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Abstract

We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and
Rosenzweig up to an arbitrary polynomial potential. In the large-n limit we prove that the two are
equivalent and that their eigenvalue distribution coincides with that of the ”canonical” ensemble
with measure exp[-nTr V(M)]. The mapping of the corresponding phase boundaries is illuminated
in an explicit example. In the case of a Gaussian potential we are able to derive exact expressions
for the one- and two-point correlator for finite n, having finite support.
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1 Introduction

Random matrix ensembles have been extensively studied since the early works of Wigner and Dyson,
as effective mathematical reference models for the description of statistical properties in the spectra of
complex physical systems, ranging from such diverse areas as nuclear resonances or quantum billiards
to mesoscopic transport or quenched QCD. Even a cursory glance at some recent review monographs
[1], [2], [3], [4], shows the impressive development of analytical tools and the variety of applications to
physical systems reached in the past decade and a combined bibliography, although very incomplete,
of over a thousand papers.
Historically the matrices of the ensemble belong to one of three classes, they are real symmetric or
complex-Hermitian or with quaternionic entries but in recent years other ensembles , like complex
non-Hermitian or real non-symmetric matrices have been studied. To keep our paper as simple as
possible, we restrict ourselves to complex-Hermitian matrices, although the results of this paper apply
also to the other two traditional ensembles with minimal changes.
A random matrix ensemble is defined by the joint probability density for the independent entries of the
matrix. In a large number of papers, particularly those related to two-dimensional quantum gravity,
the probability density has the form

P(M) ≡ 1

Z e−βTr V (M) (1.1)

where V (x) is a polynomial. Since this probability density is invariant under the similarity transfor-
mation M = UΛU † which diagonalizes the matrix M , most problems may be formulated in terms of
the joint probability density for the eigenvalues

P(λ1, .., λn) ≡ 1

z
∆2

n(λ) e−β
∑n

1
V (λi) (1.2)

and may be called eigenvalue models. We shall call the probability density (1.1) or (1.2) the ”canon-
ical” density. In the analysis of the ”large-n ” limit of observables, evaluated with the ”canonical”
probability density, the method of orthogonal polynomials [5] proved to be most effective. In the
present paper we study matrix ensembles defined by the probability density

Pδ(M) ≡ 1

Zδ
δ

(

A2 − 1

n
Tr V (M)

)

(1.3)

and the closely related probability density where the step function replaces the Dirac delta function.
We follow the classic book by Mehta [6] and call collectively these models (generalized) restricted
trace ensembles. They are a generalization of ensembles studied long ago by Rosenzweig and Bronk
[7] where only the case V (x) = x2 was considered. While the ensemble is still invariant under the
unitary transformation which diagonalizes the random matrix, the method of orthogonal polynomials
cannot be directly applied because the constraint of the delta function introduces an additional inter-
action among the eigenvalues. Restricted trace ensembles seem to us interesting for several features
: the interaction among eigenvalues is introduced through a constraint very similar to the non linear
sigma model in quantum field theory, the spectral density has compact support both for finite n and
in the ”large-n ” limit (unlike the usual Gaussian random model), and they relate to ”canonical”
probability densities (1.1) or (1.2) just in the same way as the microcanonical ensemble is related to
the canonical ensemble in statistical mechanics.
The effectiveness of random matrix theory is related mainly to ”universal” properties of some observ-
ables, that is independence, in the ”large-n ” limit, of some observables from the chosen probability
density. The ensemble averaged density of eigenvalues ρ(λ) = 1

nTr < δ(λ − M) > , in ”canonical”
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eigenvalue models (1.1) or (1.2) is known to depend from the chosen function V (x), yet a number of
critical exponents deduced from the spectral density were shown to be independent from the details
of the chosen function V (x). Much earlier the density-density connected correlator ρc(λ, µ)

ρc(λ, µ) ≡ <
1

n
Trδ(λ − M)

1

n
Trδ(µ − M) > − <

1

n
Trδ(λ − M) > <

1

n
Trδ(µ − M) > =

= ρ(λ, µ) − ρ(λ) ρ(µ) (1.4)

