5. Adaptation of the Statistical Filter for Statistical

Process Control

This section will introduce the adaptation made to the statistical filter to meet
Process Control requirements from a theoretical point of view; the practical
implementation of the whole theory developed will be described in sections 7
and 8.

5.1 Laboratory analysis of on-line data

R T T 2 % 3
X (mm)

Figure 5-1 — Cross correlation between measurement and greyscale

picture

The Cross-correlation function can be applied to greyscale pictures to find

where they match laboratory measurements.

It 1s not necessary to correlate the pictures with a measurement of the same

steel sheet they have been taken from. It is sufficient to correlate them with a

laboratory sample presenting the same pattern (as for example in Figure 2-23).
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The result of such operation for one of the pictures 1s depicted in Figure 5-1,
where a very clear pattern of peaks indicates precise matching.

Figure 5-2 shows a possible application of the cross correlation: an area of
the sample measurement corresponding to the greyscale picture can be isolated
and compared with it. The red lines on the left hand-side figures indicates the
position where the profiles have been extracted.

It 1s possible to appreciate the precision of the technique in indicating the

exact point where the pattern is repeated.
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Figure 5-2 — Comparison between highly correlated areas of picture and

measurement

Slope values and height values can be associated, even if they do not come

from the same sample, to deduce the real shape of the surface depicted in the

greyscale image.
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The height values of the laboratory sample can be used as “probable values”

for the greyscale. The slopes deduced from the greyscale will correct the errors

given by the local differences between the two sheets.

5.1.1 Merging

If the cross correlation is applied to two pictures, instead of a picture and a
set of height measurements, this will give us indications of the relative position
of the two images in the pattem.

The two images can be placed in the correct position suggested by the XCF,

so that their features match. The average of the two figures after this operation

will have the same pattern characteristics of the previous two.

Now a third image can be correlated with the average of the first two, then
placed 1n the correct position and averaged with them. Iterating this process for
all the figures acquired will give a result like in Figure 5-3, where all the
available pictures (20 in this particular example) have been merged together
according to their position in the general pattem.

Such figure can be considered as a summary of the greyscale pictures; it is

larger and smoother than each single image, providing a useful tool for
parameters calculation, for the following reasons:

Being larger, a greater part of the pattern is represented, allowing easier

calculation of parameters such as radii of rings and centre-to-centre
distances.

- The smoothness of the image is due to the partial elimination of

background noise, obtained through averaging.
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Figure 5-3 — Single patterned pictures merged

In order to visualise how the figures have been merged, Figure 5-4 shows the

number of figures that have been averaged for each point. It results clear now

why the central part of the image is the clearer and smoother: it is the place

where the most pictures are averaged, while towards the borders their number
decreases.
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The idea of “noise elimination” obtained through averaging of highly
correlated portions of a surface is conceptually simple: wherever a feature 1s
often repeated it will be emphasized, vice-versa variations that do not belong to
the pattern will be gradually eliminated. In the case of double patterned surfaces

the above concept creates complications and differences.

Let us consider a surface X as the sum of three surfaces: pattern 4, pattem B
and background noise N.
1) B will be considered as noise when filtering X according to 4, giving as a

result A. The operation P=X-A defines the residual surface P as B+N.
2) Filtering P according to B will separate B and N.

Although empirical experimentation seems to confirm the above concepts,

there is a logical link that needs further analysis in order to respect a rigorous

scientific method.

Point 1) states that B will be considered as noise when filtering X according
to 4; this is true only if the average of B according to pattern A is null, therefore
only if the periodicities of the two patterns are mutually irrational.

In practice this does not represent an impediment, given that the surfaces
under analysis are not large enough to experience enough repetitions of the same
configuration of features to affect the average.

On the other hand, this represents a conceptual barrier to one of the goals of
statistical manipulation: finding the minimum portion of the surface
representative of the whole surface (called base element). If the two patterns are
not correlated, they will never repeat the same relative position of the rings.

In other words, acquiring a portion of surface from a double patterned
sample, there will not be another portion where both patterns match: it will only
be possible to match either one pattern or the other.

The techniques and methods previously described for correlation with
laboratory measurements and merging are thus unsuitable for double patterned
surfaces the way they are for single patterns. This is exemplified in Figure 5-5,

where a set of double patterned pictures have been merged using the same
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Figure 5-4 - Density of Pictures after Merging

5.1.2 Limitations of Pattern Recognition in Double Pattern Surfaces
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Figure 5-5 — double patterned pictures merged
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technique used to obtain Figure 5-3. It is clear that some of the pictures have
been placed correctly according to the main pattern, but most of them are

misplaced, giving as a result a blurred and indistinct picture.

5.2 Statistical Manipulation of surface features for enhanced

Pattern Recognition

The problem of correlating a double-pattern greyscale image with double-

pattern measurement can be overcome using the filtering technique described in
[Porrino at al. 2000] and [Porrino at al. 2003].
If pattern isolation 1s applied to the original surfaces, this can be broken down

into its three components (4, B and N). Now the on-line acquired pictures can be

cross-correlated with one of the patterns at a time.
For better visualisation of the patterns, consider the example of Figure 4-1 as

the original surface, and the patterns of Figure 4-3 and Figure 4-8 as the two

extracted patterns A and B.

A picture taken from the above mentioned sheet will contain a small portion
of both patterns; correlating the picture with pattern A, the features of pattemn B
present 1n the picture will be considered as noise and will not find any match.
The opposite will happen when correlating the picture with pattern B.

This procedure would allow merging as described in section 5.1.1. The result

will be two different figures obtained by merging the same set of pictures

according to two different patterns.

If the pictures are in a large enough number, the iterative averaging that is

involved in the merging procedure will progressively eliminate noise, and

therefore the undesired pattern from each picture.

As stated 1n [Porrino et al., 2003] one of the patterns is generally
predominant having deeper features that create higher ACF peaks, while the

other pattern’s peaks can be so low that in some cases they can be hardly

differentiable from background noise.
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The problem becomes even more evident when trying to correlate greyscale
camera pictures according to their weaker pattern, due to the very small portion
of the surface represented by each one of them.

The following practical example will clarify this concept.

XCF

TR TR TR R Y
X (mm) £

Figure 5-6 — Cross correlation of picture with extracted main pattern

The greyscale pictures of Figure 5-5 can be correlated with their stronger
pattern (called pattern A), previously obtained from a proper set of height
measurements, and give a clear XCF like in Figure 5-6, where only the central
portion of the XCF has been considered in order to avoid border effect errors.

The same pictures correlated with their weaker pattern (pattern B) are
strongly affected by the presence of the deep features of pattern A and give a
very disturbed XCF like in Figure 5-7, in which isolating the correct positions

for peaks becomes impossible.
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Figure 5-7 — Cross correlation of picture with extracted secondary

pattern

The practical impact of this problem can be strongly reduced using once
again pattern isolation:

1. The greyscale pictures will be correlated with pattern A and merged.

2. The figure obtained through merging can now be filtered using normal

GS procedure to reduce noise to the minimum.
3. Now the filtered surfaces can be subtracted from each one of the pictures,
removing thus the deterministic part of pattern A from them. This is

possible because the exact position of each picture with respect to pattern

A has been established by the XCF for merging.

