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Abstract

We solve a random matrix ensemble called the chiral Ginibre orthogonal

ensemble, or chGinOE. This non-Hermitian ensemble has applications to

modelling particular low-energy limits of two-colour quantum chromo-

dynamics (QCD). In particular, the matrices model the Dirac operator

for quarks in the presence of a gluon gauge field of fixed topology, with

an arbitrary number of flavours of virtual quarks and a non-zero quark

chemical potential.

We derive the joint probability density function (JPDF) of eigenvalues

for this ensemble for finite matrix size N , which we then write in a

factorised form. We then present two different methods for determin-

ing the correlation functions, resulting in compact expressions involving

Pfaffians containing the associated kernel. We determine the microscopic

large-N limits at strong and weak non-Hermiticity (required for physical

applications) for both the real and complex eigenvalue densities. Vari-

ous other properties of the ensemble are also investigated, including the

skew-orthogonal polynomials and the fraction of eigenvalues that are

real.

A number of the techniques that we develop have more general appli-

cability within random matrix theory, some of which we also explore in

this thesis.
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Chapter 1

Introduction

1.1 Overview

We solve a random matrix ensemble called the chiral Ginibre orthogonal ensem-

ble (chGinOE), which has applications to modelling certain low-energy limits of

two-colour quantum chromodynamics (QCD) in the presence of a non-zero quark

chemical potential. The matrices in this ensemble have a particular off-diagonal

(‘chiral’) block structure, with the matrix dimensions being characterised by two

parameters, N (related to the volume of the physical system) and ν (the number of

exactly-zero eigenvalues of the Dirac operator for the quarks in a certain topology of

the gluon gauge field). The non-zero matrix elements are real, and can be written in

terms of normally-distributed variables. However, the probability distribution may

be further modified by the addition of extra factors to the weight function which

correspond to the presence of virtual quarks. These factors take the form of deter-

minants, or characteristic polynomials, involving the masses of the different types

(flavours) of quark.

This ensemble may be considered as, equivalently,1

1. the chiral (or Wishart-Laguerre) extension of the Ginibre ensemble with Dyson

index β = 1 (i.e. matrices with real-valued elements) known as the GinOE,

with an arbitrary non-Hermiticity parameter and additional mass-dependent

determinant factors, or

2. the non-Hermitian generalisation of the chiral Gaussian orthogonal ensemble

(chGOE) introduced by Verbaarschot, or

1We give further details and references in the next chapter.
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1.2 Outline of thesis

3. the β = 1 version of the non-Hermitian chiral ensembles previously introduced

and solved by Osborn (chGinUE, with β = 2) and Akemann (chGinSE, with

β = 4).

The solution of our ensemble therefore completes the programme of solving the chiral

Gaussian ensembles at arbitrary non-Hermiticity.

Compared with the Ginibre ensembles for β = 2 and β = 4 (complex and

quaternion-real elements respectively), the Ginibre β = 1 case has a number of

difficult features (for example, a finite fraction of eigenvalues are real), and so was

fully solved only very recently. Our ensemble inherits many of the properties of

this ensemble, but with additional complexity due to the chiral structure and the

additional factors dependent on the quark masses.

We derive the joint probability density function (JPDF) of eigenvalues for this

ensemble for finite matrix size N , and compact expressions for the various correlation

functions in terms of the associated kernel. We determine the large-N limits at strong

and weak non-Hermiticity, for the densities of both real and complex eigenvalues;

these large-N limits are required for physical applications.

In this work we focus on the mathematical properties of the random matrix

ensemble, rather than on the physics. Work to compare our predictions for the

eigenvalue densities with results from computer simulations of QCD (lattice gauge

theory or LGT) is currently in progress, although that does not form part of this

thesis. However, it is important to point out that, under certain circumstances (e.g.

two-colour QCD with non-degenerate quark masses at non-zero chemical potential),

numerical solutions of QCD may not be possible at all, due to the infamous ‘sign

problem’, and so random matrix theory (RMT) is in a position to provide genuinely

new insight into the nature of the solutions.

1.2 Outline of thesis

In Chapter 2 we give a brief historical review of random matrix theory (RMT),

followed by an introduction to the application of RMT to the modelling of quantum

chromodynamics (QCD). We then outline the specific physical arguments that lead

to our model.

In Chapter 3 we derive the joint probability density function (JPDF) of eigen-

values for the chGinOE, starting from the JPDF of matrix elements. The chiral
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1.2 Outline of thesis

nature of the ensemble, the non-Hermiticity and the reality of the matrix elements

all present their own challenges.

In Chapter 4 we show how the JPDF can be written in a factorised form in-

volving a skew-symmetric (i.e. anti-symmetric) bivariate weight function. Many of

the properties of our ensemble, such as the correlation functions, can be written in

terms of the kernel and the skew-orthogonal polynomials associated with this weight

function, and so we discuss some of the more elementary general properties of skew-

symmetric measures in §4.2. We then derive generic formulas for the correlation

functions in terms of the kernel; these can be obtained in two different ways, and

we present both.

In Chapter 5 we derive explicit formulas for the kernels and skew-orthogonal

polynomials for the chGinOE at finite N . The unquenched quantities (i.e. for the

case where we include the effects of virtual quarks) can be most conveniently ex-

pressed in terms of the corresponding quenched ones (where the virtual quarks are

absent), as we demonstrate.

Chapters 6, 7 and 8 consider the quenched ensemble. Chapter 6 covers the

finite-N densities, and we also investigate how the number of eigenvalues that are

real depends on the matrix size N . We then look briefly at the macroscopic large-N

limit.

In Chapter 7 we turn our attention to the first of two microscopic large-N limits,

namely the strongly non-Hermitian limit, which has physical applications to QCD

at very high quark density.

In Chapter 8 we look at a different microscopic large-N limit, that of weak non-

Hermiticity, which has physical applications when the quark density is low. For

the density of real eigenvalues, taking this limit poses a technical challenge because

the limit operation for large N does not commute with the integral in the finite-N

expression (as is also the case with the Hermitian chGOE).

Chapter 9 extends the previous three chapters to the case when virtual quarks are

considered (i.e. the mass-dependent determinant factors are present in the weight

function), also drawing on earlier results from Chapter 5. We show that, when

the quark masses are not degenerate, then there may be regions of the complex

plane where the eigenvalue density oscillates rapidly between extremely large posi-

tive and negative values. Using approximations for the various kernels, we identify

the boundaries of these regions for the cases with one and two virtual quark flavours.
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1.2 Outline of thesis

In Chapter 10 we present a brief numerical investigation into universality, by

using Monte Carlo simulations to compare the densities of real eigenvalues at weak

non-Hermiticity, for several different random matrix ensembles that all share the

chiral block structure, and that all have real-valued elements.

Finally we present a conclusion in Chapter 11, where we summarise what we

have achieved, and discuss some of the problems that still remain outstanding.

Appendix A presents some elementary results that are used in the rest of the text,

and also provides an introduction to Grassmann variables and Berezin integration

used in Chapter 5.

Appendix B gives a proof of some useful generic formulas for expressing skew-

orthogonal polynomials as matrix expectations, valid for a wide range of ensembles.

The remaining two appendices show how some of the techniques that we have

used for the β = 1 chiral ensemble can also be applied to other ensembles. In

particular, Appendix C shows how the β = 4 chiral ensemble (chGinSE) has the

same algebraic structure as the chGinOE discussed in Chapter 4, and hence how

the correlation functions can be expressed in a similar way. And in Appendix D

we use the techniques developed in Chapter 5 to derive the kernel and the skew-

orthogonal polynomials for the (non-chiral) Ginibre β = 1 ensemble (GinOE).

Finally, on page 174, we provide specific details of which results in this thesis

have been previously published by us (and in which paper), and which results are

new.
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Chapter 2

Background: RMT and QCD

2.1 Random matrix theory

Random matrix theory (RMT) is the branch of mathematics concerned with exam-

ining the properties of matrices whose elements are random variables. A particular

interest is in the statistical properties – such as the correlation functions, spacing

distributions, and so on – of the eigenvalues. RMT has many practical applications,

especially in quantum physics where random matrices are often used to model the

spectra of highly complex systems.

A key point is the concept of universality: In the limit of infinitely large matrix

size, certain statistical properties of the eigenvalues are found to be independent of

the precise probability distributions of the matrix elements, and depend only on the

symmetries of the matrices. This is after a suitable rescaling (known as unfolding),

so that the average eigenvalue separation is unity.

There are many excellent introductory and general reviews of RMT. For short

overviews, we refer to [Ste01; For03], and to the seminal textbook [Meh04] for an

introduction to many of the more important mathematical ideas. We refer to [Kho09]

for an overview of non-Hermitian RMT (which is particularly relevant to this thesis),

and to [Tra00] which provides a brief review of universality.

2.1.1 Early historical review

Some of the earliest known work on RMT was undertaken by Wishart [Wis28]

who considered the probability distributions of the matrix W = AAT , where the

elements in a given column of the rectangular matrix A are real and have Gaussian
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2.1 Random matrix theory

distributions (and are correlated). Recent extensions of this work are discussed in

[Jan03].

However, interest in the field increased considerably some quarter of a century

later, when Wigner (see e.g. [Wig51; Wig55; Wig58]) used random matrices to

model certain statistical properties of the energy levels of excitations of heavy nuclei.

Because the interactions within these nuclei are so complicated and so numerous,

it is impossible to model them exactly. On a local scale (i.e. after unfolding), it

makes more sense to consider the energy levels statistically, and so Wigner suggested

replacing the Hamiltonian with a large random symmetric matrix. The observed

energy levels appear to repel one another; after rescaling, the distribution of nearest-

neighbour spacings obeys very closely the so-called Wigner distribution

p(s) =
π

2
se−πs2/4. (2.1)

This formula is a very good approximation for the spacing distribution of the eigen-

values of large random symmetric matrices (and in fact is exact for the 2-by-2 case).

This is distinct from the Poisson distribution which would be expected if there were

no correlations between eigenvalues. Furthermore, it appeared that the same ran-

dom matrix model could be used for many different kinds of nuclei, implying that

the eigenvalue spacing distributions may be universal.

Wigner also explored some of the so-called macroscopic properties of the eigen-

value distributions (i.e. under a rescaling such that the support of the eigenvalues

remains finite as the matrix size N →∞), deriving the famous semi-circle distribu-

tion for the eigenvalues of certain ensembles.

Subsequent work by Mehta, Gaudin and des Cloizeaux [Meh60a; Meh60b; Gau61;

desC73] verified the accuracy of the semi-circle law, but showed that the Wigner dis-

tribution does indeed only give an approximate spacing distribution for eigenvalues

of matrices of large size.

It was Dyson [Dys62a; Dys62b; Dys62c; Dys62d; Dys62e] who undertook a more

systematic study of the ensembles concerned. He showed that there are three distinct

classes of ensemble, and related these to different symmetry patterns under time

reversal of the corresponding quantum Hamiltonians.

2.1.2 Hermitian ensembles

Amongst the first ensembles to be systematically studied, and still arguably the

most important, are the Hermitian random matrices with independently-distributed
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2.1 Random matrix theory

Gaussian elements (referred to now as the Wigner-Dyson ensembles). The sym-

metries of quantum mechanical systems necessitate the use of real, complex or

quaternion-real matrix elements, with β =1, 2 or 4 (real) degrees of freedom per

matrix element respectively. These ensembles are known as the Gaussian orthogo-

nal, unitary and symplectic ensembles respectively (GOE, GUE and GSE), because

of their invariance under the corresponding transformations, and the parameter β is

called the Dyson index.

The joint probability density function (JPDF) of eigenvalues for these (and many

other) ensembles can generally be written as a product of weight functions multiplied

by the Jacobian of the transformation (from matrix elements to eigenvalues), which

has the form of the absolute value of the Vandermonde determinant to the power of

β, where the Vandermonde determinant is defined as

∆N ({z}) ≡ det
[
zj−1
i

]
1≤i,j≤N

=
∏

1≤i<j≤N

(zj − zi). (2.2)

The repulsion of adjacent eigenvalues can then be understood from this.

Let us be specific and consider the β = 2 case (the GUE) with N -by-N matrices,

whose weight function w(x) = exp(−cx2) for some scaling parameter c. The JPDF

of the eigenvalues (which are all real) is then given by

PN (x1, x2, . . . , xN ) ∝ |∆N ({x})|2
N∏

i=1

w(xi). (2.3)

Using the orthogonal polynomial method (see [Meh04]), one first rewrites the Van-

dermonde determinant in terms of the set of polynomials that are orthogonal with

respect to the weight. It is then possible to write the JPDF as a determinant of

the associated kernels. Multiple application of Dyson’s Integration Theorem (see

§4.3.1) allows one to obtain the various correlation functions, also expressed as de-

terminants of kernels. Finally, large-N limits of the correlation functions can be

obtained by determining the asymptotic behaviour of the polynomials and kernels.

For the β = 1 and β = 4 ensembles, it is convenient to introduce quaternions (see

e.g. [Dys70; Mah91; Meh04]) built from skew-orthogonal polynomials, and express

the correlation functions in terms of so-called quaternion determinants (which are

closely related to Pfaffians). We demonstrate this for the chGinOE in Chapter 4.
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2.1 Random matrix theory

2.1.3 Non-Hermitian ensembles

The non-Hermitian Gaussian ensembles were first considered by Ginibre [Gin65]; this

was originally out of mathematical interest, although more recently many practical

applications have been found (we list a few in §2.1.5). As with the Hermitian

case, there are three ensembles, labelled GinOE, GinUE and GinSE. Girko (see e.g.

[Gir84]) discovered that the eigenvalues (now complex-valued) have circular support

at large N , and that the density is constant within this circle.

Although Ginibre’s original interest was in ensembles with maximal

non-Hermiticity, it was not long before ensembles that interpolated between the

Hermitian and maximally non-Hermitian cases were considered. Such ensembles are

often termed the elliptic ensembles, because the complex eigenvalues lie in an ellipse

(see [Somm88]).

A surprising fact is that, at large N , a new scaling regime actually lies between

the Hermitian and the elliptic ensembles, where the non-Hermiticity is very weak

[Fyo97a; Fyo97b]. The extent to which the behaviour is independent of the partic-

ular small deformation applied to the Hermitian matrices is considered in [Fyo98];

and for a more recent review, see [Fyo03].

Although Ginibre had solved the β = 2 (GinUE) and β = 4 (GinSE) ensembles at

maximal Hermiticity, the β = 1 ensemble (GinOE) remained only partly solved. The

difficulty here arose because a finite fraction of eigenvalues are real, or, equivalently,

the weight function is singular on the real axis. Because of this problem, it took

many more decades before a complete solution was found. Since the chGinOE

presented in this thesis is, essentially, the chiral equivalent of the GinOE, we now

briefly review the sequence of steps taken to solve the Ginibre case.

Ginibre himself had managed to show that when all the eigenvalues are real, then

their distribution is the same as for the GOE. [Lehm91] derived the JPDF (for the

elliptic case) but not in a form that allowed direct application of Dyson’s Integration

Theorem to generate expressions for the correlation functions. [Ede94] determined

the expected number of eigenvalues that are real. The same author [Ede97] redis-

covered the JPDF, and derived the density of complex eigenvalues at finite matrix

size N , together with particular cases of the probability pN,k that k eigenvalues are

real in an N -by-N matrix (including the probability that all the eigenvalues are

real). However, his formulas were cumbersome, and [Kanz05; Ake07d] subsequently
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derived more useable expressions for pN,k, and, importantly, also showed that the

complex correlations could be expressed as Pfaffians.

The key step of treating real and complex eigenvalues together was taken in

[Sin06] who found expressions for the weighted average of some function of the

eigenvalues. This is essentially an extension of the de Bruijn formulas [deB55].

Then, almost simultaneously, three independent groups of researchers made the

final breakthrough; [Bor07] found the general formula for the correlations, expressed

as a Pfaffian. [For07] introduced the specific skew-orthogonal polynomials that are

required (with a later proof in [For08]), and [Somm07] derived the results in an

alternative manner, further expanded in [Somm08].

The extension to odd matrix size N was analysed in [For09; Sin09], and work to

understand certain scaling limits was presented in [Bor09].

2.1.4 Mathematical techniques1

A number of techniques have been adopted for solving RMT models. Apart from the

method of orthogonal [Dei00; Meh04] and skew-orthogonal [Adl99; Eyn01; Gho02;

Gho09] polynomials already mentioned, other techniques include the use of super-

symmetry [Zuk94; Efe97a; Ver04], and the replica method [Kanz09].

2.1.5 Recent applications

Probably the most significant applications of RMT are in the field of quantum

physics. For an in-depth review of such applications, see [Guh98].

In addition to modelling nuclear energy levels, it has been conjectured [Boh84]

that RMT explains the eigenvalue statistics of quantum chaotic systems (the quan-

tum analogues of systems that are classically chaotic), such as certain billiard sys-

tems (see [Sto99; Haa01]) including quantum dots. An explanation for the quantum

chaos/RMT link was given in [Heu07].

Other quantum applications include disordered mesoscopic systems (e.g. univer-

sal conductance fluctuations in electronic transport problems, Anderson localisation,

etc.; see [Efe97a]), 2D quantum gravity [DiF95], and modelling the Euclidean QCD

Dirac operator (see §2.2).

1Some of the references in this section and the next are to review papers and textbooks.

9



2.2 Random matrices and QCD

An important purely mathematical application is in number theory, where the

positions of the zeros of the Riemann zeta function appear to be described, statis-

tically, by random matrix theory [Mon73]. For reviews, we refer to [Con00; Kea03].

And in finance, RMT can be used to model correlation matrices, see [Bou09] for

a review.

Applications of non-Hermitian RMT include random neural networks [Somp88],

directed quantum chaos [Efe97b], random quantum maps [Bru09], QCD in the pres-

ence of a quark chemical potential (see §2.2), and delayed time series in financial

markets [Kwa06].

2.2 Random matrices and QCD

2.2.1 QCD essentials

In order to provide motivation for our work, it is useful to review very briefly some of

the facets of quantum chromodynamics (QCD) that are particularly relevant. Our

aim is certainly not to provide a comprehensive review of QCD, nor even a modest

pedagogical introduction, and we do not provide references for results that are now

considered standard. For further details, we suggest the following textbooks: [Smi01;

Ynd06] on general aspects of QCD, [Now96; Rip97; Hos01] on issues concerning

chiral symmetry, and [Shu04; Kog04; Rho08] on QCD under extreme conditions.

There is, of course, much overlap in the material covered in these books.

QCD is the most generally accepted theory of the strong nuclear interaction,

with compelling experimental evidence to support it. It describes how sub-atomic

particles known as quarks (and their corresponding anti-particles) interact by the

exchange of virtual1 gluons, binding them into the hadrons (such as protons, neu-

trons and pions) which are observed in nature. QCD also indirectly explains the

force between hadrons, responsible, for example, for binding protons and neutrons

into atomic nuclei.

There are six types (or ‘flavours’) of quark (‘up’ and ‘down’, or u and d, being the

most relevant to low energy physics, since they are the lightest). The interaction

between quarks and gluons is governed by their chromodynamic charges, known

simply as ‘colours’, of which there are three kinds.

1Virtual particles are short-lived particle states that may appear in the vacuum by virtue of
the Heisenberg Uncertainty Principle.
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As with all field theories, QCD is described by a Lagrangian, which incorporates

the Dirac operator that describes the quarks. However, QCD is a highly complex,

non-linear theory; whilst at high energies the interaction strength is small enough

to allow the use of perturbation theory, at lower energies this is not possible.

If the up and down quarks are considered massless (which is a good approxima-

tion to reality), then the Lagrangian possesses a so-called global chiral symmetry,

which means (very loosely speaking) that quarks of different spin states (chiralities)

ought to behave as if they were distinct and independent types of particle.

In order to understand QCD, it can sometimes be instructive to modify (theo-

retically) the parameters of the theory in non-physical ways. For example, we can

change the number of quark flavours (Nf ) or the number of colours (Nc) from their

physical values. We can modify the quark masses; for example, setting them to zero

is known as taking the chiral limit, or making them very large is known as quench-

ing, and is equivalent to ignoring them completely. We can also vary the number

of space-time dimensions, or change the representations of the quantum fields. One

can also introduce conjugate quarks, and modify the value of the QCD vacuum angle

θ (a parameter in the Lagrangian).

Although originally formulated in (physical) Minkowskian space-time, there are

certain advantages – both theoretical and practical – to mapping QCD to Euclidean

space-time. For example, the Dirac operator becomes anti-Hermitian (with purely

imaginary eigenvalues), and probability amplitudes (or ‘weights’), which are in gen-

eral complex numbers, may become real and positive, allowing for Monte Carlo

simulations of QCD (lattice gauge theory, LGT) to be performed on computers.

However, these properties are no longer true once a chemical potential has been

introduced (see below).

QCD at low energies is characterised by two phenomena. First, we have colour

confinement. We do not see free quarks and gluons, but only the hadrons which have

no net colour charge, and which are considerably more massive that the sum of the

masses of their constituent quarks. Second, below a critical temperature, the global

chiral symmetry of the QCD Lagrangian is broken if there are two or more quark

flavours (Nf ≥ 2). This manifests itself in large mass differences between the pions

and other low energy mesons that differ only in their spin states. If the quarks are

considered massless, then this symmetry breaking is spontaneous; the vacuum state

(the lowest energy state) has a lower symmetry than the Lagrangian. Low energy

physics is consequently dominated by the resulting Goldstone bosons, identified as
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the pions, which are weakly-interacting. In practice, because the quark masses

are not exactly zero, we observe pseudo-Goldstone bosons that have non-zero, but

nonetheless relatively small, masses.

The chiral condensate Σ ≡ |〈ψ̄ψ〉| is an order parameter for chiral symmetry

breaking, where ψ is the quark field operator. Loosely speaking, it is a measure of

the degree of interaction between quark states of different chiralities in the vacuum.

The Banks-Casher relation [Ban80] relates the chiral condensate to the average

density of Euclidean Dirac eigenvalues near the origin (i.e. at low virtuality), in the

case when there is no chemical potential µ:

Σ ≡ |〈ψ̄ψ〉| = lim
V→∞
m→0

π

V
〈ρ(0)〉. (2.4)

More generally, the chiral condensate is related to the discontinuity in the resolvent

of the Dirac operator at the origin which may be caused either by an accumulation

of eigenvalues (when µ = 0) or by some other mechanism (e.g. when µ > 0, discussed

below).

The physical cause of chiral symmetry breaking, at least at µ = 0, has been

attributed to the presence of certain topological soliton-like solutions of the gluon

fields, known as instantons, which result in the accumulation of the low-lying Dirac

eigenvalues (the zero and almost-zero modes).

One particular area of interest is the consideration of extreme physical conditions,

such as heavy ion collisions in particle accelerators, the properties of neutron stars

and the early universe. For these, it is necessary to introduce temperature T and

chemical potential µ (essentially, a measure of the density of quarks) into the model.

It is expected that the states (phases) of matter change depending on T and µ, and

this can be shown on a phase diagram.

When µ > 0, the Dirac operator is no longer anti-Hermitian, and so its eigenval-

ues become complex, in general. This is the cause of the infamous sign problem with

physical QCD that we mentioned in Chapter 1; essentially, the weights of configu-

rations in the Euclidean framework become not merely non-positive, but complex-

valued in general, thereby hampering the use of Monte Carlo LGT simulations.

One of the advantages of considering 2-colour QCD is that the sign problem is

less severe than in physical, 3-colour QCD. The weights in 2-colour QCD will, at

worst, become negative, but will always remain real. And, in fact, the theory does

not have a sign problem at all if we have an even number Nf of quark flavours whose
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masses are degenerate. One of the benefits of applying RMT to QCD is that we can

quantify how serious the sign problem is expected to be as a function of the mass

split (the difference between the masses of quarks of different flavours).

2.2.2 RMT and QCD

It is believed that the statistical properties of the low-lying (zero and near-zero)

eigenvalues of the Euclidean QCD Dirac operator depend solely on the global sym-

metries of the operator, and so, being universal, can be described by any theory with

similar symmetries, such as an appropriately constructed random matrix model. We

should emphasize that the truth of this statement can, at the present time, be veri-

fied only by comparison with LGT, since there is no rigorous proof of this from first

principles.

In the absence of a chemical potential, we can use Hermitian matrices D to model

the Dirac operator DQCD (making the correspondence DQCD ↔ iD). The choice of

Dyson index β (1, 2 or 4) in the random matrix model depends on the number Nc

of colours and on the representations of the fields adopted; β = 2 corresponds to

physical QCD, for example, and β = 1 to QCD with 2 colours (considered in this

thesis).

One can consider RMT as a model of QCD in which the quarks are moving

chaotically in a randomly-fluctuating gluon field. Equivalently, this can then be

modelled by a Dirac operator that is itself random. But more precisely, RMT corre-

sponds exactly to QCD in the so-called mesoscopic regime, where the RMT model is

equivalent to the ε-regime of chiral perturbation theory (a low-energy effective field

theory defined in a box of finite size). However, when we consider non-zero tem-

peratures and quark densities (chemical potentials), then RMT models may also

have phenomenological applications, giving qualitative information about the phase

diagram that cannot be obtained by other methods.

A number of general review articles on the application of RMT to QCD have

appeared over the last decade or so, all written by leading researchers in the field.

For general reviews, see [Ver00; Dam02; Ver09], together with [Ake07c; Spl08] which

specifically cover the case of non-zero chemical potential.

The idea of using RMT to model the low-lying eigenvalues of the Dirac operator

in QCD was first proposed almost twenty years ago in [Shu93], in which the authors

solved the β = 2 case (physical QCD) for the partition function Z(Nf )({m}) and the
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spectral sum rules (particular quantities related to the distribution of the eigenval-

ues). Soon after, an expression for the eigenvalue density itself was also obtained for

this model [Ver93; Ver94a], although only given explicitly for the unquenched case

when all the quark masses are zero.

This work was subsequently extended [Ver94b] to the β = 1 and β = 4 ensembles,

presenting the JPDFs and the sum rules, and the spectrum for the β = 1 case was

also explicitly obtained [Ver94c], but again only for the unquenched case with quark

masses set to zero. Further results on spectral sum rules [Ver94e] and the derivation

of effective theories from RMT [Hal95] followed shortly afterwards.

Encouraging comparisons of RMT results with the liquid instanton model (in

which instantons are assumed to have a certain distribution) were made in [Ver94d]

and [Ver94g], the latter paper also reviewing results to date. The behaviour of the

chiral condensate as a function of the masses, which can be derived within the RMT

framework, was also investigated [Ver96].

Further work continued to analyse in more detail various properties of these

ensembles. For example, the unquenched microscopic densities with non-zero quark

masses were determined in a sequence of papers [Dam98a; Wil98; Ake00; Nag00a;

Nag00b; Ake01a], and distributions of individual eigenvalues were analysed in [Nis98;

Dam01; Ake04a]. [Tou99] discusses the various patterns of symmetry breaking.

Much work was undertaken on the issue of universality, in other words, investi-

gating whether probability distributions other than Gaussian will give identical re-

sults for microscopic spectral quantities. See [Nis96; Ake97; Sen98; Ake98a; Ber98;

Dam98a; Kle00].

The incorporation of the effect of a quark chemical potential into the RMT

model leads to matrices that are non-Hermitian. This was first undertaken by

adding a fixed constant (multiplied by the identity matrix) to the matrix blocks of

the Hermitian ensembles [Ste96]. This was entirely realistic, because the effect of a

chemical potential is not random. The model was quickly extended [Hal97] to the

β = 1 and β = 4 cases.

This one-matrix RMT model was able to provide the solution to a long-standing

problem in QCD itself. At zero chemical potential, the quenched model (in which the

effects of virtual quarks are ignored) is a good approximation for the unquenched case

(where these effects are taken into account), as demonstrated by LGT results. But

this does not seem to hold true when a chemical potential is added. The RMT model

showed that the quenched case actually approximates an entirely different model,

14



2.2 Random matrices and QCD

the so-called phase-quenched ensemble, which has additional types of (hypothetical)

quarks (known as conjugate quarks) and different symmetry breaking patterns.

Technically, however, it is rather difficult to find complete solutions for such an

ensemble. Therefore, an alternative model was suggested [Ake02a; Ake03a], spec-

ified simply by its eigenvalue JPDF, without reference to any underlying matrix

representation. Subsequent investigations [Ake03b; Ake04b] showed that the micro-

scopic behaviours of this model and the original one-matrix model were very close

at small chemical potential.

A third type of model was proposed [Osb04] not long after, originally for the

β = 2 case. Not only did this model have the desirable property of being formulated

in a matrix representation, but also it was entirely solvable analytically. The chem-

ical potential was now incorporated by multiplying it by another random matrix,

leading to a two-matrix model. Whilst chemical potential is clearly not stochastic,

universality arguments imply that this model should actually have identical mi-

croscopic spectral properties to the original one-matrix model. A solution for the

corresponding β = 4 ensemble was given in [Ake05b; Ake07a], and the β = 1 case is

solved in this thesis.

As with the Hermitian ensembles, it is of significant practical importance to be

able to derive the distributions of the individual eigenvalues, once an appropriate

ordering scheme has been introduced, see [Ake08a; Ake08b], for example.

For the unquenched β = 2 case, it was noted [Ake05a] that the eigenvalue density

can become highly oscillatory in certain regions of the complex plane. These oscilla-

tions were shown [Osb05] to be the cause, when µ > 0, of the jump in the resolvent

that leads to the non-zero chiral condensate. The condensate is µ-independent in

the phase when chiral symmetry is broken [Osb08a], and, in fact, a physical inter-

pretation of the oscillating region can be given [Osb08b].

The presence of these oscillations (and in particular, the existence of regions

where the density is non-positive) is closely tied in with the infamous sign problem,

which makes LGT simulations difficult if not impossible. RMT can be used to

investigate the severity of this effect [Spl07; Han08; Blo09a; Blo09b].

RMT at non-zero chemical potential has two distinct types of application to

QCD, the first being a precise mapping, typically at low chemical potential µ, and the

second being a phenomenological application at larger µ and non-zero temperature

T , in order to understand the phase diagram. However, a new exact mapping

for 2-colour QCD was recently discovered [Kana10] which is actually valid at high
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chemical potential, when matter is believed to condense into a new phase consisting

of di-quarks.

Let us briefly discuss the nature of the precise mapping of RMT to QCD. This

typically occurs in the ε-regime of chiral perturbation theory. One (mathematical)

way of showing this equivalence for all correlation functions is to introduce additional

‘dummy’ types of quark into the models, such as bosonic quarks. For details, we

refer to [Dam98b; Ake98b; Osb99; Dam99], and [Spl06; Bas07] for the non-Hermitian

case.

We mention also that considering non-physical situations can also lead to greater

insight. QCD in 3-dimensions was considered for β = 2 [Ver94f] and β = 4 [Mag00],

for the unquenched case [Nag01], and with chemical potential [Ake01b]. We can

also see what happens mathematically if the chemical potential in matrix models is

taken to be imaginary rather than real [Ake07b; Lehn09].

It is often possible to use Monte Carlo simulations of lattice gauge theory to gen-

erate eigenvalue distributions for comparison with the predictions of RMT. However,

there are many potential problems: for example, it is difficult to put quarks with

small masses onto the lattice, and so simulations are often performed using the

quenched approximation. There is also a technical problem in that, with certain

techniques for implementing fermions (so-called staggered fermions), the symmetry

classes are different on the lattice from those in the continuum. Another significant

problem, also with the unquenched simulations, is of course the sign problem at

non-zero chemical potential.

However, a number of tests against LGT data have been successfully carried out.

These include comparisons of the eigenvalue densities, as well as investigations into

the distributions of individual eigenvalues. The RMT models need to be appropri-

ately scaled to match the data. Indeed, this scaling allows one to extract certain low

energy parameters of QCD such as the chiral condensate. We refer to the review

articles cited earlier for more details and references, e.g. [Ver09].

2.2.3 Statement of the chGinOE model

As indicated earlier, random matrix models are constructed using only global sym-

metries, and so we introduce a random matrix iD, which will model the Euclidean

QCD Dirac operator DQCD = γk(∂k + iAk) + µγ0, where the γk (for space-time index

k = 0, 1, 2, 3) are the Euclidean Dirac gamma matrices, and the Ak are the gluon
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fields (with various other labels suppressed). For two-colour QCD with a chemi-

cal potential, the model that we will adopt is the non-Hermitian extension of the

chGOE model [Ver94b; Ver94c] using a prescription similar to that given in [Osb04].

The matrix D is constructed as follows:

• The QCD Dirac operator possesses axial UA(1) symmetry (i.e. {γ5,DQCD} = 0

where γ5 ≡ γ0γ1γ2γ3 is the chirality operator) which implies that all non-zero

eigenvalues come in pairs ±Λ. We wish to retain this property, and hence we

write D as an off-diagonal block (‘chiral’) matrix.

• By the Atiyah-Singer index theorem, in a gauge (gluon) field of fixed topo-

logical charge ν the Dirac operator will have precisely |ν| eigenvalues that are

exactly zero. Therefore, we will work in sectors of fixed topological charge,

and use N × (N + ν) matrices as the blocks in D, where N corresponds to the

volume of the system in QCD, and ν to the topological charge of the gluon

fields.

• With no chemical potential present, DQCD is anti-Hermitian, and so D must be

a Hermitian random matrix. For a non-zero chemical potential µ > 0, we then

add µ times a second random matrix (see the earlier discussion concerning

universality) which must be anti-Hermitian; µ is assumed to be the same for

all quark flavours.

• Since the fields in two-colour QCD are in representations of the Lie group

SUc(2) which is pseudo-real, we can choose to write D in a basis with real

matrix elements. Therefore, when µ = 0, D will be symmetric, and for µ > 0,

we add an anti-symmetric matrix, so that D becomes asymmetric.

The matrix D is therefore given by

D ≡
(

0 A

BT 0

)
≡

(
0 P + µQ

P T − µQT 0

)
(2.5)

where A, B, P and Q are all real-valued matrices of size N × (N + ν), and µ ∈ [0, 1]

is the non-Hermiticity parameter.

Universality arguments imply that the choice of distribution for matrix elements

is arbitrary, and so we choose the simplest mathematically, which is the Gaussian
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distribution. The partition function (from which we can read off the JPDF of the

matrix elements of D) is consequently given by

Z(Nf )
N,ν =

(
1√
2π

)2N(N+ν) ∫
dP dQ exp

[−1
2 Tr(PP T + QQT )

]×
Nf∏

f=1

det(D+mfI), (2.6)

where dP ≡ ∏
i,j Pij, and similarly for dQ. The integral is over the N(N +ν) elements

of each of P and Q, and is over R for each element. In order to simplify the notation,

we have not included any N -dependency in the weight function at this stage (the

N -dependent scaling is introduced in §6.2).

The product over the determinants in eq. (2.6) models the effects of virtual

quarks, and corresponds to a similar factor in the QCD partition function once

the (Grassmann-valued) quark fields have been integrated out at fixed gauge field

configuration. Nf ≥ 0 is the number of virtual quark flavours, and the {mf} are the

individual quark masses (1 ≤ f ≤ Nf ). Note that, numerically, when Nf = 0, we

have ZN,ν = 1; however, when Nf > 0, we have ZN,ν ≡ ZN,ν({mf}) which in general

will not equal unity.

The partition function eq. (2.6) is valid in a sector of fixed topological charge ν,

and so the complete QCD partition function at vacuum angle θ is given by

Z(Nf )
N (θ) =

∞∑
ν=−∞

eiνθZ(Nf )
N,ν . (2.7)

All the results in this thesis are given for a fixed topology ν, and so we drop the

subscript ν in the remainder of this thesis, always considering it to be fixed.

From a physics point of view, we will be interested in the limit N → ∞. This

limit can be taken in different ways, depending on how we scale the eigenvalues,

quark masses and chemical potential with N .

The term ‘massless’ is somewhat ambiguous. Throughout this document we will

use the term ‘quenched’ for the case where Nf = 0 (corresponding to large mf when

Nf > 0), and the term ‘zero mass’ for mf = 0. The unquenched case is the more

general case when Nf > 0. In the specific examples of the unquenched case given

in Chapter 9, we will generally choose Nf = 2 (corresponding to the lightest u and

d quarks). We will often consider the case of degenerate masses m1 = m2 ≡ m, so

that the JPDF is real and positive for all values of the matrix elements. However,

we will also consider non-degenerate masses, since this is physically realistic, and

leads to interesting phenomena. Also, since µ = 0 corresponds to a Hermitian (and
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not an anti-Hermitian) matrix in our convention, we will mostly be interested in

imaginary mf for applications. However, in this document, we will also show some

graphs where the mf are taken to be real.
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Chapter 3

From matrix representation to

eigenvalue JPDF

Starting with the partition function of the chGinOE expressed as an integral over the

matrix elements, we now show how to integrate out the angular degrees of freedom

to arrive at the joint probability density function (JPDF) of the eigenvalues. We

specified the ensemble for the general unquenched case (Nf > 0) in §2.2.3. However,

the quenched case (Nf = 0) is easier to solve, since the elements of P and Q are

independent, normally-distributed random variables ∼ N(0, 1). Furthermore, many

of the unquenched results can actually be expressed in terms of the quenched results.

Therefore it makes sense to solve the quenched case first.

Because the chGinOE is non-Hermitian, we cannot use a simple spectral de-

composition to obtain a diagonal matrix of eigenvalues, but instead we must use a

variant of the Schur transformation. Since the model has a chiral form involving

two matrices, and not one, we actually require the QZ decomposition. And because

the matrices in question all have real elements, we use the real QZ decomposition.

After making the transformation, we can integrate out all of the degrees of freedom

apart from the eigenvalues themselves, leaving the partition function expressed as

an integral over the eigenvalue JPDF.

3.1 JPDF for quenched case

For Nf = 0, the partition function in eq. (2.6) reads

ZN =
(

1√
2π

)2N(N+ν) ∫
dP dQ exp

[−1
2 Tr(PP T + QQT )

]
. (3.1)
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Here, and throughout this thesis, we will usually drop the superscript ‘(Nf )’ on all

quantities for the case when Nf = 0. We wish to solve for the eigenvalue JPDF of

the Dirac matrix D defined in eq. (2.5):

D ≡
(

0 A

BT 0

)
≡

(
0 P + µQ

P T − µQT 0

)
.

In practice, it is easier to solve for the eigenvalues of the so-called Wishart matrix

W ≡ ABT ≡ (P + µQ)(P T − µQT ), which is of size N -by-N . The eigenvalues of

W are the squares of the (non-zero) eigenvalues of D. This can be understood by

considering the characteristic equation

0 = det[Λ−D] = Λν det[Λ2 −ABT ] = Λν
N∏

j=1

(Λ2 − Λ2
j ). (3.2)

The matrix W ≡ ABT has real elements, and so its eigenvalues can be grouped into

pairs: either both eigenvalues in a pair will be real, or they will both be complex

valued (∈ C\R) and complex conjugates of each other. For N odd, there will also be

a final unpaired real eigenvalue. Hence, the non-zero eigenvalues of D come in real

pairs (Λ2
j > 0), pure imaginary pairs (Λ2

j < 0), or complex quadruplets (±Λj, ±Λ∗j).

3.1.1 Change of variables to A and B

Our partition function eq. (3.1) is written as a multiple integral over independent

matrices P and Q. We begin by changing variables from {P, Q} to the matrix

elements {A,B}, where A ≡ P + µQ and B ≡ P − µQ, or equivalently P = 1
2(A + B)

and Q = 1
2µ(A−B), which has Jacobian

J (N) = (2µ)−N(N+ν). (3.3)

In the exponent we have

Tr(PP T + QQT ) = Tr
(
η+(AAT + BBT )− η−(ABT + BAT )

)
, (3.4)

where we have defined

η± ≡ 1± µ2

4µ2
. (3.5)

But ABT = W , and TrBAT = Tr(ABT )T = TrABT . Therefore the weight becomes

exp
{−1

2 Tr(PP T + QQT )
}

= exp{η−TrW} exp
{
−η+

2
Tr(AAT + BBT )

}
, (3.6)

giving us the probability density function for matrices A and B as

P (A,B) =
J (N)

(2π)N(N+ν)
exp{η−TrW} exp

{
−η+

2
Tr(AAT + BBT )

}
. (3.7)
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3.1.2 QZ decomposition

3.1.2.1 Definition

We now undertake a variation of the transform known as the QZ decomposition1

which is usually performed on two square matrices, A and B. If A and B have

complex-valued elements, then we can write A = QSZ−1 and B = QTZ−1, where S

and T are upper-triangular, and the transforming matrices Q and Z are unitary.

However, if A and B are real, and we wish to restrict ourselves to using real Q

and Z (i.e. orthogonal and not just unitary transforming matrices), then the best we

can achieve is that only one of S and T will be upper-triangular. The other will be

of so-called almost-upper-triangular (AUT) form2. Such a matrix has 2-by-2 blocks

down the diagonal (plus a single 1-by-1 block in the bottom right-hand corner if

the matrix size N is odd), with all the entries below the block diagonal being zero.

