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Abstract

In this paper, the global exponential stability analysis problem is considered for a class of recurrent neural networks

(RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated

from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with

discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that

the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time

delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed

to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for

the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of

parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability

conditions.
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I. Introduction

In the past few decades, the mathematical properties of the recurrent neural networks (RNNs), such as the

stability, the attractivity and the oscillation, have been intensively investigated. RNNs have been successfully

applied in many areas, including image processing, pattern recognition, associative memory, and optimization

problems. In fact, the stability analysis issue for RNNs with time delays has been an attractive subject

of research in the past few years, where the time delays under consideration can be classified as constant

delays, time-varying delays, and distributed delays. Various sufficient conditions, either delay-dependent or

delay-independent, have been proposed to guarantee the global asymptotic or exponential stability for the

RNNs with time-delays, see e.g. [4], [9], [12], [15] for some recent publications, where many methods have

been exploited, such as the LMI approach and M -matrix approach.

Traditional RNNs assume that the continuous variables propagate from one processing unit to the next.

However, RNNs sometimes have problems in catching long-term dependencies in the input stream. As the

temporal sequences increase in length, the influence of early components of the sequence has less impact on

the network output. Such a phenomenon is referred to as the problem of information latching [1]. A widely

used approach to dealing with the information latching problem is to extract finite state representations (also

called clusters, patterns, or modes) from trained networks [2], [5], [6], [7]. In other words, the RNNs may

have finite modes, and the modes may switch (or jump) from one to another at different times. Recently, it

has been shown in [14] that, the switching (or jumping) between different RNN modes can be governed by a
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Markovian chain. Hence, an RNN with such a “jumping” character may be modeled as a hybrid one; that is,

the state space of the RNN contains both discrete and continuous states. For a specific mode, the dynamics of

the RNN is continuous, but the parameter jumps among different modes may be seen as discrete events. Note

that the concept of Markovian neural networks has already been used in some papers, see e.g. [11]. Therefore,

RNNs with Markovian jumping parameters are of great significance in modeling a class of neural networks

with finite network modes. It should be pointed out that, up to now, the stability analysis problem for RNNs

with Markovian switching has received very little research attention, despite its practical importance.

In this paper, we are concerned with the analysis issue for the global exponential stability of RNNs with

mixed time-delays and Markovian jumping parameters. To the best of the authors’ knowledge, this is the first

attempt to introduce and investigate the delayed RNNs with Markovian switching. It is worth mentioning

that the control and filtering problems for Markovian jump systems (MJSs) have already been widely studied

in the control and signal processing communities, see e.g. [10], [16]. The main purpose of this paper is to

establish LMI-based stability criteria for testing whether the network dynamics is stochastically exponentially

stable in the mean square, independent of the time delay. It is known that LMIs can be efficiently solved by

utilizing the numerically attractive Matlab LMI toolbox, hence our proposed results would be practical. We

will use a simple example to illustrate the usefulness of the derived LMI-based stability conditions.

II. Problem formulation

Notation. The notations in this paper are quite standard. R
n and R

n×m denote, respectively, the n

dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes the transpose

and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y

is positive semi-definite (respectively, positive definite). I is the identity matrix with compatible dimension.

We let h > 0 and C([−h, 0]; Rn) denote the family of continuous functions ϕ from [−h, 0] to R
n with the

norm ‖ϕ‖ = sup−h≤θ≤0 |ϕ(θ)|, where | · | is the Euclidean norm in R
n. If A is a matrix, denote by ‖A‖

its operator norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(AT A) where λmax(·) (respectively, λmin(·))

means the largest (respectively, smallest) eigenvalue of A. l2[0,∞) is the space of square integrable vector.

Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e., the filtration contains all P -null sets and is right continuous). Denote by Lp
F0

([−h, 0]; Rn)

the family of all F0-measurable C([−h, 0]; Rn)-valued random variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that

sup−h≤θ≤0 E|ξ(θ)|p < ∞ where E{·} stands for the mathematical expectation operator with respect to the

given probability measure P . Sometimes, the arguments of a function will be omitted in the analysis when

no confusion can arise.