4. Finally the pictures, “cleaned” from pattern A, can be correlated with

pattern B, giving a much clearer ACF that allows the second filtering.

5.3 Greyscale simulation

It has been mentioned in this section that greyscale pictures can be correlated
with measurements in order to assign them a specific position in the pattern. It is

possible to correlate directly the image and the height measurements, even if this

Is not conceptually correct because one represents heights, the other slopes. The
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cross correlations so calculated present peaks that can be generally identified,

sometimes with some difficulty.

Figure 5-8 - Simulated greyscale

A more conceptually correct way to proceed is to calculate the slope
associated to each point of the measurement, creating a simulated greyscale of
the measurement. The slope is simply calculated as the gradient of the figure in
each point. This has not the pretence to represent a proper simulation of the
picturing process, but simply a way to give more physical significance to the
operation of cross-correlation, and possibly improve its accuracy.

Figure 5-8 shows an example of greyscale picture (bottom-right) and the
measurement it has been correlated with (top-left), which represent the same

texture but it is not taken from the same sample.

The most highly correlated portion is extracted and represented on the top-
right of the figure, while the remaining figure shows the slopes associated to the
portion of measurement. It 1s possible to notice how the values inside the rings
are dark (which means deep) in the measurement, while they are light (which

means flat) in both the greyscale and the simulation.
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Experiments have shown that there 1s an improvement in the quality of the
XCF, even if very limited; Figure 5-9 and Figure 5-10 show the cross
correlations of the Greyscale of Figure 5-8 with the simulated slopes surface and

the highly-correlated portion of the measurement, also represented in Figure 5-8.

Correlation with simulation
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X (pixel)

Figure 5-9 - XCF of Greyscale with simulated slopes
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Correlation with measurement
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Figure 5-10 - XCF of Greyscale with measurement

The XCF between measurements and pictures have been performed using
this method automatically, converting the measurements into their slopes before
cross-correlating, in a way completely transparent to the user. For better results
the simulation needs to be equalised as well, using gamma correction to try to
match the intensity distributions of the two images. This operation also has been

made automatic, and uses the histogram equalisation available in the Image

Processing Toolbox of Matlab.

5.4 Laser line application

A laser line as described in section 3.2 has been associated with each one of
the greyscale pictures; the concept 1s to use the pictures as a way to identify the
relative position of the line with respect to the pattern: if the lines are in a large
enough number, and randomly distributed, they should give a measure of the

effective heights of the base element of the pattern.
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Figure 5-11 - Laser Lines Merged

Figure 5-11 shows the results of the operation of merging on the laser line
pictures of Figure 3-4. The figures have been placed in the same relative position
of the greyscales merged in Figure 5-3. This figure has the only purpose of
showing the differences of intensity around the ring edges, indicative of the
correct placement of the images.

This method allows the association of profiles (one per each picture,
calculated from the laser lines) to the texture.

The pictures available were in number only twenty per each sample, so that
only twenty profiles could be associated to the pictures. The knowledge of such a
limited proportion of the surface cannot give valuable information about the
amplitude parameters with reasonable accuracy. The scale in Figure 5-11 was
left in pixels in order to illustrate this concept: the lateral dimensions of the
figure are circa 1100x1400 points, for a total of 1.5 million points; each line is as
long as a row 1n the greyscale picture, circa 800 points, for a total of 16000

points over the surface. The ratio between the size of the surface and the points
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whose height is known from the laser lines is too high (T 100), particularly

considering that the points are distributed non-homogeneously, mostly around

the centre.

Methods are under study to increase the number of lines available, including;:
e Projecting more than one laser line per each picture.
e Acquiring the highest possible number of pictures per time unit.

If the lines are in a high enough number, covering a reasonable portion of the

surface, they can be interpolated in order to deduce the real aspect of the surface,

integrating with the information on the slopes given by the greyscale.

5.5Conclusions

The images produced on-line by the CRM optical system are an ideal
candidate for the implementation of an on-line measuring system through the
Statistical Filter: pictures are taken on a sheet under production, and laser lines
are projected on them in order to allow the estimation of the central profile. The
pictures are used to know the relative positions of the profiles with respect to the

pattern.

o The operation of merging of the surfaces has been described and
inspected, and it has given positive results on single patterned surfaces,

while some further considerations are required in order to be adapted to

multiple patterns.

e The combined use of the Statistical Filter on measurements and

greyscale/laserline pictures provides the tool for pattern separation and

features analysis on on-line acquired data.
o The size of the figures available so far is too small compared to the size
and the distance between the rings to allow clear separation of patterns;

the analysis suggests that images should be taken on a larger area at least

for double patterned surfaces, despite the loss of accuracy that would
occur.
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6. Parameters extraction and validation

The initial use of the Statistical Filter was purely the separation of
deterministic patterns from surfaces, seen as a way to estimate stochastic noise
and access the average shape of the features. At present the filter is being tested
for a variety of other uses, but nevertheless its initial function remains the most
important. This section will describe the methods used for the extraction of

parameters through the Statistical Filter, as well as their statistical validation.

EBT textured surfaces present a periodic pattern of repeated features,
therefore their two main components, apart from noise, are a pattern and a
feature. In particular the pattern consists in series of equally spaced points that
lay on parallel lines, shifted by a certain constant factor, whilst the feature 1s the
deformation caused on a sheet by the impression of a crater left by a laser beam
on a ‘Roll’. The analysis of these two components via Statistical Filtering is

described in the two following sections.

6.1 Pattern analysis

This section describes the methods used to describe the pattern of surfaces,

first considering the geometrical parameters that define it, then studying the

general statistics of the surface through the various stages of Statistical Filtering.

6.1.1 Geometrical parameters

The first parameters that can be extracted are relative to the periodicity of the
surface, and are calculated directly from the ACF or XCF functions. Considering
the filtering process as described in the previous sections, the first steps consist
in calculating the correlation function and isolating its peaks. Such operation
returns the so called ‘Peaks Map’ that is a map of the occurrences of the
deterministic features; if the function is an auto-correlation, then the distances

between the peaks will all be relative to the centre point, whilst the cross-

cotrelation gives the absolute position in the figure where the feature is repeated.
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A detailed description of the algorithms and methods for Peaks Map

extraction is given in section 8, while here the tocus i1s on the calculation of

useful geometrical parameters from the correlation functions.

x (mm)

(a) (b)

() (d)

Figure 6-1 - Peaks Map extraction stages

The stages of the extraction of a Peak Map are exemplified in Figure 6-1:
from the ACF (a) to the threshold map (b) to the preliminary Peaks Map (¢) that
is then cleaned from irregulanties (d); all these operations are described in detail
in sections 7 and 8.