Since an ordinary upper-triangular matrix is, of course, a special case of an AUT

matrix, we can consider both S and T to be AUT in what follows.

The precise transformation that we make is:

A = OA(∆A + ΛA)OT
B, BT = OB(∆B + ΛB)OT

A. (3.8)

ΛA and ΛB contain 2-by-2 blocks down the diagonal. When N is odd, there is also

an additional entry in the bottom right-hand corner of ΛA and ΛB. We will describe

ΛA and ΛB as being block-diagonal. ∆A and ∆B are zero except in elements strictly

above the diagonal blocks (and so ∆A + ΛA and ∆B + ΛB are AUT), and we will

describe ∆A and ∆B as being strictly AUT.

Note that OA is of size N ×N , and OB is of size (N + ν)× (N + ν). ∆A and ΛA

are the same size as A itself, i.e. rectangular, N × (N + ν), and ∆B and ΛB are the

same size as BT , i.e. rectangular, (N + ν)×N .

An important point is that, under this transformation, the Wishart matrix W

transforms as follows:

W ≡ ABT = OA(∆A + ΛA)(∆B + ΛB)OT
A ≡ OA(∆AB + L)OT

A (3.9)

where L ≡ ΛAΛB is block diagonal, and ∆AB is strictly AUT. Clearly, ∆AB + L has

the same eigenvalues as W , since this is a similarity transformation; however, it is

1The QZ decomposition is a two-matrix generalisation of the Schur decomposition which in-
volves a single matrix. We refer to Table A.1 where we list some matrix transformations.

2This is sometimes called quasi-upper-triangular form.
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Before After

Matrix Degrees of freedom Matrix Degrees of freedom

Even N Odd N

A N(N + ν) ΛA 2N 2N − 1

B N(N + ν) ΛB 2N 2N − 1

∆A
1
2N2 −N + νN 1

2(N2 + 1)−N + νN

∆B
1
2N2 −N 1

2(N2 + 1)−N

OA
1
2N2 −N 1

2(N2 + 1)−N

OB
1
2N2 −N + νN 1

2(N2 + 1)−N + νN

Total 2N(N + ν) Total 2N(N + ν) 2N(N + ν)

Table 3.1: Degrees of freedom before and after the QZ decomposition.

also true that L has precisely the same eigenvalues as well (see Appendix A.2.5 (ii)).

Furthermore, each 2-by-2 block of L ‘contains’ two eigenvalues, in the sense that

the eigenvalues of the i-th block, Li, are Λ2
2i−1 and Λ2

2i, and every pair of eigenvalues

must either both be real, or be non-real and complex conjugates of each other. If N

is odd, then the 1-by-1 block of L contains simply the unpaired, real eigenvalue ΛN .

However, we still have freedom about how to order the blocks, and how to order

the pairs within the blocks. We will discuss our particular choice later.

Because we are not diagonalising the 2-by-2 blocks in this step, and because A

and BT are not square, the set of orthogonal matrices OA and OB over which we

will integrate is restricted as follows; for even N we have

OA ∈ O(N)/O(2)N/2, OB ∈ O(N + ν)/O(2)N/2 O(ν) (3.10)

and for odd N

OA ∈ O(N)/O(2)(N−1)/2 O(1), OB ∈ O(N + ν)/O(2)(N−1)/2 O(1) O(ν). (3.11)

We can use the fact that O(N) has N(N−1)
2 degrees of freedom to cross-check that

the degrees of freedom before and after the transformation match (see Table 3.1).

Under the transformation, the weight changes as follows:

exp
{
−η+

2
Tr(AAT + BBT )

}
= exp

{
−η+

2
Tr(ΛAΛT

A + ΛBΛT
B + ∆A∆T

A + ∆B∆T
B)

}
,

(3.12)

and

exp{η−TrW} = exp{η−TrL} = exp{η−
∑

i

Λ2
i }. (3.13)
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3.1.2.2 Calculation of Jacobian

We are changing variables from {A,BT } to {ΛA,ΛB, ∆A, ∆B, OA, OB}, and will then

integrate over all the new variables apart from ΛA and ΛB, whose product L ≡ ΛAΛB

is block-diagonal, and ‘contains’ the eigenvalues of W .

To determine the Jacobian, we first differentiate eq. (3.8), to give

dA = OA

[
OT

AdOA(∆A + ΛA)− (∆A + ΛA)OT
BdOB + d∆A + dΛA

]
OT

B,

dBT = OB

[
OT

BdOB(∆B + ΛB)− (∆B + ΛB)OT
AdOA + d∆B + dΛB

]
OT

A, (3.14)

where we also used result eq. (A.18). The matrices OT
AdOA and OT

BdOB are anti-

symmetric (see eq. (A.19)), and so the elements are not independent.

In fact, we can omit the outside rotation factors in eq. (3.14) since these will

not affect the Jacobian. This is because Tr(dAdAT + dB dBT ) is invariant under

this rotation, and so the corresponding Jacobian matrix is itself orthogonal; its

determinant is therefore equal to unity. So, in component form, we have

(dA)ij =
N∑

k=1

(OT
AdOA)ik(∆A + ΛA)kj −

N+ν∑

k=1

(∆A + ΛA)ik(OT
BdOB)kj + (d∆A)ij + (dΛA)ij ,

(3.15)

(dBT )ij =
N+ν∑

k=1

(OT
BdOB)ik(∆B + ΛB)kj −

N∑

k=1

(∆B + ΛB)ik(OT
AdOA)kj + (d∆B)ij + (dΛB)ij .

(3.16)

We now give an ordering of the old and new variables that will lead to an almost

lower-triangular Jacobian matrix, with variables dA and dBT in the columns and

dΛA, dΛB, d∆A, d∆B, OT
AdOA and OT

BdOB in the rows.

First, consider the differentials with respect to ∆A, ∆B, ΛA and ΛB:

∂Aij

∂(∆A)pq
= δipδjq = δ(ij)(pq),

∂BT
ij

∂(∆B)pq
= δipδjq = δ(ij)(pq),

∂Aij

∂(ΛA)pq
= δipδjq = δ(ij)(pq),

∂BT
ij

∂(ΛB)pq
= δipδjq = δ(ij)(pq). (3.17)

For any Aij on or above the block-diagonal (OBD or ABD respectively), we will

only get a single contribution, i.e. when we differentiate with respect to the element

either of ∆A or of ΛA that occupies the matching position (i, j). Therefore, if we pair

(dA)ij with (dΛA)ij or (d∆A)ij, as appropriate, and similarly for BT , then we will

get a resulting Jacobian sub-matrix that is simply the identity. We will put these
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variables first, in any order. For Aij and BT
ij below the block-diagonal (BBD), these

differentials will always be zero.

We now order the remaining (i.e. BBD) elements of dA and dBT , along with the

independent elements of OT
AdOA and OT

BdOB. It is natural to choose the independent

elements of OT
AdOA and OT

BdOB to be the BBD elements, with the ABD elements

being dependent, because then there is also a very natural pairing of BBD (dA)ij

with (OT
AdOA)ij, and of BBD (dBT )ij with (OT

BdOB)ij.

We partition the BBD elements of dA, dBT , OT
AdOA and OT

BdOB into blocks, as

shown in Figure 3.1. For N > 1, we always find 2-by-2 blocks (shown in green).

For N odd, we will also have a row of 1-by-2 blocks (blue). Whenever ν > 0, there

are also additional 1-by-2 blocks (yellow), and for odd N , 1-by-1 blocks (red). The

figure shows the matrix dBT ; dA is similar, but has no yellow or red blocks, since it

is of size N -by-(N + ν).

N

Ν

N

Figure 3.1: Partitioning of below-block-diagonal elements of matrices into sub-

blocks.

We then order the blocks as shown in the diagram (the ordering of elements within

each block is arbitrary); the green blocks come first, ordered from top to bottom
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and right to left, followed by the blue blocks. Then we place the yellow blocks,

and finally the red blocks. We shall now show that such an ordering (which is not

unique) will lead to an almost-lower-triangular Jacobian matrix. The differentials,

for all (i, j) but only for (p, q) BBD (i.e. the independent elements), are given by (see

eq. (A.14) for details):

∂Aij

(OT
A∂OA)pq

= δip(∆A + ΛA)qj ,
∂BT

ij

(OT
A∂OA)pq

= − δjq(∆B + ΛB)ip,

∂Aij

(OT
B∂OB)pq

= − δjq(∆A + ΛA)ip,
∂BT

ij

(OT
B∂OB)pq

= δip(∆B + ΛB)qj . (3.18)

The diagonal blocks in the Jacobian matrix arise from when (i, j) (which indexes

an old variable) is in the same block as the block containing (p, q) (which indexes

a new variable). Suppose now that (i, j) is in a block that comes after the block

containing (p, q). The elements such as ∂Aij/(OT
A∂OA)pq will consequently lie above

the diagonal blocks in the Jacobian matrix. To show that these are always zero, we

consider the various possibilities:

• Case i = p: If j is odd, j + 1 < q else j < q. Either way, all four differentials in

eq. (3.18) equal zero.

• Case i 6= p: If i and p are in the same ‘block row’, then j 6= q. Otherwise, we

must have i > p + 1 if p is odd, else i > p if p is even. In all cases, again all

four differentials equal zero.

So the above block-diagonal part of the Jacobian matrix is indeed empty. Since

the matrix is therefore almost-lower-triangular, by using the second result from

Appendix A.2.5, the determinant is merely the product of the determinants of the

blocks that lie on the diagonal. As we noted above, these blocks arise from the cases

when (i, j) and (p, q) both come from the same block, and hence they are of four

types. Let us consider each of these in turn.

The 2-by-2 (green) blocks contain 4 elements (at positions (2i − 1, 2j),

(2i − 1, 2j − 1), (2i, 2j) and (2i, 2j − 1)) of each of dA and dBT , and so this leads

to 8-by-8 blocks (sub-matrices) down the diagonal of the Jacobian matrix. Each of

these contains elements of ΛA and ΛB only. These blocks are of the form

(
Sij Tij

Uij Vij

)
, (3.19)
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where

Sij ≡




(ΛA)2j,2j −(ΛB)2i−1,2i−1 (ΛA)2j,2j−1 0
−(ΛA)2i−1,2i−1 (ΛB)2j,2j 0 (ΛB)2j,2j−1

(ΛA)2j−1,2j 0 (ΛA)2j−1,2j−1 −(ΛB)2i−1,2i−1

0 (ΛB)2j−1,2j −(ΛA)2i−1,2i−1 (ΛB)2j−1,2j−1


 ,

Tij ≡




0 −(ΛB)2i,2i−1 0 0
−(ΛA)2i,2i−1 0 0 0

0 0 0 −(ΛB)2i,2i−1

0 0 −(ΛA)2i,2i−1 0


 ,

Uij ≡




0 −(ΛB)2i−1,2i 0 0
−(ΛA)2i−1,2i 0 0 0

0 0 0 −(ΛB)2i−1,2i

0 0 −(ΛA)2i−1,2i 0


 ,

Vij ≡




(ΛA)2j,2j −(ΛB)2i,2i (ΛA)2j,2j−1 0
−(ΛA)2i,2i (ΛB)2j,2j 0 (ΛB)2j,2j−1

(ΛA)2j−1,2j 0 (ΛA)2j−1,2j−1 −(ΛB)2i,2i

0 (ΛB)2j−1,2j −(ΛA)2i,2i (ΛB)2j−1,2j−1


 . (3.20)

We now show that, when we take the determinant of each of these sub-matrices eq.

(3.19), then the result can be expressed in terms of two of the eigenvalues of W .

We can easily verify (using the symbolic manipulation capabilities of Mathematica

[Wol08], for example) that the modulus of the determinant of this is (algebraically)

identical to

Jij =
∣∣∣(Di −Dj)2 + (Si − Sj)(SiDj − SjDi)

∣∣∣ (3.21)

in which Di is the determinant, and Si is the trace, of the two-by-two matrix Li

given by Li ≡ AiBi where

Ai ≡
(

(ΛA)2i−1,2i−1 (ΛA)2i−1,2i

(ΛA)2i,2i−1 (ΛA)2i,2i

)
and Bi ≡

(
(ΛB)2i−1,2i−1 (ΛB)2i−1,2i

(ΛB)2i,2i−1 (ΛB)2i,2i

)
.

(3.22)

The 2-by-2 matrices Ai and Bi are the i-th 2-by-2 blocks along the diagonals of

the block-diagonal matrices ΛA and ΛB respectively, and Li is then the i-th 2-by-2

block along the diagonal of the block-diagonal matrix L ≡ ΛAΛB. However, Li has

eigenvalues Λ2
2i−1 and Λ2

2i, and so Di and Si can be written as:

Di = Λ2
2i−1Λ

2
2i and Si = Λ2

2i−1 + Λ2
2i. (3.23)

Substituting these into eq. (3.21), and factorising, gives

Jij =
∣∣∣(Λ2

2i−1 − Λ2
2j−1)(Λ

2
2i − Λ2

2j−1)(Λ
2
2i−1 − Λ2

2j)(Λ
2
2i − Λ2

2j)
∣∣∣. (3.24)
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So for each element (i, j) in the (green) 2-by-2 block, we have a factor |Λ2
i − Λ2

j |.
When N is odd, in addition to the (green) 2-by-2 blocks, we have a row of (blue)

1-by-2 blocks. This leads to 4-by-4 blocks on the diagonal of the Jacobian. These

are of the form


(ΛA)2j,2j −(ΛB)NN (ΛA)2j,2j−1 0
−(ΛA)NN (ΛB)2j,2j 0 (ΛB)2j,2j−1

(ΛA)2j−1,2j 0 (ΛA)2j−1,2j−1 −(ΛB)NN

0 (ΛB)2j−1,2j −(ΛA)NN (ΛB)2j−1,2j−1


 . (3.25)

The modulus of the determinant of this is identically equal to

JNj =
∣∣∣Dj − SjΛ2

N + Λ4
N

∣∣∣, (3.26)

where we used that (ΛA)NN (ΛB)NN = Λ2
N (no sums), and Dj and Sj were defined as

before. But we can switch to writing Dj and Sj in terms of the eigenvalues of Lj,

and this gives

JNj =
∣∣∣(Λ2

N − Λ2
2j−1)(Λ

2
N − Λ2

2j)
∣∣∣. (3.27)

We see that this is of the same form as before.

Let us now consider the contribution to the Jacobian from the ‘rectangular’ part

of dBT (i.e. when ν > 0). Suppose, for the moment, that N is even. We find that

(yellow) 1-by-2 blocks are coupled in this case, leading to 2-by-2 diagonal blocks in

the Jacobian matrix of the following form
(

(ΛB)2j,2j (ΛB)2j,2j−1

(ΛB)2j−1,2j (ΛB)2j−1,2j−1

)
(3.28)

whose determinant is simply detBj. This is independent of i, and we have one

of these for every i in the range N + 1 ≤ i ≤ N + ν. We therefore have a total

contribution to the Jacobian of
N/2∏

j=1

| det Bj |ν . (3.29)

Finally, when N is odd, we have the (red) 1-by-1 blocks in dBT , which lead to ν

1-by-1 blocks on the diagonal of the Jacobian matrix, each being (ΛB)NN .

The total Jacobian is given by the modulus of the product of the determinants

of the blocks on the diagonal:

J =
′∏

i<j

|Λ2
j − Λ2

i | ×





N/2∏

i=1

|det Bi|ν for N even,

(N−1)/2∏

i=1

| det Bi|ν |(ΛB)NN |ν for N odd

(3.30)
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Source Even N Odd N

Original pre-factor 1
(2π)N(N+ν)

Same

OA
V O(N)

V O(2)N/2
V O(N)

V O(2)(N−1)/2 V O(1)

OB V O(N + ν)
V O(2)N/2 V O(ν)

V O(N + ν)
V O(2)(N−1)/2 V O(1) V O(ν)

∆A

(√
2π

η+

)N2/2−N+νN (√
2π

η+

)(N2+1)/2−N+νN

∆B

(√
2π

η+

)N2/2−N (√
2π

η+

)(N2+1)/2−N

Table 3.2: Constants arising from integration of angular and off-diagonal variables.

in which the prime on the product symbol denotes that only those elements strictly

below the blocks on the diagonal (BBD) are to be included.

Writing everything together, we have for the total measure

dµ = dΛA dΛB d∆A d∆B (OT
AdOA) (OT

BdOB) (2π)−N(N+ν) J (N)
′∏

i<j

|Λ2
j − Λ2

i |

× exp

{
η−

∑

i

Λ2
i

}
exp

{
−η+

2
Tr(ΛAΛT

A + ΛBΛT
B + ∆A∆T

A + ∆B∆T
B)

}

×





N/2∏

i=1

| detBi|ν for N even,

(N−1)/2∏

i=1

| detBi|ν |(ΛB)NN |ν for N odd.

(3.31)

3.1.3 Angular and off-diagonal integrations

We first integrate out OT
AdOA, OT

BdOB, ∆A and ∆B. These integrals are all decoupled,

and so we get the contributions shown in Table 3.2. Here, V O(n) is the volume of
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the orthogonal group O(n) which is given by

V O(n) =
n−1∏

d=0

Sd, (3.32)

where Sd is the surface area of a d-sphere of unit radius (i.e. a sphere in d + 1

dimensions whose surface is d-dimensional):

Sd =
2π(d+1)/2

Γ
(

d+1
2

) . (3.33)

Since V O(1) = 2 and V O(2) = 4π, we get a µ-independent total numeric factor

FN,ν =





1
2N (2π)N2/2+2N+νN/2

V O(N) V O(N + ν)
V O(ν)

for N even,

1
2N+1 (2π)N2/2+2N+νN/2−3/2

V O(N) V O(N + ν)
V O(ν)

for N odd,

(3.34)

plus a µ-dependent scaling factor

GN,ν,µ =





η
−(N2/2−N+νN/2)
+ for N even,

η
−((N2+1)/2−N+νN/2)
+ for N odd.

(3.35)

The measure is therefore

dµ(ΛA, ΛB) = dΛA dΛB FN,ν GN,ν,µ J (N)
′∏

i<j

|Λ2
j − Λ2

i | exp

{
η−

∑

i

Λ2
i

}

× exp
{
−η+

2
Tr(ΛAΛT

A + ΛBΛT
B)

}

×





N/2∏

i=1

| detBi|ν for N even,

(N−1)/2∏

i=1

| detBi|ν |(ΛB)NN |ν for N odd

= FN,ν GN,ν,µ J (N)
′∏

i<j

|Λ2
j − Λ2

i | exp

{
η−

∑

i

Λ2
i

}

×





N/2∏

i=1

(
dAi dBi e

− η+
2

Tr(AiA
T
i +BiB

T
i ) | detBi|ν

)
for N even,

(N−1)/2∏

i=1

(
ditto

)
i
.
(
da db e−

η+
2

(a2+b2) |b|ν) for N odd.

(3.36)
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In the odd N case, we have written a ≡ (ΛA)NN and b ≡ (ΛB)NN for clarity.

We will now integrate out ΛA and ΛB at fixed L ≡ ΛAΛB, and then we will

integrate out L at fixed eigenvalues {Λ2
i }. For the first of these steps, we have

dµ(L) =
∫

dµ(ΛA, ΛB)δ(L− ΛAΛB). (3.37)

But since L, ΛA and ΛB are all block-diagonal, we see that

δ(L− ΛAΛB) =





N/2∏

i=1

δ(4)(Li −AiBi) for N even,

δ(Λ2
N − ab)

(N−1)/2∏

i=1

δ(4)(Li −AiBi) for N odd.

(3.38)

Therefore each 2-by-2 block decouples, as does the 1-by-1 block for odd N , and so

these steps can be performed separately on each block, which we do in §3.1.4 and

§3.1.5. Everything is then recombined in §3.1.6.

3.1.4 Integration of the 2-by-2 diagonal blocks

In this section, our aim here is firstly to determine

P(Li) ≡
∫

dAi dBi |det Bi|ν exp
{η+

2
Tr(AiA

T
i + BiB

T
i )

}
δ(4)(Li −AiBi) (3.39)

where Ai, Bi and Li are 2-by-2 matrices1. We will then perform the necessary

integrations to get P(Λ2
2i−1, Λ

2
2i), where Λ2

2i−1 and Λ2
2i are the two eigenvalues of

Li (and two of the eigenvalues of W ≡ ABT ). Note that P(Li) is not strictly a

probability density, because it is not normalised to unity.

For the remainder of §3.1.4, we will drop the subscript i on each of Ai, Bi and

Li. Furthermore, we will denote Λ2
2i−1 and Λ2

2i as Λ2
1 and Λ2

2 respectively, otherwise

the i-dependent notation becomes cumbersome.

3.1.4.1 Integration over A

First, we integrate out the matrix A. Formally, we make a change of variables from

A to F ≡ AB. To determine the Jacobian, we write F and A as row vectors (F̃

1To pre-empt any confusion, we reiterate the Bi is a diagonal block of ΛB which arises from
the QZ decomposition of BT (and not B), see eq. (3.8).
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and Ã respectively), and B as a 4-by-4 matrix operator (B̃), so that F̃ = ÃB̃. In

component form, this is

(
f11 f12 f21 f22

)
=

(
a11 a12 a21 a22

)



b11 b12 0 0
b21 b22 0 0
0 0 b11 b12

0 0 b21 b22


 (3.40)

from which we can determine that the Jacobian |∂{Ã}/∂{F̃}| is | det B̃|−1 = |det B|−2.

In the exponent, we have

Tr(AAT + BBT ) = Tr(F T F (BT B)−1 + BBT ), (3.41)

where we used the cyclic property of the trace operator. Making the variable change

therefore gives

P(L) =
∫

dB dF |det B|ν−2 exp
{
−η+

2
Tr(F T F (BT B)−1 + BBT )

}
δ(4)(L− F ). (3.42)

We can now do the integrals over F , giving us

P(L) =
∫

dB | detB|ν−2 exp
{
−η+

2
Tr(LT L(BT B)−1 + BBT )

}
. (3.43)

3.1.4.2 Diagonalisation of LT L

Now LT L is symmetric (this is of course true for any L). Therefore, let us change

variables from B to B′ = BO, where O is the particular orthogonal matrix that

diagonalises LT L. The Jacobian for this transformation is unity. Then

LT L(BT B)−1 = LT LO((B′)T B′)−1OT . (3.44)

We then take the trace of this; using the cyclic property of the trace operator we

permute the final OT to the front, to show that LT L has been replaced with the

diagonal matrix D of its eigenvalues λ1 and λ2, which are both positive:

OT LT LO =
(

λ1 0
0 λ2

)
≡ D. (3.45)

We now relabel B′ as B.
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3.1.4.3 Integration over B

On writing the matrix B in component form as B ≡
(

a b

c d

)
, then, since

D(BT B)−1 =
1

(detB)2

(
λ1(b2 + d2) . . .

. . . λ2(a2 + c2)

)
, (3.46)

we have for the first term in the exponent of eq. (3.43)

Tr(D(BT B)−1) = h−2
(
(b2 + d2)λ1 + (a2 + c2)λ2

)
, (3.47)

in which

h ≡ det B = ad− bc. (3.48)

The second term is simply

Tr(BBT ) = a2 + b2 + c2 + d2. (3.49)

Now, the presence of h in eq. (3.47) means that the integrals over a, b, c and d in

eq. (3.43) are not Gaussian. However, we can introduce a Dirac delta function and

an additional integral, allowing us to treat the quantity h as being independent of

a, b, c and d:

P(L) =
∫ ∞

−∞
dh |h|ν−2

∫
dB δ(h− ad + bc)

× exp
{
− η+

2
[
a2 + b2 + c2 + d2 + h−2((b2 + d2)λ1 + (a2 + c2)λ2)

]}
.

(3.50)

In order to decouple h from a, b, c and d, we now replace the delta function with

the integral representation

δ(x) =
1
2π

∫ ∞

−∞
dω e−iωx, (3.51)

giving

P(L) =
1
2π

∫ ∞

−∞
dh |h|ν−2

∫ ∞

−∞
dω e−iωh

×
∫

dB exp
{
−1

2
(φ2[a2 + c2] + φ1[b2 + d2]) + iω(ad− bc)

}
, (3.52)

where

φi ≡ η+

(
1 +

λi

h2

)
for i = 1, 2. (3.53)
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Using eq. (A.3) we can perform the a, b, c and d integrals as two pairs, giving

P(L) = 2π
∫ ∞

−∞
dh |h|ν−2

∫ ∞

−∞
dω e−iωh 1

ω2 + φ1φ2

= 4π

∫ ∞

0
dhhν−2

∫ ∞

−∞
dω e−iωh 1

ω2 + φ1φ2
. (3.54)

Let us do an easy variable change from ω to τ = ωh, giving

P(L) = 4π
∫ ∞

0
dh hν−2

∫ ∞

−∞

dτ

h

e−iτ

τ2

h2 + φ1φ2

= 4π

∫ ∞

0
dh hν−1

∫ ∞

−∞
dτ

e−iτ

τ2 + η2
+(h2 + (λ1 + λ2) + λ1λ2/h2)

. (3.55)

Using the elementary result that, for a > 0,

1
a

=
∫ ∞

0
e−at dt (3.56)

we have

P(L) = 4π
∫ ∞

0
dhhν−1

∫ ∞

−∞
dτ e−iτ

∫ ∞

0
dt e−(τ2+η2

+(h2+(λ1+λ2)+λ1λ2/h2))t. (3.57)

This allows us to do the τ -integral, using the relationship eq. (A.2):

P(L) = 4π
∫ ∞

0
dhhν−1

∫ ∞

0
dt e−η2

+(h2+(λ1+λ2)+λ1λ2/h2)t

√
π

t
e−1/4t. (3.58)

To do the h-integral, let us change variables from h to g =
η2
+λ1λ2t

h2
, so that

P(L) = 4π3/2

∫ ∞

0

dg

2η2
+λ1λ2t

(
η2
+λ1λ2t

g

)ν/2+1 ∫ ∞

0
dt e−(η4

+λ1λ2t2/g+η2
+(λ1+λ2)t+g) e−1/4t

√
t

= 4π3/2(λ1λ2)ν/4

∫ ∞

0

dt√
t

exp
{
−η2

+(λ1 + λ2)t− 1
4t

}

× 1
2
(η2

+

√
λ1λ2t)ν/2

∫ ∞

0

dg

gν/2+1
e−g−(η2

+

√
λ1λ2t)2/g. (3.59)

We can now do the g-integral (i.e. the transformed h-integral) using eq. 8.432.6 of

[Gra07] (for real z)

Kν(z) =
1
2

(z

2

)ν
∫ ∞

0

e−t−z2/4t

tν+1
dt (3.60)

where Kν(z) is the modified Bessel function, which gives

P(L) = 4π3/2(λ1λ2)ν/4

∫ ∞

0

dt√
t

exp
{
−η2

+(λ1 + λ2)t− 1
4t

}
K ν

2
(2η2

+

√
λ1λ2t). (3.61)

To summarise, this gives us the probability density function for the 2-by-2 matrix

L, expressed in terms of the two real, positive eigenvalues (λ1 and λ2) of LT L.
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3.1.4.4 Change variables to eigenvalues of L

We now switch from considering LT L (i.e. with its eigenvalues λ1 and λ2) to L itself,

with eigenvalues Λ2
1 and Λ2

2. We do this in two steps, as follows.

In general, we can orthogonally transform any real matrix L to the form

(
ε1 s

−s ε2

)
,

where ε1, ε2, s and the rotation parameter θ are also all real. This transformation

is unique if an ordering of the epsilons is specified, and 0 ≤ θ < π. In terms of these

new variables, we have

λ1 + λ2 = TrD

= ε21 + ε22 + 2s2, and

λ1λ2 = det D

= (ε1ε2 + s2)2. (3.62)

Of course, ε1 and ε2 are not the eigenvalues of L; these are Λ2
1 and Λ2

2, and so

we need to write the combinations λ1 + λ2 and λ1λ2 in terms of {Λ2
1, Λ

2
2, s, θ}, rather

than in terms of {ε1, ε2, s, θ}. In fact, the relationship between the products of the

eigenvalues follows immediately (we can by-pass the earlier parametrisation of L):

λ1λ2 = Λ4
1Λ

4
2. (3.63)

To determine λ1 + λ2, we will first determine an explicit relationship between the

eigenvalues {Λ2
1, Λ

2
2} and the matrix parameters {ε1, ε2, s}. We have

0 =
∣∣∣∣

ε1 − Λ2 s

−s ε2 − Λ2

∣∣∣∣
= Λ4 − (ε1 + ε2)Λ2 + (ε1ε2 + s2) (3.64)

which has the solution

Λ2
1,2 =

ε1 + ε2
2

±
√

(ε1 − ε2)2

4
− s2. (3.65)

This can be rearranged, to give

ε1,2 =
Λ2

1 + Λ2
2

2
±

√
(Λ2

1 − Λ2
2)2

4
+ s2. (3.66)

Therefore, after a few lines of elementary algebra, we find that

λ1 + λ2 = ε21 + ε22 + 2s2 (from above)

= Λ4
1 + Λ4

2 + 4s2. (3.67)
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This then completes the change of variables (we calculate the Jacobian below). We

have only to determine the range of s. Our parametrisation involves real ε1 and ε2,

and so, from eq. (3.66),
(Λ2

1 − Λ2
2)

2

4
+ s2 ≥ 0 (3.68)

and hence

s2 ≥ − (Λ2
1 − Λ2

2)
2

4
. (3.69)

There are two possibilities for the eigenvalues of a 2-by-2 real matrix: either both

are real, or they are both complex, and complex conjugates of each other. Therefore

we must have

s2 ≥ s2
min(Λ

2
1,Λ

2
2) =





0 if Λ2
1,2 ∈ R,

− (Λ2
1 − Λ2

2)
2

4
> 0 if Λ2

1,2 ∈ C\R, Λ2
1 = Λ2∗

2 .
(3.70)

Let us evaluate the Jacobian; for the first step, we write the matrix L in component

form as

(
l11 l12

l21 l22

)
, and evaluate

J1 =
∣∣∣∣
∂{l11, l12, l21, l22}

∂{ε1, ε2, s, θ}

∣∣∣∣ . (3.71)

We have
(

l11 l12

l21 l22

)
=

(
cos θ − sin θ

sin θ cos θ

)(
ε1 s

−s ε2

)(
cos θ sin θ

− sin θ cos θ

)
(3.72)

giving

l11 = ε1 cos2 θ + ε2 sin2 θ,

l12 = (ε1 − ε2) sin θ cos θ + s,

l21 = (ε1 − ε2) sin θ cos θ − s,

l22 = ε1 sin2 θ + ε2 cos2 θ. (3.73)

Then

J1 =

∣∣∣∣∣∣∣∣∣

cos2 θ sin2 θ 0 −2 sin θ cos θ(ε1 − ε2)
sin θ cos θ − sin θ cos θ 1 (cos2 θ − sin2 θ)(ε1 − ε2)
sin θ cos θ − sin θ cos θ −1 (cos2 θ − sin2 θ)(ε1 − ε2)

sin2 θ cos2 θ 0 2 sin θ cos θ(ε1 − ε2)

∣∣∣∣∣∣∣∣∣
= 2 |ε1 − ε2|. (3.74)

For the second step, we have to calculate J2, given by

J2 =
∣∣∣∣

∂{ε1, ε2}
∂{Λ2

1,Λ
2
2}

∣∣∣∣ . (3.75)
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Using eq. (3.66), we have

J2 =

∣∣∣∣∣∣

1
2

(
1 + Λ2

1−Λ2
2

ε1−ε2

)
1
2

(
1− Λ2

1−Λ2
2

ε1−ε2

)

1
2

(
1− Λ2

1−Λ2
2

ε1−ε2

)
1
2

(
1 + Λ2

1−Λ2
2

ε1−ε2

)
∣∣∣∣∣∣
=

∣∣∣∣
Λ2

1 − Λ2
2

ε1 − ε2

∣∣∣∣ . (3.76)

The total Jacobian for the change to L is therefore J1J2 = 2 |Λ2
1 − Λ2

2|.

3.1.4.5 Integration over angle θ and variable s

We now integrate over θ and s:

P(Λ2
1,Λ

2
2) =

∫ π

0
dθ

∫ ∞

|s|≥smin

dsP(Λ2
1, Λ

2
2, s, θ)

= 2π3
∣∣Λ2

1 − Λ2
2

∣∣ |Λ2
1Λ

2
2|ν/2 g(Λ2

1, Λ
2
2)

η+
(3.77)

for Λ2
1 and Λ2

2 in some specified order, where

g(Λ2
1, Λ

2
2) ≡

4η+√
π

∫ ∞

0

dt√
t

exp
{
−η2

+(Λ4
1 + Λ4

2)t−
1
4t

}
K ν

2
(2η2

+|Λ2
1Λ

2
2|t)

∫ ∞

|s|≥smin

ds e−4η2
+ts2

(3.78)

and the range of s was discussed earlier. The final integral is nothing more than the

complementary error function, and so we have

g(Λ2
1, Λ

2
2) = 2

∫ ∞

0

dt

t
exp

{
−η2

+(Λ4
1 + Λ4

2)t−
1
4t

}
K ν

2
(2η2

+|Λ2
1Λ

2
2|t) erfc(2η+

√
t smin).

(3.79)

3.1.4.6 Both eigenvalues real

For real Λ2, smin = 0 and using the fact that erfc(0) = 1, we have

g(Λ2
1, Λ

2
2) = 2

∫ ∞

0

dt

t
exp

{
−η2

+(Λ4
1 + Λ4

2)t−
1
4t

}
K ν

2
(2η2

+|Λ2
1Λ

2
2|t). (3.80)

We change variables u = 1
2t to give

g(Λ2
1, Λ

2
2) = 2

∫ ∞

0

du

u
exp

{
−η2

+(Λ4
1 + Λ4

2)
2u

− u

2

}
K ν

2

(
η2
+|Λ2

1Λ
2
2|

u

)
. (3.81)

We can now use eq. 6.653.2 of [Gra07] directly to do the integral:

g(Λ2
1, Λ

2
2) = 4K ν

2
(η+|Λ2

1|)K ν
2
(η+|Λ2

2|)
≡ g(Λ2

1) g(Λ2
2) (3.82)

where

g(x) = 2K ν
2
(η+|x|) for x ∈ R. (3.83)

We shall shortly extend this definition of g(x) to complex argument, in a smooth,

but not analytic, manner.
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3.1 JPDF for quenched case

3.1.4.7 Both eigenvalues complex

When the Λ2’s are complex, we have Λ2
2 = (Λ2

1)
∗. Writing Λ2

1 = x + iy, we have

Λ4
1 + Λ4

2 = 2(x2 − y2) and |Λ2
1Λ

2
2| = x2 + y2. (3.84)

Now,

s2
min = − (Λ2

1 − Λ2
2)

2

4
= y2, (3.85)

and so smin = |y|. We therefore write from eq. (3.79)

g(Λ2
1,Λ

∗2
1 ) = 2

∫ ∞

0

dt

t
exp

{
−2η2

+(x2 − y2)t− 1
4t

}
K ν

2
(2η2

+(x2 + y2)t) erfc(2η+

√
t |y|).
(3.86)

Since we will only require eq. (3.79) for the case when the two arguments are complex

conjugates of each other, and since g(Λ2
1,Λ

∗2
1 ) = g(Λ∗21 , Λ2

1), we can rewrite it in the

more symmetric form

g(Λ2
1,Λ

2
2) = g(Λ2

1) g(Λ2
2) (3.87)

where

g(z) ≡
√

g(z, z∗). (3.88)

This extends our earlier definition of g(x) for real argument in eq. (3.83). g(z) is

continuous as =m z → 0, but is not an analytic function anywhere.

It is interesting to compare the form of the weight function in eq. (3.86) with the

weight functions from other ensembles that have already been solved. We observe

that the presence of an exponential is very much the signature of a Gaussian ensem-

ble, arising of course from the original weight function in the matrix representation

[Meh04]. Modified K-Bessel functions are seemingly ubiquitous in the weight func-

tions for the (non-Hermitian) chiral ensembles (cf. chGinUE [Osb04] and chGinSE

[Ake05b]). And the complementary error function is present in the non-Hermitian

orthogonal ensemble (GinOE [Lehm91]). It is therefore reassuring to note that our

representation for the weight function eq. (3.86) contains a combination of an expo-

nential, a modified Bessel function and an error function.

3.1.5 Integration of the 1-by-1 diagonal block for odd N

When N is odd, we have an extra 1-by-1 block to integrate over in eq. (3.36), leading

to the final unpaired eigenvalue Λ2
N which will always be real. We have

P(Λ2
N ) =

∫ ∞

−∞
da

∫ ∞

−∞
db exp

{
−η+

2
(a2 + b2)

}
|b|ν δ(Λ2

N − ab). (3.89)
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3.1 JPDF for quenched case

If Λ2
N < 0, then we can change variables a → −a, and so for arbitrary real Λ2

N we

can write

P(Λ2
N ) =

∫ ∞

−∞
da

∫ ∞

−∞
db exp

{
−η+

2
(a2 + b2)

}
|b|νδ(|Λ2

N | − ab). (3.90)

We can now trivially do the a-integral, and, because the integrand is symmetric in

b, we have

P(Λ2
N ) = 2

∫ ∞

0
db exp

{
−η+

2

(
b2 +

|Λ2
N |2
b2

)}
bν−1. (3.91)

We can now do the b-integral by making an easy change of variables to t =
η+|Λ2

N |2
2b2

and using eq. 8.432.6 of [Gra07]. The result is

P(Λ2
N ) = 2|Λ2

N |ν/2K ν
2
(η+|Λ2

N |) = |Λ2
N |ν/2g(Λ2

N ) (3.92)

where g(x) is the same function that was defined in eq. (3.83).

3.1.6 Joint probability density function

We now draw everything together from the previous two sections. For the i-th 2-by-2

block, we get a contribution from eq. (3.77) of

2π3 |Λ2
2i−1 − Λ2

2i| |Λ2
2i−1Λ

2
2i|ν/2 g(Λ2

2i−1, Λ
2
2i)

η+
, (3.93)

and when N is odd, we have an additional single contribution from eq. (3.92) of

|Λ2
N |ν/2 g(Λ2

N ). (3.94)

Let us determine the overall numeric pre-factor in eq. (3.36), after doing the integrals

in each block. For the even N case, there is an extra factor 2π3 per 2-by-2 block (of

which there are N
2 ). The total numeric factor is therefore

(2π3)N/2FN,ν =
1

22N

1
(2π)N(N+1+ν)/2

V O(N)V O(N + ν)
V O(ν)

(3.95)

where FN,ν was defined in eq. (3.34). For odd N , we again have a factor 2π3 for each

2-by-2 block (of which there are N−1
2 ), plus a factor of unity for the 1-by-1 block,

giving a total numeric factor

(2π3)(N−1)/2FN,ν =
1

22N

1
(2π)N(N+1+ν)/2

V O(N)V O(N + ν)
V O(ν)

. (3.96)
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3.1 JPDF for quenched case

We see that the overall numeric factor is the same regardless of whether N is even

or odd. We also collect together powers of η+ in the pre-factor, coming both from

GN,ν,µ in eq. (3.35) and from eq. (3.93). This is also the same for both even and odd

N . The total pre-factor can therefore be written as

cN =
C2

N k
(N)
ν J (N)

η
N(N+ν−1)/2
+

(3.97)

where

CN ≡ 2−N (2π)−N(N+1)/4 V O(N), (3.98)

k(N)
ν ≡ (2π)−Nν/2 V O(N + ν)

V O(N)V O(ν)
, (3.99)

and J (N) was given in eq. (3.3). In our labelling we have suppressed the fact that

cN depends on µ and ν.

Finally, note that the quantities |Λ2
2i−1−Λ2

2i| for each i = 1 to N
2 (or N−1

2 for odd

N) in eq. (3.93) will combine with the
∏′

i<j in eq. (3.36) to make a true Vandermonde

determinant (see eq. (2.2))

N∏

i<j

|Λ2
j − Λ2

i | ≡
∣∣∆N ({Λ2})

∣∣. (3.100)

So we end up with the modulus of a Vandermonde determinant to the power of

unity, which is exactly what we would expect for an ensemble of real matrices (with

Dyson index β = 1). Writing zi ≡ Λ2
i for the squared eigenvalues, and defining our

effective weight function as

w(z) ≡ |z|ν/2eη−zg(z) (3.101)

with g(z) from eq. (3.88), we can write the JPDF as cN

∣∣∆N ({z})∣∣
N∏

k=1

w(zk), for when

the set of {z1, . . . , zN} contains zero or more pairs of complex conjugate values, and

the remainder real, and where we have assumed that the {zi} have already been

placed in some specified order. Otherwise the JPDF will be zero. This is indeed a

properly normalised probability density, since its integral over all eigenvalues, i.e.

ZN , was defined to be unity in eq. (2.6).

In fact, we can choose an ordering of the eigenvalues such that we can drop

the modulus sign around the Vandermonde determinant. Our choice is as follows1.

