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It has now been well reognized that the dynami behaviour of many industrial proessesontains inherent time delays. Time delays may result from the distributed nature of thesystem, material transport, or from the time required to measure some of the variables. Ithas been known that proesses with time-delays are inherently diÆult to ontrol (Gorekiet al. 1989), in the sense that it is diÆult to ahieve satisfatory performane. Therefore,ontrol of time-delay systems has been a subjet of great pratial importane that hasattrated a great deal of interest for several deades, see, e.g., Niulesu et al. (1998) foran overview. It is notable that, for the observer design ase, the relevant literature arerelatively few for linear time-delay systems (see e.g. Lee et al. 1988, Wang and Burnham2001, Wang et al. 1999, Wang et al. 2001 and Yao et al. 1997).On the other hand, the problem of designing nonlinear observers has been investigated fora long time. There are mainly two researh diretions in this �eld. One is the extension ofthe linear Luenberger observer to the nonlinear ase, suh as the extended Kalman �lterand the psuedo linearization tehnique (see Misawa and Hedrik 1989 for a survey). Thistehnique is valid in a small range around the operating point, and often also requiresheavy real-time omputation (Raghavan and Hedrik 1994). The other is the di�erentialgeometri approah adopted to design exat observers for a general desription of nonlinearsystems ( see, for example, Hunt and Verma 1994, Xia and Zeitz 1997, and referenestherein), where stringent assumptions are required.Reently, the observer/estimator design problem has been dealt with in Yaz and NaNaara(1993) for a lass of nonlinear disrete-time systems. In Thau (1973), an algebrai Lya-punov equation method has been developed to takle the observer design problem for alass of ontinuous-time systems with nonlinear disturbanes. The results given in Thau(1973) have been useful to hek the stability of the error dynamis, but have not suggestedan e�etive approah to designing the stable observer. In Dawson et al. (1992), the prob-lem of design observers guaranteeing global exponential stability of the observation proesshas been addressed for ontinuous-time systems with nonlinear disturbanes. Moreover, bymaking use of the methods developed for the quadrati stabilization of unertain systems,Raghavan and Hedrik (1994) have studied the same problem as in Thau (1973). A viabledesign methodology has been proposed in Raghavan and Hedrik (1994) to systematiallyonstrut the observer parameters. Unfortunately, in the literature mentioned above, thetime-delay has not been taken into aount. So far, to the best of the authors' knowledge,the issue of state observer design for time-delay systems with nonlinear disturbanes insystem states and outputs has not been fully investigated and remains to be importantand hallenging.In this paper, the results of Raghavan and Hedrik (1994) and Thau (1973) are generalizedto more general systems. State observers for a lass of nonlinear systems with time-varyingstate delay are designed. The purpose is to design state observers suh that the resultingobservation proess remains globally exponentially stable for all addressed nonlinearities.A simple, algebrai parameterized approah is exploited, whih enables us to haraterizeboth the existene onditions and the set of expeted nonlinear observers for the lassof nonlinear state delayed systems. It is shown that a desired solution is related to a2



