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Abstract 

This note examines the stochastic properties of US term spreads with parametric and semi-
parametric fractional integration techniques. Since the observed data (rather than the 
estimated residuals from a cointegrating regression) are used for the analysis, standard 
methods can be applied. The results indicate that US Treasury maturity rates are I(1) in most 
cases, although the order of integration decreases with maturity. Further, mean reversion 
occurs for the 5, 7 and 10 year rates as well as for several term spreads, suggesting that the 
expectation hypothesis of the term structure is satisfied empirically. 
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1. Introduction 
 
The term structure of interest rates has been extensively investigated given the information it 

can provide about agents’ expectations on future rates and inflation, as well as its role in the 

transmission mechanism of monetary policy (see Mankiw and Summers, 1984). In an  

influential paper Campbell and Shiller (1987) showed that in the presence of rational 

expectations long-term interest rates should be equal to the present discounted value of 

expected future short-term rates. The implication is that the term spread should be stationary, 

which the same authors found to be the case in the US using standard Dickey-Fuller tests. 

Alternatively, cointegration between short- and long-term rates should hold, a result which 

was reported by Hall et al. (1992) amongst others. 

 

However, the discrete options I(0) and I(1) offered by classical unit root and cointegration 

analysis might be too restrictive to model the term structure, as the adjustment to equilibrium 

might in fact be a rather slow process.  In a recent paper, therefore, Barassi and Zhang (2009) 

carry out fractional cointegration tests following a residual-based approach based on the exact 

local Whittle estimator, which is shown to outperform rival methods by means of Monte 

Carlo experiments, and report that the term structure in both the US and the UK is a mean-

reverting process with long memory. 1 

 

In this present note we also consider a general model allowing for long memory in order to 

analyse the term structure of US interest rates; however, unlike Barassi and Zhang (2009), we 

do not regress longer maturity rates against shorter ones with the aim of testing the 

stationarity or long-memory properties of the estimated residuals, but instead construct term 

spreads and analyse their fractional integration properties. In other words, we test for 

                                                 
1 Caporale and Gil-Alana (2004) use fractional cointegration techniques to test present value models of stock 
prices. 
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fractional cointegration under the assumption of a given (1, -1) cointegrating vector. This has 

the advantage that the tests are based on the raw data instead of the estimated residuals, and 

therefore standard fractional methods can be applied directly to the observed data without any 

prior estimation. 

 

2. Methodology 

The analysis carried out in this note is based on fractional integration, which is a more 

general framework than the standard unit root tests based on the I(0)/I(1) dichotomy. 

Specifically, we obtain estimates of d based on the Whittle function in the frequency domain 

(Dahlhaus, 1989) using parametric (Robinson, 1994) and semi-parametric techniques 

(Robinson, 1995). The model considered is the following: 

,...,2,1,)1(; ==−+= tuxLxy tt
d

tt μ  (1) 

where yt stands for the observed raw data, d is a real value, and ut is assumed to be I(0).  In 

the parametric model we assume first that ut is uncorrelated, and then an AR(1) structure is 

imposed. Other methods of estimating d parametrically (Sowell, 1992) or semiparametrically 

(Phillips and Shimotsu, 2005) lead to essentially the same results. 

 

3. Data and empirical results 

The dataset includes the US Treasury constant maturity rates, monthly, for the time period 

1982M1 – 2009M12, for different maturities, namely 3 and 6 months (M3 and M6), and 1, 2, 

3, 5, 7 and 10 years (Y1, Y2, Y3, Y5, Y7 and Y10). These series were obtained from the US 

Federal Reserve Board. 

[Insert Figures 1 – 4 about here] 

 Figure 1 shows plots of the raw time series, which decline steadily with some 

oscillations over the sample period under investigation. Figures 2, 3 and 4 display the term 
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spreads for the 10, 7 and 5 year maturity rates respectively; there appears to be a relatively 

small degree of dependence in the data. 

[Insert Table 1 about here] 

 Table 1 reports the estimates of d for the original time series. Specifically, the second 

and third columns show the estimates of d (Dahlhaus, 1989) along with the 95% confidence 

interval using Robinson’s (1994) parametric approach; in the former column, the errors are 

assumed to be white noise, whilst in the latter an AR(1) structure is imposed. It can be seen 

that the estimates are all significantly above 1 in the case of uncorrelated errors. However, 

when an AR(1) specification is adopted, the I(1) hypothesis cannot be rejected for the M3, 

M6, Y1, Y2 and Y3 rates, but it is rejected in favour of mean reversion (i.e. d < 1) for the 

remaining three rates (Y5, Y7 and Y10). Owing to the disparity of the results depending on 

the specification of the error term, we employ two additional methods. The first assumes that 

the errors follow the Bloomfield (1973) model. This is a non-parametric method that 

produces autocorrelations for the error term that decay exponentially as in the AR(MA) case. 

The second approach is the Whittle semi-parametric method of Robinson (1995). The 

estimates based on these methods are displayed in the fourth and fifth columns of Table 1. 

The results based on the Bloomfield model imply that the I(1) hypothesis cannot be rejected 

in any case. By contrast, when using the semi-parametric Whittle method, the parameter d is 

estimated to be significantly smaller than 1 in the cases of Y5, Y7 and Y10. It is also 

noteworthy that the estimated values of d decrease monotonically with the maturity rate. 

