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Abstract 

This paper examines the relationship between US disposable personal income (DPI) and 
house price index (HPI) during the last twenty years applying fractional integration and 
long-range dependence techniques to monthly data from January 1991 to July 2010. The 
empirical findings indicate that the stochastic properties of the two series are such that 
cointegration cannot hold between them, as mean reversion occurs in the case of DPI but 
not of HPI. Also, recursive analysis shows that the estimated fractional parameter is 
relatively stable over time for DPI whilst it increases throughout the sample for HPI. 
Interestingly, the estimates tend to converge toward the unit root case after 2008 once the 
bubble had burst. The implications for explaining the recent financial crisis and choosing 
appropriate policy actions are discussed. 
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1. Introduction 
 
Real estate bubbles are a controversial topic in economics. Whether it is possible to 

identify them and whether policy-makers should act to prevent them is a hotly debated 

issue. Mainstream economists argue that central banks should only target inflation and 

counter-cyclical monetary and fiscal policy should be adopted to smooth the wealth effects 

of bubbles only once they have occurred. In particular, in their view by adopting inflation 

targeting and focusing on inflationary or deflationary pressures, a central bank effectively 

minimises the negative side effects of short-run, extremely volatile asset prices, without 

having to target them directly (see, e.g., Bernanke and Gertler, 2001). 

However, in a more recent study, Bernanke and Kuttner (2005) argued that the 

stock market is an independent source of macroeconomic volatility to which policy makers 

might need to respond in order to reduce inflation volatility, and the same might of course 

apply to other types of asset prices such as house prices. Cartensen (2004) and Cecchetti et 

al. (2000) also took the view that policy makers should give more consideration to asset 

price movements to reduce the risk of economic instability resulting from boom and bust in 

business cycles. Cecchetti et al., (2000), for example, argued that monetary authorities 

should take into account asset price movements with the aim of achieving macroeconomic 

stability.   

Concerning house prices in particular, Post-Keynesian economists emphasise that 

bubbles lead to higher borrowing against increasing property values, and therefore to 

higher levels of debt the burden of which increases when the bubble bursts and property 

prices collapse, which reduces aggregate consumption and demand causing a fall in 

economic activity (this is the so-called debt deflation theory initially developed by Fisher, 

1933); they suggest therefore that in order to avoid such a scenario methods should be 

developed to identify bubbles and policy actions taken to prevent them or to deflate 

existing ones. Various housing market indicators have in fact been constructed with the 



aim of detecting possible bubbles. These include housing affordability measures, housing 

debt measures, housing ownership and rent measures, as well as housing price indices. Of 

the latter, one of the most commonly used in the US is the HPI produced by the Federal 

Housing Finance Agency. 

Even before the US housing bubble which led to the financial crisis starting in 2007 

there had been a lot of interest in the behaviour of house prices in the OECD countries, 

given their sharp increase since the 1990s. Some studies had expressed the concern that the 

observed divergence between house prices and fundamentals driving them, in particular 

household income, indicated the existence of a bubble (see, e.g., Case and Shiller, 2003 

and McCarthy and Peach, 2004). Other authors had previously highlighted the fact that the 

macroeconomic effects of bubbles can differ considerably across countries depending on 

their housing and financial market institutions (see Maclennan et al., 1998) or the linkages 

between housing and labour markets (see Meen, 2002).   

The subprime mortgage crisis starting in the US in 2007 has made the issue of the 

relationship between disposable personal income (DPI) and the housing price index (HPI) 

even more crucial, since there is wide agreement that the significant discrepancy between 

these two variables in the US was one of the main factors triggering off a global financial 

crisis of unprecedented severity. 

From an econometric point of view, the existence of a long-run relationship 

between these two variables implies that they should be cointegrated, namely that, 

although the two individual series might be nonstationary I(1), there exists a linear 

combination of the two which is stationary I(0). This paper uses US monthly data to test 

whether this holds empirically. We carry out long-range dependence tests which allow for 

fractional degrees of differentiation (including the special cases of 1 and 0 degrees of 

integration). The main finding of our analysis is that cointegration cannot hold between 

these two series since they exhibit different degrees of integration. Specifically, DPI is 



found to be I(d) with 0.5 < d < 1 (d being the fractional degree of differentiation), implying 

that it is nonstationary but mean-reverting. On the contrary, in the case of HPI, d is strictly 

above 1, with a value around 1.4, implying that this series is both nonstationary and non-

mean-reverting. Thus, while the effects of shocks to DPI will tend to disappear in the long 

run, those to HPI have permanent effects, and require decisive policy measures to bring 

about mean reversion. We also investigate whether this is a consequence of the crisis of 

2007 or it has its origins in an earlier period. For this purpose we implement recursive 

procedures from 2000 till the end of the sample in 2010. 

