever - ProXNGINEER Drawing 
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Figure A11.135 - GMT Soft Jaw - Pro/ENGINEER Drawing 
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Figure A11.136 - GMT 'T' Nut - Pro/ENGINEER Drawing 
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Figure AII. 137 - GMT Wedge - Pro/ENGINEER Drawing 
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Figure AIM 38 - GNIT Wedge Adaptor - Pro/ENGINEER Drawing 
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Figure A11.1.39 - Assembly Views for the 3B200-PHCNC Chuck 
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Figure AII. I. 40 - Assembly Views for the 3B200-PHNC Chuck 
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Figure A11.1.41 - Assembly Views for the 2BI65-PHCNC Chuck 
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Figure A11.1.42 - Assembly Views for the 413250-PHNC Chuck 
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A11.2 Lucas Varity Drive End Shield Casting 

For the purposes ofillustration, four members ofthe castingJamily are given here.: 

1) Figures A112.1 - AII. 2.4, variants of the Master Model representing actual 
Production Castings, 

2) Figures Aff 2.5 - AII 2.8, manufacturing drawings created in Mechanical 

Desktop, 

3) Figures AII. 2.9 -AII. 2.10, Renderings of the Lucas Casting. 
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Lug Separation 75mm 
Lug Diameter 28mm 
Lug Angle 901, 
Fillet 2 14mm 
Wedqe Diameter 102mm 
Wedge Depth 24mm 
Base Depth 12.7mm 
Cylinder Height 76.2 
Cylinder Bottom Diamet 114.3mm 
Top Boss Height 42mm 
Top Boss Diameter 64mm 
Middle Boss Height 5mm 
Middle Boss Diameter 96.05mm 
Centre Hole Diameter 26.5mm 
Bump Angle 300 
Bump Radius 12mm 
Key Angle 450 

I', 
-Noj7. -Persiitent Feature=Status, ý.,,. 

IMiddle Boss iResumed"i 

Figure A11.2.1 - Drive-End-Shield No. V6211-673 - CAD Model & Parameters 

Parameter value.. 
Lug Separation 75MM 
Lug Diameter 30mm 
Lug Angle 900 
Fillet 2 15mm 
Wedge Diameter 102mm 
Wedge Depth 44.7MM 
Base Depth 12.7mm 
Cylinder Height 103.2mm 
Cylinder Bottom Diamet 114.3mm 
Top Boss Height 17.5mm 
Top Boss Diameter 82mm 
Middle Boss Height 
Middle Boss Diameter 
Centre Hole Diameter 26.5mm 
Bump Angle 750 

, Bump Radius 12mm 
lKey Angle 100 

I Non-Persistent Feature Status 
IMiddle Boss supp 

. 

Figure All. 2.2 - Drive-End-Shield No. V6211-679 - CAD Model & Parameters 

255 



Lug Separation 75mm 
Lug Diameter 28mm 
Lug Angle 200 
Fillet 2 14mm 
Wedqe Diameter 102mm 
Wedge Depth 42mm 
Base Depth 12.7mm 
Cylinder Height 94.4mm 
Cylinder Bottom Diamet 114.3mm 
Top Boss Height 23.8mm 
Top Boss Diameter 92.2mm 
Middle Boss Height 
Middle Boss Diameter 
Centre Hole Diameter 26.5mm 
Bump Angle 30" 

, Bump Radius 2mm 
lKey Angle 450 

Non-Persistent Fe4ture St atu 
IMiddle Boss 

-I pp 

Figure A11.2.3 - Drive-End-Shield No. V6211-695 - CAD Model & Parameters 

Parameter Valde 
Lug ýýaration 75mm 
Lug Diameter 28mm 
Lug Angle 900 
Fillet 2 14mm 
Wedge Diameter 102mm 
Wedge Depth 39mm 
Base Depth 12.7mm 
Cylinder Height 94.4mm 
Cylinder Bottom Diamet 114.3mm 
Top Boss Height 23.8mm 
Top Boss Diameter 92.2mm 
Middle Boss-Height 
Middle Boss Diameter 
Centre Hole Diameter 26.5mm 
Bump Angle 300 
Bump Radius 12mm 
Key Angle 450 