Riati-like matrix inequality (or a linear matrix inequality) that is not diÆult to solve.The remainder of the present paper is arranged as follows. The nonlinear observer designproblem is formulated in Setion 2 for ontinuous time-delay systems. In Setion 3, themain results as well as detailed derivations are given, inluding the existene onditionsand the expliit expression of the desired nonlinear observers. A simulation example isprovided in Setion 4 to demonstrate the validity and appliability of the proposed theory.Finally, some onluding remarks are drawn in Setion 5.Notations: The notations are quite standard. Throughout this paper, Rn and Rn�mdenote, respetively, the n-dimensional Eulidean spae and the set of all n � m realmatries. The supersript `T ' denotes matrix transposition and the notation X � Y(respetively, X > Y ) where X and Y are symmetri matries, means that X � Y ispositive semide�nite (respetively, positive de�nite). In is the n � n identity matrix,diagf� � � g stands for a blok diagonal matrix. j � j is the Eulidean norm in Rn . If A is amatrix, denote by kAk its operator norm, i.e., kAk = supfjAxj : jxj = 1g =p�max(ATA)where �max(�) (respetively, �min(�)) means the largest (respetively, smallest) eigenvalue ofA. Denote by C([�h; 0℄;Rn) the spae of all ontinuous funtions � = f�(�) : �h � � � 0gsuh that sup�h���0 j�(�)j <1.2 Problem formulation and preliminariesConsider the following lass of nonlinear unertain time-delay systems desribed by_x(t) = Ax(t) +Adx(t� h(t)) + l(t; u(t); y(t)) + f(t; u(t); x(t)); (2.1)x(t) = '(t); t 2 [�h; 0℄; h = supt2[0;1)h(t); (2.2)together with the measurement equationy(t) = Cx(t) + g(t; u(t); x(t)); (2.3)where x(t) 2 Rn is the state, u(t) 2 Rm is the input, y(t) 2 Rp is the measurement output.A; Ad; C are known onstant matries with appropriate dimensions. l : R�Rm�Rp ! Rnis a known vetor funtion. f : R � Rm � Rn ! Rn and g : R � Rm � Rn ! Rn are,respetively, the state-dependent nonlinear disturbanes on the system model and on thesystem output. The known nonlinear vetor funtions f and g are assumed to satisfy thefollowing global Lipshitz onditions:jf(t; u; x1)� f(t; u; x2)j � jF (x1 � x2)j; (2.4)jg(t; u; x1)� g(t; u; x2)j � jG(x1 � x2)j; (2.5)for all t 2 R, u 2 Rm , and x1; x2 2 Rn , where F; G 2 Rn�n are known onstant matries,and f(t; u; �) and g(t; u; �) are ontinuous with respet to the arguments t and u. Also,h(t) denotes the time-varying bounded state delay satisfying0 � h(t) � h <1; _h(t) � d < 1; (2.6)where h and d are salar onstants. It is also assumed that the pair (A;C) is detetable.3



Remark 2.1 The system (2.1)-(2.3) enompasses many important physial systems, andan be used to model many real dynami physial proesses that ontain inherent timedelays and nonlinear disturbanes (whih may result from linearization proess of an origi-nally nonlinear plant or may be an atual external nonlinear input (Raghavan and Hedrik1994). Note that if both the state delay and the nonlinear disturbane on the system out-put disappear, the system (2.1)-(2.3) will redue to that studied in Raghavan and Hedrik(1994) and Thau (1973).In this paper, the full-order nonlinear observer under onsideration is of the form_̂x(t) = Ax̂(t) +Adx̂(t� h(t)) + l(t; u(t); y(t)) + f(t; u(t); x̂(t))+K[y(t)�Cx̂(t)� g(t; u(t); x̂(t))℄; (2.7)where x̂(t) is the state estimate, and K 2 Rn�p is the observer gain matrix to be designed.Let the error state be de�ned by e(t) := x(t)� x̂(t); (2.8)then it follows from (2.1)-(2.3) and (2.7) that_e(t) = (A�KC)e(t) +Ade(t� h(t)) + [f(t; u(t); x(t)) � f(t; u(t); x̂(t))℄�K[g(t; u(t); x(t)) � g(t; u(t); x̂(t))℄: (2.9)Now, observe the error-state system (2.9) and let e(t; �) denote the state trajetory fromthe initial data e(�) = �(�) on �h � � � 0 in C([�h; 0℄;Rn). Clearly, beause of the globalLipshitz onditions on the nonlinearities f and g, the system (2.9) admits a trivial solutione(t; 0) � 0 orresponding to the initial data � = 0. The following stability onepts areintrodued.De�nition 2.1 Consider the system (2.9) with u : R ! Rn , x; x̂ : R ! Rn ontinuousand every � 2 C([�h; 0℄;Rn), where h is the upper bound of the time-delay. The trivialsolution is globally asymptotially stable if: (i) the system (2.9) has global boundednessof solution; and (ii) the trivial solution is stable and satis�eslimt!1 je(t; �)j = 0: (2.10)Furthermore, the trivial solution is globally exponentially stable if: (i) the system (2.9)has global boundedness of solution; and (ii) there exist onstants � > 0 and � > 0 suhthat je(t; �)j � p�e��t=2 sup�h���0 j�(�)j: (2.11)The objetive of this paper is to design state observers for the nonlinear time-delay system(2.1)-(2.3). More spei�ally, we are interested in seeking the observer gain, K, suh thatfor the nonlinearities f and g, the error dynamis of the system (2.9) remains globallyexponentially stable, independent of the time-varying delay h(t).4