was shown to have ”local universality” properties , that is for |λ − µ| ∼ O(1/n) and far from the
extrema of the support of the spectral density, in the ”large-n” limit. This was the basis for the use of
random matrix theory for statistical fluctuations of observables around their mean values. Other forms
of universality were derived more recently by several authors, including a form of ”wide correlator”
which depends on the ”canonical” potential V (x) only through the extrema of the spectral density.
The proof by Beenakker and a list of other authors is recalled in sect.1 D of ref. [3].
In sect.2 we exploit a scale transformation, already used by Rosenzweig in a more limited extent, to
relate observables in restricted trace ensembles where V (x) = x2 with the corresponding ones in the
random Gaussian model. This allows explicit evaluations for the spectral density and the two point
correlators for finite n.
We then consider a generalization of the restricted trace ensembles to a generic V (x) in sect.3. There a
very general proof of the equivalence, in the large-n limit, of the generalized restricted trace ensembles
with the corresponding ”canonical” ones is presented. This proof is a wide generalization of the
old result of the equivalence, in the large-n limit, of the restricted trace ensembles with the random
Gaussian model .
Unlike the original restricted trace ensembles, the generalized ensembles have a non trivial phase
diagram in the large-n limit. Despite the equivalence shown in sect.3 with ”canonical” probability
distributions, the mapping of parameters in ”equivalent” models is one-to-one only in the ”perturbative
phase”. We show this in detail in one example of phase diagram in sect.4.
Let us stress that the present paper is concerned with derivation of exact analytic results for the
probability distributions we consider. Applications of physical interest are deferred to a future paper.
While this paper was being written, we were informed of a poster presented by T.Nagao at StatPhys 20,
discussing generalized fixed trace ensembles of random matrices. There the old model by Rosenzweig
is generalized by considering a joint probability density of eigenvalues of the form

P(λ1, .., λn) ≡ 1

z
∆β

n(λ)
n
∏

1

λα
i δ(A2 −

n
∑

1

λ2
i ) . (1.5)

This study has very little overlap with the present paper.

2 Restricted trace ensembles at finite n.

Let us begin by describing the most relevant features of two closely related ensembles : the fixed trace
and the bounded trace ensembles. Let M be a n x n Hermitian matrix. The fixed trace ensemble
corresponding to the Gaussian model is defined by the probability distribution

Pδ(M) ≡ 1

Zδ
δ(A2 − 1

n
Tr M2) ,

Zδ ≡
∫

DM δ(A2 − 1

n
Tr M2) =

(

1

2

)(n2−n)/2

ωn2

(A
√

n)n
2

2A2
, (2.1)
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where DM ≡ ∏

i=1,..n dMii
∏

i>j Re dMij Im dMij , ωn2 = 2 πn2/2

Γ(n2

2
)

is the surface area of the unit

sphere in n2 dimensions, and the factor 1
n has been introduced in view of the large-n limit.

Expectation values of O(n2) invariant amplitudes are trivially evaluated for every n as for instance

< (Tr M2)k >δ ≡
∫

DM (Tr M2)k Pδ(M) = (nA2)k . (2.2)

However we are interested in more general expectation values, which are functions of the distribution
of eigenvalues. They may be evaluated from the joint probability distribution Pδ(λ1, .., λn) which is
obtained from eq.(2.1) after integration of the unitary degrees of freedom

Pδ(λ1, .., λn) =
1

zδ
∆2

n(λ) δ(A2 − 1

n

n
∑

i=1

λ2
i ) , ∆n(λ) ≡

∏

1≤r<s≤n

(λr − λs) = det [λj−1
i ] ,

zδ ≡
∫ ∞

−∞

n
∏

i=1

dλi ∆2
n(λ) δ(A2 − 1

n

n
∑

i=1

λ2
i ) =

(

A2

2

)
n2

2
−1 nn2/2

2

(2π)n/2

Γ(n2

2 )

n
∏

j=1

j! .

(2.3)

Closely related to this matrix ensemble is the bounded trace ensemble. It is defined by the
probability distribution

Pθ(M) ≡ 1

Zθ
θ(A2 − 1

n
Tr M2) ,

Zθ ≡
∫

DM θ(A2 − 1

n
Tr M2) =

(

1

2

)(n2−n)/2

ωn2
(A

√
n)n

2

n2
. (2.4)

In the same way of eq.(2.2), one easily finds

< (Tr M2)k >θ =

(

n2+k

n2 + 2k

)

A2k . (2.5)

which exhibits the usual factorization of O(n2) invariant amplitudes only in the large-n limit. In order
to evaluate expectations which only depend on the distribution probability of the eigenvalues, one
may use the joint probability distribution, analogous to eq.(2.3) :

Pθ(λ1, .., λn) =
1

zθ
∆2

n(λ) θ(A2 − 1

n

n
∑

1

λ2
i ) ,

zθ ≡
∫ ∞

−∞

n
∏

i=1

dλi ∆2
n(λ) θ(A2 − 1

n

n
∑

1

λ2
i ) =

(

A2

2

)
n2

2

nn2/2 (2π)n/2

Γ(n2

2 + 1)

n
∏

j=1

j! .

