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Design of Exponential State Estimators for Neural

Networks with Mixed Time Delays
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Abstract

In this paper, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed

discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor

bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements,

such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By

using the Laypunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient

conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit

expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is

exploited to show the usefulness of the derived LMI-based stability conditions.
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I. Introduction

The last few decades have witnessed a large amount of successful applications of neural networks in various

areas including image processing, pattern recognition, associative memory, and optimization problems. In

particular, high-order and large-scale neural networks have shown their great capacities in learning and data

handling. For relatively high-order and large-scale neural networks, however, it is often the case that only

partial information about the neuron states is available in the network outputs. Therefore, in order to make

use of the neural networks in practice, it becomes necessary to estimate the neuron states through available

measurements. The state estimation problem for neural networks has recently drawn particular research

interests, see [5, 8, 14, 18]. For example, in [14], an adaptive state estimator has been described by using

techniques of optimization theory, the calculus of variations and gradient descent dynamics. In [18], the

neuron state estimation problem has been addressed for recurrent neural networks with time-varying delays,

and an effective LMI approach has been developed to verify the stability of the estimation error dynamics.

On the other hand, many biological and artificial neural networks contain inherent time delays in signal

transmission, which may cause oscillation and instability (see e.g. [1,12,18]). In recent years, a great number

of papers have been published on various neural networks with time delays, and the existence of equilibrium

point, global asymptotic stability, global exponential stability, and the existence of periodic solutions have

been intensively investigated, see [3, 4, 10,15–17,19–24] for some recent results.

For the dynamical behavior analysis of delayed neural networks, different types of time delays, such as

constant delays, time-varying delays, and distributed delays, have been taken into account by using a variety

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant

GR/S27658/01, the Nuffield Foundation of the U.K. under Grant NAL/00630/G, the Alexander von Humboldt Foundation of

Germany, the Natural Science Foundation of Jiangsu Education Committee of China under Grant 05KJB110154, and the National

Natural Science Foundation of China under Grant 10471119.
Y. Liu is with the Department of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China.
Z. Wang and X. Liu are with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex,

UB8 3PH, United Kingdom.
∗All correspondences concerning this paper should be addressed to Z. Wang. (Email: Zidong.Wang@brunel.ac.uk)



SUBMITTED 2

of techniques that include linear matrix inequality (LMI) approach, Lyapunov functional method, M -matrix

theory, topological degree theory, and techniques of inequality analysis. For example, most recently, in [16],

sufficient conditions, which ensure the existence and uniqueness of the equilibrium point and global exponential

stability of bi-directional associative memory (BAM) neural networks with distributed delays and reaction-

diffusion terms, are obtained by using the theory of topological degree, properties of M-matrix and Lyapunov

functional. In [2], several novel sufficient criteria are given, in terms of matrix inequalities, for checking the

global robust stability of equilibria for interval neural networks with time delays based on Lyapunov method

and linear matrix inequality (LMI) technique. In [19–21], the global asymptotic stability analysis problem has

been dealt with for a class of neural networks with discrete and distributed time-delays by using an effective

LMI approach.

Up to now, comparing to the huge volume of literature on analyzing dynamical behavior analysis of delayed

neural networks, the state estimation problem for generalized RNNs with both discrete and distributed time-

delays have received relatively little research attention, despite its important application potential. This

situation motivates us, in this paper, to investigate the state estimation problem for a class of neural networks

with discrete and distributed time-delays. The purpose of the problem is to estimate the neuron states via

available output measurements such that the estimation error converges to zero exponentially. A numerically

efficient LMI approach is developed to solve the addressed problem, and the explicit expression of the set of

desired estimators is characterized. A simulation example is used to demonstrate the usefulness of the LMI

method.

II. Problem formulation

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively,

the n-dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix

transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semidefinite (respectively, positive definite). In is the n× n identity matrix. | · | is the

Euclidean norm in R
n. If A is a matrix, denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =

√

λmax(AT A) where λmax(·) (respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue of A.

Sometimes, the arguments of a function or a matrix will be omitted in the analysis when no confusion can

arise. Furthermore the standard symbol C([a, b]; Rn) denotes the set of continuous vector-valued functions

defined on the interval [a, b].

Consider the following recurrent neural network with mixed time delays:

dxi(t)

dt
= −dixi(t)+

n
∑

j=1

aijfj(xj(t))+
n

∑

j=1

bijgj(xj(t− τ1))+

∫ t

t−τ2

n
∑

j=1

wijhj(uj(s))ds+ Ii(t), i = 1, ..., n, (1)

where n is the number of the neurons in the neural network, xi(t) denotes the state of the ith neural neuron

at time t, fj(·), gj(·) and hj(·) are the activation functions of the jth neuron. The constants aij, bij and wij

denote, respectively, the connection weights, the discretely delayed connection weights, and the distributively

delayed connection weights, of the jth neuron on the i neuron. Ii(t) is the external time-varying bias on

the ith neuron, di denotes the rate with which the ith neuron will reset its potential to the resting state in

isolation when disconnected from the network and external inputs. τ1 is the constant discrete time delay,

while τ2 describes the distributed time delay.

