
On Designing Observers for Time-Delay Systemswith Nonlinear Disturban
esZidong Wang�, D. P. Goodall and K. J. BurnhamControl Theory and Appli
ations CentreS
hool of Mathemati
al and Information S
ien
esCoventry University, Coventry CV1 5FB, U.K.Abstra
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lass of time-delay nonlinearsystems. The system under 
onsideration is subje
t to delayed state and nonlineardisturban
es. The time-delay is allowed to be time-varying, and the nonlinearitiesare assumed to satisfy global Lips
hitz 
onditions. The problem addressed is thedesign of state observers su
h that, for the admissible time-delay as well as nonlineardisturban
es, the dynami
s of the observation error is globally exponentially stable.An e�e
tive algebrai
 matrix inequality approa
h is developed to solve the nonlinearobserver design problem. Spe
i�
ally, some 
onditions for the existen
e of the desiredobservers are derived, and an expli
it expression of desired observers is given in termsof some free parameters. A simulation example is in
luded to illustrate the pra
ti
alappli
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tionOne of the fundamental problems in 
ontrol systems is to observe the state variables of adynami
 system through available measurement. In the past three de
ades, this problemhas attra
ted the attention of many resear
hers, see Chen (1984), O'Reilly (1983) andUnbehauen (1989). The methods that have been used in the observer design are verymany, su
h as algebrai
, geometri
, inversion approa
hes, generalized inverse, singularvalue de
omposition, and the Krone
ker 
anoni
al form te
hniques. Also, di�erent typesof state observers have been extensively studied, su
h as redu
ed and minimal-order, full-order, unknown input, fun
tional, disturban
e de
oupled, et
. The appli
ation areas of theobserver te
hnique range from system monitoring, system regulation, to fault dete
tionand isolation, see Frank (1990).�E-mail: Zidong.Wang�
oventry.a
.uk. Tel.: ++44/24 76888972, Fax: ++44/24 76888052.1



It has now been well re
ognized that the dynami
 behaviour of many industrial pro
esses
ontains inherent time delays. Time delays may result from the distributed nature of thesystem, material transport, or from the time required to measure some of the variables. Ithas been known that pro
esses with time-delays are inherently diÆ
ult to 
ontrol (Gore
kiet al. 1989), in the sense that it is diÆ
ult to a
hieve satisfa
tory performan
e. Therefore,
ontrol of time-delay systems has been a subje
t of great pra
ti
al importan
e that hasattra
ted a great deal of interest for several de
ades, see, e.g., Ni
ules
u et al. (1998) foran overview. It is notable that, for the observer design 
ase, the relevant literature arerelatively few for linear time-delay systems (see e.g. Lee et al. 1988, Wang and Burnham2001, Wang et al. 1999, Wang et al. 2001 and Yao et al. 1997).On the other hand, the problem of designing nonlinear observers has been investigated fora long time. There are mainly two resear
h dire
tions in this �eld. One is the extension ofthe linear Luenberger observer to the nonlinear 
ase, su
h as the extended Kalman �lterand the psuedo linearization te
hnique (see Misawa and Hedri
k 1989 for a survey). Thiste
hnique is valid in a small range around the operating point, and often also requiresheavy real-time 
omputation (Raghavan and Hedri
k 1994). The other is the di�erentialgeometri
 approa
h adopted to design exa
t observers for a general des
ription of nonlinearsystems ( see, for example, Hunt and Verma 1994, Xia and Zeitz 1997, and referen
estherein), where stringent assumptions are required.Re
ently, the observer/estimator design problem has been dealt with in Yaz and NaNa
ara(1993) for a 
lass of nonlinear dis
rete-time systems. In Thau (1973), an algebrai
 Lya-punov equation method has been developed to ta
kle the observer design problem for a
lass of 
ontinuous-time systems with nonlinear disturban
es. The results given in Thau(1973) have been useful to 
he
k the stability of the error dynami
s, but have not suggestedan e�e
tive approa
h to designing the stable observer. In Dawson et al. (1992), the prob-lem of design observers guaranteeing global exponential stability of the observation pro
esshas been addressed for 
ontinuous-time systems with nonlinear disturban
es. Moreover, bymaking use of the methods developed for the quadrati
 stabilization of un
ertain systems,Raghavan and Hedri
k (1994) have studied the same problem as in Thau (1973). A viabledesign methodology has been proposed in Raghavan and Hedri
k (1994) to systemati
ally
onstru
t the observer parameters. Unfortunately, in the literature mentioned above, thetime-delay has not been taken into a