(2.6)

Of course the two ensembles are related by a simple differential equation. Since

∂

∂A2
Pθ(M) =

Zδ

Zθ

[

Pδ(M) − Pθ(M)

]

=
n2

2A2

[

Pδ(M) − Pθ(M)

]

one easily obtains a simple relation between the two expectations for any generic observable

< O(M) >δ =

(

1 +
2A2

n2

∂

∂A2

)

< O(M) >θ . (2.7)
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A remarkable feature of both the ”fixed trace ensemble” and the ”bounded trace ensemble” is that
the density of states ρ(λ) has compact support for any n , finite or infinite. We here obtain the exact
expression of the eigenvalue distribution of the fixed trace ensemble for any value of n, based on the
known results for the Gaussian model.
Let us first recall a few useful formulas of the Gaussian model. The partition function and the
eigenvalue density are

zG =

∫

dλ1 . . . dλn ∆2
n e−a(λ2

1+...+λ2
n) , (2.8)

ρG(λ) = e−aλ2 1

zG

∫

dλ1 . . . dλn−1∆
2
n−1e

−a(λ2
1+...+λ2

n−1)
n−1
∏

i=1

(λ − λi)
2 , (2.9)

where the positive parameter a is arbitrary, and for shortness we set ∆2
n ≡ ∆2(λ1, . . . , λn). Both

integrals may be computed for finite n by means of orthogonal polynomials, which in this case are the
Hermite ones:

zG =
(2π)n/2

(2a)n
2/2

n
∏

k=1

k! , ρG(λ) =

√

a

π
e−aλ2 1

n

n−1
∑

k=0

H2
k(λ

√
a)

2kk!
. (2.10)

Instead of evaluating the sum by means of the Christoffel-Darboux formula, it is useful for our discus-
sion to use the expansion

[Hk(x)]2 =
k
∑

ℓ=0

(k!)22k−ℓ

(ℓ!)2(k − ℓ)!
H2ℓ(x) (2.11)

to obtain, with some simple algebra:

ρG(λ) =

√

a

π
e−aλ2 1

n

n−1
∑

k=0

(

n
k + 1

)

H2k(λ
√

a)

2kk!
. (2.12)

To study the integrals for the fixed trace ensemble, it is convenient to adopt the following notation.
Let us denote by ω(n,R) the surface of the sphere in Rn of radius R, and by dan the element of surface
integration. The partition function and the eigenvalue density, for |λ| ≤ R, are:

zδ =

∫ ∞

−∞

n
∏

i=1

dλi ∆2
n(λ) δ(A2 − 1

n

n
∑

i=1

λ2
i ) =

n

2R

∫

ω(n,R)
dan ∆2

n , R2 ≡ nA2 , (2.13)

ρδ(λ) =
1

zδ

∫ n
∏

i=1

dλi ∆2
n δ(λ − λn) δ(A2 − 1

n

n
∑

i=1

λ2
i ) =

=
n

2zδ

√
R2 − λ2

∫

ω(n−1,
√

R2−λ2)
dan−1∆

2
n−1

n−1
∏

i=1

(λ − λi)
2 . (2.14)

After a change of scale, to restrict both integrals to the surface of unit radius:

zδ =
n

2
Rn2−2

∫

ω(n,1)
dan ∆2

n , (2.15)
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ρδ(λ) =
n

2zδ
(R2 − λ2)

1
2
(n2−3)

∫

ω(n−1,1)
dan−1∆

2
n−1

n−1
∏

i=1

(
λ√

R2 − λ2
− λi)

2 . (2.16)

Let us first evaluate the partition function. We start from the integral expression (2.8) for zG,
and change to spherical variables with radial component r. The volume element is rn−1drdan, and
∆2(λ1, . . . , λn) = rn(n−1)∆2(λ1/r, . . . , λn/r). Therefore we have:

zG =

∫ ∞

0
drrn2−1e−ar2

∫

ω(n,1)
dan∆2

n . (2.17)

The surface integral is the same appearing in (2.15 ), and we conclude:

zδ = zG
n(R

√
a)n

2

R2 Γ(n2

2 )
. (2.18)

The same procedure is used in the evaluation of the eigenvalue density. In radial coordinates, the
integral for the Gaussian density is

ρG(λ) = e−aλ2 1

zG

∫ ∞

0
drrn2−2e−ar2

∫

ω(n−1,1)
dan−1∆

2
n−1

n−1
∏

i=1

(
λ

r
− λi)

2 . (2.19)

The surface contribution is much alike the one in the expression (2.16) for ρδ(λ). To implement this
similarity, we introduce the expansion

∫

ω(n−1,1)
dan−1∆

2
n−1

n−1
∏

i=1

(x − λi)
2 =

2n−2
∑

k=0

ckx
k . (2.20)