Remark 2.2 In Wang and Burnham (2001), the �lter design problem for a lass ofnonlinear time-delay stohasti systems was investigated. However, in Wang and Burnham(2001), 1) the nonlinearities were assumed to satisfy the norm boundedness ondition,whih is stronger than the Lipshitz ondition introdued in this paper; 2) there wereno nonlinearities in the system outputs, the state delay was time-invariant, and the �lterstruture in Wang and Burnham (2001) was linear. Also, as will be seen later, we developa new linear matrix inequality approah in this paper for designing the nonlinear observersthat an guarantee the exponential stability of the observation proess, and the algorithman be implemented readily by using the Matlab LMI Toolbox (Gahinet et al. 1995).3 Main results and proofsThe following Shur omplement lemma will be needed in establishing our main results.Lemma 3.1 (Boyd et al. 1994) Given onstant matries 
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1 # < 0:Initially, the observer analysis problem is onsidered. To be spei�, for a given observer,suÆient onditions are investigated for whih the error dynamis of the observation pro-ess (or the `losed-loop' system) is globally exponentially stable.The theorem stated below will show that the global exponential stability of the errordynamis is guaranteed if a positive de�nite solution to a quadrati matrix inequalityinvolving several salar parameters is known to exist.Theorem 3.1 Let the observer gain K be given. If there exist salars "1; "2; "3 > 0 anda symmetri matrix P > 0 suh that the following matrix inequality(A�KC)TP + P (A�KC) + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTG < 0 (3.1)holds, then, under the dynamis of the nonlinear time-delay error-state system (2.9), thetrivial solution is globally exponentially stable.
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Proof: First for presentation onveniene, the following de�nitions are required:A := A�KC; (3.2) (t) := f(t; u(t); x(t)) � f(t; u(t); x̂(t)); (3.3)�(t) := g(t; u(t); x(t)) � g(t; u(t); x̂(t)); (3.4)and then the system (2.9) beomes_e(t) = Ae(t) +Ade(t� h(t)) +  (t)�K�(t): (3.5)Now, an asymptoti stability property for system (2.9) is shown to hold under the ondition(3.1). Consider the Lyapunov funtional andidate� 7! Y (e(t+ �)) = eT (t)Pe(t) + Z tt�h(t) eT (s)Qe(s)ds; (3.6)where � 2 [�h; 0℄, P is the positive de�nite solution to the inequality (3.1) and Q � 0 isde�ned by Q := "�111� dATdAd: (3.7)It follows that the time derivative of Y along a given trajetory is governed bydY (e(t))dt = eT (t)(AT P + PA +Q)e(t) + eT (t)PAde(t� h(t))+ eT (t� h(t))ATd Pe(t)� (1� _h(t))eT (t� h(t))Qe(t � h(t))+  T (t)Pe(t) + eT (t)P (t) � �T (t)KTPe(t)� eT (t)PK�(t): (3.8)Let "1; "2; "3 be positive salars. Then the matrix inequality�"1=21 eT (t)P � "�1=21 eT (t� h(t))ATd ��"1=21 eT (t)P � "�1=21 eT (t� h(t))ATd �T � 0yields eT (t)PAde(t� h(t)) + eT (t� h(t))ATd Pe(t)� "1eT (t)P 2e(t) + "�11 eT (t� h(t))ATd Ade(t� h(t)): (3.9)Moreover, the global Lipshitz onditions (2.4)-(2.5) and the following inequality" "1=22  (t)� "�1=22 Pe(t)"1=23 �(t) + "�1=23 KTPe(t) #T " "1=22  (t)� "�1=22 Pe(t)"1=23 �(t) + "�1=23 KTPe(t) # � 0 (3.10)
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imply that T (t)Pe(t) + eT (t)P (t)� �T (t)KTPe(t)� eT (t)PK�(t)� "2 T (t) (t) + "�12 eT (t)P 2e(t) + "3�T (t)�(t) + "�13 eT (t)PKKTPe(t)= "2jf(t; u(t); x(t)) � f((t; u(t); x̂(t))j2 + "3jg((t; u(t); x(t)) � g((t; u(t); x̂(t))j2+"�12 eT (t)P 2e(t) + "�13 eT (t)PKKTPe(t)� "2jF (x(t) � x̂(t))j2 + "3jG(x(t)� x̂(t))j2+"�12 eT (t)P 2e(t) + "�13 eT (t)PKKTPe(t)= "2eT (t)F TFe(t) + "3eT (t)GTGe(t) + "�12 eT (t)P 2e(t)+"�13 eT (t)PKKTPe(t)= eT (t)("2F TF + "3GTG+ "�12 P 2 + "�13 PKKTP )e(t): (3.11)Note that 0 � _h(t) � d < 1. Invoking (3.9), (3.11) and the de�nition of Q in (3.7), itfollows, from (3.8), thatdY (e(t))dt � eT (t)(AT P + PA +Q)e(t) + "1eT (t)P 2e(t)+ "�11 eT (t� h(t))ATdAde(t� h(t)) � (1� d)eT (t� h(t))Qe(t � h(t))+ eT (t)("2F TF + "3GTG+ "�12 P 2 + "�13 PKKTP )e(t)= eT (t)nAT P + PA + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTGoe(t); (3.12)whih indiates from the ondition (3.1) thatdY (e(t))dt < 0 (3.13)for almost all e(t) 6= 0.To this end, from Lyapunov stability theory (see, for example, Mihel and Wang 1995),Theorem 6.2.22), we arrive at the onlusion that the trivial solution to the error-statesystem (2.9) is globally asymptotially stable for the addressed nonlinearities f and g.Furthermore, for the proof of the expeted global exponential stability of the system (2.9),some standard manipulations on the relation (3.12) are required.De�ne � := AT P + PA + P [("1 + "�12 )In + "�13 KKT ℄P+ "�111� dATdAd + "2F TF + "3GTG: (3.14)Let � be the unique positive root of the equation�min(��)� ��max(P )� �h�max(Q)e�h = 0; (3.15)7



