
Appendix A- Manufacturer Given Information and Rotor Drawings

Appendix A Manufacturer Given Information and Rotor Drawings

The first part of this section includes some given information from manufacturers, mainly

for meters A, B and C. The second part collates each rotor drawing that was produced by

Solidworks.

A. 1 Manufacturer Given Information

A. 1.1 Meter A

A drawing is given by the manufacturer, Euromatic, and the image is shown below.

BLADE ANGLE 25. DEOREES
MATERIAL : 416 MAGNETIC 8.8
OR EQUIVALENT

DRAWNG TITLE EUROMATIC
or, " ý IPT oil= V4'3 BLADED s= i cMY W GARY w /0v9

ROTOR DRG tRA F02510

Figure A. 1 Meter A- Image of the given drawing (note: the "SCALE" is not a true

representation due to changed image size)

-Al-

Appendix A- Manufacturer Given Information and Rotor Drawings

Though the meter (rotor casing) nominal diameter is 6 mm, the pipe fitting is actually for

12 mm, therefore the effective pipe diameter is truncated from 12 mm to 6 mm at both

ends of the meter body. A photographic view of the front of meter A is presented below

showing this feature.

Figure A. 2 Photographic view of the front of meter A

A. 1.2 Meter B

A drawing is given by Euromatic and is shown below.

p

ýý

ö0

(LAc* MOLE 40 DEG MAT: - 416 MAG, ¬T)C S. S

4E DRAWt G TITLE EUROMATIC
I/2' 3 BLADED N CARY W oiöv9

ROTOR DRG NUM F050(0

Figure A. 3 Meter B- Image of the given drawing

-A2-

Appendix A- Manufacturer Given Information and Rotor Drawings

The manufacturer also provides some details of this meter, such as the materials and

bearing type, and they are tabulated in the table below.

1. Meter type TB/'/2/GB

2. Connection/Size '/x" BSP Threaded

3. Maximum body pressure 350 bar

4. Body material Stainless steel 316

5. Flange material N/A

6. Internal support material Stainless steel 316

7. Shaft material Tungsten carbide

8. Bearing type Ball race

9. Rotor type 17/4 PH

10. Flow range 0.11-1.1 m3/hr

11. Calibration units m3

12. Electrical connection M25

13. Pick-up type Magnet and coil

14. Temperature range -40°C to +100°C

Table A. 1 Meter B- Given details

Some calibration information was also given and it is as shown below:

Run
No.

Flow
rate
(M3/hr)

Frequency
(Hz)

Voltage
(mV)

Pulse per
m3

Percentage difference of
"Pulse per m3" as compared
to the average value

1 6.00 870 306 522070 -0.53%

2 4.36 632 222 521980 -0.52%

3 2.72 394 138 520700 -0.27%

4 1.09 156 55 516402 +0.56%

5 0.52 75 26 522209 -0.56%
Average 519305.5
pulse per
m3:

Table A. 2 Meter B- Given calibration information

-A3-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 1.3 Meter C

A drawing is given by Bestobell and an image of this is shown below.

L34Sw
_0

4L +

..

. Iý 4 . _.
1L-_12

SA TMIRO ANGLE PROJECTION

lF
ýclr 1

i%t Ur FG mir,

14 --
3n2'

Oda

i

R4eeRý1 ý: ".

s Bý, poeG
ýy 6

ý
6C1U: "Sý'Mý. y

SDCTiON 4"ý ,D

, 62

eN 7

M

aim-

EA4
AMt. a "Aßß 1.7" a-.

" F"O: i OIY)
ýý °ý

ICEA,, "its.

771) 6CAVIW Q ALL W! A~ sQ0 ßw; >h qtt qp
GA. T1+M GM A.

... 00 N07 SCSI a"r nwti+; w Y. tRliiRl 1tt1 N. 4C11 (MISS
"q.

(11 ýý R ._.

If IN OQV41 A51ý ,
_.. 0.9AQýLA Or"r"vlU III to 41 1

t' L14^. Ink
45ß

ua Sm.
I " , """ """" :

""
.

wý" ""

,, w... ýe:: «
«w w:.

ý ro "»o. ..,
ý G BESTOBHLL MQT! RFLCW LTQ

TAMO. AfA
"ww

6A%. OO
.

MtntrQI Itt. I. NOLANa
J`

ýý i . o-! yw E: ýC "ý..:. ý (a 7 r

Figure A. 4 Meter C- Image of the given drawing (note: the "SCALE" is not a true

representation due to changed image size)

Note: No meter information was given by manufacturers for meters D and E.

A. 2 Rotor Drawings

For the purpose of evaluating rotor inertia and estimating fluid inertia (assuming solid body

rotation within the rotor envelope), geometrical information of all rotors in this study are

input into Solidworks to allow for this computation and the resulting drawings are collated

in this section.

-A4-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 2.1 Rotor A

V
PA

Aý wýl

R

MN
41 N

Phi cý :Q

zz

(6.33)

zw

Ow AA

V

U
(03.19) (0.76)

L o,
Z

°I
+

(04.24) 0 ýu

(06.83)
. 83) RO

-AS-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 2.2 Rotor 13

V

M

41 ý

CA cn
'7u

öA

P4 a
0v

(6.33) ýz
ZP

w

zý ýw
00

ä AA

Ln
u

3.99
(0.73) 5.4 f

(05.04)

z +1
oo

(012.41)
HpÖ

-A6-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 2.3 Rotor C
P4

wý äg
O Qö

e

(5 0)
z 6.1

w
00

ä AÄ

Ü

(03.97) (0.61)

(05.10) 00 0 ý

(07.65)
öz
Ho

w

vii aha

-A7-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 2.4 Rotor D

Ar.

Po,

o

(4.2) VIIA
Zz

00 6ý

ä QQ

U

(1,49)

-ý-(0.65)
c

Z
(05.19)

z

(010.25)
oz A H0

wc

-A8-

Appendix A- Manufacturer Given Information and Rotor Drawings

A. 2.5 Rotor E

ý wQ

Oý

N

0.
W 'o

(9.16) ö .0
z z

w
00

ä AA

Ü

(05.43) 1(1.05)

ö w" (07.86)

(023.24)
0z

94

°o

-A9-

Appendix B- Step Response Test Method

Appendix B Step Response Test Method

The step response test results (described in Chapter 7.2.1) were obtained by using the

method described by Cheesewright and Clark (1997). As extracted from their paper

(Section 3 "Apparatus for step test experiments"), this section describes the test method

which is of particular relevance to this study.

"The values of the time constant required that for changes in flow to be considered as step

changes would take place over a period of the order of 1 ms. Since the mean velocity of

flow through a typical small turbine meter is several meters per second, it was apparent that

the dynamic pressure forces could be very large. It was therefore decided that any

mechanism controlling the flow would have to be immediately downstream of the meter

and that the supply to the meter would have to be via a pipe having a diameter significantly

greater than that of the meter. The flow was provided by a blow-down system, driven by

compressed air, and the available pressure vessel limited the maximum pressure to 3.5 bar. "

"Figure B. 1 shows a schematic representation of the apparatus and Fig B. 2 shows details of

the variable-area orifice that controlled the flow. The rapid change of flow was achieved

by driving the variable width slot across the circular orifice with a spring-loaded plunger

device. Some control of the speed of change could be achieved by varying the energy with

which the plunger impacted the slot (by varying the amount of compression imposed on

the plunger spring). The linear movement of the slot which was necessary to go from one

effective flow area to the other was approximately 10mm and overshoot was prevented by

the use of a stop which was made magnetic to avoid the possibility of rebound. "

cm

Figure B. 1 Schematic representation of the apparatus for step tests

-B1-

Appendix B- Step Response Test Method

l"Stop

Molar

Variable
b wiglh Mot

Plunger

Figure B. 2 Details of the variable-area orifice used to produced changes in the flow

"Estimates of the velocity with which the variable width slot moved across the orifice

suggested that the change of flow area could be achieved in less than 1ms. Estimates of

the dynamic pressure forces available in the flow confirmed that the required changes in

flowrate (positive and negative) could be produced within this period. Some confirmation

of these estimates was obtained from the fact that when the velocity of the slot was

reduced by a factor of approximately 2, no significant change could be detected in the

small step response of a given meter. "

"It is known that the details of a flow, more than five orifice diameters upstream of an

orifice, are not affected by details of the orifice and in all cases the turbine was further than

this away from the variable orifice (note that Fig. B. 2 is schematic and is not to scale). It is

therefore believed that there was no significant upstream influence on the turbine during

the `small step' response tests. "

The same data acquisition programs built in Labview, as described in Chapter 6.1.3, were

used here for obtaining turbine meter raw data; and the same data processing technique

(described in Chapter 6.3) was used to process the subsequent meter data.

-B2-

Appendix C- The Flow Model

Appendix C The Flow Model

CFX provides a solution module that solves the discretised representation of the problem.

A detailed description of the software is given in the Manual. This section is intended to

describe the fundamental mathematical formulations and methods used to depict the flow

behaviour, rather than as a full text. Where appropriate, the equations and their underlying

assumptions are presented in full. In cases where the full equations have been omitted,

references are presented where the analysis and derivations can be found.

C. 1 Governing Equations

The foundation of computational fluid dynamics (CFD) is the fundamental governing

equations of fluid dynamics - the continuity, momentum and energy equations. Since the

fluid flow modelled in this study is assumed to be isothermal, the energy equation is

therefore not considered.

C. 1.1 Continuity equation

The CFX flow solver provides numerical solutions to the Reynolds' averaged Navier

Stokes equations. For an elemental control volume, there is a balance between the mass
flow rates entering and leaving per unit time and the rate of change in density. This may be

expressed in symbolic notation form as (Fox and McDonald 1994):

a! ° + V"(pu) =0 Eq. C. 1 at ý-"ý--
~J

convective derivative
local derivative

Where: pis density;

t is time;

Uis velocity; and
V" (pU) is called the divergence of the velocity, it is physically the time rate of

change of the volume of a moving fluid element, per unit volume (Anderson, Jr.

1992).

-CI-

Appendix C- The Flow Model

Eq. C. 1 suggests that an elemental control volume in a flow field may undergo change in

mass flow rate for either of two reasons. It may be changed because it is "convected" into

a region of higher (or lower) mass flow rate. If the fluid is compressible, the elemental

control volume will undergo an additional "local" change in mass, and it is a function of

time (Fox and McDonald 1994). For a flow of constant density, i. e. incompressible, this

equation reduces to:

v"U=o

C. 1.2 Navier-Stokes Equations

Eq. C. 2

Both laminar and turbulent flow may be described by the Navier-Stokes equations, which

were developed by considering the forces acting on an elemental parallelepiped in the fluid.

The conservation of momentum equation describes the equilibrium between surface

forces, body forces and inertia forces for an element of fluid in the flow. Surface forces are

a combination of pressure forces, which act normal to the principal axes, and viscous
forces, which act as shear forces on the faces of the fluid element. Body forces are forces

developed without physical contact, and distributed over the volume of fluid (Fox and Mc

Donald 1994). Gravitational force, centrifugal force, Coriolis force and electromagnetic

force are examples of body forces. Inertia forces are the products of the mass and

acceleration of the fluid element. The change in velocity of this element is brought about

both by the movement of position and by the progress of time (Nakayama and Boucher

1999).

The equations can be written symbolically in the format as (Stanley Middleman 1998):

DU
_B

pC DV
body force

inertia term term

- vp +Ao2U
pressure term viscous term

Eq. C. 3

Where: Bis body force;

p is pressure;

,u
is dynamic viscosity.

All other symbols are as before.

-C2-

Appendix C- The Flow Model

The Navier-Stokes equations can also be represented in coordinates form. In cylindrical

coordinates for constant density and viscosity, they are:

aux
+

ue aux au lu-

at + u' ar raO+ ux ax
ap 1a au")+ 1 a2ux a2ux

ýx
ax

+
rar \r ar r2 ä9Z

+
äx2 Eq. C. 3a

aflr all,. Ug ally U2 auy

0(+ Ur

_22
aue a2Ur fr -

ap +, Uý a(1a 1 lour _ är ar tar
kr l

J+ rZ a02 r'2 ae + axZ
Eq. C. 3b

auo +1 aue + ue aua + U" U0 + ux tx, 9 pl at r[ar raBr_

1a pa ý1 a11 ague
_2

au, a2u8
ýB

ra8+p--[n
B,)+r2 ao2 rZ ae+axe

Eq. C. 3c

Where: x, r, 0 are the three unit directions along the principal axes;

u, u� ue are the three components of velocity along the principal axes; and

gx, g� go are the three components of body force term along the principal axes.

All other symbols are as before.

-C3-

Appendix C- The Flow Model

C. 2 Turbulence Models

The continuity equation and the Navier-Stokes equations described in section C. 1 provide

a full description of the isothermal and incompressible Newtonian flow behaviour of a

fluid element in laminar flow. However, turbulent flows are extremely complex and time-

dependent; since the Navier-Stokes equations are non-linear, coupled and contains partial

differential, it is difficult to solve them to the required accuracy analytically, therefore

turbulence models are used, which solve transport equations for the Reynolds-averaged

quantities.

Variables in the flow equations are split into mean and fluctuating parts. The transport

equations are then solved for the mean quantities, and turbulence models are used to

approximate the fluctuating parts. For example, under unsteady flow condition, the

velocity is written as the sum of the phase mean velocity and the fluctuating velocity:

U=U+ýýÜý-Uý+Ul=(U)+ul Eq. C. 4

Where: U is mean velocity;

(U) is phase mean velocity (only exists under unsteady flow condition);

U' is fluctuating velocity.

Taking the average of each term, except for the cross-products of the fluctuating velocities,

the phase mean Reynolds averaged Navier-Stokes equation in symbolic form is given by:

D(U) [v(p)] +, U[V2(U)]-pII UUJ Eq. C. 5
Dt

The extra term, p[V(UV)I, is due to the velocity fluctuations, is called the Reynolds

stresses. These terms arise from the non-linear convective term in the unaveraged

equations. These components can be regarded as expressions for the transport of a

fluctuating momentum by turbulent velocity fluctuations (Abbott and Basco 1994).

Turbulence models close the continuity and Reynolds averaged Navier-Stokes equations by

providing models for the computation of the Reynolds stresses. The models that the

-C4-

Appendix C- The Flow Model

solver provides can be put into two broad classes: eddy viscosity models and second order

closure models.

Eddy viscosity models solve the Reynolds stresses and fluxes algebraically in terms of

known mean quantities. The eddy viscosity hypothesis is that the Reynolds stresses can be

linearly related to the mean velocity gradients in a manner analogous to the relationship

between the stress and strain tensors in laminar Newtonian flow. These models are

distinguished by the manner in which they prescribe the eddy viscosity and eddy diffusivity.

Examples are k-E model, low Reynolds number k-C model and RNG k-E model. The low

Reynolds number model is the modification of the standard models to allow calculation of

turbulent flows at low Reynolds number, typically in the range 5,000 to 30,000. Since we

aim to solve to the laminar boundary layer of blade surfaces in which the local Reynolds

number is around 20,000 (see section C. 3.3), therefore low Reynolds number k-E model

was chosen to be the prime model for this research case.

Second order closure models solve differential transport models for the turbulent fluxes,

which have to be modelled in terms of known lower order ones. These types of models

are often called Reynolds stress models. The advantage of doing this over the methods

mentioned previously is that those methods give a single additional viscosity, whereas the

direct modelling of the stress terms allows the effects of turbulence to vary in the three

coordinate directions. Eddy viscosity models are said to give isotropic turbulence, in which

turbulence is assumed to be constant in all directions, whereas in the real situation the

turbulence is said to be anisotropic (Shaw 1992). However, low Reynolds number versions

of these models were not available within the solver. Therefore, no further description of

these models will be presented here.

C. 2.1 Eddy viscosity models

The Reynolds stresses are assumed directly proportional to the mean velocity gradients,

with the constant of proportionality being the turbulent viscosity, for example, in

cylindrical coordinates:

UrUO 'u` rB+
1äu,

q
auEC.

