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Abstract

In this paper, the robust variance-constrained H∞ control problem is considered for uncertain stochastic systems

with multiplicative noises. The norm-bounded parametric uncertainties enter into both the system and output matrices.

The purpose of the problem is to design a state feedback controller such that, for all admissible parameter uncertainties,

1) the closed-loop system is exponentially mean-square quadratically stable; 2) the individual steady-state variance

satisfies given upper bound constraints; and 3) the prescribed noise attenuation level is guaranteed in an H∞ sense with

respect to the additive noise disturbances. A general framework is established to solve the addressed multiobjective

problem by using a linear matrix inequality (LMI) approach, where the required stability, the H∞ characterization

and variance constraints are all easily enforced. Within such a framework, two additional optimization problems are

formulated, one is to optimize the H∞ performance, and the other is to minimize the weighted sum of the system state

variances. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.
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I. Introduction

In many engineering control problems, the performance requirements are naturally expressed as the

upper bounds on the steady-state variances [1], [9], [10], [13], [16]. The covariance control theory aims

to solve the variance-constrained control problems while satisfying other performance indices, such

as L1, H2, H∞, pole placement, see e.g. [4], [8], [11], [16]. It has been shown that the covariance

control approach is capable of solving multiobjective design problems, which has found applications

in dealing with transient responses, round off errors in digital control, residence time/probability in

aiming control problems, and stability robustness in the presence of parameter perturbations, see

[16]. Such an advantage is based on the fact that several control design objectives, such as stability,

time-domain and frequency-domain performance specifications, robustness and pole location, can be

directly related to steady-state covariance of the closed-loop systems. Therefore, covariance control

theory serves as a practical method for multiobjective control design as well as a foundation for linear

system theory.

On the other hand, the control and filtering problems for stochastic systems with multiplicative

noises (also called bilinear systems or systems with state-dependent noises) have recently received

much attention, since many plants may be modelled by systems with multiplicative noises, and some
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characteristics of nonlinear systems can be closely approximated by models with multiplicative noises

rather than by linearized models. So far, there have been several approaches to dealing with the

control and filtering problems for stochastic systems with multiplicative noises, which the linear matrix

inequality (LMI) approach [18], the Riccati equation approach [20], [22], to name just a few. It is worth

emphasizing that, the covariance control problem has been initially studied for stochastic systems with

multiplicative noises in [3], [23]. In [3], Chung and Chang developed the coordinate transformation

method to assign the state covariance for stochastic continuous-time systems with multiplicative noises.

In [23], Yasuda et al. considered covariance control problem for stochastic continuous-time systems

with multiplicative noises, where the solvability of an assignability condition and the robustness of

covariance controllers were also discussed. However, when there exist modelling uncertainties and

external disturbances, the issues of robust control and H∞ disturbance rejection attenuation will need

to be addressed, in addition to the expected steady-state variance constraints. Unfortunately, up

to now, the robust H∞ control problems with variance constraints have not yet been investigated

for stochastic systems with multiplicative noises, and remains open and challenging, though similar

problem has been studied in [19] for linear system.

It is our objective in this paper to propose an LMI approach to solving the robust variance-

constrained H∞ control problem for stochastic systems with both multiplicative noises and norm-

bounded parameter uncertainties. We aim to design a state feedback controller such that, for all

admissible parameter uncertainties, the closed-loop system is exponentially mean-square quadratically

stable, the individual steady-state variance satisfies given upper bound constraints, and the prescribed

noise attenuation level is guaranteed in an H∞ sense with respect to the additive noise disturbances.

We will show that all the three requirements can be ideally enforced within a unified LMI framework.

In order to demonstrate the flexibility of the proposed framework, we will examine two types of the

optimization problems that optimize either the H∞ performance or the system state variances, and a

numerical example is provided to illustrate the effectiveness of the proposed design algorithm.