In this paper, the recurrent neural network with time delays is described as follows:

u̇(t) = −Au(t) + W0g0(u(t)) + W1g1(u(t − h)) + V (1)

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ R
n is the state vector associated with the n neurons, the di-

agonal matrix A = diag(a1, a2, · · · , an) has positive entries ai > 0. The matrices W0 = (w0
ij)n×n and

W1 = (w1
ij)n×n are the connection weight matrix and the delayed connection weight matrix, respectively.

gk(u(t)) = [gk1(u1), gk2(u2), · · · , gkn(un)]T (k = 0, 1) denotes the neuron activation function with gk(0) = 0,

and V = [V1, V2, · · · , Vn]T is a constant external input vector. The scalar h > 0, which may be unknown,

denotes the time delay.

Assumption 1: The neuron activation functions in (1), gi(·), are bounded and satisfy the following Lipschitz

condition

|gk(x) − gk(y)| ≤ |Gk(x − y)|, ∀x, y ∈ R (k = 0, 1) (2)

where Gk ∈ R
n×n is a known constant matrix.
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Remark 1: In the past, the activation functions have been required to be continuous, differentiable and

monotonically increasing, such as the sigmoid-type of function. In this paper, these restrictions are removed,

and only Lipschitz conditions and boundedness are needed in Assumption 1. Note that the type of activation

functions in (2) have already been used in numerous papers, see [4] and references therein.

Let u∗ be the equilibrium point of (1). For the purpose of simplicity, we can shift the intended equilibrium

u∗ to the origin by letting x = u − u∗, and then the system (1) can be transformed into:

ẋ(t) = −Ax(t) + W0l0(x(t)) + W1l1(x(t − h)), (3)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ R
n is the state vector of the transformed system. It follows from (2)

that the transformed neuron activation functions lk(x) = gk(x + u∗) − gk(u
∗) (k = 0, 1) satisfy

|lk(x)| ≤ |Gkx|, (4)

where Gk ∈ R
n×n (k = 0, 1) are specified in (2).

Now, based on the model (3), we are in a position to introduce the delayed recurrent neural networks with

Markovian jumping parameters.

Let {r(t), t ≥ 0} be a right-continuous Markov process on the probability space which takes values in the

finite space S = {1, 2, . . . , N} with generator Γ = (γij) (i, j ∈ S) given by

P{r(t + ∆) = j|r(t) = i} =

{

γij∆ + o(∆) if i 6= j

1 + γii∆ + o(∆) if i = j

where ∆ > 0 and lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j if i 6= j and γii = −
∑

j 6=i γij .

In this paper, we consider the following delayed recurrent neural network with Markovian jumping param-

eters, which is actually a modification of (3):

ẋ(t) = −A(r(t))x(t) + W0(r(t))l0(x(t)) + W1(r(t))l1(x(t − h)), (5)

where x(t), l0(x(t)) and l1(x(t − h)) have the same meanings as those in (3), and for a fixed system mode,

A(r(t)), W0(r(t)) and W1(r(t)) are known constant matrices with appropriate dimensions.

Recall that the Markov process {r(t), t ≥ 0} takes values in the finite space S = {1, 2, . . . , N}. For the

sake of simplicity, we write

A(i) := Ai, W0(i) := W0i, W1(i) := W1i. (6)

Now we shall work on the network mode r(t) = i, ∀i ∈ S. Observe the neural network (5) and let x(t; ξ)

denote the state trajectory from the initial data x(θ) = ξ(θ) on −h ≤ θ ≤ 0 in L2
F0

([−h, 0]; Rn). Clearly, the

network (5) admits an equilibrium point (trivial solution) x(t; 0) ≡ 0 corresponding to the initial data ξ = 0.

The following stability concepts are needed in this paper.