6
p ar rr aO

-C5-

Appendix C- The Flow Model

Where: p, is the turbulent viscosity;

r, 9 are the unit directions along the principal axes;

ur, ue are the components of velocity along the principal axes;

ü,, ue are the components of fluctuating velocity.

All other symbols are as before.

The turbulent viscosity is not a value of a physical property dependent on the temperature

or such, but a quantity fluctuating according to the flow condition (Nakayama and Boucher

1999):

Z
ýr = Cup

k Eq. C. 7

where: C,, is a constant;

k is the turbulent kinetic energy (note it has units of velocity squared);

E is the rate of dissipation of turbulent kinetic energy

Turbulent transport will have a substantial effect on boundary layer development within a

turbine flowmeter. CFX 4.3 incorporates a range of models for turbulent transport

suitable for use in engineering calculations. A brief summary of three of the available

turbulence models, which were considered in preliminary investigations, is presented

below.

C. 2.1.1 k-E model

The standard k-E model (Launder and Spalding 1974) uses an eddy-viscosity hypothesis for

the turbulence. In addition to the mean flow equations, it solves separate transport

equations for both turbulent kinetic energy, k, and the rate of dissipation of turbulent

kinetic energy, e for use in Eq. C. 7 to determine A. At any point in the flow this same A

is used in all flow directions, i. e. for all Reynolds stress components. This usage is

equivalent to the assumption of a local isotropy in the turbulence (Abbott and Basco 1994).

Both equations have the same form; the rate of change of k or e is related to the convective

and diffusive transport and the production and dissipation. Resorting to vector notation,

the equations are written as:

-C6-

Appendix C- The Flow Model

päk+0"(pUk)=P+B-pE+V" , u+E` Vk Eq. C. 8

, oae+V. (JOUE)=c, F(P+c3B)-C210IF +v" /J+ý ve at kkQ1 Eq. C. 9

Where: C,, C2, O rk, O. are model constants,

Pis the shear production, defined below

All other symbols are as before.

P=(fU +p,)OU. (VU+(VU)T)-2VU((fu
+Fu ,

)OU+pk) Eq. C. 1O

The constants in these equations have been developed following studies of a wide range of

turbulent flows.

This model is not suitable for solution in the near wall region of a boundary layer. Where

such a solution is required the model may be used in combination with a wall function to

bridge the near wall region calculation.

C. 2.1.2 Low Reynolds number k-E model

CFX Flow Solver provides this particular turbulent model developed by Launder and

Sharma (1974), it is a modification of the standard k-e model to allow calculation of

turbulent flows at low Reynolds number, typically in the range 5000 to 30000. The model

involves a damping of the turbulent viscosity when the local turbulent Reynolds number is

low, a modified definition of E so that it goes to zero at walls and modifications of the

source terms in the 6 equation. The equations are integrated to the wall through the

laminar sublayer.

Practically all incompressible turbulence models invoke the large Reynolds number (Re)

assumption, thus allowing the effects of viscosity to be neglected as a first approximation.

This assumption has its drawback as the flow Re decreases or as a wall is approached. In

-C7-

Appendix C- The Flow Model

both cases, the effective Re of the flow becomes smaller. However, there is a distinct

difference between the two situations even though the effective flow Re is the same. For

flows in an infinite medium, there are no walls and decreasing Re introduces viscous effects

only. On the other hand, the local Re decreases as a wall is approached and, in addition,

the wall reflects the fluctuating pressure and thus contributes to an increased anisotropy of

the turbulence field near the wall. This effect is commonly known as wall blocking.

Therefore, near-wall turbulence includes both viscous and blocking effects while low-Re

turbulence consists of viscous effects alone (Speziale and So 1998).

The equations describing the turbulence model: Eq. C. 7, Eq. C. 8 and Eq. C. 9 become:

ýf = CIlf-p
kZ

Eq. C. 11

päk+V-(pUk)=P+B-pe+V. u+E` Vk -D Eq. C. 12
k

ae +v ve-c e (P+c B)-c f ýZ +v- +ý`ý VE +E Eq. C. 13 P ýt (P)- k3z', k
E

Here the definition of Pis changed slightly from Eq. C. 10 to use A only instead of (y+, u).

The functions fý, fý, D and E are defined by:

ex
-3.4 Eq. C. 14 f" p

1+(R,. /50)2

f2= 1-0.3 exp(RT2) Eq. C. 15

D=2p(Vkyy Eq. C. 16

E=2'uß` (VV U)2 Eq. C. 17

where the local turbulent Reynolds number is defined by:

_pkz RT -
jue

Eq. C. 18

-C8-

Appendix C- The Flow Model

C. 2.1.3 RNG k-E model

RNG k-e model is an alternative to the standard k-E model for high Reynolds number

flows. It derives from a renormalization group analysis of the Navier-Stokes equations and

differs from the standard model only through a modification to the equation for e, except

for using a different set of model constants.

The RNG model has not been as widely validated as the k-E model. However, it has been

shown to give better results for many flow regimes, particularly the highly turbulent flows

common in wind engineering applications. According to Caffrey et al (1997), the RNG

model can give superior results for swirling flows.

Summary:

In the present study, negligible swirling flow is assumed due to the effect of upstream and

downstream flow straighteners. And the interest only lies on solving the hydrodynamic

forces acting on the localised region of the rotor blading when the meter is subjected to

pulsating flow conditions. This implies that the blade wall boundary layer flow simulation

is of most importance. In view of this, as the local Reynolds number of the blade, Re, is

around 20000 within the flow regime (See C. 3.3), Low Re number k-e model was chosen

to be the turbulent model for this particular flow problem.

-C9-

Appendix C- The Flow Model

C. 3 Mathematical Details on Boundary Conditions

C. 3.1 Inlet Boundary

Assuming that the whole volume flow goes through the annular flow passage, the inlet

velocity (freestream) can simply be inferred from the following formula:

Inlet Velocity = Volume Flowrate + Annular Cross - section Area

U� =V +A Eq. C. 19

The value of inlet velocity is calculated based on the experimental flow condition, in which

the mean flowrate is 0.292x10"3 m3/s for this meter (See Chapter 6). Knowing the values

of the casing radius (r) and hub radius (r), the annular area is calculated by using the

following equation:

A =, r(rr2 - rr2
)

=''(1.293x10-2)2
- 5.04x10-3)2j

=1.113X10-'m2

Now, by using Eq. C. 19, the inlet freestream mean velocity is:

U- =0.292x10-'m'/s+1.113x1O m2

= 2.629 m/s

Eq. C. 20

For steady flow condition, the above value is input into the solver. For unsteady flow

condition, pure sinusoidal pulsating flow is assumed. With ap being the relative pulsation

amplitude and fy being the pulsation frequency, the velocity will be time dependent

periodically as follows:

Um (t) = U-, (i +ap sin 2ýf t) Eq. C. 21

The above equation is then input into Fortran subroutine, USRBCS, for the calculation of
boundary condition at the inlet for unsteady flow runs.

-cio-

Appendix C- The Flow Model

The values of the inlet turbulence quantities are based upon the characteristic of a fully

developed pipe flow. The equations for the inlet values of turbulent kinetic energy, k, is:

k 2u, 2 Eq. C. 22

where u, is the shear stress velocity,
(= r ,p), in which Z, is the wall shear stress.

Introducing a dimensionless skin-friction coefficient, C1:

Cf=
Z"

Eq. C. 23
pU-, 2

uT = Cl /2 }II� Eq. C. 24

According to Blausius' approximate solution for laminar flow over flat plate using

sinusoidal velocity profile, the skin-friction coefficient, Cf= 0.664(Re)"2 (Massey 1992).

Taking the local Reynolds number. to be equivalent to the pipe Reynolds number, for this

flow condition, Re, = Red = 3.11x10`, hence Cf = 3.765x10"3. By substituting this value

into Eq. C. 24, u, is equal to 0.115 and hence k is approximated to be 0.026 m2/s2.

The rate of dissipation of turbulent kinetic energy, e, are

k 1.5

0.3D
Eq. C. 25

D is the hydraulic diameter of the domain, which is approximated to 0.0125m.

C. 3.2 Outlet Boundary

According to Wisler 1998, in order to determine radial variations in vector diagrams and

flow properties, it is critical that the pressure gradients, momentum changes, and blade

forces on the fluid be balanced in the radial direction. The radial equilibrium equation is

formulated from the momentum equation (Eq. C. 3b) for the r component of velocity as

shown below. The assumption of axial symmetry has eliminated terms containing

variations in the tangential direction 0

-CI1-

Appendix C- The Flow Model

lap U01 au,. au,

par r
-uX- ax - ur-+ Tr Jr

Eq. C. 26
radial blade

pressure centrifugal streamline linear accel. force on fluid
gradient

force curvature in radial dir.

By assuming that this term can be expressed as a function of radius, and if the streamline

curvature term, the linear acceleration term and the blade force term are all equal to zero at

the outlet, then a simplified form of the radial equilibrium equation can be written as:

1 öp
_

ue2
Eq. C. 27

p ör r

In the circumferential direction, the velocity in the absolute frame is:

lublabs.
_

[ue 1", + rw Eq. C. 28

Since ue only varies with radius, the mean velocity for each radius is then calculated by the
following formula:

_

([u9
Jabs.

x dv_

Eq. C. 29

r

where dv is the elemental volume.

Assuming that the datum is on the hub surface, in which the pressure, pld, is:

Ybub -
plus

fbs" Eq. C. 30

Then the pressure can be found for each radial position as follows:

Yr
= Yr-t

+
P[cabs. X dr

Eq. C. 31

r

This equation is then input into Fortran subroutine, USRBCS, for the calculation of
boundary condition at the outlet.

-C12-

Appendix C- The Flow Model

C. 3.3 Wall Boundaries

As an illustration, this section shows the procedure in establishing the value of d, distance

between the wall and centre of the first grid, of the blade wall surrounding grid.

Firstly, the boundary layer characteristic has to be known. The local Reynolds number,

Re,, of the blade is:

Re, =
PU°°c

=1.761x104 Eq. C. 32
I"

Where the blade chord, cis 6.740X1 0"3m, all other values are as before.

According to Blasius, for a flat plate, if Re, <5x 105, it represents a laminar boundary layer

on a flat plate with zero pressure gradient.

In the region very close to the wall where viscous shear is dominant, the mean velocity

profile follows the below linear viscous relation:

pusd Eq. C. 33
9

where d is distance measured from the wall.
All other notations are as before.

By substituting Eq. C 24 into Eq. C. 33;

Y+= __
Cfl2

Eq. C. 34
I"

According to Blausius' approximate solution for laminar flow over flat plate using

sinusoidal velocity profile, the skin-friction coefficient, Cf= 0.664(Re)"'/2 (Massey 1992).

Subsequent to computing Re/, Cf = 5.004x10"3. Rearranging the above equation, if y+ = 0.3,

d has a value of:

d= y+'u
= 2.294x10-6m

pU� Cf /2

The same calculation was done to define the distance of first node centre from hub and

casing surfaces by using ay+ value of 30.

-C13-

Appendix C- The Flow Model

C. 4 Discretisation Schemes

This section describes the transformations necessary to convert the flow equations

described above into a form that may be solved using an orthogonal grid in computational

space. A full mathematical description of the transformation is not presented, but the

principle is explained. The full mathematics may be found in the CFX Solver Manual.

The basis of the CFX computational code is a conservative finite-difference method, also
known as a finite-volume method. All flow variables are defined at the centre of control

volumes, which fill the physical domain being considered. Each equation describing the

flow is integrated over each control volume to obtain a discrete equation which connects

the variable at the centre of the control volume to its values in neighbouring control

volumes (CFX Solver Manual 13.3.1).

In principle, if the number of computational cells is large enough, the numerical solution

will be indistinguishable from the exact solution of the transport equation. In practice, due

to computational constraints, the number of cells may be much smaller than this ideal.

The choice of the method used to relate the flow properties at one control volume to its

neighbours is crucial in determining the accuracy of the solution.

Various discretisation methods are available in the software ranging from the robust but

relatively inaccurate hybrid and first order upwind schemes to the more accurate but less

robust higher order schemes. The numerical accuracy of the modelled equations will to a

large extent depend upon the method of discretisation chosen for the advection terms. In

the course of preliminary investigations a number of different treatments were considered.

These are listed below:

f Hybrid differencing (HDS): 1°`/2"a order accurate. This is a scheme using Central

differencing (2"d order accurate) and switch to Upwind differencing (1" order accurate)

at Peclet no. (Shaw 1992) greater than 2.

f Higher-order upwind differencing (HUW): 2 "d order accurate.

f Quadratic upwind differencing (QUICK): 3`d order accurate for the advection terms,

other terms such as diffusion remain only 2 °d order.

-C14-

Appendix C- The Flow Model

f CCCT: 3`d order accurate. In particular, the higher order upwinded schemes can suffer

from non-physical overshoots in their solutions. For example, turbulent kinetic energy

can become negative. CCCT is a modification of the QUICK scheme which is

bounded, eliminating these overshoots.

The more accurate the schemes tend to be less robust and slower (CFX Solver Manual). In

view of this, CCCT was chosen to be the main discretisation scheme used in the flow

modelling for an optimal accurate solution. Whilst, if a solution is difficult to achieve (or

the solver tends to fail in a particular case), Hybrid differencing scheme was used instead

for the k and 6 equations.

-C15-

Appendix C- The Flow Model

C. 5 Solution Algorithms

The underlying assumption behind all the previous sections has been that the transport

equations for a particular flow property are solved for a particular flow field. For the

simulations in this study, the velocity field is not known in advance; it emerges as part of

the overall solution as the simulation progresses. This section describes the algorithms

used to compute the flow field and generate the transport equations as the simulations

progress.

C. 5.1 Pressure Correction Method

In most flows of engineering importance, the flow is driven by pressure differences, so that

the pressure gradient is the most significant term in the velocity transport equations. For

an incompressible flow the pressure and velocity equations are coupled, so that if the

correct pressure field has been determined, the velocity field should obey continuity.

In view of the complexity of the governing equations, and because of the linkage between

the three-dimensional velocity and pressure fields, an iterative scheme is necessary to

determine the flow field for a given set of conditions.

For a given pressure field, it is possible to write discretised momentum equations for each

control volume in the flow-field. These equations may be solved to generate the velocity
field.

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm of Patankar

and Spalding (1972) is the most basic scheme offered within CFX. The method starts

from an initial guess of the pressure field, which is then used to determine the velocity field

by solving the momentum equations. SIMPLEC is a modification of SIMPLE which
differs in its derivation of a simplified momentum equation. A trivial extra amount of

work is required for SIMPLEC as compared with SIMPLE, so the cost may be regarded as

nearly identical. For a number of model problems, SIMPLEC has proved less sensitive to

selection of under-relaxation factors and has required less under-relaxation, so this

algorithm is preferred. (CFX Solver Manual 6.2.3)

-C16-

Appendix C- The Flow Model

Once the pressure field has been corrected by the determined amount, the velocity field is

recalculated. This flow-field is used to determine the other transport properties. If the

solution has converged adequately, the process is stopped. Otherwise, the newly

determined properties are used as the first guess for the next iteration.

C. 5.2 Under-relaxation factors

Under-relaxation has several interlinked purposes in the solution process. At every

iteration, the corrections to the pressure and velocity fields used as input for the transport

equations are modified by applying under-relaxation factors (URFs). These factors are

used to improve the stability of the solution, particularly if the guessed flow field is far

from the true final solution. Pressure is treated differently from the other variables in that

the coefficients of the pressure-correction equation are not modified in the way already
described. Instead under-relaxation is implemented by adding only a proportion of the

pressure-correction onto the pressure:

p. +, = pn + UKFF p' Eq. C. 35

Where: p� is pressure at the n'h iteration,

p' is the pressure correction,
URFp is the pressure under-relaxation factor.