1Note that we choose a slightly different ordering here from that in [Ake10a].
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3.2 JPDF for unquenched case

Place the n complex eigenvalue pairs first, ordered with respect to increasing real

part, and then with respect to decreasing imaginary part:

(=m z1 > 0), (<e z2 = <e z1,=m z2 = −=m z1), (<e z3 ≥ <e z2,=m z3 > 0), . . . ,

(<e z2n−1 ≥ <e z2n−2,=m z2n−1 > 0), (<e z2n = <e z2n−1,=m z2n = −=m z2n−1),
(3.102)

and the N − 2n real eigenvalues following in increasing order:

z2n+1 < z2n+2 < . . . < zN . (3.103)

When a pair of eigenvalues is complex, we need to change variables once again, from

z and z∗ to x = <e z and y = =m z; we then have dz dz∗ = (dx + i dy)(dx − i dy) =

−2i dx dy ≡ −2i d2z.

Putting everything togther, we have for the partition function

ZN =
∫

C
d2z1 . . .

∫

C
d2zN PN (z1, . . . , zN ) (3.104)

where the JPDF is given by

PN (z1, . . . , zN ) = cN

N∏

k=1

w(zk)∆N ({z})

×
[N/2]∑

n=0

( n∏

p=1

(2i) δ2(z2p−1 − z∗2p)Θ(=m z2p−1)
n∏

q=2

Θ(<e z2q−1 −<e z2q−3)

×
N∏

r=2n+1

δ(=m zr)
N∏

s=2n+2

Θ(<e zs −<e zs−1)
)
. (3.105)

This is an eigenvalue representation for the partition function in which PN is ‘com-

pletely ordered’, by which we mean that, for a given fixed set of squared eigenvalues

{z1, . . . , zN}, PN is non-zero for (at most) one permutation of this set. In §4.1 we will

derive an alternative form for the partition function which involves an integral over

a factorised JPDF (P̂N), and in §4.3 we will introduce a symmetrised representation

(P sym
N ).

3.2 JPDF for unquenched case

The modification needed for the unquenched case now follows easily. We have for

each of the determinant factors in eq. (2.6)

det(D + mfI) =
2N+ν∏

j=1

(Λj + mf ) (3.106)
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3.2 JPDF for unquenched case

where the Λj are the eigenvalues of the Dirac matrix D. Since the eigenvalues come

in N pairs ±Λ, and a further ν of them are exactly zero, we can write

det(D + mfI) = (−1)N mν
f

N∏

j=1

(zj −m2
f ), (3.107)

where the product runs over the N distinct, non-zero, squared eigenvalues zj ≡ Λ2
j .

The partition function is therefore given by

Z(Nf )
N = (−1)N Nf

Nf∏

f=1

mν
f

N∏

k=1

∫

C
d2zk PN (z1, . . . , zN )

Nf∏

g=1

N∏

j=1

(zj −m2
g). (3.108)

It should be noted that, for m2
f ∈ R, these determinant factors are always real (since

the zj themselves are either real or come in complex conjugate pairs) but may not

necessarily be positive, and so the same is true of the integrand in the partition

function (the ‘JPDF’).
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Chapter 4

Algebraic structure

In the previous chapter, we found the JPDF for the eigenvalues of the chGinOE, but

this was expressed as a sum over distinct cases each with a fixed number of real and

complex eigenvalues. Such a representation is difficult to work with directly, and so

we begin this chapter by re-expressing the partition function as an integral involving

a factorised, bivariate weight function. The structure of this is then somewhat closer

to that of the other Gaussian ensembles (see eq. (2.3)), involving a Vandermonde

determinant (to some power) and a product of weight functions, and therefore allows

us to use a variant of the orthogonal polynomial method to derive the correlation

functions.

In fact, we have to use the skew-orthogonal polynomials of the bivariate weight

function, together with the associated kernel, and §4.2 is devoted to introducing

these concepts and the relationships between them.

We then present two alternative methods of deriving the correlation functions

for the eigenvalues. The first method involves writing the JPDF as a quaternion

determinant (equivalent to a Pfaffian), which can then be repeatedly integrated us-

ing Dyson’s Integration Theorem to obtain the correlation functions, also expressed

as quaternion determinants. Conversely, the second method involves the functional

differentiation of a generating function, which we perform explicitly for the den-

sity and two-point correlation functions by placing Dirac delta functions into the

partition function.

As will be seen, many of the results that we derive in this chapter do not depend

on the specific form of the weight function. Appendix C contains a discussion of

how the symplectic (β = 4) ensemble also fits the same pattern.
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4.1 Factorisation of the JPDF

Finally, we mention that we shall generally only consider the case of even matrix

size N from now on, because our ultimate interest is in the large-N limits which are

independent of the parity of N . The exception to this is in the next section (§4.1),

where the odd N case follows easily from the even N case.

4.1 Factorisation of the JPDF

4.1.1 Quenched case

We start by finding a factorised representation of the quenched JPDF1, although

we note that this factorised JPDF can take negative values for certain combinations

of arguments, and so is not a true probability density as such. Furthermore, in

order to calculate the expectation of any observable quantity, it will be necessary to

symmetrise the JPDF (see §4.3).

Let us consider the even N case first. Starting with the representation for the par-

tition function in eqs. (3.104) and (3.105), we observe that, after interchanging two

pairs of complex eigenvalues, and relabelling, then everything remains unchanged.

Therefore, by summing over all such permutations and dividing by n!, we will have

removed the ordering of the pairs (although still keeping the ordering within each

pair the same). We therefore have

ZN = cN

N∏

k=1

∫

C
d2zk w(zk)∆N ({z})

×
N/2∑

n=0

1
n!

( n∏

p=1

(2i) δ2(z2p−1 − z∗2p)Θ(=m z2p−1)

×
N∏

r=2n+1

δ(=m zr)
N∏

s=2n+2

Θ(<e zs −<e zs−1)
)
. (4.1)

We now drop the ordering between different pairs of real eigenvalues, just keeping

1The author originally derived a proof of this factorisation starting from the generalised de
Bruijn formula. However, the proof that we present here is based on that of Mario Kieburg, and
the de Bruijn formula then follows as a consequence (see §4.4.1). We jointly published both proofs
in [Ake10b].
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4.1 Factorisation of the JPDF

each pair internally ordered as before. Using the result eq. (A.34), we have

ZN = cN

N∏

k=1

∫

C
d2zk w(zk)∆N ({z})

×
N/2∑

n=0

1
n!

(
N
2 − n

)
!

( n∏

p=1

(2i) δ2(z2p−1 − z∗2p)Θ(=m z2p−1)

×
N∏

r=2n+1

δ(=m zr)
N/2∏

t=n+1

Θ(<e z2t −<e z2t−1)
)
. (4.2)

Finally, and by using further relabelling, we can now use the binomial summation

formula
L∑

n=0

1
n!(L− n)!

An BL−n =
1
L!

L∏

j=0

(A + B) (4.3)

to give

ZN =
cN(
N
2

)
!

N∏

k=1

∫

C
d2zk

N/2∏

j=1

G(z2j−1, z2j)∆N ({z}), (4.4)

where G(z1, z2) is an asymmetric weight

G(z1, z2) ≡ w(z1)w(z2)
{

Θ(x2 − x1)δ(y1)δ(y2) + 2iΘ(y1)δ2(z1 − z∗2)
}

. (4.5)

On relabelling once more, and adding (using the anti-symmetric property of the

determinant), we can write

ZN =
∫

C
d2z1 . . .

∫

C
d2zN P̂ (z1, . . . , zN ), (4.6)

where P̂ (z1, . . . , zN ) is our ‘factorised’ JPDF

P̂ (z1, . . . , zN ) =
cN(
N
2

)
!

N/2∏

j=1

F(z2j−1, z2j)
2

∆N ({z}) (4.7)

and F(z1, z2) is the anti-symmetric function

F(z1, z2) ≡ w(z1)w(z2)
{

2iδ2(z1 − z∗2) sgn(y1) + δ(y1)δ(y2) sgn(x2 − x1)
}

. (4.8)

F(z1, z2) plays a key role in the analysis of the chGinOE. However, in fact, we can

write

ZN =
cN(
N
2

)
!

N∏

k=1

∫

C
d2zk

N/2∏

j=1

F̂(z2j−1, z2j)∆N ({z}) (4.9)
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4.1 Factorisation of the JPDF

for any F̂(z1, z2) that satisfies

F̂(z1, z2)− F̂(z2, z1) = F(z1, z2). (4.10)

G is one possibility for F̂ ; another is of course simply

F̂(z1, z2) =
F(z1, z2)

2
, (4.11)

as in eq. (4.7).

For odd N , we would simply carry through an extra integral for the unpaired

(and always real) eigenvalue:

ZN =
cN(

N−1
2

)
!

N∏

k=1

∫

C
d2zk

N−1
2∏

j=1

F̂(z2j−1, z2j)w(zN )δ(=m zN )∆N ({z}). (4.12)

We should add that this factorisation result can also be applied to any other

ensemble that can be cast into the form of eq. (3.104) for some weight function

w(z). Examples include the (non-chiral) GinOE and the symplectic (β = 4) cases.

We refer to [Ake10b] for further details.

4.1.2 Unquenched case

Because the determinants in eq. (2.6) can be written in terms of the Wishart

(squared) eigenvalues (see eq. (3.107)), we can easily write down the partition func-

tion for the unquenched case as an integral over eigenvalues as follows:

Z(Nf )
N = (−1)N Nf

Nf∏

f=1

mν
f

∫

C
d2z1 . . .

∫

C
d2zN P̂N (z1, . . . , zN )

Nf∏

g=1

N∏

k=1

(zk −m2
g). (4.13)

For even N , this is

Z(Nf )
N =

cN

(N
2 )!

Nf∏

f=1

mν
f

∫

C
d2z1 . . .

∫

C
d2zN ∆N ({z})

N/2∏

j=1

F̂(z2j−1, z2j)
Nf∏

g=1

N∏

k=1

(zk −m2
g),

(4.14)

where we used the representation in eq. (4.9). If we define the unquenched bivariate

weight function F̂ (Nf )(u, v) as

F̂ (Nf )(u, v) ≡ F̂(u, v)
Nf∏

g=1

(u−m2
g)(v −m2

g), (4.15)
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then the unquenched partition function has the form

Z(Nf )
N =

cN

(N
2 )!

Nf∏

f=1

mν
f

∫

C
d2z1 . . .

∫

C
d2zN ∆N ({z})

N/2∏

k=1

F̂ (Nf )(z2k−1, z2k), (4.16)

i.e. we see that the ensemble with virtual quarks (i.e. with the mass-dependent

determinant factors) is structurally (i.e. algebraically) the same as the quenched

ensemble, but with a modified bivariate weight.

Note that, for Nf > 0, Z(Nf )
N ≡ Z(Nf )

N ({mf}) 6= 1. In order to be able to make

a direct comparison between the unquenched and quenched cases, it is occasionally

convenient to define a different partition function that is also numerically equal to

unity (cf. eq. (4.9)):

Z
(Nf )
N =

c
(Nf )
N

(N
2 )!

∫

C
d2z1 . . .

∫

C
d2zN ∆N ({z})

N/2∏

k=1

F̂ (Nf )(z2k−1, z2k). (4.17)

The coefficient c
(Nf )
N now depends on the masses in a way that ensures that Z

(Nf )
N = 1

always. For this to be the case, we must have that

c
(Nf )
N =

cN
∏Nf

f=1 mν
f

Z(Nf )
N

. (4.18)

In fact, we will never need Z
(Nf )
N itself in what follows. But when ‘converting’ a

quenched result to an unquenched one, as in eq. (4.73) for example, we will merely

replace cN with c
(Nf )
N .

4.2 Skew-symmetric measures, kernels and skew-

orthogonal polynomials

As mentioned in §2.1.2, the eigenvalue JPDF for the ensembles with Dyson index

β = 2 will typically contain a product of (monovariate) weight functions, together

with a Vandermonde determinant (to the power of 2). This structure allows us to

introduce the orthogonal polynomials and the kernel corresponding to the weight

function. We can then express the JPDF in the form of a determinant containing

the kernel (written in terms of the orthogonal polynomials).

For the β = 1 case, where the weight function is bivariate and anti-symmetric

(skew-symmetric), and the Vandermonde determinant appears to the power of 1, we
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4.2 Skew-symmetric measures, kernels and skew-orthogonal polynomials

find that it is skew -orthogonal polynomials that are required, and we end up with

Pfaffians (or quaternion determinants), rather than determinants, in the JPDF.

A further complication is that, for the chGinOE, it is difficult to find the skew-

orthogonal polynomials starting from the weight function. We defer this problem

until the next chapter, where our strategy will be to determine the kernel first (in

§5.2), using an independent method, and then to extract the polynomials from the

kernel (in §5.4.1).

For the remainder of this present chapter, we work at a more general level, and

show how expressions for the correlation functions can be written in terms of the

(as yet, unknown) kernel.

This section discusses the relationships between skew-symmetric measures, ker-

nels and skew-orthogonal polynomials. It is essentially independent of random ma-

trix theory as such. For an alternative introduction to skew-orthogonal polynomials,

see, for example, [Gho02].

Let F(z1, z2) be a skew-symmetric measure (or weight function), by which we

mean that F(z1, z2) = −F(z2, z1), and

Akl ≡
∫

C2

d2z1 d2z2F(z1, z2)zk
1 zl

2 < ∞ ∀ k, l ≥ 0. (4.19)

We can define a skew-symmetric inner product of two polynomials p(z) and q(z) as

follows:

〈p|q〉 ≡
∫

C2

d2z1 d2z2F(z1, z2)p(z1) q(z2)

= −〈q|p〉. (4.20)

Using this notation, Akl = 〈zk|zl〉. Now, for every skew-symmetric function F(z1, z2),

we can always find some (non-unique) F̂(z1, z2), such that

F(z1, z2) = F̂(z1, z2)− F̂(z2, z1). (4.21)

We can write the inner product in terms of F̂ as follows; eq. (4.20) becomes

〈p|q〉 =
∫

C2

d2z1 d2z2

(
F̂(z1, z2)− F̂(z2, z1)

)
p(z1) q(z2)

=
∫

C2

d2z1 d2z2 F̂(z1, z2)
(
p(z1) q(z2)− q(z1) p(z2)

)

=
∫

C2

d2z1 d2z2 F̂(z1, z2) det
[

p(z1) q(z1)
p(z2) q(z2)

]
. (4.22)
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4.2 Skew-symmetric measures, kernels and skew-orthogonal polynomials

We note that, in general, F̂(z1, z2) itself will not be skew-symmetric.

We can now define the skew-symmetric kernel corresponding to F and F̂ as (for

even N ≥ 2)

KN (z1, z2) ≡
N−1∑

k=0

N−1∑

l=0

A−1
kl zk

1 zl
2. (4.23)

Importantly, if we replace each zk with some polynomial pk(z), such that the {pk(z)}
are linearly independent and each pk(z) = zk +O(zk−1), then

KN (z1, z2) =
N−1∑

k=0

N−1∑

l=0

Â−1
kl pk(z1) pl(z2) (4.24)

where

Âkl ≡
∫

C2

d2z1 d2z2F(z1, z2)pk(z1) pl(z2), (4.25)

i.e. the kernel is actually independent of the choice of {pk(z)}. It is truly a property

of the measure F(z1, z2) and not of the polynomials. In fact, there will always exist a

particular choice (indeed, many choices) of polynomials, denoted {qk(z)}, and known

as the skew-orthogonal polynomials, such that (for integers j, k ≥ 0)

〈q2j |q2k〉 = 0,

〈q2j+1|q2k+1〉 = 0,

〈q2j |q2k+1〉 = hjδjk, (4.26)

where hj is then the norm of the two skew-orthogonal polynomials q2j and q2j+1. Note

that, if q2k+1(z) is an odd skew-orthogonal polynomial, then so is q2k+1(z) + cq2k(z)

for any choice of constant c. The inverse of the corresponding matrix Â, given by

Âkl ≡
∫

C2

d2z1 d2z2F(z1, z2)qk(z1) ql(z2), (4.27)

can be easily determined, and so the kernel reduces to a single sum

KN (z1, z2) =

N
2
−1∑

k=0

1
hk

(
q2k+1(z1)q2k(z2)− q2k+1(z2)q2k(z1)

)
. (4.28)

Given the kernels KN (z1, z2) for every even N ≥ 2, it is possible to extract the

skew-orthogonal polynomials as follows:

q2k(z) =
hk

(2k + 1)!
∂2k+1

∂u2k+1
K2k+2(u, z)

= hk lim
u→∞

K2k+2(u, z)
u2k+1

, (4.29)

q2k+1(z) = − hk

(2k)!
∂2k

∂u2k
K2k+2(u, z)

∣∣∣
u=0

+ cq2k(z). (4.30)
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4.3 Correlation functions I: Dyson-Mehta method

c is some arbitrary constant mentioned above, which we will often set to zero. These

results can be proven by direct manipulation of eq. (4.28), and using the fact that

qk(z) = zk +O(zk−1).

The skew-orthogonal polynomials can also be expressed as matrix averages of

characteristic polynomials. A proof of this is given in Appendix B.

4.3 Correlation functions I: Dyson-Mehta method

The first method of deriving the correlation functions involves repeated integration

of the symmetrised JPDF, defined by

P sym
N (z1, . . . , zN ) ≡ 1

N !

∑

σ∈SN

P̂N (zσ(1), . . . , zσ(N)) (4.31)

where SN is the set of all permutations of the integers from 1 to N , and P̂N is the

factorised JPDF from eq. (4.7). The n-point correlation function is then defined as

Rn,N (z1, . . . , zn) ≡ N !
(N − n)!

∫

C
d2zn+1 . . .

∫

C
d2zN P sym

N (z1, . . . , zN ). (4.32)

The essence of the Dyson-Mehta method is to show that the JPDF (i.e. the inte-

grand, P sym
N ) can be written as the determinant of a matrix with quaternion-valued

elements that satisfy certain conditions. Consequently, Dyson’s Integration Theo-

rem (see below) can be used iteratively to perform the integrals in eq. (4.32), giving

the result that each correlation function can also be written as a quaternion deter-

minant. For an introduction to quaternions and quaternion determinants (denoted

Qdet), we refer to [Meh04].

4.3.1 Dyson’s Integration Theorem

Let us begin by stating Dyson’s Integration Theorem for the quaternion case, which

we take almost verbatim from Theorem 5.1.4 of [Meh04], where one will also find a

proof.

Dyson’s Integration Theorem: Let K(x, y) be a quaternion-valued

function, such that

K̄(x, y) = K(y, x) (4.33)
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4.3 Correlation functions I: Dyson-Mehta method

where K̄ is the quaternion conjugate of K. Suppose further that
∫

dy K(x, y)K(y, z) = K(x, z) + λK(x, z)−K(x, z)λ (4.34)

with λ a constant quaternion. Let [K(xi, xj)]N denote the N ×N matrix

with its (i, j) element equal to K(xi, xj). Then

∫
dxN Qdet[K(xi, xj)]N = (c−N + 1) Qdet[K(xi, xj)]N−1 (4.35)

where

c =
∫

dxK(x, x). (4.36)

In the original theorem, x, y and z are real, and the integrals are over R. However,

the generalisation to complex variables and integrals over C is straightforward.

4.3.2 Quaternion kernel

We begin by defining the integrated skew-orthogonal polynomial

Qi(v) ≡
∫

C
d2u qi(u)F(u, v) (4.37)

where F(u, v) is the anti-symmetric weight function in eq. (4.8) and qi(u) is the

i-th skew-orthogonal polynomial with respect to F(u, v). It follows from this, by

relabelling, that

Qi(u) = −
∫

C
d2vF(u, v) qi(v) (4.38)

since F(u, v) is anti-symmetric. The functions {Qi(z)} are, of course, not themselves

polynomials; we will also use them later in Chapter 9. Inserting these definitions

into eq. (4.26) (where we will only keep track of the even-odd case, since the odd-odd

and the even-even cases are always zero) gives

∫

C
d2z Q2j(z) q2k+1(z) = hj δjk = −

∫

C
d2z q2j(z) Q2k+1(z). (4.39)

If we now define the complex quaternion χi(z) as (using the 2-by-2 matrix represen-

tation, see eq. 2.4.6 of [Meh04])

χi(z) ≡
(

q2i(z) Q2i(z)
−q2i+1(z) −Q2i+1(z)

)
(4.40)
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4.3 Correlation functions I: Dyson-Mehta method

with conjugate (for definition, see eq. 2.4.9 of [Meh04])

χ̄i(z) ≡
( −Q2i+1(z) −Q2i(z)

q2i+1(z) q2i(z)

)
(4.41)

then these quaternions are orthogonal (i.e. rather than skew-orthogonal) in the sense

that ∫

C
d2z χj(z) χ̄k(z) = 2hj δjk

(
1 0
0 1

)
. (4.42)

This choice of {χi(z)} is not unique; there are other ways of constructing orthogonal

quaternions from the {qi(z)} and {Qi(z)}. However, we make this choice to be

consistent with the earlier results that we published in [Ake10a]. Note also that the

squared norm here is 2hj, and not hj as for the skew-orthogonal polynomials.

Let us now define the bivariate quaternion KQ
N (u, v) as follows

KQ
N (u, v) ≡ gQ

N (u, v)−FQ(u, v), (4.43)

where

gQ
N (u, v) ≡

N
2
−1∑

k=0

1
hk

χ̄k(u) χk(v) and (4.44)

FQ(u, v) ≡
(

0 F(u, v)
0 0

)
. (4.45)

KQ
N (u, v) is said to qualify as a quaternion kernel, because it satisfies the follow-

ing relations necessary for Dyson’s Integration Theorem, i.e. quaternion duality eq.

(4.33) and the projection property eq. (4.34) respectively:

K̄Q
N (u, v) = KQ

N (v, u), (4.46)∫

C
d2w KQ

N (u,w) KQ
N (w, v) = KQ

N (u, v) + λKQ
N (u, v)−KQ

N (u, v)λ (4.47)

where λ is some fixed quaternion constant. In this case,

λ =
( −1

2 0
0 1

2

)
. (4.48)

One may ask what KQ
N (u, v) looks like when explicitly written out in its 2-by-2

matrix representation. A little manipulation shows that

KQ
N (u, v) =

( −GN (v, u) WN (u, v)
KN (u, v) −GN (u, v)

)
(4.49)
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4.3 Correlation functions I: Dyson-Mehta method

where

KN (u, v) =

N
2
−1∑

k=0

1
hk

(
q2k+1(u)q2k(v)− q2k(u)q2k+1(v)

)
, (4.50)

GN (u, v) = −
∫

C
d2zKN (u, z)F(z, v) and (4.51)

WN (u, v) =
∫

C2

d2p d2qF(u, p)KN (p, q)F(q, v)−F(u, v). (4.52)

KN (u, v) is precisely the same skew-orthogonal kernel that we defined in eq. (4.28).

We note in passing that KN (u, v) is sometimes referred to as the ‘pre-kernel’, and

KQ
N (u, v) simply as the ‘kernel’. See, for example, [Kanz02] when considering the

symplectic (β = 4) ensemble. We adopt the terminology ‘kernel’ and ‘quaternion

kernel’ respectively.

4.3.3 JPDF as a quaternion determinant

In this section, we show how the symmetrised eigenvalue JPDF defined in eq. (4.31)

can be written as the quaternion determinant of an N × N matrix of quaternion

kernels KQ
N (u, v), i.e.

P sym
N (z1, . . . , zN ) =

1
N !

Qdet[KQ
N (zi, zj)]1≤i,j≤N . (4.53)

We can then use Dyson’s Integration Theorem, eq. (4.35), iteratively to derive the

correlation functions. The method here is based closely on that in [Meh04] for

the non-chiral, Hermitian ensemble; however, there are a few significant differences,

since we are now dealing with a non-Hermitian ensemble. Furthermore, our proof

also uses the factorised product formula for the JPDF in eq. (4.7).

We shall now prove eq. (4.53), starting from the right-hand side and arriving

at the JPDF. The first part of our proof follows §5.8.3 of [Meh04] quite closely,

although later it becomes more specific to the non-Hermitian case. Recall again

that N is even throughout.

First, we write the quaternion determinant on the right-hand side of eq. (4.53)

as the Pfaffian of a 2N × 2N matrix of ordinary elements. Define the 2N × 2N block

diagonal matrix Z as

Z ≡ diag (σ, . . . , σ)︸ ︷︷ ︸
Ntimes

(4.54)

where

σ ≡
(

0 1
−1 0

)
. (4.55)

53



4.3 Correlation functions I: Dyson-Mehta method

Then we use a second theorem of Dyson (Theorem 5.1.2 in [Meh04]) to write

Qdet[KQ
N (zi, zj)]1≤i,j≤N = Pf

[
Z KQ

N (zi, zj)
]
1≤i,j≤N

= Pf
[ KN (zi, zj) −GN (zi, zj)

GN (zj , zi) −WN (zi, zj)

]

1≤i,j≤N

= (−1)N/2 Pf

[
KN (zi, zj) −GN (zi, zj)
GN (zj , zi) −WN (zi, zj)

]

1≤i,j≤N

. (4.56)

In the last line we reordered the rows and columns, so that we have four N × N

blocks, rather than the N2 2 × 2 blocks in the line before. We now use the same

linearity argument as in [Meh04] to show that, almost surely,

Qdet[KQ
N (zi, zj)]1≤i,j≤N = (−1)N/2 Pf

[
KN (zi, zj) 0

0 FN (zi, zj)

]

1≤i,j≤N

= (−1)N/2 Pf
[KN (zi, zj)

]
1≤i,j≤N

× Pf
[F(zi, zj)

]
1≤i,j≤N

.

(4.57)

It is easy to see from eq. (4.50) that (for even N)

[KN (zi, zj)
]
1≤i,j≤N

= −Q({z})HQT ({z}) (4.58)

where Q({z}) and H are N ×N matrices defined as

Q({z}) ≡ [
qj−1(zi)

]
1≤i,j≤N

and (4.59)

H ≡ diag

(
1
h0

σ, . . . ,
1

hN
2
−1

σ

)
(4.60)

and σ is the 2-by-2 matrix defined in eq. (4.55). Hence

Pf
[KN (zi, zj)

]
1≤i,j≤N

= (−1)N/2 Pf[H] det[Q({z})]. (4.61)

But

Pf[H] =

N
2
−1∏

k=0

1
hk

(4.62)

and

det[Q({z})] = ∆N ({z}) (4.63)

i.e. the Vandermonde determinant in eq. (2.2), shown by taking linear combinations

of rows and columns to recreate monomial elements. Hence

Qdet[KQ
N (zi, zj)]1≤i,j≤N =

N
2
−1∏

k=0

1
hk

∆N ({z}) Pf
[F(zi, zj)

]
1≤i,j≤N

. (4.64)
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Our proof now diverges from that in [Meh04]. Using the result eq. (A.25) in Ap-

pendix A.2.6, we can write

Pf
[F(zi, zj)

]
1≤i,j≤N

=
1

(N
2 )!

∑

σ∈SN

sgn(σ)
N/2∏

i=1

F̂(zσ(2i−1), zσ(2i)) (4.65)

where F̂(u, v) is any function that satisfies F(u, v) = F̂(u, v) − F̂(v, u) (as in eq.

(4.10)), and SN is the set of all permutations of the integers from 1 to N . So, on

inserting eq. (4.65) into eq. (4.64),

Qdet[KQ
N (zi, zj)]1≤i,j≤N =




(
N

2

)
!

N
2
−1∏

k=1

hk



−1

∆N ({z})
∑

σ∈SN

sgn(σ)
N/2∏

i=1

F̂(zσ(2i−1), zσ(2i))

=




(
N

2

)
!

N
2
−1∏

k=1

hk



−1

×
∑

σ∈SN

sgn(σ) sgn(σ)∆N ({σ(z)})
N/2∏

i=1

F̂(zσ(2i−1), zσ(2i)),

(4.66)

where we used that ∆N ({z}) = sgn(σ)∆N ({σ(z)}). But [sgn(σ)]2 = 1, and so, using

eq. (4.7) with the choice eq. (4.11),

Qdet[KQ
N (zi, zj)]1≤i,j≤N =


cN

N
2
−1∏

k=1

hk



−1

∑

σ∈SN

P̂ (σ(z))

=


cN

N
2
−1∏

k=1

hk



−1

N !P sym
N (z1, . . . , zN ), (4.67)

where P sym
N is the symmetrised JPDF, defined in eq. (4.31). All that remains now

is to relate the normalisation constants.

We calculate the constant c that appears in Dyson’s Integration Theorem (see

eq. (4.36)). We evaluate

∫

C
d2z KQ

N (z, z) =

N
2
−1∑

j=0

1
hj

∫

C
d2z χ̄j(z) χj(z)

=

N
2
−1∑

j=0

1
hj

(
2hj 0
0 2hj

)

= N

(
1 0
0 1

)
(4.68)
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so we take the constant c to be equal to N . Therefore, N successive applications of

Dyson’s Theorem will give
∫

C
d2z1 . . .

∫

C
d2zN Qdet[KQ

N (zi, zj)]1≤i,j≤N = N ! (4.69)

But we also have
∫

C
d2z1 . . .

∫

C
d2zNP sym

N (z1, . . . , zN ) = ZN , (4.70)

where ZN is the partition function. Since we defined ZN to be numerically equal to

unity (see the discussion in §2.2.3), it then follows that

cN =

N
2
−1∏

k=0

1
hk

(4.71)

which represents an important relationship between the normalisation constant cN

in the partition function, and the norms of the skew-orthogonal polynomials. Our

main result, eq. (4.53), now follows from eqs. (4.67) and (4.71).

It is useful to note that eq. (4.71) implies that for k ≥ 0

hk =
c2k

c2k+2
. (4.72)

For the chGinOE, we already found cN explicitly in eq. (3.97). So, perhaps sur-

prisingly, we can determine the norms of the skew-orthogonal polynomials without

knowing the polynomials themselves. Following from the discussion at the end of

§4.1.2, the norms for the unquenched skew-orthogonal polynomials must be given

by the analagous formula

h
(Nf )
k =

c
(Nf )
2k

c
(Nf )
2k+2

, (4.73)

where c
(Nf )
N was defined in eq. (4.18).

4.3.4 Correlation functions

So, to summarise, we insert the symmetrised JPDF expressed as a quaternion deter-

minant eq. (4.53) into the definition of the correlation functions eq. (4.32), and use

Dyson’s Integration Theorem eq. (4.35) to perform the integrals. The correlation

functions are therefore given by (for even N , as usual)

Rn,N (z1, . . . , zn) = Qdet[KQ
N (zi, zj)]1≤i,j≤n. (4.74)
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Note that there is no N - or n-dependent pre-factor. We can also write this as the

Pfaffian of a 2n-by-2n matrix:

Rn,N (z1, . . . , zn) = Pf
[ KN (zi, zj) −GN (zi, zj)

GN (zj , zi) −WN (zi, zj)

]

1≤i,j≤n

. (4.75)

Using this, we see that the eigenvalue density (the 1-point correlation function) can

be written explicitly as

R1,N (z1) = −GN (z1, z1) =
∫

C
d2zKN (z1, z)F(z, z1), (4.76)

where we used the expression for GN (u, v) from eq. (4.51). If we insert the form of

the weight function from eq. (4.8) into eq. (4.76), then we see that the density of

squared eigenvalues separates into complex (i.e. non-real) and real parts as follows

(z = x + iy):

R1,N (z) = RC1,N (z) + δ(y)RR1,N (x), (4.77)

with

RC1,N (z) = −2i w(z)w(z∗) sgn(=m z)KN (z, z∗) for z ∈ C\R,

RR1,N (x) = w(x)
∫

R
dx′KN (x, x′)w(x′) sgn(x− x′) for x ∈ R. (4.78)

It is a particular feature of the non-Hermitian ensembles with Dyson index β = 1

that a finite number of eigenvalues lie exactly on the real axis (and for the chiral

ensemble, a finite number also lie on the imaginary axis). For the β = 2 and β = 4

ensembles, the probability of finding an eigenvalue precisely on one of the axes is

zero.

The n-point correlation functions where all the arguments are complex (and

different) also follow easily. Using eqs. (4.51) and (4.52), with F(u, v) given by eq.

(4.8), we find, for zi, zj ∈ C\R, zi 6= zj, zi 6= z∗j ,

GN (zi, zj) = 2iw(zj)w(z∗j ) sgn(=m zj)KN (zi, z
∗
j ),

WN (zi, zj) = 4w(zi)w(z∗i )w(zj)w(z∗j ) sgn(=m zi) sgn(=m zj)KN (z∗i , z∗j ), (4.79)

and hence from eq. (4.75)

RCn,N (z1, . . . , zn) = (−2i)n
n∏

i=1

w(zi)w(z∗i ) sgn(=m zi) Pf

[
KN (zi, zj) KN (zi, z

∗
j )

KN (z∗i , zj) KN (z∗i , z∗j )

]

1≤i,j≤n

.

(4.80)

We will make use of this result in §5.1 where we show how to write the unquenched

partition functions in terms of the quenched kernel.
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4.4 Correlation functions II: Functional differentiation method

4.4 Correlation functions II: Functional differen-

tiation method

We now present a completely different derivation of the correlation functions eq.

(4.75), by inserting Dirac delta functions into the partition function. This is essen-

tially equivalent to the method of multiple functional differentiation of a suitable

generating function (see [Somm07; Somm08]).

4.4.1 Generalised de Bruijn formula

As a prerequisite, it is necessary to show that the partition function ZN can be

written as a Pfaffian of double integrals1. This is merely an easy generalisation

of the formulas of de Bruijn [deB55]. Starting with the partition function in its

factorised form in eq. (4.9), we first rewrite the Vandermonde determinant as a sum

over permutations

ZN =
cN

(N
2 )!

N∏

i=1

∫

C
d2zi

N/2∏

j=1

F̂(z2j−1, z2j) ∆N ({z})

=
cN

(N
2 )!

N∏

i=1

∫

C
d2zi

N/2∏

j=1

F̂(z2j−1, z2j)
∑

σ∈SN

sgn(σ)
N∏

k=1

z
σ(k)−1
k , (4.81)

where SN is the set of all permutations of the integers from 1 to N . On rearranging,

we then have

ZN =
cN

(N
2 )!

N∏

i=1

∫

C
d2zi

N/2∏

j=1

F̂(z2j−1, z2j)
∑

σ∈SN

sgn(σ)
N/2∏

k=1

(
z

σ(2k−1)−1
2k−1 z

σ(2k)−1
2k

)

=
cN

(N
2 )!

∑

σ∈SN

sgn(σ)
N/2∏

i=1

∫

C2

d2z2i−1 d2z2i F̂(z2i−1, z2i) z
σ(2i−1)−1
2i−1 z

σ(2i)−1
2i

=
cN

(N
2 )!

∑

σ∈SN

sgn(σ)
N/2∏

i=1

{∫

C2

d2u d2v F̂(u, v) uσ(2i−1)−1vσ(2i)−1
}

= cN Pf
[∫

C2

d2u d2v F̂(u, v) (ui−1vj−1 − uj−1vi−1)
]

1≤i,j≤N

, (4.82)

1In fact, Sinclair [Sin06] had derived the generalised de Bruijn formula for the corresponding
(non-chiral) β = 1 Ginibre ensemble, starting from the (ordered) partition function, and his argu-
ment carries across to the chiral case with no significant change. We do not therefore claim that
the result in this section is fundamentally new, although the direct derivation from a factorised
JPDF would appear to be so.
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4.4 Correlation functions II: Functional differentiation method

where we used eq. (A.25) in the last step. Finally, from eq. (4.10), we arrive at

ZN = cN Pf
[∫

C2

d2u d2vF(u, v) ui−1vj−1

]

1≤i,j≤N

. (4.83)

We should note that this proof, as with much of this chapter, does not depend at

all on the specific structure of F(z1, z2), and so it has more general applicability.

This result easily generalises to

ZN [f, g] ≡ cN

(N
2 )!

N∏

i=1

∫

C
d2zi

N/2∏

j=1

F̂(z2j−1, z2j) f(z2j−1)g(z2j)∆N ({z})

= cN Pf
[∫

C2

d2u d2vF(u, v) f(u)g(v) ui−1vj−1

]

1≤i,j≤N

(4.84)

for arbitrary functions f and g (assuming that the integrals are well-defined). We

will now use this quantity as a generating functional for the correlation functions

(in fact, we only need the case when f and g are the same).

4.4.2 Correlation functions

We consider first the 1-point correlation function, i.e. the eigenvalue density1. We

can write the density at a point z as the expectation of a Dirac delta function

evaluated at z (note that we have to symmetrise the observable when using the

factorised JPDF, P̂ )

R1,N (z) =
∫

C
d2z1 . . .

∫

C
d2zN P̂ (z1, . . . , zN )

N∑

i=1

δ(z − zi)

=
∂

∂ε

∣∣∣
ε=0

∫

C
d2z1 . . .

∫

C
d2zN P̂ (z1, . . . , zN )

N∑

i=1

εδ(z − zi)

=
∂

∂ε

∣∣∣
ε=0

∫

C
d2z1 . . .

∫

C
d2zN P̂ (z1, . . . , zN )

N∏

i=1

(1 + εδ(z − zi))

=
∂

∂ε

∣∣∣
ε=0

Pf
[∫

C2

d2u d2vF(u, v) (1 + εδ(z − u))(1 + εδ(z − v))ui−1vj−1

]

1≤i,j≤N

≡ ∂

∂ε

∣∣∣
ε=0

Pf A, (4.85)

where we used our generalised de Bruijn formula eq. (4.84) in the last-but-one line.

Now, by using the chain rule of partial differentiation

∂ Pf A

∂ε
=

∑
p,q

∂ Pf A

∂Apq

∂Apq

∂ε
(4.86)

1Recall that the matrix size N is assumed even throughout.
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4.4 Correlation functions II: Functional differentiation method

and the differential of a Pfaffian from eq. (A.29)

∂ Pf A

∂Apq
= 1

2 Pf[A] (A−1)qp

we have

R1,N (z) = 1
2

(
Pf[A]

∑
p,q

(A−1)qp
∂Apq

∂ε

) ∣∣∣∣∣
ε=0

. (4.87)

We easily evaluate the factors:

Pf A
∣∣∣
ε=0

= ZN = 1 (4.88)

and
∂Apq

∂ε

∣∣∣
ε=0

=
∫

C
d2uF(u, z)

(
up−1zq−1 − uq−1zp−1

)
. (4.89)

Hence, on identifying A evaluated at ε = 0 with the A that was used in the definition

of the kernel in eq. (4.23), we find that

R1,N (z) = 1
2

∑
p,q

(A−1)qp

∫

C
d2uF(u, z)

(
up−1zq−1 − uq−1zp−1

)

= 1
2

∫

C
d2u

∑
p,q

(A−1)qp

(
up−1zq−1 − uq−1zp−1

)F(u, z)

=
∫

C
d2uKN (z, u)F(u, z) ≡ −GN (z, z). (4.90)

This, of course, matches eq. (4.76) which we derived using a completely different

method.

Using this technique for higher correlation functions becomes rapidly more cum-

bersome, but we show the n = 2 case. The 2-point function can be written as

R2,N (z, w) =
∫

C
d2z1 . . .

∫

C
d2zN P̂N (z1, . . . , zN )

∑

i,j
i6=j

δ(z − zi)δ(w − zj)

=
∂2

∂α ∂ε

∣∣∣
α=0
ε=0

∫

C
d2z1 . . .

∫

C
d2zN P̂N (z1, . . . , zN )

N∏

i=1

(
1 + εδ(z − zi) + αδ(w − zi)

)

=
∂2

∂α ∂ε

∣∣∣
α=0
ε=0

Pf
[ ∫

C2

d2u d2vF(u, v)ui−1vj−1

×
(
1 + εδ(z − u) + αδ(w − u)

)(
1 + εδ(z − v) + αδ(w − v)

)]
1≤i,j≤N

≡ ∂2

∂α ∂ε

∣∣∣
α=0
ε=0

Pf A. (4.91)
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4.4 Correlation functions II: Functional differentiation method

(The matrix A here differs from the previous case in eq. (4.85).) We now use the

chain rule of partial differentiation

∂2 Pf A

∂α ∂ε
=

∑
p,q

∑
m,n

∂2 Pf A

∂Amn∂Apq

∂Amn

∂α

∂Apq

∂ε
+

∑
p,q

∂ Pf A

∂Apq

∂2Apq

∂α ∂ε
(4.92)

together with eq. (A.30)

∂2

∂Aij∂Apq
Pf A = Pf A

{
1
4(A−1)qp(A−1)ji − 1

2(A−1)qi(A−1)jp

}

to differentiate the Pfaffian in eq. (4.91) twice. After a few lines of algebra (which

we omit for space reasons), we arrive at the result

R2,N (z, w) = GN (z, z)GN (w, w)−GN (z, w)GN (w, z) +KN (z, w)WN (z, w)

= Pf




0 −GN (z, z) KN (z, w) −GN (z, w)
GN (z, z) 0 GN (w, z) −WN (z, w)
KN (w, z) −GN (w, z) 0 −GN (w, w)
GN (z, w) −WN (w, z) GN (w, w) 0


 , (4.93)

which agrees with our earlier calculation (eq. (4.75) for the case when n = 2).