where � and Q are de�ned, respetively, in (3.14) and (3.7), P is the positive de�nitesolution to (3.1), and h (0 � h(t) � h) is the maximum of the time-varying state delay.From (3.12), it follows thatd�e�tY (e(t); t)� = e�t��Y (e(t); t)dt + dY (e(t); t)�� e�t�� ��min(��)� ��max(P )�je(t)j2 +��max(Q)Z tt�h(t) je(s)j2ds�dt:Then, integrating both sides from 0 to T > 0 givese�TY (e(T ); T ) � ��max(P ) + h(0)�max(Q)� sup�h(t)���0 j�(�)j2� ��min(��)� ��max(P )� Z T0 e�tje(t)j2dt+ ��max(Q)Z T0 e�t Z tt�h(t) je(s)j2dsdt:Note that 0 � h(t) � h and thereforeZ T0 e�t Z tt�h(t) je(s)j2dsdt � Z T0 e�t Z tt�h je(s)j2dsdt� Z T�h �Z min(s+h;T )max(s;0) e�tdt�je(s)j2ds � Z T�h he�(s+h)je(s)j2ds� he�h Z T0 e�tje(t)j2dt+ he�h Z 0�h j�(�)j2d�:Then, in view of the de�nition of � spei�ed by (3.15), it follows thate�TY (e(T ); T ) � ��max(P ) + h�max(Q)� sup�h���0 j�(�)j2+ ��max(Q)h2e�h sup�h���0 j�(�)j2;and, hene, je(T )j2 � ��1min(P )���max(P ) + h�max(Q)� sup�h���0 j�(�)j2+ ��max(Q)h2e�h sup�h���0 j�(�)j2�e��T :Notie that T > 0 is arbitrary and let� := ��1min(P )��max(P ) + h�max(Q)(1 + �he�h)�;the de�nition of global exponential stability in (2.11) is then satis�ed. This ompletes theproof of Theorem 3.1. �8