Under-relaxation is applied to all flow properties. If the values are too high, the solutions

will oscillate or diverge, if the values are too small, the solution will converge extremely

slowly. The optimum values of URF for each flow variable depend on the flow, and may

need to be found heuristically.

For most runs, as recommended by the solver, URF values of 0.65 were used for the

variables u, v and w, and 1.0 was used for p. Whilst the optimal URF values of k and e were

both found to be 0.2. If a particular solution was hard to achieve, URF values of u, v and w

would be reduced to 0.5; and 0.1 for k and C.

-C17-

Appendix D- Fortran Routines

Appendix D Fortran Routines

To facilitate the simulation, a set of programs must be written to comply with the geometry

mesh, and they are included in this section. (1) Command file, which is a file that contains

some high-level commands such as the number of steps and iterations to facilitate the

simulation; (2) "USRBCS" which allows the calculations and iterative updates of boundary

conditions; and the calculations of the various angular momemtum flux terms within the

designated boundaries; (3) "USRBF" which allows the calculations of body forces within

the domain; (4) "USRGRD" which allows the grid coordinates and calculations to be

transformed from Cartesian frame to Cylindrical frame; and, (5) "USRTRN" which allows

the calculations of weighted mean flow angles at different axial positions along the domain

(for the purpose of evaluating time-varying flow incidence pattern between the rotor inlet-

outlet zone).

D. 1 Command File

/* TURBULENT (LOW RE K-Epsilon, 000T)
/* TRANSIENT FLOW - refernce frame - Line graph data

»CFX4
»SET LIMITS

MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 40
>>OPTIONS

THREE DIMENSIONS
BODY FITTED GRID
CYLINDRICAL COORDINATES

/*AXIS INCLUDED*/
TURBULENT FLOW
ISOTHERMAL FLOW
INCOMPRESSIBLE FLOW
TRANSIENT FLOW
USE DATABASE
USER SCALAR EQUATIONS 8

>>USER FORTRAN
USRBCS
USRBF
USRGRD
USRTRN

»VARIABLE NAMES
USER SCALAR1 Z SHEAR STRESS'
USER SCALAR2 X MASS FLUX'
USER SCALAR3 Y MASS FLUX'
USER SCALAR4 Z MASS FLUX'
USER SCALAR5 ZX NODAL SHEAR STRESS'
USER SCALAR6 YZ NODAL SHEAR STRESS'
USER SCALAR7 XY NODAL SHEAR STRESS'
USER SCALARS REAL PRESSURE'
END

»MODEL TOPOLOGY
»INPUT TOPOLOGY

READ GEOMETRY FILE

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'

-DI-

Appendix D- Fortran Routines

PATCH NAME TOP7'
BLOCK NAME 'BLOCK-NUMBER-7'
PATCH LOCATION 1 15 1 14 15 15
HIGH K

>>CREATE PATCH

PATCH TYPE 'INTER BLOCK BOUNDARY
PATCH NAME 'TOP1'
BLOCK NAME BLOCK-NUMBER-1'
PATCH LOCATION 1 16 1 14 15 15
HIGH K

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY
PATCH NAME TOP2'

BLOCK NAME BLOCK-NUMBER-2'
PATCH LOCATION 1 16 1 14 15 15
HIGH K

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME TOP3'
BLOCK NAME BLOCK-NUMBER-3'
PATCH LOCATION 1 16 1 14 15 15
HIGH K

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME 'TOP11'
BLOCK NAME 'BLOCK-NUMBER-11'
PATCH LOCATION 1 15 1 14 15 15
HIGH K

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME 'BOTTOM7'

BLOCK NAME 'BLOCK-NUMBER-7'
PATCH LOCATION 1 15 1 14 11
LOW K

>>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME 'BOTTOM8'
BLOCK NAME 'BLOCK-NUMBER-8'
PATCH LOCATION 1 16 1 14 11
LOW K

>CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME BOTTOM9'

BLOCK NAME 'BLOCK-NUMBER-9'
PATCH LOCATION 1 16 1 14 11
LOW K

>>CREATE PATCH
PATCH TYPE INTER BLOCK BOUNDARY'
PATCH NAME BOTTOM10'

BLOCK NAME 'BLOCK-NUMBER-10'
PATCH LOCATION 1 16 1 14 11
LOW K

> CREATE PATCH
PATCH TYPE 'INTER BLOCK BOUNDARY'
PATCH NAME 'BOTTOMII'
BLOCK NAME 'BLOCK-NUMBER-11'
PATCH LOCATION 1 15 1 14 11
LOW K

>>GLUE PATCHES
FIRST PATCH NAME 'TOP7'

SECOND PATCH NAME 'BOTTOM7'
> GLUE PATCHES

FIRST PATCH NAME 'TOP1'
SECOND PATCH NAME 'BOTTOMS'

>>GLUE PATCHES
FIRST PATCH NAME 'TOP2'

SECOND PATCH NAME 'BOTTOM9'

>>GLUE PATCHES

FIRST PATCH NAME 'TOP3'
SECOND PATCH NAME 'BOTTOMIO'

> GLUE PATCHES
FIRST PATCH NAME 'TOP11'
SECOND PATCH NAME 'BOTTOMII'

END
>MODEL DATA

»SET INITIAL GUESS

-D2-

Appendix D- Fortran Routines

»INPUT FROM FILE
READ DUMP FILE
UNFORMATTED
LAST DATA GROUP

END

>>SELECT VARIABLES FROM FILE
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
VOLUME FRACTION
DENSITY
VISCOSITY
K

EPSILON
BFX FORCE
BFY FORCE
BFZ FORCE
BPX FORCE
BPY FORCE
BPZ FORCE
Z SHEAR STRESS
X MASS FLUX
Y MASS FLUX
Z MASS FLUX
ZX NODAL SHEAR STRESS
YZ NODAL SHEAR STRESS
XY NODAL SHEAR STRESS
END

»DIFFERENCING SCHEME
K 'HYBRID'

EPSILON 'HYBRID'
U VELOCITY CCCT'
V VELOCITY CCCT'
W VELOCITY CCCT'
END

»MATERIALS DATABASE
>>SOURCE OF DATA

PCP
>>FLUID DATA

FLUID 'WATER'
MATERIAL TEMPERATURE 2.9400E+02
MATERIAL PHASE 'LIQUID'

>>PHYSICAL PROPERTIES

>>TRANSIENT PARAMETERS

>>FIXED TIME STEPPING

TIME STEPS 760*1.3888888889E-4
BACKWARD DIFFERENCE
INITIAL TIME 0.1000001132

»TURBULENCE PARAMETERS
>>TURBULENCE MODEL

TURBULENCE MODEL 'LOW REYNOLDS NUMBER K-EPSILON'
»WALL TREATMENTS

WALL PROFILE 'LINEAR'
»TITLE

PROBLEM TITLE 'TRANSIENT FLOW WITH PERIODIC BOUNDARY LOW'
>>SOLVER DATA

>>PROGRAM CONTROL
MAXIMUM NUMBER OF ITERATIONS 9
OUTPUT MONITOR BLOCK 'BLOCK-NUMBER-1'
OUTPUT MONITOR POINT 333
MASS SOURCE TOLERANCE 1.0E-7

ITERATIONS OF VELOCITY AND PRESSURE EQUATIONS
ITERATIONS OF TURBULENCE EQUATIONS 1
END

> UNDER RELAXATION FACTORS
U VELOCITY 0.5
V VELOCITY 0.5
W VELOCITY 0.5
PRESSURE 1.0
TE 0.1
ED 0.1

/*VISCOSITY 0.6

BFY 0.6

-D3-

Appendix D- Fortran Routines

BFZ 0.6
Z SHEAR STRESS 0.6*/
END

>>EQUATION SOLVERS
ALL PHASES 'AMG'

>>ALGEBRAIC MULTIGRID PARAMETERS
CONNECTIVITY TOLERANCE 1.0E-12
VECTORISED

/* >>SWEEPS INFORMATION
»MINIMUM NUMBER

K3
EPSILON 3

PRESSURE 30
U VELOCITY 3
V VELOCITY 3
W VELOCITY 3

»MAXIMUM NUMBER
K 10
EPSILON 10
PRESSURE 60
U VELOCITY 15
V VELOCITY 15
W VELOCITY 15

>>REDUCTION FACTORS
K 0.01
EPSILON 0.01
PRESSURE 0.01
U VELOCITY 0.01
V VELOCITY 0.01
W VELOCITY 0.01*/

END
»MODEL BOUNDARY CONDITIONS

/*»SET VARIABLES
#CALC

UINL=0.2629547666E+01;
TEINL=2*0.115*0.115;
CH=0.012446;
EPSINL=TEINL**1.5/(0.3*CH);

#ENDCALC
PATCH NAME INLET'
U VELOCITY #UINL
V VELOCITY 0.00
W VELOCITY 0.00
K #TEINL
EPSILON #EPSINL
END

»SET VARIABLES
PATCH NAME OUTLET'
PRESSURE 2.0E5*/

»WALL BOUNDARY CONDITIONS
PATCH NAME 'HUB1'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUB2'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUBS'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUB4'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'HUBS'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUB6'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUB7'
TAUE 0.0

»WALL BOUNDARY CONDITIONS

PATCH NAME HUBS'

TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME HUB9'
TAUX 0.0

-D4-

Appendix D- Fortran Routines

»WALL BOUNDARY CONDITIONS
PATCH NAME 'HUB10'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'HUB11'

TAUX 0.0
»WALL BOUNDARY CONDITIONS

PATCH NAME 'CASEl'

TAUX 0.0
»WALL BOUNDARY CONDITIONS

PATCH NAME CASE2'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME CASE3'

TAUX 0.0
»WALL BOUNDARY CONDITIONS

PATCH NAME CASE4'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'CASE5'

TAUX 0.0
»WALL BOUNDARY CONDITIONS

PATCH NAME CASE6'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME CASE7'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'CASE8'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'CASE9'
TAUX 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'CASE10'
TAUE 0.0

»WALL BOUNDARY CONDITIONS
PATCH NAME 'CASE11'
TAUE 0.0

»OUTPUT OPTIONS
>>LINE GRAPH DATA

FILE NAME 'RESIDUALS'
RESIDUAL

EACH ITERATION
ALL VARIABLES

>>PRINT OPTIONS
>>WHAT

NO WALL PRINTING

>>WHEN
FINAL SOLUTION
END

>>WHERE
J PLANES 8

»STOP

-D5-

Appendix D- Fortran Routines

D. 2 USRBCS

SUBROUTINE USRBCS(VARBCS, VARAMB, A, B, C, ACND, BCND, CCND
+ IWGVEL, NDVWAL
+ , FLOUT, NLABEL, NSTART, NEND, NCST, NCEN

+ , U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL

+ , XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, IPT

+ , IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB

+ , WORK, IWORK, CWORK)

C

C
C USER ROUTINE TO SET REALS AT BOUNDARIES.

C

C »> IMPORTANT <<<
C »> <<<
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C »> THE DESIGNATED USER AREAS <<<
C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE
C CUSR SRLIST
C
C***
C CREATED
C 30/11/88 ADB
C MODIFIED
C 08/09/90 ADB RESTRUCTURED FOR USER-FRIENDLINESS.
C 10/08/91 IRH FURTHER RESTRUCTURING ADD ACND BCND CCND
C 22/09/91 IRH CHANGE ICALL TO IUCALL + ADD /SPARM/
C 10/03/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 30/06/92 NSW INCLUDE FLAG FOR CALLING BY ITERATION
C INSERT EXTRA COMMENTS
C 03/08/92 NSW MODIFY DIMENSION STATEMENTS FOR VAX
C 21/12/92 CSH INCREASE IVERS TO 4
C 02/08/93 NSW INCORRECT AND MISLEADING COMMENT REMOVED
C 05/11/93 NSW INDICATE USE OF FLOUT IN MULTIPHASE FLOWS

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 01/02/94 NSW SET VARIABLE POINTERS IN WALL EXAMPLE.
C CHANGE FLOW3D TO CFDS-FLOW3D.
C MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT.

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE

C 02/07/94 BAS SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL
C TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC
C CHANGE VERSION NUMBER TO 5
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED. EQ. 0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/02/95 NSW CHANGE COMMON /IMFBMP/
C 02/06/97 NSW MAKE EXAMPLE MORE LOGICAL
C 02/07/97 NSW UPDATE FOR CFX-4
C
C++. **. +rar*****************, t******«*********rr***********w*ºw*«******k"

C
C SUBROUTINE ARGUMENTS

C

C VARBCS - REAL BOUNDARY CONDITIONS
C VARAMB - AMBIENT VALUE OF VARIABLES
CA- COEFFICIENT IN WALL BOUNDARY CONDITION
CB- COEFFICIENT IN WALL BOUNDARY CONDITION
CC- COEFFICIENT IN WALL BOUNDARY CONDITION
C ACND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C BCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C CCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS, 1 = ADD GRID MOTION)
C NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL
C FLOUT - MASS FLOW/FRACTIONAL MASS FLOW
C NLABEL - NUMBER OF DISTINCT OUTLETS
C NSTART - ARRAY POINTER

C NEND - ARRAY POINTER

-D6-

Appendix D- Fortran Routines

C NCST - ARRAY POINTER
C NCEN - ARRAY POINTER
CU-U COMPONENT OF VELOCITY

CV-V COMPONENT OF VELOCITY

CW-W COMPONENT OF VELOCITY

CP- PRESSURE

C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES

CT- TEMPERATURE

CH- ENTHALPY
C RF - REYNOLD FLUXES

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)

C XP -X COORDINATES OF CELL CENTRES
C YP -Y COORDINATES OF CELL CENTRES
C ZP -Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME

C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES

C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS

C IPFACB - POINTER TO NODES FROM BOUNDARY FACES

C
C WORK - REAL WORKSPACE ARRAY

C IWORK - INTEGER WORKSPACE ARRAY

C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST

C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

C USER MANUAL.
C

LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS

C
CHARACTER*(*) CWORK

C
C+++++++++++++++++ USER AREA 1+++

C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

C
REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,

+ WVSUM, VSUM, DELTAR, TNET,

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD,

+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,

+ THETAXD, RTHETAD, XRD, XTHETAD,

+ THETAXP, RTHETAP, XRP, XTHETAP, UA

INTEGER ITXT, ISEQF, BLADEN, DOMAINN, IUSRITER, IUSRSTEP

C
C+++++++++++++++++ END OF USER AREA 1++++++++++++++++++++++++++++++++++

C
COMMON

+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM

+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE

+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP

+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL

+ /BCSOUT/ IFLOUT

+ /CHKUSR/ IVERS, IUCALL, IUSED

+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK

-D7-

Appendix D- Fortran Routines

/IDUM/ ILEN, JLEN
/IMFBMP/ IMFBMP, JMFBMP
/LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

, LRECT, LCYN, LAXIS, LPOROS, LTRANS

/MLTGRD/ MLEVEL, NLEVEL, ILEVEL

/SGLDBL/ IFLGPR, ICHKPR
/SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON

/TRANSI/ NSTEP, KSTEP, MF, INCORE

/TIMUSR/ DTUSR
/TRANSR/ TIME, DT, DTINVF, TPARM
/UBCSFL/ IUBCSF

C
C+++++++++++++++++ USER AREA 2+++

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS

COMMON
+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,

+ WVSUM, VSUM, DELTAR, TNET,
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD,
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,

+ THETAXD, RTHETAD, XRD, XTHETAD,
+ THETAXP, RTHETAP, XRP, XTHETAP, UA

C
C+++++++++++++++++ END OF USER AREA 2++++++++++++++++++++++++++++++++++
C

DIMENSION
+ VARBCS(NVAR, NPHASE, NCELL+I: NNODE), VARAMB(NVAR, NPHASE)

+, A(4+NSCAL, NPHASE, NSTART: *)

+, B(4+NSCAL, NPHASE, NSTART: *), C(4+NSCAL, NPHASE, NSTART: *)