ount. So far, to the best of the authors' knowledge,the issue of state observer design for time-delay systems with nonlinear disturban
es insystem states and outputs has not been fully investigated and remains to be importantand 
hallenging.In this paper, the results of Raghavan and Hedri
k (1994) and Thau (1973) are generalizedto more general systems. State observers for a 
lass of nonlinear systems with time-varyingstate delay are designed. The purpose is to design state observers su
h that the resultingobservation pro
ess remains globally exponentially stable for all addressed nonlinearities.A simple, algebrai
 parameterized approa
h is exploited, whi
h enables us to 
hara
terizeboth the existen
e 
onditions and the set of expe
ted nonlinear observers for the 
lassof nonlinear state delayed systems. It is shown that a desired solution is related to a2



Ri

ati-like matrix inequality (or a linear matrix inequality) that is not diÆ
ult to solve.The remainder of the present paper is arranged as follows. The nonlinear observer designproblem is formulated in Se
tion 2 for 
ontinuous time-delay systems. In Se
tion 3, themain results as well as detailed derivations are given, in
luding the existen
e 
onditionsand the expli
it expression of the desired nonlinear observers. A simulation example isprovided in Se
tion 4 to demonstrate the validity and appli
ability of the proposed theory.Finally, some 
on
luding remarks are drawn in Se
tion 5.Notations: The notations are quite standard. Throughout this paper, Rn and Rn�mdenote, respe
tively, the n-dimensional Eu
lidean spa
e and the set of all n � m realmatri
es. The supers
ript `T ' denotes matrix transposition and the notation X � Y(respe
tively, X > Y ) where X and Y are symmetri
 matri
es, means that X � Y ispositive semide�nite (respe
tively, positive de�nite). In is the n � n identity matrix,diagf� � � g stands for a blo
k diagonal matrix. j � j is the Eu
lidean norm in Rn . If A is amatrix, denote by kAk its operator norm, i.e., kAk = supfjAxj : jxj = 1g =p�max(ATA)where �max(�) (respe
tively, �min(�)) means the largest (respe
tively, smallest) eigenvalue ofA. Denote by C([�h; 0℄;Rn) the spa
e of all 
ontinuous fun
tions � = f�(�) : �h � � � 0gsu
h that sup�h���0 j�(�)j <1.2 Problem formulation and preliminariesConsider the following 
lass of nonlinear un
ertain time-delay systems des
ribed by_x(t) = Ax(t) +Adx(t� h(t)) + l(t; u(t); y(t)) + f(t; u(t); x(t)); (2.1)x(t) = '(t); t 2 [�h; 0℄; h = supt2[0;1)h(t); (2.2)together with the measurement equationy(t) = Cx(t) + g(t; u(t); x(t)); (2.3)where x(t) 2 Rn is the state, u(t) 2 Rm is the input, y(t) 2 Rp is the measurement output.A; Ad; C are known 
onstant matri
es with appropriate dimensions. l : R�Rm�Rp ! Rnis a known ve
tor fun
tion. f : R � Rm � Rn ! Rn and g : R � Rm � Rn ! Rn are,respe
tively, the state-dependent nonlinear disturban
es on the system model and on thesystem output. The known nonlinear ve
tor fun
tions f and g are assumed to satisfy thefollowing global Lips
hitz 
onditions:jf(t; u; x1)� f(t; u; x2)j � jF (x1 � x2)j; (2.4)jg(t; u; x1)� g(t; u; x2)j � jG(x1 � x2)j; (2.5)for all t 2 R, u 2 Rm , and x1; x2 2 Rn , where F; G 2 Rn�n are known 
onstant matri
es,and f(t; u; �) and g(t; u; �) are 
ontinuous with respe
t to the arguments t and u. Also,h(t) denotes the time-varying bounded state delay satisfying0 � h(t) � h <1; _h(t) � d < 1; (2.6)where h and d are s
alar 
onstants. It is also assumed that the pair (A;C) is dete
table.3