It is worth pointing out that the work in this paper represents the first attempt to consider multiple

performance objectives for stochastic systems with multiplicative noises. These objectives include

individual variance constraints, performance robustness and H∞ disturbance rejection attenuation

level. A unified LMI approach is developed to deal with the multiobjective design problem, which

is numerically more efficient than the traditional Riccati equation approach [20], [22]. On the other

hand, the conditions obtained in this paper are sufficient, and how to reduce the conservatism in the

design would be the issue for further research.

The remainder of this paper is organized as follows. In Section II, the robust variance-constrained

H∞ control problem for stochastic systems with both multiplicative noises and norm-bounded param-

eter uncertainties is formulated. The conditions for stability, H∞ performance and state variance are

expressed in terms of LMI in Section III, An LMI algorithm is developed in Section IV for designing

robust variance-constrained H∞ state feedback controllers with both multiplicative noises and deter-

ministic norm-bounded parameter uncertainty. A numerical example is presented in Section V to show

the applicability of the algorithm and some concluding remarks are provided in Section VI.

Notation. The notation used here is fairly standard. R
n and R

n×m denote, respectively, the n

dimensional Euclidean space and the set of all n × m real matrices, and I
+ stands for the set of
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nonnegative integers. The notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric

matrices, means that X − Y is positive semi-definite (respectively, positive definite). Var{xi} means

the variance of xi. E{x} stands for the expectation of stochastic variable x and E{x|y} for the

expectation of x conditional on y. The superscript “T” denotes the transpose. λmax(M) stands for the

maximum eigenvalue of matrix M . diag{M1,M2, ...} denotes a block diagonal matrix whose diagonal

blocks are given by M1, M2, · · · .

II. Problem Formulation

Consider the following class of stochastic discrete-time systems with both multiplicative noises and

deterministic norm-bounded parameter uncertainties:

xk+1 = (A+H1FE + Asηk)xk +B1wk +B2uk,

zk = (C1 +H2FE)xk +D11wk +D12uk, (1)

where xk ∈ R
n is the state, uk ∈ R

r is the control input, zk ∈ R
p is the controlled output. The

process noise wk ∈ R
q is a zero mean Gaussian white noise sequence with covariance R > 0, and the

stochastic multiplicative noise ηk ∈ R is also a zero mean Gaussian white noise sequence but with

unity covariance. The real matrices A, As, B1, B2, C1, D11, D12, H1, H2 and E are known matrices

with appropriate dimensions.

The real matrix F ∈ R
i×j , which could be time-varying, represents the deterministic norm-bounded

parameter uncertainty and satisfies

FF T ≤ I. (2)

The parameter uncertainty F is said to be admissible if it satisfies the condition (2).

Remark 1: The structure of the deterministic uncertainties in (2) has been used in many works

concerning robust control and filtering problems, see e.g. [14], [15]. The intensity of the multiplicative

noise ηk, which causes the bilinearities or stochastic uncertainties, can be scaled and absorbed in the

matrix As. Hence, without loss of generality, we could assume that ηk is of unity covariance.

Applying the state feedback control law

uk = Kxk, (3)

to the system (1), we obtain the following closed-loop system:

xk+1 = (AK + Asηk)xk +B1wk,

zk = CKxk +D11wk, (4)

where K is the state feedback gain, and

AK := A+B2K +H1FE, (5)

CK := C1 +D12K +H2FE. (6)

Before giving our design goal, we introduce the following stability concept for the system (4).
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Definition 1: The system (4) is said to be exponentially mean-square quadratically stable if, with

wk = 0, there exist constants α ≥ 1 and β ∈ (0, 1) such that

E{‖xk‖
2} ≤ αβk

E{‖x0‖
2}, ∀x0 ∈ R

n, k ∈ I
+, (7)

for all admissible uncertainties.

The aim in this paper is to design a state feedback controller of the form (3), such that for all

admissible deterministic uncertainties, the following three requirements are simultaneously satisfied

for the system (4):

(Q1) The system (4) is exponentially mean-square quadratically stable.