+, FLOUT(*), ACND(NCST: *), BCND(NCST: *), CCND(NCST: *)

+, IWGVEL(NDVWAL, NPHASE)

DIMENSION

+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE)

+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE)

+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6)

+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4)

+, SCAL(NNODE, NPHASE, NSCAL)

DIMENSION

+ XP(NNODE), YP(NNODE), ZP(NNODE)

+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3), WFACT(NFACE)

+, IPT(*), IBLK(5, NBLOCK)

+, IPVERT(NCELL, 8), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4)

+, IPNODB(NBDRY, 4), IPFACB(NBDRY)

+, IWORK(*), WORK(*), CWORK(*)
C
C+++++++++++++++++ USER AREA 3+++

C____ AREA FOR USERS TO DIMENSION THEIR ARRAYS

C
CHARACTER *15 USRBLADE, USRDOM
DIMENSION USRBLADE(0: 50), USRDOM(0: 11)
REAL USRPRESS(10,20,30), USRMEAN(20),

+ USRRAD(20,30)
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS

C
C+++++++++++++++++ END OF USER AREA 3++++++++++++++++++++++++++++++++++

C
C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)
C
C__--VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG

C
IVERS=5
ICHKPR =1

C
C+++++++++++++++++ USER AREA 4+++

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=l
IUSED=1

C AND SET IUBCSF FLAG:

C BOUNDARY CONDITIONS NOT CHANGING

-D8-

Appendix D- Fortran Routines

C IUBCSF=0
C BOUNDARY CONDITIONS CHANGING WITH ITERATION
C IUBCSF=1

C BOUNDARY CONDITIONS CHANGING WITH TIME
C IUBCSF=2
C BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION

IUBCSF=3
C+++++++++++++++++ END OF USER AREA 4++++++++++++++++++++++++++++++++++
C

IF (IUSED. EQ. O) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL. EQ. O) RETURN
C
C+++++++++++++++++ USER AREA 5+++

IPHASE=1
C
C IF (KSTEP. EQ. 0) THEN
C ISEQF=O
C CALL FILCON('USRBCS', 'tsum. txt', 'OPEN', 'FORMATTED',
C+ 'NEW', ITXT, ISEQF, IOST, IERR)
C
C IF (IERR. NE. O) THEN

C CALL FILERR('USRBCS', 'tsum. txt', 'OPEN', 'NEW',
C+ ITXT, ISEQF, IOST, IERR)
C END IF
C ENDIF
C
C----INITIAL CONDITIONS FOR RESTART
C

IUSRITER=9
IUSRSTEP=760

C
IF (NITER. LE. 1) THEN

C
IF (KSTEP. EQ. 0) THEN

UNEW=0.2629547596E+01
WNEW=-0.3998958130E+03
WOLD=-0.3998956604E+03

FIAOLD=-1.754262513E-07
FIANEW=-1.754303014E-07
FIBOLD=1.516304837E-05
FIBNEW=1.516306384E-05
FIAOLDP=-1.020277622E-07
FIANEWP=-1.020272293E-07
FIBOLDP=3.917623417E-06
FIBNEWP=3.917619324E-06

DT=0.0005
UOLD=UNEW

AMP=0.4198
FREQ=20

PERIOD=1/FREQ
OMEGA=2*3.14159265359/PERIOD

ELSE
C
C---- SET WOLD EQUALS TO THE ANGULAR VELOCITY AT THE TIME STEP
C

WOLD=WNEW
FIAOLD=FIANEW
FIBOLD=FIBNEW
FIAOLDP=FIANEWP
FIBOLDP=FIBNEWP
ENDIF

ENDIF
C
C---- TO FIND THE ANGULAR ACCELERATION OF THE BLADE AT EACH TIME STEP
C

AREAM=0.0
TSUM=0.0
TNET=0.0
WABS=0.0
WVSUM=0.0

VSUM=0.0
MOINA=0.0
MOINB=0.0

-D9-

Appendix D- Fortran Routines

MOINC=0.0
MOIND=0.0
MOOUTA=0.0
MOOUTB=0.0
MOOUTC=0.0
MOOUTD=0.0

MASSIA=0.0
MASSIC=0.0
MASSO=0.0
THETAXO=0.0
RTHETAO=0.0

XRO=0.0
XTHETAO=0.0
THETAXJ=0.0
RTHETAJ=0.0

XRJ=0.0
XTHETAJ=0.0
THETAXD=0.0
RTHETAD=0.0

XRD=0.0
XTHETAD=0.0
THETAXP=0.0
RTHETAP=0.0

XRP=0.0
XTHETAP=0.0

IF (NITER. EQ. IUSRITER) THEN
FIANEW=0.0
FIBNEW=0.0
FIANEWP=0.0
FIBNEWP=0.0

ENDIF

INERTIA=3.24885667E-09
C
C
C---- SET BLADEN TO BE BLADE1 TO BLADE6

USRBLADE(1)='BLADEI'
USRBLADE(2)='BLADE2'
USRBLADE(3)='BLADE3'
USRBLADE(4)='BLADE4'
USRBLADE(5)='BLADE5'
USRBLADE(6)='BLADE6'

C
DO 134 BLADEN=1,6

CALL IPREC(USRBLADE(BLADEN), 'PATCH', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C---- GET SCALAR NUMBER CORRESPONDING TO THETA(Z) SHEAR STRESS
C

CALL GETSCA ('Z SHEAR STRESS', ICS1, CWORK)
C
C---- LOOP OVER ALL WALL CELL CENTRES LOCATION IN WALLS
C
C234567891123456759212345678931234567894123456789512345678961233456789712
C LOOP OVER PATCH
C

DO 133 K=1, KLEN
DO 132 J=1, JLEN

DO 131 I=1, ILEN
C
C USE STATEMENT FUNCTION IP TO GET ADDRESSES

INODE=IP(I, J, K)
IBDRY=INODE-NCELL
IFACE=IPFACB(IBDRY)
AREAM=SQRT(AREA(IFACE, 1)**2+

+ AREA(IFACE, 2)**2+

+ AREA(IFACE, 3)**2)

C
TSUM=TSUM-P(INODE, 1)*YP(INODE)*AREA(IFACE, 3)-

+ YP(INODE)*SCAL(INODE, 1, ICS1)*AREAM
C

IF ((NITER. EQ. IUSRITER). AND. (KSTEP. EQ. IUSRSTEP)) THEN
WRITE(ITXT, 900)I, J, K, P(INODE, 1), SCAL(INODE, 1, ICS1), XP(INODE),

+ YP(INODE), ZP(INODE), AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3),
+ AREAM, TSUM

900 FORMAT(I5, I5, I5,10(2X, E17.10))
ENDIF

-D10-

Appendix D- Fortran Routines

C
131 CONTINUE
132 CONTINUE
133 CONTINUE
134 CONTINUE

C
C
C

IF (KSTEP. EQ. 0) THEN

ACCE=-3.349977136E-01
ELSE

TFRIC=0.0
TNET=TSUM+TFRIC

ACCE=TNET/INERTIA

ENDIF

C
C
C---- TO UPDATE THE INLET FLOW VELOCITY USING 1ST ORDER
C---- BACKWARD DIFFERENCING
C
C---- OPEN THE FILE CONTAINING DATA ABOUT ANGULAR VELOCITY(WNEW)
C234567891123456789212345678931234567894123456789512345678961233456789712

IF (KSTEP. EQ. O) THEN
ISEQF=O

CALL FILCON('USRBCS', 'angular. txt',, OPEN', 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRBCS', 'angular. txt', 'OPEN', 'NEW',

+ ITXT, ISEQF, IOST, IERR)
END IF

ENDIF
C
C
C

IF (KSTEP. EQ. 40) THEN
REMAIN=TIME/PERIOD-INT(TIME/PERIOD)
PHASE=PERIOD*REMAIN
ENDIF

C
IF ((NITER. EQ. 1). AND. (KSTEP. GE. 41)) THEN

RADIAN=OMEGA*(TIME-PHASE)
PULSE=AMP*SIN(RADIAN)

UNEW=UOLD*(1+PULSE)
ENDIF

C
C---- SET WNEW TO THE VELOCITY AT THE NEXT TIME STEP
C

WNEW = WOLD+ACCE*DT
C

IF (KSTEP. GE. 1) THEN
CALL GETSCA ('X MASS FLUX', ICS2, CWORK)
CALL GETSCA ('Y MASS FLUX', ICS3, CWORK)
CALL GETSCA ('Z MASS FLUX', ICS4, CWORK)
CALL GETSCA ('ZX NODAL SHEAR STRESS', ICS5, CWORK)
CALL GETSCA ('YZ NODAL SHEAR STRESS', ICS6, CWORK)
CALL GETSCA ('XY NODAL SHEAR STRESS', ICS7, CWORK)
ENDIF

C
C234567891123456789212345678931234567894123456789512345678961233456789712

CALL IPREC('INLET', 'PATCH', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C INTERROGATE GETVAR FOR VARIABLE NUMBERS
C

CALL GETVAR('USRBCS', 'W ', IW)
CALL GETVAR('USRBCS', 'U ', IU)

C

C LOOP OVER PATCH
DO 103 K=1, KLEN

DO 102 J=1, JLEN
DO 101 I=1, ILEN

C
C USE STATEMENT FUNCTION IP TO GET ADDRESSES

INODE=IP(I, J, K)
C
C SET VARBCS

-D11-

Appendix D- Fortran Routines

VARBCS(IW, IPHASE, INODE) _ -YP(INODE)*WNEW
IF (KSTEP. LE. 40) THEN

VARBCS(IU, IPHASE, INODE) = 0.2629547596E+01
ELSE

VARBCS(IU, IPHASE, INODE) = UNEW
ENDIF

c
c

IF (NITER. EQ. IUSRITER) THEN
IBDRY=INODE-NCELL

IFACE=IPFACB(IBDRY)
WABS = W(INODE, 1)+YP(INODE)*WNEW

C234567891123456789212345678931234567894123456789512345678961233456789712
MOINA =MOINA+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*WABS*AREA(IFACE, 1)
MOINB =MOINB+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*W(INODE, 1)

+ *AREA(IFACE, 1)
C

MASSIA=MASSIA+SCAL(INODE, 1, ICS2)*AREA(IFACE, 1)+SCAL(INODE, 1, ICS3)
+ *AREA(IFACE, 2)+SCAL(INODE, 1, ICS4)*AREA(IFACE, 3)

C
IF (KSTEP. EQ. IUSRSTEP) THEN

WRITE(ITXT, 901)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, U(INODE, 1),
+ V(INODE, 1), W(INODE, 1), YP(INODE),
+ AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3)

901 FORMAT(I5, I5, I5,11(2X, E17.10))
ENDIF

C
ENDIF

101 CONTINUE

102 CONTINUE

103 CONTINUE

C

C
C---- TO LOCATE JUST UPSTREAM FINDING ANG. MOMENTUM
C

IF (NITER. EQ. IUSRITER) THEN
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C INTERROGATE GETVAR FOR VARIABLE NUMBERS
C
C LOOP OVER PATCH

I=14
DO 161 J=1, JLEN

DO 162 K=1, KLEN
C
C USE STATEMENT FUNCTION IP TO GET ADDRESSES

INODE=IP(I, J, K)
WAGS = W(INODE, 1)+YP(INODE)*WNEW
UA=U(INODE, 1)*AREA(INODE, 1)+V(INODE, 1)*AREA(INODE, 2)+

+ W(INODE, 1)*AREA(INODE, 3)
c
C234567891123456789212345678931234567894123456789512345678961233456789712

MOINC =MOINC+DEN(INODE, 1)*YP(INODE)*WABS*UA
MOIND =MOIND+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*UA

C
MASSIC=MASSIC+SCAL(INODE, 1, ICS2)*AREA(INODE, 1)+SCAL(INODE, 1, ICS3)

+ *AREA(INODE, 2)+SCAL(INODE, 1, ICS4)*AREA(INODE, 3)
C

IF (KSTEP. EQ. IUSRSTEP) THEN
C234567891123456789212345678931234567894123456789512345678961233456789712

WRITE(ITXT, 902)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS,
+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE),
+ AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3)

902 FORMAT(I5, I5, I5,11(2X, E17.10))
ENDIF

C
C

162 CONTINUE
161 CONTINUE

ENDIF
C
C
C---- SET RADIAL EQUILIBRIUM FOR PRESSURE AT OUTLET

C
C---- TO FIND WABSMEAN=USRMEAN(J) FOR EACH J

CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT,

-D12-

Appendix D- Fortran Routines

+ ILEN, JLEN, KLEN, CWORK, IWORK)
INTERROGATE GETVAR FOR VARIABLE NUMBERS

LOOP OVER PATCH

I=ILEN
DO 141 J=1, JLEN

WVSUM=0.0
VSUM=0.0
DO 140 K=1, KLEN

USE STATEMENT FUNCTION IP TO GET ADDRESSES
INODE=IP(I, J, K)

USRRAD(J, K)=YP(INODE)
WABS = W(INODE, 1)+YP(INODE)*WNEW

WVSUM = WVSUM + WABS*VOL(INODE)

VSUM = VSUM +VOL(INODE)

IF (K. EQ. KLEN) THEN
USRMEAN(J) = WVSUM/VSUM

ENDIF

IF (NITER. EQ. IUSRITER) THEN
C234567891123456789212345678931234567894123456789512345678961233456789712

MOOUTA=MOOUTA+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*WABS
+ *AREA(INODE, 1)

MOOUTB=MOOUTB+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*W(INODE, 1)
+ *AREA(INODE, 1)

MASSO=MASSO+SCAL(INODE, 1, ICS2)*AREA(INODE, 1)+SCAL(INODE, 1, ICS3)*

+ AREA(INODE, 2)+SCAL(INODE, 1, ICS4)*AREA(INODE, 3)

THETAXO=THETAXO+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAO=RTHETAO+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2)

XRO=XRO+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1)
XTHETAO=XTHETAO+YP(INODE)*SCAL(INODE, I, ICS5)*AREA(INODE, 1)

IF (KSTEP. EQ. IUSRSTEP) THEN

C234567891123456789212345678931234567894123456789512345678961233456789712
WRITE(ITXT, 903)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, WVSUM, VSUM,

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), USRMEAN(J),
+ USRRAD(J, K), AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3)

903 FORMAT(I5, I5, I5,15(2X, E17.10))
ENDIF

C
C

ENDIF

140 CONTINUE
141 CONTINUE

C
CALL IPREC('OUTLET', 'PATCH', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C INTERROGATE GETVAR FOR VARIABLE NUMBERS

CALL GETVAR('USRBCS', 'P ', IPRES)

LOOP OVER PATCH
DO 142 I=1, ILEN

DO 143 J=1, JLEN
WVSUM=0.0
VSUM=0.0

DO 144 K=1, KLEN

USE STATEMENT FUNCTION IP TO GET ADDRESSES
INODE=IP(I, J, K)

IF (J. EQ. 1) THEN

USRPRESS(I, J, K) = 0.0

ENDIF

IF (J. GT. 1) THEN
DELTAR=YP(INODE)-USRRAD(J-1, K)
USRPRESS(I, J, K) = USRPRESS(I, J-1, K)+DEN(INODE, 1)*USRMEAN(J)

**2.0*DELTAR/YP(INODE)
ENDIF

C
C SET VARBCS

-D13-

Appendix D- Fortran Routines

VARBCS(IPRES, IPHASE, INODE) = USRPRESS(I, J, K)

IF ((NITER. EQ. IUSRITER). AND. (KSTEP. EQ. IUSRSTEP)) THEN
IBDRY=INODE-NCELL
IFACE=IPFACB(IBDRY)

WABS = W(INODE, 1)+YP(INODE)*WNEW
WVSUM = WVSUM + WABS*VOL(INODE)

VSUM = VSUN +VOL(INODE)
WRITE(ITXT, 904)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, WVSUM, VSUM,