Remark 2.1 The system (2.1)-(2.3) en
ompasses many important physi
al systems, and
an be used to model many real dynami
 physi
al pro
esses that 
ontain inherent timedelays and nonlinear disturban
es (whi
h may result from linearization pro
ess of an origi-nally nonlinear plant or may be an a
tual external nonlinear input (Raghavan and Hedri
k1994). Note that if both the state delay and the nonlinear disturban
e on the system out-put disappear, the system (2.1)-(2.3) will redu
e to that studied in Raghavan and Hedri
k(1994) and Thau (1973).In this paper, the full-order nonlinear observer under 
onsideration is of the form_̂x(t) = Ax̂(t) +Adx̂(t� h(t)) + l(t; u(t); y(t)) + f(t; u(t); x̂(t))+K[y(t)�Cx̂(t)� g(t; u(t); x̂(t))℄; (2.7)where x̂(t) is the state estimate, and K 2 Rn�p is the observer gain matrix to be designed.Let the error state be de�ned by e(t) := x(t)� x̂(t); (2.8)then it follows from (2.1)-(2.3) and (2.7) that_e(t) = (A�KC)e(t) +Ade(t� h(t)) + [f(t; u(t); x(t)) � f(t; u(t); x̂(t))℄�K[g(t; u(t); x(t)) � g(t; u(t); x̂(t))℄: (2.9)Now, observe the error-state system (2.9) and let e(t; �) denote the state traje
tory fromthe initial data e(�) = �(�) on �h � � � 0 in C([�h; 0℄;Rn). Clearly, be
ause of the globalLips
hitz 
onditions on the nonlinearities f and g, the system (2.9) admits a trivial solutione(t; 0) � 0 
orresponding to the initial data � = 0. The following stability 
on
epts areintrodu
ed.De�nition 2.1 Consider the system (2.9) with u : R ! Rn , x; x̂ : R ! Rn 
ontinuousand every � 2 C([�h; 0℄;Rn), where h is the upper bound of the time-delay. The trivialsolution is globally asymptoti
ally stable if: (i) the system (2.9) has global boundednessof solution; and (ii) the trivial solution is stable and satis�eslimt!1 je(t; �)j = 0: (2.10)Furthermore, the trivial solution is globally exponentially stable if: (i) the system (2.9)has global boundedness of solution; and (ii) there exist 
onstants � > 0 and � > 0 su
hthat je(t; �)j � p�e��t=2 sup�h���0 j�(�)j: (2.11)The obje
tive of this paper is to design state observers for the nonlinear time-delay system(2.1)-(2.3). More spe
i�
ally, we are interested in seeking the observer gain, K, su
h thatfor the nonlinearities f and g, the error dynami
s of the system (2.9) remains globallyexponentially stable, independent of the time-varying delay h(t).4



Remark 2.2 In Wang and Burnham (2001), the �lter design problem for a 
lass ofnonlinear time-delay sto
hasti
 systems was investigated. However, in Wang and Burnham(2001), 1) the nonlinearities were assumed to satisfy the norm boundedness 
ondition,whi
h is stronger than the Lips
hitz 
ondition introdu
ed in this paper; 2) there wereno nonlinearities in the system outputs, the state delay was time-invariant, and the �lterstru
ture in Wang and Burnham (2001) was linear. Also, as will be seen later, we developa new linear matrix inequality approa
h in this paper for designing the nonlinear observersthat 
an guarantee the exponential stability of the observation pro
ess, and the algorithm
an be implemented readily by using the Matlab LMI Toolbox (Gahinet et al. 1995).3 Main results and proofsThe following S
hur 
omplement lemma will be needed in establishing our main results.Lemma 3.1 (Boyd et al. 1994) Given 
onstant matri
es 
1; 
2; 
3 where 
1 = 
T1 and0 < 
2 = 
T2 , then 
1 +
T3 
�12 
3 < 0if and only if " 
1 
T3
3 �
2 # < 0or equivalently " �
2 
3
T3 
1 # < 0:Initially, the observer analysis problem is 
onsidered. To be spe
i�
, for a given observer,suÆ
ient 
onditions are investigated for whi
h the error dynami
s of the observation pro-
ess (or the `
losed-loop' system) is globally exponentially stable.The theorem stated below will show that the global exponential stability of the errordynami
s is guaranteed if a positive de�nite solution to a quadrati
 matrix inequalityinvolving several s
alar parameters is known to exist.Theorem 3.1 Let the observer gain K be given. If there exist s
alars "1; "2; "3 > 0 anda symmetri
 matrix P > 0 su
h that the following matrix inequality(A�KC)TP + P (A�KC) + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTG < 0 (3.1)holds, then, under the dynami
s of the nonlinear time-delay error-state system (2.9), thetrivial solution is globally exponentially stable.
5