It is somewhat more difficult using this brute-force method to prove the general

pattern. Since we have already given a full (and completely different) proof of the

general even-N case in §4.3, we merely make the following observation: The real

chiral ensemble is algebraically similar to the real Ginibre ensemble (GinOE), and

so we can, in fact, use the method of [Somm07; Somm08] with minimal changes.

Essentially, for pairwise distinct arguments z1 6= z2 6= . . . 6= zn, these authors showed

that can write (with Rn,N (z1, . . . , zn) defined in eq. (4.32))

Rn,N (z1, . . . , zn) =
δ

δf(z1)
. . .

δ

δf(zn)
ZN [f, f ]

∣∣∣
f=1

= Pf
[ KN (zi, zj) −GN (zi, zj)

GN (zj , zi) −WN (zi, zj)

]

1≤i,j≤n

. (4.94)

Here, ZN [f, f ] was defined in eq. (4.84), KN (u, v) is the kernel, and GN (u, v) and

WN (u, v) were defined in eqs. (4.51) and (4.52) respectively. Of course, this matches

our earlier result eq. (4.75) exactly.

In Appendix C, we show that the β = 4 ensemble has a similar algebraic (or

structural) form at the level of the JPDF, and so the correlation functions also have

the same form as eq. (4.75). The β = 2 case is somewhat simpler, involving ordinary

determinants of a symmetric kernel.
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4.5 Unquenched ensembles

4.5 Unquenched ensembles

As we indicated earlier, both the proofs (in §4.3 and §4.4) of the correlation func-

tions eq. (4.75) were independent of the particular weight function F . Since the un-

quenched ensemble has the same form as the quenched case (compare the partition

functions in eqs. (4.16) and (4.9)), the results that we have derived are immediately

applicable to the unquenched ensembles with the substitution F → F (Nf ), i.e.

R
(Nf )
n,N (z1, . . . , zn) = Pf

[
K(Nf )

N (zi, zj) −G
(Nf )
N (zi, zj)

G
(Nf )
N (zj , zi) −W

(Nf )
N (zi, zj)

]

1≤i,j≤n

, (4.95)

where all quantities are determined based on the unquenched weight function F (Nf )(u, v)

in eq. (4.15). As we will show in §5.3, the unquenched kernel K(Nf )
N (u, v) can itself

be written as a Pfaffian involving quenched kernels KN (u, v).
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Chapter 5

Finite-N kernel and

skew-orthogonal polynomials

We have now derived expressions for the correlation functions for finite, even N (eqs.

(4.75) and (4.95) for the quenched and unquenched cases respectively). However,

these were expressed in terms of the kernels, which we do not yet know explicitly.

The determination of these is the key result in this chapter.

However, we begin by considering the unquenched partition functions Z(Nf )
N ,

since these can be obtained directly from results that we already know; they also

form building blocks for some of our subsequent proofs. Then we determine the

quenched kernel itself, using a technique employing Grassmann variables and Berezin

integration. After deriving the unquenched kernels in terms of the quenched one

(and, sometimes, skew-orthogonal polynomials), we determine the skew-orthogonal

polynomials explicitly, for both the quenched and the unquenched cases.

The methodology adopted in §5.2 and §5.4 can also be applied to the non-chiral

(Ginibre) β = 1 ensemble (the GinOE); see Appendix D for further details.

5.1 Unquenched partition function

We begin by showing how we can write the unquenched partition functions for

various numbers of quark flavours Nf > 0 in terms of the quenched kernels. We

show this explicitly for the case of two quark flavours Nf = 2 (as per §4.1 of our

paper [Ake10a]), and then we present the general even Nf and odd Nf cases. All

results are for even matrix size N only.
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5.1 Unquenched partition function

5.1.1 Nf = 2

First, note that we can write the unquenched partition function with two quark

flavours as Z(Nf=2)
N (m1,m2) = HN (−m1,−m2), where HN (λ, γ) is the expectation of

the product of two characteristic polynomials

HN (λ, γ) ≡ 〈det(λ−D) det(γ −D)〉, (5.1)

the expectation being taken over the ensemble of (2N +ν)-by-(2N +ν) Dirac matrices

D.

Let us choose γ = λ∗ ∈ C\R, and then

HN (λ, λ∗) =
∫

C
d2z1 . . .

∫

C
d2zN P̂N (z1, . . . , zN )(λλ∗)ν

N∏

j=1

(λ2 − zj)(λ∗2 − zj)

=

(
N
2 + 1

)
!

(N
2 )!

cN

cN+2

(λλ∗)ν

iw(λ2)w(λ∗2) sgn(=mλ2)(λ∗2 − λ2)

×
∫

C
d2z1 . . .

∫

C
d2zN P̂N+2(z1, . . . , zN , λ2, λ∗2). (5.2)

For the arguments of P̂N+2 in the last expression, we chose one particular permu-

tation of the {zi} and the pair {λ2, λ∗2}, i.e. with the latter pair placed at the end.

However, we could equally have chosen to insert the pair {λ2, λ∗2} at other posi-

tions, as follows. To count the number of non-zero permutations, first we pair the

{zi} working from left to right. Then, we insert the pair {λ2, λ∗2}. This pair can

go at the start, or at the end, or between a pair of (z2k−1, z2k); this gives N
2 + 1

possibilities.

But the sum (over these permutations) of the integrals of P̂N+2 is merely half the

density RC1,N+2(λ
2), the factor of one half arising because the density also involves

the permutations where λ∗2 comes before λ2. If λ2 and λ∗2 are separated in the

argument list, then there is a zero contribution. So

HN (λ, λ∗) =
1
2

cN

cN+2

(λλ∗)ν

iw(λ2)w(λ∗2) sgn(=mλ2)(λ∗2 − λ2)
RC1,N+2(λ

2). (5.3)

But we already know from eq. (4.76) that

R1,N+2(z) =
∫

C
d2uKN+2(z, u)F(u, z) (5.4)

and so for the complex case (z ∈ C\R)

RC1,N+2(z) = KN+2(z, z∗)w(z)w(z∗)(2i) sgn(=m z∗). (5.5)
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5.1 Unquenched partition function

Therefore, after analytic continuation in each argument (since HN is analytic in both

arguments), we have

HN (λ, γ) = − cN

cN+2

(λγ)ν

γ2 − λ2
KN+2(λ2, γ2), (5.6)

and hence

Z(Nf=2)
N (m1,m2) = − cN

cN+2

(m1m2)ν

m2
2 −m2

1

KN+2(m2
1,m

2
2). (5.7)

So the unquenched (Nf = 2) partition function is directly related to the quenched

(Nf = 0) kernel. Note that, by using eq. (3.97), we can determine the ratio of the

normalisation constants explicitly. It is

cN

cN+2
= (8π)(4µ2)(1 + µ2)2N+ν+1N !(N + ν)! (5.8)

which equals hN/2 by eq. (4.72).

5.1.2 General even Nf

We next consider the case with more than two quark flavours (Nf > 2) but with Nf

even. Our proof here follows along almost identical lines to the Nf = 2 case1. We

write the partition function Z(Nf )
N (m1, . . . ,mNf

) = HN (−m1, . . . ,−mNf
) where

HN (λ1, . . . , λNf
) ≡

〈Nf∏

i=1

det(λi −D)

〉
. (5.9)

We choose the arguments to be non-real, pairwise complex conjugates (λ2i−1 = αi,

λ2i = α∗i ), with the additional requirement that all the arguments are different.

Following the same steps as before, we have

HN (α1, α
∗
1, α2, α

∗
2, . . .)

=
1

2Nf /2

cN

cN+Nf

∏Nf /2
i=1 (αiα

∗
i )

ν RCNf /2,N+Nf
(α2

1, α
2
2, . . .)

∏Nf /2
i=1 iw(α2

i )w(α∗2i ) sgn(=mα2
i )∆Nf

(α2
1, α

∗2
1 , α2

2, α
∗2
2 , . . .)

. (5.10)

But the complex correlation function for (distinct) non-real arguments is, from eq.

(4.80),

RCn,N (ui, . . . , un) = (−2i)n
n∏

i=1

w(ui)w(u∗i ) sgn(=mui) Pf[KN (vi, vj)]1≤i,j≤2n (5.11)

1An alternative proof of this result was given in our paper [Ake10b], based on earlier results
in [Kie10].

65



5.1 Unquenched partition function

where v2i−1 = ui and v2i = u∗i . Since H is an analytic function of its arguments, we

can then analytically continue in each argument. The result is that

Z(Nf )
N ({m}) = (−1)Nf /2 cN

cN+Nf

∏Nf

f=1 mν
f

∆Nf
({m2}) Pf[KN+Nf

(m2
i ,m

2
j )]1≤i,j≤Nf

. (5.12)

We also note that the ratio of normalisation coefficients can be written as a product

over the norms of the skew-orthogonal polynomials:

cN

cN+Nf

=
(N+Nf )/2−1∏

j=N/2

hj . (5.13)

5.1.3 General odd Nf

The easiest way of determining the partition function for odd Nf is to ‘quench’

the partition function for the Nf + 1 (even) case, i.e. by making one of the masses

infinitely large so that it decouples. So, for odd Nf , we have

Z(Nf )
N ({m}) = lim

M→∞
Z(Nf+1)

N (M ∪ {m})
M2N+ν

. (5.14)

We evaluate this by expressing the partition function on the right-hand side in terms

of the kernel using eq. (5.12). The Vandermonde determinant can be quenched as

follows

lim
M→∞

∆Nf+1(M2 ∪ {m2})
M2Nf

= (−1)Nf ∆Nf
({m2}) = −∆Nf

({m2}) (5.15)

and so we get

Z(Nf )
N ({m}) = (−1)(Nf−1)/2 cN

cN+Nf+1

∏Nf

f=1 mν
f

∆Nf
({m2}) lim

M→∞

Pf
[
KN+Nf+1(wi, wj)

]
1≤i,j≤Nf+1

M2N+2Nf
,

(5.16)

where we write w1 ≡ M2 and wi ≡ m2
i−1 for 2 ≤ i ≤ Nf + 1. Since only the first row

and column of the matrix of kernels depend on M , we can take the limit operation

inside the Pfaffian, and use eq. (4.29) to show that

Z(Nf )
N ({m}) = (−1)(Nf−1)/2 cN

cN+Nf−1

∏Nf

f=1 mν
f

∆Nf
({m2}) Pf

[
Aij

]
1≤i,j≤Nf+1

, (5.17)

in which

Aij = −Aji ≡





0 if i = j,

qN+Nf−1(wj) if j > i = 1,

KN+Nf+1(wi, wj) if j > i > 1,

(5.18)
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5.2 Quenched kernel

and where qN+Nf−1(z) is the (even) quenched skew-orthogonal polynomial. Finally,

observe that we can also write

cN

cN+Nf−1
=

(N+Nf−1)/2−1∏

j=N/2

hj , (5.19)

which parallels eq. (5.13) for the even Nf case.

5.2 Quenched kernel

We now turn to an explicit determination of the quenched kernel KN (u, v) for the

chGinOE. In order to evaluate the kernel directly from its definition in eq. (4.23), we

would need to evaluate the matrix A defined in eq. (4.19) and its inverse directly;

however, for our particular weight function eq. (4.8) with weight w(z) from eq.

(3.101), this is non-trivial, so an alternative method is required. We proceed as

follows. We invert eq. (5.6) to get

KN (u, v) =
cN

cN−2

(u− v)HN−2(
√

u,
√

v)
(uv)ν/2

(5.20)

where HN (λ, γ) was defined in eq. (5.1):

HN (λ, γ) ≡ 〈det(λ−D) det(γ −D)〉,

and then look for an alternative way of determining HN (λ, γ) explicitly. Fortunately

this can be done by using Grassmann variables. Appendix A.4 gives a brief intro-

duction to the relevant concepts used in the next section.
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5.2 Quenched kernel

5.2.1 Reduction to six integrals

We begin by replacing the determinants in eq. (5.1) with Berezin integrals over

Grassmann variables, see eq. (A.39), which gives

HN (λ, γ) = (2π)−N(N+ν)

∫
dP dQ

∫
dη dψ dζ dφ

× exp
{
− 1

2
(P 2

ij + Q2
ij)− λ(η∗i ηi + ψ∗j ψj)− γ(ζ∗i ζi + φ∗jφj)

+ η∗i (Pij + µQij)ψj + ψ∗j (P
T
ji − µQT

ji)ηi

+ ζ∗i (Pij − µQij)φj + φ∗j (P
T
ji + µQT

ji)ζi

}

= (2π)−N(N+ν)

∫
dP dQ

∫
dη dψ dζ dφ

× exp
{
− P 2

ij

2
+ Pij(η∗i ψj + ψ∗j ηi + ζ∗i φj + φ∗jζi)

− Q2
ij

2
+ µQij(η∗i ψj − ψ∗j ηi − ζ∗i φj + φ∗jζi)

− λ(η∗i ηi + ψ∗j ψj)− γ(ζ∗i ζi + φ∗jφj)
}

(5.21)

where i runs from 1 to N , and j from 1 to N + ν, and summation over i and j in the

exponent is implicit. We have dη ≡ ∏N
i=1 dη∗i dηi, and so on. We can now complete

the squares in Pij and Qij using eq. (A.44), and integrate out these variables, so

HN (λ, γ) =
∫

dη dψ dζ dφ exp
{
− λ(η∗i ηi + ψ∗j ψj)− γ(ζ∗i ζi + φ∗jφj)

+
1
2
(η∗i ψj + ψ∗j ηi + ζ∗i φj + φ∗jζi)2

+
µ2

2
(η∗i ψj − ψ∗j ηi − ζ∗i φj + φ∗jζi)2

}
. (5.22)

We now multiply out the squares, removing the terms which are identically zero.

After reordering, we have

HN (λ, γ) =
∫

dη dψ dζ dφ exp
{
− λ(η∗i ηi + ψ∗j ψj)− γ(ζ∗i ζi + φ∗jφj)

− δ2
−(η∗i ηi)(ψ∗j ψj)− δ2

−(η∗i ζ
∗
i )(ψjφj)

− δ2
+(η∗i ζi)(φ∗jψj)− δ2

+(ζ∗i ηi)(ψ∗j φj)

− δ2
−(ηiζi)(ψ∗j φ

∗
j )− δ2

−(ζ∗i ζi)(φ∗jφj)
}

, (5.23)

where we introduced δ2± ≡ 1±µ2 to simplify the notation. The six quartic terms can

be removed by repeated application of the complex Hubbard-Stratonovich transfor-
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5.2 Quenched kernel

mation in eq. (A.46):

HN (λ, γ) =
1
π6

∫

C6

d2u d2v d2w d2z d2p d2q e−|u|
2−|v|2−|w|2−|z|2−|p|2−|q|2

×
∫

dη dψ dζ dφ exp
{
− λ(η∗i ηi + ψ∗j ψj)− γ(ζ∗i ζi + φ∗jφj)

+ iδ−(uη∗i ηi + ūψ∗j ψj + vζ∗i ζi + v̄φ∗jφj

+ wη∗i ζ
∗
i + w̄ψjφj + zηiζi + z̄ψ∗j φ

∗
j )

+ iδ+(pη∗i ζi + p̄φ∗jψj + qζ∗i ηi + q̄ψ∗j φj)
}

. (5.24)

The i and j factors now decouple, and we can perform the Berezin integrations. The

only terms that will contribute are those containing the combinations η∗i ηiζ
∗
i ζi and

ψ∗j ψjφ
∗
jφj. Hence

HN (λ, γ) =
1
π6

∫

C6

d2u d2v d2w d2z d2p d2q e−|u|
2−|v|2−|w|2−|z|2−|p|2−|q|2

× [(iδ−u− λ)(iδ−v − γ)− (iδ−w)(iδ−z)− (iδ+p)(iδ+q)]N

× [(iδ−ū− λ)(iδ−v̄ − γ)− (iδ−w̄)(iδ−z̄)− (iδ+p̄)(iδ+q̄)]N+ν .

=
1
π6

∫

C6

d2u d2v d2w d2z d2p d2q e−|u|
2−|v|2−|w|2−|z|2−|p|2−|q|2

× [(λ− iδ−u)(γ − iδ−v) + δ2
−wz + δ2

+pq]N

× [(λ− iδ−ū)(γ − iδ−v̄) + δ2
−w̄z̄ + δ2

+p̄q̄]N+ν . (5.25)

We can compactify this result somewhat if we define three anti-symmetric matrices

σ, σ̃ and M as

σ =




0 u p z

0 w q

0 v

0


 , σ̃ =




0 δ−u δ+p δ−z

0 δ−w δ+q

0 δ−v

0


 and M =




0 iλ 0 0
0 0 0

0 iγ

0




(5.26)

(where we do not write below-diagonal entries for clarity). We then have

HN (λ, γ) = Z(Nf=2)
N (−λ,−γ)

∝
∫

Dσ Dσ† exp
{
−1

2 Tr[σσ†]
}

(Pf[σ̃ + M ])N (Pf[σ̃† −M ])N+ν , (5.27)

where we drop an irrelevant overall normalisation constant. This is, of course, merely

a change in notation, but it hints at how the formula may generalise for the expec-

tation of the product of more than two characteristic polynomials. Furthermore,

starting from this kind of matrix representation it is easier to investigate how the
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5.2 Quenched kernel

symmetry of the model is broken in the various large-N limits, leading to so-called

non-linear sigma models which can be compared with those arising from chiral per-

turbation theory (see, e.g. [Kana10]). We do not pursue such an approach in this

thesis, although we do devote the next section to deriving one particular large-N

limit explicitly.

The form eq. (5.27) is similar to that of the Hermitian case (see eq. 5.16 of

[Hal95]). The β = 2 case is analogous, but contains determinants instead of Pfaffians

(see eq. 3.5 of [Shu93]).

5.2.2 Saddle point method for large-N limit with µ = 1

We will solve eq. (5.25) exactly for finite N in the next section. However, more

typically with problems of this sort it is difficult to find an exact result for finite

N , and so one must take the large-N limit as part of the process of evaluating the

integrals. This section demonstrates this technique, partly for pedagogic reasons,

and partly to enable us to cross-check one of our later results.

To simplify the calculations we consider only the case of maximal non-Hermiticity

(i.e. with µ = 1), and seek the large-N limit. With µ = 1, we have δ− = 0 and δ2
+ = 2.

The four integrals over u, v, w and z in eq. (5.25) then decouple and can be performed

trivially, leading to (after a flip of the sign of p)

HN (λ, γ; µ = 1) =
1
π2

∫

C2

d2p d2q e−|p|
2−|q|2(λγ − 2pq)N (λγ − 2p̄q̄)N+ν . (5.28)

We now change variables from p, q ∈ C to t, τ, θ, φ ∈ R

p =
√

t cos
(

φ
2

)
ei(τ−θ),

q =
√

t sin
(

φ
2

)
eiθ, (5.29)

with 0 ≤ t < ∞, 0 ≤ τ ≤ 2π, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. After performing the

decoupled angular integration over τ , giving us a factor 2π, we arrive at

HN (λ, γ; 1) =
1
4π

∫ 2π

0
dτ

∫ π

0
dφ sinφ

∫ ∞

0
dt t e−t (λγ − t sinφ eiτ )N (λγ − t sinφ e−iτ )N+ν .

(5.30)

To evaluate the t-integral for large N , we use the saddle point method. Using eq.

(A.13), we have

HN (λ, γ; 1) ∼ (−1)ν22N+ν−1

π3/2

√
N N ! (N + ν)!

×
∫ 2π

0
dτ

∫ π

0
dφ sinφ (sinφ)2N+ν e−iντ exp

[
−λγ

cos τ

sinφ

]
(5.31)
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where the ∼ sign indicates asymptotic behaviour. Next we consider the φ-integral.

Since, for 0 ≤ φ ≤ π, we have

lim
N→∞

√
N sin2N φ =

√
π δ

(
φ− π

2

)
, (5.32)

it follows that the φ-integral effectively collapses into a single direction when N is

very large:

HN (λ, γ; 1) ∼ (−1)ν 22N+ν−1

π
N ! (N + ν)!

∫ 2π

0
dτ e−iντe−λγ cos τ . (5.33)

We make a simple change of variables (ρ = τ − π), to get

HN (λ, γ; 1) ∼ 22N+ν−1

π
N ! (N + ν)!

∫ π

−π
dρ cos(νρ) eλγ cos ρ (5.34)

where the corresponding integral involving sin(νρ) has vanished because it is odd.

On applying eq. 8.431.5 of [Gra07], we find

HN (λ, γ; 1) ∼ 22N+ν N ! (N + ν)! Iν(λγ). (5.35)

Eq. (5.20) gives the kernel in terms of HN (λ, γ; µ), with normalisation given by (for

µ = 1)
cN

cN−2
=

1
22N+ν+2π (N − 2)! (N + ν − 2)!

. (5.36)

Therefore, on inserting eqs. (5.35) and (5.36) into eq. (5.20), we arrive at our final

result at large N

KN (u, v; µ = 1) ∼ 1
26π

(u− v)
(uv)ν/2

Iν(
√

uv). (5.37)

We shall reproduce this result later (see eq. (7.7)), by explicitly taking the large-N

limit of the exact finite-N result, which we will now determine.

5.2.3 Exact solution for finite N

We return now to calculating the exact finite-N result for arbitrary non-Hermiticity

parameter µ. We can expand the trinomials in eq. (5.25) using the result

(A + B + C)N = N !
N∑

j=0

CN−j

(N − j)!

j∑

k=0

AkBj−k

k!(j − k)!
. (5.38)

71



5.2 Quenched kernel

This gives HN (λ, γ) as a quadruple sum over six integrals. We then evaluate the

integrals over w, z, p and q, using eq. (A.9), which reduces to a double sum of

double integrals

HN (λ, γ) =
N !(N + ν)!

π2

N∑

j=0

j∑

k=0

δ
4(j−k)
− δ

4(N−j)
+

k!(k + ν)!

×
∫

C
d2u e−|u|

2
(λ− iδ−u)k(λ− iδ−ū)k+ν

×
∫

C
d2v e−|v|

2
(γ − iδ−v)k(γ − iδ−v̄)k+ν . (5.39)

Finally, we use eq. (A.11) to perform the remaining integrals, and find that

HN (λ, γ) = N !(N + ν)!δ4N
+ (λγ)ν

N∑

j=0

(
δ−
δ+

)4j j∑

k=0

k!
(k + ν)!

Lν
k

(
λ2

δ2−

)
Lν

k

(
γ2

δ2−

)
, (5.40)

where Lν
k(z) is the generalised Laguerre polynomial1. We can now write down the

quenched kernel itself using eq. (5.20)

KN (u, v) =
η−

8π(4µ2η+)ν+1
(u− v)

N−2∑

j=0

(
η−
η+

)2j j∑

k=0

k!
(k + ν)!

Lν
k

(
u

4µ2η−

)
Lν

k

(
v

4µ2η−

)
,

(5.41)

or equivalently, after using the Christoffel-Darboux relationship (see eq. 8.974.1 of

[Gra07]) to perform one of the sums

KN (u, v) =
η−

8π(4µ2η+)ν+1

N−2∑

j=0

(
η−
η+

)2j (j + 1)!
(j + ν)!

×
{

Lν
j+1

(
v

4µ2η−

)
Lν

j

(
u

4µ2η−

)
− (u ↔ v)

}
. (5.42)

In the case of maximal non-Hermiticity (µ = 1), using the fact that

lim
a→0

ajLν
j

(z

a

)
= (−1)j zj

j!
, (5.43)

we see that the kernel simplifies to

KN (u, v;µ = 1) =
u− v

2ν+4π

N−2∑

j=0

(uv)j

4jj!(j + ν)!
. (5.44)

1It is, of course, the presence of these polynomials in the solutions of the chiral ensembles that
gives the ensembles their alternative names (i.e. the Wishart-Laguerre ensembles).
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5.3 Unquenched kernel

5.3 Unquenched kernel

We have already established that the unquenched kernel is of key importance in

deriving expressions for correlation functions of the unquenched ensembles, see eq.

(4.95). For even N we have that, in analogy with eq. (5.20),

K(Nf )
N (u, v) =

c
(Nf )
N

c
(Nf )
N−2

(u− v)〈det(D − u) det(D − v)〉(Nf )
N−2

(uv)ν/2
. (5.45)

In principle, we could repeat the procedure of §5.2 (i.e. using Grassmann variables

and Berezin integration) to determine this expectation. However, such a method

would be fairly laborious; the following alternative is easier, and furthermore, it

results in compact expressions which otherwise might not have been quite so obvious.

Starting from eq. (5.45), we first replace the expectation over characteristic poly-

nomials with a ratio of partition functions:

K(Nf )
N (u, v) =

c
(Nf )
N

c
(Nf )
N−2

(u− v)
Z(Nf+2)

N−2 ({m},√u,
√

v)

Z(Nf )
N−2({m})

. (5.46)

Using eq. (4.18), we replace the unquenched normalisation coefficients with their

quenched counterparts

K(Nf )
N (u, v) =

cN

cN−2

Z(Nf )
N−2({m})

Z(Nf )
N ({m})

(u− v)
Z(Nf+2)

N−2 ({m},√u,
√

v)

Z(Nf )
N−2({m})

=
cN

cN−2
(u− v)

Z(Nf+2)
N−2 ({m},√u,

√
v)

Z(Nf )
N ({m})

. (5.47)

For even Nf : We use eq. (5.12) twice, to replace each of the unquenched partition

functions with Pfaffians of quenched kernels:

K(Nf )
N (u, v) = (v − u)

∆Nf
(m2

1,m
2
2, . . .)

∆Nf+2(u, v, m2
1,m

2
2, . . .)

Pf
[
KN+Nf

(wi, wj)
]
1≤i,j≤Nf+2

Pf
[
KN+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

=
1

∏Nf

i=1(u−m2
i )(v −m2

i )

Pf
[
KN+Nf

(wi, wj)
]
1≤i,j≤Nf+2

Pf
[
KN+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

, (5.48)

where w1 ≡ u, w2 ≡ v and wi+2 ≡ m2
i for 1 ≤ i ≤ Nf .

For odd Nf : We use eq. (5.17) twice, to give

K(Nf )
N (u, v) =

1
∏Nf

i=1(u−m2
i )(v −m2

i )

Pf
[
Aij

]
1≤i,j≤Nf+3

Pf
[
Bij

]
1≤i,j≤Nf+1

(5.49)
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where

Aij = −Aji ≡





0 if i = j,

qN+Nf−1(wj) if j > i = 1,

KN+Nf−1(wi, wj) if j > i > 1,

(5.50)

where w2 ≡ u, w3 ≡ v and wi+3 ≡ m2
i for 1 ≤ i ≤ Nf , and

Bij = −Bji ≡





0 if i = j,

qN+Nf−1(m2
j−1) if j > i = 1,

KN+Nf−1(m2
i−1,m

2
j−1) if j > i > 1.

(5.51)

These results, in which we write the unquenched kernel in terms of the quenched

one, play an important part in Chapter 9.

5.4 Skew-orthogonal polynomials

We can now extract the skew-orthogonal polynomials from the kernels, using eqs.

(4.29) and (4.30).

5.4.1 Quenched case

Explicit forms of the quenched skew-orthogonal polynomials are needed for the un-

quenched correlation functions for an odd number Nf of quark flavours. We have

already determined the norms of the quenched skew-orthogonal polynomials (see eq.

(5.8)).

For the even skew-orthogonal polynomials, we use eq. (4.29) with the quenched

kernel from eq. (5.41). Only a single term survives the limiting process, which we

evaluate using the fact that

lim
u→∞

1
uN

Lν
N

(
u

δ2−

)
=

(−1)N

N ! δ2N−
. (5.52)

Hence we have immediately

q2k(z) = (2k)!(2k + ν)! δ8k
+

(
δ−
δ+

)8k (2k)!
(2k + ν)!

Lν
2k

(
z

δ2−

)
1

(2k)!δ4k−

= δ4k
− (2k)!Lν

2k

(
z

δ2−

)
. (5.53)
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For the odd skew-orthogonal polynomials, we use eq. (4.30). Only three terms

survive the differentiation, which we evaluate using

dn

dzn
Lν

n(z) = (−1)n and (5.54)

dn−1

dzn−1
Lν

n(z) = (−1)n(z − (n + ν)). (5.55)

After using the recurrence relation for the Laguerre polynomials

Lν
n(z) =

(
2 +

ν − 1− z

n

)
Lν

n−1(z)−
(

1 +
ν − 1

n

)
Lν

n−2(z) (5.56)

and simplifying, we arrive at

q2k+1(z) = −δ4k+2
− (2k + 1)!Lν

2k+1

(
z

δ2−

)
+ δ4

+ (2k)(2k + ν) δ4k−2
− (2k − 1)!Lν

2k−1

(
z

δ2−

)

− cLν
2k

(
z

δ2−

)
. (5.57)

If we define scaled Laguerre polynomials as

Cν
k (z) ≡ δ2k

− k! Lν
k

(
z

δ2−

)
(5.58)

then we can write the results in a more compact form as

q2k(z) = Cν
2k(z),

q2k+1(z) = −
[
Cν

2k+1(z)− δ4
+ (2k)(2k + ν)Cν

2k−1(z) + cCν
2k(z)

]
. (5.59)

We reiterate here that c is an arbitrary constant.

5.4.2 Unquenched case

We do not use the unquenched skew-orthogonal polynomials in the remainder of this

thesis. However, we derive them here to demonstrate the elegance of our method.

5.4.2.1 Norms h
(Nf )
k

Let us first determine a relationship for the unquenched norms in terms of the

quenched norms (together with the kernel and skew-orthogonal polynomials). In-

serting eq. (4.18) into eq. (4.73), we have

h
(Nf )
k =

c2k

c2k+2

Z(Nf )
2k+2

Z(Nf )
2k

. (5.60)
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We now merely replace the unquenched partition functions with Pfaffians of quenched

kernels, using the results from §5.1.

For even Nf : We use eq. (5.12) to give

h
(Nf )
k = hk+Nf /2

Pf
[
K2k+Nf+2(m2

i ,m
2
j )

]
1≤i,j≤Nf

Pf
[
K2k+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

. (5.61)

For odd Nf : We use eq. (5.17) to give

h
(Nf )
k = hk+(Nf−1)/2

Pf
[
Aij

]
1≤i,j≤Nf+1

Pf
[
Bij

]
1≤i,j≤Nf+1

, (5.62)

where

Aij = −Aji ≡





0 if i = j,

q2k+Nf+1(m2
j−1) if j > i = 1,

K2k+Nf+3(m2
i−1,m

2
j−1) if j > i > 1,

Bij = −Bji ≡





0 if i = j,

q2k+Nf−1(m2
j−1) if j > i = 1,

K2k+Nf+1(m2
i−1,m

2
j−1) if j > i > 1.

(5.63)

5.4.2.2 Even Nf

First, let us consider the even skew-orthogonal polynomials; we insert eq. (5.48) into

eq. (4.29)

q
(Nf )
2k (z) = h

(Nf )
k lim

u→∞
K(Nf )

2k+2(u, z)
u2k+1

=
h

(Nf )
k limu→∞ u−(2k+Nf+1) Pf

[
K2k+Nf+2(wi, wj)

]
1≤i,j≤Nf+2

∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf+2(m2

i ,m
2
j )

]
1≤i,j≤Nf

(5.64)

where w1 ≡ u, w2 ≡ z and wi+2 ≡ m2
i for 1 ≤ i ≤ Nf . Now, only the top row and

first column of the Pfaffian in the numerator depend on u. Therefore we can take

the limit and the power of u inside the Pfaffian, and since (also by eq. (4.29))

lim
u→∞

K2k+Nf+2(u, z)

u2k+Nf+1
=

q2k+Nf
(z)

hk+Nf /2
, (5.65)

we have

q
(Nf )
2k (z) =

h
(Nf )
k Pf [Aij ]1≤i,j≤Nf+2

hk+Nf /2

∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf+2(m2

i ,m
2
j )

]
1≤i,j≤Nf

(5.66)
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in which

Aij = −Aji ≡





0 if i = j,

q2k+Nf
(wj) if j > i = 1,

K2k+Nf+2(wi, wj) if j > i > 1,

(5.67)

i.e. the unquenched skew-orthogonal polynomial can be written as a Pfaffian involv-

ing a combination of quenched skew-orthogonal polynomials and quenched kernels.

We can now use eq. (5.61) to eliminate the norms completely:

q
(Nf )
2k (z) =

Pf [Aij ]1≤i,j≤Nf+2

∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

. (5.68)

Note that, by a linearity argument, we can equivalently use K2k+Nf
rather than

K2k+Nf+2 inside Aij in eq. (5.67).

For the odd skew-orthogonal polynomials, the calculation becomes rather un-

wieldy if we try to insert the unquenched kernel eq. (5.48) directly into eq. (4.30);

an alternative is to use the following extension of eq. (4.30). Because, for integers

m, n ≥ 0,

hk
∂2k+m

∂u2k+m
unK2k+2(u, z)

∣∣∣
u=0

=





0 if n < m,

−(2k + m)! q2k+1(z) if n = m,

some polynomial in z if n > m,

(5.69)

it follows that, for any constants {ai} with 1 ≤ i ≤ m,

q2k+1(z) = − hk

(2k + m)!
∂2k+m

∂u2k+m

(
m∏

i=1

(u− ai)K2k+2(u, z)

)∣∣∣∣∣
u=0

(5.70)

(where we note that an arbitrary multiple of q2k(z) could also be added). By inserting

eq. (5.48) into eq. (5.70) with the choice that m = Nf and ai = m2
i , we find that

the reciprocal of the polynomial in u in the former cancels with the product on the

right-hand side of the latter, and we arrive at

q
(Nf )
2k+1(z) = −

h
(Nf )
k

∂
2k+Nf

∂u
2k+Nf

Pf
[
K2k+Nf+2(wi, wj)

]
1≤i,j≤Nf+2

(2k + Nf )!
∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf+2(m2

i ,m
2
j )

]
1≤i,j≤Nf

=
h

(Nf )
k Pf [Bij ]1≤i,j≤Nf+2

hk+Nf /2

∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf+2(m2

i ,m
2
j )

]
1≤i,j≤Nf

(5.71)
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in which

Bij = −Bji ≡





0 if i = j,

q2k+Nf+1(wj) if j > i = 1,

K2k+Nf+2(wi, wj) if j > i > 1.

(5.72)

In the final step, we took the differential inside the Pfaffian (recall that w1 ≡ u),

and then used eq. (4.30) to evaluate this differential in terms of the quenched skew-

orthogonal polynomials. Finally, we can also eliminate the norms by using eq. (5.61),

to get

q
(Nf )
2k+1(z) =

Pf [Bij ]1≤i,j≤Nf+2

∏Nf

i=1(z −m2
i ) Pf

[
K2k+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

. (5.73)

A comparison of eqs. (5.68) and (5.73) reveals that the even and odd cases have

near-identical forms.

5.4.2.3 Odd Nf

The skew-orthogonal polynomials for odd Nf can be calculated along similar lines.

Since we gave details in [Ake10b], we will merely state the results here. The even

polynomials are given by

q
(Nf )
2k (z) = −

hk+(Nf−1)/2 Pf
[K2k+Nf+1(wi, wj)

]
1≤i,j≤Nf+1∏Nf

i=1(z −m2
i ) Pf

[
Cij

]
1≤i,j≤Nf+1

, (5.74)

where w1 ≡ z and wi+1 ≡ m2
i for 1 ≤ i ≤ Nf , and

Cij = −Cji ≡





0 if i = j,

q2k+Nf−1(m2
j−1) if j > i = 1,

K2k+Nf−1(m2
i−1, m

2
j−1) if j > i > 1,

(5.75)

and the odd polynomials by

q
(Nf )
2k+1(z) = −

Pf
[
Dij

]
1≤i,j≤Nf+3∏Nf

i=1(z −m2
i ) Pf

[
Eij

]
1≤i,j≤Nf+1

, (5.76)
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where

Dij = −Dji ≡





0 if i = j, or i = 1 and j = 2,

q2k+Nf+1(wj−2) if i = 1 and j > 2,

q2k+Nf−1(wj−2) if j > i = 2,

K2k+Nf+1(wi−2, wj−2) if j > i > 2,

Eij = −Eji ≡





0 if i = j,

q2k+Nf−1(m2
j−1) if j > i = 1,

K2k+Nf−1(m2
i−1,m

2
j−1) if j > i > 1,

(5.77)

where w1 ≡ z and wi+1 ≡ m2
i for 1 ≤ i ≤ Nf . As before, we can add an arbitrary

multiple of q
(Nf )
2k (z) to this result.
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Chapter 6

Quenched densities I: Finite-N

case and macroscopic large-N limit

We have now determined generic formulas for the correlation functions for both the

quenched and the unquenched ensembles, together with explicit formulas for the

kernels in each case. We now turn to investigating the specific behaviour of the

eigenvalue densities in the quenched case. In particular, we give formulas for the

densities of real and non-real eigenvalues, discuss their behaviour, and present a

semi-rigorous proof for the fraction of eigenvalues that are real.

Then we look briefly at the macroscopic large-N limit, which has a bounded

support of the eigenvalues. The average spacing of eigenvalues tends to zero in this

case. We can be quite brief here, since this limit is not so important for applications

to QCD.

6.1 Finite-N eigenvalue densities

6.1.1 Expressions for densities

The eigenvalue densities for the Wishart (squared) eigenvalues (for even matrix size

N) are given by eq. (4.78); inserting the finite-N kernel from eq. (5.42) and the

specific form of the weight function from eq. (4.8) and w(z) from eq. (3.101), we find

80



6.1 Finite-N eigenvalue densities

that the density of complex eigenvalues (z ∈ C\R) is given by

RC1,N (z) = −2i sgn(=m z) 2
∫ ∞

0

dt

t
e−η2

+t(z2+z∗2)− 1
4t K ν

2
(2η2

+t|z|2) erfc(2η+

√
t|=m z|)

× η−|z|νe2η−<e z

8π(4µ2η+)ν+1

N−2∑

j=0

(
η−
η+

)2j (j + 1)!
(j + ν)!

{
Lν

j+1

(
z∗

4µ2η−

)
Lν

j

(
z

4µ2η−

)
− c.c.

}

(6.1)

(where c.c. denotes the complex conjugate) and the density of real eigenvalues (x ∈
R) by

RR1,N (x) =
η−

8π(4µ2η+)ν+1

∫ ∞

−∞
dx′ sgn(x− x′) |xx′|ν/2eη−(x+x′)2K ν

2
(η+|x|)2K ν

2
(η+|x′|)

×
N−2∑

j=0

(
η−
η+

)2j (j + 1)!
(j + ν)!

{
Lν

j+1

(
x′

4µ2η−

)
Lν

j

(
x

4µ2η−

)
− (x ↔ x′)

}
. (6.2)

Both these equations are valid for even N only.

We can convert from Wishart (squared) eigenvalues (z = Λ2) to Dirac eigenvalues

(Λ) as follows:

RC1,Dirac(z) = 4 |z|2 RC1 (z2), (6.3)

RR1,Dirac(x) = 2 |x|RR1 (x2). (6.4)

Since these formulas are also applicable for the infinite-N limits, we drop the sub-

script N here. It is worth mentioning that, since RR1,N (x) 6= RR1,N (−x) in general, the

densities of real and imaginary Dirac eigenvalues will not be the same.

In Figure 6.1, we show the density of complex Dirac eigenvalues at finite N

(N = 10) for µ2 = 0.95 (close to maximal non-Hermiticity) and for an intermediate

value of µ2 = 0.5. Because the Dirac densities are symmetric under reflection in both

the x- and y-axes, we show just one quadrant of the complex plane C. For the case

with µ close to unity, we see an almost circular ‘support’, although a repulsion of

the eigenvalues from both axes is clearly visible. When we consider a lower value of

µ, then we see that the ‘support’ becomes more elliptical.

Figure 6.2 shows the densities of real (in blue) and imaginary (in red, dashed)

eigenvalues, again for high and intermediate values of µ. As the Dirac densities

here are symmetric in x for the real eigenvalues, or in y for the imaginary ones,

we only show the positive half-axes. At µ close to unity, there is a close similarity

between the real and imaginary densities, whereas when we decrease µ, the number
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6.1 Finite-N eigenvalue densities

x

y

x

y

Figure 6.1: The densities of complex Dirac eigenvalues RC1,N,Dirac(z) for N = 10 at

µ2 = 0.95 (left) and µ2 = 0.5 (right); ν = 0 in both cases.

of imaginary eigenvalues decreases, and there is a gradual build-up of eigenvalues

on the real axis.

Figure 6.3 demonstrates the effect of increasing the topology parameter ν, whilst

keeping the other parameters fixed. As we increase ν, there is additional repulsion

of the eigenvalues from the origin, as would have been expected from an observation

of the JPDF.