I Non-Persistent Feature status 
I. Middle Boss supp 

tio 

AM 

Figure A11.2.4 - Drive-End-Shield No. V6211-710 - CAD Model & Parameters 
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Figure All. 2.5 - Drive-End-Shield No. V6211-673 - Manufacturing Drawing 
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Figure All. 2.6 - Drive-End-Shield No. V6211-679 - Manufacturing Drawing 
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Figure All. 2.7 - Drive-End-Shield No. V6211-695 - Manufacturing Drawing 
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Figure All. 2.8 - Drive-End-Shield No. V6211-710 - Manufacturing Drawing 
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Figure All. 2.9 - Drive-End-Shield - Rendering 
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Figure A11.2.10 - Drive-End-Shield - Rendering (Section View) 
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A11.3 HydroFlow Rotary Drum Filter System 

This section contains the following material: 

Figures AII. 3.1 - AII. 3.6, sample manufacturing drawings the Rotary Drum Filter 

Unit 

Figures AII. 1.7 - AII. 1.14, the Generic Master Parts created in Solidworks for the 
Rotary Drum Filter Unit 
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Figure A11.3.1 - Hydroflow Rotary Drum Weld Assembly- Example 

Manufacturing Drawing 
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Figure All. 3.2 - Hydroflow Drum Flush Pipe Assembly- Example 

Manufacturing Drawing 
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Figure A11.3.3 - Hydroflow Drum Body Fabrication- Example Manufacturing 

Drawing 
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Figure A11.3.4 - Hydroflow Drum Main Guard- Example Manufacturing 

Drawing 
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Figure A11.3.5 - flydroflow Drum End Guard- Example Manufacturing 

Drawing 
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Figure A11.3.6 - Hydroflow End Plate - Example Manufacturing Drawing 
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Dl@Holel 115.5mm 
Height@Sketchl 540mm 
Width@Sketchl 541mm 
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Figure 5.3.7 - HydroFlow Drum Body - CAD Model & Parameters 

Parameter Value 
Dl@Sketchl 444mm 
Dl@Holel 70.5mm 

Figure 5.3.8 - HydroFlow Drum Endplate - CAD Model & Parameters 
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Figure 5.3.9 - HydroFlow Drum Flush Pipe - CAD Model & Parameters 

Dl@Sketchl 200mm 
Dl@Extrude Base 5mm 
Offset@Sketch2 50mm 
Dl@Sketch2 linch 

, PCD@Sketch3 174mm 
IFlush An-qle@Sketch3 30" 

I, 

Figure 5.3.10 - HydroFlow Drum Flush Pipe End - CAD Model & Parameters 
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Dl@Base Extrude Thin 1039mm 
Depth@Sketchl 502mm 
Roof Angle@Sketchl 75.10 
Dl@Sketch3 150mm 

CI 

Figure 5.3.11 - HydroFlow Drum Main Guard - CAD Model & Parameters 

Parameter valud. - 
Length@Sketchl 150mm 
Corner Radius@Sketchl 68.5mm 
Thickness@Base Extrude 3mm 
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Figure 5.3.12 - HydroFlow Drum Viewing Window - CAD Model & Parameters 
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Outer Dia@Sketchl 460mm 
Bore Diameter@Sketchl 409mm 
Thickness@Sketchl 3mm 
Lip Diameter@Sketchl 450mm 
D5@Sketchl 36mm 

Figure 5.3.13 - HydroFlow End Plate - CAD Model & Parameters 

ý_Parameter Value 
Dl@Base Extrude 970mm 
Lip Height@Sketchl 5mm 
Lip Angle@Sketchl 50 
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Figure 5.3.14 - HydroFlow Mesh Clamp - CAD Model & Parameters 
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