Proof: First for presentation 
onvenien
e, the following de�nitions are required:A
 := A�KC; (3.2) (t) := f(t; u(t); x(t)) � f(t; u(t); x̂(t)); (3.3)�(t) := g(t; u(t); x(t)) � g(t; u(t); x̂(t)); (3.4)and then the system (2.9) be
omes_e(t) = A
e(t) +Ade(t� h(t)) +  (t)�K�(t): (3.5)Now, an asymptoti
 stability property for system (2.9) is shown to hold under the 
ondition(3.1). Consider the Lyapunov fun
tional 
andidate� 7! Y (e(t+ �)) = eT (t)Pe(t) + Z tt�h(t) eT (s)Qe(s)ds; (3.6)where � 2 [�h; 0℄, P is the positive de�nite solution to the inequality (3.1) and Q � 0 isde�ned by Q := "�111� dATdAd: (3.7)It follows that the time derivative of Y along a given traje
tory is governed bydY (e(t))dt = eT (t)(AT
 P + PA
 +Q)e(t) + eT (t)PAde(t� h(t))+ eT (t� h(t))ATd Pe(t)� (1� _h(t))eT (t� h(t))Qe(t � h(t))+  T (t)Pe(t) + eT (t)P (t) � �T (t)KTPe(t)� eT (t)PK�(t): (3.8)Let "1; "2; "3 be positive s
alars. Then the matrix inequality�"1=21 eT (t)P � "�1=21 eT (t� h(t))ATd ��"1=21 eT (t)P � "�1=21 eT (t� h(t))ATd �T � 0yields eT (t)PAde(t� h(t)) + eT (t� h(t))ATd Pe(t)� "1eT (t)P 2e(t) + "�11 eT (t� h(t))ATd Ade(t� h(t)): (3.9)Moreover, the global Lips
hitz 
onditions (2.4)-(2.5) and the following inequality" "1=22  (t)� "�1=22 Pe(t)"1=23 �(t) + "�1=23 KTPe(t) #T " "1=22  (t)� "�1=22 Pe(t)"1=23 �(t) + "�1=23 KTPe(t) # � 0 (3.10)
6



