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Abstract

In this paper, the observer design problem is studied for a class of time-delay nonlinear
systems. The system under consideration is subject to delayed state and nonlinear
disturbances. The time-delay is allowed to be time-varying, and the nonlinearities
are assumed to satisfy global Lipschitz conditions. The problem addressed is the
design of state observers such that, for the admissible time-delay as well as nonlinear
disturbances, the dynamics of the observation error is globally exponentially stable.
An effective algebraic matrix inequality approach is developed to solve the nonlinear
observer design problem. Specifically, some conditions for the existence of the desired
observers are derived, and an explicit expression of desired observers is given in terms
of some free parameters. A simulation example is included to illustrate the practical
applicability of the proposed theory.

Key Words - Algebraic matrix inequalities; Exponential stability; Nonlinear systems;
Observer design; Time-delay systems.

1 Introduction

One of the fundamental problems in control systems is to observe the state variables of a
dynamic system through available measurement. In the past three decades, this problem
has attracted the attention of many researchers, see Chen (1984), O’Reilly (1983) and
Unbehauen (1989). The methods that have been used in the observer design are very
many, such as algebraic, geometric, inversion approaches, generalized inverse, singular
value decomposition, and the Kronecker canonical form techniques. Also, different types
of state observers have been extensively studied, such as reduced and minimal-order, full-
order, unknown input, functional, disturbance decoupled, etc. The application areas of the
observer technique range from system monitoring, system regulation, to fault detection
and isolation, see Frank (1990).
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It has now been well recognized that the dynamic behaviour of many industrial processes
contains inherent time delays. Time delays may result from the distributed nature of the
system, material transport, or from the time required to measure some of the variables. It
has been known that processes with time-delays are inherently difficult to control (Gorecki
et al. 1989), in the sense that it is difficult to achieve satisfactory performance. Therefore,
control of time-delay systems has been a subject of great practical importance that has
attracted a great deal of interest for several decades, see, e.g., Niculescu et al. (1998) for
an overview. It is notable that, for the observer design case, the relevant literature are
relatively few for linear time-delay systems (see e.g. Lee et al. 1988, Wang and Burnham
2001, Wang et al. 1999, Wang et al. 2001 and Yao et al. 1997).

On the other hand, the problem of designing nonlinear observers has been investigated for
a long time. There are mainly two research directions in this field. One is the extension of
the linear Luenberger observer to the nonlinear case, such as the extended Kalman filter
and the psuedo linearization technique (see Misawa and Hedrick 1989 for a survey). This
technique is valid in a small range around the operating point, and often also requires
heavy real-time computation (Raghavan and Hedrick 1994). The other is the differential
geometric approach adopted to design exact observers for a general description of nonlinear
systems ( see, for example, Hunt and Verma 1994, Xia and Zeitz 1997, and references
therein), where stringent assumptions are required.

Recently, the observer/estimator design problem has been dealt with in Yaz and NaNacara
(1993) for a class of nonlinear discrete-time systems. In Thau (1973), an algebraic Lya-
punov equation method has been developed to tackle the observer design problem for a
class of continuous-time systems with nonlinear disturbances. The results given in Thau
(1973) have been useful to check the stability of the error dynamics, but have not suggested
an effective approach to designing the stable observer. In Dawson et al. (1992), the prob-
lem of design observers guaranteeing global exponential stability of the observation process
has been addressed for continuous-time systems with nonlinear disturbances. Moreover, by
making use of the methods developed for the quadratic stabilization of uncertain systems,
Raghavan and Hedrick (1994) have studied the same problem as in Thau (1973). A viable
design methodology has been proposed in Raghavan and Hedrick (1994) to systematically
construct the observer parameters. Unfortunately, in the literature mentioned above, the
time-delay has not been taken into account. So far, to the best of the authors’ knowledge,
the issue of state observer design for time-delay systems with nonlinear disturbances in
system states and outputs has not been fully investigated and remains to be important
and challenging.

In this paper, the results of Raghavan and Hedrick (1994) and Thau (1973) are generalized
to more general systems. State observers for a class of nonlinear systems with time-varying
state delay are designed. The purpose is to design state observers such that the resulting
observation process remains globally exponentially stable for all addressed nonlinearities.
A simple, algebraic parameterized approach is exploited, which enables us to characterize
both the existence conditions and the set of expected nonlinear observers for the class
of nonlinear state delayed systems. It is shown that a desired solution is related to a



Riccati-like matrix inequality (or a linear matrix inequality) that is not difficult to solve.