(Q2) For a given scalar γ > 0 and all nonzero wk and zero initial condition x0 = 0, the controlled

output zk satisfies
N

∑

k=0

E{‖zk‖
2} ≤ γ2

N
∑

k=0

E{‖wk‖
2}. (8)

(Q3) The individual steady-state state variances satisfy the following constraints:

V ar{xi,k} := lim
k−→∞

E{xi,kx
T
i,k} < σ2

i , (9)

where xk =
[

x1,k x2,k ... xn,k

]T

, and σ2
i > 0 (i = 1, 2, ..., n) are given scalars specifying the

acceptable variance upper bounds obtained from the engineering requirements.

The problem addressed above is referred to as the robust H∞ control problem with variance con-

straints.

III. Stability, H∞ Performance, Variance Analysis

In this section, the multiobjective (stability, H∞ performance and variance analysis) will be con-

sidered for stochastic discrete-time systems with both multiplicative noises and deterministic norm-

bounded parameter uncertainties.

A. Stability

Before deriving the stability conditions, two useful lemmas are given as follows.

Lemma 1: Let V (xk) = xT
kPxk be a Lyapunov functional where P > 0. If there exist real scalars

λ, µ > 0, ν > 0, and 0 < ψ < 1 such that both

µ‖xk‖
2 ≤ V (xk) ≤ ν‖xk‖

2, (10)

and

E{V (xk+1)|xk} − V (xk) ≤ λ− ψV (xk), (11)

hold, then the process xk satisfies that

E{‖xk‖
2} ≤

ν

µ
‖x0‖

2(1 − ψ)k +
λ

µψ
. (12)

Proof: The proof follows a similar line of that of Theorem 2 of [17].
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Lemma 2: Consider a system

ξk+1 = (M +Nηk)ξk (13)

where ηk is a zero mean Gaussian white noise sequence, and M , N are constant matrices with appro-

priate dimensions. If the system (13) is exponentially mean-square stable, i.e., there exist constants

α ≥ 1 and β ∈ (0, 1) such that

E{‖ξk‖
2} ≤ αβk

E{‖ξ0‖
2}, ∀ξ0 ∈ R

n, k ∈ I
+, (14)

and there exists a symmetric matrix Y satisfying

MYMT − Y +NY NT < 0, (15)

then Y ≥ 0.

Proof: It follows from (15) that

MYMT − Y +NYNT = −Θ (16)

for some Θ > 0. Define a functional W (ξk) = ξT
k Y ξk. Applying super-Martingale property for the

system (13) yields

E{W (ξk+1)|ξk} −W (ξk) = ξT
k (MYMT − Y +NYNT )ξk = −ξT

k Θξk. (17)

Summing (17) from 0 to n with respect to k, we obtain

E(ξT
n Y ξn) − ξT

0 Y ξ0 = −

n
∑

k=0

ξT
k Θξk. (18)

Let n → ∞ in (18). It then follows from the exponential mean-square stability of the system (13)

and the fact that

lim
n→∞

E(ξT
n Y ξn) ≤ ‖Y ‖ lim

n→∞

E(ξT
n ξn)

that limn→∞ E(ξT
n Y ξn) = 0. Hence, we have from (18) that

ξT
0 Y ξ0 =

∞
∑

k=0

ξT
k Θξk ≥ 0. (19)

Since (19) holds for any non-zero initial state ξ0, we arrive at the conclusion that Y ≥ 0.

According to Definition 1, we have the following theorem which provides the sufficient and necessary

conditions for the exponential quadratic stability of the system (4).