imply that T (t)Pe(t) + eT (t)P (t)� �T (t)KTPe(t)� eT (t)PK�(t)� "2 T (t) (t) + "�12 eT (t)P 2e(t) + "3�T (t)�(t) + "�13 eT (t)PKKTPe(t)= "2jf(t; u(t); x(t)) � f((t; u(t); x̂(t))j2 + "3jg((t; u(t); x(t)) � g((t; u(t); x̂(t))j2+"�12 eT (t)P 2e(t) + "�13 eT (t)PKKTPe(t)� "2jF (x(t) � x̂(t))j2 + "3jG(x(t)� x̂(t))j2+"�12 eT (t)P 2e(t) + "�13 eT (t)PKKTPe(t)= "2eT (t)F TFe(t) + "3eT (t)GTGe(t) + "�12 eT (t)P 2e(t)+"�13 eT (t)PKKTPe(t)= eT (t)("2F TF + "3GTG+ "�12 P 2 + "�13 PKKTP )e(t): (3.11)Note that 0 � _h(t) � d < 1. Invoking (3.9), (3.11) and the de�nition of Q in (3.7), itfollows, from (3.8), thatdY (e(t))dt � eT (t)(AT
 P + PA
 +Q)e(t) + "1eT (t)P 2e(t)+ "�11 eT (t� h(t))ATdAde(t� h(t)) � (1� d)eT (t� h(t))Qe(t � h(t))+ eT (t)("2F TF + "3GTG+ "�12 P 2 + "�13 PKKTP )e(t)= eT (t)nAT
 P + PA
 + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTGoe(t); (3.12)whi
h indi
ates from the 
ondition (3.1) thatdY (e(t))dt < 0 (3.13)for almost all e(t) 6= 0.To this end, from Lyapunov stability theory (see, for example, Mi
hel and Wang 1995),Theorem 6.2.22), we arrive at the 
on
lusion that the trivial solution to the error-statesystem (2.9) is globally asymptoti
ally stable for the addressed nonlinearities f and g.Furthermore, for the proof of the expe
ted global exponential stability of the system (2.9),some standard manipulations on the relation (3.12) are required.De�ne � := AT
 P + PA
 + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTG: (3.14)Let � be the unique positive root of the equation�min(��)� ��max(P )� �h�max(Q)e�h = 0; (3.15)7



where � and Q are de�ned, respe
tively, in (3.14) and (3.7), P is the positive de�nitesolution to (3.1), and h (0 � h(t) � h) is the maximum of the time-varying state delay.From (3.12), it follows thatd�e�tY (e(t); t)� = e�t��Y (e(t); t)dt + dY (e(t); t)�� e�t�� ��min(��)� ��max(P )�je(t)j2 +��max(Q)Z tt�h(t) je(s)j2ds�dt:Then, integrating both sides from 0 to T > 0 givese�TY (e(T ); T ) � ��max(P ) + h(0)�max(Q)� sup�h(t)���0 j�(�)j2� ��min(��)� ��max(P )� Z T0 e�tje(t)j2dt+ ��max(Q)Z T0 e�t Z tt�h(t) je(s)j2dsdt:Note that 0 � h(t) � h and thereforeZ T0 e�t Z tt�h(t) je(s)j2dsdt � Z T0 e�t Z tt�h je(s)j2dsdt� Z T�h �Z min(s+h;T )max(s;0) e�tdt�je(s)j2ds � Z T�h he�(s+h)je(s)j2ds� he�h Z T0 e�tje(t)j2dt+ he�h Z 0�h j�(�)j2d�:Then, in view of the de�nition of � spe
i�ed by (3.15), it follows thate�TY (e(T ); T ) � ��max(P ) + h�max(Q)� sup�h���0 j�(�)j2+ ��max(Q)h2e�h sup�h���0 j�(�)j2;and, hen
e, je(T )j2 � ��1min(P )���max(P ) + h�max(Q)� sup�h���0 j�(�)j2+ ��max(Q)h2e�h sup�h���0 j�(�)j2�e��T :Noti
e that T > 0 is arbitrary and let� := ��1min(P )��max(P ) + h�max(Q)(1 + �he�h)�;the de�nition of global exponential stability in (2.11) is then satis�ed. This 
ompletes theproof of Theorem 3.1. �8