The layout of the paper is as follows. Section 2 outlines the econometric 

methodology. Section 3 describes the data and presents the empirical results. Section 4 

offers some concluding remarks. 

 
 
2. Econometric Methodology 

In this paper we characterise the nonstationarity of the series in terms of a long memory 

process. Two definitions of long memory can be adopted, one in the time domain and the 

other in the frequency domain. 

Let us consider a zero-mean covariance stationary process { tx , ,...1,0 ±=t } with 

autocovariance function )( uttu xxE +=γ . The time domain definition of long memory states 

that ∞=∑
∞

−∞=u
uγ . Now, assuming that xt has an absolutely continuous spectral distribution, 

so that it has spectral density function 
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the frequency domain definition of long memory states that the spectral density function is 

unbounded at some frequency λ in the interval [ π,0 ). Most of the empirical literature has 



concentrated on the case where the singularity or pole in the spectrum takes place at the 0-

frequency. This is the case of the standard I(d) models of the form: 
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where L  is the lag-operator ( 1−= tt xLx ) and tu  is ( )0I .1 However, fractional integration 

may also occur at other frequencies away from 0, as in the case of seasonal/cyclical 

models. 

Note that the polynomial (1–L)d in (2) can be expressed in terms of its Binomial 

expansion, such that, for all real d, 
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In this context, d plays a crucial role since it is an indicator of the degree of 

dependence of the time series: the higher the value of d is, the higher the level of 

association will be between the observations. Processes with d > 0 in (2) display the 

property of “long memory”, with the autocorrelations decaying hyperbolically slowly and 

the spectral density function being unbounded at the origin. If d = 0 in (2), xt = ut, and the 

series is I(0). If d belongs to the interval (0, 0.5) the series is still covariance stationary but 

the autocorrelations take a longer time to disappear than in the I(0) case. If d is in the 

interval [0.5, 1) the series is no longer stationary; however, it is still mean-reverting in the 

sense that the effects of shocks disappear in the long run. Finally, if d ≥ 1 the series is 

nonstationary and non-mean-reverting. Thus, by letting d take real values, one allows for a 

richer degree of flexibility in the dynamic specification of the series, not achieved when 



using the classical I(0) and I(1) representations. These processes (with non-integer d) were 

introduced by Granger (1980, 1981), Granger and Joyeux (1980) and Hosking (1981) and 

since then have been widely employed to describe the behaviour of many economic and 

financial time series data (see, e.g., Diebold and Rudebusch, 1989; Sowell, 1992; Gil-

Alana and Robinson, 1997).2 

In this paper, we estimate the fractional differencing parameter d using the Whittle 

function in the frequency domain (Dahlhaus, 1989) along with a testing procedure 

developed by Robinson (1994) that allows to test the null hypothesis Ho: d = do in equation 

(2) for any real value do, with xt being the errors in a regression model of the form: 

,...,2,1, =+= txzy tt
T
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where yt is the time series we observe, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with a 

linear time trend (zt = (1, t)T), or any other type of deterministic processes. 

 We also apply a method based on a semiparametric local Whittle estimator (see 

Robinson, 1995). The estimator is implicitly defined by: 
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where I(λs) is the periodogram of the raw time series, xt, given by: 
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and d ∈ (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995) proved that: 

                                                                                                                                    
1 An I(0) process is defined as a covariance stationary process with spectral density function that is positive 
and finite at all frequencies. 
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where do is the true value of d. 

Although there are further refinements of this procedure (e.g., Velasco, 1999, 

Phillips and Shimotsu, 2004, 2005; etc.), these methods require additional user-chosen 

parameters, and therefore the estimation results for d can be very sensitive to the choice of 

these parameters. In this respect, the “local” Whittle method of Robinson (1995), which is 

computationally simpler, appears to be preferable. 

 

3. Data and empirical results 

The series used for the analysis are US Disposable Personal Income (DPI), monthly, 

seasonally adjusted, obtained from the St. Louis Federal Reserve Bank database, and the 

US House Price Index (HPI), constructed by the Federal Housing Finance Agency 

(http://www.fhfa.gov). For both series the sample starts in 1991m1 and ends in 2010m6. 