Since ρG(λ) is even in λ, only the even coefficients are different from zero. The expressions for the
densities in the two ensembles are:

ρG(λ) = e−aλ2 1

zG
a−

1
2
(n2−1) 1

2

n−1
∑

k=0

c2k(λ
√

a)2kΓ

(

n2 − 1

2
− k

)

, (2.21)

ρδ(λ) =
n

2zδ
(R2 − λ2)

(n−1)2

2
−1

n−1
∑

k=0

c2kλ2k(R2 − λ2)n−1−k , R2 ≡ nA2 . (2.22)

The coefficients c2k are obtained by comparing the polynomial expression in (2.21) and the exactly
known result (2.12):

c2k = 21−n2

2
(2π)

n
2 (−4)k√

π (2k)!

∏n
j=1 j!

Γ
(

n2−1
2 − k

)

1

n

n−1
∑

ℓ=k

(−1)ℓ
(2ℓ)!

2ℓℓ!(ℓ − k)!

(

n
ℓ + 1

)

. (2.23)

More explicitly, the spectral densities for the lowest order random matrices are

ρδ(λ) =
1

π
√

2A2 − λ2
, for n = 2 ,

ρδ(λ) =
35
√

3

576A7
(A2 − λ2

3
)

[

3A4 − 2λ2A2 + 3λ4
]

, for n = 3 ,

ρδ(λ) =
32

429πA14

(

A2 − 1

4
λ2
)

7
2
[

12A6 + 30λ2A4 − 53λ4A2 + 38λ6
]

, for n = 4 ,

ρδ(λ) =
2028117

√
5

54 (2A)23
(A2 − λ2

5
)7
[

375A8 − 300λ2A6 + 4490λ4A4 − 5996λ6A2 + 2711λ8
]

, for n = 5.

(2.24)
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To evaluate the spectral density for the bounded trace ensemble , for finite n , one may proceed in a
similar way as in the Gaussian case, to obtain

ρθ(λ) =
1

zθ

∫

√
R2−λ2

0
dr rn2−2

∫

ω(n−1,1)
dan−1∆

2
n−1

n−1
∏

i=1

(
λ

r
− λi)

2 (2.25)

and therefore

ρθ(λ) =
1

zθ
(R2 − λ2)

n2
−1
2

n−1
∑

k=0

c2k

n2 − 2k − 1

(

λ2

R2 − λ2

)k

, R2 ≡ nA2 . (2.26)

The same result may be obtained by inverting the differential equation (2.7). In a similar way , it is
possible to write the explicit expressions of the two-point correlator of restricted trace ensembles in
terms of the known two-point correlator of the Gaussian ensemble at finite n. We obtain

ρG(λ, µ) =
1

2zG
e−a(λ2+µ2)a−

1
2
(n2−4)

2n−2
∑

r,s=0

cr,s(λ
√

a)r(µ
√

a)sΓ

(

n2 − r − s

2
− 1

)

, (2.27)

ρδ(λ, µ) =
1

zδ
(R2 − λ2 − µ2)

1
2
(n2−3)

2n−2
∑

r,s=0

cr,sλ
rµs(R2 − λ2 − µ2)−

(r+s)
2 , (2.28)

where the coefficients cr,s = cs,r are defined by

(x − y)2
∫

ω(n−2,1)
dan−2∆

2
n−2

n−2
∏

k=1

(x − λi)
2(y − λi)

2 =
2n−2
∑

r,s=0

cr,sx
rys . (2.29)

3 Generalized restricted trace ensembles at large n

With some generality, for an arbitrary polynomial potential V (M) =
∑

gkM
k, where M is an Her-

mitian n× n matrix, we define the generalized fixed trace ensemble and the generalized bounded
trace ensemble by the two probability densities :

Pδ(M) ≡ 1

Zδ
δ

(

A2 − 1

n
TrV (M)

)

, (3.1)

Pθ(M) ≡ 1

Zθ
θ

(

A2 − 1

n
Tr V (M)

)

, (3.2)

where Zδ and Zθ are the normalization factors, and we used the same notation of the previous section,
where they correspond to the simplest case V (x) = x2.
Both ensembles are invariant under the action of the unitary group. Therefore, when changing matrix
the parameterization from n2 independent matrix elements to the n real eigenvalues and the parameters
for eigenvectors, the measures factorize into a part given by the Haar measure of SU(n) and a part
involving only the eigenvalues. The latter provides the joint probability density of the eigenvalues,
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the starting point for all spectral statistics. Letting φ stand for the delta or the theta function, the
expression for the joint probability density is:

Pφ(λ1, . . . , λn) =
1

zφ
φ

(

A2 − 1

n

n
∑

i=1

V (λi)

)

∆2(λ1, . . . , λn) , (3.3)

zφ =

∫ n
∏

i=1

dλi φ(A2 − 1

n

n
∑

i=1

V (λi))∆2(λ1, . . . , λn) . (3.4)

The two ensembles are obviously related by the differential equation analogous to eq.(2.7):

Pδ(λ1, . . . , λn) =

(

1 +
zθ

zδ

∂

∂A2

)

Pθ(λ1, . . . , λn) , (3.5)

which will be used to study the properties of the bounded trace ensemble from a knowledge of the
fixed trace one. Indeed, in this general setting, the latter is easier to evaluate in the large-n limit.
Besides the two restricted trace ensembles, it is useful to consider also the ”canonical” ensemble, with
same potential V (M) and a parameter K:

P(λ1, . . . , λn) =
1

z
e−Kn

∑n

i=1
V (λi)∆2(λ1, . . . , λn) , (3.6)

z =

∫ n
∏

i=1

dλi e−Kn
∑n

i=1
V (λi)∆2(λ1, . . . , λn) . (3.7)

As it is well known, the partition function for the eigenvalues may be given the interpretation as the
partition function of a one dimensional gas of n particles with pairwise repulsive interaction and, in the
canonical case, subject to the external potential V (λ). In the restricted trace ensembles the potential
enters as a constraint depending on the positions of all particles. This main difference makes the
analysis of these models difficult and interesting, especially for the issue of the universality properties
of correlators.
While for ”canonical” models the powerful technique of orthogonal polynomials applies, giving at
least formally and for any value of n the explicit expressions of all correlators, for the restricted trace
ensembles we must content ourselves with the analysis of the eigenvalue density in the large n limit.
This is easily done for the fixed trace ensemble, whose δ constraint can be taken into account in the
energy functional through a Lagrange multiplier. In the large-n limit, the eigenvalue configuration is
described by a normalized density ρ(λ), and the energy functional associated to it is

H[ρ] = −
∫

dλdµρ(λ)ρ(µ) log |λ − µ| + α

(

A2 −
∫

dλρ(λ)V (λ)

)

+ β

(

1 −
∫

dλρ(λ)

)

. (3.8)

The saddle point configuration is the one that minimizes the energy, and is precisely the sought limit
density ρδ. It solves the following equation, valid for any λ inside the unknown support L of ρδ:

0 =
δH[ρ]

δρ(λ)
= −2

∫

dµρδ(µ) log |λ − µ| − αV (λ) − β . (3.9)

A derivative in λ eliminates the parameter β associated to the constraint of normalization, and yields
a Cauchy-Hilbert integral equation for the limit density:

−
∫

L
dµ

ρδ(µ)

λ − µ
=

α

2
V ′(λ) , λ ∈ L . (3.10)
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For any α, which is still unknown, and after having fixed a geometry for the support L (an interval,
for example) the equation (3.10) is solved using analyticity arguments, and the extrema of L are fixed
by the normalization condition [15]. Inside the family of pairs L(α) and ρδ(λ;α) parameterized by α,
the pair that describes the large-n limit of the fixed trace ensemble is determined by the value α = α,
solution of the equation

A2 =

∫

L(α)
dλρδ(λ;α)V (λ) . (3.11)

The number β of the extremal solution may be evaluated from eq. (3.9) by choosing a convenient
value of λ in L.
The density ρδ so far obtained, coincides with the limit density of the canonical model (3.7), with
parameter K = α. In the particularly simple case V (M) = M2, one obtains also for the restricted
trace ensemble a limit density described by Wigner’s semicircle law, with radius 2A. The energy
functional (3.8) evaluated at the extremum, is

H[ρδ] = −
∫

dλdµρδ(λ)ρδ(µ) log |λ − µ| , (3.12)

where the double integral may be simplified by using the equation (3.9) and the constraints:

∫

dλdµρδ(λ)ρδ(µ) log |λ − µ| = −1

2
αA2 − 1

2
β . (3.13)

We then obtain the large-n expression of the partition function

zδ → e−
1
2
n2(αA2+β) ≡ e−n2f(A2) . (3.14)

Since zδ = ∂
∂A2 zθ, eq.(3.14) implies

zθ

zδ
=

Zθ

Zδ
→ − 1

n2 ∂
∂A2 f(A2)

. (3.15)

A simple check is provided by the monomial potentials V (x) = x2k. In this simple case, the normaliza-

tion constants zθ and zδ may be evaluated by a rescaling of the eigenvalues with the result zθ
zδ