The remainder of the present paper is arranged as follows. The nonlinear observer design
problem is formulated in Section 2 for continuous time-delay systems. In Section 3, the
main results as well as detailed derivations are given, including the existence conditions
and the explicit expression of the desired nonlinear observers. A simulation example is
provided in Section 4 to demonstrate the validity and applicability of the proposed theory.

Finally, some concluding remarks are drawn in Section 5.

Notations: The notations are quite standard. Throughout this paper, R" and R™*™
denote, respectively, the n-dimensional Euclidean space and the set of all n X m real
matrices. The superscript ‘T’ denotes matrix transposition and the notation X > Y
(respectively, X > Y) where X and Y are symmetric matrices, means that X — Y is
positive semidefinite (respectively, positive definite). I, is the n x n identity matrix,
diag{--- } stands for a block diagonal matrix. |- | is the Euclidean norm in R*. If A is a
matrix, denote by || A|| its operator norm, i.e., ||A|| = sup{|Az| : |z| =1} = \/Amax(AT A)
where Amax () (respectively, Amin(+)) means the largest (respectively, smallest) eigenvalue of
A. Denote by C([—h,0]; R™) the space of all continuous functions ¢ = {£(f) : —h <0 <0}
such that sup_jp<( [£(0)] < co.

2 Problem formulation and preliminaries

Consider the following class of nonlinear uncertain time-delay systems described by

z(t) = Ax(t)+ Agz(t — h(t)) + 1(t, u(t),y(t)) + f(t u(t), z(t)), (2.1)
z(t) = @(t), te[-h,0], h= tes[élp )h(t), (2.2)

together with the measurement equation

y(t) = Cx(t) + g(t, u(t), (1)), (2:3)

where x(t) € R” is the state, u(t) € R™ is the input, y(¢) € RP is the measurement output.
A, Ag, C are known constant matrices with appropriate dimensions. [ : RxR™ xRP — R"
is a known vector function. f : RxR™” xR" - R” and g : R x R™ x R* — R" are,
respectively, the state-dependent nonlinear disturbances on the system model and on the
system output. The known nonlinear vector functions f and g are assumed to satisfy the
following global Lipschitz conditions:

|f(t7u7$1) - f(t,u,$2)| S |F($1 - $2)|7
|g(t,u,x1) —g(t,u,x2)| < |G(£L‘1 - £E2)|,
forallt e R, u € R™, and z1, z2 € R", where F, G € R"*" are known constant matrices,

and f(t,u,-) and g(¢,u,-) are continuous with respect to the arguments ¢ and u. Also,
h(t) denotes the time-varying bounded state delay satisfying

0<h(t)<h<oo, h(t)<d<l, (2.6)

where h and d are scalar constants. Tt is also assumed that the pair (A4, C) is detectable.



Remark 2.1 The system (2.1)-(2.3) encompasses many important physical systems, and
can be used to model many real dynamic physical processes that contain inherent time
delays and nonlinear disturbances (which may result from linearization process of an origi-
nally nonlinear plant or may be an actual external nonlinear input (Raghavan and Hedrick
1994). Note that if both the state delay and the nonlinear disturbance on the system out-
put disappear, the system (2.1)-(2.3) will reduce to that studied in Raghavan and Hedrick
(1994) and Thau (1973).

In this paper, the full-order nonlinear observer under consideration is of the form

B(t) = A&(t) + Agi(t — h(t) + (£, u(t),y(t) + f(t,ult), £(t))
+Ky(t) — C&(t) — g(t,u(t), (1)), (2.7)

where Z(t) is the state estimate, and K € R"*P is the observer gain matrix to be designed.

Let the error state be defined by
e(t) := x(t) — z(t), (2.8)
then it follows from (2.1)-(2.3) and (2.7) that

et) = (A= KC)e(t) + Age(t — h(t)) + [f (£, u(t), z(1)) — [ (£, u(t), 2(2))]
— Klg(t, u(t), z(t)) — g(t, u(t), £(£))]- (2.9)

Now, observe the error-state system (2.9) and let e(¢;£) denote the state trajectory from
the initial data e(f) = £(f) on —h < 6 < 0 in C([—h,0]; R™). Clearly, because of the global
Lipschitz conditions on the nonlinearities f and g, the system (2.9) admits a trivial solution
e(t;0) = 0 corresponding to the initial data £ = 0. The following stability concepts are
introduced.