Remark 3.1 Theorem 3.1 provides a suÆient ondition, in terms of a stabilty riterion,for the solvability of the original observer design problem assoiated with the nonlineartime-delay system (2.1)-(2.3). This result may be onservative, mainly due to the intro-dution of the inequalities (3.9) and (3.11). However, the onservativeness in Theorem 3.1an be signi�antly redued by appropriately seleting the design parameters "1; "2; "3 > 0.A related disussion an be seen in Xie and Soh (1994), and referenes therein.Remark 3.2 Note that the stability riterion (3.1) is independent of the time-varyingstate delay h(t), however, it does depends on the upper bound of the derivative of h(t).The result is suitable for the ase when the time-delay itself is unknown but the informa-tion regarding the upper bound on its derivative is available. On the other hand, if thetime-delay is perfetly known, a delay-dependent riterion would be believed to be lessonservative. This gives us one of the possible future researh topis.The observer synthesis problem an now be studied, that is, design an observer gainmatrix K suh that the ondition of Theorem 3.1 is satis�ed. The following lemma willbe required for the proof of the main results.Lemma 3.2 Let X 2 Rm1�n1 and Y 2 Rm1�p1 (m1 � p1). There exists a matrix U 2Rn1�p1 whih simultaneously satis�es Y = XU and UUT = I if and only if XXT = Y Y T .Proof: See Glover (1984) for a proof of this lemma. �For the sake of simpliity, de�ne�("1; "2; "3; P ) = ATP + PA+ ("1 + "�12 )P 2 + "�111� dATdAd + "2F TF + "3GTG: (3.16)The next theorem establishes the neessary and suÆient onditions for the existene ofan observer gain, K, satisfying the ondition (3.1).Theorem 3.2 There exist positive salars "1; "2; "3 and a symmetri positive de�nitematrix P suh that the matrix inequality (3.1) has a solution K if and only if the followingquadrati matrix inequality "3CTC � �("1; "2; "3; P ) > 0 (3.17)holds. Furthermore, if (3.17) is true, all matries K satisfying the matrix inequality (3.1)an be parameterized by K = "3P�1CT + "1=23 P�1�U; (3.18)where � 2 Rn�p is any matrix satisfying��T < "3CTC � �("1; "2; "3; P ); (3.19)and U 2 Rp�p is an arbitrary orthogonal matrix (i.e., UUT = In).
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Proof: It is straightforward to rewrite the matrix inequality (3.1) as�CTKTP � PKC + "�13 PKKTP +�("1; "2; "3; P ) < 0; (3.20)or, alternatively,["�1=23 PK � "1=23 CT ℄["�1=23 PK � "1=23 CT ℄T < "3CTC � �("1; "2; "3; P ): (3.21)It is apparent that there exists an observer gain matrix K suh that the inequality (3.1)(or equivalently (3.21)) holds for some positive salars "1; "2; "3 and a positive de�nitematrix P if and only if the right-hand side of (3.21) is positive de�nite, i.e., (3.17) holds.Therefore, the proof of the �rst part of this theorem is onluded.Assume that (3.17) is satis�ed. Note that the dimension of the observer gain K is n� pand p � n. From (3.21) and the de�nition of � 2 Rn�p (spei�ed in (3.19)), it followsthat there exists � suh that["�1=23 PK � "1=23 CT ℄["�1=23 PK � "1=23 CT ℄T = ��T : (3.22)Thus, Lemma 3.2 implies that "�1=23 PK � "1=23 CT = �U (3.23)where U 2 Rp�p is an arbitrary orthogonal matrix. Therefore, the expression (3.18) followsimmediately. This ompletes the proof of the theorem. �Remark 3.3 In pratial appliations, it is very desirable to diretly solve the QuadratiMatrix Inequality (QMI) (3.17), and then obtain the expeted observer gain readily from(3.18). When working with the QMI (3.17), the loal numerial searhing algorithmssuggested in Beran and Grigoriadis (1996) and Geromel et al. (1993) are very e�etive fora relatively low-order model. A related disussion of the solution algorithms for QMIs analso be found in Saberi et al. (1995).For relatively high-order model, the aforementioned algorithms no longer work well. For-tunately, we ould transform the QMI (3.17) into an assoiated linear matrix inequality(LMI). It should be pointed out that, sine LMIs intrinsially reet onstraints ratherthan optimality, they tend to o�er more exibility for ombining several onstraints. LMIsan now be solved eÆiently via interior-point optimization algorithms, suh as those de-sribed in Gahinet et al. (1995). Moreover, software like MATLAB LMI Toolbox are nowavailable to solve suh LMIs eÆiently.The following orollary gives an LMI representation of Theorem 3.2.Corollary 3.1 If there exist positive salars "1; "2; "3 and a symmetri positive de�nite
10