Remark 3.1 Theorem 3.1 provides a suÆ
ient 
ondition, in terms of a stabilty 
riterion,for the solvability of the original observer design problem asso
iated with the nonlineartime-delay system (2.1)-(2.3). This result may be 
onservative, mainly due to the intro-du
tion of the inequalities (3.9) and (3.11). However, the 
onservativeness in Theorem 3.1
an be signi�
antly redu
ed by appropriately sele
ting the design parameters "1; "2; "3 > 0.A related dis
ussion 
an be seen in Xie and Soh (1994), and referen
es therein.Remark 3.2 Note that the stability 
riterion (3.1) is independent of the time-varyingstate delay h(t), however, it does depends on the upper bound of the derivative of h(t).The result is suitable for the 
ase when the time-delay itself is unknown but the informa-tion regarding the upper bound on its derivative is available. On the other hand, if thetime-delay is perfe
tly known, a delay-dependent 
riterion would be believed to be less
onservative. This gives us one of the possible future resear
h topi
s.The observer synthesis problem 
an now be studied, that is, design an observer gainmatrix K su
h that the 
ondition of Theorem 3.1 is satis�ed. The following lemma willbe required for the proof of the main results.Lemma 3.2 Let X 2 Rm1�n1 and Y 2 Rm1�p1 (m1 � p1). There exists a matrix U 2Rn1�p1 whi
h simultaneously satis�es Y = XU and UUT = I if and only if XXT = Y Y T .Proof: See Glover (1984) for a proof of this lemma. �For the sake of simpli
ity, de�ne�("1; "2; "3; P ) = ATP + PA+ ("1 + "�12 )P 2 + "�111� dATdAd + "2F TF + "3GTG: (3.16)The next theorem establishes the ne
essary and suÆ
ient 
onditions for the existen
e ofan observer gain, K, satisfying the 
ondition (3.1).Theorem 3.2 There exist positive s
alars "1; "2; "3 and a symmetri
 positive de�nitematrix P su
h that the matrix inequality (3.1) has a solution K if and only if the followingquadrati
 matrix inequality "3CTC � �("1; "2; "3; P ) > 0 (3.17)holds. Furthermore, if (3.17) is true, all matri
es K satisfying the matrix inequality (3.1)
an be parameterized by K = "3P�1CT + "1=23 P�1�U; (3.18)where � 2 Rn�p is any matrix satisfying��T < "3CTC � �("1; "2; "3; P ); (3.19)and U 2 Rp�p is an arbitrary orthogonal matrix (i.e., UUT = In).
9



Proof: It is straightforward to rewrite the matrix inequality (3.1) as�CTKTP � PKC + "�13 PKKTP +�("1; "2; "3; P ) < 0; (3.20)or, alternatively,["�1=23 PK � "1=23 CT ℄["�1=23 PK � "1=23 CT ℄T < "3CTC � �("1; "2; "3; P ): (3.21)It is apparent that there exists an observer gain matrix K su
h that the inequality (3.1)(or equivalently (3.21)) holds for some positive s
alars "1; "2; "3 and a positive de�nitematrix P if and only if the right-hand side of (3.21) is positive de�nite, i.e., (3.17) holds.Therefore, the proof of the �rst part of this theorem is 
on
luded.Assume that (3.17) is satis�ed. Note that the dimension of the observer gain K is n� pand p � n. From (3.21) and the de�nition of � 2 Rn�p (spe
i�ed in (3.19)), it followsthat there exists � su
h that["�1=23 PK � "1=23 CT ℄["�1=23 PK � "1=23 CT ℄T = ��T : (3.22)Thus, Lemma 3.2 implies that "�1=23 PK � "1=23 CT = �U (3.23)where U 2 Rp�p is an arbitrary orthogonal matrix. Therefore, the expression (3.18) followsimmediately. This 
ompletes the proof of the theorem. �Remark 3.3 In pra
ti
al appli
ations, it is very desirable to dire
tly solve the Quadrati
Matrix Inequality (QMI) (3.17), and then obtain the expe
ted observer gain readily from(3.18). When working with the QMI (3.17), the lo
al numeri
al sear
hing algorithmssuggested in Beran and Grigoriadis (1996) and Geromel et al. (1993) are very e�e
tive fora relatively low-order model. A related dis
ussion of the solution algorithms for QMIs 
analso be found in Saberi et al. (1995).For relatively high-order model, the aforementioned algorithms no longer work well. For-tunately, we 
ould transform the QMI (3.17) into an asso
iated linear matrix inequality(LMI). It should be pointed out that, sin
e LMIs intrinsi
ally re
e
t 
onstraints ratherthan optimality, they tend to o�er more 
exibility for 
ombining several 
onstraints. LMIs
an now be solved eÆ
iently via interior-point optimization algorithms, su
h as those de-s
ribed in Gahinet et al. (1995). Moreover, software like MATLAB LMI Toolbox are nowavailable to solve su
h LMIs eÆ
iently.The following 
orollary gives an LMI representation of Theorem 3.2.Corollary 3.1 If there exist positive s
alars "1; "2; "3 and a symmetri
 positive de�nite
10