Theorem 1: Given the feedback gain matrix K. The system (4) is exponentially mean-square

quadratically stable if and only if, for all admissible uncertainties, there exists a positive definite

matrix P satisfying

AT
KPAK − P + AT

s PAs < 0. (20)
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Proof: The proof of necessary follows directly from [12]. To prove the sufficiency, we define

Lyapunov functional V (xk) = xT
kPxk, where P > 0 is the solution to (20). By using super-Martingale

property for the system (4) with wk = 0, we obtain

E{V (xk+1)|xk} − V (xk)

= xT
kA

T
KPAKxk + xT

k E{AT
s PAsη

2
k}xk − xT

k Pxk

= xT
k (AT

KPAK − P + AT
s PAs)xk. (21)

We know from (20) that, there must exist a sufficiently small scalar α satisfying 0 < α < λmax(P ) and

AT
KPAK − P + AT

s PAs < −αI. (22)

Therefore, it follows that

E{V (xk+1)|xk} − V (xk) ≤ −αxT
k xk ≤ −

α

λmax(P )
V (xk). (23)

Then, the proof of the sufficiency follows immediately from Lemma 1.

Corollary 1: Given the feedback gain matrix K. The system (4) is exponentially mean-square

quadratically stable if and only if, for all admissible uncertainties, there exists a positive definite

matrix Q satisfying

AKQA
T
K −Q+ AsQA

T
s < 0. (24)

Proof: The proof follows easily from Theorem 1, the references [2] and the fact that ρ(Φ) = ρ(ΦT ),

where Φ is a square matrix and ρ(·) is the spectral radius.

B. H∞ performance

Contrary to the standard H∞ performance formulation, we shall use the expression (8) to describe

the H∞ performance of the stochastic system, where the expectation operator is utilized on both the

controlled output and the disturbance input.

The following lemma, known as Schur Complement Lemma, will be essential in establishing our

results in terms of LMIs.

Lemma 3: [2] Given constant matrices Ω1, Ω2, Ω3 where Ω1 = ΩT
1 and 0 < Ω2 = ΩT

2 , then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0,

if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0,

or equivalently
[

−Ω2 Ω3

ΩT
3 Ω1

]

< 0.

We are now ready to derive the sufficient conditions for establishing the H∞-norm performance.
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Theorem 2: For a given γ > 0 and a given feedback gain matrix K, the system (4) is exponentially

mean-square quadratically stable and achieves the H∞-norm constraint (8) for all nonzero wk, if there

exists a positive definite matrix P satisfying
[

AT
KPAK − P + AT

s PAs + CT
KCK AT

KPB1 + CT
KD11

BT
1 PAK +DT

11CK BT
1 PB1 − γ2I +DT

11D11

]

< 0, (25)

for all admissible uncertainties.

Proof: It is obvious that (25) implies (20), hence it follows from Theorem 1 that the system (4)

is exponentially mean-square quadratically stable.

Next, for any nonzero wk, it follows from (25) that

E{V (xk+1)|xk} − V (xk) + E{zT
k zk} − γ2

E{wT
kwk}

= xT
k (AT

KPAK − P + AT
s PAs)xk + xT

kA
T
KPB1wk + wT

kB
T
1 PAKxk + wT

kB
T
1 PB1wk

+xT
kC

T
KCKxk + xT

kC
T
KD11wk + wT

kD
T
11CKxk + wT

kD
T
11D11wk − γ2wT

kwk

= xT
k (AT

KPAK − P + AT
s PAs + CT

KCK)xk + xT
k (AT

KPB1 + CT
KD11)wk

+wT
k (BT

1 PAK +DT
11CK)xk + wT

k (BT
1 PB1 +DT

11D11 − γ2I)wk

=

[

xk

wk

]T [

AT
KPAK − P + AT

s PAs + CT
KCK AT

KPB1 + CT
KD11

BT
1 PAK +DT

11CK BT
1 PB1 − γ2I +DT

11D11

][

xk

wk

]

< 0. (26)

Now, summing (26) from 0 to ∞ with respect to k leads to

∞
∑

k=0

[E{V (xk+1)|xk} − V (xk) + E{zT
k zk} − γ2

E{wT
kwk}] < 0, (27)

or
∞

∑

k=0

E{‖zk‖
2} < γ2

∞
∑

k=0

E{‖wk‖
2} + V (x0) − V (x∞). (28)

Since x0 = 0 and the system (4) is exponentially mean-square quadratically stable, it is straightfor-

ward to see that
∞

∑

k=0

E{‖zk‖
2} < γ2

∞
∑

k=0

E{‖wk‖
2}, (29)

which ends the proof.