matrix P suh that the following linear matrix inequality2666664 ATP + PA+ "3(GTG� CTC) P P "�11 (1� d)�1=2ATd "2F TP �"�11 I 0 0 0P 0 �"2I 0 0"�11 (1� d)�1=2Ad 0 0 �"�11 I 0"2F 0 0 0 �"2I
3777775 < 0;(3.24)whih is linear on the parameters "�11 , "2, "3, and P , holds, then all matries K satisfyingthe matrix inequality (3.1) an be parameterized by (3.18), where � 2 Rn�p is any matrixsatisfying (3.19), and U 2 Rp�p is an arbitrary orthogonal matrix (i.e., UUT = In).Proof: In view of Theorem 3.2, it suÆes to show that, there exist "1 > 0, "2 > 0, "3 > 0and P > 0 suh that (3.17) holds if and only if there exist "1 > 0, "2 > 0, "3 > 0 andP > 0 suh that (3.24) holds.It is easy to rearrange (3.17) as follows:ATP + PA+ "3(GTG�CTC) + ��T < 0 (3.25)where � := h "1=21 P "�1=22 P "�1=21 (1� d)�1=2ATd "1=22 F T i :If follows from the Shur Complement Lemma (Lemma 3.1) that, the above inequalityholds if and only if26666664 ATP + PA+ "3(GTG� CTC) "1=21 P "�1=22 P "�1=21 (1� d)�1=2ATd "1=22 F T"1=21 P �I 0 0 0"�1=22 P 0 �I 0 0"�1=21 (1� d)�1=2Ad 0 0 �I 0"1=22 F 0 0 0 �I
37777775 < 0:(3.26)Pre- and post-multiplying the inequality (3.26) by the matrix26666664 I 0 0 0 00 "�1=21 I 0 0 00 0 "1=22 I 0 00 0 0 "�1=21 I 00 0 0 0 "1=22 I

37777775yield (3.24), and the proof is omplete. �The following result, whih is easily aessible from Theorem 3.1 and Theorem 3.2, solvesthe observer design problem addressed in this paper for the nonlinear time-delay system(2.1)-(2.3). 11



Theorem 3.3 Consider the nonlinear time-delay system (2.1)-(2.3) and the assoiatedfull-order observer (2.7). If there exist positive salars "1; "2; "3 and a symmetri positivede�nite matrix P suh that the QMI (3.17) or LMI (3.24) holds, then the observer (2.7)with its parameter given in (3.18) will be suh that, under the dynamis of the observationerror (i.e., the solution of the error-state system (2.9)), the error zero-state is globallyexponentially stable.Remark 3.4 It is worth mentioning that, there is a lot of freedom (suh as the hoiesof matries � and U) in the observer design that may be used to improve other systemproperties. One of the future researh topis is how to exploit suh freedom to ahieve thespei�ed reliable onstraint on the observation proess.4 Numerial simulationTo illustrate the usefulness and exibility of the proposed theory, a numerial simulationexample is disussed in this setion.Assume that the nonlinear state delayed system (2.1)-(2.3) is desribed by the followingdata A = 264 �1:8 0:2 �0:5�0:3 �2:6 0:9�0:3 0:7 �2:4 375 ; Ad = 264 0:04 �0:01 �0:010:01 �0:03 0:020:01 �0:01 0:05 375 ;C = I3; h(t) = 0:4 sin(t) (d = 0:4); l(t; u(t); y(t)) � 0:For simulation purposes, suppose thatf(t; u; x) = 264 0:5 os(x2 + x3)0�0:6 os(x1 � x2) 375 ; g(t; u; x) = 264 0:4 os x2�0:6 os x10:5 sinx3 375 :Our aim is to design an observer, with the struture (2.7), for the nonlinear time-delaysystem (2.1)-(2.3), suh that, under the dynamis of the error system, the error zero-stateis globally exponentially stable.First, F and G are estimated to be F = 0:5I3 and G = 0:4I3. Then, solve the LMI (3.24)to give:"1 = 0:3012; "2 = 1:4896; "3 = 0:8001; P = 264 3:1083 0:3707 0:83040:3707 4:7192 �1:91800:8304 �1:9180 4:5559 375 :It follows from Corollary 3.1 that, the desired observer gain an be parameterized byK = "3P�1CT + "1=23 P�1�U , where � 2 R3�3 and U 2 R3�3 satisfy��T < 264 2:8001 �0:0000 0:00000:0000 2:8001 0:0000�0:0000 �0:0000 2:8001 375 ; UUT = I312