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), USRMEAN(J),
+ USRRAD(J-1, K), AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3),

+ USRPRESS(I, J, K)

904 FORMAT(I5, I5, I5,16(2X, E17.10))
ENDIF

C
144 CONTINUE
143 CONTINUE
142 CONTINUE

C
C
C
C---- TO FIND ANGULAR MOMENTUM AT JUST DOWNSTREAM

IF (NITER. EQ. IUSRITER) THEN
CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C INTERROGATE GETVAR FOR VARIABLE NUMBERS

LOOP OVER PATCH
I=2

DO 121 J=1, JLEN
DO 120 K=1, KLEN

C
C USE STATEMENT FUNCTION IP TO GET ADDRESSES

INODE=IP(I, J, K)
WAGS = W(INODE, 1)+YP(INODE)*WNEW

UA=U(INODE, 1)*AREA(INODE, 1)+V(INODE, 1)*AREA(INODE, 2)+
+ W(INODE, 1)*AREA(INODE, 3)

C
C234567891123456789212345678931234567894123456789512345678961233456789712

MOOUTC =MOOUTC+DEN(INODE, 1)*YP(INODE)*WABS*UA

MOOUTD =MOOUTD+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*UA

THETAXJ=THETAXJ+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAJ=RTHETAJ+Yp(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2)

XRJ=XRJ+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1)
XTHETAJ=XTHETAJ+Yp(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1)

IF (KSTEP. EQ. IUSRSTEP) THEN
C234567891123456789212345678931234567894123456789512345678961233456789712

WRITE(ITXT, 905)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS,

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE),

+ AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3),
+ AREA(INODE, 4), AREA(INODE, 5), AREA(INODE, 6), UA

905 FORMAT(I5, I5, I5,15(2X, E17.10))
ENDIF

C
120 CONTINUE
121 CONTINUE

ENDIF

IF (NITER. EQ. IUSRITER) THEN
C------- TO FIND OUT THE FLUID MOMENTUM FLUX ACROSS THE DOMAIN

CALL IPALL('*', '*', 'BLOCK', 'CENTRES', IPT, NPT, CWORK, IWORK)
C

DO 150 I=1, NPT
INODE=IPT(I)

C
WABS = W(INODE, 1)+Yp(INODE)*WNEW
FIANEW = FIANEW+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE)
FIBNEW = FIBNEW+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE)

THETAXD=THETAXD+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAD=RTHETAD+YP(INODE)*SCAL(INODE, I, ICS6)*AREA(INODE, 2)

XRD=XRD+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1)
XTHETAD=XTHETAD+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1)

-D 14-

Appendix D- Fortran Routines

C
150 CONTINUE

C
TROTOR=TNET
TFIA=(FIANEW-FIAOLD)/DT
TFIB=(FIBNEW-FIBOLD)/DT

C

C
C

ENDIF

IF (NITER. EQ. IUSRITER) THEN
C-------TO FIND OUT THE FLUID MOMENTUM FLUX ACROSS THE PART OF THE DOMAIN
C
C---- SET BLOCKN TO BE BLOCK1 TO BLOCK11

USRDOM(1)='BLOCK-NUMBER-1'
USRDOM(2)='BLOCK-NUMBER-2'
USRDOM(3)='BLOCK-NUMBER-3'
USRDOM(4)='BLOCK-NUMBER-4'
USRDOM(5)='BLOCK-NUMBER-5'
USRDOM(6)='BLOCK-NUMBER-6'
USRDOM(7)='BLOCK-NUMBER-8'
USRDOM(8)='BLOCK-NUMBER-9'
USRDOM(9)='BLOCK-NUMBER-10'

C
DO 151 DOMAINN=1,9
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C
C LOOP OVER PATCH

DO 152 I=1, ILEN
DO 153 J=1, JLEN

DO 154 K=1, KLEN

INODE=IP(I, J, K)

C

C

WABS = W(INODE, 1)+YP(INODE)*WNEW
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE)
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE)

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2)

XRP=XRP+YP(INODE)*SCAL(INODE, I, ICS7)*AREA(INODE, 1)
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1)

C
154 CONTINUE

153 CONTINUE

152 CONTINUE

151 CONTINUE

C
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C
C LOOP OVER PATCH

DO 155 I=14, ILEN
DO 156 J=1, JLEN

DO 157 K=1, KLEN
INODE=IP(I, J, K)

C

C

WABS = W(INODE, 1)+Yp(INODE)*WNEW
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE)
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE)

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2)

XRP=XRP+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1)
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1)

C
157 CONTINUE
156 CONTINUE
155 CONTINUE

C
CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

DO 158 I=1,2
DO 159 J=1, JLEN

-D15-

Appendix D- Fortran Routines

DO 160 K=1, KLEN
INODE=IP(I, J, K)

WABS = W(INODE, 1)+YP(INODE)*WNEW
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE)
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE)

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3)
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2)

XRP=XRP+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1)
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, I, ICS5)*AREA(INODE, 1)

C
160 CONTINUE

159 CONTINUE

158 CONTINUE

C
TFIAP=(FIANEWP-FIAOLDP)/DT
TFIBP=(FIBNEWP-FIBOLDP)/DT

C
C------TO FIND THE RESIDUALS OF THE ANGULAR MOMENTUM EQUATION

C
C234567891123456789212345678931234567894123456789512345678961233456789712

WRITE(ITXT, 906)KSTEP, NITER, WNEW, ACCE, WOLD, DT, UNEW, UOLD, TIME,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB,

+ FIANEW, FIAOLD, FIBNEW, FIBOLD,
+ TROTOR, TFIA, TFIB, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,

+ THETAXD, RTHETAD, XRD, XTHETAD, TSUM,
+ MOOUTC, MOOUTD, FIANEWP, FIAOLDP, FIBNEWP, FIBOLDP, TFIAP, TFIBP,

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, THETAXP, RTHETAP, XRP, XTHETAP

906 FORMAT(I4,2X, I2,49(2X, E17.10))
ENDIF

C
C
C

RETURN
END

-D16-

Appendix D- Fortran Routines

D. 3 USRBF

SUBROUTINE USRBF (IPHASE, BX, BY, BZ, BPX, BPY, BPZ

+ , U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL

+ , XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, IPT

+ , IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB

+ WORK, IWORK, CWORK)
C

C
C UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES
C
C »> IMPORTANT <<<
C »> <<<
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN «<
C »> THE DESIGNATED USER AREAS <<<
C

C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES

C BFCAL
C
C***
C CREATED
C 24/01/92 ADB
C MODIFIED
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 2

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.

C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE

C 23/03/94 FHW EXAMPLES COMMENTED OUT

C 09/08/94 NSW CORRECT SPELLING

C MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA

C 19/12/94 NSW CHANGE FOR CFX-F3D

C 31/01/97 NSW EXPLAIN USAGE IN MULTIPHASE FLOWS

C 02/07/97 NSW UPDATE FOR CFX-4

C

C

C SUBROUTINE ARGUMENTS
C
C IPHASE - PHASE NUMBER

C

C* BX - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE

C* BY - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE

C* BZ - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE

C* BPX -
C* BPY - COMPONENTS OF LINEARISABLE BODY FORCES.

C* BPZ -
C
C N. B. TOTAL BODY-FORCE IS GIVEN BY:

C
C X-COMPONENT = BX + BPX*U

C Y-COMPONENT = BY + BPY*V

C Z-COMPONENT = BZ + BPZ*W

C
CU-U COMPONENT OF VELOCITY

CV-V COMPONENT OF VELOCITY

CW-W COMPONENT OF VELOCITY

CP- PRESSURE
C VFRAC - VOLUME FRACTION

C DEN - DENSITY OF FLUID

C VIS - VISCOSITY OF FLUID

C TE - TURBULENT KINETIC ENERGY

C ED - EPSILON

C RS - REYNOLD STRESSES

CT- TEMPERATURE

CH- ENTHALPY

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)

C XP -X COORDINATES OF CELL CENTRES

C YP -Y COORDINATES OF CELL CENTRES

C Zp -Z COORDINATES OF CELL CENTRES

-D17-

Appendix D- Fortran Routines

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

VOL - VOLUME OF CELLS

AREA - AREA OF CELLS

VPOR - POROUS VOLUME
ARPOR - POROUS AREA

WFACT - WEIGHT FACTORS

IPT - 1D POINTER ARRAY
IBLK - BLOCK SIZE INFORMATION
IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS

WORK - REAL WORKSPACE ARRAY
IWORK - INTEGER WORKSPACE ARRAY
CWORK - CHARACTER WORKSPACE ARRAY

SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
BE SET BY THE USER IN THIS ROUTINE.

C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

C USER MANUAL.
C

C
LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

+ LRECT, LCYN, LAXIS, LPOROS, LTRANS

C
CHARACTER*(*) CWORK

C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,

+ WVSUM, VSUM, DELTAR, TNET,

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, M000TC, MOOUTD,
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,

+ THETAXD, RTHETAD, XRD, XTHETAD,

+ THETAXP, RTHETAP, XRP, XTHETAP
INTEGER ITXT, ISEQF

C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++

C
COMMON

+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM

+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE

+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP

+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL

+ /CHKUSR/ IVERS, IUCALL, IUSED

+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK

+ /IDUM/ ILEN, JLEN

+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS

+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL

+ /SGLDBL/ IFLGPR, ICHKPR

+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON

+ /TIMUSR/ DTUSR
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE

+ /TRANSR/ TIME, DT, DTINVF, TPARM

C
C+++++++++++++++++ USER AREA 2 +++

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE

C NO CONFLICT WITH NON-USER COMMON BLOCKS
COMMON

+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,

+ WVSUM, VSUM, DELTAR, TNET,

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD,

-D 18-

Appendix D- Fortran Routines

+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,

+ THETAXD, RTHETAD, XRD, XTHETAD,

+ THETAXP, RTHETAP, XRP, XTHETAP

C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++

C
DIMENSION BX(NCELL), BY(NCELL), BZ(NCELL)

+, BPX(NCELL), BPY(NCELL), BPZ(NCELL)
C

DIMENSION

+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE)

+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE)

+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, *)

+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4)

+, SCAL(NNODE, NPHASE, NSCAL)

C
DIMENSION

+ XP(NNODE), YP(NNODE), ZP(NNODE)

+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3)

+, WFACT(NFACE)

+, IPT(*), IBLK(5, NBLOCK)
+, IPVERT(NCELL, 8), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4)

+, IPNODB(NBDRY, 4), IPFACB(NBDRY)
+, IWORK(*), WORK(*), CWORK(*)

C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I, J, K) = IPT((K-1)*ILEN*JLEN + (J-1)*ILEN +Iº
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG

C
IVERS=2
ICHKPR =1

C

C+++++++++++++++++ USER AREA 4 +++

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1

C
IUSED=1

C

C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C

IF (IUSED. EQ. O) RETURN

C
C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL. EQ. O) RETURN

C
C+++++++++++++++++ USER AREA 5 +++
C
C THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE

C CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING

C THE VARIABLE IPHASE. EG. IF (IPHASE. EQ. 2) WOULD ALLOW BODY FORCES
C FOR THE SECOND PHASE.

IPHASE=1
C

IF ((NITER. EQ. 9). AND. (KSTEP. EQ. 1)) THEN

OPEN (UNIT=49, FILE='bf. txt', STATUS='NEW')

ISEQF=O
ITXT=49
CALL FILCON('USRBF', 'bf. txt', 'OPEN', 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRBF', 'bf. txt', 'OPEN', 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF

-D19-

Appendix D- Fortran Routines

C
C---- ADD USER-DEFINED BODY FORCES.

C---- USE IPALL TO FIND 1D ADDRESS OF ALL CELL CENTRES
C

CALL IPALL('*', '*', 'BLOCK', ' CENTRES', IPT, NPT, CWORK, IWORK)
C

DO 104 I=1, NPT
INODE=IPT(I)

C
BY(INODE) = BY(INODE)+(DEN(INODE, 1)*2*WNEW*W(INODE, 1))+

+ (YP(INODE)*WNEW*WNEW*DEN(INODE, 1))
C

BZ(INODE) = BZ(INODE)-(DEN(INODE, 1)*2*WNEW*V(INODE, 1))-
+ (YP(INODE)*ACCE*DEN(INODE, 1))

104 CONTINUE
C234567891123456789212345678931234567894123456789512345678961233456789712
C

IF (NITER. EQ. 9) THEN
WRITE(49,907)KSTEP, NITER, BY(INODE), BZ(INODE)

907 FORMAT(14,2X, I2,2(2X, E17.10))
ENDIF

C
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C

RETURN
END

-D20-

Appendix D- Fortran Routines

D. 4 USRGRD
SUBROUTINE USRGRD(U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL,

+ XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT,

+ XCOLD, YCOLD, ZCOLD, XC, YC, ZC, IPT,

+ IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB,

+ WORK, IWORK, CWORK)

C

C
C USER SUBROUTINE TO ALLOW USERS TO GENERATE A GRID FOR CFX-F3D
C
C »> IMPORTANT <<<
C »> <<<
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C »> THE DESIGNATED USER AREAS <<<
C

C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES

C CREATE CUSR

C
C*##**#*****#****###***
C CREATED

C 27/04/90 ADB
C MODIFIED
C 05/08/91 IRH NEW STRUCTURE
C 09/09/91 IRH CORRECT EXAMPLE
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER 72 COLUMNS.
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 03/07/92 DSC CORRECT COMMON MLTGRD.
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 22/08/94 NSW MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C

C
C SUBROUTINE ARGUMENTS
C
CU-U COMPONENT OF VELOCITY

CV-V COMPONENT OF VELOCITY

CW-W COMPONENT OF VELOCITY

CP- PRESSURE

C VFRAC - VOLUME FRACTION

C DEN - DENSITY OF FLUID

C VIS - VISCOSITY OF FLUID

C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
CT- TEMPERATURE
CH- ENTHALPY
C RF - REYNOLD FLUXES

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP -X COORDINATES OF CELL CENTRES
C YP -Y COORDINATES OF CELL CENTRES
C ZP -Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS

C AREA - AREA OF CELLS

C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C* XC -X COORDINATES OF CELL VERTICES

C* YC -Y COORDINATES OF CELL VERTICES

C* ZC -Z COORDINATES OF CELL VERTICES

C XCOLD -X COORDINATES OF CELL VERTICES AT START OF TIME STEP
C YCOLD -Y COORDINATES OF CELL VERTICES AT START OF TIME STEP
C ZCOLD -Z COORDINATES OF CELL VERTICES AT START OF TIME STEP
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION

-D21-

Appendix D- Fortran Routines

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS

C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY

C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.