Note that the inequality (25) is not linear on the closed-loop matrixAK . In the interest of establishing

an LMI framework for the controller design, we now restate Theorem 2 in terms of an LMI as follows.

Theorem 3: For a given γ > 0 and a given feedback gain matrix K, the system (4) is exponentially

mean-square quadratically stable and achieves the H∞-norm constraint (8) for all nonzero wk, if there

exists a positive definite matrix Q satisfying














−Q AKQ 0 0 B1

QAT
K −Q QAT

s QCT
K 0

0 AsQ −Q 0 0

0 CKQ 0 −I D11

BT
1 0 0 DT

11 −γ2I















< 0. (30)
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Proof: Using the Schur Complement Lemma (Lemma 3) twice, we can see that (25) is equivalent

to










−P + AT
s PAs 0 AT

K CT
K

0 −γ2I BT
1 DT

11

AK B1 −P−1 0

CK D11 0 −I











< 0, (31)

or














−P 0 AT
K CT

K AT
s

0 −γ2I BT
1 DT

11 0

AK B1 −P−1 0 0

CK D11 0 −I 0

As 0 0 0 −P−1















< 0. (32)

Performing twice the congruence transformation to (32) by















I 0 0 0 0

0 0 0 0 I

0 I 0 0 0

0 0 0 I 0

0 0 I 0 0















and















0 I 0 0 0

I 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I















, (33)

we can see that (32) is equivalent to















−P−1 AK 0 0 B1

AT
K −P AT

s CT
K 0

0 As −P−1 0 0

0 CK 0 −I D11

BT
1 0 0 DT

11 −γ2I















< 0. (34)

Let P = Q−1 in (34) and then again applying the congruence transformation by diag{I, Q, I, I, I},

we arrive at (30), and the proof is complete.

C. Variance analysis

Define the steady-state covariance by

Q̂ : = lim
k→∞

E{xkx
T
k }

= lim
k→∞

E{
[

x1,k x2,k ... xn,k

] [

x1,k x2,k ... xn,k

]T

}. (35)

Obviously, if the system (4) is exponentially mean-square quadratically stable, then in the steady-

state, Q̂ exists and satisfies the following equation

AKQ̂A
T
K − Q̂+ AsQ̂A

T
s +B1RB

T
1 = 0. (36)
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Theorem 4: If there exists a positive definite matrix Q satisfying











−Q AKQ AsQ B1

QAT
K −Q 0 0

QAT
s 0 −Q 0

BT
1 0 0 −R−1











< 0, (37)

then the system (4) is exponentially mean-square quadratically stable, and Q̂ ≤ Q.

Proof: We first prove that (37) is equivalent to

AKQA
T
K −Q+ AsQA

T
s +B1RB

T
1 < 0. (38)

By using Schur complement Lemma (Lemma 3) to (38), we have

[

−Q+ AsQA
T
s +B1RB

T
1 AK

AT
K −Q−1

]

< 0, (39)

⇐⇒







−Q+B1RB
T
1 AK As

AT
K −Q−1 0

AT
s 0 −Q−1






< 0, (40)

⇐⇒











−Q AK As B1

AT
K −Q−1 0 0

AT
s 0 −Q−1 0

BT
1 0 0 −R−1











< 0. (41)

Performing the congruence transformation to (41) by diag{I, Q, Q, I} yields (37). Hence, there exists

a matrix Q > 0 satisfying (37) if and only if there exists a matrix Q > 0 satisfying (38).

Next, it follows directly from (38) and Theorem 1 that the system (4) is exponentially mean-square

quadratically stable. Hence, Q̂ exists and meets (36).

Subtracting (36) from (38) gives

AK(Q− Q̂)AT
K − (Q− Q̂) + As(Q− Q̂)AT

s < 0, (42)

which indicates from Lemma 2 that Q− Q̂ ≥ 0. The proof is now completed.