6.1.2 Hermitian limit (µ → 0) of density

We now verify explicitly that the Hermitian limit (i.e. µ → 0) of the density of

real eigenvalues agrees with the formula given in [Ver94c] where the corresponding

Hermitian model (chGOE) was originally introduced. Note that what happens for

our β = 1 ensemble is that RC → 0 and RR → the Hermitian limit smoothly as µ → 0;

this is quite unlike the β = 2 and 4 cases, in which all eigenvalues are complex for

any µ > 0, and RC ‘collapses down’ to a Dirac delta function on the real axis only

when µ reaches zero. In fact, for the β = 1 case, when µ is very small (but non-zero)

most of the eigenvalues will already lie exactly on the real axis.

Let us consider the limit µ → 0 of eq. (6.2). We have 4µ2η+ → 1, 4µ2η− → 1,

η−/η+ → 1 and eη−x = e−x/2eη+x. Using the fact that

lim
k→∞

√
k ekx Kν(k|x|) =

√
π

2x
Θ(x), (6.5)
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Figure 6.2: The densities of real (blue) and imaginary (red, dashed) Dirac eigenval-

ues, RR1,N,Dirac(x) and RR1,N,Dirac(iy) respectively, for N = 10 at µ2 = 0.95 (left) and

µ2 = 0.5 (right); ν = 0 in both cases.

(proven using eq. 8.451.6 of [Gra07]) where Θ(x) is the Heaviside step function, and

putting k = 1/4µ2 gives, after a little simplification,

lim
µ→0

RR1,N (x) =
Θ(x)

4
x(ν−1)/2e−x/2

∫ ∞

0
dx′ sgn(x−x′) (x′)(ν−1)/2e−x′/2 SN (x, x′; ν) (6.6)

where

SN (x, x′; ν) ≡
N−2∑

j=0

(j + 1)!
(j + ν)!

{
Lν

j+1(x
′)Lν

j (x)− Lν
j+1(x)Lν

j (x
′)
}
. (6.7)

Let us simplify this sum. First we add and subtract two equal terms, and then we

use eq. 8.971.5 of [Gra07] as follows:

SN (x, x′; ν) =
N−2∑

j=0

(j + 1)!
(j + ν)!

{
(Lν

j+1(x
′)− Lν

j (x
′))Lν

j (x)− (Lν
j+1(x)− Lν

j (x))Lν
j (x

′)
}

=
N−2∑

j=0

(j + 1)!
(j + ν)!

{
Lν−1

j+1 (x′)Lν
j (x)− Lν−1

j+1 (x)Lν
j (x

′)
}
. (6.8)

Next, we relabel the sum, so that it runs from 1 to N − 1:

SN (x, x′; ν) =
N−1∑

j=1

j!
(j + ν − 1)!

{
Lν−1

j (x′)Lν
j−1(x)− Lν−1

j (x)Lν
j−1(x

′)
}
. (6.9)

Now, using eq. 8.971.2 from [Gra07], we have

SN (x, x′; ν) =
N−1∑

j=1

j!
(j + ν − 1)!

{− Lν−1
j (x′)

d

dx
Lν−1

j (x) + Lν−1
j (x)

d

dx′
Lν−1

j (x′)
}

=
(

∂

∂x′
− ∂

∂x

) N−1∑

j=1

j!
(j + ν − 1)!

Lν−1
j (x)Lν−1

j (x′). (6.10)
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Figure 6.3: The densities of real Dirac eigenvalues RR1,N,Dirac(x) for N = 10 at µ2 = 1,

for a sequence of topologies: ν = 0 (red), ν = 1 (orange), ν = 2 (green), ν = 3 (blue)

and ν = 4 (purple).

Since the differential of a constant vanishes, we can start the sum from zero:

SN (x, x′; ν) =
(

∂

∂x′
− ∂

∂x

) N−1∑

j=0

j!
(j + ν − 1)!

Lν−1
j (x)Lν−1

j (x′). (6.11)

We now apply the Christoffel-Darboux formula (eq. 8.974.1 of [Gra07]), to arrive at

SN (x, x′; ν) =
N !

(N + ν − 2)!

(
∂

∂x′
− ∂

∂x

)
Lν−1

N−1(x)Lν−1
N (x′)− Lν−1

N−1(x
′)Lν−1

N (x)
x− x′

. (6.12)

Eqs. (6.6) and (6.12), when taken together, are essentially the same as eqs. 5.21 and

5.22 in [Ver94c], after changing to the same scaling convention.

Because there is no N -dependency in the exponents of the weight functions in

eq. (2.6), we actually arrive at something that is ‘mid-way’ between the macroscopic

and the microscopic scalings of the chGOE. Essentially, we see a density that is close

to the semi-circle distribution of Wigner (but with a hole at the origin for topology

ν > 0). The support is approximately [−2
√

N, 2
√

N ], and the maximum height of the

distribution is approximately 2
√

N/π, i.e. both support and height tend to infinity

with increasing matrix size N .

6.1.3 Number of real eigenvalues for µ = 1

The non-Hermitian Gaussian random matrix ensembles with Dyson index β = 1 are

characterised by the fact that, for finite matrix size N , the average number of real

eigenvalues is non-zero. Furthermore, although the fraction of real eigenvalues does
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6.1 Finite-N eigenvalue densities

tend to zero as we take the limit N →∞, the absolute number of real eigenvalues re-

mains non-zero, and, perhaps surprisingly, also tends to infinity. This was explicitly

proven for the non-chiral (GinOE) ensemble with arbitrary non-Hermiticity by For-

rester and Nagao [For08], who showed by integrating the density function that the

number of real eigenvalues is, to leading order, proportional to
√

N at large N . This

extended the earlier result of Edelman et al [Ede94] at maximal non-Hermiticity.

We show now that a similar result is also true for the chiral ensemble.

The technique used for the non-chiral ensemble in [For08] relies on the fact that

each odd skew-orthogonal polynomial can be written in terms of an exact differential

involving an even skew-orthogonal polynomial. This does not appear to be true for

the chiral case, and so we are reduced to presenting a semi-rigorous proof, and only

for the case of maximal non-Hermiticity (i.e. for µ = 1). Furthermore, our proof is

just for the ν = 0 case, although it can easily be generalised for ν > 0, giving in fact

the same answer (to leading order).

Let us now set ν to zero in eq. (6.2), and take the limit µ → 1. The Laguerre

polynomials become monomials in this limit, see eq. (5.43), and, after some simpli-

fication, we have (for even N)

RR1,N (x) =
1

16π
K0

( |x|
2

) ∫ ∞

−∞
dx′K0

( |x′|
2

)
sgn(x− x′)

×
N−2∑

j=0

1
22j(j!)2

{
xj+1(x′)j − xj(x′)j+1

}
. (6.13)

The total number of real squared eigenvalues is therefore given by integrating this

over all x ∈ R:

nreal =
1

16π

N−2∑

j=0

1
22j(j!)2

∫ ∞

−∞
dxK0

( |x|
2

)∫ ∞

−∞
dx′K0

( |x′|
2

)
sgn(x− x′)

× {
xj+1(x′)j − xj(x′)j+1

}
, (6.14)

which can of course also be written as

nreal =
1

16π

N
2
−1∑

j=0

1
24j((2j)!)2

∫ ∞

−∞
dxK0

( |x|
2

) ∫ ∞

−∞
dx′K0

( |x′|
2

)
sgn(x− x′)

× {
q2j(x′)q2j+1(x)− q2j(x)q2j+1(x′)

}
(6.15)
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6.1 Finite-N eigenvalue densities

where the qj(x) are the skew-orthogonal polynomials (for j ≥ 0) obtained by taking

µ → 1 in eq. (5.59)

q2j(x) = x2j ,

q2j+1(x) = x2j+1 − 4(2j)2 x2j−1. (6.16)

Let us consider a single term in the sum in eq. (6.14):

T (j) ≡ 1
16π

1
22j(j!)2

∫ ∞

−∞
dx K0

( |x|
2

) ∫ ∞

−∞
dx′K0

( |x′|
2

)
sgn(x− x′)

× {
xj+1(x′)j − xj(x′)j+1

}
. (6.17)

For large j, the interplay between the polynomials and the exponentially-decaying

modified Bessel functions means that the dominant contribution to the integrals

comes from regions of x and x′ where we can use the large-argument asymptotic

limit of the Bessel function:

K0(x) ∼
√

π

2x
e−x as x →∞. (6.18)

Therefore, for large j,

T (j) ∼ 1
8

1
22j(j!)2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′

e−|x|/2

√
|x|

e−|x′|/2

√
|x′| sgn(x− x′) xj+1(x′)j . (6.19)

We can perform the integrals over x and x′ by splitting the xx′-plane into six regions,

and using eqs. 3.381.1 and 6.455.1 from [Gra07]. After simplification, the result is

that

T (j) ∼ 1
(j!)2

{
(
1 + (−1)j

)
Γ(j + 1

2)Γ(j + 3
2)− Γ(2j + 2)2F1(1, 2j + 2; j + 5

2 ; 1
2)

22j(3 + 2j)

}
.

(6.20)

This contains the hypergeometric function which is defined for |z| < 1 as (see eq.

9.100 of [Gra07])

2F1(a, b; c; z) ≡
∞∑

n=0

(a)n(b)n

(c)n n!
zn (6.21)

(and elsewhere by analytic continuation) where

(a)n ≡ a(a + 1)(a + 2) · · · (a + n− 1) (6.22)

is the Pochhammer symbol. We can now take the large-j limit of eq. (6.20), term-

by-term. After a number of cancellations, we find simply that

T (j) ∼ (−1)j +
1√
πj

. (6.23)
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6.1 Finite-N eigenvalue densities

Finally, therefore, when N is large, the number of squared (Wishart) eigenvalues

that are real is given by

nreal =
N−2∑

j=0

T (j) ≈
∫ N

0
dy

1√
πy

=
2√
π

√
N. (6.24)

So, when we map back to Dirac eigenvalues, we will have a total of 2N eigenvalues,

of which 2√
π

√
N will be real, and the same number 2√

π

√
N pure imaginary (since

µ = 1). The fraction of Dirac eigenvalues that are real is therefore

freal =
1√
πN

. (6.25)

This is the same behaviour as for the non-chiral case (GinOE), although the constant

factor is different; for the Ginibre case, the fraction of real eigenvalues at large N is√
2

πN [Ede94; For08].

6.1.4 Number of real eigenvalues for arbitrary µ

The authors of [Hal97] cite a (slightly) earlier formula of Efetov [Efe97b] for the

fraction of real eigenvalues in a non-chiral β = 1 ensemble with a small perturbation

from Hermiticity. The authors of [Hal97] reasoned that a similar formula may also

apply to the chiral ensemble (at least, with a fixed perturbing matrix), supporting

their claims with Monte Carlo results. For large N and small µ, the fraction of

eigenvalues that are real is predicted to be

Freal(N, µ) =
∫ 2

−2
ρsc(λ) dλ

∫ 1

0
dt exp

{−N [2πµρsc(λ)]2t2
}

(6.26)

where

ρsc(λ) =
√

4− λ2

2π
(6.27)

is the Wigner semi-circle distribution. Of course, this formula is not expected to be

exact, especially at finite N and non-small µ.

However, now that we have derived an analytic formula for the density eq. (6.2),

our aim in this short section is to demonstrate that Efetov’s formula eq. (6.26) does

indeed work rather well in practice for the chiral ensemble, even at finite N and

moderate µ. We note that the asymptotic limit of eq. (6.26) at fixed µ and large N

is

Freal(N,µ) ∼ 1
µ
√

πN
(6.28)
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6.1 Finite-N eigenvalue densities

which is consistent with our previous result eq. (6.25) for the µ = 1 case.

For our numerical checks of the accuracy of eq. (6.26) for finite N , we used

Mathematica [Wol08] to perform the numerical integration of the density given in

eq. (6.2). We show these results in Figure 6.4.
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Figure 6.4: Comparison of fraction of real Dirac eigenvalues (black dots) with the

Efetov formula (red) and the asymptotic limit of the Efetov formula (blue, dashed)

for µ = 0.9 (left) and µ = 0.1 (right). In the left-hand graph, the asymptotic limit is

indistinguishable from the Efetov formula.

For the case of µ = 0.9 (Figure 6.4, left), we find that the Efetov formula eq.

(6.26) is not exact at finite N , but is nevertheless quite close. Furthermore, even for

these relatively moderate values of N , both the Efetov formula and our integrated

results are already close to the asymptotic limit eq. (6.28) (the blue dashed curve

appears to lie on top of the red curve).

We also considered a smaller µ = 0.1 (Figure 6.4, right). Again, we find a close,

but not exact, match to the Efetov formula. However, for the values of N considered,

both the Efetov formula and our results are far from the asymptotic limit eq. (6.28).

Indeed, the fraction of eigenvalues that are real for low values of N is closer to O(1),

and it is only at much higher N that we find that the behaviour is closer to 1
µ
√

πN
.

We will assume that the limiting behaviour eq. (6.28) is correct, when deriving

the eigenvalue support in the next section. Otherwise we will make no further use

of the Efetov formula, apart from at the end of Chapter 8 where we use it as a

consistency check.
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6.1 Finite-N eigenvalue densities

6.1.5 Approximate eigenvalue supports

We will establish in §7.3 that the finite-N densities (for both complex and real

eigenvalues) converge pointwise to the strongly non-Hermitian large-N limits, which

are essentially flat far away from the axes. We also see these plateaux for large, but

finite, values of N , although for finite N , the densities must naturally tend to zero

again at sufficiently large |z|.
We can therefore use the strong-limit densities from §7.3 as proxies for the finite-

N densities in the plateau regions, and thereby estimate the approximate ‘supports’

of the eigenvalues in the finite-N case. We also need expressions for the numbers of

real and complex eigenvalues. For the real case, we will use the asymptotic form of

the Efetov formula eq. (6.28); for the complex case, we will assume that, for large

N , all the eigenvalues (to leading order) are complex.

For the real case, the density of Dirac eigenvalues in the plateau region is given

by eq. (7.18), and the number of real Dirac eigenvalues is estimated, from the asymp-

totic limit of Efetov’s formula, to be

nreal ∼ 2
µ

√
N

π
. (6.29)

Therefore, the approximate support must be the interval

[
−2

√
N

1 + µ2
, 2

√
N

1 + µ2

]
(6.30)

on the real axis. Whilst most eigenvalues lie within this interval, a small number

will lie outside (the true support is not bounded).

For the complex case, we have the Dirac density of the plateau given by eq. (7.15),

and the number of complex Dirac eigenvalues ∼ 2N , to leading order. Assuming that

the eigenvalues lie in an ellipse (a reasonable assumption, cf. Girko’s elliptical law,

see [Gir84]), and that one axis of the ellipse must, by continuity, be the same as the

support of the real eigenvalues eq. (6.30), then the other axis of the ellipse is the

interval [
−2µ2

√
N

1 + µ2
i, 2µ2

√
N

1 + µ2
i

]
(6.31)

on the imaginary axis. Eqs. (6.30) and (6.31) then specify the elliptical region that

contains most of the complex eigenvalues.
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6.2 Macroscopic large-N limit

6.2 Macroscopic large-N limit

We can define the macroscopic scaling for the complex and real Dirac eigenvalue

densities as

RCM
1,N,Dirac(z) ≡ N RC1,N,Dirac(

√
N z),

RRM
1,N,Dirac(x) ≡

√
N RR1,N,Dirac(

√
N x). (6.32)

These are the Dirac densities that we would have obtained if we had introduced an

extra factor of N into the weight function of eq. (2.6), giving

Z(Nf )
N ∼

∫
dP dQ exp

[
−N

2
Tr(PP T + QQT )

]
×

Nf∏

f=1

det(D + mfI). (6.33)

In fact, this scaling is often adopted by RMT practitioners, since the support of the

eigenvalue density remains bounded as N → ∞. The N -dependent normalisations

in eq. (6.32) are chosen such that the integrals of these densities (over C or R
respectively) still correspond to the total numbers of complex and real/imaginary

eigenvalues; consequently, RCM
1,N,Dirac(z) and RRM

1,N,Dirac(x) both diverge at large N for

fixed z and x respectively.

To establish (non-divergent) macroscopic large-N limits, one must also introduce

normalisations dependent on the number of eigenvalues that are complex, and the

number that are real/imaginary. At large N , we conjectured in §6.1.4 that these

∼ 2N and ∼ 2
√

N

µ
√

π
respectively, and so we would expect the following large-N limits

to exist:

RCM
1,Dirac(z) ≡ lim

N→∞
1

2N
RCM

1,N,Dirac(z),

RRM
1,Dirac(x) ≡ lim

N→∞
µ
√

π

2
√

N
RRM

1,N,Dirac(x). (6.34)

The N -dependency in the normalisations cancels the normalising pre-factors in eq.

(6.32), and so we can write

RCM
1,Dirac(z) = 1

2 lim
N→∞

RC1,N,Dirac(
√

N z), (6.35)

RRM
1,Dirac(x) = 1

2µ
√

π lim
N→∞

RR1,N,Dirac(
√

N x). (6.36)

We have not (to date) been able to derive analytic formulas for these macroscopic

densities eq. (6.34) at arbitrary µ, due to the complexity of the integrals involved.
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6.2 Macroscopic large-N limit

However, we expect that the macroscopic behaviour is the same as that of the non-

chiral case, where the complex Dirac density is constant within an ellipse, and zero

outside, and the real and imaginary Dirac densities are constant on a fixed interval,

and zero outside.

In the absence of analytical formulas, we shall merely content ourselves with

demonstrating the (probable) existence of macroscopic limits for various

non-Hermiticities µ, by showing a sequence of finite-N results (for N = 10, 20 and

30) (see Figure 6.5). We concentrate here on the densities of real eigenvalues (since

it is easier to display several curves on the same chart) and fix ν = 0 in all cases.

Note that the effect of the normalisation in eq. (6.36) is that the area under the

curve will tend to unity as N →∞.
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Figure 6.5: The macroscopic densities of real Dirac eigenvalues 1
2µ
√

πRRM
1,N,Dirac(x)

for N = 10 (red), N = 20 (blue) and N = 30 (green) for µ = 0.9 (top, left), µ = 0.25

(top, right) and µ = 0.1 (bottom); ν = 0 in all cases.

For µ = 0.9, we see rather rapid convergence to a step function, as expected. For
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6.2 Macroscopic large-N limit

an intermediate value of µ (we chose µ = 0.25), we also see rapid convergence to a

step function, although for very low N , the density is perhaps closer to a semi-circle.

For small µ (but still strictly positive – we chose µ = 0.1), convergence is evidently

much slower, and at the low values of N that we plot, the densities in fact all appear

to be closer to semi-circles than to step functions (although we still expect that the

large-N limit will be a step function).

Finally, we mention that, for finite N , the eigenvalue density at the origin will

always be zero. Only in the large-N limit does the gap close, giving us a completely

flat plateau.
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Chapter 7

Quenched densities II: Strongly

non-Hermitian microscopic

large-N limit

We now consider the first of the two distinct microscopic scaling regimes for non-

Hermiticity. Microscopic regimes are scaling regimes where the expected distance

between neighbouring eigenvalues remains finite (and non-zero) as the matrix size

N → ∞. This is in contrast to the macroscopic regime introduced in §6.2, where

the eigenvalue support remains finite in the large-N limit, and so adjacent eigen-

values become closer together on average. The particular limit considered in this

chapter is the microscopic limit at strong non-Hermiticity, which has recently found

applications in high-density QCD [Kana10].

7.1 Definition of the limit

In the so-called strongly non-Hermitian regime, the non-Hermiticity parameter µ

(corresponding physically to the chemical potential) remains constant (cf. the weakly

non-Hermitian regime which will be introduced in Chapter 8, where µ → 0 as N →
∞).

Effectively, under microscopic scaling, we magnify the macroscopic density around

a particular point; since we will choose the origin because of its applicability to

physics, it turns out that the strong scaling of Dirac eigenvalues is in fact just the

same as the finite-N scaling, and so we can take the large-N limits without any

93



7.2 Strong kernel

change to the normalisation:

RS
1 (z) ≡ lim

N→∞
R1,N (z). (7.1)

We can take the corresponding large-N limits of the kernel and the weight functions

separately (both of which exist), and then determine the large-N density functions

(for real and complex argument).

7.2 Strong kernel

In §5.2.2 we derived the strongly non-Hermitian large-N limit of the kernel at max-

imal non-Hermiticity µ = 1 using the saddle point method. Here, we explicitly take

the large-N limit of the finite-N result, generating an expression valid for arbitrary

µ. The finite-N kernel is given by eq. (5.42). Because the only N -dependency in

this is in the upper limit of the sum, it is quite straightforward to take N →∞.

For generalised Laguerre polynomials, we can use a recurrence relation to show

that

(j + 1)
{
Lν

j+1(x)Lν
j (y)− (x ↔ y)

}
=

(
x

d

dx
Lν

j (x) + (j + ν + 1− x)Lν
j (x)

)
Lν

j (y)− (x ↔ y)

=
(

x
∂

∂x
− y

∂

∂y
− (x− y)

)
Lν

j (x)Lν
j (y). (7.2)

The finite-N kernel therefore becomes

KN (z1, z2;µ) =
η−

8π(4µ2η+)ν+1

N−2∑

j=0

(
η−
η+

)2j j!
(j + ν)!

×
{(

x
∂

∂x
− y

∂

∂y
− (x− y)

)
Lν

j (x)Lν
j (y)

∣∣∣x=z1/4µ2η−
y=z2/4µ2η−

}
.

(7.3)

Differentiating eq. 8.976.1 of [Gra07] (the analogue of Mehler’s formula), i.e.

S(x, y, z) ≡
∞∑

j=0

j!
(j + ν)!

Lν
j (x)Lν

j (y)zj =
(xyz)−ν/2

1− z
exp

(−z(x + y)
1− z

)
Iν

(
2
√

xyz

1− z

)

(7.4)

gives us

x
∂S

∂x
− y

∂S

∂y
= − z

1− z
(x− y) S(x, y, z). (7.5)
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Hence the limit of the kernel as N →∞ is easily seen to be

KS(z1, z2; µ) ≡ lim
N→∞

KN (z1, z2; µ)

=
η3
+

8π
(z1 − z2) e−η−(z1+z2) (z1z2)−ν/2 Iν (2η+

√
z1z2) . (7.6)

When µ = 1, this gives

KS(z1, z2; µ = 1) =
1

64π
(z1 − z2) (z1z2)−ν/2 Iν (

√
z1z2) (7.7)

which is in perfect agreement with eq. (5.37).

7.3 Eigenvalue density

The weight function eq. (3.101) is independent of N , and so we can now write down

the densities. For z ∈ C\R, we have

RCS
1 (z) = sgn(=m z)(−2i)(z − z∗)

η3
+

8π
Iν(2η+|z|)

× 2
∫ ∞

0

dt

t
exp

{
−η2

+(z2 + z∗2)t− 1
4t

}
K ν

2
(2η2

+|z|2t) erfc(2η+

√
t|=m z|),

(7.8)

and for x ∈ R, we have

RRS
1 (x) =

η3
+

8π
2K ν

2
(η+|x|)

∫ ∞

−∞
dx′ [sgn(xx′)]−ν/2|x− x′| 2K ν

2
(η+|x′|)Iν(2η+

√
xx′). (7.9)

Note how the η−-dependent factors have cancelled. As a consequence, the densities

at arbitrary µ are related to those at maximal non-Hermiticity (µ = 1) by a simple

scaling of the eigenvalues by 2η+.

We show some plots of the densities of complex and real eigenvalues in Figures

7.1 and 7.2 respectively. The former figure shows the effect on the complex density

of changing the topological parameter ν. Essentially, a larger value of ν leads to

an increased depletion of the density in the vicinity of the origin; otherwise, little

changes. The latter figure shows (left) how the finite-N density converges to the

strong limit, and (right) the effect of increasing ν.

We observe that, away from the axes [origin], the densities of the complex [real]

Dirac eigenvalues are, essentially, flat. Let us estimate the height of these plateaux.

First, consider the function g2(z), given by eqs. (3.86) and (3.88):

g2(z) = 2
∫ ∞

0

dt

t
exp

{
−2η2

+(x2 − y2)t− 1
4t

}
K ν

2
(2η2

+(x2 + y2)t) erfc(2η+|y|
√

t) (7.10)
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x

y

x

y

Figure 7.1: The densities of complex Dirac eigenvalues RCS
1,Dirac(z) in the strongly

non-Hermitian limit with µ = 1, and ν = 0 (left) and ν = 4 (right).

where z = x + iy. For large argument, we can replace the complementary error

function with its asymptotic limit

erfc(x) ∼ e−x2

√
π x

. (7.11)

Therefore, at sufficiently large y, we have

g2(z) ≈ 1√
π η+|y|

∫ ∞

0

dt

t3/2
exp

{
−2η2

+(x2 + y2)t− 1
4t

}
K ν

2
(2η2

+(x2 + y2)t). (7.12)

On making a simple change of variables u = t−1, we can use eq. 6.654 of [Gra07] to

perform the integral exactly, giving

g2(z) ≈ 4
η+|y| Kν (2η+|z|) . (7.13)

The complex density in the strongly non-Hermitian limit is therefore

RCS
1 (z) ≈ 2η2

+

π
Iν (2η+|z|) Kν (2η+|z|)

≈ η+

2π|z| (7.14)

where we used the large-argument asymptotics for both the I- and K-Bessel func-

tions in the last step. Finally, mapping to Dirac eigenvalues, we have for the density

RCS
1,Dirac(z) ≈ 2η+

π
, (7.15)

sufficiently far away from both the x- and y-axes. This is independent of z, as we

observed in the plots.
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Figure 7.2: Left: The densities of real Dirac eigenvalues RR1,N,Dirac(x) at µ = 1 for

N = 10 (red), N = 20 (orange), N = 30 (green) and in the strongly non-Hermitian

limit RRS
1,Dirac(x) (blue); ν = 0 in all cases. Right: The strongly non-Hermitian limit

RRS
1,Dirac(x) at µ = 1 for ν = 0 (red), ν = 1 (orange), ν = 2 (green), ν = 3 (blue) and

ν = 4 (purple).

For the density of real eigenvalues, we consider large, positive x in eq. (7.9).

The dominant contribution to the integral can be shown to come from the region

where x′ ∼ x À 0. We can therefore replace the three Bessel functions with their

asymptotic forms, and change the lower limit of the integral from −∞ to 0. After a

change of variables from x′ to t =
√

x′/x, we have

RRS
1 (x) ≈ η

3/2
+

4
√

π

∫ ∞

0
dt

√
x

t
|1− t2| exp

{−η+x(1− t)2
}

. (7.16)

The dominant contribution to the integral is in the region where t ≈ 1. However, we

cannot use the usual saddle point formula, since the factor |1 − t2| is zero at t = 1.

(In fact, the integrand has the form of two adjacent (disjoint) peaks, touching at

t = 1.) However, because the integrand is greatest in the region close to (but not

at) t = 1, we can make the following approximations (which become more accurate

the greater x is): Because the two peaks are approximately the same size, we can

integrate over just one of them, and double the result. And close to t = 1, we write
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7.3 Eigenvalue density

1− t2 = (1 + t)(1− t) ≈ 2(1− t), and put
√

t ≈ 1 in the denominator. This then gives

RRS
1 (x) ≈ η

3/2
+√
π

∫ ∞

1
dt
√

x (t− 1) exp
{−η+x(1− t)2

}

=
1
2

√
η+

πx

[
− exp

{−η+x(1− t)2
} ]∞

1

=
1
2

√
η+

πx
. (7.17)

The Dirac density is therefore given by

RRS
1,Dirac(x) ≈

√
η+

π
(7.18)

which is independent of x, again in agreement with our observations.

We used eqs. (7.15) and (7.18) in the last chapter, since these are also good

proxies for the densities at finite N , when considering the eigenvalues that lie within

the approximate supports.
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Chapter 8

Quenched densities III: Weakly

non-Hermitian microscopic

large-N limit

A precise map of RMT to chiral perturbation theory (χPT) can only be made in the

epsilon regime, which requires that we rescale the chemical potential with 1/
√

N .

The resulting ensemble is therefore only weakly non-Hermitian. We also scale the

eigenvalues as we would for the Hermitian case, obtaining a microscopic density.

The rather surprising fact that we do not just end up with the Hermitian limit, but

with a genuinely different limit, was originally discovered for the non-chiral Ginibre

ensembles by [Fyo97a; Fyo97b].

However, unlike the cases with Dyson indices β = 2 and 4, for β = 1 we have a

significant number of both complex and real eigenvalues in the weakly non-Hermitian

limit. In fact, we can infer from Efetov’s formula eq. (6.26) that the number of real

eigenvalues and the number of complex eigenvalues both grow with ∼ N at large N ,

with the ratio of the two tending to some (finite and non-zero) constant.

In this chapter, we find explicit formulas for the densities of complex and real

eigenvalues at weak non-Hermiticity where the parameter α will measure the degree

of non-Hermiticity. The complex case is straightforward. However, the real case is

more subtle; the large-N limit and the integral in the expression for the density do

not commute, and so the density cannot be written purely in terms of a weak kernel

and a rescaled weight function. This is also true for the Hermitian chGOE.

After we derive the correct solution, we show that the eigenvalue density of the

chGOE can be recovered by taking the limit α → 0, an important consistency check.
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8.1 Definition of the limit

8.1 Definition of the limit

In the weakly non-Hermitian case, we scale the chemical potential µ and the Dirac

eigenvalue z with N as follows

µ =
α√
2N

and z =
ẑ

2
√

N
, (8.1)

where the eigenvalue scaling is given with respect to the finite-N case in §6.1. For

the densities of the Wishart (squared Dirac) eigenvalues, the weakly non-Hermitian

limits are given by

RCW
1 (z;α) ≡ lim

N→∞
1

(4N)2
RC1,N

(
z

4N
; µ =

α√
2N

)
,

RRW
1 (x;α) ≡ lim

N→∞
1

4N
RR1,N

(
x

4N
;µ =

α√
2N

)
. (8.2)

8.2 Complex eigenvalue density

So, for the complex case z ∈ C\R, we have

RCW
1 (z;α) = −2i sgn(=m z) lim

N→∞

[
1

(4N)2
KN

(
z

4N
,

z∗

4N

)
w

(
z∗

4N

)
w

( z

4N

)]
, (8.3)

with the finite-N kernel from eq. (5.42) and the weight w(z) from eq. (3.101). If we

want to consider well-defined large-N limits of the kernel and the weight function

separately, then we must make a split as follows:

RCW
1 (z; α) = −2i sgn(=m z)KW (z, z∗)W(z, z∗) (8.4)

in which we have defined the weak kernel and weight function as

KW (u, v) ≡ lim
N→∞

[
1

(4N)2

(
uv

(4N)2

)ν/2

KN

( u

4N
,

v

4N

)]
, (8.5)

W(z, z∗) ≡ lim
N→∞

[(
(4N)2

zz∗

)ν/2

w
( z

4N

)
w

(
z∗

4N

)]

= lim
N→∞

[
exp

[
η−(z + z∗)

4N

]
g

(
z

4N
,

z∗

4N

)]
, (8.6)

and g(z, z∗) is given in eq. (3.86). It must be remembered that µ also now depends

on N through eq. (8.1) and that KN (u, v) and w(u) depend on µ.

We only need to evaluate the weight function W(z, z∗) for arguments which are

complex conjugates of each other, which we shall do in §8.2.2; however, since we will

need to use the weak kernel KW (u, v) in the calculation of the real density in §8.3,

we will evaluate it for arbitrary arguments in the next part.
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8.2 Complex eigenvalue density

8.2.1 Weak kernel

To determine the weak kernel, it is somewhat simpler if we first rewrite the finite-

N kernel eq. (5.42) so that the generalised Laguerre polynomials are of the same

degree. We use

nLν
n(x) = (n + ν)Lν

n−1(x)− xLν+1
n−1(x) (8.7)

(eq. 8.971.2 of [Gra07]) to show that

(n + 1)
{
Lν

n+1(u) Lν
n(v)− (u ↔ v)

}
=

(
(n + 1 + ν)Lν

n(u)− uLν+1
n (u)

)
Lν

n(v)− (u ↔ v)

= vLν+1
n (v) Lν

n(u)− (u ↔ v). (8.8)

The finite-N kernel eq. (5.42) then becomes

KN (u, v) =
1

8π(4µ2η+)ν+14µ2

N−2∑

j=0

(
η−
η+

)2j j!
(j + ν)!

×
{

uLν+1
j

(
u

4µ2η−

)
Lν

j

(
v

4µ2η−

)
− (u ↔ v)

}
. (8.9)

In the large-N limit, we will replace the sum with an integral over the variable

t ≡ j
N ∈ [0, 1]. We have several parts to consider; in each case, we take N → ∞ for

fixed t (and not for fixed j). The following are quite straightforward:

lim
N→∞

N−2∑

j=0

1
N

=
∫ 1

0
dt, (8.10)

lim
N→∞
j=[tN ]

(
1− α2

2N

1 + α2

2N

)2j

= exp[−2α2t], (8.11)

lim
N→∞
j=[tN ]

j!
(j + ν)!

Nν = t−ν , (8.12)

where [x] denotes the integer part of x. For the limit of the Laguerre polynomials,

we have that, from eq. 8.978.2 of [Gra07],

lim
N→∞

[
N−ν Lν

N

( x

N

)]
= x−ν/2 Jν(2

√
x), (8.13)

where ν is some real constant. Now, we choose some fixed t ∈ [0, 1]. Then

lim
N→∞

[
N−ν Lν

[tN ]

( x

N

)]
= tν lim

N→∞

[
([tN ])−ν Lν

[tN ]

(
xt

[tN ]

)]

= tν(xt)−ν/2 Jν(2
√

xt)

= tν/2x−ν/2 Jν(2
√

xt). (8.14)
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8.2 Complex eigenvalue density

Therefore,

lim
N→∞
j=[tN ]

1
Nν+1

Lν+1
j

(
x

4N(1− α2

2N )

)
= lim

N→∞
1

Nν+1
Lν+1

[tN ]

( x

4N

)

=
(

2
√

t√
x

)ν+1

Jν+1(
√

xt). (8.15)

On assembling all the components, and after changing variables to s =
√

t, we have

the weak kernel

KW (u, v) =
1

256πα2

∫ 1

0
ds s2 e−2α2s2{√uJν+1(s

√
u)Jν(s

√
v)− (u ↔ v)}, (8.16)

which cannot be simplified any further analytically.

8.2.2 Weight and density

It is straightforward to determine that the large-N limit of the weight function

defined in eq. (8.6) under the scalings eq. (8.1) is

W(z, z∗) = exp
[

1
8α2

2<e z

]

× 2
∫ ∞

0

dt

t
exp

[
− t

64α4
(z2 + z∗2)− 1

4t

]
K ν

2

(
t

32α4
|z|2

)
erfc

( √
t

4α2
|=m z|

)
,

(8.17)

and so we can immediately write down the density of complex eigenvalues (z ∈ C\R)

at weak non-Hermiticity from eq. (8.4) as

RCW
1 (z) = −2i sgn(=m z) exp

[
1

8α2
2<e z

]

× 2
∫ ∞

0

dt

t
exp

[
− t

64α4
(z2 + z∗2)− 1

4t

]
K ν

2

(
t

32α4
|z|2

)
erfc

( √
t

4α2
|=m z|

)

× 1
256πα2

∫ 1

0
ds s2 e−2α2s2{√zJν+1(s

√
z)Jν(s

√
z∗)− c.c.}. (8.18)

In Figure 8.1, we plot the density of complex Dirac eigenvalues for various val-

ues of the non-Hermiticity parameter α. The complex eigenvalues are seen to lie

(predominantly) in a strip parallel to the real axis. We can estimate the width of

this strip as follows. For the finite-N case, we know that the complex eigenvalues lie

approximately in an ellipse whose axis on the imaginary axis has (half-)length given

by eq. (6.31). Using this result, it is easy to show that, under the weak scaling eq.
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x

y

x

y

x

y

Figure 8.1: Densities of complex Dirac eigenvalues RCW
1,Dirac(z) in the weakly non-

Hermitian limit, for α =
√

0.2 (top, left), α = 1 (top, right) and α = 5 (bottom);

ν = 0 in all cases.

(8.1), the (half-)width of the strip of eigenvalues is 2α2. When we say half-width,

we mean that the strip is between −2α2i and +2α2i, so the full width is actually

4α2. We caution that the strip evidently does not have a sharp edge (indeed, strictly

speaking, it has no edge at all), and so this width is only an approximate indicator

of the edge of the ‘support’ of the complex eigenvalues.

8.2.3 Limiting cases

8.2.3.1 Hermitian limit (α → 0)

As α → 0, the height of the density function of complex eigenvalues tends to zero. We

demonstrate this numerically in Figure 8.2, where we take a cross-section through
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8.2 Complex eigenvalue density

the density of complex eigenvalues at fixed x = 6, where x is chosen sufficiently

large that the cross-section becomes essentially x-independent for the range of α

considered.
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Figure 8.2: Cross-sections at x = 6 through the density of complex Dirac eigenvalues

RCW
1,Dirac(6 + iy) at weak non-Hermiticity, for α = 1.2 (red), α = 1 (orange), α = 0.8

(green), α = 0.6 (blue), α = 0.4 (purple) and α = 0.2 (pink); ν = 0 in all cases.

8.2.3.2 Strongly non-Hermitian limit (α →∞)

We now show that we can retrieve the strongly non-Hermitian microscopic density

derived in §7.3 by taking the limit α → ∞ and suitably rescaling the eigenvalues.

We begin with the weak kernel eq. (8.16). Using eq. 8.472.2 of [Gra07], we have

KW (u, v) =
1

128πα2

(
v

∂

∂v
− u

∂

∂u

) ∫ 1

0
ds s e−2α2s2

Jν(s
√

u)Jν(s
√

v). (8.19)

We now define the following scaling of the weak kernel

K+(z1, z2) ≡ lim
α→∞(8η+α2)2KW (8η+α2z1, 8η+α2z2)

=
η2
+

2π
lim

α→∞α2

(
z2

∂

∂z2
− z1

∂

∂z1

) ∫ 1

0
ds s e−2α2s2

Jν(2
√

2η+α
√

z1s)Jν(2
√

2η+α
√

z2s)

=
η2
+

4π

(
z2

∂

∂z2
− z1

∂

∂z1

)
lim

α→∞

∫ √
2α

0
dt t e−t2Jν(2

√
η+z1t)Jν(2

√
η+z2t)

=
η3
+

8π
(z1 − z2)e−η+(z1+z2)Iν(2η+

√
z1z2), (8.20)

where we used eq. 6.633.2 of [Gra07] to do the integral, and then we performed the

two partial differentials and simplified the result. This is an exact result, although
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8.2 Complex eigenvalue density

note that K+(z1, z2) is not the same as the strong kernel in eq. (7.6): Apart from the

(minor) fact that we defined it not to include the factor (z1z2)−ν/2, more significant

is the fact that there is an η+ in the exponent, and not an η−. We now take the

limit α →∞ of the weight function eq. (8.17) with the same rescaling of eigenvalues

as for the kernel:

W+(z, z∗) ≡ lim
α→∞W(8η+α2z, 8η+α2z∗)

= exp {2η+<e z}

× 2
∫ ∞

0

dt

t
exp

{
−η2

+(z2 + z∗2)t− 1
4t

}
K ν

2
(2η2

+|z|2t) erfc(2η+

√
t|=m z|).

(8.21)

Combining eqs. (8.20) and (8.21) to obtain the limit of the density at large α, we

find

lim
α→∞

[
(8η+α2)2 RCW

1 (8η+α2z)
]

= −2i sgn(=m z)K+(z, z∗)W+(z, z∗)

= RCS
1 (z) at η+. (8.22)

So, although we cannot reconstruct either the strong kernel or the strong weight

function individually from the weakly non-Hermitian limit, it turns out that we can

obtain the density of complex eigenvalues at strong non-Hermiticity, for arbitrary

µ.

From numerical investigations, we observe that convergence in eq. (8.22) is quite

fast for moderately large α and when the Dirac eigenvalue
√

z lies well within the

strip determined in §8.2.2. So in practice the weakly non-Hermitian density may be

described quite well by the formulas for the strongly non-Hermitian density under

these circumstances.

8.2.4 Weak kernel revisited

We now investigate the behaviour of the weakly non-Hermitian kernel in some more

detail. The results from this section will be needed in the next chapter when we come

to investigate the behaviour of the unquenched ensembles at weak non-Hermiticity.

They can also be used, for example, to understand the width of the strip of complex

eigenvalues, and the probability of finding complex eigenvalues outside the strip.

Our aim is to find approximations for the weak kernel, to clarify precisely when

these approximations are valid and to investigate how accurate they are likely to
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be. We already determined a limit for the weak kernel in the limit α → ∞ for

fixed arguments (see §8.2.3.2). Here, we look at the same problem from a different

perspective, and consider α fixed and investigate the kernel for various arguments.

Our approach is perhaps a little less rigorous than before, but the insights that we

gain are deeper.

Let us recall the weak kernel from eq. (8.16)

KW (u, v) =
1

256πα2

∫ 1

0
ds s2 e−2α2s2{√uJν+1(s

√
u)Jν(s

√
v)− (u ↔ v)}.