matrix P su
h that the following linear matrix inequality2666664 ATP + PA+ "3(GTG� CTC) P P "�11 (1� d)�1=2ATd "2F TP �"�11 I 0 0 0P 0 �"2I 0 0"�11 (1� d)�1=2Ad 0 0 �"�11 I 0"2F 0 0 0 �"2I
3777775 < 0;(3.24)whi
h is linear on the parameters "�11 , "2, "3, and P , holds, then all matri
es K satisfyingthe matrix inequality (3.1) 
an be parameterized by (3.18), where � 2 Rn�p is any matrixsatisfying (3.19), and U 2 Rp�p is an arbitrary orthogonal matrix (i.e., UUT = In).Proof: In view of Theorem 3.2, it suÆ
es to show that, there exist "1 > 0, "2 > 0, "3 > 0and P > 0 su
h that (3.17) holds if and only if there exist "1 > 0, "2 > 0, "3 > 0 andP > 0 su
h that (3.24) holds.It is easy to rearrange (3.17) as follows:ATP + PA+ "3(GTG�CTC) + ��T < 0 (3.25)where � := h "1=21 P "�1=22 P "�1=21 (1� d)�1=2ATd "1=22 F T i :If follows from the S
hur Complement Lemma (Lemma 3.1) that, the above inequalityholds if and only if26666664 ATP + PA+ "3(GTG� CTC) "1=21 P "�1=22 P "�1=21 (1� d)�1=2ATd "1=22 F T"1=21 P �I 0 0 0"�1=22 P 0 �I 0 0"�1=21 (1� d)�1=2Ad 0 0 �I 0"1=22 F 0 0 0 �I
37777775 < 0:(3.26)Pre- and post-multiplying the inequality (3.26) by the matrix26666664 I 0 0 0 00 "�1=21 I 0 0 00 0 "1=22 I 0 00 0 0 "�1=21 I 00 0 0 0 "1=22 I

37777775yield (3.24), and the proof is 
omplete. �The following result, whi
h is easily a

essible from Theorem 3.1 and Theorem 3.2, solvesthe observer design problem addressed in this paper for the nonlinear time-delay system(2.1)-(2.3). 11



Theorem 3.3 Consider the nonlinear time-delay system (2.1)-(2.3) and the asso
iatedfull-order observer (2.7). If there exist positive s
alars "1; "2; "3 and a symmetri
 positivede�nite matrix P su
h that the QMI (3.17) or LMI (3.24) holds, then the observer (2.7)with its parameter given in (3.18) will be su
h that, under the dynami
s of the observationerror (i.e., the solution of the error-state system (2.9)), the error zero-state is globallyexponentially stable.Remark 3.4 It is worth mentioning that, there is a lot of freedom (su
h as the 
hoi
esof matri
es � and U) in the observer design that may be used to improve other systemproperties. One of the future resear
h topi
s is how to exploit su
h freedom to a
hieve thespe
i�ed reliable 
onstraint on the observation pro
ess.4 Numeri
al simulationTo illustrate the usefulness and 
exibility of the proposed theory, a numeri
al simulationexample is dis
ussed in this se
tion.Assume that the nonlinear state delayed system (2.1)-(2.3) is des
ribed by the followingdata A = 264 �1:8 0:2 �0:5�0:3 �2:6 0:9�0:3 0:7 �2:4 375 ; Ad = 264 0:04 �0:01 �0:010:01 �0:03 0:020:01 �0:01 0:05 375 ;C = I3; h(t) = 0:4 sin(t) (d = 0:4); l(t; u(t); y(t)) � 0:For simulation purposes, suppose thatf(t; u; x) = 264 0:5 
os(x2 + x3)0�0:6 
os(x1 � x2) 375 ; g(t; u; x) = 264 0:4 
os x2�0:6 
os x10:5 sinx3 375 :Our aim is to design an observer, with the stru
ture (2.7), for the nonlinear time-delaysystem (2.1)-(2.3), su
h that, under the dynami
s of the error system, the error zero-stateis globally exponentially stable.First, F and G are estimated to be F = 0:5I3 and G = 0:4I3. Then, solve the LMI (3.24)to give:"1 = 0:3012; "2 = 1:4896; "3 = 0:8001; P = 264 3:1083 0:3707 0:83040:3707 4:7192 �1:91800:8304 �1:9180 4:5559 375 :It follows from Corollary 3.1 that, the desired observer gain 
an be parameterized byK = "3P�1CT + "1=23 P�1�U , where � 2 R3�3 and U 2 R3�3 satisfy��T < 264 2:8001 �0:0000 0:00000:0000 2:8001 0:0000�0:0000 �0:0000 2:8001 375 ; UUT = I312