C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-F3D USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C

C
LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS

CHARACTER*(*) CWORK
C
C+++++++++++++++++ USER AREA 1 ++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

C
C+++++++++++++++++ END OF USER AREA 1 +++++++++++++++++++++++++++++++++
C

COMMON
+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM
+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE
+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP
+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL
+ /CHKUSR/ IVERS, IUCALL, IUSED
+ /CONC/ NCONC
+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK

+ /IDUM/ ILEN, JLEN

+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS

+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL

+ /SGLDBL/ IFLGPR, ICHKPR

+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON
+ /TIMUSR/ DTUSR
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE
+ /TRANSR/ TIME, DT, DTINVF, TPARM

C
C+++++++++++++++++ USER AREA 2 ++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 +++++++++++++++++++++++++++++++++
C

DIMENSION
+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE)
+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE)
+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6)
+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4)
+, SCAL(NNODE, NPHASE, NSCAL)

DIMENSION
+ XP(NNODE), YP(NNODE), ZP(NNODE), XC(NVERT), YC(NVERT), ZC(NVERT)
+, XCOLD(NVERT), YCOLD(NVERT), ZCOLD(NVERT)
+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3)
+, WFACT(NFACE)
+, IPT(*), IBLK(5, NBLOCK)

+, IPVERT(NCELL, S), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4)
+, IPNODB(NBDRY, 4), IPFACB(NBDRY)
+, IWORK(*), WORK(*), CWORK(*)

C

C+++++++++++++++++ USER AREA 3 ++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS

C

-D22-

Appendix D- Fortran Routines

C+++++++++++++++++ END OF USER AREA 3 +++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)

C

C---- VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C

IVERS=3
ICHKPR =1

C
C+++++++++++++++++ USER AREA 4 ++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C

IUSED=1
C
C+++++++++++++++++ END OF USER AREA 4 +++++++++++++++++++++++++++++++++
C

IF (IUSED. EQ. 0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL. EQ. 0) RETURN
C
C+++++++++++++++++ USER AREA 5 ++
C

IF (KSTEP. EQ. 0) THEN
C
C---- SPECIAL VERSION TO CONVERT A CARTESIAN GRID INTO
CA CYLINDRICAL GRID

C
C CARTESIAN CYLINDRICAL

CXX

CY
CR AND THETA
CZ/
C
C NOTE
C
C IF R=0.0 ONLY ON THE EDGE OF A BLOCK

C YOU SHOULD NOT USE THE KEYWORDS 'AXIS INCLUDED'
C ---
C
C DEFINE A SMALL RADIUS LARGER THAN 1.0E-6
C

SMALLR=1. OE-4
C
C---- INITIAL CONVERSION
C

DO 10 I=1, NVERT
R=SQRT(YC(I)**2+ZC(I)**2)
IF (R. LE. SMALLR) THEN

IF (. NOT. LAXIS) THEN
R=SMALLR

ENDIF
THETA=0.0

ELSE
THETA=ATAN2(-ZC(I), YC(I))

ENDIF
YC(I)=R
ZC(I)=THETA

10 CONTINUE
C
C---- CORRECTION OF THETA AT R=0.0
C

DO 100 IBLOCK=1, NBLOCK

NI1=IBLK(1, IBLOCK)+1

NJ1=IBLK(2, IBLOCK)+1

NK1=IBLK(3, IBLOCK)+1

IPVBLK=IBLK(5, IBLOCK)

DO 110 K=2, NK1-1

DO 120 J=2, NJ1-1
DO 130 I=2, NI1-1
IVERT=IPVBLK-1+(K-1)*NI1*NJ1+(J-1)*NI1+I
R=YC(IVERT)
IF (R. LE. SMALLR*1.0001) THEN

IF (LAXIS) THEN
C AS AXIS MUST LIE ON LOW J FACE TAKE THETA FROM

-D23-

Appendix D- Fortran Routines

ANGLE OF NEXT VERTEX AWAY FROM AXIS
THETA=ZC(IVERT+NI1)

ELSE
TAKE THETA TO BE THE AVERAGE VALUE OF THE NEIGHBOURING
INTERIOR VERTICES WHICH HAVE R>1.0E-6

I1=IVERT+1
12=IVERT+NI1
I3=IVERT+NI1*NJ1
14=IVERT-1
15=IVERT-NI1
I6=IVERT-NI1*NJ1
Al=1.0

A2=1.0
A3=1.0
A4=1.0
A5=1.0
A6=1.0
IF (I. EQ. NI1-1) A1=0.0
IF (J. EQ. NJ1-1) A2=0.0
IF (K. EQ. NK1-1) A3=0.0
IF (I. EQ. 2) A4=0.0
IF (J. EQ. 2) A5=0.0
IF (K. EQ. 2) A6=0.0
IF (YC(I1). LE. SMALLR*1.0001) A1=0.0
IF (YC(I2). LE. SMALLR*1.0001) A2=0.0
IF (YC(I3). LE. SMALLR*1.0001) A3=0.0
IF (YC(14). LE. SMALLR*1.0001) A4=0.0
IF (YC(I5). LE. SMALLR*1.0001) A5=0.0
IF (YC(I6). LE. SMALLR*1.0001) A6=0.0
ASUM=AI+A2+A3+A4+A5+A6

THETA=(A1*ZC(I1)+A2*ZC(I2)+A3*ZC(I3)+
A4*ZC(I4)+A5*ZC(I5)+A6*ZC(I6))/ASU14

ENDIF
ZC(IVERT)=THETA

FNDIF
130 CONTINUE
120 CONTINUE
110 CONTINUE
100 CONTINUE

C
END IF

C
C+++++++++++++++++ END OF USER AREA 5 +++++++++++++++++++++++++++++++++
C

RETURN
END

-D24-

Appendix D- Fortran Routines

D. 5 USRTRN
SUBROUTINE USRTRN(U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL,

+ XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, CONV, IPT,

+ IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB,

+ WORK, IWORK, CWORK)

C

C
C USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT
C THE END OF EACH TIME STEP

C THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT
C THE END OF EACH TIME STEP
C
C »> IMPORTANT <<<
C »> <<<
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN «<
C »> THE DESIGNATED USER AREAS <<<
C
C«+, «r«+«««, t: *«wr«r*****+«««««*««, t««w«««w«*«*««««*«t««*r««awº«««««««««««

C

C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C CUSR TRNMOD
C
C«««r«++««*+, «++., r«w, t«ww««*+, r+«w«««w«*«««w«, t««««««««x«««r«*«+, ««*«rwr«. «««*

C CREATED

C 27/04/90 ADB
C MODIFIED
C 05/08/91 IRH NEW STRUCTURE
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72.
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 05/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 03/07/92 DSC CORRECT COMMON MLTGRD.
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 22/08/94 NSW MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA

C 19/12/94 NSW CHANGE FOR CFX-F3D

C 02/07/97 NSW UPDATE FOR CFX-4
C

C
C SUBROUTINE ARGUMENTS
C
CU-U COMPONENT OF VELOCITY
CV-V COMPONENT OF VELOCITY
CW-W COMPONENT OF VELOCITY
CP- PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES

CT- TEMPERATURE
CH- ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP -X COORDINATES OF CELL CENTRES
C Yp -Y COORDINATES OF CELL CENTRES
C ZP -Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS

C AREA - AREA OF CELLS

C VPOR - POROUS VOLUME

C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS

C CONV - CONVECTION COEFFICIENTS

C
C IPT - 1D POINTER ARRAY

C IBLK - BLOCK SIZE INFORMATION

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS

-D25-

Appendix D- Fortran Routines

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS

C

C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY

C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C

C
C

LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP
+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS

C
CHARACTER*(*) CWORK

C
C++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
C

REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,
+ WVSUM, VSUM, DELTAR, TNET,
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,
+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD,
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,

+ THETAXO, RTHETAO, XRO, XTHETAO,

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,
+ THETAXD, RTHETAD, XRD, XTHETAD,
+ THETAXP, RTHETAP, XRP, XTHETAP, UA,
+ RELANG, ABSANG, MAF,
+ SUMMF, SUMXP, SUMU, SUMW, SUMWABS, SUMRANG, SUMAANG,
+ PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, AANGM, PLNRELM, PLNABSM

INTEGER ITXT, ISEQF, DOMAINN
C
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C

COMMON
+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM
+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE
+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP
+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL
+ /CHKUSR/ IVERS, IUCALL, IUSED
+ /CONC/ NCONC
+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK
+ /IDUM/ ILEN, JLEN
+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP
+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS
+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL
+ /SGLDBL/ IFLGPR, ICHKPR
+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON
+ /TIMUSR/ DTUSR
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE
+ /TRANSR/ TIME, DT, DTINVF, TPARM

C
C++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS

COMMON
+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS,
+ WVSUM, VSUM, DELTAR, TNET,
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE,

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD,
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP,
+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO,
+ THETAXO, RTHETAO, XRO, XTHETAO,
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ,
+ THETAXD, RTHETAD, XRD, XTHETAD,
+ THETAXP, RTHETAP, XRP, XTHETAP, UA,
+ RELANG, ABSANG, MAF,

-D26-

Appendix D- Fortran Routines

+ SUMMF, SUMXP, SUMU, SUMW, SUMWABS, SUMRANG, SUMAANG,
+ PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, AANGM, PLNRELM, PLNABSM

C

C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C

DIMENSION
+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE)
+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE)
+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6)
+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4)
+, SCAL(NNODE, NPHASE, NSCAL)

DIMENSION
+ XP(NNODE), YP(NNODE), ZP(NNODE)
+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3)
+, WFACT(NFACE), CONV(NFACE, NPHASE)
+, IPT(*), IBLK(5, NBLOCK)
+, IPVERT(NCELL, B), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4)
+, IPNODB(NBDRY, 4), IPFACB(NBDRY)
+, IWORK(*), WORK(*), CWORK(*)

C
C++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C

CHARACTER *15 USRDOM
DIMENSION USRDOM(0: 11)

C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)

C

C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C

IVERS=3
ICHKPR =1

C
C++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C

IUSED=1

C
C++++++++++++++++ END OF USER AREA 4 +++++++++++++++++++++++++++++. ++++
C

IF (IUSED. EQ. 0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL. EQ. 0) RETURN

C
C++++++++++++++++ USER AREA 5 +++
C

IPHASE=1
C----(SET TIME INCREMENT FOR NEXT TIME STEP)
C IF (KSTEP. GE. 0) THEN
C DTUSR = 0.0000002
C ENDIF
C
C IF (KSTEP. GE. 150) THEN
C DTUSR = DT*1.035953352
C ENDIF
C IF (KSTEP. GE. 300) THEN
C DTUSR=0.00004
C ENDIF
C
C TO PRINT THE VARIABLES ON PLANES

IF (KSTEP. EQ. 40) THEN
ITXT=69
ISEQF=O

CALL FILCON('USRTRN', 'data40. txt', 'OPEN', 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. 0) THEN
CALL FILERR('USRTRN', 'data40. txt', 'OPEN', 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF

-D27-

Appendix D- Fortran Routines

IF (KSTEP. EQ. 400) THEN
ITXT=50
ISEQF=O

CALL FILCON('USRTRN', 'data400. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data400. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 420) THEN
ITXT=51
ISEQF=O
CALL FILCON('USRTRN', 'data420. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data420. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 440) THEN
ITXT=52
ISEQF=O

CALL FILCON('USRTRN', 'data440. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data440. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 460) THEN
ITXT=53
ISEQF=O
CALL FILCON('USRTRN', 'data460. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN

CALL FILERR('USRTRN', 'data460. txt', 'OPEN' , 'NEW',
+ ITXT, ISEQF, IOST, IERR)

ENDIF

ENDIF
IF (KSTEP. EQ. 480) THEN
ITXT=54

ISEQF=O
CALL FILCON('USRTRN', 'data480. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data480. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 500) THEN
ITXT=55
ISEQF=O
CALL FILCON('USRTRN', 'data500. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data500. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 520) THEN
ITXT=56

ISEQF=O
CALL FILCON('USRTRN', 'data520. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data520. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

-D28-

Appendix D- Fortran Routines

ENDIF
IF (KSTEP. EQ. 540) THEN
ITXT=57

ISEQF=O
CALL FILCON('USRTRN', 'data540. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN

CALL FILERR('USRTRN', 'data540. txt', 'OPEN' , 'NEW',
+ ITXT, ISEQF, IOST, IERR)

ENDIF
ENDIF

IF (KSTEP. EQ. 560) THEN

ITXT=58
ISEQF=O

CALL FILCON('USRTRN', 'data560. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data560. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF

IF (KSTEP. EQ. 580) THEN
ITXT=59
ISEQF=O
CALL FILCON('USRTRN', 'data580. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)
C

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data580. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 600) THEN
ITXT=60
ISEQF=O

CALL FILCON('USRTRN', 'data6OO. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN

CALL FILERR('USRTRN', 'data600. txt', 'OPEN' , 'NEW',
+ ITXT, ISEQF, IOST, IERR)

ENDIF
ENDIF

IF (KSTEP. EQ. 620) THEN

ITXT=61
ISEQF=O

CALL FILCON('USRTRN', 'data620. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data620. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 640) THEN
ITXT=62
ISEQF=O

CALL FILCON('USRTRN', 'data640. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

C
IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data640. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 660) THEN
ITXT=63

ISEQF=O
CALL FILCON('USRTRN', 'data660. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. O) THEN
CALL FILERR('USRTRN', 'data660. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)

-D29-

Appendix D- Fortran Routines

ENDIF
ENDIF

IF (KSTEP. EQ. 680) THEN

ITXT=64
ISEQF=O

CALL FILCON('USRTRN', 'data680. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. 0) THEN
CALL FILERR('USRTRN', 'data680. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF

C
IF (KSTEP. EQ. 700) THEN

ITXT=65
ISEQF=O

CALL FILCON('USRTRN', 'data700. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. 0) THEN
CALL FILERR('USRTRN', 'data700. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 720) THEN
ITXT=66
ISEQF=O

CALL FILCON('USRTRN', 'data720. txt', 'OPEN' , 'FORMATTED',
+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. 0) THEN
CALL FILERR('USRTRN', 'data720. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
IF (KSTEP. EQ. 740) THEN
ITXT=67

ISEQF=O
CALL FILCON('USRTRN', 'data740. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. 0) THEN

CALL FILERR('USRTRN', 'data740. txt', 'OPEN' , 'NEW',
+ ITXT, ISEQF, IOST, IERR)

ENDIF
ENDIF

IF (KSTEP. EQ. 760) THEN
ITXT=68
ISEQF=O
CALL FILCON('USRTRN', 'data760. txt', 'OPEN' , 'FORMATTED',

+ 'NEW', ITXT, ISEQF, IOST, IERR)

IF (IERR. NE. 0) THEN
CALL FILERR('USRTRN', 'data760. txt', 'OPEN' , 'NEW',

+ ITXT, ISEQF, IOST, IERR)
ENDIF

ENDIF
C
C-- -- entrancel

PI=3.14159265359
IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

C
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C
C LOOP OVER PATCH

I=14

-D30-

Appendix D- Fortran Routines

DO 198 J=1, JLEN
DO 199 K=1, KLEN

INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
199 CONTINUE
198 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG / SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

C
WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,

+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF ENTRANCE1 DATA'
903 FORMAT(I4,9(2X, E17.10))

C
ENDIF

ENDIF

c
c---- entrance2

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. O) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

CALL IPREC('BLOCK-NUMBER-1', 'BLOCK', 'CENTRES', IPT,
ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

DO 132 J=1, JLEN
DO 133 I=1,7
K=KLEN

INODE=IP(I, J, K)

WABS=W(INODE, 1)+Yp(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
133 CONTINUE
132 CONTINUE

CALL IPREC('BLOCK-NUMBER-6', 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH

-D31-

Appendix D- Fortran Routines

DO 134 J=1, JLEN
DO 135 I=10, ILEN
K=KLEN

INODE=IP(I, J, K)
C

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)

SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
135 CONTINUE
134 CONTINUE

CALL IPREC('BLOCK-NUMBER-8', 'BLOCK', ' CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

I=7
DO 136 J=1, JLEN

DO 137 K=1, KLEN
INODE=IP(I, J, K)

C
WABS=W(INODE, 1)+YP(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +NAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+NAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ASSANG

C
137 CONTINUE
136 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SAMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

C

C

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF ENTRANCE2 DATA'

ENDIF
ENDIF

C
C---- entrance3

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN

IF (MOD(KSTEP, 20). EQ. 0) THEN
C

SUMMF=0.0
SUMXP=0.0
SUNK=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=O. 0
SUMAANG=0.0

C
USRDOM(1)='BLOCK-NUMBER-1'
USRDOM(2)='BLOCK-NUMBER-8'

-D32-

Appendix D- Fortran Routines

DO 100 DOMAINN=1,2
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)
C

C LOOP OVER PATCH
I=13
DO 101 J=1, JLEN

DO 102 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+Yp(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUNMF +MAF
SUNXP=SUMXP +MAF*XP(INODE)
SUNU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
102 CONTINUE
101 CONTINUE
100 CONTINUE

CALL IPREC('BLOCK-NUMBER-6', 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=4
DO 103 J=1, JLEN

DO 104 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+yp(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMME +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUNW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
104 CONTINUE

103 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WASSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF ENTRANCE3 DATA'

ENDIF
ENDIF

C
C--------- middlel

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=O. 0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0

-D33-

Appendix D- Fortran Routines

SUMAANG=0.0

USRDOM(3)='BLOCK-NUMBER-2'
USRDOM(4)='BLOCK-NUMBER-9'
DO 105 DOMAINN=3,4

CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=2
DO 106 J=1, JLEN

DO 107 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
107 CONTINUE
106 CONTINUE

105 CONTINUE

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=15
DO 108 J=1, JLEN

DO 109 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUNMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ASSANG

C
109 CONTINUE
108 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUNMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WAHSMEANM, RAIVGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF MID1 DATA'

ENDIF
ENDIF

C
C--------- middle2

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP= 0.0
SUMU= 0.0

-D34-

Appendix D- Fortran Routines

SUMw=O.
SUMWABS=O.