The results provided in the above theorem will be essential for designing the controllers, which

guarantee the stability, H∞ performance and variance constraints for the uncertain stochastic systems

with multiplicative noises in the next section.

IV. Robust State Feedback Controller Design

In this section, we will present the solution to the robustH∞ state feedback controller design problem

with variance constraints for the stochastic discrete-time systems with both multiplicative noises and

deterministic norm-bounded parameter uncertainty. That is, we will design the controller that achieves

the requirements (Q1), (Q2) and (Q3) described in Section II.

Prior to giving our main results, we recall the following useful lemma.
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Lemma 4: (S-procedure) [21] Let M = MT , H and E be real matrices of appropriate dimensions,

and F satisfying (2), then

M +HFE + ETF THT < 0, (43)

if and only if, there exists a positive scalar ε such that

M + εHHT +
1

ε
ETE < 0, (44)

or equivalently






M εH ET

εHT −εI 0

E 0 −εI






< 0. (45)

The following theorem provides an LMI approach to the addressed multiobjective (stability, H∞ per-

formance and variance constraints) design problem for the uncertain stochastic discrete-time systems

with multiplicative noises.

Theorem 5: Given γ > 0 and σ2
i > 0 (i = 1, 2, · · · , n). If there exist a positive definite matrix

Q > 0, a real matrix G and positive scalars ε1 and ε2 such that the following set of linear matrix

inequalities (LMIs)
























−Q AQ+B2G 0 0 B1 ε1H1 0

QAT +GTBT
2 −Q QAT

s QCT
1 +GTDT

12 0 0 QET

0 AsQ −Q 0 0 0 0

0 C1Q+D12G 0 −I D11 ε1H2 0

BT
1 0 0 DT

11 −γ2I 0 0

ε1H
T
1 0 0 ε1H

T
2 0 −ε1I 0

0 EQ 0 0 0 0 −ε1I

























< 0, (46)





















−Q AQ+B2G AsQ B1 ε2H1 0

QAT +GTBT
2 −Q 0 0 0 QET

QAT
s 0 −Q 0 0 0

BT
1 0 0 −R−1 0 0

ε2H
T
1 0 0 0 −ε2I 0

0 EQ 0 0 0 −ε2I





















< 0, (47)

[

1 0 0 · · · 0
]

Q
[

1 0 0 · · · 0
]T

< σ2
1 , (48)

[

0 1 0 · · · 0
]

Q
[

0 1 0 · · · 0
]T

< σ2
2 , (49)

...
[

0 0 · · · 0 1
]

Q
[

0 0 · · · 0 1
]T

< σ2
n, (50)

are feasible, then there exists a state feedback controller of the form (3) such that three requirements

(Q1), (Q2) and (Q3) are satisfied for all admissible deterministic uncertainties. Moreover, the desired

controller (3) can be determined by

K = GQ−1. (51)
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Proof: We first prove that (30) holds if and only if (46) holds, and (37) is true if and only if (47)

is true. To do this, we rewrite (30) in the form of (43) as follows:















−Q (A+B2K)Q 0 0 B1

Q(A +B2K)T −Q QAT
s Q(C1 +D12K)T 0

0 AsQ −Q 0 0

0 (C1 +D12K)Q 0 −I D11

BT
1 0 0 DT

11 −γ2I















+















H1

0

0

H2

0















F
[

0 EQ 0 0 0
]

+
[

0 EQ 0 0 0
]T

F T















H1

0

0

H2

0















T

< 0. (52)

In order to cope with the uncertainty factor F , we apply Lemma 4 to (52) and then have the

conclusion that, (52) holds if and only if there exists a positive scalar ε1 such that the following LMI

holds:
























−Q (A+B2K)Q 0 0 B1 ε1H1 0

Q(A+B2K)T −Q QAT
s Q(C1 +D12K)T 0 0 QET

0 AsQ −Q 0 0 0 0

0 (C1 +D12K)Q 0 −I D11 ε1H2 0

BT
1 0 0 DT

11 −γ2I 0 0

ε1H
T
1 0 0 ε2H

T
1 0 −ε1I 0

0 EQ 0 0 0 0 −ε1I

























< 0. (53)