Definition 2.1 Consider the system (2.9) with v : R — R*, z,% : R — R"” continuous
and every ¢ € C([—h,0];R™), where h is the upper bound of the time-delay. The trivial
solution is globally asymptotically stable if: (i) the system (2.9) has global boundedness
of solution; and (ii) the trivial solution is stable and satisfies

Tim [e(1:6)] = 0. (2.10)

Furthermore, the trivial solution is globally exponentially stable if: (i) the system (2.9)
has global boundedness of solution; and (ii) there exist constants o > 0 and § > 0 such
that

le(t:6)] < Vae 7 sup [¢(9)]. (2.11)

—h<6<0

The objective of this paper is to design state observers for the nonlinear time-delay system
(2.1)-(2.3). More specifically, we are interested in seeking the observer gain, K, such that
for the nonlinearities f and g, the error dynamics of the system (2.9) remains globally
exponentially stable, independent of the time-varying delay h(t).



Remark 2.2 In Wang and Burnham (2001), the filter design problem for a class of
nonlinear time-delay stochastic systems was investigated. However, in Wang and Burnham
(2001), 1) the nonlinearities were assumed to satisfy the norm boundedness condition,
which is stronger than the Lipschitz condition introduced in this paper; 2) there were
no nonlinearities in the system outputs, the state delay was time-invariant, and the filter
structure in Wang and Burnham (2001) was linear. Also, as will be seen later, we develop
a new linear matrix inequality approach in this paper for designing the nonlinear observers
that can guarantee the exponential stability of the observation process, and the algorithm
can be implemented readily by using the Matlab LMI Toolbox (Gahinet et al. 1995).

3 Main results and proofs

The following Schur complement lemma will be needed in establishing our main results.

Lemma 3.1 (Boyd et al. 1994) Given constant matrices 1, Qg, Q3 where Q1 = QT and
0 < Qo =L, then
O+ Q0,03 <0

if and only if

Q o
R )
Q3 —Q
or equivalently
—Qy Q
T2 3 0.

Initially, the observer analysis problem is considered. To be specific, for a given observer,
sufficient conditions are investigated for which the error dynamics of the observation pro-
cess (or the ‘closed-loop’ system) is globally exponentially stable.

The theorem stated below will show that the global exponential stability of the error
dynamics is guaranteed if a positive definite solution to a quadratic matrix inequality

involving several scalar parameters is known to exist.

Theorem 3.1 Let the observer gain K be given. If there exist scalars €1, €2, €3 > 0 and

a symmetric matriz P > 0 such that the following matriz inequality

(A—-KC)TP+ P(A—KC)+ Pl(eq + &5 ), + e3 ' KKT]P
—1
€1

AV Ay + eoFTF +63G7G < 0 3.1
1—d ¢

—+

holds, then, under the dynamics of the nonlinear time-delay error-state system (2.9), the
trivial solution is globally exponentially stable.



Proof: First for presentation convenience, the following definitions are required:

A, = A-KC, (3.2)
() = f(tult),z(t) — fEud), (1),
o) = g(t,u(t),z(t)) — g(t,u(t), £(t)),

and then the system (2.9) becomes
é(t) = Ace(t) + Age(t — h(t)) + (t) — Ko(t). (3.5)

Now, an asymptotic stability property for system (2.9) is shown to hold under the condition
(3.1). Consider the Lyapunov functional candidate

t
01— Y (e(t +0)) = el (t)Pe(t) + /th(t) el (5)Qe(s)ds, (3.6)

where 0 € [—h,0], P is the positive definite solution to the inequality (3.1) and @ > 0 is
defined by

Q= AT Ay. (3.7)

It follows that the time derivative of Y along a given trajectory is governed by

LE;“” = T()(ATP + PA, + Q)e(t) + T (t) P Age(t — h(t))
+ €Tt — () AT Pe(t) — (1= h(B)eT (£ — hH)Qe(t — h(t))
FUT (O Pelt) + T (OPY(D) — ¢ (VKT Pelt) - o (H)PE(E). (35

Let €1, €9, €3 be positive scalars. Then the matrix inequality
1/2 —-1/2 1/2 —1/2 T
[l 2eT ()P — e, 2T (t — (1) AT [e} 2T (1) P — e, /2T (¢ — h(t)) AT]" > 0
yields
el (t)yPAge(t — h(t)) + e’ (t — h(t)) AL Pe(t)