The final Peak Map 1s reported in a larger scale in Figure 6-2, where are also
visualised the basic parameters to identify a pattern: the horizontal and vertical
distances between peaks and the rotation angle. The peaks can be also viewed in
three-dimensions, as in Figure 6-3 where the peaks, represented by red dots,

imposed on the ACF for visual verification of their accuracy.
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Figure 6-2 - Peaks Map Parameters

Figure 6-3 - 3D Peaks map

The geometrical parameters shown in Figure 6-2 are easily evaluated from

the Peaks Map, but this operation is generally not necessary because the same
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parameters are calculated as part of the algorithm for the correction of the Map

itself (section 8), and they are therefore available together with the corrected
map.

6.1.2 Descriptive Statistics
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Figure 6-4 - Stages of Statistical Filtering for Single Patterned Surface

The analysis of the distributions of the height values is the best way to follow
the changes introduced on a surface by the filter at the different stages of its

process. In this section two surfaces are filtered, one Single and one Double

Patterned, and the changes of the surface parameters are recorded and studied.

The first surface, Single Patterned, is illustrated in Figure 6-4 in the top left
corner; the pattern extracted 1s depicted on the right, while the residual surface
(difference of the two) appears in the bottom. The sample is a 256x256 points

matrix that represent a 2.56x2.56mm°” sheet portion with a spacing of 10um.
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The Original surface has zero mean (first order polynomial form removal is
applied to every surface considered in the project) and a standard deviation of the
heights ~ 4.5pm. The amplitude parameters Sq Ssk and Sku, and the mean value
for the three surfaces (Original, Filtered and Residual) are reported in Table 6-1.

I L
O | o[ | s | 3105

Table 6-1 - Descriptive Statistics for Single Patterned Filtering

Parameter Sq, which represents the standard deviation of the points, is
reduced by nearly 40% in the residual surface with respect to the Original value,
and the skewness is reduced by more than 70%. The values are better visualised
if compared with the plot of the distnbutions of the Original and Residual
surfaces in Figure 6-5. The change in the variance results is evident, as is the
improvement in the symmetry of the distribution (of which Ssk is an index). The
Residual Surface is then closer to a normal distribution than the Original was,
and this was achieved by removing the asymmetrical tail that the original

distribution presented and that can be noticed in Figure 6-5.
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Figure 6-5 - Height Distribution of Statistically Filtered Surface

Another way to verify the validity ot the filter in removing the deterministic

part of a measurement is to observe the normal probability plots: in Figure 6-6
these plot have been traced for the Original (in blue) and the Residual (in red). It

is possible to notice how more linear the latter is with respect to the first, as an

index of improved normality of the data.
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Probability

Figure 6-6- Normal Probability Plot for Single Pattern Filtering

Similar considerations can be done on double patterned surfaces, where the

filter is applied twice, generating three residual surfaces, according to this
scheme: let O indicate the Original, P1 and P2 the Extracted Patterns, R1, R2
and RF the Residual Surfaces (First, Second and Final). Then

O=P1+P2+RF : The Onginal surface 1s the sum of the patterns plus noise.

R1=0-P1=P2+RF : The first Residual is the Original minus the first pattern
R2=0-P2=P1+RF : The second Residual is the Original minus the second pattern

- 108 -



First Residual
—— sz o g4 ‘ o =2 ¥ 2" 7 g o

. i
otV o e e TR
T - . - L N R e A
AT R A A AW
" 1_: o2 | Wi, o n_r. ' -i"-i'_-”"‘l-ﬂ*

b

. ) ‘Z';-—“..T
1}"1 ) W s"r

- - - =7 . | - ‘
' , . -~ ) AN
LD Ry S e
PP U, T oNE L e Y
1500 8 AR SP S PRIF S g
el S S N SRS
A, b VRN LA S
. "','r L A - - ¥ ~ . _l--r l.

i

-&-\‘ ' 1.- .‘I -.ﬁll 1 _
P LRSS A E R
. Lfl . .-1"'.'.'1 P AP *_'1'-.: N
r, W J {. e - - (Wl *
JleRuiEe & 3 5 B |
Ny -

Figure 6-7 — Double Patterned Surface at various stages of

Statistical Filtering

Figure 6-7 shows the residual surfaces of a double patterned surface filtered
with GS Filter, while Figure 6-8 shows their distributions. Using the colourbars
on the side of the figures it is possible to identify the features and the effect they
have on the distribution. On the original surface it is possible to consider the
following:

e The main plane is orange, therefore just above zero microns height.
e The deeper pattern (smaller rings) is blue, so around -5um and below
e The shallower pattern (larger rings, hardly visible) 1s yellow, so around

ZEro MiCrons.
These visual considerations, purely indicative, can find a confirmation on the
distribution of the original surface (in black in Figure 6-8), where the main plane

and the two patterns can be identified in the positions hypothesised.
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Figure 6-8 - Height Distribution of Surface through the stages of

Statistical Filtering

Considering the other distributions, some observations about the filtering

process can be made:

e At the first stage the main (deeper) pattern is removed, as it can be seen

from the distribution of the First Residual, where the deeper feature is no

longer present.

e At the second stage the lighter pattern is removed (from the Original

again), and we can notice from the figure that the second pattern is

unaltered.

e Finally, with both patterns removed, the distribution of the Residual

Surface i1s depicted in blue: its shape i1s not symmetrical but there has

been a gradual improvement trom the Original that has been quantified in

Table 6-2.
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Table 6-2 - Descriptive Statistics for Double Pattern Filtering

The observation of the amplitude parameters of the surfaces shows that the
first pattern contributes to Sq (8q is ~30% lower in the First Residual than in the
Original) while the second pattern leaves it nearly unaltered ("2% difference).
The second pattern also shows skewness higher than the Original, so that all the

improvement in the symmetry of the Final Residual is due to the removal of the

first pattern.

The above considerations suggest that this approach could be a good answer
to the problem of determining the contribution of the two stages of rolling

(tandem and temper mill) to the final roughness of the sheets, closely related to

Sq.

The normal probability plots also can be studied for the estimation of the
contribution of each phase of the texturing process to the final noise. Figure 6-9
shows that the Original surface (black) is strongly not normally distributed,
while the first stage of filtering (green) has a much more linear shape; the second
stage of filtering (red) is nearly coincident with the Original, while the Final
Residual (blue) is nearly coincident with the second stage. It is then evident the
very small contribution of the second pattern: removing only the first one or both

of them the randomness of the surface heights remains nearly unaltered.
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Figure 6-9 - Normal Probability Plot for Double Pattern Filtering

6.2 Features analysis

After describing the methods to access the pattern of a surface, the next

natural step consists in the study of its features. The Statistical Filter approach
allows the fast calculation of the average of the features, so that the parameters
can be calculated only once, and still represent the average value. Alternatively,
the calculation of the parameters on each single element allows the study of the
distribution of each parameter over the surface, so that it is possible to quantify

the number of the fteatures that do not fall within the tolerances and their
location.