Due to the freedom in 
hoosing the parameters � and U , the number of the desiredobserver gains is in�nite. Thus, to illustrate su
h design 
exibility, we take the followingfour 
ases as examples:Case 1: � = 1:5I3, U = I3;Case 2: � = �1:5I3, U = diagf�1;�1; 1g;Case 3: � = 0:45I3, U = diagf1;�1;�1g;Case 4: � = �0:45I3, U = �I3.For the above four 
ases, the 
orresponding observer gain matri
es are obtained from(3.18), respe
tively, as follows:Case 1 : K = 264 0:7583 �0:1396 �0:1970�0:1396 0:5732 0:2668�0:1970 0:2668 0:6183 375 ;Case 2 : K = 264 0:4100 �0:0755 �0:0407�0:0755 0:3099 0:0551�0:1065 0:1442 0:1277 375 ;Case 3 : K = 264 0:4258 �0:0259 �0:0366�0:0784 0:1064 0:0495�0:1106 0:0495 0:1148 375 ;Case 4 : K = 264 0:4258 �0:0784 �0:1106�0:0784 0:3219 0:1498�0:1106 0:1498 0:3472 375 :Denote the error states ei = xi � x̂i (i = 1; 2; 3). In the four 
ases, the responses of errordynami
s to initial 
onditions are shown, respe
tively, in Figures 1-4. The simulationresults 
on�rm that the desired goal has been a
hieved.
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Case 1: Responses of Error Dynamics to Initial Conditions (2,4,−4)
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Case 2: Responses of Error Dynamics to Initial Conditions (3,−3,2)

Figure 2: e1 (solid), e2 (point), e3 (dashed).13
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Case 3: Responses of Error Dynamics to Initial Conditions (2,−3,−2)
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Case 4: Responses of Error Dynamics to Initial Conditions (3,1,−3)

Figure 4: e1 (solid), e2 (point), e3 (dashed).Remark 4.1 As 
an be seen in the numeri
al examples, the desired solution set, if notempty, must be very large. In other words, every observer gain, whi
h belongs to the de-sired solution set, 
ould make the 
orresponding observation system exponentially stable.In this sense, we 
ould think there are no essential `di�eren
es' between di�erent observergains in the desired solution set, sin
e they produ
e the `same' performan
e, i.e., the ex-ponential stability of estimation error dynami
s. The remaining design 
exibility makesit possible to enfor
e further expe
ted requirements on the observation pro
ess, su
h asrobustness against parameter un
ertainties.5 Con
lusionsThis paper has dealt with the problem of nonlinear state observer design for a 
lass of
ontinuous-time systems with time-varying state delay. A full-order nonlinear observerstru
ture has been adopted. A quadrati
 matrix inequality (QMI) approa
h, or a linearmatrix inequality (LMI) approa
h, has been developed to solve the problem addressed.Spe
i�
ally, the 
onditions for the existen
e of the expe
ted nonlinear observers have beenderived in terms of the positive de�nite solution to an QMI (or LMI) involving severals
alar parameters. An analyti
al expression, 
hara
terizing the desired observers, hasbeen obtained, and a simulation example has shown the usefulness of the proposed designapproa
h. In parti
ular, it has been demonstrated that the desired nonlinear observersof time-delay systems are usually a large set in terms of some free parameters. Theresulting freedom 
an be used to meet other expe
ted performan
e requirements, su
has the 
onstraints on the H1 norm of the transfer fun
tion from possible noise input toobservation error output. The main results 
an also be extended to dis
rete-time systemsand sampled-data systems. These will be the subje
ts of further investigations.
14
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