= 2kA2

n2 .
The result (3.15) is most useful and it implies the generalization of eq.(2.7)

< O(M) >δ =

(

1 + cn
∂

∂A2

)

< O(M) >θ ; cn → − 1

n2 ∂
∂A2 f(A2)

. (3.16)

By using this equation both for the spectral density and for the density-density correlator (1.4), we
obtain an exact equation, for any n :

ρδ,c(λ, µ) = ρδ(λ, µ) − ρδ(λ)ρδ(µ) =

=

(

1 + cn
∂

∂A2

)

ρθ(λ, µ) −
(

1 + cn
∂

∂A2

)

ρθ(λ)

(

1 + cn
∂

∂A2

)

ρθ(µ) =

= ρθ,c(λ, µ) + cn
∂

∂A2
ρθ,c(λ, µ) − (cn)2

(

∂

∂A2
ρθ(λ)

)(

∂

∂A2
ρθ(µ)

)

. (3.17)

We have not proven that the generalized restricted trace matrix ensembles have a topological expansion
in the ”large-n” limit and the factorization of invariant operators, analogous to matrix ensembles
defined by ”canonical” probability densities. The analysis of next section, where the fixed trace
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constraint is reached as a limit of the probability density Pl(M) indicates that such properties are
very likely. Therefore it seems reasonable to assume, as for the ”canonical” probability densities,

ρφ(λ, µ) → ρφ(λ)ρφ(µ) +
1

n2
ρφ(λ, µ) + O(

1

n3
) , (3.18)

where φ stands for the δ or the θ functions. This assumption (3.18), as well as more general assump-
tions, together with eq.(3.17) and eq.(3.16) imply , in the ”large-n” limit ρδ,c(λ, µ) = ρθ,c(λ, µ). The
results of this section are rather general and formal. The determination of the Lagrange multiplier α
in eq.(3.11) of course depends on the model potential V (M) in a non trivial way and on the various
phases of the model. We provide a specific example in the next section, by the study of the potential
V (M) = g2M

2 + g4M
4.

4 Phase transitions

In the previous section it was shown that, in the large-n limit, the spectral density of restricted trace
ensembles with polynomial potential V (λ, gi), where gi are the couplings, coincides with the spectral
density of the ”canonical” ensemble with potential ᾱV (λ, gi). The scaling factor ᾱ, solution of eq.
(3.11), is actually a nonlinear function of the couplings gi. The correspondence between the two sets
of parameters, namely gi and ᾱgi, is one-to-one only in the perturbative phase.
In this section we show in detail the case of the even quartic potential

V (M) = g2 M2 + g4 M4 . (4.1)

where the nonlinear relation originates different phase diagrams. To this end, we find it useful to
consider the squared trace ensemble Pl(M)

Pl(M) =
1

Zl
exp

[

−l
(

−2nA2TrV (M) + (TrV (M))2
)]

,

Zl =

∫

DM exp
[

−l
(

−2nA2TrV (M) + (TrV (M))2
)]

. (4.2)

The large-n limit of the model described by the probability distribution Pl(M) is easily found by the
saddle point approximation. These type of models, where the exponent of the Boltzmann weight is a
sum of different powers of traces of even powers of the random matrix was analyzed in several matrix
models in zero and one dimension [8] - [14]. The additional ”trace-squared” terms were interpreted to
provide touching interactions to the dynamical triangulated surfaces defined by the matrix potential
Tr V (M).
For any fixed l, the model in eq.(4.2)-(4.1) is equivalent in the large-n limit to a random matrix
ensemble with the well studied ”canonical” probability distribution

P(M) =
1

Z exp(−nTrV (M)) ,

Z =

∫

DM exp(−nTrV (M)) , V (M) = g′2 M2 + g′4 M4 , (4.3)

provided the parameters g′2 and g′4 are suitable functions of the parameters of the model in eqs.(4.2)-
(4.1). This may be accomplished by two equations, such as the requirement that the expectations of
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< Tr M2 > and < Tr M4 > should be the same for the two probability distributions.
On the other hand, for fixed n, in the large-l limit, Pl(M) reproduces precisely the generalization
of the fixed trace ensemble Pδ(M) , as one sees from the following representation of the δ-function

δ(x) = liml→∞
√

l
π exp(−lx2). Of course, when choosing g4 = 0, we merely reobtain the results of the

analysis by Bronk and Rosenzweig.
Let us now recall the saddle point analysis for the large-n limit of the ensemble Pl(M), eqs.(4.2)-
(4.1). Since it proceeds along well known analysis, we include, for more generality the cases of the
random matrix M belonging to the orthogonal, unitary, or symplectic ensembles, corresponding to
the parameter β = 1, 2 or 4. It is important to notice that, unlike the familiar quartic probability
distribution (4.3), the probability distribution (4.2)-(4.1) is well defined for any real value of the two
parameters g2, g4. Let us begin by assuming g2 > 0, g4 > 0, which corresponds to the perturbative
(or one-cut) phase ; later in the section the complete phase diagram will be described. For any finite
positive value of the parameter l, the density of eigenvalues ρl(λ) is the solution of the singular integral
equation