SUMRANG=0.0
SUMAANG=0.0

USRDOM(3)='BLOCK-NUMBER-2'
USRDOM(4)='BLOCK-NUMBER-9'
DO 139 DOMAINN=3,4
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
1=5
DO 140 J=1, JLEN

DO 141 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUNU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
141 CONTINUE
140 CONTINUE
139 CONTINUE

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

1=12
DO 142 J=1, JLEN

DO 143 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAP
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUNU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
143 CONTINUE
142 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMA/SUMMF
WMEANM= SIIMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,

+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF MID2 DATA'

C ENDIF
ENDIF

C
C--------- middle3

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. O) THEN

-D35-

Appendix D- Fortran Routines

SUMMF=0.0
SUMXP=0.0
SUMtJ= 0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

USRDOM(3)='BLOCK-NUMBER-2'
USRDOM(4)='BLOCK-NUMBER-9'
DO 110 DOMAINN=3,4
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=8
DO 111 J=1, JLEN

DO 112 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWASS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
112 CONTINUE
111 CONTINUE
110 CONTINUE

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

1=9
DO 113 J=1, JLEN

DO 114 K=1, KLEN

INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI

ABSANG=ATAN2(WABS, U(INODE, 1))*180/pI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
114 CONTINUE
113 CONTINUE

PLNXM= SUMXP/SIJNMF
UMEANM= SUMt/StTh F
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF

RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF MID3 DATA'

ENDIF
ENDIF

-D36-

Appendix D- Fortran Routines

C--------- middle4
IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SLTMMF= 0.0

SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

USRDOM(3)='BLOCK-NUMBER-2'
USRDOM(4)='BLOCK-NUMBER-9'
DO 180 DOMAINN=3,4

CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,
ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=11
DO 181 J=1, JLEN

DO 182 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
182 CONTINUE
181 CONTINUE
180 CONTINUE

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

1=6
DO 183 J=1, JLEN

DO 184 K=1, KLEN
INODE=IP(I, J, K)

C
WABS=W(INODE, 1)+YP(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUNMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUNU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+NAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
184 CONTINUE

183 CONTINUE
PLNXM= SUMXP/SUMMF

UMEANM= SUMU/SUNMF

WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF

AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI

PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI
C

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF MID4 DATA'

-D37-

Appendix D- Fortran Routines

ENDIF
ENDIF

C
C--------- middle5

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

USRDOM(3)='BLOCK-NUMBER-2'
USRDOM(4)='BLOCK-NUMBER-9'
DO 115 DOMAINN=3,4
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=15
DO 116 J=1, JLEN

DO 117 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SIJ14MF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUNU=SUMU +PIAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
117 CONTINUE
116 CONTINUE
115 CONTINUE

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=2
DO 118 J=1, JLEN

DO 119 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUNMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
119 CONTINUE
118 CONTINUE

PLNXM= SUMXP/SUMMF

UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

-D38-

Appendix D- Fortran Routines

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF MID5 DATA'

ENDIF
ENDIF

C
C--------- exitl

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

USRDOM(5)='BLOCK-NUMBER-3'
USRDOM(6)='BLOCK-NUMBER-10'

DO 120 DOMAINN=5,6
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT,

ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=4
DO 121 J=1, JLEN

DO 122 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUHLT +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
122 CONTINUE

121 CONTINUE
120 CONTINUE

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=13
DO 123 J=1, JLEN

DO 124 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
BELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
124 CONTINUE
123 CONTINUE

PLNXM= SUMXP/SUMMF

UMEAMM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF

-D39-

Appendix D- Fortran Routines

RANGM= SUMRANG/SUNMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI

PLNABSM=ATAN2(WABSMEANM, ÜMEANM)*180/PI
C

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF EXIT1 DATA'
C

ENDIF
ENDIF

C
C---- exit2

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

C
SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUNRANG=0.0

C
SUMAANG=0.0

CALL IPREC('BLOCK-NUMBER-3', 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

K=13
DO 170 J=1, JLEN

DO 171 I=12, ILEN
INODE=IP(I, J, K)

C
WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+

+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))
SUMMF=SUMNF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
171 CONTINUE
170 CONTINUE

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', ' CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

K=13
DO 172 J=1, JLEN

DO 173 1=1,7
INODE=IP(I, J, K)

C
WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
173 CONTINUE
172 CONTINUE

CALL IPREC('BLOCK-NUMBER-101, 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

C

-D40-

Appendix D- Fortran Routines

LOOP OVER PATCH
I=8
DO 174 J=1, JLEN

DO 175 K=1, KLEN
INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAP
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUND +MAF*U(INODE, 1)

SUMW=SUMW +MAP*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
175 CONTINUE
174 CONTINUE

PLNXM= SUMXP/SUMKF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUNIlKF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF

AANGM= SUMAANG/SUMMF
PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF EXIT2 DATA'

ENDIF
ENDIF

C
C--------- exit3

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=O. 0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

C
CALL IPREC('BLOCK-NUMBER-3', 'BLOCK', 'CENTRES', IPT,

ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
DO 176 J=1, JLEN
DO 177 I=14, ILEN
K=KLEN

INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUNRANG=SUNRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
177 CONTINUE
176 CONTINUE

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', 'CENTRES', IPT,

+ ILEN, JLEN, KLEN, CWORK, IWORK)

C

-D41 -

Appendix D- Fortran Routines

C

LOOP OVER PATCH
K=KLEN
DO 178 J=1, JLEN

DO 179 I=1,3
INODE=IP(I, J, K)

WABS=W(INODE, 1)+yP(INODE)*WNEW

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))
SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUNAANG=SUMAANG+MAF*ABSANG

C
179 CONTINUE
178 CONTINUE

CALL IPREC('BLOCK-NUMBER-10', 'BLOCK', 'CENTRES', IPT,
+ ILEN, JLEN, KLEN, CWORK, IWORK)

LOOP OVER PATCH
I=13
DO 190 J=1, JLEN

DO 191 K=1, KLEN
INODE=IP(I, J, K)

WAGS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

NAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUNU=SUMU +NAF*U(INODE, 1)

SUMW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
191 CONTINUE
190 CONTINUE

PLNXM= SUMXP/SIJMMF
UMEANM= SUMU/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, OMEANM)*180/PI

C

C

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEAMM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF EXIT3 DATA'

ENDIF
ENDIF

C
C--------- exit4

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN
IF (MOD(KSTEP, 20). EQ. 0) THEN

SUMMF=0.0
SUMXP=0.0
SUMU=0.0

SUMW=0.0
SUMWABS=0.0

SUMRANG=0.0
SUMAANG=0.0

CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', ' CENTRES', IPT,
ILEN, JLEN, KLEN, CWORK, IWORK)

C
C LOOP OVER PATCH

-D42-

Appendix D- Fortran Routines

I=2
DO 130 J=1, JLEN

DO 131 K=1, KLEN

INODE=IP(I, J, K)

WABS=W(INODE, 1)+YP(INODE)*WNEW
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3)))

SUMMF=SUMMF +MAF
SUMXP=SUMXP +MAF*XP(INODE)
SUMU=SUMU +MAF*U(INODE, 1)

SUNW=SUMW +MAF*W(INODE, 1)
SUMWABS=SUMWABS+MAF*WABS

SUMRANG=SUMRANG+MAF*RELANG
SUMAANG=SUMAANG+MAF*ABSANG

C
131 CONTINUE
130 CONTINUE

PLNXM= SUMXP/SUMMF
UMEANM= SUMü/SUMMF
WMEANM= SUMW/SUMMF

WABSMEANM= SUMWABS/SUMMF
RANGM= SUMRANG/SUMMF
AANGM= SUMAANG/SUMMF

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM,
+ AANGM, PLNRELM, PLNABSM

WRITE(ITXT, *)'END OF EXIT4 DATA'

ENDIF
ENDIF

c
C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++
C

RETURN
END

-D43-

Appendix E- Previous publications relating to this work

THE DYNAMIC RESPONSE OF TURBINE FLOWMETERS IN

B. LEE
LIQUID FLOWS

R. CHEESEWRIGHT C. CLARK

Systems Engineering Department, Brunel University, Uxbridge, Middlesex, UK

ABSTRACT

The dynamic response of turbine flowmeters in
low pressure gas flows (i. e. where the rotational
inertia of the fluid is negligible) is well understood
and methods for correcting meter signals for a lack

of response are available. For liquid flows there
has been a limited amount of experimental work
on the response of meters to step changes but no
reports have been found of the response of meters
to sinusoidally pulsating flows.

A range of different sizes of meter from V inch

up to 1 inch have been subjected to sinusoidally
pulsating flows at pulsation frequencies up to 300
Hz. Results are presented which show that
although the mean flow rates indicated by the
meters do not show the large levels of 'over-

registration' associated with gas flows, there is

significant attenuation of the amplitudes of
pulsations. An attempt is made to show the
dependence of the attenuation on the flow

pulsation amplitude and the pulsation frequency.
The attenuation is also compared to the predictions
of an Atkinson type of model of the response,
using values of the meter response parameter
scaled to the appropriate fluid density.

Key words: turbine meters, dynamic response,
liquid flow

INTRODUCTION

Turbine flowmeters have been used extensively
in fluid measurement and the ability of this
flowmeter to respond rapidly to transient flow

conditions is an important characteristic. In

sinusoidally pulsating flows, the meter accuracy
deteriorates with increases in the amplitude and
with increases in the frequency of pulsation. If the

meter does not rapidly follow the flow rate, then

erroneous mean flow measurements as well as
erroneous time varying flow measurements can
occur.

Within a pulsation cycle, the increasing flow

creates higher incidence angles on the turbine
blades giving the rotor relatively rapid
acceleration; when the flow decreases the

incidence angles on the blades are lower and the
rotor may stall with low lift and hence experience
low deceleration [1]. A combination of these
effects causes two common, known problems in
turbine flowmetering. Firstly there is a difference
between the pulsation amplitude indicated by the
meter and the true pulsation amplitude; secondly
the mean blade passing frequency is higher than
that which would occur with the corresponding
steady flow. These two effects are commonly
termed "amplitude attenuation" and "over-
registration" respectively.

The occurrence of these errors has been known
for nearly 70 years, and a number of workers [2,3,
4] have published suggestions of possible
procedures for the estimation of correction factors
for meters operating in gas flows. However, in
pulsating liquid flows, there is a lack of
experimental data on the meter dynamic response.
Therefore it is of interest to investigate, both
theoretically and experimentally, the dynamic
response of small turbine flowmeters under
pulsating liquid flows, so that the undesirable
effects of pulsation on accuracy of flow
measurement can be understood and appropriate
action can be taken to avoid, or correct for,
metering errors.

The published theories of transient meter
response in gas flow are all very similar [5,6.7]
and these treatments assume, either implicitly or
explicitly, that the rotational inertia of the fluid
contained within the turbine rotor is negligible
compared to that of the rotor itself. In some cases
[8,9], there are no friction effects; and the flow is
assumed to follow the blades. This approach can
be generalised in the form of the equation shown
below.

bdd _V 2_ý/�, i/a (1)

where V. is the volume flow rate indicated by
the meter (= k fb , where k is a meter constant and
fb is the blade passing frequency); V. is the true
volume flow rate and t is time. The response

- EI -

Appendix E- Previous publications relating to this work

parameter, b, determines how quickly the meter
responds to changes in the flow rate; it depends on:
the inertia of the rotor IR

, the hydrodynamic

properties of the fluid and the aerodynamic
characteristics of the blades. A simple
representation of b is given by

b=1- (2)
pr

where r is mean radius of rotor and p is fluid
density.

Atkinson [10] developed a software tool to
calculate the over-registration error of a turbine
meter in a pulsating gas flow. The tool is based on
a normalised form of equation (1), assuming
sinusoidal pulsations.

The only published attempt at a general
representation of the response of a turbine meter in

a liquid (or high density gas) flow is that by
Dijstelbergen [11]. His equation effectively
redefines the parameter b as :

11. +
b=Z (3)

pr

where If is the rotational inertia of the fluid

contained within the envelope of the turbine rotor.
However, he also includes a term involving the

product of If and the time rate of change of the

true flow through the meter. The significance of
this second term is not clear and the inclusion of it
in any attempt to correct for over-registration
and/or attenuation errors presents problems
because the rate of change of the true flow is not a
known quantity; also because it implies that b and
1j need to be known separately. Cheesewright

and Clark [12] have reported that an attempt to
correlate the results of (small) step response tests
using the Dijstelbergen equation was not very
satisfactory.

Other published reports of work on the
response of turbine meters to liquid flows include
the experimental work of Higson [13], and the
theoretical work of Jepson [14]. However these
both deal with the response to a flow which starts
(instantaneously) from zero and it is doubtful
whether the exact mechanism of the response to
such a change will be the same as that for either
small step changes or sinusoidal flow pulsations.
The step response tests reported by Cheesewright
and Clark [12] did not included start-up from zero
but they did include steps to zero and in that case it
was demonstrated that the whole mechanism of the
response was different because the forces on the
turbine rotor are dominated by disk friction effects
rather than by fluid dynamic forces on the blades.

In experiments which are described below, the
details of the responses of a number of small
turbine flowmeters to (sinusoidally) pulsating flow
have been measured. The initial attempt to
correlate these measurements, which is reported in
the present paper, involved an approach similar to
that used by Atkinson for gas flows, but with the
meter response parameter modified to include the
rotational inertia of the fluid contained within the
turbine rotor, as outlined above.

piston A
PWQP electromagnetic by pass

flowfneter lines

test
P meter weigh

pump
pressure

'9w -

transducer

-ol

sump

reference
flowmeter

Figure 1A schematic diagram of the test rig

-E2-

Appendix E- Previous publications relating to this work

FLOW TEST FACILITY AND TEST
PROCEDURE

A schematic diagram of the flow test rig,
designed to allow testing of meters in the size
range 1/a in. to 1 in., is shown in Figure 1. Steady
flow was produced by a positive displacement

pump with a helical rotor (Monopump model
CE064MS1R3/H421) driven at a fixed speed. The

pump intake was fed from a sump holding in

excess of 30 m3 of water. The required flow rate
through the test meter was attained by adjusting
the fraction of pump outflow diverted through two
bypass lines. This provided the nominal meter
flow rates, required for the present tests, of
0.095 kg/s to 1.75 kg/s. Continuously timed
gravimetric collection using a weigh tank provided
a primary flow rate standard with a measurement
uncertainty of ±0.1%. An electromagnetic
flowmeter provided a secondary flow rate
reference. The positive displacement pump
produced a steady flow condition except for very
small fluctuations at approximately 11.5 Hz and
23 Hz due to the two driving rotors each with two
lobes. However, the magnitude of these pulsations
was very small compared with the sinusoidal
pulsations produced by the purpose built piston
pump.