[Insert Figures 1 and 2 about here] 

 Figure 1 displays the time series plots of the log-transformed data and of their first 

differences (their growth rates). It can be seen that both log-prices behave in a very similar 

way till April 2007 where HPI starts falling. Instead the corresponding growth rates (in the 

bottom panels of the Figure) exhibit a very different pattern: that of DPI is relatively stable 

over time, whilst that of HPI is quite stable until 1995, then increases till mid-2005 when it 

falls, followed by another sharper fall at the beginning of 2007 coinciding with the start of 

the crisis. Figure 2 displays the correlograms of the four series. The slow decrease in the 

sample autocorrelation values of the log-prices series clearly suggests that they are 

nonstationary. However, the correlograms of the growth rates indicate again a very 

different pattern for the two series: whilst in the case of the growth rate of DPI most of the 

                                                                                                                                    
2 See Gil-Alana and Hualde (2009) for an up-to-date review of fractional integration and cointegration in 
macroeconomic time series. 



values are within the 95% confidence interval, in case of HPI the decay is very slow, which 

may be consistent with an I(d) model and d > 0.3 

 Table 1 reports the estimates of d in the following model, 

,...,2,1,)1(; ==−++= tuxLxty tt
d

tt βα       (5) 

assuming that the error term ut is white noise and autocorrelated in turn. In the latter case, 

we consider first an AR(1) process, and then the exponential spectral model of Bloomfield 

(1973), this being a non-parametric approach that produces autocorrelations decaying 

exponentially as in the AR(MA) case. Finally, we also allow for a seasonal (monthly) 

AR(1) process. Along with the (Whittle) estimates of d we also display the 95% 

confidence band of the non-rejection values of d using Robinson’s (1994) parametric 

approach. 

 Starting with the log of the DPI (in the top panel of Table 1), it can be seen that if 

no regressors are included (i.e., α = β = 0 in (5)), the unit root null hypothesis (i.e., d = 1) 

cannot be rejected for the cases of white noise, Bloomfield and seasonal AR disturbances. 

Moreover, if ut is AR(1) the non-rejection values of d are strictly above 1. On the other 

hand, when assuming more realistically that the process contains an intercept and/or a 

linear trend, the unit root null is rejected in all cases in favour of smaller degrees of 

integration. The estimates of d are between 0.821 and 0.873 in the case of an intercept, and 

between 0.752 and 0.840 with a linear time trend, depending on the type of specification 

adopted for the disturbances. 

[Insert Table 1 about here] 

 The lower panel in Table 1 presents the estimates of d for the log of HPI. When 

deterministic terms are not included the results are very similar to those for the DPI series 

and the I(1) hypothesis cannot be rejected in most of the cases. However, when an 

                                            
3  Also, the significant negative first sample autocorrelation value in the correlogram of the DPI growth rate 
indicates that this series might be now overdifferenced. 



intercept and/or a linear time trend are included, the unit root null is decisively rejected for 

all types of disturbances, the estimated values of d ranging between 1.427 and 1.492 for the 

case of an intercept, and between 1.424 and 1.483 in the presence of a linear trend. 

 The above results indicate very different stochastic properties of the two series: 

whilst DPI exhibits an order of integration strictly below 1 implying mean reversion, the 

order of integration of HPI is strictly above 1, indicating lack of mean reversion and 

implying that the growth rate still displays long memory. These features of the data 

invalidate cointegration analysis between the two series, since in the bivariate case a 

necessary condition for the existence of a long-run equilibrium relationship is that the two 

series display the same degree of integration. 

To check the robustness of result that the two series exhibit different orders of 

integration we also apply the semiparametric Whittle method of Robinson (1995). Figure 3 

displays the corresponding results. The bandwidth parameter is reported on the horizontal 

axis, the estimated value of d is shown on the vertical one.4 We also display in the figure 

the 95% confidence intervals corresponding to the I(1) case. The results are consistent with 

those based on the parametric models. Specifically, for the log of DPI (displayed in the top 

panel) the estimates of d are within or below the I(1) interval, depending on the choice of 

the bandwidth parameter m: when this is small most of the estimates are within the 

interval; however, when increasing its value the estimates are strictly below the interval.5 

[Insert Figure 3 about here] 

Focusing now on the log of HPI (in the lower panel of Figure 3), it is evident that 

all the estimates of d are above the I(1) interval for all the bandwith parameters. 

                                            
4 In the case of the Whittle semiparametric estimator of Robinson (1995), the use of optimal values for the 
bandwidth parameter has not been theoretically justified. Some authors, such as Lobato and Savin (1998), 
use an interval of values for m. We have chosen instead to report the results for the whole range of values of 
m. 
5 This clearly shows the trade-off between bias and variance with respect to the choice of the bandwidth 
parameter. 