Definition 1: For the delayed recurrent neural network (5) and every ξ ∈ L2
F0

([−h, 0]; Rn), the equilibrium

point is asymptotically stable in the mean square if, for every network mode

lim
t→∞

E|x(t; ξ)|2 = 0; (7)

and is exponentially stable in the mean square if, for every network mode, there exist scalars α > 0 and β > 0

such that

E|x(t; ξ)|2 ≤ αe−βt sup
−h≤θ≤0

E|ξ(θ)|2. (8)

Our objective of this paper is to establish LMI-based stability criteria under which the network dynamics

of (5) is exponentially stable in the mean square, independent of the time delay.
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III. Main results and proofs

Let us first give the following lemmas which will be frequently used in the proofs of our main results in this

paper.

Lemma 1: Let x ∈ R
n, y ∈ R

n and ε > 0. Then we have xT y + yT x ≤ εxT x + ε−1yTy.

Proof: The proof follows from the inequality (ε1/2x − ε−1/2y)T (ε1/2x − ε−1/2y) ≥ 0 immediately.

Lemma 2: [3] Given constant matrices Ω1, Ω2, Ω3 where Ω1 = ΩT
1 and 0 < Ω2 = ΩT

2 , then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0, or

[

−Ω2 Ω3

ΩT
3 Ω1

]

< 0.

The main results of this paper are given as follows, which shows that the network dynamics of (5) is globally

exponentially stable in the mean square if a set of linear matrix inequalities are feasible.

Theorem 1: If there exist two sequences of positive scalars {µ0i > 0, µ1i > 0, i ∈ S} and a sequence of

positive definite matrices Pi = P T
i > 0 (i ∈ S) such that the following linear matrix inequalities















−AiPi − PiAi +
∑N

j=1 γijPj µ0iG
T
0 PiW0i µ1iG

T
1 PiW1i

µ0iG0 −µ0iI 0 0 0

W T
0iPi 0 −µ0iI 0 0

µ1iG1 0 0 −µ1iI 0

W T
1iPi 0 0 0 −µ1iI















< 0, (9)

hold, then the dynamics of the neural network (5) is globally exponentially stable in the mean square.

Proof: Let C2,1(Rn×R+×S; R+) denote the family of all nonnegative functions Y (x, t, i) on R
n×R+×S

which are continuously twice differentiable in x and differentiable in t. Denote

ε0i = µ−1
0i , ε1i = µ−1

1i . (10)

Fix ξ ∈ L2
F0

([−h, 0]; Rn) arbitrarily and write x(t; ξ) = x(t). Define a Lyapunov functional candidate

Y (x, t, i) ∈ C2,1(Rn × R+ × S; R+) by

Y (x(t), r(t) = i) := Y (x(t), t, i) = xT (t)Pix(t) +

∫ t

t−h
xT (s)Qx(s)ds, (11)

where Q ≥ 0 is given as

Q = ε−1
1i GT

1 G1. (12)

It is known (see [13]) that {x(t), r(t)} (t ≥ 0) is a C([−h, 0]; Rn)×S-valued Markov process. From (5), the

weak infinitesimal operator L (see [10]) of the stochastic process {r(t), x(t)} (t ≥ 0) is given by:

LY (x(t), r(t)) := lim
∆→0+

1

∆

[

E
{

Y (x(t + ∆), r(t + ∆))|x(t), r(t) = i
}

− Y (x(t), r(t) = i)
]

= xT (t)
[

− AiPi − PiAi +
N

∑

j=1

γijPj + Q
]

x(t)

+ xT (t)PiW0il0(x(t)) + lT0 (x(t))W T
0iPix(t)

+ xT (t)PiW1il1(x(t − h)) + lT1 (x(t − h))W T
1iPix(t)

− xT (t − h)Qx(t − h) +

N
∑

j=1

γij

∫ t

t−h
xT (s)Qx(s)ds. (13)
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It follows from
∑N

j=1 γij = 0 that

N
∑

j=1

γij

∫ t

t−h
xT (s)Qx(s)ds =





N
∑

j=1

γij





(∫ t

t−h
xT (s)Qx(s)ds

)

= 0. (14)

From Lemma 1 and (4), we have:

xT (t)PiW0il0(x(t)) + lT0 (x(t))W T
0iPix(t)

≤ ε0ix
T (t)PiW0iW

T
0iPix(t) + ε−1

0i lT0 (x(t))l0(x(t))