Similarly, we rewrite (37) in the form of (43) as follows:











−Q (A +B2K)Q AsQ B1

Q(A +B2K)T −Q 0 0

QAT
s 0 −Q 0

BT
1 0 0 −R−1











+











H1

0

0

0











F
[

0 EQ 0 0
]

+
[

0 EQ 0 0
]T

F T











H1

0

0

0











T

< 0, (54)

and apply Lemma 4 again to (54), we know that (54) holds if and only if there exists a positive scalar
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ε2 such that the following LMI holds:





















−Q (A+B2K)Q AsQ B1 ε2H1 0

Q(A +B2K)T −Q 0 0 0 QET

QAT
s 0 −Q 0 0 0

BT
1 0 0 −R−1 0 0

ε2H
T
1 0 0 0 −ε2I 0

0 EQ 0 0 0 −ε2I





















< 0. (55)

Let

G = KQ, (56)

it is straightforward to see that (53) is identical to (46), and (55) is identical to (47).

To this end, it follows immediately from Theorem 3 and Theorem 4 that, with the feedback gain

matrix K given in (56) (or (51)), the closed-loop system (4) is exponentially mean-square quadratically

stable, the H∞-norm constraint (8) is achieved for all nonzero wk, and the steady-state covariance Q̂

exists and satisfies Q̂ ≤ Q. In other words, the requirements (Q1) and (Q2) are met. Next, considering

the definitions (9) and (35), we can obtain that

V ar{xi,k} =
[

0 · · · 0 1 0 · · · 0
]

Q̂
[

0 · · · 0 1 0 · · · 0
]T

≤
[

0 · · · 0 1 0 · · · 0
]

Q
[

0 · · · 0 1 0 · · · 0
]T

. (57)

Therefore, the n LMIs given in (48)-(50) indicates that the requirement (Q3) is also met. This

completes the proof.

Remark 2: The robust H∞ controller with variance constraints can be obtained by solving the n+2

LMIs described in (46)-(50) in Theorem 5. Such a set of LMIs can be solved efficiently via the interior

point method [2]. Note that LMIs (46)-(50) are affine in the scalar positive parameters ε1, ε2, the

positive definite matrix Q and a real matrix G. Hence, they can be defined as LMI variables in order

to increase the solvability while reducing the conservatism with respect to the parameter uncertainties.

Up to now, by means of an LMI approach, we have proposed the controller design procedure which

guarantees the simultaneous satisfaction of the requirements (Q1), (Q2) and (Q3). In order to show the

flexibility of the proposed LMI framework, we now discuss the following two optimization problems:

(P1) The optimal variance-constrained H∞ control problem for uncertain stochastic systems with

multiplicative noises:

min
Q>0, G, ε1>0, ε2>0

γ subject to (46) − (50) for given σ2
1, σ

2
2 , · · · , σ2

n (58)

(P2) The minimum weighted variance H∞ control problem for uncertain stochastic systems with

multiplicative noises:

min
Q>0, G, ε1>0, ε2>0

α1σ
2
1 + α2σ

2
2 + · · ·+ αnσ

2
n subject to (46) − (50) for given γ (59)

where αi (i = 1, 2, ..., n) are given weighting coefficients for variances and satisfy
∑n

i=1
αi = 1.
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Remark 3: In many engineering applications, the performance constraints on the steady-state vari-

ances are often specified a priori. That is, the upper bounds σ2
1 , σ

2
2, · · · , σ

2
n can be prescribed. Hence,

in addition to the individual variance constraints, the problem (P1) will help exploit the design freedom

to meet the optimal H∞ performance. This is certainly attractive because the addressed multiobjective

problem can be solved while a local optimal performance can also be achieved, and the computation

is efficient by using the Matlab LMI toolbox.