The next section describes the software interface created to simplify the

analysis of features, while the two following sections contain respectively the

methods for the analysis of the average feature and the distribution of parameters
across the sample.
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6.2.1 Feature Analysis Interface

The Graphical User Interface (GUI) designed for the Statistical Filtering was
equipped with an additional tool for Features Analysis through XCF (a
screenshot of the interface is depicted in Figure 6-10). The tool was designed to
allow the user the manual definition of the target values of a pattern, for the

creation of a virtual feature that could be cross-correlated with the sample.

) Feature Analysis Interface

Choose Taget Values Graphically

Irdarnal Fades
£ otarnad B adks:

roawe Type

Figure 6-10 - Feature Analysis Interface Matlab Figure

Once the internal and external radii and the type of surface (roll or sheet)
have been defined by the user, the software produces a virtual ring made of a
parabolic pit and a halt-toroidal rim if the type is a roll, vice-versa if it is a sheet.
The height of the rim, the depth of the pit and the value of the main plane are all
determined automatically according to the parameters of the surface: the
averages of the heights of the pit and of the rim are equal respectively to the

averages of the negative and positive heights of the surface.
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The results described in the next sections have all been produced using the

Feature Analysis Interface.
6.2.2 Analysis of the Average Feature

The analysis of Average Features is here described though an example: the
Feature Analysis Interface has been fed with data from one of the available

samples on rolls and the outputs are here reported and commented upon, in order

to introduce more general conclusions. The sample 1s a 256x256 points matrix

representing a 2.56x2.56 mm portion of roll.

Figure 6-11- (a) Roll Sample for Feature Analysis demonstration and (b)

its clusterisation

The sample, depicted in Figure 6-11(a), has been divided into clusters

according to the algorithm described in section 8; the clusterisation returned by

the software is shown in Figure 6-11(b). The second output of the Feature
Analysis Interface 1s the average of the clusters, rendered as a three-dimensional

solid, shown in Figure 6-12, for immediate qualitative evaluation of its shape.
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Figure 6-12 - 3D view of Average Feature

The Average Feature has been divided into a pit and a rim and placed on a
flat background, for better visualisation and simpler pafameters extraction.

At this stage the software has produced a three-dimensional noise-free
representation of the feature, so it is in the condition to perform any kind of
evaluation about its shape; at the present it returns only the basic set of
parameters that are here exposed in order to reduce computational time to the
minimum, but it is designed for easy implementation of personalised parameters
and functions.

Figure 6-13 shows the colourmap of the Average Features that the software

uses to illustrate the shape of the internal and external radii, while Figure 6-14

shows the contours associated to different height values.
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Figure 6-14 - Contour Map of Average Feature
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Figure 6-15 - Representation of a feature in Polar Coordinates

The feature is also resampled on a radial grid in order to represent it in polar

coordinates, 1.¢. as a function of angle € and distance p from the origin of axes,

which has been placed at the coordinates of the peaks. From the result shown in
Figure 6-15 1t 1s easy to calculate the direction of defects and anomalies.
In addition to this, the internal and external profiles have been fitted to

ellipses in the mean-square-sense, in order to evaluate eccentricity and
orientation of the ring and the pit.

[n conclusion, the fact that the average ring has a very simple and smooth

shape allows the definition of any geometrical parameter that could be of

interest, representing the average value of that parameter over all the clusters.

6.2.3 Parameters Distribution over the sample

The Feature Analysis Interface calculates a series of parameters for each
cluster extracted, in order to control the distribution of certain characteristics or

defects over the same sample. Also in this case the software has been designed

for easy implementation of personalised parameters and functions.
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Figure 6-16 - Amplitude parameters calculated for each cluster of the

sample

Figure 6-16 shows the values of amplitude parameters Sq, Ssk and Sku for
each one of the clusters extracted from the data. The sample is the same one
analysed in the previous section.

Each value can be associated with the position of the cluster it refers to,
creating a map of the parameter over the surface; standard parameters are not
suitable for this particular analysis, which has to be focused on the shape of the

feature.
Knowing the value of parameters for each feature of a surface will be usetul

for the validation of specific parameters that define defects in the shape of the
ring, like incomplete rims and asymmetric pits, which are closely related to the
production process. In this case the distnbution would tell how scattered a
parameter is and identify those features that do not fall within the tolerance.

At the present the software has not been equipped with other parameters than
the standard amplitude and descriptive statistical ones. Defining parameters for

the defects of the features 1s considered one of the inputs of the software: any
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combination of ready-made or user-defined parameters can be linked to the

software in order to be calculated on each cluster.

6.3 Batch analysis

The data set described in section 3 has been used for testing the capability of
the filter to perform automatic analysis of a large number of samples. The
Statistical Filter software can be executed through the Graphical User Interface
to study one sample at a time, but can also be launched from the prompt line
requiring as only argument the path of the folder containing the samples; in this
case the program automatically performs the filtering on each surface, using the
algorithms described in chapters 7 and 8, recording the values of the desired
parameters for each surface. The parameters to be calculated can vary and they
can be user-defined.

Unfortunately the set of data available throughout the project does not have
the necessary characteristics for the validation of the parameters extracted with
the Statistical Filtering, as discussed in section 3; moreover, the Statistical Filter
has been designed to access particular surface features, while the existing

standardised parameters are not feature-oriented and not specifically dedicated to

. one production process.

This section presents the results of the filtering of the homogeneous set of
2x2mm samples described in section 3, and the conclusions that can be drawn

from them.

The software performed one operation of pattern removal on each surface,

based on ACF, with the threshold defined by the bearing area parameters as
described in section 8. The total number of surfaces was 220, extracted on 21
different samples of rolls, sheets and rolls replicas. The same parameters have

been extracted for the Onginal, Filtered and Residual Surface of each sample.
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6.3.1 Considerations on the parameters distributions

Sample

Figure 6-17 - Values of Sq by Sample (on original surfaces)

The parameters returned by the batch filtering operation can be plotted versus
the sample ordinal number: the plot returned for parameter Sq is shown in Figure
6-17. The colours are associated with different values of parameter “Type’,
which assumes values of:

1) Represented with black circles (o) the Roll Samples
2) Represented with red plus (+) the Replica Samples

3) Represented with green cross (x) the Sheet Samples
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It is clear that the rolls and the replicas are divided into two well defined

groups: one group presents Sq values between 6 um and 9 um, while the other

one presents values compatible with the sheets samples, which are distributed

between 1 um and 3 pm.
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Figure 6-18 - Normal Probability Plot for Sq
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Figure 6-19 - Normal Probability Plot by Type

Analogue considerations can be done observing the normal probability of Sq
in Error! Reference source not found., which clearly presents two distinct sets
of values. In the normal probability by type, shown in Error! Reference source
not found.. the sheet samples (in blue) show a normal distribution, while rolls
(in black) and replicas (in red) present the expected division into two groups.
Within the groups, the samples seem to present linear distributions, particularly

within the same sample’s repetitions, which would confirm the validity of the

resampling operation performed on the surfaces, at least for parameter Sq.