β −
∫

dµ
ρl(µ)

λ − µ
= 2l

(

g2c2 + g4c4 − A2
)

V ′(λ) = 2g′2λ + 4g′4λ
3 (4.4)

where the moments ck are defined by

ck ≡
∫

dλλkρl(λ) (4.5)

and g′k are the effective couplings :

g′k = 2l
(

g2c2 + g4c4 − A2
)

gk . (4.6)

From the symmetry of the potential the support of ρl(λ) is expected to be one segment or two segments,
in either case symmetric with respect to the origin. The solution of the saddle-point equation (4.4) in
the one segment phase reads

ρl(λ) =
2

βπ
(g′2 + g′4b

2 + 2g′4λ
2)
√

b2 − λ2 , (4.7)

where the endpoint of the support [−b, b] is given by the normalization condition on the eigenvalue
density

1 =

∫ b

−b
dλρl(λ) = 2l

(

g2c2 + g4c4 − A2
) b2

2β
(2g2 + 3b2g4) , (4.8)

where we have used again the gk’s.
The moments c2 and c4 can be obtained when requiring self consistency by inserting the solution eq.
(4.7) back into the definitions (4.5), which yields the linear system of equations

c2 =
2

β
2l
(

g2c2 + g4c4 − A2
) b4

8
(g2 + 2b2g4) ,

c4 =
2

β
2l
(

g2c2 + g4c4 − A2
) b6

64
(4g2 + 9b2g4) . (4.9)

For a potential of higher degree we will again get a linear system of equations for the corresponding
moments ck, k = 1, ..,m, which is due to the fact that the solution of the saddle-point equation will
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again depend linearly on the coupling constants g′k as in eq. (4.7). Instead of solving the eqs. (4.9)
for c2 and c4 we can also express them entirely in terms of the couplings with the help of eq. (4.8)

c2 =
b2(g2 + 2b2g4)

2(2g2 + 3b2g4)
,

c4 =
b4(4g2 + 9b2g4)

16(2g2 + 3b2g4)
. (4.10)

The same trick can be used to express the eigenvalue density eq. (4.7) only in terms of the gk, which
reads

ρl(λ) =
4

πb2(2g2 + 3b2g4)

(

g2 + g4b
2 + 2g4λ

2
)

√

b2 − λ2 . (4.11)

where the endpoint of the support b is the root of the fourth order equation in b2

l

(

9(g4)
2b8 + 20g4g2b

6 + 8((g2)
2 − 6A2g4)b

4 − 32A2g2b
2
)

= 16β (4.12)

which, for vanishing g4 and positive g2 is asymptotic to b2 ∼ 2(A2 +
√

A4 + β/(2l))/g2. By comparing
eq(4.4) with the analogous saddle point equation for the ”canonical” quartic probability distribution
(4.3) it is obvious that they have the same eigenvalue density, in the large-n limit, for both phases of the
model, provided the effective coupling eq. (4.6) are precisely identified with those of the ”canonical”
distribution

g′2 = 2l
(

g2c2 + g4c4 − A2
)

g2 =
2β

b2(2g2 + 3b2g4)
g2 ,

g′4 = 2l
(

g2c2 + g4c4 − A2
)

g4 =
2β

b2(2g2 + 3b2g4)
g4 .

(4.13)

Of course, the last equality on the right sides of previous equations only holds in the one cut phase.
For simplicity, let us now proceed with β = 2. In terms of g′2 and g′4, the equation for the support
(4.12) is the more familiar equation 3g′4b

4 + 2g′2b
2 − 4 = 0. The phase diagram of the ”canonical”

quartic model P(M), eq.(4.3), is well known: if g′2 is fixed positive , the one-cut solution (4.7)-(4.8)
holds for any real g′4 such that

g′4 ≥ − 1

12
(g′2)

2 , (4.14)

which is a border of existence for the model. If g′4 is fixed positive, the one-cut solution holds for any
real g′2 such that

g′2 ≥ −2
√

g′4 , (4.15)

which is the line of phase transition to the symmetric two-cut solution :