The piston pump was driven by an
electromagnetic actuator, over a frequency range
of 5 Hz to 300 Hz. The amplitude of the pulsations
was varied within the limit imposed by the
maximum actuator force of 600 N and the need to
avoid cavitation. The piston pump was connected
to the main flow line through a T-piece, a short
distance upstream of a second electromagnetic
flowmeter. In order to ensure that a very high
fraction of the flow pulsation was added to the
downstream flow (through the test meter), the
mean flow component was supplied at an upstream
pressure of 20 bar. An appropriate length of a
relatively small-bore tube dropped the pressure to
2 bar at the location of the piston pump. Pulsation

amplitudes were restricted to ensure that the

minimum pressure within the pulsation cycle
remained above atmospheric pressure.

The pulsation flow waveform was obtained
from a commercially available electromagnetic
(EM) flowmeter, 1" Krohne (model
IFM401OK/D/6), located between the pulsator and
the turbine flowmeter. The EM meter was
energised (unconventionally) from a 12V d. c.
source. In order to avoid effects of shifting d. c.
levels (due to electrolytic action at the meter
electrodes), the meter signal was a. c. coupled to a
high gain (10 000 to 150 000) amplifier to produce
signal amplitudes suitable for data logging.

This procedure allowed pulsations to be
recorded over a frequency range of 5 Hz to 300 Hz
and thus avoided the frequency limitation that
would have arisen from the conventional a. c.
excitation of the meter. The EM signal was
calibrated with the aid of the signal from an
accelerometer, which sensed the motion of the
pulsator piston rod. The accelerometer signal was
integrated to give the velocity of the piston
motion; the instantaneous volume flow rate during
the pulsation cycle could be found by multiplying
the velocity by the cross sectional area of the
piston. The repeatability of this calibration was
better than 5% over a period of three days.

The turbine meter under test was placed
downstream of the electromagnetic flowmeter and
the outlet from the meter was fed to a weigh tank.
An electromagnetic pick-up on the meter generates
a signal each time a turbine blade passes and this
signal was amplified and digitised. The resulting
digital time history of the meter signal was
analysed using the LABVIEW (V. 5.1) graphical
programming language. Not all of the test meters
produced a signal from the electro-magnetic pick-
up which was absolutely sinusoidal. Figure 2a
shows an example of the digitised meter output
signal for a pulsation flow test, from which it can
be seen that the signal has the features of a
sawtooth waveform.

The conventional method of processing turbine
meter signals is to convert the quasi sinusoidal
signal to a pulse signal with a pulse generated at
either the + to - zero crossing or the - to + zero
crossing. The reciprocal of the time between
successive pulses is then the blade passing
frequency. However, in the present work it was
desired to test meters at the highest possible flow
pulsation frequencies, and since one of the features
of interest was the pulsation amplitude attenuation,
this required some 8 to 10 data points per pulsation
wave which would have restricted the pulsation
frequency to 1/8s' of the blade passing frequency.
It is clearly possible to generate pulses at both of
the zero crossings in a given cycle of the signal
from the pick-up but consideration of the
waveform displayed in Figure 2a shows that the
intervals between such pulses cannot be used to
give two independent estimates of the blade
passing frequency per signal cycle. The best that it
is possible to do is to take the period between two
successive + to - zero crossings and to associate
that with the average blade passing frequency over
that period and then to take the period between the
two - to + zero crossings and to associate that with
the average over that period. Thus it is possible to
get twice as many data points per signal cycle, but
successive data points are averages over (partially)

-E3-

Appendix E- Previous publications relating to this work

4.0
00

=
2.0

0

0.0

-2.0
v

-4.0

Time/(s)

Figure 2a Turbine meter output signal reconstructed from digital data

0.45
0.40

0.30

0
0.20

0.15
Ö

Time/(s)

Figure 2b Turbine flow waveform processed by using four points per cycle technique for waveform in Figure 2a

overlapping periods. It is even possible to extend
this process by identifying successive maxima and
successive minima, thus giving 4 data points per
signal cycle but each of the data points will be an
average over a period of one signal cycle, with a
75% overlap between successive periods.

Figure 2b shows an example of a pulsation
waveform constructed from 4 data points per
signal cycle and with this approach it is potentially
possible to examine the meter response to flow

pulsations at frequencies as high as 1/3rd of the
blade passing frequency. However, it must be

noted that the identification of maxima and
minima will be inherently less accurate than the
identification of zero crossings. For some tests it

was found that the data points thus generated were
too inaccurate to be of value so that it was
necessary to revert to only 2 data points per signal
cycle. It must be noted, from Figure 2b, that the
data points are not equally spaced in time; there is

a greater concentration of data points during times

of high flow rate than during times of low flow

rate. Thus a simple average of all the estimates of
the flow rate does not give a true mean flow rate; it
is necessary, either to integrate the flow rate/time
history or, as was done in the present work, to
digitally re-sample the flow rate/time history at
equal intervals of time.

Five meters were tested and their

characteristics and testing conditions are given in
Table 1. The meters were tested with pulsation
frequencies ranging from 5 Hz up to a maximum
frequency which varied from meter to meter and

which was dictated by the blade passing frequency
produced by the mean flow rate. Three different
pulsation amplitudes were applied at each
frequency.

Mete Blade
No.

Experimental
K factor
/(pulsellitre)

Operatin
g
flowrate
/(litres)

Maximum
pulsation
frequency
/ Ilz

A 3 1608 0.0% 20

B 3 517 0.290 120

C 5 9017 0.096 80

D 6 2614 0.290 300
E 5 187 1.700 120

Table I Brief characteristics and test conditions of each

meter

RESULTS

The results for each meter were qualitatively
very similar. At the largest pulsation amplitudes
they all experienced significant over-registration
for pulsation frequencies above 20 Hz and
significant pulsation amplitude attenuation, for
pulsation frequencies above 5 Hz. The maximum
over-registration observed was 5%. The tests
showed that both the over-registration error and
the amplitude attenuation increased significantly
with increasing pulsation frequency but they only
increased slowly with increasing pulsation
amplitude.

-I 4-

Appendix E- Previous publications relating to this work

In the following quantitative discussion of the
meter behaviour, the `relative pulsation amplitude'
is defined by half of the peak to peak variation of
the flow rate as a percentage of the mean flow rate;
the `over-registration' is defined by the indicated

mean flow rate minus the true mean flow rate as a
percentage of the true mean flow rate and the
`amplitude attenuation' is defined by the peak to
peak variation of the true flow rate minus the peak
to peak variation of the indicated flow rate as a
percentage of the peak to peak variation of the true
flow rate.

As an example of the effects, for one particular
meter (meter B), at 20 Hz pulsation frequency, the
imposed relative pulsation amplitude ranged from
17% to 40%, the observed over-registration errors
were 0.27% to 1.58% with amplitude attenuation
between 32% to 33%. For the same meter, at
40 Hz pulsation frequency and the same range of
imposed pulsations, the over-registration errors
were between 0.53% and 3.40% with amplitude
attenuation between 43% and 44%. Figure 3 shows
the true flow waveform as compared to the meter
indicated flow waveform when 40% relative
pulsation amplitude is applied at 20 Hz. The

waveform of the true flow was obtained from the
EM flowmeter and this was off-set to give a mean
flow rate which agreed with that obtained from the
weigh tank. Individual data points are not shown in
Figure 3 (and 4) because they would overlap one
another.

In assessing the significance of the above
values of the over-registration error, it must be

noted that the uncertainties quoted by the
manufacturers for the meters used in these tests

ranged from ±0.5% of full scale to ±1.0% of full

scale (over the linear range of the meters). Thus,
for all the meters, there are ranges of frequency

and amplitude over which the errors due to over-
registration are smaller than the meter uncertainty
but there are only very limited ranges of conditions
where the error due to amplitude attenuation are
not significant.

Timet(s)

Figure 3 Comparison of true flow and meter indicated flow
at 20Hz imposed pulsation with 40% relative
pulsation amplitude

SIMULATION OF METER
BEHAVIOUR

As indicated in the Introduction, an initial
attempt to correlate the data was made using an
Atkinson type model in which the meter response
parameter was modified in the manner indicated
by equation (3). When the modified equation (1)
is normalised in the form used by Atkinson, it can
be written, for a sinusoidally pulsating flow
(V, = V,

o (I +a sin T)) , as

B' +F(1+asin T)=(1+asin T)2 (4)

where F=V. /Vao, B'= 2irb' fo /V, 0.
T= 2mf,, and fp is the frequency of the

pulsation.

Before equation (4) can be solved for F as a
function of T, values for B' and a are required. For
any given test fp is known and a and V.

0 can be
determined from the EM flowmeter data and
weigh tank data, respectively, but a value of b' is
required. In all the work on the response of
turbine meters in gas flows, b has been determined
experimentally from step response tests, but such
tests are much more difficult in water because the
step must be much faster and the dynamic
pressures involved are much larger. The only
published reports of step tests in water are those by
Cheesewright and Clark [12), which include data
for two of the meters used in the current tests. For
one of these meters Cheesewright and Clark also
report values of b obtained by calculation from
step tests with the meter in air flow and values of b
obtained by calculation from engineering drawings
of the meter rotor. These data suggest that

- True flow
Actual meter Simulaled meter

indicated flow ---" indicated flow

a_

3

I

0

0.45

0.40

0.35

0.30

0.25

0.20

0.15

'lime/(S)
Figure 4 Meter B- Comparison of true, actual meter
indicated and simulated meter indicated flow at 40Hz imposed
pulsation with 40% relative pulsation amplitude

-E5-

- True flow "°°°°" Meter indicated flow

Appendix E- Previous publications relating to this work

adequate estimates of the value of b' can be

obtained from drawings of a meter rotor if it is

assumed that only the fluid contained within the
envelope of the meter rotor contributes to If. This

approach was used to obtain values of b' for those
meters which had not been subjected to step
response tests.

Equation (4) was solved numerically (using
Mathematica (V. 4.0.1)) and from the resulting
F(T) a simulated meter output can be obtained.
Figure 4 shows a comparison of the simulated
meter output with the actual meter output and the
true flow rate (as given by a combination of the
pulsation waveform from the EM flowmeter and
the mean flow rate from the weigh tank) for meter
B when subjected to a 40% relative amplitude
pulsation at 40 Hz. Table 2 shows one example of
the results of the simulations for each of the
meters, expressed in terms of the over-registration
and amplitude attenuation as given by the actual
meter output and by the simulated meter output.

DISCUSSION

The experiments have shown that all the meters
suffer from significant pulsation amplitude errors
over a range of pulsation amplitudes and
frequencies. The over-registration error is

proportionately much smaller than the pulsation
amplitude error, but is greater than the
measurement uncertainty quoted by the meter
manufacturers over some ranges of conditions. As

might be expected, both the amplitude attenuation
and the over-registration increase with increasing

pulsation frequency and (slowly) with increasing

pulsation amplitude.

A comparison has been made between the flow

rate indicated by the observed meter output signal
and that suggested by an Atkinson type simulation,
based on the true (pulsating) flow rate. Figure 4

shows that the general form of the simulation
appears to be correct although the simulation
produces too large an amplitude attenuation and
also too large an over-registration. However, the
brief selection of results for different meters,
reproduced in Table 2, shows some inconsistency
in the accuracy of the simulation. It is not readily
apparent whether this inconsistency arises from

uncertainties in the values of the response

parameter for the different meters or whether it
indicates a need to include an additional term in
the meter response equation as suggested by
Dijstelbergen [11]. In a program of continuing
work on the dynamic response of small turbine
meters in liquid flows it is intended to attempt to
determine the appropriate values of the response
parameters by means of step response tests.

The results presented in this paper also serve to
emphasise another feature of performance of small
liquid flow turbine meters, which does not appear
to have been discussed by previously.
Conventionally these meters generate a signal by
virtue of the turbine blades passing an
electromagnetic pick-up so that the rate at which
information is obtained about the rotational speed
of the turbine is equal to the blade passing
frequency (or slightly more than this as indicated
in this paper). It is clear from the data that,
physically, the meters can respond to flow
pulsations with frequencies higher than the blade
passing frequency (albeit, with significant
amplitude attenuation), but that the normal
operation of the meters does not allow information
about this response to be extracted from the meter.
If it was desired to exploit the response of these
meters to the highest frequencies, assuming that it
proves to be possible to correct for the inertia of
the meter, it would be necessary to devise an
alternative method for obtaining an output signal
proportional to the rotational speed of the meter.

CONCLUSIONS
New data have been obtained, which

demonstrate the occurrence of over-registration
and amplitude attenuation when a small turbine
flowmeter is subjected to a pulsating liquid flow

. Although the over-registration errors are
within the limits of specified meter accuracy for
low frequency pulsations they may be significant
for higher frequencies and larger pulsation
amplitudes. The amplitude attenuation error is
likely to be significant over a considerable range
of amplitudes and frequencies and can be as large
as 50%. An Atkinson type model of the meter
response has been investigated as a basis for a
possible correction procedure and currently work
is being undertaken to investigate this, and other
correction procedures, further.

Test Condition Ex tsl Result Simulation Result

NEMR Pulsation
Frequency

Relative Pulsation
Amplitude

Actual Mean
Flowrate/(Vs)

Over-
registration

Amplitude
Attenuation

Over-
registration

Amplitude
Attenuation

A 20Hz 54% 0.095 0.74% 44% 8.68% 40%
B 40Hz 40% 0.291 3.39% 44% 6.65% 57%
C 20Hz 50% 0.096 1.66% 52% 8.38% 45%
D 80Hz 33% 0.290 1.81% 46% 3.63% 45%
E 70Hz 6.36% 1.745 0.1% 38% 0.18% 63%

Table 2 Comparison of Experimental and Simulation Results

-h6-

Appendix E- Previous publications relating to this work

ACKNOWLEGEMENT

The experimental work and part of the input
from the second author were supported by a grant
from the UK Engineering and Physical Sciences
Research Council.

REFERENCES

[1] R. C. Baker, Turbine flowmeters: II.
Theoretical and experimental published
information, Flow Meas. Instrum., 4(3), 1993,
123-144.
[2] E. Ower, On the response of a vane
anemometer to an air-stream of pulsating speed,
Phil. Mag., 7(23), 1937,992-1004.

[31 W. F. Z. Lee, M. J. Kirik, J. A. Bonner, Gas
turbine flowmeter measurement of pulsating flow,
J. Engineering for Power, Trans. ASME, October,
1975,531-539.

[4] J. W. Bronner and R. J. McKee, Cogen

pulsation effects on turbine metering, American
Gas Association, Operating Section, Proceedings,
1991,625-638.

[51 J. Grey, Transient response of the turbine
flowmeter, Jet Propulsion, February, 1956,98-
100.

[6] W. F. Z. Lee and H. J. Evans, A field method
of determining gas turbine meter performance, J.
Basic Eng. Trans. ASME, December, 1970,717-
728.

[7] R. Cheesewright, D. Edwards and C. Clark,
Measurements with a turbine flow meter in the
presence of large, non-sinusoidal pulsations, Proc.
FLUCOME '94, Toulouse, France, August, 1994.

[81 R. J. McKee, Pulsation effects on single- and
two-rotor turbine meters, Flow Meas. Instrum.,
3(3), 1992,151-166.

[9] R. Cheesewright et al, Field tests of correction
procedures for turbine flowmeters in pulsatile
flows, Flow Meas. Instrum., 7(1), 1996,7-17.

[10] K. N. Atkinson, A software tool to calculate
the over-registration error of a turbine meter in
pulsating flow, Flow Meas. Instrum., 3(3), 1992,
167-172.

[11] H. H. Dijstelbergen, Rotameters and turbine
flowmeters in pulsation flow measurement,
Measurement and Control, 3, December, 1970,

197-204.

[12] R. Cheesewright and C. Clark, Step response
tests on turbine flowmeters in liquid flows, Proc.
Instn. Mech. Engrs., 211(A), 1997,321-330.

[13) D. J. Higson, The transient performance of
turbine flowmeters in water, J. Sci Instrum., 42(5),
1964,337-342.

[14] P. Jepson, Transient response of a helical
flowmeter, J. Mech. Eng. Sci., 6(4), 1964,337-
342.

-E7-