6.3.2 Correlations between parameters

The results have also been inspected for correlations between the values in
the Original, Filtered and Residual Surfaces. Error! Reference source not
found. and Error! Reference source not found. show respectively the

regression plots of Sq_filt vs. Sq and Ssk_filt vs. Ssk, where Sq_filt and Ssk filt

represent parameters Sq and Ssk calculated on the filtered surface.
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Figure 6-20 - Regression Plot of Sq_filt vs. Sq
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Figure 6-21 - Regression Plot of Ssk_filt vs. Ssk

- 123 -

— ROGresSSION
Sk il g5% P



The graphs show a strong correlation for both parameters, which confirms the
strong similarity of the filtered version of a surface with its original that has been
hypothesised in the previous sections.

The data also confirm the higher randomness of the Residual surfaces respect
to Original and Filtered ones, and the general strong contribution to the final Sq
of the reconstructed patterns. The graphics are not reported because they are
many of them and would require many pages, whilst the analysis of this
particular set of data was not in the objectives of the project, and would anyway

not give results of general validity due to the non-homogeneity of the data set.
What has been considered is the capacity of the filter to process a large number
of very different surface data and produce useful parameters. This capability has
been proved, and the surfaces extracted during the process (filtered and residual)

proved to be suitable for the characterisation of the deterministic patterns.

6.4 Conclusions

A set of samples from EBT Textured Surfaces production has been processed
with the techniques developed during the project, recording standard surface
parameters for each sample at each stage of the filtering process. The analysis of
the data has led to the following main considerations:

e The deterministic pattern has been recognised in each sample, which
confirms the repeatability of the technique

e The Filter etfectively isolates the deterministic part of textured
surfaces from the noise

o The reconstructions of the patterns can be used to estimate the

influence of each stage of the texturing process on the final product

e The Average Feature extracted with the Filter is a synthesis of the

surface features and can be used for the analysis of recurring defects
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7. Software Implementation

This chapter will consider the logistical, mathematical and algorithmic
aspects of the practical implementation of the theoretical work, rather than an
analysis of the pure programming aspect of the project.

The entire research has been conducted analysing surface data by calculation
using the Matlab programming environment. The main advantage of the Matlab
platform is a simple syntax derived from BASIC and very quick deployment of
the procedures for testing (as opposed to C++ where coding time is generally of

greater magnitude than testing time).
Another advantage of using Matlab is the way functions are organised: once a
function is created and saved it becomes another Matlab command just like any

other, and it can be used in new programs or functions or directly from the

command prompt in the Matlab command window.

Instead of a single program, many functions have been created and collected
in a library: this approach introduces extreme modularity in the organisation of
the project. Additionally, the SCOUT software (described in the next section)
was created with the same kind of philosophy; therefore the whole new library

created for this research can be included into the SCOUT software as another

one of its set of modules.

7.1SCOUT

SCOUT (Surface Characterisation Open-source Universal Toolbox) (see
section 1.1) consists of a set of Matlab modules (exemplified in Figure 7-1) and
since its first version, grew steadily i1n size and complexity as the time passed,
thanks also to the open-source philosophy that characterises it [Sacerdotti et al.
2002].

The modules are organised in various groups as detailed in the next sections.

-125-



SCOUT
sarface Characterisstion Cpen~Source Uhiversal Toolbhox

Developed by AUTOSURER conzortium

170
| readszdt - Daads = nuxface in SOF Format
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aup PRIS - Calculates Amplituda Parameters

cla _pars - Closed Areas Paraneters

act_pars - JLocorrelasion Funceion Paransters
weindax - Thhlborg-Cratoord Index
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111 scallanous
sco\Rgli - Scour Craphical Irterface
sliceswur - Grayhically Slices a surface
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et irn - Removes tha regr. plana caloulared fxom a selected poligonal zona
clareas « Lists all closed aresns sbove Taro in a surface
clacurve ~ Plots the distribwtion of closed areas vs. heign
acorYed -

Ao Correlavion Runiction (&0 Signal Processing Toolbox Requirad)

Figure 7-1 - SCOUT Matlab help

7.1.1 Input/Output

This group of procedures 1s mainly concerned with reading and writing the
raw surface data from disk. The adopted file format is the Surface Data Format

(SDF) defined by the Surfstand [SurfStand website] Group. Every other format

can be read, written or converted 1nto any other by the SURFCONYV module (see
section 3.4).
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7.1.2 Form Removal & Filtering

This group of procedures is concerned with the conditioning of surfaces

detailed in section 2.3.

Linear and polynomial form removal algorithms handle most of the possible

measuring conditions. Filtering algorithms are then used to separate roughness

and waviness components.

7.1.3 Parameters

These procedures are concerned with the parameter calculation and include
both new parameters developed within the Autosurf Project and old standard

parameters. The modules were used for all the parameter calculations in the

previous chapters.
7.1.4 Miscellaneous

The procedures that do not fall into previous sections are grouped here.

Amongst those, particular effort was dedicated to a user-friendly graphical

interface.

7.2 The Statistical Filter — Supporting Functions

Basic functions were created before the actual development of the Statistical
Filter, in order to have the most commonly used routines ready to use in any

other function or program later developed.
A brief qualitative description of the most important of them is given in the

next sections.

7.2.1 The auto and cross-correlation functions

The correlation functions are at the base of nearly every application and
method described in this document, deserving therefore particular care in the
development and optimisation.

Matlab contains a function for performing bi-dimensional cross-correlation
functions, but 1t 1s a very time-consuming version implemented using the

cross-correlation definition [Definition 2-1].
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A new version of the function was implemented using a different definition

of the correlation functions that derives from Fourier analysis [Proakis et al.
1996]

R=F" {[F(m)- F(n,) ]} [Equation 7-1]
According to this definition the XCF can be calculated performing two Fourier

transforms and one inverse transtorm. The great advantage in this approach is the

use of FFT algorithm (Fast Fourier Transform), which allows very fast

calculations of Fourier transforms, as the name suggests.

The performances of the two definitions applied are evident in Figure 7-2,

where the timings for calculation of XCF using the two algorithms are compared

calculating the XCF of random square matrices of different dimensions.

The Matlab function, that applies the classic definition ([Equation 2-2)),
assumes a charactenistic parabolic aspect, in accordance with the linearity of the

equation and the quadratic increase in the number of elements in the matrix with
its lateral dimension.

The FFT based XCF algorithm is strongly affected by a characteristic of the

FFT algorithm: 1t can only be calculated for sequences of data whose length is a
power of two [Orfanidis 1996].