[Insert Table 2 about here] 

 Table 2 has the same structure as Table 1 but concerns the term spreads. In particular, 

we focus on the following spreads: Y10-M3; Y10-M6; Y10-Y1; Y7-M3; Y7-M6; Y7-Y1; 

and Y5-M3; Y5-M6 and Y5-Y1. The first noticeable feature here is that the estimated values 

of d are in all cases smaller, suggesting that there is a decrease in the degree of dependence 
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compared with the individual series. As before, differences emerge depending on the 

specification of the error term. Using the Bloomfield’s (1973) approach and the Whittle semi-

parametric method (Robinson, 1995), mean reversion is found for the following three series: 

Y10-M3, Y7-M3 and Y5-M3. In the remaining cases, although the estimates are smaller than 

in Table 1, the unit root hypothesis cannot be rejected. 

 

4. Conclusions 

This note has analysed the stochastic properties of US term spreads with parametric and 

semi-parametric fractional integration methods. The approach employed here is preferable to 

other methods that test the Expectations Hypothesis by means of standard stationary/unit root 

tests, or by testing the order of integration of the estimated residuals from cointegrating 

regressions as in Barassi and Zhang (2009). The reason is that, in addition to allowing for any 

real values of the fractional parameter d, the chosen method uses the raw data, without 

requiring any preliminary estimation step. The main finding is that the term spreads are non-

stationary but mean-reverting with orders of integration strictly smaller than 1, implying that 

the Expectations Hypothesis is satisfied in the long run, which is consistent with the results 

reported in Barassi and Zhang (2009).  
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 Figure 1: Treasury Constant Maturity Rates: M3, M6, Y1, Y2, Y3, Y5, Y7 and Y10 
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Figure 2: Term spreads: Y10-M3; Y10-M6; Y10-Y1 
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Figure 3: Term spreads: Y7-M3; Y7-M6; Y7-Y1 
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Figure 4: Term spreads: Y5-M3; Y5-M6; Y5-Y1 
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Table 1: Estimates of d using the original time series 
 Robinson’s (1994) parametric approach Rob. (1995) 
 White noise AR (1) Bloomfield M = (T)0.5 

M3 1.310 
(1.222,  1.424)  

1.044 
(0.900,  1.233)  

1.101 
(0.983,  1.239)  1.159 

M6 1.311 
(1.231,  1.413) 

1.128 
(0.959,  1.331) 

1.179 
(1.051,  1.336) 1.148 

Y1 1.334 
(1.247,  1.445) 

1.007 
(0.924,  1.262) 

1.123 
(0.984,  1.270) 1.104 

Y2 1.324 
(1.227,  1.445) 

0.939 
(0.832,  1.132) 

1.021 
(0.874,  1.182) 0.999 

Y3 1.315 
(1.211,  1.442) 

0.957 
(0.801,  1.054) 

0.943 
(0.782,  1.111) 0.926 

Y5 1.300 
(1.191,  1.437) 

0.861* 
(0.776,   0.985) 

0.870 
(0.653,  1.049) 0.815* 

Y7 1.271 
(1.164,  1.406) 

0.850* 
(0.777,  0.969) 

0.842 
(0.622,  1.030) 0.753* 

Y10 1.240 
(1.137,  1.372) 

0.826* 
(0.770,  0.964) 

0.814 
(0.597,  1.010) 0.708* 

In bold, statistical evidence of mean reversion at the 5% level. M is the bandwidth number. 
 
 
Table 2: Estimates of d for the term spreads 

 Robinson’s (1994) parametric approach Rob. (1995) 

 White noise AR (1) Bloomfield M = (T)0.5 

Y10 - M3 1.201 
(1.097,  1.343)  

0.834* 
(0.630,  0.986)  

0.824* 
(0.709,  0.950)  

0.995 

Y10 – M6 1.224 
(1.139,  1.335) 

0.993 
(0.813,  1.152) 

1.012 
(0.892,  1.142) 1.120 

Y10 – Y1 1.219 
(1.144,  1.314) 

1.089 
(0.940,  1.225) 

1.082 
(0.960,  1.208) 1.1236 

Y7 - M3 1.192 
(1.082,  1.340) 

0.764* 
(0.349,  0.938) 

0.790* 
(0.671,  0.929) 0.900* 

Y7 – M6 1.217 
(1.128,  1.333) 

0.928 
(0.791,  1.120) 

0.988 
(0.865,  1.124) 1.040 

Y7 – Y1 1.213 
(1.136,  1.312) 

1.063 
(0.849,  1.214) 

1.072 
(0.952,  1.209) 1.165 

Y5 - M3 1.198 
(1.077,  1.359) 

0.691* 
(0.495,  0.866) 

0.731* 
(0.603,  0.881) 0.774* 

Y5 – M6 1.215 
(1.118,  1.340) 

0.922 
(0.733,  1.054) 

0.931 
(0.812,  1.086) 0.943 

Y5 – Y1 1.193 
(1.113,  1.295) 

1.014 
(0.827,  1.189) 

1.039 
(0.923,  1.181) 1.110 
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