≤ xT (t)(ε0iPiW0iW
T
0iPi + ε−1

0i GT
0 G0)x(t) (15)

and

xT (t)PiW1il1(x(t − h)) + lT1 (x(t − h))W T
1iPix(t)

≤ ε1ix
T (t)PiW1iW

T
1iPix(t) + ε−1

1i lT1 (x(t − h))l1(x(t − h))

≤ ε1ix
T (t)PiW1iW

T
1iPix(t) + ε−1

1i xT (t − h)GT
1 G1x(t − h). (16)

Define

Π := −AiPi − PiAi +

N
∑

j=1

γijPj + ε−1
0i GT

0 G0 + ε0iPiW0iW
T
0iPi + ε−1

1i GT
1 G1 + ε1iPiW1iW

T
1iPi. (17)

In view of (12) and (14)-(17), it follows from (13) that

LY (x(t), i) ≤ xT (t)Πx(t). (18)

Now, Pre- and post-multiplying the inequality (9) by the block-diagonal matrix

diag{I, ε
1/2
0i I, ε

1/2
0i I, ε

1/2
1i I, ε

1/2
1i I}

yield

















−AiPi − PiAi +
∑N

j=1 γijPj ε
−1/2
0i GT

0 ε
1/2
0i PiW0i ε

−1/2
1i GT

1 ε
1/2
1i PiW1i

ε
−1/2
0i G0 −I 0 0 0

ε
1/2
0i W T

0iPi 0 −I 0 0

ε
−1/2
1i G1 0 0 −I 0

ε
1/2
1i W T

1iPi 0 0 0 −I

















< 0, (19)

or
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0, (20)

where

Ω1 = −AiPi − PiAi +

N
∑

j=1

γijPj , Ω2 = I,

Ω3 =
[

ε
−1/2
0i GT

0 ε
1/2
0i PiW0i ε

−1/2
1i GT

1 ε
1/2
1i PiW1i

]T
.



REVISED TO PLA WITH BI08050039 6

It follows from the Schur Complement Lemma (Lemma 2) that (20) holds if and only if

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0,

or

−AiPi − PiAi +

N
∑

j=1

γijPj + ε−1
0i GT

0 G0 + ε0iPiW0iW
T
0iPi + ε−1

1i GT
1 G1 + ε1iPiW1iW

T
1iPi < 0, (21)

which means Π < 0 where Π is defined in (17).

We are now ready to prove the exponential stability in the mean square for the neural network (5). Let

β > 0 be the unique root of the equation

λmin(−Π) − βλmax(Pi) − βhλmax(Q)xβh = 0, (22)

where Q is defined in (12), Pi is the positive definite solution to (9) or (21), and h is the time-delay.

We can obtain from (11) that

L
[

xβtY (x(t), r(t))
]

= xβt
[

βY (x(t), r(t)) + LY (x(t), r(t))
]

≤ xβt
(

−
[

λmin(−Π) − βλmax(Pi)
]

|x(t)|2 + βλmax(Q)

∫ t

t−h
|x(s)|2ds

)

.

Then, integrating both sides from 0 to T > 0 gives

xβT
EY (x(T ), r(T )) ≤

[

λmax(Pi) + hλmax(Q)
]

sup
−h≤θ≤0

E|ξ(θ)|2

−
[

λmin(−Π) − βλmax(Pi)
]

E

∫ T

0
xβt|x(t)|2dt

+ βλmax(Q)E

∫ T

0
xβt

∫ t

t−h
|x(s)|2dsdt.

Note that
∫ T

0
xβt

∫ t

t−h
|x(s)|2dsdt ≤

∫ T

−h

(

∫ min(s+h,T )

max(s,0)
xβtdt

)

|x(s)|2ds

≤

∫ T

−h
hxβ(s+h)|x(s)|2ds ≤ hxβh

∫ T

0
xβt|x(t)|2dt + hxβh

∫ 0

−h
|ξ(θ)|2dθ.