Matlab uses a high-speed radix-2 algorithm if the Input sequence is a power
of two, giving a computational complexity of N*log(N); when the sequence

length 1s not an exact power of two, a separate algorithm computes a

mixed-radix discrete Fourier transform whose timings vary according to the
number of prime factors in the sequence length.
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XCF calculation timings
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Figure 7-2 - Timings for calculation of XCF using FFT and non-FFT

based methods -~ linear scale
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Figure 7-3 - Timings for calculation of XCF using FFT and non-FFT

based methods — logarithmic scale

To perform autocorrelations using only powers of two as input dimensions
the technique used was called “zero padding” [Meyers 1990], consisting in

adding null values at the end of the sequence to be transformed. Using this
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technique, only the fastest FFT algorithm is used, and the precision of the

calculation results improved (the longest is the sequence to transform, the higher

becomes the definition of the FFT sequence [Proakis 1995]).
The graph in Figure 7-3 in logarithmic scale shows how the FFT based

algorithm changes radically in correspondence of the powers of two, due to the

zero padding that makes every 2°+1 be zero padded to 2"*1 (32, 64 and 128 are

clearly visible in the graph) but always representing a great advantage in time

consumption respect to the classic algonthm.

Being the XCF at the very base of the Statistical Filter Project, an elevate

execution speed represents an indispensable pre-requisite for on-line industrial

applications.

7.2.2 Peaks determination

As previously described, auto and cross-correlation functions are calculated

to obtain the coordinates of their peaks, which represent the points where a

surface matches 1tself (ACF) or another surface (XCF).

The first implementation of the function for peaks isolation required as
arguments the auto-correlation function and the threshold that defines a peak
(section 4.1.1). The threshold has been initially found empirically through‘a
process of trials and errors. Its definition is one of the delicate points of the

process, because the on-line version of the program needs to be fully automated

and self-tuning. Solutions to this problem are introduced in section 8.1.
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Typical ACF

100 200 300 400 500

Figure 7-4 - Typical ACF

Let R(1, 7;) be an auto-correlation function, represented by Matlab as a matrix
of double-precision elements, normalised to 1 (so that | R(7, 7) |<I). An example
of ACF is depicted in Figure 7-4; the axes represent the elements of the matrix.

Once the threshold € has been established, or given, the peaks map P(7;, ) 1s

created as a matrix of boolean values

i

l R(r, T ):> £ | Equation 7-2]
1’(r,,r, ): :

0 Rlr,7,)<e

An example of threshold map calculated on the ACF of Figure 7-4 using an
e=(0.29 i1s depicted in Figure 7-5 (*nz” indicates the number of non-zero

elements).
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Typical ACF threshold map
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Figure 7-5 - Threshold image of a typical ACF

The map as it 1s cannot be used yet, because instead of high-correlation

“areas” the program needs the exact coordinates of the peaks. In this situation a
small but useful function included in SCOUT, clareas, has been used which
finds every closed region [Pferstof at al. 1998] in a surface and assigns the same
unique number to each one of its elements. P(7,7) is not anymore a boolean

matrix but a matnx of integers between / and K, if K is the number of closed
areas A, in the threshold map.

The n-th peak 7, can be now defined as the highest point of the n-th area, in
formulae:
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Y, = MaX(; ey, lR(THTj)]

ol K [Equation 7-3]
with n=1...K.

72.3 Other functions

A small library of common-use modules was created in order to simplify and
accelerate all the programming done during the course of the project.
Their main purposes are:
o Extracting parts of surfaces or inserting parts of surfaces into others in

specified positions, using re-scaling where needed.

o Converting the matrices dimensions into physical dimensions using

the header files contained in the .SDF format.

e Batch routines for automatic reading/writing/executing of large
amounts of files, with optional statistical representation of the

outputs.

e Statistical analysis and representation of parameters.

7.3 The Statistical Filter - Basic implementation

The first version of the Statistical Filter as described in section 2.5 was based
on the Gram-Schmidt decomposition of vectors. The statistical decomposition of
the clusters seen as vectors, together with the correlation coefficients, was meant
to give a way of reconstructing a surface considering only the most relevant
terms in the decomposition of each cluster C;. The results were in accordance
with the theory, but the filter has been developed differently; the matrix of the
coefficients showed clearly that the average cluster, chosen as starting vector of
the decomposition, contained enough information to represent the deterministic
part of the surfaces. Moreover, the reconstruction of surfaces with adjustable

level of correlation with the original is an interesting academic result, but a
single surface containing the most needed information is of more industrial use.
The Gram-Schmidt decomposition has been abandoned in the following

versions of the Filter, where the base cluster is the only one used to reproduce

the surface features.
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In this section will be described the initial implementation of the filter as

introduced in section 2.9.

N
Peaks Map '

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Reconstruction

Figure 7-6 — GS Filter scheme

Figure 7-6 illustrates the organisation of the GS Filter software; the next

sections explain the various modules that compose it.

7.3.1 The ‘Peaks Map’Block

This module receives as input the surface and the threshold, calculates the XCF

and its peaks map P(7;, 73), returning finally the coordinates of the peaks 7,. The
technique has been described in sections 7.2.1 and 7.2.2.

73.2 The ‘Extraction’ block

This module creates the clusters, isolating circular parts of the surface centred
on each peak. It needs to be remembered here that the ACF function has double
the dimensions with respect to the surface, according to Definition 2-1. When the

autocorrelation is calculated using [Equation 7-1] though, its dimensions will be

the smallest powers of two larger than the surface dimensions (section 7.2.1).
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Let n(xpy), with k=0,.,M-1 , 1=0,.,N-1 be a surface and R(7,7) its
autocorrelation function calculated with FFT using zero padding.

Then the dimensions of the autocorrelation function will be

The peaks coordinates do not have to be rescaled to fit the surface, since the

ACF preserves the same spacing between points (Ay, Ay) as the surface; a portion

of the peaks map of the same dimensions of the surface has to be considered, and

the best position is the centre of the ACF, the least affected by border errors.

Surl. Divension
Suriaee wrimes rading

Figure 7-7 - Peaks map's areas

The clusters need to fall entirely into the surface to be extracted, therefore the
portion considered for clusters extraction has to be further reduced by the length
of a cluster diameter in both dimensions.

Figure 7-7 can clarify the concept: the yellow area represents the ACF area,
the orange area has the same size of the surface, then reduced of a cluster

diameter and represented in red. The orange area contains some peaks, but the
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clusters extracted with centre on them would fall partly out of the surface’s area;
those that fall into the red zone are the only ones chosen for clusters extraction.

The entire map will not be discarded, for reasons that will be clarified in section
7.3.4.

The clusters are extracted using the general purpose modules discussed in

section 7.2.3, according to [Equation 2-3].

7.3.3 The ‘Average’ block

The creation of the average cluster Cy 1s done through normal averaging of

the elements of the other clusters:

T w [Equation 7-4]
The aspect of an example average cluster is shown in Figure 2-27.