<erel () P2e(t) + e, tel (t — h(t)) AL Age(t — h(2)). (3.9)

Moreover, the global Lipschitz conditions (2.4)-(2.5) and the following inequality

T 1/2 2 p 4
Lé&%()(l ‘WKTP( A ECIC

1/2 b(t 1/2Pe( )

) -
e;,%( t)+ ‘WKTPe( t)




imply that

T (8)Pe(t) + " () P(t) — ¢ ()K" Pe(t) — ' (t) PK(t)
< et (B)p(t) + 5 el () PPe(t) + e3d” (1) () + e5 el (t)PK KT Pe(t)
= ool f(t,u(t), 2(t) — f((&u(t), 2()* + eslg((t, ult), z() — g((t,ul(), &(t)[*
+e, Lel () P2e(t) + 5 el (t) PK KT Pe(t)
eo| F(x(t) — (1)) + e3]Gla(t) — &(1))|?
+e, tel (t)PPe(t) + e5 e’ (t)PK K" Pe(t)
= eoel (t)FTFe(t) + e3¢’ (t)GT Ge(t) + 5 ' el (t) P?e(t)
+e5 e’ (t)PK KT Pe(t)
= el (t)(eoFTF + £3GTG + ;' P? + e ' PKKT P)e(t). (3.11)

IN

Note that 0 < h(t) < d < 1. Invoking (3.9), (3.11) and the definition of Q in (3.7), it
follows, from (3.8), that

dY (e(t))

5 < ") (AT P + PA, + Q)e(t) + e1e” (t) P?e(t)

+e7 el (t — h(t) AL Age(t — h(t)) — (1 — d)eT (t — h(t))Qe(t — h(t))
+el (t)(eaFTF + 3G G + 6, ' P2 + e, ' PK K P)e(t)
= eT(t){AZ"P +PA.+ Pl(ey + e, ), + 3 ' KKT|P

-1
€1

+1—d

AT Ay + e FTF 4 egGTG}e(t), (3.12)

which indicates from the condition (3.1) that

dY (e(t))

0 3.13
TR (3.13)

for almost all e(t) # 0.

To this end, from Lyapunov stability theory (see, for example, Michel and Wang 1995),
Theorem 6.2.22), we arrive at the conclusion that the trivial solution to the error-state
system (2.9) is globally asymptotically stable for the addressed nonlinearities f and g.

Furthermore, for the proof of the expected global exponential stability of the system (2.9),
some standard manipulations on the relation (3.12) are required.

Define

M = ATP+ PA.+ Pl(e1 + 5" ), +e3' KKT]P
-1
il

—t dAgAd +eoFTF +63G7G. (3.14)

_l’_

Let 8 be the unique positive root of the equation

Amin (—T1) = BAmax(P) — BhAmax(Q)e®" = 0, (3.15)



where TT and @ are defined, respectively, in (3.14) and (3.7), P is the positive definite
solution to (3.1), and h (0 < h(t) < h) is the maximum of the time-varying state delay.

From (3.12), it follows that

d[”'Y (e(t),t)] = €P1[BY (e(t),t)dt + dY (e(t),t)]
< (= Poin(=TD) = Bhuax(P)][e(8)” +

t
2
IBAmax(Q) ‘/t_h(t) |6(8)| dS)dt.

Then, integrating both sides from 0 to 7" > 0 gives

ATY (e(T), T) < [Pmax(P) + h(0)Amax(Q)] _h(i?i’Ko'g(e)'Z

T
- [Amlﬂ( H) _IBAHI&X(P)] / t|6(t)|2dt

Amax( / e / s)|2dsdt.
t—h(t
Note that 0 < h(t) < h and therefore

/ ePt / s)|?dsdt < / Bt / s)|?dsdt
t—h(t t—h
mln(s—l—h T)
/ (/ ﬂtdt)|e(s)|2dsg/ heBH) e (5) | 2ds
—h max(s,0) —h