Due to the freedom in hoosing the parameters � and U , the number of the desiredobserver gains is in�nite. Thus, to illustrate suh design exibility, we take the followingfour ases as examples:Case 1: � = 1:5I3, U = I3;Case 2: � = �1:5I3, U = diagf�1;�1; 1g;Case 3: � = 0:45I3, U = diagf1;�1;�1g;Case 4: � = �0:45I3, U = �I3.For the above four ases, the orresponding observer gain matries are obtained from(3.18), respetively, as follows:Case 1 : K = 264 0:7583 �0:1396 �0:1970�0:1396 0:5732 0:2668�0:1970 0:2668 0:6183 375 ;Case 2 : K = 264 0:4100 �0:0755 �0:0407�0:0755 0:3099 0:0551�0:1065 0:1442 0:1277 375 ;Case 3 : K = 264 0:4258 �0:0259 �0:0366�0:0784 0:1064 0:0495�0:1106 0:0495 0:1148 375 ;Case 4 : K = 264 0:4258 �0:0784 �0:1106�0:0784 0:3219 0:1498�0:1106 0:1498 0:3472 375 :Denote the error states ei = xi � x̂i (i = 1; 2; 3). In the four ases, the responses of errordynamis to initial onditions are shown, respetively, in Figures 1-4. The simulationresults on�rm that the desired goal has been ahieved.
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Case 1: Responses of Error Dynamics to Initial Conditions (2,4,−4)

Figure 1: e1 (solid), e2 (point), e3 (dashed). 0 0.5 1 1.5 2 2.5 3
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Case 2: Responses of Error Dynamics to Initial Conditions (3,−3,2)

Figure 2: e1 (solid), e2 (point), e3 (dashed).13
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Case 3: Responses of Error Dynamics to Initial Conditions (2,−3,−2)

Figure 3: e1 (solid), e2 (point), e3 (dashed). 0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

time (second)

A
m

pl
itu

de

Case 4: Responses of Error Dynamics to Initial Conditions (3,1,−3)

Figure 4: e1 (solid), e2 (point), e3 (dashed).Remark 4.1 As an be seen in the numerial examples, the desired solution set, if notempty, must be very large. In other words, every observer gain, whih belongs to the de-sired solution set, ould make the orresponding observation system exponentially stable.In this sense, we ould think there are no essential `di�erenes' between di�erent observergains in the desired solution set, sine they produe the `same' performane, i.e., the ex-ponential stability of estimation error dynamis. The remaining design exibility makesit possible to enfore further expeted requirements on the observation proess, suh asrobustness against parameter unertainties.5 ConlusionsThis paper has dealt with the problem of nonlinear state observer design for a lass ofontinuous-time systems with time-varying state delay. A full-order nonlinear observerstruture has been adopted. A quadrati matrix inequality (QMI) approah, or a linearmatrix inequality (LMI) approah, has been developed to solve the problem addressed.Spei�ally, the onditions for the existene of the expeted nonlinear observers have beenderived in terms of the positive de�nite solution to an QMI (or LMI) involving severalsalar parameters. An analytial expression, haraterizing the desired observers, hasbeen obtained, and a simulation example has shown the usefulness of the proposed designapproah. In partiular, it has been demonstrated that the desired nonlinear observersof time-delay systems are usually a large set in terms of some free parameters. Theresulting freedom an be used to meet other expeted performane requirements, suhas the onstraints on the H1 norm of the transfer funtion from possible noise input toobservation error output. The main results an also be extended to disrete-time systemsand sampled-data systems. These will be the subjets of further investigations.
14
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