73.4 The ‘Reconstruction’ block

Once the average cluster Cp has been created, the filtered surface can be

produced; the average cluster is repeated with centre on every peak, replacing the
original clusters with their average.

The peaks map used for reconstruction is the entire map, not the central
portion adopted for clusters extraction in section 7.3.2. If only the peaks that fall
into the central area are considered, the average cluster will not cover part of the
borders. Figure 7-8 illustrates the concept, referring to Figure 7-7: if only the

peaks contained into the red area are used (diagonal lines filled cluster) part of

the orange area will not be covered; also the rings contained in the orange area

(vertical lines filled cluster) might not be enough to cover the whole surface. All

of the peaks have to be used to ensure a complete result, covering an area larger

than the one needed to overlap the original surface.
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Figure 7-8 — Peaks map areas for reconstruction

The production of a filtered version of the surface does not add information

to what can be deduced from the average cluster: Cy is the average of highly

correlated deterministic features of the surface, and repeating it to cover the

whole area of the surface does not constitute added information. The
reconstructed surface has a purely practical use: it allows easy calculation of the

residual surfaces, useful for statistics on the surface noise and indispensable for

double patterned surfaces filtering.

7.3.5 The GS block

The Gram-Schmidt decomposition was implemented according to its
definition, just adapting it to the bi-dimensional nature of the data ([Equation
2-4)] and [Equation 2-3}).

The coefficients of the decomposition are stored in a lower triangular matrix

(Figure 2-28) and returned as output, as well as all of the C; clusters generated

during the decomposition process.
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8. Optimisation for production-line

implementation

8.1 Self-tuning of cutting height.

As stated in various sections of this thesis, the cutting height, or threshold,

for the creation of the peaks map from the ACF is the most delicate step of the

entire filtering process.

The software that isolates the peaks has to be as general as possible and be
able to deal with:

- Unknown orientation of the surface

- Unknown shape of the pattern

- Highly variable density of peaks from case to case
- Unknown amount of background noise

- Possible presence of other patterns

All of the above requirements become even harder to meet considering that

the algorithm has to be very fast not to represent a bottleneck in the process.

Bearing Area Curve
]
08
06
E 04
% 0.2 PPk = 2 14¢-001
U ok = 1 824001
Bk = 9.83 EEm—
- =Y 83e 002 __‘._..'
0.2 " . v e ascmmane sttt S S S ;1
04
0 0.1 U2 93 08 05 U8 N7 08 DO 1
Area (%)

Figure 8-1 - Bearing area curve for an example ACF
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A solution can be found in the Bearing Area (Firestone-Abbott) parameters
calculated once again using the SCOUT software. The parameter Sy, called
“reduced peak height”, gives an indication on the height of the peaks present in a
surface, and is thus the best candidate for the peaks isolation threshold.

Statistical work on a large amount of samples has shown that sectioning the ACF

at half of the height of Sy most of the peaks are intersected and most of the noise

1s not.

Unfortunately there is often no way to isolate all of the peaks avoiding all of

the noise (see section 4.1.1), and the use of Spi does not resolve this issue. On the
other hand, the threshold obtained with the Bearing Area parameter is fast to

calculate, allowing further work on the peak map to adjust the imperfections.

The next section will illustrate how to obtain a clear and regular peak map

from one containing extra areas and/or missing ones.

8.2 Peaks map extraction via peaks vectors distribution

A human brain can look at a regular pattern (like in Figure 4-6 and Figure
4-7) and immediately judge if there are extra points that don’t belong to the

pattern or if any are missing. Not so immediately a calculator can perform the
same operation, especially considering that the pattern 1s

- Not known a priori

- Not perfectly regular

- Affected by small errors due to the discrete nature of the data

Statistics can provide a way to recognise which peaks belong to a regular grid

and which ones do not. If we assume that most of the peaks isolated using Spx

belong to a regular grid (and Spx has proven able to guarantee this condition for

the surfaces analysed), the vectors defining their relative distances should show a

strong predominance of certain directions. Figure 8-2 shows the distance vectors

of hypothetical peaks y; 7, from y;, expressed in polar coordinates as module p;;

and angle «;.
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Figure 8-2 - Peaks distance vectors

All the combinations of two peaks can be considered and their relative
distance evaluated, generating two triangular matrices as shown in Table 8-1 and

Table 8-2:
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Table 8-2 - Matrix of angles

Once vectors have been evaluated, their density across the pa plane 1s easily
plotted, considering that the discrete nature of the data will make many of them
fall on the same points (or pixels 1n a graphical representation). Figure 8-3 shows
the density plot for an example EBT auto-correlation.
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Kigure 8-3 - Peaks population in polar coordinates

The graph shows that some vectors are exactly repeated more than 120 times,
and this occurs mainly for small modules as it could be expected given the

limited dimensions of the ACF under analvsis.
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The main directions can be found plotting the distribution of peaks according

to the sole angle (equivalent to the sum of the columns of the matrix represented

in Figure 8-3). The result is depicted in Figure 8-4.
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Figure 8-4 - Peaks population vs. angle

The main directions can be easily deduced from the graph, where five angles
(or better four, considering that 90 and 270 degrees indicate the same direction
with opposite sign) show a clear predominance over all others.

Considering one of the directions at a time, it is possible to extract from
Figure 8-3 a horizontal line in correspondence with each angle, which should

show which modules are predominant according to each direction. The

horizontal profile obtained for a=138 degrees (highest peak in Figure 8-4) is

depicted in Figure 8-5. The regularity of the plot indicates the main module of
the distance according to the given angle (first and higher peak on the left), and

all its multiples that necessarily belong to the same direction.
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Figure 8-5 - Peaks population vs. module at given angle

The vectors that define the regular pattern have been established in module

and angle, so the peaks map generated by Sy can be corrected according to

them.
8.2.1 Pecaks map correction

The pattern of peaks can be corrected in several ways once the vectors that
define the positions of the points have been calculated:
- Eliminating extra points directly from Table 8-1 and Table 8-2. It
is possible to choose which peaks belong to the grid checking that
they present one or more couples (p,a) with the correct values.
Unfortunately two points that do not belong to the pattern might
present the same distance vector of the regular points. To solve the
problem it could be considered a peak only that point that presents
two or more correct vectors, but this might incorrectly eliminate some
point on the borders that have only one neighbour. Moreover, points
could only be eliminated and not added where they are missing.
- Building the whole grid from the directions. Given the vectors of
the peak distances a calculator can generate an ideal map of peaks
with the correct distances. The problem is, the distances are relative,

so the map will be correct apart from a translation factor. In order to
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correct the misplacement it would be sufficient to know the position

of one peak and refer the whole map to it; but a point can not be

chosen as reference when the aim is exactly to find and eliminate the

extra points.