Remark 4: In the problem (P2), the variances are weighted against their importance in the real

engineering systems, and then the feedback gain is sought so as to minimize the weighted sum of

the variance. We could, of course, optimize the variances of individual system states by setting the

weighting coefficients of certain variances to zeros. Therefore, the problem (P2) is flexible in terms of

both the engineering requirements and the computational efficiency.

V. A Numerical Example

Consider an uncertain stochastic discrete-time system with multiplicative noises described by (1)

with the model parameters given as follows:

A =







−0.1 0.3 −0.2

0 −0.25 0.1

0.1 0 0.5






, B1 =







0.3

0

0.1






, B2 =







−1

2

1






,

C1 =
[

1 −1 2
]

, D11 = 1, D12 = 2, As =







0.2 0 0

0 0.1 0

0 0 0.2






,

H1 =







0.3

0.2

0






, H2 = 0; E =

[

1 0 0
]

, R = 1.

Now, let us examine the following three cases.

Case 1: γ2 = 1.8, σ2
1 = 0.5, σ2

2 = 0.5, σ2
3 = 0.2.

This case is exactly concerned with the addressed robust H∞ control problem with specified variance

constraints, hence can be tackled by using Theorem 5 with n = 3. By employing the Matlab LMI

toolbox, the solution is given by

Q =







0.2699 −0.1592 −0.0710

−0.1592 0.4995 0.1866

−0.0710 0.1866 0.1376






, G =

[

−0.1348 0.0911 0.0215
]

,

ε1 = 0.5729, ε2 = 0.5601, K =
[

−0.4968 0.1243 −0.2683
]

.

Case 2: σ2
1 = 0.5, σ2

2 = 0.5, σ2
3 = 0.2.

In this case, we wish to design the controller which minimizes theH∞ performance under the variance

constraints specified above. That is, we want to solve the problem (P1). Solving the optimization
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problem (58) using LMI toolbox yields the optimal value γopt = 1.6583 and

Q =







0.4624 −0.1193 −0.1075

−0.1193 0.4982 0.1597

−0.1075 0.1597 0.1552






, G =

[

−0.1745 0.1041 0.0223
]

,

ε1 = 1.6594, ε2 = 1.2316, K =
[

−0.4047 0.2325 −0.3757
]

.

Case 3: γ2 = 1.8, α1 = 0.3; α2 = 0.4; α3 = 0.3.

We now deal with the problem (P2). Solving the optimization problem (59), we obtain the minimum

individual variance values σ2
1min = 0.3020, σ2

2min = 0.3410, σ2
3min = 0.0636, and

Q =







0.3013 −0.0830 −0.0232

−0.0830 0.3405 0.1059

−0.0232 0.1059 0.0630






, G =

[

−0.1215 0.0667 0.0168
]

,

ε1 = 1.1133, ε2 = 0.9002, K =
[

−0.3734 0.1360 −0.0997
]

.

Remark 5: Within the LMI framework developed in this paper, we can show that there is some

trade-off that can be used for satisfying specific performance requirements. For example, the H∞

performance will be improved if the variances constraints become more relaxed (larger). Also, if the

value of the H∞ performance constraint is allowed to be increased, then the steady-state variances

can be further reduced. Hence, the proposed approach allows much flexibility in making compromise

between the variances and the H∞ performance, while the essential multiple objectives can all be

achieved simultaneously.

VI. Conclusions

In this paper, a robust H∞ controller with variance constraints has been designed for a class of

stochastic systems with both multiplicative noises and norm-bounded parameter uncertainties. A

general framework for solving this problem is established using an LMI approach in conjunction with

stability, H∞ optimization characterization and variance constraints. Two types of the optimization

problems have been proposed by either optimizing H∞ performance or the system state variances.

Sufficient conditions have been derived in terms of a set of feasible LMIs. We point out that our

method can be extended to the output feedback case, and different representations of uncertainties

can also be considered such as those in [5], [6], [7]. These are possibly the topics of our future research.
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