ρl(λ) =
2g′4|λ|

π

√

(D2 − λ2)(λ2 − C2) , (4.16)

with ends of support [−D , −C ] ∪ [C , D ] being solutions of

g′2 + g′4(C
2 + D2) = 0 , g′4(D

2 − C2)2 = 4 (4.17)
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The map between {g2, g4} and {g′2, g′4} in this phase, may be found after the evaluation of {c2, c4} and
the requirement of self-consistency , just as before.
It is straightforward to see that the phase transition line (4.15) becomes, in the parameters of the
model (4.2)-(4.1), the couple of lines

g4 =
l

4
(g2)

2
(

− A2 ±
√

A4 − 3/(2l)

)

, g2 > 0 , g4 < 0 . (4.18)

Therefore if A4 − 3/(2l) < 0 the model (4.2)-(4.1) has the one-cut solution for every real value of g2 ,
g4. In the other case A4 − 3/(2l) > 0 the two-cut solution holds in the region of parameters bounded
by the two curves (4.18), while the one-cut solution holds everywhere else in the plane of real values
of g2 , g4.
The image of the existence line (4.14) , in the space of parameters g2 , g4 is a couple of curves :

g4 =
l

12
(g2)

2(A2 −
√

A4 + 7/(6l)) , g2 > 0 , g4 < 0 ,

g4 =
l

12
(g2)

2(A2 +
√

A4 + 7/(6l)) , g2 < 0 , g4 > 0 . (4.19)

There are two regions of the plane of real variables g2 , g4 : the first one bounded by the first line
(4.19) and the positive axis g2, and the second one bounded by the second line (4.19) and the negative
axis g2, where the equation of the support (4.12) of the one-cut solution has three possible values. The
one-cut solution (4.11) as function of the parameters g2 , g4 has a first order discontinuity in these
regions due to the cubic type instability of the solution of the eq.(4.12) with respect to the parameters
g2 , g4 . As usual, the lines of the first order transition are determined by comparing the evaluation
of the free energy of the model, as functions of the different possible values of the endpoint of the
support b.
In the remaining part of this section, we consider the limit l → ∞ where we obtain the distribution
Pδ(M) with the potential (4.1) explicitly. We shall denote ck≡ liml→∞ ck and b=liml→∞ b . Because
of the δ-function in the distribution it will hold

A2 = g2c2 + g4c4 (4.20)

whereas the quantity l(g2c2 + g4c4 − A2) will stay finite, as one can see from eq. (4.8). Eq. (4.20)
is actually eq. (3.11) for the quartic potential considered in this section. Eq. (4.4) shows that the
model with Pδ(M) has the same eigenvalue density of the ”canonical” quartic model (4.3), provided
g′2 = αg2 , and g′4 = αg4, where

α = lim
l→∞

2 l (g2c2 + g4c4 − A2) =

=

(

b
2

4
(2g2 + 3b

2
g4)

)−1

. (4.21)

The results for the moments eqs. (4.10) and the density eq. (4.11) carry over when replacing everything
by barred quantities. Eq. (4.21) gives the solution to eq. (3.11) and shows its dependence on the
coupling constants of the quartic potential eq. (4.1).
The phase diagram for l = ∞ is similar to the one previously described for finite l, with some
simplifications. The couple of lines (4.18) which are boundaries of the two-cut phase become the line

g4 = − 3

16

(g2)
2

A2
, g2 > 0 , g4 < 0 , (4.22)
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and the negative g4 axis. Similarly there are two regions of multiple solution for the one-cut support,
where a first order discontinuity will occur. One is bounded by the positive part of the g2 axis and
the line

g4 = − 7

144

(g2)
2

A2
, g2 > 0 , g4 < 0 . (4.23)

The second region is the entire region g4 > 0 and g2 < 0. Eq.(4.20) for the endpoint b of the one-cut
solution turns into

0 = b
2
[

9(g4)
2b

6
+ 20g2g4b

4
+ 8((g2)

2 − 6g4A
2)b

2 − 32g2A
2
]

. (4.24)

The vanishing support b = 0 actually provides the limiting solution ρδ(λ) = δ(λ) in the sector g2 < 0,
g4 < 0. In other regions of parameter space the support is determined by the solution of the third

order equation in b
2

above.
Let us finally extract the result for the Gaussian distribution Pδ(M) with potential V (M) = g2M

2

from the above formula by setting g4 =0. Eq. (4.24) leads to

b
2

=
4A2

g2
(4.25)

with the corresponding eigenvalue density from eq. (4.11)

ρδ(λ) =
2

πb
2

√

b
2 − λ2 . (4.26)

this is the well known semi-circle spectral density and together with eq.(2.7 ) it reproduces the old
result [7] that the spectral density of the restricted trace ensembles is equal, in the ”large-n” limit, to
the spectral density of the Gaussian ensemble.
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