The final issue examined is parameter stability, in particular whether or not the 

degree of persistence of each series has changed over time. This is important to establish 

whether there were any signs of the impending crisis.6 For this purpose, we estimate again 

the value of d for each series with a sample ending initially at 1999m12. Then, we re-

estimate d adding one observation each time in a recursive manner. First, we conduct the 

analysis with white noise disturbances (see Figure 4), then for the case of seasonal AR 

disturbances (see Figure 5).7 

[Insert Figures 4 and 5 about here] 

Starting with the log of DPI with white noise errors, it is found that the estimated 

value of d remains relatively stable till mid-2008 when it starts increasing. As for the log of 

HPI, the value of d keeps increasing from the beginning of 2000 till the end of 2008, with a 

particularly sharp increase in 2007 and 2008; then it starts decreasing in 2009. Very similar 

results are found in the case of seasonal AR(1) errors (see Figure 5). Note also that after 

mid-2008 the estimated value of d increases for the log of DPI whilst it sharply decreases 

for the log of HPI, which may be a seen as a correction of the disequilibrium between the 

two series once the bubble had burst. Of course, convergence of ths estimates of d for both 

series towards 1 implies that the unit root null will not be rejected and cointegration will be 

found at some future time. 

 

4. Conclusions 
 
The US subprime mortgage crisis of 2007 and the following worldwide financial crisis 

have led to an even greater degree of interest in housing bubbles, methods to detect them, 

and appropriate policy actions to prevent them or smooth their effects once they have 

occurred. This paper has analysed the relationship between disposable personal income 

                                            
6 For instance, it might be useful to determine if cointegration holds for shorter periods of time before the 
crisis. 



(DPI) and the housing price index (HPI) in the US applying fractional integration and long-

range dependence techniques to monthly data. The empirical findings obtained for the time 

period 1991m1 – 2010m6 indicate that the stochastic properties of the two series are such 

that cointegration cannot hold between them, as mean reversion occurs in the case of DPI 

but not of HPI. This provides useful information for explaining the recent financial crisis 

and choosing appropriate policy actions: the divergence between the two series might be 

related with a bubble in the housing sector, which might have had its origin in the mid- or 

late 90s. Note that the lack of available data before the 90s precludes us from examining 

the possibility of cointegration over a longer time span. However, it does seem that, after 

the bubble had burst, the estimates of d started converging towards one for both series. 

 The implications of the analysis for crisis management and/or prevention are not 

obvious, although visual inspection of the growth rates of the two series (see the bottom 

panels in Figure 1) clearly shows divergence from 1995. Therefore, it might be argued that 

perhaps it would have been desirable to implement active policies to burst the bubble 

already at that time.8 

One interesting extension of this paper would be to examine if similar features can 

also be found in other developed countries. In particular, the degrees of integration of the 

log-DPI and log-HPI series could be analysed to establish whether mean reversion occurs 

or instead the unit root null cannot be rejected. Work along these lines is currently in 

progress.

                                                                                                                                    
7 It would have also been interesting to carry out the analysis for the sub-period 1990-1995. However, the 
number of observations would then be too limited to apply fractional integration techniques. 
8 Note, however, that this is a rather strong conclusion to draw on the basis of univariate tests. 
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Figure 1: Time series plots 
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Figure 2: Correlograms of the time series 
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 The thick lines correspond to the 95% confidence bands for the null hypothesis of no autocorrelation. 
 
 
 
 



 
Figure 3: Estimates of d and I(1) confidence intervals using Robinson (1995) 
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The horizontal axis reports the bandwidth parameter and the vertical one the estimated value of d. The thick 
lines correspond to the 95% confidence bands for the I(1) null hypothesis. 

 



 
Figure 4: Recursive estimates of d using white noise disturbances 
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Figure 5: Recursive estimates of d using seasonal AR disturbances 
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Table 1: Estimates of d and 95% confidence bands for each series 

a)  Log of DPI 

 No regressors An intercept A linear trend 

White noise 
0.983 

(0.906,   1.083) 
0.831 

(0.804,   0.871) 
0.752 

(0.689,   0.833) 

AR (1) 
1.382 

(1.247,   1.565) 
0.873 

(0.834,   0.942) 
0.808 

(0.709,   0.929) 

Bloomfield (1) 
0.963 

(0.831,   1.128) 
0.873 

(0.830,   0.965) 
0.840 

(0.735,   0.972) 

Seasonal AR (1) 
0.978 

(0.882,   1.084) 
0.821 

(0.791,   0.868) 
0.754 

(0.686,   0.842) 

a)  Log of HPI 

 No regressors An intercept A linear trend 

White noise 
0.980 

(0.903,   1.082) 
1.427 

(1.375,   1.496) 
1.424 

(1.372,   1.493) 

AR (1) 
1.382 

(1.247,   1.566) 
1.475 

(1.410,   1.559) 
1.471 

(1.406,   1.556) 

Bloomfield (1) 
0.961 

(0.829,   1.135) 
1.492 

(1.414,   1.591) 
1.483 

(1.405,   1.581) 

Seasonal AR (1) 
0.978 

(0.882,   1.082) 
1.472 

(1.415,   1.543) 
1.469 

(1.413,   1.540) 
The estimates of d are based on the Whittle function in the frequency domain. The values in parentheses are 
the non-rejection values of d at the 95% level using Robinson’s (1994) approach. 
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