We write this for Dirac eigenvalues on the positive, imaginary axis (u, v > 0):

KW
(
(iu)2, (iv)2

)
=

1
256πα2

∫ 1

0
ds s2 e−2α2s2{iuJν+1(isu)Jν(isv)− (u ↔ v)}. (8.23)

It is perhaps clearer if we switch to modified Bessel functions using eq. 8.406.3 of

[Gra07]

Jν(iz) = iν Iν(z), (8.24)

and furthermore assume that the dominant contribution to the integral comes from

a region where we can use the asymptotic form

Iν(z) ∼ ez

√
2πz

(8.25)

as a reasonable approximation. This then gives

KW
(
(iu)2, (iv)2

) ≈ (−1)ν+1

2π

1
256πα2

u− v√
uv

∫ 1

0
ds s e−2α2s2

es(u+v). (8.26)

We now change variables to t = 2α2s, and complete the square in the exponent,

giving

KW
(
(iu)2, (iv)2

) ≈ (−1)ν+1

2048π2α6

u− v√
uv

eγ2/2α2

∫ 2α2

0
dt t exp

{
− (t− γ)2

2α2

}
, (8.27)

where we have defined γ ≡ u+v
2 to be the average of the two (Dirac) arguments. We

note that the integration domain depends on the square of α, but the Gaussian part

of the integrand has a width which is ∼ α. We show this schematically in Figure 8.3

for α sufficiently large.

Let us now consider the first of two regimes: For kα < γ < 2α2 − kα, where k

is some constant O(1) (for practical purposes, one could take k to be a low integer,

perhaps 2 or 3), we can argue that the Gaussian peak is almost completely contained
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u+v

2

2 Α2

Α

O
t

Figure 8.3: Schematic plot of the integrand of the weak kernel.

within the integration region (the solid peak in Figure 8.3). For such a regime to

exist, we require α > k. Therefore, we can switch the integration limits from [0, 2α2]

to (−∞,∞) without losing much accuracy, and replace the t in the integrand with

its value at the centre of the peak (i.e. γ). We then integrate over the Gaussian, to

give

KW
(
(iu)2, (iv)2

) ≈ (−1)ν+1

2048πα5
√

2π

(u2 − v2)√
uv

exp
{

(u + v)2

8α2

}
(8.28)

=
(−1)ν+1

2048πα5
(u2 − v2) e(u2+v2)/8α2 euv/4α2

√
2πuv

≈ (−1)ν+1

4096πα6
(u2 − v2) e(u2+v2)/8α2

Iν

( uv

4α2

)
. (8.29)

This final form eq. (8.29) is given to show consistency with eq. (8.20), although eq.

(8.28) will suffice in the following.

The second regime of interest is where γ > 2α2 + kα, where k was discussed

earlier. In this regime, the peak lies predominantly outside the integration region

(the dashed peak in Figure 8.3). But rather than approximating the integral as zero,

we wish to capture the tail that still lies inside the integration domain, and so will

proceed as follows. The t in the integrand of eq. (8.27) can be replaced with its value

at the edge of the integration domain (i.e. 2α2). The integral is then equivalent to

a complementary error function, which in turn we approximate with its asymptotic
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limit, to give

KW
(
(iu)2, (iv)2

) ≈ (−1)ν+1

1024π2α2

u− v√
uv

[
u + v

2
− 2α2

]−1

exp
{−2α2 + u + v

}
(8.30)

=
(−1)ν+1

512πα2
(u− v)

[
u + v

2
− 2α2

]−1

e−2α2 eu

√
2πu

ev

√
2πv

≈ (−1)ν+1

512πα2
(u− v)

[
u + v

2
− 2α2

]−1

e−2α2
Iν(u)Iν(v). (8.31)

(Note, incidentally, that if u, say, is taken to be very large whilst keeping v fixed,

then

(u− v)
[
u + v

2
− 2α2

]−1

→ 2, (8.32)

and so the kernel is seen to factorise completely into the product of a u-dependent

part and a v-dependent part.)

What is significant is that both approximations eqs. (8.28) and (8.30) would

appear to be very good in their respective domains, and, compared with the width

of the unquenched strip, 2α2, the crossover region (where neither approximation is

so good) is quite small, being only ∼ O(α).

Although we do not give details and proofs, we argue that the previous two

approximations can also be extended to the more general case when the arguments

of KW (w, z) are no longer real and negative, although one must be particularly

careful to handle the square root signs correctly (this can sometimes result in sign

flips in the exponents). For example, one can show that, when the arguments are

complex conjugates, then the kernel inside the strip has the behaviour

KW (z, z∗) ≈ 1
2048πα5

√
2π

2iy√
|z| exp

{−x + |z|
4α2

}
(8.33)

or equivalently in Dirac eigenvalues as

KW (z2, z∗2) ≈ 1
2048πα5

√
2π

4ixy√
x2 + y2

exp
{

y2

2α2

}
. (8.34)

We have written x ≡ <e z and y ≡ =m z. The weak weight function eq. (8.17) has

the following approximate behaviour almost everywhere (both inside and outside the

strip, except close to the axes), as can be established by using the large-argument

approximation for eq. (7.13) under weak scaling:

W(z, z∗) ≈ 32
√

2π α3

|y|
√
|z| exp

{
x− |z|
4α2

}
(8.35)
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or in Dirac eigenvalues

W(z2, z∗2) ≈ 16
√

2π α3

|xy|
√

x2 + y2
exp

{
− y2

2α2

}
. (8.36)

Hence, one can calculate the eigenvalue density within the strip as

RCW
1,Dirac(z) = 4 |z|2 {− 2iKW (z2, z∗2)W(z2, z∗2) sgn(=m z2)

}

≈ 1
4πα2

. (8.37)

We define the following scaling of the eigenvalues

ρCW
1,Dirac(z) ≡ 2α2 RCW

1,Dirac(2α2z), (8.38)

and in Figure 8.4 we show cross-sections through the strip of this scaled function for

a sequence of increasing α; it is highly probable that the profile is converging to a

step function of width 1, and of height 1
2π , exactly as predicted from our discussion

of the strip width in §8.2.2 and from eq. (8.37).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.05

0.10

0.15

y

Figure 8.4: Cross-sections at x = 3 through the scaled density of complex Dirac

eigenvalues ρCW
1,Dirac(3 + iy) at weak non-Hermiticity, for α = 1 (red), α = 2 (orange),

α = 3 (green), α = 4 (blue) and α = 5 (purple); ν = 0 in all cases.

We clarify the difference between the earlier Figure 8.2 and Figure 8.4. The

former shows behaviour at low α (roughly α ≤ 1), where the density profile decreases

as α tends to zero. The latter shows behaviour at higher α (roughly α ≥ 1), where

the density profile also tends to zero, but as α tends to infinity (although we have

rescaled the vertical axis here to demonstrate the existence of a non-zero limit).
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What will be of most interest to us in the next chapter is the behaviour of the

exponential parts of eqs. (8.28) and (8.30), which will be much more significant than

the constant and polynomial (etc.) factors. We therefore write simply

KW
(
(iu)2, (iv)2

)
=





p1(u, v) exp
{

(u + v)2

8α2

}
for u + v < 4α2,

p2(u, v) exp
{
u + v − 2α2

}
for u + v ≥ 4α2,

(8.39)

where p1,2(u, v) grow more slowly than exponential. Because the exponent (and,

indeed, its derivative as well) is actually continuous at the crossover point u+v = 4α2,

we have removed the k-dependency for the two regions of validity, giving a function

that is defined everywhere.

Of course, the change of behaviour of the logarithm of the kernel beyond the strip

edge (essentially from square to linear behaviour), together with the fact that the

logarithm of the weight function eq. (8.36) is negative square everywhere, explains

why the density is exponentially suppressed beyond the strip edge (the decaying

weight function dominates).

8.3 Real eigenvalue density

For the weakly non-Hermitian limit of the density of real eigenvalues, we can write

from eq. (8.2)

RRW
1 (x; α) = lim

N→∞
1

4N

∫ ∞

−∞
dyKN

(
x

4N
, y;

α√
2N

)
w

( x

4N

)
w(y) sgn

( x

4N
− y

)

= lim
N→∞

1
(4N)2

w
( x

4N

)∫ ∞

−∞
dyKN

(
x

4N
,

y

4N
;

α√
2N

)
w

( y

4N

)
sgn(x− y)

(8.40)

where KN (x, y; µ) is the finite-N kernel from eq. (5.42). However, in this case, we

cannot switch the limiting process and the integral, and so we cannot express the

density RRW
1 (x; α) as an integral over the weak kernel and the limit of the weight

function.

Recall that from eq. (4.76)

RR1,N (x; µ) = −GN (x, x; µ) for x ∈ R, (8.41)

where GN (x, x′) was originally defined in eq. (4.51). In the next chapter, we will

actually need the weak limit of GN (x, x′;µ) for x 6= x′, and so it makes sense to
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determine this slightly more general limit here. The weakly non-Hermitian large-N

limit is given by

GW (x, x′; α) ≡ lim
N→∞

1
4N

xν/2

(x′)ν/2
GN

(
x

4N
,

x′

4N
;

α√
2N

)

= − lim
N→∞

1
(4N)2

xν/2

(x′)ν/2
w

(
x′

4N

) ∫ ∞

−∞
dyKN

(
x

4N
,

y

4N
;

α√
2N

)
w

( y

4N

)
sgn(x′ − y)

= − ĥ(x′)
[sgn(x′)]ν/2

lim
N→∞

1
(4N)2

( x

4N

)ν/2
∫ ∞

−∞
dyKN

(
x

4N
,

y

4N
;

α√
2N

)
w

( y

4N

)
sgn(x′ − y),

(8.42)

where the scaled real weight function is given by

ĥ(x) ≡ lim
N→∞

∣∣∣∣
4N

x

∣∣∣∣
ν/2

w
( x

4N

)
= ex/8α2

2K ν
2

( |x|
8α2

)
. (8.43)

We handle the sign function by using the fact that

∫ ∞

−∞
dy sgn(x′ − y) f(y) =

(∫ 0

−∞
dy + 2

∫ x′

0
dy −

∫ ∞

0
dy

)
f(y), (8.44)

and so we can correspondingly write GW (x, x′; α) as the sum of three parts:

GW (x, x′; α) = − ĥ(x′)
[sgn(x′)]ν/2

[
A(x; α) + 2B(x, x′;α)− C(x; α)

]
. (8.45)

For A and B, we find that actually it is possible to interchange the limit and the

integral without problem, and so we have simply

A(x; α) = (−i)ν

∫ 0

−∞
dyKW (x, y)ĥ(y), (8.46)

B(x, x′; α) =
1

[sgn(x′)]ν/2

∫ x′

0
dyKW (x, y)ĥ(y), (8.47)

where the weak kernel was given in eq. (8.16). The main problem is then reduced

to determining the third term C(x;α), where the non-commutativity issue remains.

Using some semi-rigorous analytic methods, we will now determine a suitable ex-

pression for C(x; α).

8.3.1 Solution for C(x; α)

8.3.1.1 Initial manipulation

Inserting the explicit form of the finite-N kernel from eq. (8.9), we have

C(x; α) =
xν/2

32πα2
lim

N→∞
DN (x; α), (8.48)
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where

DN (x; α) ≡ 1
(4N)2+ν

∫ ∞

0
dy exp

(
(1− α2

2N )y
8α2

)
K ν

2

(
(1 + α2

2N )y
8α2

)
yν/2 (8.49)

×
N−2∑

j=0

(
1− α2

2N

1 + α2

2N

)2j
j!

(j + ν)!

×
{

xLν+1
j

(
x

4N(1− α2

2N )

)
Lν

j

(
y

4N(1− α2

2N )

)
− (x ↔ y)

}
.

Since N is finite, we can switch the integral and the sum. We will also split the two

terms in the curly brackets, writing DN (x;α) = D+
N (x; α)−D−

N (x; α), where

D+
N (x; α) ≡ 1

(4N)2+ν

N−2∑

j=0

(
1− α2

2N

1 + α2

2N

)2j
j!

(j + ν)!
x Lν+1

j

(
x

4N(1− α2

2N )

)
P (j, N, α)

(8.50)

with

P (j, N, α) ≡
∫ ∞

0
dy exp

(
(1− α2

2N )y
8α2

)
K ν

2

(
(1 + α2

2N )y
8α2

)
Lν

j

(
y

4N(1− α2

2N )

)
yν/2,

(8.51)

and

D−
N (x;α) ≡ 1

(4N)2+ν

N−2∑

j=0

(
1− α2

2N

1 + α2

2N

)2j
j!

(j + ν)!
Lν

j

(
x

4N(1− α2

2N )

)
Q(j,N, α) (8.52)

with

Q(j,N, α) ≡
∫ ∞

0
dy exp

(
(1− α2

2N )y
8α2

)
K ν

2

(
(1 + α2

2N )y
8α2

)
Lν+1

j

(
y

4N(1− α2

2N )

)
yν/2+1.

(8.53)

Our plan is to try to evaluate the large-N limits of eqs. (8.50) and (8.52) in a manner

similar to the way we calculated the weak kernel in §8.2.1. This involves taking the

limit for large j and N , with j = tN and t ∈ [0, 1] fixed, of each of the factors inside

the sums in eqs. (8.50) and (8.52), and replacing the sums with integrals. So, in

the present case, our most important outstanding task is to determine appropriate

large-N limits of P (j, N, α) and Q(j, N, α).

It turns out that for D+
N (x;α), this method works in a relatively straightforward

manner. However, for D−
N (x; α), we also find an extra contribution that does not

involve an integral. This arises from a different large-N leading order behaviour of

Q(j, N, α).
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8.3.1.2 Alternative representations for P (j, N, α) and Q(j, N, α)

For finite N and non-zero α, P (j, N, α) and Q(j, N, α) are both entirely well-defined

(i.e. the integrals are convergent). However, since part of our analysis is supported

by numerical considerations1, it is useful to rewrite P (j,N, α) and Q(j,N, α) in a

way that will make them easier to evaluate numerically, since attempting numerical

work directly with the integral representations eqs. (8.51) and (8.53) leads to large

errors (or long computation times) even for moderate values of j and N .

We proceed as follows. We make a simple change of variables

u =
y

4N
(
1− α2

2N

) (8.54)

and replace the generalised Laguerre polynomial with its power series representation

eq. (A.8). Then, after switching the sum and integral, we use eq. 6.621.3 in [Gra07]

to give

P (j,N, α) = 23+2ν√π
Nν+1

αν
(j + ν)!

(
1 +

α2

2N

)ν/2

×
j∑

k=0

1
(j − k)! Γ(k + ν

2 + 3
2)

(
−2

1− α2

2N

)k

× 2F1

(
k + ν + 1, ν

2 + 1
2 ; k + ν

2 + 3
2 ;−2N

α2

)
(8.55)

and

Q(j,N, α) = 26+2ν√π
Nν+2

αν
(j + ν + 1)!

(
1 +

α2

2N

)ν/2

×
j∑

k=0

k + 1
(j − k)! Γ(k + ν

2 + 5
2)

(
−2

1− α2

2N

)k

× 2F1

(
k + ν + 2, ν

2 + 1
2 ; k + ν

2 + 5
2 ;−2N

α2

)
, (8.56)

where 2F1(a, b; c; z) is the hypergeometric function, defined earlier in eq. (6.21). We

can now use Mathematica [Wol08] to evaluate P (j, N, α) and Q(j,N, α) to arbitrary

precision, for rational α and for much larger j and N than was possible before.

1In particular, we compared (numerically) the finite-N case for several values of N with the
claimed limits, at various intermediate steps in this proof.
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8.3.1.3 Determination of limits of P (j, N, α) and D+
N (x; α)

Let us start with eq. (8.51). First, we use eq. 8.432.3 from [Gra07] to replace the

Bessel function with an integral, giving

P (j, N, α) =
√

π

Γ
(

ν+1
2

)
(

1 + α2

2N

16α2

)ν/2 ∫ ∞

0
dy

∫ ∞

1
du (u2 − 1)(ν−1)/2 e−by Lν

j

(y

c

)
yν

(8.57)

where

b ≡ 1
8

(
u− 1
α2

+
u + 1
2N

)
and (8.58)

c ≡ 4N

(
1− α2

2N

)
. (8.59)

We interchange the order of integrations, and perform the integral over y using the

result eq. (A.7), which gives us

P (j,N, α) =
√

π

Γ
(

ν+1
2

)
(

1 + α2

2N

16α2

)ν/2
(−1)j (j + ν)!

j! cj

∫ ∞

1
du (u2 − 1)(ν−1)/2 (1− bc)j

bj+ν+1

=
2ν+3αν+2√π

Γ
(

ν+1
2

) (j + ν)!
j!

(
1 + α2

2N

)ν/2

(
1− α2

2N

)j

×
∫ ∞

1
du

(u + 1)(ν−1)/2

(u− 1)(ν+3)/2

(
1− α2

N (u−1) −
α4(u+1)

4N2(u−1)

)j

(
1 + α2

2N
(u+1)
(u−1)

)j+ν+1
. (8.60)

We now wish to set j = tN , and take the large-N limit keeping t fixed. In fact, j

should remain an integer, so we will set j = [tN ], where the square brackets denote

the integer part.

In order to take the limit, it is necessary to split P (j,N, α) into two parts,

P1(j, N, α) where the integral runs over the range 1 ≤ u < 1 + α2/N , and P2(j,N, α)

where the integral is over the range 1 + α2/N ≤ u < ∞. For P1(j, N, α), we write

u + 1 = 2 +O(N−1), and then make a change of variables to

s = 1− α2

N(u− 1)
(8.61)

with the result that (dropping the O(N−1) which will vanish when the limit is taken)

∫ 1+α2/N

1
du . . . =

(−1)j 2(ν−1)/2 N (ν+1)/2

αν+1

∫ ∞

0
ds

sj (1 + s)(ν−1)/2

(2 + s)j+ν+1

(
1− α2(1− s)

2N s

)j

.

(8.62)
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It is important to note that the overall sign depends on whether j is an even or an

odd integer. This implies that no single limit of P1(j,N, α) will exist. To evaluate

the integral on the right-hand side of eq. (8.62), we change variables to u = j/s,

leading to

∫ ∞

0
ds . . . =

1
j(ν+1)/2

∫ ∞

0
du





j(ν+3)/2 u(ν−1)/2 (u + j)(ν−1)/2

(2u + j)ν+1
(
1 + 2u

j

)j

(
1− α2(u− j)

2N j

)j





.

(8.63)

In fact, we are only interested in the large-N limit of this integral, with j = [tN ]

and t fixed. As N → ∞, the integrand in the curly brackets converges to an inte-

grable function in a manner that allows us to interchange the limit and the integral.

Therefore, on determining the limit of the integrand,

lim
N→∞
j=[tN ]

j(ν+1)/2

∫ ∞

0
ds . . . = eα2t

∫ ∞

0
duu(ν−1)/2 e−2u

=
Γ

(
ν+1
2

)

2(ν+1)/2
eα2t. (8.64)

Combining everything, we have

lim
N→∞
j=[tN ]

P1(j, N, α)
Nν

= (−1)j 2ν+2√π α t(ν−1)/2 eα2t. (8.65)

Note that we have been somewhat imprecise with our notation; there are actually

two limits, depending on whether j steps through the even or the odd integers.

We now turn to consider the limit of P2(j, N, α), for which we can write
∫ ∞

1+α2/N
du . . . =

∫ ∞

1
duΘ

(
u−

[
1 +

α2

N

])
. . . (8.66)

(where Θ(x) is the Heaviside step function) and use the Monotone Convergence

Theorem (MCT) to show that

lim
N→∞
j=[tN ]

P2(j, N, α)
Nν

=
2ν+3√παν+2tν

Γ
(

ν+1
2

)
∫ ∞

1
du

(u + 1)(ν−1)/2

(u− 1)(ν+3)/2
exp

[
− 2α2t

u− 1

]

=
(2α)ν+2√π

Γ
(

ν+1
2

) tν eα2t E 1−ν
2

(α2t) (8.67)

where we used a change of variables s =
u + 1
u− 1

in the last step, and En(x) is the

exponential integral defined by

En(x) ≡
∫ ∞

1
dt

e−xt

tn
. (8.68)
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For the special case of ν = 0, this reduces to

lim
N→∞
j=[tN ]

P2(j, N, α; ν = 0) = 4
√

π α2

{
eα2t erfc(α

√
t)

α
√

t

}
, (8.69)

where erfc(x) is the complementary error function. Our formula for the limit of

P (j, N, α) is therefore

lim
N→∞
j=[tN ]

P (j,N, α)
Nν

= 2ν+2√π eα2t

{
αν+2 tν E 1−ν

2
(α2t)

Γ
(

ν+1
2

) + (−1)j α t(ν−1)/2

}
(8.70)

where we reiterate that there are different limits depending on whether j takes even

or odd values.

We now turn to the limit of D+
N (x; α). Because of the two different limits of

P (j, N, α), technically we should now split the sum in eq. (8.50) into odd and even

parts, and treat each separately. However, because of the way that everything

combines, it is completely equivalent if we merely use the ‘average’ limit over even

and odd j: 〈
lim

N→∞
j=[tN ]

P (j,N, α)
Nν

〉
=

2ν+2√π

Γ
(

ν+1
2

) eα2t αν+2 tν E 1−ν
2

(α2t) (8.71)

where it should be understood that this is the average limit over a small interval

around t which includes (an infinite number of) both even and odd terms in j.

We can now proceed along lines similar to the proof of the weak kernel. Hence

lim
N→∞

D+
N (x; α) =

√
π

2Γ
(

ν+1
2

)
√

x

xν/2
αν+2

∫ 1

0
dt e−α2t t(ν+1)/2 E 1−ν

2
(α2t) Jν+1(

√
xt) (8.72)

which becomes for ν = 0

lim
N→∞

D+
N (x; α; ν = 0) =

√
π

2
α
√

x

∫ 1

0
dt e−α2t erfc(α

√
t) J1(

√
xt). (8.73)

8.3.1.4 Determination of limits of Q(j, N, α) and D−
N (x; α)

To understand why the treatment of Q(j, N, α) is different from that of P (j,N, α),

it is instructive to consider how each of them scales with N . Let us compare eqs.

(8.56) and (8.55) on a term-by-term basis:

• Outside the sum, we have an additional power of N in eq. (8.56) compared

with eq. (8.55), and also a factor of (j + ν + 1)! instead of (j + ν)!, which gives

another factor ∝ N (since j = [tN ]).
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8.3 Real eigenvalue density

• Inside the sum, we have k + 1 in the numerator in eq. (8.56), whereas in

eq. (8.55) we had unity, but in the denominator the arguments of the gamma

function are also different. The result is that the net magnitudes are the same.

• The hypergeometric functions are of the same magnitude, both being close to

unity.

So the overall difference is N2, and we therefore expect the limit

lim
N→∞
j=[tN ]

Q(j, N, α)
Nν+2

(8.74)

to exist. The key point is that there are two powers of N difference compared with

the P (j, N, α) case, and not just one.

To minimise our work, we will proceed by expressing the limits of Q in terms of

the limits of P that we have already determined. We begin by proving an easy (and

exact) relationship. Using the recurrence relation (eq. 8.971.4 of [Gra07])

z Lν+1
j (z) = (j + 1)

{
Lν

j (z)− Lν
j+1(z)

}
+ Lν

j (z) (8.75)

we can show that

Q(j, N, α)
N

= 4
(

1− α2

2N

) [
(j + 1)

{
P (j, N, α)− P (j + 1, N, α)

}
+ ν P (j, N, α)

]
(8.76)

which will be used in the following two parts.

8.3.1.4.1 Leading order contribution We use eqs. (8.70) and (8.76) to show

that

lim
N→∞
j=[tN ]

Q(j, N, α)
Nν+2

= (−1)j 2ν+5√π α t(ν+1)/2 eα2t, (8.77)

where the sign depends on whether j is even or odd. Note that the other terms from

eqs. (8.70) and (8.76) are of smaller order, and so will vanish in the large-N limit.

Now let us consider the limit of D−
N (x;α). The presence of the Nν+2 leading

order behaviour for Q is the crucial difference compared with the P case, which

scaled only with Nν to leading order. Although the Nν+2 here can be ‘matched’

with the N−(ν+2) pre-factor in eq. (8.52), this means that there is then no residual

N−1 to make dt when we take the large-N limit (see eq. (8.10)), and so we will not

get an integral.
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However, because adjacent even and odd terms have opposite signs, we can take

the large-N limit of the sum in eq. (8.52) by using the fact that, for a continuous

function f(t) on the interval 0 ≤ t ≤ 1,

lim
N→∞

N/2−1∑

j=0

{
f

(
2j + 1

N

)
− f

(
2j

N

)}
= 1

2{f(1)− f(0)}. (8.78)

(Note that, because there is no N−1 on the left-hand side, the limit of the sum does

not become an integral over f(t).) This results in a contribution

lim
N→∞

Regime 1

D−
N (x; α) =

√
π

xν/2
α

[
e−α2t

√
t Jν(

√
xt)

]t=1

t=0

=
√

π α e−α2

xν/2
Jν(

√
x). (8.79)

8.3.1.4.2 Next-to-leading order contribution There will also be a contribu-

tion from the next-to-leading term of Q. Here we can average even and odd terms (as

we did for P (j, N, α) in eq. (8.71)), so the effective limit (over a small neighbourhood

of t) is, from eq. (8.76),

〈
lim

N→∞
j=[tN ]

Q(j,N, α)
Nν+1

〉
= 4

(
−t

∂

∂t
+ ν

) 〈
lim

N→∞
j=[tN ]

P (j, N, α)
Nν

〉

=
√

π

Γ
(

ν+1
2

) (2α)4+νt1+νeα2t
{

E−1−ν
2

(α2t)− E 1−ν
2

(α2t)
}

, (8.80)

where we used eq. (8.71) and the differential of the exponential integral

d

dx
En(x) = −En−1(x). (8.81)

For the particular case ν = 0, this gives

〈
lim

N→∞
j=[tN ]

Q(j, N, α; ν = 0)
N

〉
= 8α2

(
2 +

√
π (1− 2α2t) eα2t erfc(α

√
t)

α
√

t

)
. (8.82)

Hence

lim
N→∞

Regime 2

D−
N (x; α) =

√
π

Γ
(

ν+1
2

) 1
xν/2

αν+4

×
∫ 1

0
dt e−α2t t1+ν/2

{
E−1−ν

2
(α2t)− E 1−ν

2
(α2t)

}
Jν(

√
xt). (8.83)
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For ν = 0, this is

lim
N→∞

Regime 2

D−
N (x; α, ν = 0) =

α2

2

∫ 1

0
dt e−2α2t

(
2 +

√
π (1− 2α2t) eα2t erfc(α

√
t)

α
√

t

)
J0(
√

xt).

(8.84)

We should add that any lower order terms of Q would not contribute to the integral

when we take the large-N limit of the sum in eq. (8.52). Effectively, we would have

contributions involving
∫

(dt)p for p > 1, which would be zero.

8.3.1.5 Final formulas

Pulling everything together and simplifying, we have for C(x;α) (defined in eq.

(8.48))

C(x; α) =
1

32
√

π

{
− 1

α
e−α2

Jν(
√

x) +
αν

Γ
(

ν+1
2

)
∫ 1

0
dt e−α2tt(ν+1)/2

×
(√

x

2
E 1−ν

2
(α2t) Jν+1(

√
xt)

− α2
√

t
(
E−1−ν

2
(α2t)− E 1−ν

2
(α2t)

)
Jν(

√
xt)

)}
, (8.85)

which for ν = 0 is

C(x; α, ν = 0) =
1

32πα

{√
π

2
√

x

∫ 1

0
dt e−α2t erfc(α

√
t) J1(

√
xt)

−
∫ 1

0
dt

(
αe−2α2t +

√
π (1− 2α2t) e−α2t erfc(α

√
t)

2
√

t

)
J0(
√

xt)

−√π e−α2
J0(
√

x)

}
. (8.86)

The final formula for GW (x, x′) itself, eq. (8.45), is then given by

GW (x, x′) =

− ĥ(x′)
[sgn(x′)]ν/2

{ (
(−i)ν

∫ 0

−∞
dy +

2
[sgn(x′)]ν/2

∫ x′

0
dy

)
KW (x, y)ĥ(y)

− 1
32
√

π

[
− 1

α
e−α2

Jν(
√

x) +
2αν

Γ
(

ν+1
2

)
∫ 1

0
ds e−α2s2

sν+2

×
(√

x

2
E 1−ν

2
(α2s2) Jν+1(s

√
x)− α2 s

(
E−1−ν

2
(α2s2)− E 1−ν

2
(α2s2)

)
Jν(s

√
x)

) ]}
,

(8.87)

after making a simple change of variables s =
√

t.
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8.3.2 Plots of the eigenvalue density

We plot the densities of real and imaginary Dirac eigenvalues in Figures 8.5 and

8.6. Figure 8.5 shows how the weakly non-Hermitian limit is reached, by showing a

sequence of finite-N plots. For the imaginary case, convergence is so quick that we

just display N = 2 and N = 4 along with the limit. Figure 8.6 shows real eigenvalues

for a sequence of topologies ν, for two values of α.
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Figure 8.5: Densities of real (left) and imaginary (right) Dirac eigenvalues, for var-

ious (finite) N (under ‘weak’ scaling) and the weakly non-Hermitian limit. Left:

N = 2 (red), N = 4 (orange), N = 6 (green), N = 8 (blue) and limit (purple). Right:

N = 2 (red), N = 4 (orange) and limit (purple); α2 = 0.2 and ν = 0 in all cases.
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Figure 8.6: Densities of real Dirac eigenvalues RRW
1,Dirac(x) in the weakly non-

Hermitian limit for α =
√

0.2 (left) and α = 1 (right), for ν = 0 (red), ν = 1

(orange), ν = 2 (green), ν = 3 (blue) and ν = 4 (purple).
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8.3.3 Hermitian limit (α → 0)

As α → 0, the chGinOE becomes equivalent to the Hermitian chGOE introduced in

[Ver94c], and therefore the weakly non-Hermitian limit of the real eigenvalue density

in this limit should be the same as the microscopic eigenvalue density (i.e. for real

eigenvalues) for this other ensemble. Since RRW
1 (x) = −GW (x, x), we can easily show

using eq. (6.5) that the constituent parts of GW (x, x) have the following limits:

lim
α→0

ĥ(x)
[sgn(x)]ν/2

A(x;α) = 0, (8.88)

lim
α→0

ĥ(x)
[sgn(x)]ν/2

B(x, x;α)

=
Θ(x)
16

∫ x

0
dy

∫ 1

0
ds s2

{
Jν+1(s

√
x)Jν(s

√
y)√

y
− Jν+1(s

√
y)Jν(s

√
x)√

x

}
. (8.89)

For the limit of C(x; α) given in eq. (8.85), we also need to use the fact that, for

α > −1,

lim
x→0

xα+1 E−α(x) = Γ(α + 1), (8.90)

which follows from an easy change of variables, and the result (for α > −1)
∫ ∞

0
du e−u uα = Γ(α + 1). (8.91)

Then we have

lim
α→0

ĥ(x)
[sgn(x)]ν/2

C(x; α)

=
Θ(x)
8
√

x

{∫ 1

0
dt

(√
x

2
Jν+1(

√
xt)− ν + 1

2
√

t
Jν(

√
xt)

)
− Jν(

√
x)

}
. (8.92)

We can easily evaluate the integral by changing variables to s =
√

xt, and by using

the recurrence relation for J-Bessel functions:

z Jν+1(z)− (ν + 1)Jν(z) = − d

dz
[z Jν(z)]. (8.93)

(To prove, we start with eq. 8.472.2 from [Gra07], and then

z Jν+1(z)− νJν(z) = −z
d

dz
Jν(z). (8.94)

Therefore

z Jν+1(z)− (ν + 1)Jν(z) = −z
d

dz
Jν(z)− Jν(z)

= − d

dz
[z Jν(z)] (8.95)
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as claimed.) This then gives the very simple result

lim
α→0

ĥ(x)
[sgn(x)]ν/2

C(x; α) =
Θ(x)
8
√

x

{−Jν(
√

x)− Jν(
√

x)
}

= − Θ(x)
4
√

x
Jν(

√
x). (8.96)

So we see that, in the case of α → 0, the total result for C is precisely twice the value

of the part coming from the integral, i.e. the contribution coming from the leading

order term of D−
N is exactly equal to the sum of the contributions from D+

N and

from the next-to-leading order term of D−
N , i.e. we find we get double the result that

we would get from a näıve interchange of the limit and the integral, an observation

made in [Ver94c]. Such a simple relationship is not true when α > 0.

The result for the total density (of Wishart eigenvalues) is therefore

lim
α→0

RRW
1 (x; α) = 2 lim

α→0

ĥ(x)
[sgn(x)]ν/2

B(x, x; α)− lim
α→0

ĥ(x)
[sgn(x)]ν/2

C(x; α)

= Θ(x)

(
1
8

∫ x

0
dy

∫ 1

0
ds s2

{
Jν+1(s

√
x)Jν(s

√
y)√

y
− Jν+1(s

√
y)Jν(s

√
x)√

x

}

+
1

4
√

x
Jν(

√
x)

)
. (8.97)

If we switch to Dirac eigenvalues, and also change the integration variable to u =
√

y,

then we can simplify this a little. For x ∈ R,

lim
α→0

RRW
1,Dirac(x;α) = 1

2

∫ x

0
du

∫ 1

0
ds s2

{
xJν+1(sx)Jν(su)− uJν+1(su)Jν(sx)

}
+ 1

2 Jν(x).

(8.98)

The integral over s can, in fact, be done exactly. Either of the following two results

will suffice.

First, we have

∫ 1

0
ds s2

{
aJν+1(sa)Jν(sb)−bJν+1(sb)Jν(sa)

}
=

1
(ab)ν

(
1
b

∂

∂b
− 1

a

∂

∂a

)
K̂ν(a, b), (8.99)

where

K̂ν(a, b) ≡ (ab)ν+1

(
bJν+1(a)Jν(b)− aJν+1(b)Jν(a)

a2 − b2

)
. (8.100)

This is easily proved: Defining K̂ν(a, b) as above, eq. 6.521.1 from [Gra07] gives

K̂ν(a, b) = (ab)ν+1

∫ 1

0
ds s Jν+1(as) Jν+1(bs). (8.101)
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We differentiate with respect to a using eq. 8.472.1 of [Gra07], and, after two terms

cancel, we have

∂

∂a
K̂ν(a, b) = (ab)ν+1

∫ 1

0
ds s2 Jν(as) Jν+1(bs). (8.102)

Repeating the same for b, eq. (8.99) then follows.

Second, we have

∫ 1

0
ds s2

{
aJν+1(sa)Jν(sb)− bJν+1(sb)Jν(sa)

}
= (ab)ν

(
1
b

∂

∂b
− 1

a

∂

∂a

)
χ̂ν(a, b),

(8.103)

where

χ̂ν(a, b) ≡ 1
(ab)ν−1

(
bJν−1(a)Jν−2(b)− aJν−1(b)Jν−2(a)

a2 − b2

)
. (8.104)

This is proven by a similar set of steps to the previous result, but using eq. 8.471.1

of [Gra07] in the final step.

Using the second of these, eq. (8.103), shows complete agreement with [Ver94c],

who leaves the result expressed in terms of the ‘kernel’ eq. (8.104). However, we

can be slightly more explicit, and perform the differentiations on the kernel, giving

(after simplification):

lim
α→0

RRW
1,Dirac(x; α) = 1

2

∫ x

0
duDν(x, u) + 1

2 Jν(x), (8.105)

where

Dν(a, b) ≡ (ab)ν

(
1
b

∂

∂b
− 1

a

∂

∂a

)
χ̂ν(a, b)

=
1

(a2 − b2)2

{
(b4 − a4)Jν(a)Jν(b)− 2ab(a2 − b2)Jν−1(a)Jν−1(b)

+
(
2b

[
a2(ν + 1)− b2(ν − 1)

]
Jν(a)Jν−1(b)− (a ↔ b)

)}
. (8.106)

We now use numerical integration over u, and present graphs of the microscopic

limit for a sequence of α tending towards zero, together with the limit itself (see

Figure 8.7).

Finally we undertake a quick cross-check of the behaviour of the density of the

real eigenvalues, assuming the correctness of the Efetov formula eq. (6.26) for the

fraction of eigenvalues that are real. When α is large, the number of complex

eigenvalues per unit length in the x-direction (sufficiently far away from the y-axis)

is given by
1
π

, obtained by multiplying the plateau density eq. (8.37) by the strip
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Figure 8.7: Densities of real Dirac eigenvalues RRW
1,Dirac(x) in the weakly non-

Hermitian limit for ν = 0 (left) and ν = 1 (right), for a sequence of α → 0. We

show α = 0.4 (red), α = 0.3 (orange), α = 0.2 (green), α = 0.1 (blue) and α = 0

(purple).

width 4α2 (counting complex eigenvalues on both sides of the x-axis). However, at

large α, we expect almost all of the eigenvalues to be complex, and so this gives us an

estimate of the total number of eigenvalues per unit length (along the x-direction)

under the weak non-Hermiticity scaling. Now we turn to low α. At low α =
√

2N µ,

the Efetov formula eq. (6.26) can easily be expanded in powers of α2 as

Freal

(
N, µ =

α√
2N

)
= 1− α2

2
+ . . . , (8.107)

and so the average density of real eigenvalues (i.e. the number per unit length along

the x-direction, sufficiently far away from the y-axis) is

RRW
1,Dirac(x;α) =

1
π

{
1− α2

2
+ . . .

}
, (8.108)

which appears to be consistent with the plateau heights in Figure 8.7.
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Chapter 9

Unquenched partition functions

and densities

When we add the determinant factors (which depend on the masses mf of the

Nf different flavours of quark) to the JPDF, the eigenvalue ‘density’ is no longer

always positive. Indeed, to ensure positivity, we require that the quark masses

appear in degenerate pairs (and that the squared masses are real). If the masses

are not equal, or if Nf is odd, then the density, although still real, may be negative

in certain regions, and possibly oscillating between positive and negative values.

Large-N limits may not even exist in these latter cases, since the magnitude of the

oscillations increases indefinitely with increasing matrix size N .

We have already determined the unquenched partition functions in §5.1, and so

we can move immediately to consider the eigenvalue densities.

9.1 Finite-N densities

9.1.1 General Nf

As we established in §4.5, the correlation functions of (squared) eigenvalues for the

unquenched cases are given by formulas that are similar to the quenched case, see

eq. (4.95). For the density, for example, we have, analogous to eq. (4.76),

R
(Nf )
1,N (z) =

∫

C
d2z′K(Nf )

N (z, z′)F (Nf )(z′, z), (9.1)

where the unquenched kernel K(Nf )
N (z, z′) was given in eqs. (5.48) and (5.49) for even

and odd Nf respectively, and the unquenched weight function was given in eq. (4.15).
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9.1 Finite-N densities

The matrix size N is even in all cases.

For even Nf : We can then write R
(Nf )
1,N (z) as a ratio of Pfaffians involving the

quenched kernel and weight function:

R
(Nf )
1,N (z) =

Pf
[
Aij

]
1≤i,j≤Nf+2

Pf
[
KN+Nf

(m2
i ,m

2
j )

]
1≤i,j≤Nf

, (9.2)

where

Aij = −Aji ≡





0 if i = j,

−GN+Nf
(wj , z) if j > i = 1,

KN+Nf
(wi, wj) if j > i > 1,

(9.3)

in which w2 ≡ z and wi+2 ≡ m2
i for 1 ≤ i ≤ Nf , and from eq. (4.51)

GN (u, v) ≡ −
∫

C
d2z′KN (u, z′)F(z′, v)

=





2iKN (u, v∗)w(v)w(v∗) sgn(=m v) for v ∈ C\R,

−w(v)
∫

R
dx′KN (u, x′)w(x′) sgn(v − x′) for v ∈ R.

(9.4)

For the particular case of two quark flavours Nf = 2, we can expand the Pfaffians,

and noting that the first term then corresponds to the quenched density at matrix

size N + 2, we have

R
(Nf=2)
1,N (z) = R

(Nf=0)
1,N+2 (z)+

KN+2(z, m2
2)GN+2(m2

1, z)−KN+2(z, m2
1)GN+2(m2

2, z)
KN+2(m2

1,m
2
2)

. (9.5)

When z ∈ C\R, we can write the unquenched density as either an additive, or a

multiplicative, correction to the quenched density as follows:

R
C (Nf=2)
1,N (z) = R

C (Nf=0)
1,N+2 (z) + 2iw(z)w(z∗) sgn(=m z)

×
{KN+2(z, m2

2)KN+2(m2
1, z

∗)−KN+2(z, m2
1)KN+2(m2

2, z
∗)

KN+2(m2
1, m

2
2)

}

= R
C (Nf=0)
1,N+2 (z)

{
1− KN+2(z, m2

2)KN+2(m2
1, z

∗)−KN+2(z,m2
1)KN+2(m2

2, z
∗)

KN+2(z, z∗)KN+2(m2
1,m

2
2)

}
.