Then, considering the definition of β in (22), we have

xβT
EY (x(T ), r(T )) ≤

[

λmax(Pi) + hλmax(Q)
]

sup
−h≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)h2xβh sup
−h≤θ≤0

E|ξ(θ)|2,

and

E|x(T )|2 ≤ λ−1
min(Pi)

(

[

λmax(Pi) + hλmax(Q)
]

sup
−h≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)h2xβh sup
−h≤θ≤0

E|ξ(θ)|2
)

x−βT .

Notice that (xβT − 1)x−βT < 1 and let

α := λ−1
min(Pi)

[

λmax(Pi) + hλmax(Q)(1 + βhxβh)
]

.



REVISED TO PLA WITH BI08050039 7

Since T > 0 is arbitrary, the definition of mean square exponential stability is then satisfied, hence the proof

of Theorem 1 is completed.

Remark 2: It is shown in Theorem 1 that, the exponential stability in the mean square of the neural

network (5) can be checked if a set of coupled LMIs are feasible. Noting that the solvability of LMIs can be

readily checked by the standard LMI Matlab toolbox [8] and no tuning of parameters is required, the main

results presented in Theorem 1 is thus very practical.

It is worth mentioning that, our results can be easily extended to the multiple-delay case. Consider now

the following Markovian jumping neural network with multiple time-varying delays:

ẋ(t) = −A(r(t))x(t) + W0(r(t))l0(x(t)) +

m
∑

k=1

W1(r(t))l1(x(t − hk(t))), (23)

where hk(t) (k = 1, 2, · · · ,m) is a time-varying scalar satisfying 0 ≤ hk(t) ≤ hk < ∞ and 0 ≤ ḣk(t) ≤ αk, and

hk and αk are known constants.

In order to tackle the analysis problem for the mean square stability of the neural network (23), we just

need to modify the Lyapunov-Krasovskii functional candidate in (11) as follows

Y (x(t), r(t) = i) := Y (x(t), t, i) = xT (t)Pix(t) +

m
∑

k=1

∫ t

t−hk(t)
xT (s)Qx(s)ds, (24)

and then similar results can be obtained by following the same line of the proof of Theorem 1.

Remark 3: Finally, we point out that it is possible to generalize our main results to more complex neural

networks, such as neural networks with distributed delays, parameter uncertainties and stochastic perturba-

tions, and the corresponding results will appear in the near future.

IV. A numerical example

We present a simple example here in order to illustrate the usefulness of our main results. Our aim

is to examine the global exponential stability of a given delayed neural network with Markovian jumping

parameters.

Consider a two-neuron delayed neural network (5) with two modes. The network parameters are given as

follows:

A1 =

[

1.6 0

0 1.8

]

, A2 =

[

1.2 0

0 1.5

]

, G0 =

[

0.2 0

0 0.3

]

,

G1 =

[

0.4 0

0 0.6

]

, W01 =

[

1.2 −1.5

−1.7 1.2

]

, W02 =

[

0.6 0.1

0.1 0.2

]

,

W11 =

[

1.1 0.5

0.5 0.8

]

, W12 =

[

0.8 0.2

0.2 0.3

]

, Γ =

[

−7 7

6 −6

]

.

By using the Matlab LMI toolbox, we solve the two LMIs in (9) for µ01 > 0, µ11 > 0, µ02 > 0, µ12 > 0,

P1 > 0 and P2 > 0, and obtain

µ01 = 1.1478, µ11 = 0.9373, µ02 = 1.0008, µ12 = 0.9108,

P1 =

[

0.3996 0.0493

0.0493 0.4570

]

, P2 =

[

0.3982 0.0632

0.0632 0.4415

]

.

Therefore, it follows from Theorem 1 that the Markovian jumping delayed neural network (5) is globally

exponentially stable in the mean square.
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V. Conclusions

In this paper, we have dealt with the problem of global exponential stability analysis for a class of general

recurrent neural networks, which both time delays and Markovian jumping parameters. We have removed the

traditional monotonicity and smoothness assumptions on the activation function. A linear matrix inequality

(LMI) approach has been developed to solve the problem addressed. The conditions for the global exponential

stability have been derived in terms of the positive definite solution to the LMIs, and a simple example has

been used to demonstrate the usefulness of the main results.
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