- With a recursive algorithm. An algorithm implemented with a
simple recursive function can explore the grid of points moving along
the given directions and modules. A counter for each peak (or empty
position) is increased for each visit coming from a different direction.
At the end of the process the peaks with high counters will be kept,
those with low counters will be verified (if they are close to the
border, if there is another point very close with a lower counter too,
etc.), those with null counters will be removed and the empty spaces

with high counters will be assigned a peak. This technique involves
an algorithm for decision-making to be repeated at every step that can
represent a serious problem iIn computing time consumption;
furthermore, recursive algorithms are notoriously to be avoided for
their computational complexity and memory use wherever the number
of recursions can be large. In the case of typical stylus measurement
the number of features to analyse is not always negligible, and some
worst-case-scenario examples have proven to represent a

computational problem.
8.2.2 Timings and computational complexity

The number of non empty elements in Table 8-1 and Table 8-2 is 5——-—(%—_&
and represents the number of times that a couple (p,;, @) is evaluated.
The operations for determining each couple are very basic and involve

integer numbers, as shown in the following formulas.

Py = dx*® + dy?
au _tan'l(gl.l?_g)
dx =«
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where dx and dy are the horizontal and vertical displacements between peaks

% and .
It is possible to reduce the number of operations by avoiding consideration of
every peak that presents a module higher than a certain value (value that can be
estimated from the density of peaks). The calculation of ¢;; would be avoided for
most of the pairs of peaks, and the creation and manipulation of the density
charts would be accelerated. The disadvantage would be lower density where
isolating the main directions and modules would result in more difficulty.

The number of peaks in a map is of an order of magnitude small enough in all
common applications, that the density evaluation does not constitute a problem

of computational complexity. For the same reason also the recursive algonthm

used for peaks map correction is not above the timings tolerance.

8.3 Peaks map extraction via Voronoi diagram

The final solution to the Peaks Map extraction came from the Voronoi

Polygons [Barber et al. 1996] [Aurenhammer 1991], which are strongly related

to the Delaunay triangulation. Here are reported the definitions of the two
concepts as given by the Matlab Help Documentation [Matlab website (a)]:

- Consider a set of coplanar points. For each point in the set, you

can draw a boundary enclosing all the intermediate points lying

closer to than to other points in the set. Such a boundary is called

a Voronoi polygon, and the set of all Voronoi polygons for a

given point set is called a Voronoi diagram.
- Given a set of data points, the Delaunay triangulation is a set of
lines connecting each point to its natural neighbours. The
Delaunay triangulation is related to the Voronoi diagram: the
circle circumscribed about a Delaunay triangle has its centre at the
vertex of a Voronoi polygon.
These definitions have been considered ideal for the problem of determining

which peaks belong to a regular grid. One way is to use the peaks vectors
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distribution as described in the previous section, but using only the Delaunay

triangles’ sides as vectors.

Alternatively, a simple routine could inspect the Voronoi polygons in order

to find those with a similar shape, which then identify a regular pattern;
non-regular polygons are either made of regular ones (where points are missing)

or vice versa (regular polygons are made of irregular ones where points are in

excess).

This is the solution implemented at present, primarily because of its extreme
immediateness and computational simplicity, but also because of the geometrical

meaning of the set of Voronoi polygons, which clearly match the concept of

‘cluster’ formulated in section 2.

A visual example of clusterisation of a surface through Voronoi diagram is
illustrated in Figure 6-11.

8.4 Peaks map evaluation for industrial application

The creation of the peaks map that allows pattern reconstruction can be
approached from a very different point of view respect to the solution proposed
in section 8.2, where the problem is considered to be the as general as possible,
reducing the initial assumptions to the minimum. It represents indeed a more

valuable academic achievement, but not necessarily the most convenient
industrial solution.

The main assumption that can be made about industrial production is that the
steel sheets being produced belong to a well defined finite set of surfaces,

therefore there is no need for absolute generality of the algorithms. The peaks

map extracted from the ACF of a surface is a set of coordinates that define the
peaks positions, and the same map can be used on different surfaces that present
the same pattern, if their orientation is the same. So, if the aspect of the pattern
being produced is known (and it generally is), then the whole peaks map
evaluation could be skipped, and the software could be fed directly with the

coordinates of the peaks and the filtering performed.
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In practice things cannot be made so easy: the regularity of the pattern and 1ts
orientation are quality related characteristics that cannot be assumed to be
correct. even if they rarely are not.

What it can be done is to simplify the process using the added information
available on the production site, like the expected geometrical parameters (ring
radii. dg. dl, etc.) of the surface being textured.

Figure 8-6 illustrates the structure of the Statistical filter as described so far:
the original surface generates the ACF that generates the peaks map, which is

used to filter the surtace.

Figure 8-6 - Structure of the Statistical filter

Figure 8-7 shows an alternative scheme that could be used to improve the
filter’s performances. The shape of the EBT rings (or any deterministic feature)
can be predicted through the expected parameters of the pattern. The simulated
ring, cross correlated with the surface measurement, allows the creation of a
peaks map that 1s statistically equivalent to the ACF peaks map for surface
decomposition and reconstruction.

The great advantage 1s that the ACF gives information on the relative
position of the rings, while the XCF shows their absolute position, so that every
point of the peaks map corresponds to the centre of each ring. This greatly
improves the operations of geometrical parameters extraction. Furthermore:

I'he rings are not sensitive to the surface orientation due to their

circular symmetry
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- The XCF returns a map of points where the predicted teature matches

the real ones, with no need for a periodic pattern anymore.
The predicted feature to be correlated with the surface can be either produced
analytically (as an semi-torus of elliptic section for example, as in section 6) or
extracted from a database of “ideal features™ previously optimised in laboratory

and stored in the computer memory.

Statistical

Surfaces

Database
(optional)

Figure 8-7 - Alternative filter structure for industrial application

The application to Process Control of the alternative structure is evident if

used in conjunction with the simulated pictures described in section 5.3. The

L -

Original Surface that the filter will receive as input once implemented will be a
greyscale picture taken on-line during production, while the Ring Prediction will
be the simulation of a greyscale picture of the ideal ring.

The simulations of this process on all the available samples have been

satisfactory and 1n accordance with the expected outcomes.
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0. Conclusions

"An expert is a man who has
made all the mistakes which can be
made in a very narrow field.”

— Niels Bohr (1885-1962)

The study of textured sheet surfaces has gradually moved throughout the
years from 2D to 3D characterisation, forcing a progressive adaptation of the
existing techniques, parameters and standards to the new approach. Filtering is a
fundamental aspect of Surface Characterisation, and since the adoption of three-
dimensional analysis there has been a constant effort of the research community

to define filters for surface data that would allow the assessment of the desired

surface characteristics.

Deterministic surfaces are textured with a deterministic pattern of features
that confers to the sheet desired functional characteristics, and they are rapidly
becoming a standard of the steel sheet production industry. Filters specifically
designed for this kind of surface<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>