(9.6)

It is interesting to note that, in the final formula, the multiplicative factor does not

depend on the weight function. Such a representation does not exist for the real

eigenvalues.

For odd Nf : We can use a similar argument, and find that

R
(Nf )
1,N (z) =

Pf
[
Bij

]
1≤i,j≤Nf+3

Pf
[
Cij

]
1≤i,j≤Nf+1

, (9.7)
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9.1 Finite-N densities

where

Bij = −Bji ≡





0 if i = j,

−QN+Nf−1(z) if i = 1, j = 2,

qN+Nf−1(wj) if i = 1, j > 2,

−GN+Nf−1(wj , z) if j > i = 2,

KN+Nf−1(wi, wj) if j > i > 2,

(9.8)

in which w3 ≡ z and wi+3 ≡ m2
i for 1 ≤ i ≤ Nf , and

Cij = −Cji ≡





0 if i = j,

qN+Nf−1(m2
j−1) if j > i = 1,

KN+Nf−1(m2
i−1,m

2
j−1) if j > i > 1.

(9.9)

We have also defined the integrated quenched skew-orthogonal polynomial, as in eq.

(4.37):

QN (z) ≡
∫

C
d2z′ qN (z′)F(z′, z)

=




−2iqN (z∗)w(z)w(z∗) sgn(=m z) for z ∈ C\R,

w(z)
∫

R
dx′ qN (x′)w(x′) sgn(z − x′) for z ∈ R.

(9.10)

For the particular case when Nf = 1, we have

R
(Nf=1)
1,N (z) = R

(Nf=0)
1,N (z) +

qN (z)GN (m2, z)−QN (z)KN (z,m2)
qN (m2)

. (9.11)

After a few lines of algebra, this can be shown – using eq. (4.29) – to be the quenched

version of the Nf = 2 case, i.e. by taking one of the two masses in eq. (9.5) to infinity.

As for the Nf = 2 case, when z ∈ C\R, we can write the correction in two

alternative ways:

R
C (Nf=1)
1,N (z) = R

C (Nf=0)
1,N (z) + 2iw(z)w(z∗) sgn(=m z)

×
{KN (z, m2)qN (z∗)−KN (z∗,m2)qN (z)

qN (m2)

}

= R
C (Nf=0)
1,N (z)

{
1− KN (z,m2)qN (z∗)−KN (z∗,m2)qN (z)

KN (z, z∗)qN (m2)

}
. (9.12)

9.1.2 Nf = 2: Degenerate masses

Let us consider in a little more detail the case when we have two quark flavours,

both with the same mass, i.e. Nf = 2 with m1 = m2 ≡ m. Our motivation is

two-fold. First, this case has practical applications (there being two lighest quarks,
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9.1 Finite-N densities

u and d, of almost equal mass). Second, if the masses are the same, then the

eigenvalue density R
(Nf=2)
1,N (z) will be positive everywhere, enabling Monte Carlo

simulations to be performed. On the downside, we have a small amount of additional

work to do, since the kernel in the denominator of eq. (5.48) vanishes when the

arguments are the same. It is necessary to use l’Hôpital’s Rule, which states that,

if lim
x→c

f(x) = lim
x→c

g(x) = 0, then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

, (9.13)

provided the right-hand side exists. Then we can write from eq. (9.5)

R
(Nf=2)
1,N (z) = R

(Nf=0)
1,N+2 (z)−KN+2(z, m2)UN+2(m2, z)−GN+2(m2, z)DN+2(z,m2)

DN+2(m2,m2)
(9.14)

where DN (u, v) is the partial differential of the quenched kernel KN (u, v) in eq. (5.42)

with respect to its second argument:

DN (u, v) ≡ ∂

∂v
KN (u, v)

=
1

32πµ2(4µ2η+)ν+1

N−2∑

j=0

(
η−
η+

)2j (j + 1)!
(j + ν)!

×
{

Lν
j+1

(
u

4µ2η−

)
Lν+1

j−1

(
v

4µ2η−

)
− Lν+1

j

(
v

4µ2η−

)
Lν

j

(
u

4µ2η−

)}

(9.15)

and UN (u, v) is the integral of DN (u, v) with respect to the weight function (or the

partial differential of GN (u, v) with respect to u)

UN (u, v) ≡
∫

C
d2z′DN (z′, u)F(z′, v) =

∂

∂u
GN (u, v)

=




−2iDN (v∗, u)w(v)w(v∗) sgn(=m v) for v ∈ C\R,

w(v)
∫

R
dx′DN (x′, u)w(x′) sgn(v − x′) for v ∈ R.

(9.16)

For the complex Dirac eigenvalues z ∈ C\R, this allows us to write eq. (9.14) as

R
C (Nf=2)
1,N (z) = R

C (Nf=0)
1,N+2 (z)

{
1− KN+2(z, m2)DN+2(z∗, m2)−KN+2(z∗,m2)DN+2(z, m2)

KN+2(z, z∗)DN+2(m2,m2)

}
.

(9.17)
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9.2 Strongly non-Hermitian microscopic large-N limit

9.2 Strongly non-Hermitian microscopic large-N

limit

9.2.1 General Nf

We begin by writing down generic formulas for an arbitrary number Nf of quark

flavours for the partition function and the eigenvalue densities in the strongly non-

Hermitian limit, before looking in detail at the Nf = 2 case with both degenerate

and non-degenerate masses.

9.2.1.1 Partition function

For even Nf : We take the large-N limit of eq. (5.12) (after dropping the normali-

sation constant), giving

ZS (Nf )({m}) = (−1)Nf /2

∏Nf

f=1 mν
f

∆Nf
({m2}) Pf[KS(m2

i ,m
2
j )]1≤i,j≤Nf

∝
∏Nf

f=1 e−η−m2
f

∆Nf
({m2}) Pf[(m2

i −m2
j ) Iν(2η+mimj)]1≤i,j≤Nf

, (9.18)

where we used the explicit form of the strong (quenched) kernel eq. (7.6) in the

second step.

For odd Nf : This limit does not exist. We would have to take the large-N limit of

eq. (5.17). However, that would include the large-N limit of qN (z), which does not

exist.

9.2.1.2 Density

For even Nf : We can take the large-N limit of the finite-N result eq. (9.2), with

no additional scaling, as we did for the quenched case. We can take the limit inside

the Pfaffian (it operates only on elements in the first row and column), and there is

no issue when changing the order of the limit and the integral:

R
S (Nf )
1 (z) ≡ lim

N→∞
R

(Nf )
1,N (z) =

Pf
[
Aij

]
1≤i,j≤Nf+2

Pf
[
KS(m2

i ,m
2
j )

]
1≤i,j≤Nf

, (9.19)

where

Aij = −Aji ≡





0 if i = j,

−GS(wj , z) if j > i = 1,

KS(wi, wj) if j > i > 1,

(9.20)
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9.2 Strongly non-Hermitian microscopic large-N limit

in which w2 ≡ z and wi+2 ≡ m2
i for 1 ≤ i ≤ Nf , and where we define the limit of

GN (u, v) in eq. (4.51):

GS(u, v) ≡ lim
N→∞

GN (u, v)

= − lim
N→∞

∫

C
d2z′KN (u, z′)F(z′, v)

= −
∫

C
d2z′ lim

N→∞
KN (u, z′)F(z′, v)

= −
∫

C
d2z′KS(u, z′)F(z′, v)

=





2iKS(u, v∗)w(v)w(v∗) sgn(=m v) for v ∈ C\R,

−w(v)
∫

R
dx′KS(u, x′)w(x′) sgn(v − x′) for v ∈ R.

(9.21)

For the case with two quark flavours, this gives

R
S (Nf=2)
1 (z) = R

S (Nf=0)
1 (z) +

KS(z,m2
2)G

S(m2
1, z)−KS(z,m2

1)G
S(m2

2, z)
KS(m2

1, m
2
2)

. (9.22)

As for the finite-N case, when z ∈ C\R, we can write this as a multiplicative correc-

tion to the quenched case as follows:

R
CS (Nf=2)
1 (z) = R

CS (Nf=0)
1 (z)

{
1− KS(z,m2

2)KS(m2
1, z

∗)−KS(z, m2
1)KS(m2

2, z
∗)

KS(z, z∗)KS(m2
1,m

2
2)

}
.

(9.23)

For z ∈ R, we must use eq. (9.22) directly.

For odd Nf : This limit of eq. (9.7) does not exist, for the reason discussed above.

9.2.2 Nf = 2: Degenerate masses1

As for the finite-N case, the strongly non-Hermitian kernel is zero for identical

arguments. Therefore we have

R
S (Nf=2)
1 (z) = R

S (Nf=0)
1 (z)− KS(z, m2)US(m2, z)−GS(m2, z)DS(z,m2)

DS(m2,m2)
, (9.24)

1We assume for the examples in §9.2 that the masses are real. In fact, for a mapping to QCD,
we actually require imaginary masses in the RMT model. However, because of the symmetry of
the strongly non-Hermitian density, one can merely rotate the solutions by 90◦ in the complex
plane to see the effect of imaginary masses.
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9.2 Strongly non-Hermitian microscopic large-N limit

in which DS(u, v) and US(u, v) mirror their finite-N counterparts:

DS(u, v) ≡ ∂

∂v
KS(u, v)

=
η3
+

8π
e−η−(u+v)(uv)−ν/2(2v)−1

× {
η+

√
uv(u− v)[Iν−1(2η+

√
uv) + Iν+1(2η+

√
uv)]

− (
ν(u− v) + 2v(1 + η−(u− v))

)
Iν(2η+

√
uv)

}
(9.25)

and

US(u, v) ≡ ∂

∂u
GS(u, v)

=




−2i DS(v∗, u)w(v)w(v∗) sgn(=m v) for v ∈ C\R,

w(v)
∫

R
dx′DS(x′, u)w(x′) sgn(v − x′) for v ∈ R.

(9.26)

For z ∈ C\R, we can write this as

R
CS (Nf=2)
1 (z) = R

CS (Nf=0)
1 (z)

{
1− KS(z, m2)DS(z∗, m2)−KS(z∗,m2)DS(z,m2)

KS(z, z∗)DS(m2, m2)

}
.

(9.27)

For z ∈ R, we work from eq. (9.24) directly.

In Figure 9.1 we show plots for the strongly non-Hermitian unquenched limit,

with two flavours of quark with degenerate masses m1 = m2 = 2. As with the earlier

plots, we show only one quadrant of the complex plane C, and only one half of each

axis, since the densities are symmetric under reflection in the x- and y-axes. We

see a depletion in the densities (of both real and complex eigenvalues) around the

point z = 2, the ‘location’ of the masses, as if they were repelling the eigenvalues.

However, the densities still remain real and positive. Since the masses are located

on the real axis, the density of imaginary eigenvalues remains (almost) unaffected

by their presence.

9.2.3 Nf = 2: Non-degenerate masses

In Figure 9.2, we show some plots of the densities of complex eigenvalues when the

two masses are not the same. These were generated using eq. (9.23). For a moderate

mass split ∆m ≡ |m2 −m1|, we see that there is a depletion of eigenvalues around

the ‘location’ of the masses, and a peak in the complex density elsewhere. As the

mass split increases, we clearly see the formation of a circular region of oscillations,

with the number and height of the oscillations both growing with the mass split.
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Figure 9.1: The densities of complex (left), real (right, blue) and imaginary (right,

red, dashed) Dirac eigenvalues at strong non-Hermiticity with two degenerate masses

m1 = m2 = 2; µ = 1 and ν = 0 in both cases.

(The graphs show just one quadrant of C, with a semi-circular region of oscillations.

In C itself, there are two circular regions of oscillations in total.)

Let us now investigate the reasons behind the oscillations. As we established in

§7.3, the density of complex (Dirac) eigenvalues for the quenched case in the strongly

non-Hermitian limit is, essentially, constant everywhere apart from close to the real

and imaginary axes, where it vanishes. As we discussed earlier, the unquenched

density can be written as a correction to the quenched case, see eq. (9.23), which is

given by:

∆CS
1 (z) =

−KS(z, m2
1)KS(z∗,m2

2) +KS(z∗, m2
1)KS(z,m2

2)
KS(z, z∗)KS(m2

1,m
2
2)

R
CS (Nf=0)
1 (z)

= (−2i)
=m

{KS(z,m2
1)KS(z∗,m2

2)
}

KS(z, z∗)KS(m2
1,m

2
2)

R
CS (Nf=0)
1 (z), (9.28)

in which KS(u, v) is the strong quenched kernel from eq. (7.6). We now switch to

consider the correction to the density of Dirac eigenvalues:

∆CS
1,Dirac(z) = (−2i)

=m
{KS(z2,m2

1)KS(z∗2,m2
2)

}

KS(z2, z∗2)KS(m2
1,m

2
2)

R
CS (Nf=0)
1,Dirac (z). (9.29)

Next, we make the first of two approximations. For the quenched case, away from

the axes, the Dirac density is almost flat, i.e. it is equal to some constant which we

can determine exactly (see §7.3), but here we shall simply denote it by ρs. Hence

∆CS
1,Dirac(z) ≈ (−2i)

=m
{KS(z2,m2

1)KS(z∗2,m2
2)

}

KS(z2, z∗2)KS(m2
1,m

2
2)

ρs. (9.30)
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Figure 9.2: The densities of complex Dirac eigenvalues at strong non-Hermiticity

with two non-degenerate real masses: m1 = 2 in all cases, m2 = 4 (top, left), m2 = 6

(top, right), m2 = 8 (bottom, left) and m2 = 10 (bottom, right); µ = 1 and ν = 0 in all

cases. The vertical scaling has been kept the same in all cases, with truncation of the

peaks. Between these peaks, there are negative troughs (not visible) of comparable

magnitude.

On inserting the explicit form of the strong kernel from eq. (7.6), we get (after noting

that a number of factors cancel)

∆CS
1,Dirac(z) ≈ (−2i)

=m
{
(z2 −m2

1)(z
∗2 −m2

2)Iν(2η+zm1)Iν(2η+z∗m2)
}

(m2
1 −m2

2)(z2 − z∗2)Iν(2η+m1m2)Iν(2η+zz∗)
ρs. (9.31)

Our second approximation is to replace each I-Bessel function with its large-argument

asymptotic limit

Iν(z) ∼ ez

√
2πz

(9.32)
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for −π
2 < arg(z) < π

2 , i.e. in the right half-plane. After simplification, this gives (in

the right half-plane, and sufficiently far away from the origin and from the axes)

∆CS
1,Dirac(z) ≈ (−2i) ρS e−2η+(m1m2+|z|2)

(m2
1 −m2

2)(z2 − z∗2)
=m

{
(z2 −m2

1)(z
∗2 −m2

2)e
2η+(zm1+z∗m2)

}

=
(−2i) ρS

(m2
1 −m2

2)(z2 − z∗2)
exp

[
2η+

(
(m1 + m2)x− |z|2 −m1m2

)]

×=m
{

(z2 −m2
1)(z

∗2 −m2
2)

×
(

cos(2η+(m1 −m2)y) + i sin(2η+(m1 −m2)y)
)}

, (9.33)

where x ≡ <e z and y ≡ =m z. We can regard this as being the product of an envelope

(the exponential), some polynomials in z and z∗, and an oscillatory function of y.

Let us consider each in turn.

To understand the behaviour of the exponential part, we can determine the

contours in the z-plane where this part takes constant values. Equivalently, we can

perform this analysis on the exponent. So we look for the solution of

(m1 + m2)x− |z|2 −m1m2 = k, (9.34)

where k is some constant. Writing |z|2 = x2 + y2, and rearranging, we have

(
x− m1 + m2

2

)2

+ y2 =
(

m1 −m2

2

)2

− k ≡ r2. (9.35)

This is, of course, the equation of a circle of radius r, centred on the point z =

(m1 + m2)/2. The exponential function equals unity when k = 0, i.e. when the circle

passes through the points z = m1 and z = m2. Crudely speaking, this marks the

boundary of the region where the correction is ‘significant’ when compared with the

quenched case (where the density equals ρS). Points inside this circle have k > 0, so

the circle marks the boundary of a peak (rather than a dip) in the complex plane.

The maximal value of this peak is exp(2η+kmax), where

kmax =
(

m1 −m2

2

)2

, (9.36)

so the peak grows very rapidly indeed with the difference between m1 and m2. Of

course, our approximations are not valid at the centre of the circle since this lies

on the x-axis, and so this argument is merely indicative of the orders of magnitude

that we might expect to observe in the density itself.
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The polynomials (z2 −m2
1)(z

∗2 −m2
2) in eq. (9.33) result in a repulsion of eigen-

values from the points ±m1 and ±m2, similar to what we observed in the case of

identical masses.

Finally, if we combine the oscillatory part of eq. (9.33) with the (z2−z∗2)−1 factor,

then we get an oscillating function of y which is symmetric (even), and which has a

constant ‘wavelength’

λ =
π

η+ |m1 −m2| . (9.37)

In other words, this constitutes a set of ridges and troughs parallel to the real axis.

Therefore, what we observe in the total density is a circular ‘peak’ of fairly

dramatic oscillations, but these are almost completely suppressed elsewhere in the

complex plane. There is also some repulsion from the location of the masses, al-

though the exponential effect causing the peak is generally much more significant.

The number of oscillations visible will therefore be given by

Noscillations ≈ η+ (m1 −m2)2

π
, (9.38)

and we can say that no oscillations will be seen at all if, roughly speaking,

|m1 −m2| <
√

π

η+
. (9.39)

If we evaluate eq. (9.38) for the bottom right-hand plot of Figure 9.2, then we find

that we would predict around 10 oscillations in the circular region; indeed, we see 5

oscillations in the half of the circle that is shown, in complete agreement.

In Figure 9.3 we show the real and imaginary Dirac eigenvalues when we have

two non-degenerate masses. Although there are no oscillations in this case, the

density of the real eigenvalues does turn negative in the region between the masses,

and grows rapidly with the mass split. The density of the imaginary eigenvalues

is essentially unaffected by the presence of the (real) masses, as for the earlier case

with degenerate masses.
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Figure 9.3: The densities of real (blue) and imaginary (red, dashed) Dirac eigenval-

ues at strong non-Hermiticity with two non-degenerate real masses. m1 = 2 in both

cases, m2 = 3 (left) and m2 = 4 (right); µ = 1 and ν = 0 in both cases.

9.3 Weakly non-Hermitian microscopic large-N limit

9.3.1 General Nf

We scale the chemical potential µ and the Dirac eigenvalue z as for the quenched

case discussed in the previous chapter, but now we also have to scale the masses1:

µ =
α√
2N

, z =
ẑ

2
√

N
and mi =

ηi

2
√

N
, (9.40)

where z and ẑ are Dirac eigenvalues. Equivalently, the Wishart eigenvalues and the

squared masses scale as N−1.

9.3.1.1 Partition function

For even Nf : Taking the limit of eq. (5.12) (multiplied by a suitable N -dependent

scaling factor to guarantee that a limit exists) using eq. (8.5), we can immediately

write down the partition function

ZW (Nf )({η}) =
(−1)Nf /2

∆Nf
({η2}) Pf[KW (η2

i , η
2
j )]1≤i,j≤Nf

, (9.41)

with the quenched weak kernel KW (u, v) which was given in eq. (8.16).

For odd Nf : Similarly, we take the limit of eq. (5.17) to give

ZW (Nf )({η}) =
(−1)(Nf−1)/2

∆Nf
({η2}) Pf

[
Aij

]
1≤i,j≤Nf+1

, (9.42)

1One also has to scale the masses in the epsilon regime of chiral perturbation theory in order
to exclude the propagating modes of the pions.

136



9.3 Weakly non-Hermitian microscopic large-N limit

in which

Aij = −Aji ≡





0 if i = j,

qW (η2
j−1) if j > i = 1,

KW (η2
i−1, η

2
j−1) if j > i > 1,

(9.43)

and qW (z) is the limit of the (even) skew-orthogonal polynomial eq. (5.53) under the

weak scaling, given by (N even)

qW (z) ≡ lim
N→∞

1
(4N)ν/2N !

( z

4N

)ν/2
qN

( z

4N

)

= 2−ν e−α2/2Jν(
√

z). (9.44)

There is some arbitrariness regarding the overall normalisation of the limit of the

skew-orthogonal polynomial, since qW (z) is itself, of course, not a polynomial. Our

choice ensures that the formulas for the large-N densities take the same forms as

those for the finite-N case.

9.3.1.2 Density

Turning now to the eigenvalue densities, we simply take the limits of the appropri-

ately scaled finite-N results from §9.1.1.

For even Nf : We have

R
W (Nf )
1 (z; α) ≡ lim

N→∞
1

4N
R

(Nf )
1,N

( z

4N

)

=
Pf

[
Aij

]
1≤i,j≤Nf+2

Pf
[
KW (η2

i , η
2
j )

]
1≤i,j≤Nf

, (9.45)

where

Aij = −Aji ≡





0 if i = j,

−GW (wj , z) if j > i = 1,

KW (wi, wj) if j > i > 1,

(9.46)

in which w2 ≡ z and wi+2 ≡ η2
i for 1 ≤ i ≤ Nf , and

GW (u, v) ≡ lim
N→∞

1
4N

uν/2

vν/2
GN

( u

4N
,

v

4N

)

= − lim
N→∞

1
4N

uν/2

vν/2

∫

C
d2z′KN

( u

4N
, z′

)
F

(
z′,

v

4N

)

=

{
2iKW (u, v∗)W(v, v∗) sgn(=m v) for v ∈ C\R,

see eq. (8.87) for v ∈ R.
(9.47)
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As with the strongly non-Hermitian case, we took the limit inside the Pfaffian (it

operates only on elements in the first row and column).

For two flavours Nf = 2, we can write out the formula eq. (9.45) explicitly:

R
W (Nf=2)
1 (z) = R

W (Nf=0)
1 (z) +

KW (z, η2
2)G

W (η2
1, z)−KW (z, η2

1)G
W (η2

2, z)
KW (η2

1, η
2
2)

. (9.48)

When z ∈ C\R, we use eq. (9.47) to show that this becomes

R
CW (Nf=2)
1 (z) = R

CW (Nf=0)
1 (z) + 2iW(z, z∗) sgn(=m z)

×
{KW (z, η2

2)KW (η2
1, z

∗)−KW (z, η2
1)KW (η2

2, z
∗)

KW (η2
1, η

2
2)

}

(9.49)

= R
CW (Nf=0)
1 (z)

{
1− KW (z, η2

2)KW (η2
1, z

∗)−KW (z, η2
1)KW (η2

2, z
∗)

KW (z, z∗)KW (η2
1, η

2
2)

}
.

(9.50)

For simplicity, we will use the ‘multiplicative form’ eq. (9.50) when considering the

case when the two masses both lie within the strip of quenched eigenvalues (since

R
CW (Nf=0)
1 (z) is almost constant in this region). However, when we consider the

case when one of the masses lies outside the strip, where R
CW (Nf=0)
1 (z) is typically

negligible, then the ‘additive form’ eq. (9.49) is easier to use.

For odd Nf : We have

R
W (Nf )
1 (z; α) =

Pf
[
Bij

]
1≤i,j≤Nf+3

Pf
[
Cij

]
1≤i,j≤Nf+1

, (9.51)

where

Bij = −Bji ≡





0 if i = j,

−QW (z) if i = 1, j = 2,

qW (wj) if i = 1, j > 2,

−GW (wj , z) if j > i = 2,

KW (wi, wj) if j > i > 2,

(9.52)

in which w3 ≡ z and wi+3 ≡ η2
i for 1 ≤ i ≤ Nf , and

Cij = −Cji ≡





0 if i = j,

qW (η2
j−1) if j > i = 1,

KW (η2
i−1, η

2
j−1) if j > i > 1.

(9.53)

We have the corresponding integrated skew-orthogonal polynomial given by

QW (z) ≡ lim
N→∞

4N

N !
1

zν/2
QN

( z

4N

)

= lim
N→∞

4N

N !
1

zν/2

∫

C
d2z′ qN (z′)F

(
z′,

z

4N

)
. (9.54)
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9.3 Weakly non-Hermitian microscopic large-N limit

For complex z ∈ C\R, the integral contains a Dirac delta function, and so we can

take the limit operator to act directly on qN and F , giving the product of the limiting

cases of each:

QW (z) = −2i qW (z∗)W(z, z∗) sgn(=m z). (9.55)

For real z we have, as with the real weak density, an issue when interchanging the

limit and the integral. We find that

QW (x) =
ĥ(x)

[sgn(x)]ν/2

{(
(−i)ν

∫ 0

−∞
dy +

2
[sgn(x)]ν/2

∫ x

0
dy

)
qW (y)ĥ(y)

− 23−ν√πeα2/2

[
αν+2E 1−ν

2
(α2)

Γ
(

ν+1
2

) + α

]}
, (9.56)

the proof of which follows along similar lines to that for GW (x, x′) in §8.3, and which

we therefore omit.

For Nf = 1, we have for the density of eigenvalues

R
W (Nf=1)
1 (z) = R

W (Nf=0)
1 (z) +

qW (z)GW (η2, z)−QW (z)KW (z, η2)
qW (η2)

. (9.57)

When z ∈ C\R, this can be written as

R
CW (Nf=1)
1 (z) = R

CW (Nf=0)
1 (z)+2iW(z, z∗) sgn(=m z)

{KW (z, η2)qW (z∗)−KW (z∗, η2)qW (z)
qW (η2)

}
.

(9.58)

9.3.2 Nf = 2: Degenerate masses

With our convention that µ = 0 is Hermitian and not anti-Hermitian, the complex

eigenvalues in the weakly non-Hermitian limit lie (predominantly) in a strip parallel

to the real axis. We therefore take the masses ηi to be purely imaginary for the

remainder of this chapter, in order to permit meaningful comparison with QCD

results. Sometimes we will write ηi = µii, where µi ∈ R+ (which should not be

confused with the chemical potential µ).

When we have two quark flavours with masses that are degenerate η1 = η2 ≡ η,

then

R
W (Nf=2)
1 (z) = R

W (Nf=0)
1 (z)− KW (z, η2)UW (η2, z)−GW (η2, z)DW (z, η2)

DW (η2, η2)
(9.59)
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9.3 Weakly non-Hermitian microscopic large-N limit

where DW (u, v) is determined by differentiating the quenched weak kernel eq. (8.16)

DW (u, v) ≡ ∂

∂v
KW (u, v)

=
1

256πα2

∫ 1

0
ds s2 e−2α2s2

(2v)−1
{√

vJν−1(s
√

v)
[
νJν(s

√
u)− s

√
uJν−1(s

√
u)

]

+ Jν(s
√

v)
[
ν
√

uJν−1(s
√

u)− svJν(s
√

u)
]}

,

(9.60)

and

UW (u, v) =
∂

∂u
GW (u, v). (9.61)

We look in more detail at specific cases in the next two sections.

9.3.3 Complex eigenvalues

9.3.3.1 Nf = 2: Degenerate masses, both inside the strip

When we are considering complex eigenvalues z ∈ C\R, the expressions for both

GW (u, v) and UW (u, v) simplify. For the former, we refer to eq. (9.47); for the latter,

we then have

UW (u, v) = −2iDW (v∗, u)W(v, v∗) sgn(=m v), (9.62)

and so we can write (z ∈ C\R)

R
CW (Nf=2)
1 (z) = R

CW (Nf=0)
1 (z)

{
1− KW (z, η2)DW (z∗, η2)−KW (z∗, η2)DW (z, η2)

KW (z, z∗)DW (η2, η2)

}
.

(9.63)

Figure 9.4 shows the effect on the density of complex eigenvalues of adding two

imaginary degenerate masses. The left-hand plot shows the quenched case; the

two masses are added in the right-hand plot, and apart from a repulsion from the

‘location’ of the masses at 4i, no other effect is seen.

9.3.3.2 Nf = 2: Non-degenerate masses, both inside the strip

We consider next the case when we have two non-degenerate masses, both located

within the (quenched) eigenvalue strip (|=m z| < 2α2). Since the densities depend on

the squares of the masses, we take =m η1 ≥ 0, =m η2 ≥ 0, without loss of generality.

The correction to the density of the complex eigenvalues is given by eq. (9.50).

Since all arguments (η1, η2 and z) lie within the strip, we can use the approximation
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9.3 Weakly non-Hermitian microscopic large-N limit

x

y

x

y

Figure 9.4: The densities of complex Dirac eigenvalues at weak non-Hermiticity

for α = 2 in the quenched case (left) and with two degenerate imaginary masses

η1 = η2 = 4i (right); ν = 0 in both cases.

for the kernel from eq. (8.29)1. Because of the way everything combines and the

various exponential factors cancel, we are, in fact, left with something identical to the

strongly non-Hermitian unquenched case at µ = 1, analysed in detail in §9.2.3, but

with all the arguments (i.e. Dirac eigenvalues and masses) rescaled by a factor 1/2α

(and of course everything is also rotated by 90◦ in the complex plane). Consequently,

all the results that we found for the strongly non-Hermitian case carry over directly,

provided we make this rescaling.

In particular, we can say that there is a region of oscillations which is a circle

(in fact, two circles, one on each side of the x-axis), and the oscillations are parallel

to the y-axis. The circle in =m z ≥ 0 passes through η1 and η2. The wavelength of

the oscillations is given by

λ =
8πα2

|η2 − η1| , (9.64)

and the number of oscillations visible in the circle is given roughly by

Noscillations ≈ |η2 − η1|2
8πα2

. (9.65)

No oscillations will be seen until, approximately,

|η2 − η1| > 2
√

2πα ≈ 5α. (9.66)

1Actually, this may cease to be strictly true if the larger of the two masses lies very close to
the edge of the strip, but we shall ignore any small correction here.
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9.3 Weakly non-Hermitian microscopic large-N limit

Indeed, since the strip width is ≈ 2α2 (see §8.2.2), we therefore require 2
√

2πα ≤ 2α2,

i.e. α ≥ √
2π, if any oscillations are to be seen. Finally, the height of the oscillations

grows exponentially with the square of the mass difference, as for the strongly non-

Hermitian unquenched case.

Figure 9.5 shows a typical case (both plots show the same situation). With α = 6,

the approximate edge of the strip lies at y ≈ 2α2 = 72, so the masses at 10i and 70i

both lie inside the strip. The number of oscillations is predicted from eq. (9.65) to

be 3.98 which is entirely consistent with the four peaks that can be seen. The region

of oscillations is indeed circular, to a very good degree of approximation.

x

y

x

y

Figure 9.5: The densities of complex Dirac eigenvalues at weak non-Hermiticity for

α = 6 (and ν = 0) with two masses η1 = 10i and η2 = 70i, shown as a 3-dimensional

plot (left) and as a contour plot (right). The peaks of the oscillations have been

truncated. Between the positive peaks are negative peaks of similar size which are

not visible in the left-hand plot. Each white band in the right-hand plot corresponds

either to a positive or to a negative (truncated) oscillation. The predicted circular

boundary of the region of oscillations has been superimposed in the right-hand plot

(black line).

9.3.3.3 Nf = 1

The next simplest case is when we have just one (imaginary) mass which is located

within the strip. (A single mass located outside the strip has almost no effect on
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9.3 Weakly non-Hermitian microscopic large-N limit

the quenched density.) The equation for the correction to the quenched density of

complex eigenvalues is given in eq. (9.58). Let us denote the mass as η = µi where

0 ≤ µ < 2α2. We consider a point z = x + iy, such that y+µ
2 < 2α2, and so for both

occurrences of the kernels we can use the first approximation in eq. (8.39). Note

that z itself may lie outside the strip. For the Bessel functions that constitute the

limiting skew-orthogonal polynomials, we use the large-argument asymptotic form,

and for the weight function, we use the approximate form from eq. (8.36). If we

substitute both these approximations into eq. (9.58), and isolate the real part of the

exponent, then we arrive at an equation analogous to eq. (9.34) for the contours

where the envelope of the oscillations is constant:

−x2 − 3y2 + µ2 + 2µy + 8α2y − 8α2µ = k (9.67)

where k is some constant. On choosing k = 0 (so that we find contours where the

unquenched correction is unity), and rearranging, we arrive at

x2

(
2√
3
(2α2 − µ)

)2 +

(
y − 4α2+µ

3

)2

(
2
3(2α2 − µ)

)2 = 1. (9.68)

This is the equation of an ellipse, with centre at
(

4α2+µ
3

)
i, and passing through

the mass η = µi and the point
(

8α2−µ
3

)
i on the far side, which lies a distance 2α2−µ

3

outside the strip. Note that the average of this latter point and the mass is less than

2α2, so our original choice of approximation for the kernel (the first approximation

in eq. (8.39)) was indeed the correct one to use.

A region of oscillations also occurs in the β = 2 case [Ake05a], and, in fact, the

formula for the boundary in that case is identical to the one for the β = 1 case (see

[Osb08b], where the boundary was determined from an effective theory using an

ansatz).

If we treat the point
(

8α2−µ
3

)
i as a ‘dummy’ second mass, and then use eq. (9.64)

for the Nf = 2 case to estimate the wavelength of the oscillations (without rigorous

justification), then we can obtain an approximate formula for the number of visible

oscillations across the ellipse as

Noscillations ≈ 2
3
√

3πα2
(2α2 − µ)2. (9.69)

In Figure 9.6 we show a typical case. The right-hand plot shows the predicted

ellipse eq. (9.68) superimposed, demonstrating an impressive fit. Using eq. (9.69)

143



9.3 Weakly non-Hermitian microscopic large-N limit

with the parameters in these plots (α = 6 and µ = 10), we find that 13.1 oscillations

are predicted, entirely consistent with the 13 or 14 that are visible.

x

y

x

y

Figure 9.6: The densities of complex Dirac eigenvalues at weak non-Hermiticity for

α = 6 (and ν = 0) with one mass η = 10i, shown as a 3-dimensional plot (left) and as

a contour plot (right). The predicted elliptical boundary of the region of oscillations

has been superimposed in the right-hand plot (black line). Some small errors in the

numerical integration are clearly visible in certain places in the left-hand plot.

9.3.3.4 Nf = 2: Non-degenerate masses, one outside the strip

We now consider the case where Nf = 2, η1 = µ1i and η2 = µ2i, with one mass inside

the strip (0 ≤ µ1 < 2α2) and the other mass outside the strip (µ2 ≥ 2α2). We will use

eq. (9.49) for the density, and will approximate each occurrence of the kernel in this

expression by either the first or the second approximation in eq. (8.39), depending

on the average of the two arguments. We omit the details of the calculation which

are similar to those in the previous sections, and we just give the results.

First, if 2α2 ≤ µ2 < 4α2−µ1, then, under our approximation, we find that the far

boundary of the oscillating region is given by an ellipse (although different from the

ellipse eq. (9.68) in the previous case), and the boundary closer to the real axis is

given by a circle. Figure 9.7 shows such a case. We have superimposed the predicted

circle and ellipse, each of which shows a good match in its region of applicability.

Furthermore, we can derive the formula which gives the distance between the origin
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9.3 Weakly non-Hermitian microscopic large-N limit

and the furthest part of the region of oscillations:

dfar =
4α2 + µ1

3
+

√
4(2α2 − µ1)2

9
− [4α2 − (µ1 + µ2)]2

3
. (9.70)

Second, if µ2 ≥ 4α2 − µ1, then the weak kernel KW (z, η2
2) is always approximated

by the second approximation in eq. (8.39), where it factorises into separate z- and µ2-

dependent parts1. The µ2-dependent factors then completely cancel in the expression

for the unquenched density eq. (9.49), and we get the same expression as for the

Nf = 1 case. The quark with mass η2 = µ2i can therefore be said to have decoupled

from the system completely. Hence, 4α2−µ1 can be considered to be a critical value

of µ2.

x

y

x

y

Figure 9.7: The densities of complex Dirac eigenvalues at weak non-Hermiticity for

α = 6 (and ν = 0) with two masses η1 = 10i and η2 = 95i, shown as a 3-dimensional

plot (left) and as a contour plot (right). The predicted boundaries of the region of

oscillations (an ellipse and a circle) have been superimposed in the right-hand plot

(black lines).

9.3.3.5 Partially quenching the Nf = 2 case

We are now in a position to combine the results from the last three parts to gain an

understanding of what happens to the Nf = 2 case as we take one of the masses to

1i.e. if we are just considering the exponential part which is the most relevant. Strictly speaking,
complete factorisation does not occur until one of the arguments is infinitely big – see the comments
after eq. (8.31).
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9.3 Weakly non-Hermitian microscopic large-N limit

be increasingly large. Assume that the lower mass, η1 = µ1i, is fixed, and lies within

the strip (0 ≤ µ1 < 2α2). The first regime corresponds to the case when the higher

mass η2 = µ2i also lies within the strip. We have a circular region of oscillations,

extending from the lower mass µ1i to the higher mass µ2i. The second regime is

when µ2i lies outside the strip, but below the critical point. Here, the region of

oscillations lies somewhere between a circle and an ellipse, and the far side of the

oscillating region now lies outside the strip, but not as far outside as the second

mass itself. For the third regime, µ2i lies beyond the critical point, and so the quark

has effectively decoupled (and so this is the same as the Nf = 1 case). Here, the

oscillating region is elliptical, and no longer shows any dependency on µ2.

We can combine the previous results to extend the formula for the distance from

the origin to the far side of the oscillating region:

dfar(µ2) =





µ2 for 0 ≤ µ1 ≤ µ2 < 2α2

4α2 + µ1

3
+

√
4(2α2 − µ1)2

9
− [4α2 − (µ1 + µ2)]2

3
for 2α2 ≤ µ2 < 4α2 − µ1

8α2 − µ1

3
for µ2 ≥ 4α2 − µ1,

(9.71)

where α and µ1 are considered fixed. We note that eq. (9.71) is continuous every-

where as a function of µ2, as is its derivative, and this is illustrated in Figure 9.8.

Although this figure is intended to be schematic, it was actually generated using

µ1 = 10 and α = 6, and so can be compared directly with the previous figures.

9.3.4 Real and imaginary eigenvalues

We now consider the real and imaginary Dirac eigenvalues. As in the previous sec-

tion, we place the masses on the imaginary axis. We first consider a fairly low value

of α = 2. Figure 9.9 shows a sequence of graphs with one mass fixed, and varying

the position of a second mass.1 For the real eigenvalues, what we see is merely some

additional repulsion coming from the location of the masses. For the imaginary

eigenvalues, the density becomes negative in the region between the masses, but

because of an exponential decay beyond the edge of the strip, the density remains

bounded as the larger mass is taken to infinity, and so the Nf = 1 case is well-defined.

1For the case of real and imaginary Dirac eigenvalues when we have two quark flavours with
degenerate masses, there is unfortunately no simple formula for UW (u, v) in eq. (9.61). It must be
evaluated by differentiating eq. (8.87) term-by-term.
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µ1 2α2 4α2 − µ1

µ2

µ1

2α2

8α2 − µ1

3

dfar

Figure 9.8: Schematic plot of the function dfar(µ2) which gives the distance from the

origin to the far side of the region of oscillations in the Nf = 2 case. The smaller

mass η1 = µ1i is considered fixed, and is within the strip (µ1 < 2α2). If η2 = µ2i is

also within the strip, then the oscillations lie within a circle, extending to µ2i. If

µ2i is beyond the critical point (4α2 − µ1)i, then it has no effect on the size of the

oscillating region which is an ellipse extending to
(

8α2−µ1

3

)
i. Here, the quark can

be considered to have decoupled completely, giving the Nf = 1 case. The graph also

shows the transition regime, where µ2i is outside the strip, but below the critical

mass. Here, the oscillating region lies somewhere between a circle and an ellipse,

and does not extend as far as µ2i.

We now consider a higher value of α = 3 (recalling that we must have α >
√

2π

if any oscillations are to be seen in the complex plane), see Figure 9.10. We see

that the presence of the masses on the imaginary axis can induce oscillations in the

density profile of the real eigenvalues, provided that the masses are sufficiently far

apart, although the density still appears to remain positive, at least for this value

of α.

We refer the interested reader to our paper [Ake11] for further examples with

different choices of parameters, including graphs which directly compare the un-

quenched and quenched cases.
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Figure 9.9: The densities of real (left) and imaginary (right) Dirac eigenvalues at

weak non-Hermiticity for α = 2, with one mass located at η1 = 4i, and a second

mass at η2 = 4i (red), η2 = 6i (orange), η2 = 8i (green), η2 = 12i (blue) and η2 = 16i

(purple), plus the case with no second mass (black, dashed); ν = 0 in all cases.

0 2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

x

Figure 9.10: The densities of real Dirac eigenvalues at weak non-Hermiticity for

α = 3, with one mass located at η1 = 0, and a second mass at η2 = 0 (red), η2 = 9i

(orange) and η2 = 18i (green), plus the case with no second mass (black, dashed);

ν = 0 in all cases.
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Chapter 10

Universality

For certain Hermitian random matrix ensembles with independently distributed ma-

trix elements, the macroscopic eigenvalue densities appear to depend only on the

symmetries of the matrices, and not on the precise probability density functions of

the individual elements. This is an example of a phenomenon called universality.