T 0
heﬁh/ eBt|e(t)|2dt+heBh/ £(0)|2d6.
0 —h

Then, in view of the definition of 8 specified by (3.15), it follows that

IN

IN

SV ET)T) < Panax(P) + Mmax(@)]_sup 1O

+IB>‘maX(Q)h2€6h sup |§( )|27
<0

and, hence,

)P < b (P)(Paax(P) + PAnax(@)] sup_[£(O)]?
—h<0<0

+ BAmax(Q)h%e sup |5(9)|2)e—ﬁT.
—h<H<0

Notice that T' > 0 is arbitrary and let

@ 1= Aok (P) Amax(P) + hAmax (Q) (1 + Bhe™)],

min

the definition of global exponential stability in (2.11) is then satisfied. This completes the
proof of Theorem 3.1. O



Remark 3.1 Theorem 3.1 provides a sufficient condition, in terms of a stabilty criterion,
for the solvability of the original observer design problem associated with the nonlinear
time-delay system (2.1)-(2.3). This result may be conservative, mainly due to the intro-
duction of the inequalities (3.9) and (3.11). However, the conservativeness in Theorem 3.1
can be significantly reduced by appropriately selecting the design parameters 1, €2, €3 > 0.
A related discussion can be seen in Xie and Soh (1994), and references therein.

Remark 3.2 Note that the stability criterion (3.1) is independent of the time-varying
state delay h(t), however, it does depends on the upper bound of the derivative of h(t).
The result is suitable for the case when the time-delay itself is unknown but the informa-
tion regarding the upper bound on its derivative is available. On the other hand, if the
time-delay is perfectly known, a delay-dependent criterion would be believed to be less
conservative. This gives us one of the possible future research topics.

The observer synthesis problem can now be studied, that is, design an observer gain
matrix K such that the condition of Theorem 3.1 is satisfied. The following lemma will
be required for the proof of the main results.

Lemma 3.2 Let X € R™*™ gnd Y € R™*P1 (my < py). There exists a matriz U €
R™ XPL which simultaneously satisfies Y = XU and UUT = I if and only if XXT =YY",

Proof: See Glover (1984) for a proof of this lemma. O

For the sake of simplicity, define

—1
T(e1, 62,63, P) = ATP+ PA+ (g1 + &, )P + %AZ;Ad + eoFTF +63GTG. (3.16)

The next theorem establishes the necessary and sufficient conditions for the existence of
an observer gain, K, satisfying the condition (3.1).

Theorem 3.2 There exist positive scalars €1, €2, €3 and a symmetric positive definite
matriz P such that the matriz inequality (3.1) has a solution K if and only if the following
quadratic matriz inequality

63CTC—F(81,82,83,P) >0 (317)

holds. Furthermore, if (3.17) is true, all matrices K satisfying the matriz inequality (3.1)
can be parameterized by

K =3P 'C7T 4+ et/ 2P AU, (3.18)

where A € R™ P {s any matriz satisfying
AAT < 63CTC—F(81,82,83,P), (319)

and U € RP*P s an arbitrary orthogonal matriz (i.e., UUT = I,,).



Proof: Tt is straightforward to rewrite the matrix inequality (3.1) as
~CTK"P — PKC +¢;'"PKK"P +T(e1,69,¢3,P) <0, (3.20)
or, alternatively,

[8;1/2PK — 6§/2CT][8;1/2PK — 8§/2CT]T < e3CTC —T'(e1,e0,e3, P). (3.21)

It is apparent that there exists an observer gain matrix K such that the inequality (3.1)
(or equivalently (3.21)) holds for some positive scalars €1, €2, €3 and a positive definite
matrix P if and only if the right-hand side of (3.21) is positive definite, i.e., (3.17) holds.
Therefore, the proof of the first part of this theorem is concluded.

Assume that (3.17) is satisfied. Note that the dimension of the observer gain K is n X p
and p < n. From (3.21) and the definition of A € R"*P (specified in (3.19)), it follows
that there exists A such that

e /2 PK — eX2CT e /2 PK — el 2CTIT = AAT. (3.22)

Thus, Lemma 3.2 implies that
e; PPK — e/*CT = AU (3.23)

where U € RP*P is an arbitrary orthogonal matrix. Therefore, the expression (3.18) follows
immediately. This completes the proof of the theorem. O

Remark 3.3 In practical applications, it is very desirable to directly solve the Quadratic
Matrix Inequality (QMI) (3.17), and then obtain the expected observer gain readily from
(3.18). When working with the QMI (3.17), the local numerical searching algorithms
suggested in Beran and Grigoriadis (1996) and Geromel et al. (1993) are very effective for
a relatively low-order model. A related discussion of the solution algorithms for QMIs can
also be found in Saberi et al. (1995).