Once correlations between elements are introduced, the macroscopic densities may

no longer be universal, but it appears that microscopic densities (and other correla-

tion functions) may still remain so. We refer to Appendix A.1 of [Meh04] for further

background information, and to [Kho09] for a discussion of the non-Hermitian case,

where universality may also be observed.

Universality is at the heart of the applicability of RMT to QCD, for example,

and so it is interesting to explore the universal properties of the chiral ensembles.

See §2.2.2 for some relevant references, and also [Ake02b] for a discussion of the

non-Hermitian chiral case.

The purpose of this brief chapter is to investigate the apparent extent of the

universality of non-Hermitian chiral ensembles, by showing the results of a series of

Monte Carlo simulations for several different ensembles, and comparing the micro-

scopic eigenvalue densities. We will consider here the weakly non-Hermitian limit,

which perhaps has the greatest practical applicability. We will look at the density

of real Dirac eigenvalues, since (i) there will be a large number of such eigenval-

ues, thereby reducing statistical errors, and (ii) because it is easier to compare

1-dimensional distributions visually. We will also look at the distribution of the

lowest real eigenvalue which is not known analytically, even for the chGinOE.

We compare four ensembles, all of which involve ‘chiral’ block matrices with real

elements; in all cases, we fix Nf = 0, ν = 0 and the non-Hermiticity parameter
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α =
√

0.2. The ensembles are:

1. The chiral non-Hermitian ensemble presented in this thesis (the chGinOE)

and defined by eqs. (2.5) and (2.6). This is chosen as a base case to cross-

check our methodology, and to identify the size of the finite-N errors, since we

already know the precise analytic form of the weak density (although not of

the distribution of the lowest eigenvalue).

2. The Stephanov one-matrix model [Ste96] but with real matrix elements, where

the matrix Q in eq. (2.5) is replaced with the identity matrix (multiplied by√
N under our choice of scaling convention). This model is, in some sense,

closer to the physics than the chGinOE because the chemical potential is non-

stochastic.

3. A modification of the chGinOE, where the Gaussian distribution of matrix

elements is replaced with two Dirac delta functions as follows:

p(x) = 1
2

{
δ(x− 1) + δ(x + 1)

}
. (10.1)

The mean and the variance of the matrix elements is hence the same as for

the chGinOE (i.e. zero and unity respectively), and the matrix elements are

still independent.

4. An alternative modification of the chGinOE, where we retain Gaussian distri-

butions, but impose a fixed correlation ρ between all pairs of matrix elements.

(This is effectively a single-factor model.) We choose ρ = 0.5. Although the

Dirac matrix already contains correlated pairs of elements, here we are intro-

ducing a much stronger coupling between all the elements in the matrix.

We generated 100 000 random matrices of each type, with (Wishart) matrix size

N = 30, then we compared all the results against the known large-N limit for the

chGinOE given in Chapter 8.

Figure 10.1 shows the Monte Carlo results for each of the four cases, overlaid onto

a plot of the analytic formula. For the third and fourth cases, it is necessary to rescale

the analytic formula, so that the average eigenvalue spacings are consistent1. We do

this by fitting to the plateau region 2 ≤ x ≤ 8. We make another technical point:

each histogram in Figure 10.1 may contain several eigenvalues from the same matrix

1This is a process known as unfolding, see [Guh98].
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realisation, and so the histogram entries are not, strictly speaking, independent.

However, the error bars are calculated on the assumption that they are, and hence

should be treated as indicative only.
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Figure 10.1: Densities of real Dirac eigenvalues at weak non-Hermiticity, with α2 =

0.2 and ν = 0. Monte Carlo results (blue dots with error bars) for the chGinOE

(top, left), Stephanov model (top, right), delta function distribution (bottom, left)

and correlated Gaussians (bottom, right), all superimposed on the analytic result

(scaled in bottom two cases) for the chGinOE density (red curve). See text for

further details.

In the first plot, the Monte Carlo results and the analytical graph are for the same

model, and so this demonstrates that finite-N effects are unlikely to cause significant

problems1 (although for a more conclusive statement concerning the other ensembles,

one should repeat all the analysis for a higher value of N). The remaining three

graphs show very impressive fits, indicating that universality is indeed highly likely

1See also Figure 8.5 on page 120 for an indication that the N = 30 result is likely to be very
close to the large-N limit for the range of scaled eigenvalues x considered.
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to be a feature in all these cases. We emphasize that the formula for the analytical

curve is exceptionally non-trivial, and differs significantly near the origin from the

Hermitian case (i.e. α = 0, also with ν = 0, see Figure 8.7, left).

Figure 10.2 shows the lowest eigenvalue distribution for the Stephanov model,

overlaid on the corresponding distribution for the chGinOE. Both sets of data are

from Monte Carlo, and the error bars in the latter case are not shown (but are

expected to be of the same magnitude as those in the former case). Again, here, the

arguments for universality are compelling.
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Figure 10.2: Lowest real Dirac eigenvalue distribution at weak non-Hermiticity, with

α2 = 0.2 and ν = 0. Monte Carlo results for the Stephanov model (blue dots with

error bars), superimposed on Monte Carlo results for the chGinOE (red histogram,

no error bars shown). See text for further details.

Although there is no intention to draw any definitive conclusions from the results

in this chapter, we hope that they indicate that our analytical formulas for the

chGinOE may indeed have the wider applicability that is anticipated. Whether

two-colour QCD with chemical potential belongs to the same universality class is

something that ultimately must be verified by comparison with results from lattice

gauge theory.

152



Chapter 11

Conclusions

We have solved the β = 1 chiral Ginibre random matrix ensemble (chGinOE) for

arbitrary non-Hermiticity parameter µ. We began by finding the joint probability

density function for the eigenvalues, and then re-expressed this in a factorised form.

We then derived compact expressions for the correlation functions, involving Pfaf-

fians of kernels and skew-orthogonal polynomials, valid for an arbitrary number of

flavours of virtual quarks. We also found analytical results for two large-N micro-

scopic limits, at strong and weak non-Hermiticity. In the unquenched case, both of

these limits can show interesting properties, such as regions of the complex plane

containing large oscillations of the eigenvalue density function. We were able to

determine where these regions are located, and how they depend on the masses of

the virtual quarks.

From a mathematical viewpoint, we have demonstrated a new technique for

determining the kernel and skew-orthogonal polynomials, by relating the kernel

to an expectation of characteristic polynomials which we evaluate using a Berezin

integral transform. This same method can be applied to the (non-chiral) β = 1

Ginibre ensemble as we showed, rederiving a result that was discovered only very

recently.

However, there are many mathematical properties of the chGinOE that are,

as yet, unknown. It would be interesting (both theoretically and practically) to

derive analytic expressions for the distributions of individual eigenvalues, and the

related gap probability distributions, extending our work in [Ake09b] for the chiral

β = 2 and β = 4 ensembles. Such proofs are expected to be fairly complicated,

especially since we do not yet have an elementary proof (i.e. using ordinary rather

than Berezin integration) that the skew-orthogonal polynomials for the chGinOE
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are indeed skew-orthogonal. Additionally, we have not yet considered in any detail

the behaviour of the 2-point (and higher) correlation functions for the unquenched

ensembles (although we did derive generic formulas for these). Nor did we investigate

the scaling limits in parts of the spectrum other than in the vicinity of the origin,

which may show new and interesting features.

We have only conjectured the extent to which our results may be universal, based

on limited Monte Carlo analysis of some closely related ensembles. Further work in

this direction (especially analytical) would be particularly challenging, although the

results would be very illuminating.

Finally, we turn to the applications. In order to determine the validity of the

chGinOE as a model for low-energy 2-colour QCD, it will be necessary to compare

our results for the eigenvalue densities against those obtained from computer sim-

ulations of lattice gauge theory (LGT). This is possible for the quenched case, and

also for the unquenched case where we have an even number of quark flavours whose

masses come in degenerate pairs, thereby ensuring that the probabilities remain pos-

itive (and this is true of full 2-colour QCD at non-zero µ, and not just of RMT).

The chGinOE can also be compared against lattice simulations of so-called adjoint

QCD (a version of QCD in which the fermion fields are in the adjoint representa-

tion of SUc(3)), when staggered fermions are used. Suitable LGT simulations are in

fact already being undertaken at the time of writing, and preliminary results show

excellent agreement; we look forward with interest to analysing the results in more

detail.
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Appendix A

Some useful preliminary results

In this appendix, we derive a number of elementary results that are used in the body

of the text; in a few cases, where results are already well-known, we merely state

them without proof.

A.1 Integrals

A.1.1 Some integrals on the real line

Firstly, we have the familiar result that, for real α > 0,
∫ ∞

−∞
e−αx2

dx =
√

π

α
, (A.1)

and so, for α > 0, ∫ ∞

−∞
e−αx2+βxdx =

√
π

α
eβ2/4α. (A.2)

It easily follows that (α > 0, γ > 0, β ∈ R)

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

{−1
2(αx2 + γy2)± iβxy

}
=

2π√
αγ + β2

. (A.3)

Using the power series representation of the physicists’ Hermite polynomials

Hk(x) = k!
[k/2]∑

m=0

(−1)m

m! (k − 2m)!
(2x)k−2m, (A.4)

with [x] denoting the integer part of x, we can use eq. (A.1) to show that for k ≥ 0
∫ ∞

−∞
dx e−x2

(λ + icx)k =
√

π
( c

2

)k
Hk

(
λ

c

)
. (A.5)
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A.1 Integrals

This result is also found as eq. 8.951 of [Gra07]. Now, we have

∫ ∞

0
dy e−βy yα =

Γ(α + 1)
βα+1

(A.6)

for α > −1 and β > 0. Therefore, for β > 0 and γ > 0:

∫ ∞

0
dy e−βy Lν

j

(
y

γ

)
yν = (−1)j (j + ν)!

j!
(1− βγ)j

βj+ν+1γj
(A.7)

which follows from eq. (A.6) and the representation of the generalised Laguerre

polynomials Lν
j (u) as a power series

Lν
j (u) =

j∑

k=0

(−1)k (j + ν)!
(j − k)! k! (k + ν)!

uk. (A.8)

A.1.2 Some integrals in the complex plane

We begin with (for integers p, q ≥ 0)

∫

C

d2z

π
e−|z|

2
zpz∗q = p! δpq (A.9)

which is easily proved by switching to polar coordinates. Using this, we can deduce

the following results:

∫

C

d2z

π
e−|z|

2 (|z|2 + u
)k = k!

k∑

j=0

uj

j!
(A.10)

and ∫

C

d2z

π
e−|z|

2
(iz + λ)k(iz∗ + λ)k+ν = (−1)kλνk!Lν

k(λ
2) (A.11)

where Lν
k(x) is the generalised Laguerre polynomial. To prove the latter result,

for example, it is merely necessary to expand the binomials to give a double sum.

Application of eq. (A.9) then reduces this to a single sum, which can be identified

with the power series representation of the Laguerre polynomials in eq. (A.8).

A.1.3 Saddle point method

The standard (real) saddle point formula (also known as Laplace’s method) states

that ∫ ∞

0
dx f(x) e−Ng(x) ∼

√
2π

Ng′′(xs)
f(xs) e−Ng(xs) (A.12)
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A.2 Matrices

at large N , where g(x) has a minimum at xs. The proof follows by expanding g(x)

about its minimum, and integrating the second order contribution using eq. (A.1).

Using this, it is straightforward to show that, for large N , and real a, b and c,

∫ ∞

0
dt t e−t (a− bt)N (a− ct)N+ν

∼ (−1)ν22N+ν+1

√
π

√
N N ! (N + ν)! bNcN+ν exp

[
− a

2

(
1
b

+
1
c

)]
, (A.13)

which is used in the text in §5.2.2.

A.2 Matrices

A.2.1 Differentiation of product of two matrices

Suppose we have the product of two matrices A = BC, or in component form,

Aij =
∑

k BikCkj. Then the partial differentials are given by

∂Aij

∂Bpq
= δipCqj and

∂Aij

∂Cpq
= δjqBip. (A.14)

A.2.2 Differentiation of inverse of a matrix

We determine the partial differential of an element of the inverse of a square matrix

with respect to an element of the matrix itself. Let M be any square matrix, and I

the identity of the same size. Then

0 = dI = d(MM−1) = dM M−1 + M d(M−1). (A.15)

Therefore

d(M−1) = −M−1 dM M−1. (A.16)

It follows that

∂(M−1)ij

∂Mmn
= −

∑
s,t

(M−1)is
∂Mst

∂Mmn
(M−1)tj

= −
∑
s,t

(M−1)isδsmδnt(M−1)tj

= −(M−1)im(M−1)nj . (A.17)
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A.2 Matrices

A.2.3 Some properties of orthogonal matrices

Let O be an orthogonal matrix. Then

OT O = I ⇒ d(OT O) = 0 ⇒ dOT O = −OT dO. (A.18)

Furthermore,

OT dO = −(OT dO)T , (A.19)

i.e. OT dO is anti-symmetric. Now, O has N(N−1)
2 degrees of freedom, and so the

same is true of OT dO. But any anti-symmetric N -by-N matrix has N(N−1)
2 inde-

pendent elements. Therefore, the strictly lower triangular elements of OT dO can be

considered independent of each other. (Note that the same is not true of dO. All

N2 elements may be different, but they are not independent, since the number of

degrees of freedom is smaller.) In fact, since we work with O(N)/O(2)N/2 (when N

is even), we can consider that the N2

2 − N independent entries lie in the elements

below the 2-by-2 blocks on the diagonal. A similar argument applies to the case

when N is odd.

A.2.4 Similarity transformations

Suppose M is a square matrix with an eigenvalue λ, i.e. there exists some vector

v 6= 0, such that

Mv = λv. (A.20)

Now consider the matrix SMS−1, where S is some other non-singular square matrix

of the same size as M . Then

(SMS−1) (Sv) = SMv = Sλv = λ(Sv). (A.21)

Therefore, the matrix SMS−1 also has λ as an eigenvalue. S is known as a similarity

transformation.

Some specific cases of similarity transformations which are mentioned in the text

are listed (without proof) in Table A.1. All matrices are assumed to be square. An

almost-upper-triangular matrix has 2-by-2 blocks down the diagonal (plus a 1-by-1

block if the matrix size N is odd), with all the entries below these blocks being zero.
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A.2 Matrices

Complex matrices

Spectral decomposition H = UΛU−1 H Hermitian, U unitary, Λ diagonal

and real (containing eigenvalues)

Schur decomposition M = U∆U−1 M arbitrary, U unitary, ∆ upper-

triangular, eigenvalues on diagonal

QZ decomposition A = QSZ−1

B = QTZ−1

A, B arbitrary, Q, Z unitary, S, T

upper-triangular

Real matrices

Spectral decomposition S = OΛO−1 S symmetric, O orthogonal, Λ diagonal

(containing eigenvalues)

Schur decomposition M = O∆O−1 M arbitrary, O orthogonal, ∆ almost-

upper-triangular

QZ decomposition A = QSZ−1

B = QTZ−1

A, B arbitrary, Q, Z orthogonal,

S almost-upper-triangular, T upper-

triangular

Table A.1: Summary of similarity transformations referred to in the text.

A.2.5 Some properties of block diagonal matrices

Consider a block diagonal matrix M , i.e. a square matrix that is zero everywhere,

apart from in square blocks down the diagonal. Then

(i) The set of eigenvalues of M is the union of the set of eigenvalues

of each of the blocks treated as matrices in their own right.

(ii) The eigenvalues of M remain unchanged if we make any of the

element(s) above (or below, but not both) the block-diagonal non-

zero.

And, as simple corollaries,

(iii) The determinant of M is simply the product of the determinants of

the individual blocks.

(iv) The determinant of M remains unchanged if we make any ele-

ment(s) above (or below, but not both) the block-diagonal non-zero.

The proofs of these are straightforward, and are omitted.
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A.2 Matrices

A.2.6 Some properties of Pfaffians

For an anti-symmetric matrix A = (Aij) of size N -by-N (where N is even), the

Pfaffian is given by

Pf A =
∑

π∈PN

sgn(π)
N/2∏

i=1

Aπ(2i−1),π(2i) (A.22)

where PN is the set of partitions into pairs of the integers from 1 to N , without

regard either to the order of the two numbers making up each pair, or to the overall

order of the pairs. In fact, this can be taken to be the definition of the Pfaffian,

although an alternative definition as the square root of the determinant is more

common. We use eq. (A.22) with Aij = Mij −Mji for arbitrary N -by-N matrix M ,

to write

Pf(M −MT ) =
∑

π∈PN

sgn(π)
N/2∏

i=1

(Mπ(2i−1),π(2i) −Mπ(2i),π(2i−1)). (A.23)

We now perform two steps. First, we multiply out the product, giving

Pf(M −MT ) =
∑

ρ∈RN

sgn(ρ)
N/2∏

i=1

Mρ(2i−1),ρ(2i) (A.24)

where RN is the set of partitions of pairs where we do now distinguish the order of

the two items within a pair. Second, we also now wish to distinguish the overall

ordering of the pairs, which merely introduces an additional factor of (N
2 )!. In fact,

this is then simply equivalent to summing over all permutations of the integers from

1 to N :

Pf(M −MT ) =
1

(N
2 )!

∑

σ∈SN

sgn(σ)
N/2∏

i=1

Mσ(2i−1),σ(2i). (A.25)

A.2.7 Differentiation of determinants and Pfaffians

We can differentiate the determinant of a square matrix with respect to any one of

its elements as follows:

∂

∂Mij
det M = detM (M−1)ji. (A.26)

This can be proven by noting that

∂

∂Mij
detM = Cij , (A.27)
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A.3 An integral over ordered variables

which follows from the definition of the co-factor matrix C. But we also know that

we can write the inverse of a matrix as

(M−1)ji =
1

detM
(CT )ji, (A.28)

and so the result eq. (A.26) follows immediately.

Since detA = (Pf A)2 for any N -by-N anti-symmetric matrix A with N even, it

follows easily from eq. (A.26) that the differential of a Pfaffian is given by

∂

∂Aij
Pf A = 1

2 Pf A (A−1)ji. (A.29)

To differentiate again, we use eq. (A.29) itself, together with eq. (A.17), to show

that
∂2

∂Aij∂Apq
Pf A = Pf A

{
1
4(A−1)qp(A−1)ji − 1

2(A−1)qi(A−1)jp

}
. (A.30)

A.2.8 Some properties of characteristic polynomials

Let M be an m-by-m matrix. Then

∂m−1

∂um−1
det(M − u)

∣∣∣
u=0

= (−1)m−1 (m− 1)! TrM, (A.31)

∂m

∂um
det(M − u) = (−1)m m!. (A.32)

These can be proven by noting that only the diagonal elements of the matrix M −u

depend on u, and so the only terms in the determinant that survive differentiation

by u at least m − 1 times must contain the product of all the diagonal elements.

Therefore,

∂m−1

∂um−1
det(M − u) =

∂m−1

∂um−1

m∏

j=1

(Mjj − u)

= (−1)m−1 (m− 1)! TrM + (−1)m m!u, (A.33)

and both results follow immediately.

A.3 An integral over ordered variables

For even n, we have
∫

R
dx1 . . .

∫

R
dxn

n∏

j=2

Θ(xj − xj−1)
n∏

k=1

w(xk) ∆n({x})

=
1(
n
2

)
!

∫

R
dx1 . . .

∫

R
dxn

n/2∏

j=1

Θ(x2j − x2j−1)
n∏

k=1

w(xk)∆n({x}), (A.34)
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A.4 Grassmann variables

where Θ(x) is the Heaviside step function, ∆n({x}) is the Vandermonde determinant

(see eq. (2.2)) and w(x) is any weight function for which the integrals exist.

The proof is straightforward, and uses the ‘alternating variables’ method (see

§5.5 of [Meh04] for further details).

A.4 Grassmann variables

A.4.1 Definition

We present a brief introduction only to those concepts that we require in the text

(specifically, in §5.2.1), and refer to textbooks such as [Efe97a; Sto99] for further

details.

We define an algebra with generators ηi (i = 1, . . . , N) that anti-commute, i.e.

{ηi, ηj} ≡ ηiηj + ηjηi = 0. Such an algebra is known as a Grassmann or exterior

algebra. It follows that η2
i = 0 for all i. The algebra is a linear space of 2N dimensions,

with a general element of the form

η = c +
N∑

i=1

ciηi +
N∑

i<j

cijηiηj +
N∑

i<j<k

cijkηiηjηk + . . . + c1...Nη1 . . . ηN , (A.35)

where the coefficients are either real or complex. Note that the basis elements

may be partitioned into sets that either commute or anti-commute amongst them-

selves, although two arbitrary elements of the algebra will neither commute nor

anti-commute with each other.

A.4.2 Berezin integration

We define the Berezin integral as follows:

∫
dη = 0,

∫
η dη = 1. (A.36)

This is not to be interpreted as integration in any classical sense, e.g. it is not the

limit of a sequence of sums; it is merely a particular kind of mapping from functions

of Grassmann variables to ordinary numbers. This mapping has certain properties

(such as linearity) in common with classical integration. Since

∫∫
dη1dη2 η1η2 =

∫∫
dη2dη1 η2η1 (A.37)
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A.4 Grassmann variables

by relabelling, but ∫∫
dη2dη1 η2η1 = −

∫∫
dη2dη1 η1η2 (A.38)

from the anti-commutivity of the Grassmann variables, it follows that dη1dη2 +

dη2dη1 = 0, i.e. the differentials anti-commute as well. Indeed, for consistency, the

differentials also have to anti-commute with the Grassmann variables.

A particularly useful result (and in fact the principal reason for introducing

Grassmann variables and Berezin integration) is

∫
dη exp

{
−

N∑

i,j

η∗i Mijηj

}
= detM, (A.39)

where dη ≡ dη∗1dη1 . . . dη∗NdηN , and M is some ordinary-valued N -by-N square matrix.

Although a ‘complex conjugation’ operator (*) can be defined on the algebra, for

our purposes the starred variables are simply another set of independent Grassmann

variables. For a proof of eq. (A.39), we refer to textbooks.

A.4.3 Hubbard-Stratonovich transformations

Returning now to ordinary integration, we consider the integral

I ≡
∫

R
dx exp

{−x2 + 2xA
}

(A.40)

where A is a commuting element of a Grassmann algebra. We can complete the

square as follows:

I = exp
{
A2

}∫

R
dx exp

{
− (x−A)2

}
. (A.41)

However, the question now is whether we can näıvely change variables in the integral

over x, as if A were an ordinary (real) number.

In general, for commuting A, we can expand a function as a series as follows

f(x + A) = f(x) + f ′(x)A +
f ′′(x)

2
A2 + . . . . (A.42)

(Typically, this series will terminate. For example, if A = η∗η for two basis elements

of the algebra, then An = 0 for n ≥ 2.) Hence

∫ b

a
dx f(x−A) =

∫ b

a
dx f(x)−A

[
f(b)− f(a)

]
+

A2

2
[
f ′(b)− f ′(a)

]
+ . . . . (A.43)
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A.4 Grassmann variables

Now with f(x) = e−x2
, a = −∞ and b = ∞, we see that every term on the right-hand

side, apart from the first one, is equal to zero1. Therefore

I ≡
∫

R
dx exp

{−x2 + 2xA
}

= exp
{
A2

}∫

R
dx e−x2

=
√

π exp
{
A2

}
. (A.44)

So the näıve change of variables x−A → x works without any problem in this case.

On introducing an additional scaling parameter c ≥ 0, and rearranging, the previous

result becomes

exp(−cA2) =
∫

R

dx√
π

exp{−x2 ± 2i
√

cxA}, (A.45)

which is known as the real Hubbard-Stratonovich transformation. This can be

generalised to a complex version

exp(−cAB) =
∫

C

d2z

π
exp{−|z|2 ± i

√
c(zA + z∗B)}, (A.46)

where A and B are both arbitrary commuting elements of a Grassmann algebra.

The complex case can be proved in a similar way to the real case.

We should add that, more generally, one can define the Hubbard-Stratonovich

transformation for the case where both ordinary and Berezin integrals are involved

(a key component of the supersymmetry method), although that is not needed here.

1Of course, this will not be true for arbitrary f , a and b. Any such terms that do not vanish
are known as Efetov-Wegner boundary terms.
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Appendix B

Skew-orthogonal polynomials from

matrix expectations

In §4.2 we showed how to write the skew-orthogonal polynomials in terms of the

kernel. However, the kernel can, in turn, be expressed in terms of expectations

(over matrix ensembles) of characteristic polynomials (see eq. (5.20)). We show in

this appendix how the kernel can then be ‘eliminated’, allowing the skew-orthogonal

polynomials to be written directly in terms of matrix averages.1

Our result here in fact has more general applicability than to the chGinOE. For

any ensemble of random matrices M whose JPDF has the form eq. (4.7) involving a

bivariate weight function F(u, v) of the form eq. (4.8) for arbitrary weight w(z), the

skew-orthogonal polynomials of F(u, v) can be written as matrix expectations over

M in the way that we show. In the case of the chGinOE, the matrix M corresponds

to the Wishart matrix W , rather than to the Dirac matrix D.

We begin by establishing some preliminary results. First, for a 2k-by-2k matrix

M from any random matrix ensemble, we have the ‘quenching’ result that

lim
u→∞

(u− v)〈det(M − u) det(M − v)〉
u2k+1

= 〈det(M − v)〉. (B.1)

Second, using the fact that, for some m-times differentiable function F (u, v),

∂m

∂um

{
(u− v) F (u, v)

}
= m

∂m−1

∂um−1
F (u, v) + (u− v)

∂m

∂um
F (u, v) (B.2)

(which is not completely trivial, but is easy to prove by induction), we can establish

1We published alternative proofs of these results (due principally to Mario Kieburg) in [Ake10b].
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that

∂2k

∂u2k

{
(u−v)〈det(M−u) det(M−v)〉

}∣∣∣
u=0

= − (2k)!
{
〈det(M−v)TrM〉+v 〈det(M−v)〉

}
,

(B.3)

where we also used some basic properties of determinants, see eqs. (A.31) and (A.32).

We can now determine the relationships between the skew-orthogonal polynomi-

als and matrix expectations. Using eqs. (4.29), (5.20) and (B.1), we have

q2k(z) = hk lim
u→∞

K2k+2(u, z)
u2k+1

= lim
u→∞

(u− z)
u2k+1

〈det(M − u) det(M − z)〉2k

= 〈det(M − z)〉2k. (B.4)

Similarly, using eqs. (4.30), (5.20), (B.3) and (B.4), and setting c = 0,

q2k+1(z) = − hk

(2k)!
∂2k

∂u2k
K2k+2(u, z)

∣∣∣
u=0

= − 1
(2k)!

∂2k

∂u2k
((u− z)〈det(M − u) det(M − z)〉2k)

∣∣∣
u=0

= 〈det(M − z) TrM〉2k + zq2k(z). (B.5)

Eqs. (B.4) and (B.5) extend the known results for the β = 4 ensemble [Kanz02].
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Appendix C

The β = 4 chiral ensemble:

algebraic structure

The β = 4 non-Hermitian chiral ensemble (chGinSE) was introduced in [Ake05b]

where it was solved for the case with degenerate pairs of quark masses, and was

revisited in [Ake07a] where the solution was extended to arbitrary sets of masses.

We show here that this ensemble can be cast into the same (algebraic) form as that

of the β = 1 case, a fact that has already been pointed out by various authors, e.g.

[Kho09; Kie10].

The Dirac matrix here is given by

D ≡
(

0 A

BT 0

)
≡

(
0 P + µQ

P T − µQT 0

)
(C.1)

and the partition function by

Z(Nf )
N ∝

∫
dP dQ exp

[−n Tr(PP T + QQT )
]×

Nf∏

f=1

det(D + mfI). (C.2)

The elements of D, A, B, P and Q are quaternion-real, rather than real; otherwise,

these equations are identical to eqs. (2.5) and (2.6) respectively, except that we omit

the overall normalisation of Z(Nf )
N and have allowed for an arbitrary scaling n in the

exponent.

Generally it is more convenient (and, indeed, necessary for physical interpreta-

tion) to replace the N -by-(N + ν) quaternion-valued matrices P and Q with 2N -by-

(2N + 2ν) complex-valued matrices (with certain constraints on the elements) and

to consider the eigenvalues of these complex matrices instead.
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It can be shown that the partition function can be written in terms of the

(Wishart) eigenvalues as follows:

Z(Nf )
N ∝

N∏

j=1

∫

C
d2zj w(zj)

∏

k<l

|zl − zk|2 |zl − z∗k|2
N∏

h=1

|zh − z∗h|2

×
Nf∏

f=1

m2ν
f

N∏

m=1

(zm −m2
f )(z∗m −m2

f ), (C.3)

where the weight function is given by

w(z) = w(z∗) = |z|2νK2ν

(
n(1 + µ2)

2µ2
|z|

)
exp

{
n(1− µ2)

4µ2
(z + z∗)

}
. (C.4)

Compared with eqs. 2.4 and 2.5 of [Ake05b], we have written the partition function

as integrals over squared (Wishart) variables. w(z) is a non-analytic function of z,

depending on z∗ as well as z. We choose this notation to parallel what we have done

for the β = 1 case in Chapter 3. We also point out the fact that the JPDF in eq.

(C.3) is positive everywhere, and so this model does not have the ‘sign problem’

associated with the β = 1 and β = 2 ensembles.

We note that the Jacobian which arose from the QZ decomposition can be written

as follows (see [Kanz02])

∏

k<l

|zl − zk|2 |zl − z∗k|2
N∏

h=1

|zh − z∗h|2 ∝ ∆2N ({z, z∗})
N∏

h=1

(zh − z∗h), (C.5)

noting that we have been able to drop all the modulus signs. We can also change

the N -fold integral to run over 2N variables, constraining the additional variables

to be the complex conjugates of the first set by inserting Dirac delta functions. We

then have

Z(Nf )
N ∝

Nf∏

f=1

m2ν
f

2N∏

j=1

∫

C
d2zj

(2N)/2∏

p=1

F(z2p−1, z2p)
2N∏

m=1

Nf∏

g=1

(zm −m2
g)∆2N ({z}) (C.6)

where our effective weight function

F(z1, z2) = w(z1) (z1 − z2) δ(z1 − z∗2) (C.7)

incorporates part of the Jacobian. This now has essentially the same form as eq.

(4.14), and so all the (algebraic) results that we derived in Chapter 4 will carry over.

For example, the quenched density of (Wishart) eigenvalues is given by eq. (4.76)

R1,N (z) =
∫

C
d2z′K2N (z, z′)F(z′, z)

= (z∗ − z) w(z)K2N (z, z∗), (C.8)
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matching eq. 2.10 of [Ake05b] (after switching to consistent notation). K2N (u, v) is

the kernel corresponding to the β = 4 weight function F(z1, z2) in eq. (C.7) which

in [Ake05b] is expressed in terms of the skew-orthogonal polynomials whose skew-

orthogonality is explicitly demonstrated.
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Appendix D

The β = 1 Ginibre ensemble:

kernel and skew-orthogonal

polynomials

The techniques introduced in §5.2 and §5.4 can also be used to determine the kernel

and skew-orthogonal polynomials of the corresponding (non-chiral) Ginibre ensemble

(GinOE). These results are already known (see [For08]) but the derivations presented

here are new.

Our first aim is to calculate the expectation of the product of two characteristic

polynomials

HN (λ, γ) ≡ 〈det(λ−M) det(γ −MT )〉N (D.1)

where the matrix M = S + vA, v2 =
1− τ

1 + τ
, τ ∈ [0, 1], and the probability density is

given by

p(M) dM = Z−1
N exp

{
− 1

2(1 + τ)
Tr(SST + AAT )

}
dS dA. (D.2)

S is a symmetric matrix, A anti-symmetric, and S, A and M are all of size N -by-N .

As with the chiral case, we begin by replacing the determinants with Berezin
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integrals using eq. (A.39):

HN (λ, γ) = Z−1
N

∫
dS dA

∫
dζ dη exp

{
− 1

2(1 + τ)
[
(Sij)2 + (Aij)2

]

− λζ∗i ζi − γη∗i ηi + ζ∗i (Sij + vAij)ζj + η∗i (Sij − vAij)ηj

}

= Z−1
N

∫
dS dA

∫
dζ dη exp

{
− λζ∗i ζi − γη∗i ηi

− 1
2(1 + τ)

S2
ij +

(
ζ∗i ζj + η∗i ηj + ζ∗j ζi + η∗j ηi

2

)
Sij

− 1
2(1 + τ)

A2
ij + v

(
ζ∗i ζj − η∗i ηj − ζ∗j ζi + η∗j ηi

2

)
Aij

}
, (D.3)

where all the implicit sums run over all 1 ≤ i, j ≤ N (and not just over the inde-

pendent elements of A and S). We now complete the squares (see eq. (A.44)), and

integrate out the matrix elements:

HN (λ, γ) =
∫

dζ dη exp

{
− λζ∗i ζi − γη∗i ηi

+

(
ζ∗i ζj + η∗i ηj + ζ∗j ζi + η∗j ηi

)2

8/(1 + τ)
+

v2
(
ζ∗i ζj − η∗i ηj − ζ∗j ζi + η∗j ηi

)2

8/(1 + τ)

}

=
∫

dζ dη exp

{
− λζ∗i ζi − γη∗i ηi

+ δ2
−(ζ∗i ζj)(η∗i ηj) + δ2

−(ζ∗i ζj)(ζ∗j ζi) + δ2
+(ζ∗i ζj)(η∗j ηi)

+ δ2
+(η∗i ηj)(ζ∗j ζi) + δ2

−(η∗i ηj)(η∗j ηi) + δ2
−(ζ∗j ζi)(η∗j ηi)

}

=
∫

dζ dη exp

{
− λζ∗i ζi − γη∗i ηi

− δ2
−

[
(ζ∗i ζi)(ζ∗j ζj) + (η∗i ηi)(η∗j ηj)

]

− 2δ2
−(ζ∗i η∗i )(ζjηj) + 2δ2

+(ζ∗i ηi)(η∗j ζj)

}
, (D.4)

where

δ2
± ≡

(1 + τ)(1± v2)
4

. (D.5)

We now perform two real and two complex Hubbard-Stratonovich transforms (see
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eqs. (A.45) and (A.46) respectively), giving

HN (λ, γ) =
1
π3

∫

C2

d2z d2w

∫

R2

dx dy e−|z|
2−|w|2−x2−y2

×
∫

dζ dη exp

{
− λζ∗i ζi − γη∗i ηi − 2iδ− (xζ∗i ζi + yη∗i ηi)

+ i
√

2
(
δ−zζ∗i η∗i + δ−z̄ζjηj + δ+wζ∗i ηi + δ+w̄η∗j ζj

)
}

.

(D.6)

The Berezin integrals decouple, and only terms in ζ∗ζη∗η survive the integration:

HN (λ, γ) =
1
π3

∫

C2

d2z d2w

∫

R2

dx dy e−|z|
2−|w|2−x2−y2

×
[
(λ + 2iδ−x) (γ + 2iδ−y) + 2δ2

−|z|2 + 2δ2
+|w|2

]N
. (D.7)

We can now use eq. (A.10) twice, first for the w-integral, and then for the z-integral,

to give (where we now write δ+ and δ− in terms of τ)

HN (λ, γ) =
N !
π

N∑

j=0

τ j
j∑

k=0

1
τkk!

∫

R
dx e−x2

(λ + i
√

2τx)k

∫

R
dy e−y2

(γ + i
√

2τy)k. (D.8)

Finally, we perform the two real integrals using eq. (A.5):

HN (λ, γ) = N !
N∑

j=0

τ j
j∑

k=0

1
2kk!

Hk

(
λ√
2τ

)
Hk

(
γ√
2τ

)
, (D.9)

where the Hk(z) are the (physicists’) Hermite polynomials. Because the Ginibre and

chiral ensembles have similar algebraic structures, we can immediately write down

the kernel for even N in terms of HN (λ, γ) as (cf. eq. (5.20))

KN (u, v) =
1

hN/2−1
(u− v)HN−2(u, v). (D.10)

It is now straightforward to determine the skew-orthogonal polynomials for this

ensemble. For the even case, we use eq. (4.29), and find that, as with the chiral

case, only one term in the double sum survives the limiting process:

q2k(z) = hk lim
u→∞

K2k+2(u, z)
u2k+1

= lim
u→∞

(u− z)H2k(u, z)
u2k+1

=
(τ

2

)k
H2k

(
z√
2τ

)
, (D.11)
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where we used

lim
u→∞u−N HN

(u

α

)
=

(
2
α

)N

. (D.12)

For the odd case, we use eq. (4.30), together with the following two relationships for

Hermite polynomials

dn−1

dzn−1
Hn(z) = 2nn! z,

Hn+1(z) = 2zHn(z)− 2nHn−1(z) for n ≥ 1, (D.13)

to show that

q2k+1(z) =
(√

τ

2

)2k+1

H2k+1

(
z√
2τ

)
− 2k

(√
τ

2

)2k−1

H2k−1

(
z√
2τ

)

+ c

(√
τ

2

)2k

H2k

(
z√
2τ

)
, (D.14)

in which c is some arbitrary constant. If we define the scaled functions

Ck(z) ≡
(τ

2

) k
2

Hk

(
z√
2τ

)
(D.15)

then we reobtain the simple result from [For07; For08]

q2k(z) = C2k(z),

q2k+1(z) = C2k+1(z)− 2kC2k−1(z) + cC2k(z). (D.16)

We should note that our derivation of the skew-orthogonal polynomials does not

involve an explicit calculation of the skew-inner product. However, in itself, it does

not allow one to determine the norms for the skew-orthogonal polynomials.

173



Notes

Here we state precisely which parts of this thesis correspond to results that we

have already published (and in which paper), which parts are new, and which are

adaptations of known results.

Chapter 3 covers the derivation of the joint probability density function (JPDF)

from the matrix representation. §3.1 for the quenched case is based primarily on

[Ake10a], although in this thesis we have streamlined the presentation in some places,

and added further detail and clarification in others. §3.2 is then an easy extension

to the unquenched case.

Chapter 4 concerns the algebraic structure of the ensemble, and begins in §4.1

with a proof of the factorisation of the JPDF published in [Ake10b]. §4.2 is a new

presentation of known material regarding skew-orthogonal polynomials and kernels;

although we had not seen the important eqs. (4.29) and (4.30) elsewhere in the

literature, it is unlikely that these are new results. §4.3 is new to this thesis, although

(as indicated there) it is essentially an adaption of known results to the chGinOE.

§4.4 is also new (with the exception of the generalisation of the de Bruijn formula

in §4.4.1, which we published in [Ake10b]), giving an alternative proof of the results

in §4.3. §4.5 contains the straightforward extension to the unquenched case.

Chapter 5 derives the finite-N building blocks. The proof of the partition func-

tion for Nf = 2 in §5.1.1 was given in [Ake10a], although the proof in this thesis

has been adapted to use the factorised JPDF derived in [Ake10b]. §5.1.2 and §5.1.3

then extend this result to the cases of general even and odd Nf . These are new

self-contained proofs, although we gave alternative proofs in [Ake10b]. §5.2 was

published in [Ake09a], although §5.2.2 contains a new proof (using the saddle point

method) of a result published in [Ake10a]. §5.3 and §5.4 present results on the

unquenched kernel, and the derivation of the skew-orthogonal polynomials. These

results were given in [Ake10b], although the proofs differ in places.
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Chapter 6 looks at the quenched densities at finite N . §6.1.1 was published in

[Ake10a], although the remainder of this chapter is entirely new to this thesis.

Chapter 7 covers the strongly non-Hermitian limit, and was published in [Ake10a],

but the results on the heights of the plateaux in §7.3 are new to this thesis.

In Chapter 8 we consider the weakly non-Hermitian limit. §8.1 and §8.2 are

based on [Ake10a], although §8.2.4 on the behaviour of the weak kernel is new. A

much shortened version of §8.3 is to be found in [Ake11], although §8.3.3 on the

Hermitian limit of the real density is new.

§9.1 is new, but the remainder of Chapter 9, on the results for the unquenched

ensemble, is based on [Ake11]; we have, however, given substantially more detail in

this thesis, especially on the weakly non-Hermitian case in §9.3.

The Monte Carlo results on universality in Chapter 10 are previously unpub-

lished.

Appendix A is also previously unpublished, although it is unlikely that any of

the results here are entirely original.

Appendix B does contain new results on expressing skew-orthogonal polynomials

as matrix expectations, although we gave alternative proofs of the same results in

[Ake10b].

Appendix C, which shows how the β = 4 ensemble can be written in the same

algebraic form as the β = 1 case, is not new material; we refer to [Ake10b] for details.

Appendix D on the Ginibre β = 1 ensemble shows how known results can be

rederived using our newly developed techniques, and this material was published in

[Ake09a; Ake10b].

Throughout this thesis, we have made extensive use of Mathematica [Wol08] for

performing numerical integrations, for plotting graphs and for the preparation of

diagrams. However, the Monte Carlo code used for the results in Chapter 10 was

implemented in custom-written C++ code, using third-party open source libraries

for the generation of pseudo-random numbers with the Mersenne Twister algorithm

[MT] and for performing the eigenvalue decomposition of matrices [ALGLIB].
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