For relatively high-order model, the aforementioned algorithms no longer work well. For-
tunately, we could transform the QMI (3.17) into an associated linear matrix inequality
(LMI). It should be pointed out that, since LMIs intrinsically reflect constraints rather
than optimality, they tend to offer more flexibility for combining several constraints. LMIs
can now be solved efficiently via interior-point optimization algorithms, such as those de-
scribed in Gahinet et al. (1995). Moreover, software like MATLAB LMI Toolbox are now
available to solve such LMIs efficiently.

The following corollary gives an LMI representation of Theorem 3.2.

Corollary 3.1 If there exist positive scalars €1, €2, €3 and a symmetric positive definite

10



matriz P such that the following linear matriz inequality

ATP+ PA+¢e(GTG-CTC) P P e t(1—d)7V2AT eFT

P —,'T 0 0 0
P 0  —eol 0 0 | <o,
e (1 —d)~12 Ay 0 0 —e, ' 0
EQF 0 0 0 —82[

(3.24)

which is linear on the parameters 61_1, €9, €3, and P, holds, then all matrices K satisfying
the matriz inequality (3.1) can be parameterized by (3.18), where A € R**P is any matriz
satisfying (3.19), and U € RPXP is an arbitrary orthogonal matriz (i.e., UUT = I,,).

Proof: In view of Theorem 3.2, it suffices to show that, there exist 1 > 0, g9 > 0, 3 > 0
and P > 0 such that (3.17) holds if and only if there exist e; > 0, e9 > 0, €3 > 0 and
P > 0 such that (3.24) holds.

It is easy to rearrange (3.17) as follows:
ATP + PA+e3(GTG - CTC) + 28T <0 (3.25)
where

2= 6P &P P -a) AT P

If follows from the Schur Complement Lemma (Lemma 3.1) that, the above inequality
holds if and only if

[ ATP 4+ PA+e5(GTG —CTC) )?P P e7'/?(1—d)"1/24T &/*FT ]
el*p -1 0 0 0
e, '*p 0 T 0 0 <0.
e 21— )12 4, 0 0 —1 0
] es2F 0 0 0 e
(3.26)
Pre- and post-multiplying the inequality (3.26) by the matrix
[T 0 0 0 0 ]
0 &1 o0 0 0
0 0o &’ o 0
0 0 0 1 0
0 0 0 0 &)’ ]
yield (3.24), and the proof is complete. O

The following result, which is easily accessible from Theorem 3.1 and Theorem 3.2, solves
the observer design problem addressed in this paper for the nonlinear time-delay system
(2.1)-(2.3).

11



Theorem 3.3 Consider the nonlinear time-delay system (2.1)-(2.3) and the associated
full-order observer (2.7). If there exist positive scalars €1, €2, €3 and a symmetric positive
definite matriz P such that the QMI (3.17) or LMI (3.24) holds, then the observer (2.7)
with its parameter given in (3.18) will be such that, under the dynamics of the observation
error (i.e., the solution of the error-state system (2.9)), the error zero-state is globally

exponentially stable.

Remark 3.4 It is worth mentioning that, there is a lot of freedom (such as the choices
of matrices A and U) in the observer design that may be used to improve other system
properties. One of the future research topics is how to exploit such freedom to achieve the
specified reliable constraint on the observation process.

4 Numerical simulation

To illustrate the usefulness and flexibility of the proposed theory, a numerical simulation
example is discussed in this section.

Assume that the nonlinear state delayed system (2.1)-(2.3) is described by the following
data

-1.8 0.2 -0 0.04 —-0.01 —-0.01
A= -03 —-26 09 |, A;=| 0.01 —-0.03 0.02 ,
-0.3 0.7 -24 0.01 -0.01 0.05

C =15, h(t) = 0.4sin(t) (d = 0.4), I(t,u(t),y(t)) = 0.

For simulation purposes, suppose that

0.5 cos(z2 + x3) 0.4 cos o
fltu,z) = 0 , g(t,u,z) = | —0.6coszy
—0.6 cos(z1 — x2) 0.5sin x3

Our aim is to design an observer, with the structure (2.7), for the nonlinear time-delay
system (2.1)-(2.3), such that, under the dynamics of the error system, the error zero-state
is globally exponentially stable.

First, F' and G are estimated to be F' = 0.5I3 and G = 0.4I5. Then, solve the LMI (3.24)
to give:

3.1083 0.3707  0.8304
e1 = 0.3012, g2 =1.4896, e3 = 0.8001, P = | 0.3707 4.7192 —1.9180
0.8304 —1.9180 4.5559

It follows from Corollary 3.1 that, the desired observer gain can be parameterized by
K = e3P 10T 4 £}/ P~1AU, where A € B3 and U € R¥3 satisfy

2.8001  —0.0000 0.0000
AAT < | 0.0000 2.8001 0.0000 |, UUT =1I4
—0.0000 —0.0000 2.8001

12



Due to the freedom in choosing the parameters A and U, the number of the desired

observer gains is infinite. Thus, to illustrate such design flexibility, we take the following

four cases as examples:

Case 1: A =1.513, U = I3;

Case 2: A = —1.5]5, U = diag{—1,-1,1}
Case 3: A = 04515, U = diag{1,—1,—1};

Case 4: A = —0.4513, U = —1I3.

For the above four cases, the corresponding observer gain matrices are

(3.18), respectively, as follows:

[ 0.7583  —0.1396 —0.1970 |
Casel: K= | —0.1396 0.5732 0.2668 |,
| —0.1970  0.2668  0.6183 |
[ 0.4100 —0.0755 —0.0407 |
Case2: K= | —0.0755 0.3099 0.0551 |,
| 01065  0.1442 01277 |
[ 0.4258  —0.0259 —0.0366 |
Case3: K= | —0.0784 0.1064 0.0495 |,
| —0.1106  0.0495  0.1148 |
[ 0.4258 —0.0784 —0.1106 |
Cased: K= | —0.0784 0.3219  0.1498
| —0.1106  0.1498  0.3472 |

obtained from

Denote the error states e; = x; — #; (1 = 1,2,3). In the four cases, the responses of error

dynamics to initial conditions are shown, respectively, in Figures 1-4. The simulation

results confirm that the desired goal has been achieved.

Case 1: Responses of Error Dynamics to Initial Conditions (2,4,-4)
T T

Case 2: Responses of Error Dynamics to Initial Conditions (3,-3,2)
T T T

Amplitude

Amplitude
o

I I I I I
0 0.5 1 15 2 25
time (second)

Figure 1: ey (solid), e2 (point), e3 (dashed).

_ I I I I I
3 0 0.5 1 15 2 25 3
time (second)

Figure 2: ey (solid), e2 (point), e3 (dashed).
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Case 3: Responses of Error Dynamics to Initial Conditions (2,-3,-2) 3 Case 4: Responses of Error Dynamics to Initial C?ndmons (3'1'73)‘
T T T T T

e e ST TR T
-

Amplitude

&

@

A
kY
I

Amplitude

o

s -1r .

-2r ¢

I I I -3 I I I I I
0 0.5 1 15 2 25 3 0 05 1 15 2 25 3
time (second) time (second)

Figure 3: e; (solid), e2 (point), e3 (dashed). Figure 4: e; (solid), e2 (point), e3 (dashed).

Remark 4.1 As can be seen in the numerical examples, the desired solution set, if not
empty, must be very large. In other words, every observer gain, which belongs to the de-
sired solution set, could make the corresponding observation system exponentially stable.
In this sense, we could think there are no essential ‘differences’ between different observer
gains in the desired solution set, since they produce the ‘same’ performance, i.e., the ex-
ponential stability of estimation error dynamics. The remaining design flexibility makes
it possible to enforce further expected requirements on the observation process, such as
robustness against parameter uncertainties.

5 Conclusions

This paper has dealt with the problem of nonlinear state observer design for a class of
continuous-time systems with time-varying state delay. A full-order nonlinear observer
structure has been adopted. A quadratic matrix inequality (QMI) approach, or a linear
matrix inequality (LMI) approach, has been developed to solve the problem addressed.
Specifically, the conditions for the existence of the expected nonlinear observers have been
derived in terms of the positive definite solution to an QMI (or LMI) involving several
scalar parameters. An analytical expression, characterizing the desired observers, has
been obtained, and a simulation example has shown the usefulness of the proposed design
approach. In particular, it has been demonstrated that the desired nonlinear observers
of time-delay systems are usually a large set in terms of some free parameters. The
resulting freedom can be used to meet other expected performance requirements, such
as the constraints on the H,, norm of the transfer function from possible noise input to
observation error output. The main results can also be extended to discrete-time systems
and sampled-data systems. These will be the subjects of further investigations.
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