The neural network (1) can be rewritten as the following matrix-vector form:

dx(t)

dt
= −Dx(t) + AF (x(t)) + BG(x(t − τ1)) + W

∫ t

t−τ2

H(x(s))ds + I(t), (2)
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where x(t) = [x1(t), x2(t), · · · , un(t)]T , D = diag(d1, ..., dn), A = (aij)n×n, B = (bij)n×n, W = (wij)n×n,

I(t) = (I1(t), ..., In(t))T , and F (x(t)) = (f1(x1(t)), ..., fn(xn(t)))T , G(x(t− τ1)) = (g1(x1(t− τ1)), ..., gn(un(t−

τ1)))
T , H(x(s)) = (h1(x1(s)), ..., hn(xn(s)))T .

Traditionally, the activation functions are assumed to be continuous, differentiable, monotonically increasing

and bounded, such as the sigmoid-type of function. However, as discussed in [3, 4], in many electronic

circuits, the input-output functions of amplifiers may be neither monotonically increasing nor continuously

differentiable, hence nonmonotonic functions can be more appropriate to describe the neuron activation in

designing and implementing an artificial neural network. In this paper, we make following assumption for the

neuron activation functions, where the activation functions no longer need to be differentiable, monotonically

increasing and bounded.

Assumption 1: For i ∈ {1, 2, ..., n}, the neuron activation functions in (2) satisfy

l−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ l+i , (3)

σ−
i ≤

gi(s1) − gi(s2)

s1 − s2
≤ σ+

i , (4)

υ−
i ≤

hi(s1) − hi(s2)

s1 − s2
≤ υ+

i , (5)

where l−i , l+i , σ−
i , σ+

i , υ−
i , υ+

i are some constants.

Remark 1: The constants l−i , l+i , σ−
i , σ+

i , υ−
i , υ+

i in Assumption 1 are allowed to be positive, negative or

zero. Hence, the resulting activation functions could be non-monotonic, and more general than the usual

sigmoid functions. It is also noted that, for the state estimation task addressed in this paper, the neuron

activation functions in (2) are not assumed to be bounded as usual.

It is worth noticing that for either biological or artificial neural networks, it is usually the case that the

state of the neural network is not completely accessible and all the information one can have is just the output

of the neural network. Subsequently, estimating the neuron state from the given output is necessary to realize

some specific design objectives in many practical applications, and there is a need to construct an estimator

to approximate the state of the neural network (2) in an asymptotical or exponential way.

Suppose that the output from the neural network (2) is of the form:

y(t) = Cx(t) + Q(t, x(t)). (6)

Here, y(t) = (y1(t), ..., ym(t))T ∈ R
m is the measurement output of the neural network, C ∈ R

m×n is a known

constant matrix, and Q(t, x(t)) = (q1(t, x(t)), ..., qm(t, x(t)))T ∈ R
m is the nonlinear disturbance dependant

on the neuron state that satisfies the following Lipschitz condition:

|Q(t, x) − Q(t, y)| ≤ |R(x − y)|, (7)

where R ∈ R
n×n is a known constant matrix.

In order to estimate the neuron state of (2), we construct the following full-order state estimator:

dx̂(t)

dt
= −Dx̂(t) + AF (x̂(t)) + BG(x̂(t− τ1)) + W

∫ t

t−τ2

H(x̂(s))ds + I(t) + K[y(t)−Cx̂(t)−Q(t, x̂(t))], (8)

where x̂(t) is the state estimate, and K ∈ R
n×m is the estimator gain matrix to be designed.

Our aim is to choose a suitable K so that x̂(t) approaches x(t) asymptotically or exponentially. For this

purpose, we let E(t) = (ǫ1(t), ǫ2(t), . . . , ǫn(t))T := x̂(t) − x(t) be the state estimation error. Then in terms of

(2), (6) and (8), the state error e(t) satisfies the following equation

dE(t)

dt
= (−D − KC)E(t) + AF̂ (E(t)) + BĜ(E(t − τ1)) + W

∫ t

t−τ2

Ĥ(E(s))ds − KQ̂(t, E(t)), (9)
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where, for notation simplicity, we denote

F̂ (E(t)) =
[

f̂1(ǫ1(t)), f̂2(ǫ2(t))..., f̂n(ǫn(t))
]T

:= F (x̂(t)) − F (x(t)), (10)

Ĝ(E(t)) =
[

ĝ1(ǫ1(t)), ĝ2(ǫ2(t)), ..., ĝn(ǫn(t))
]T

:= G(x̂(t)) − G(x(t)), (11)

Ĥ(E(t)) =
[

ĥ1(ǫ1(t)), ĥ2(ǫ2(t)), ..., ĥn(ǫn(t))
]T

:= H(x̂(t)) − H(x(t)), (12)

Q̂(t, E(t)) := Q(t, x̂(t)) − Q(t, x(t)). (13)

Notice that F̂ (E(t)), Ĝ(E(t)), Ĥ(E(t)) and Q̂(t, E(t)) are all dependant on x(t) or x̂(t), as well as E(t). In

order to avoid cumbersome notations, we just use the symbols F̂ (E(t)), Ĝ(E(t), Ĥ(E(t)) and Q̂(t, E(t)) to

represent F̂ (E(t), x(t)), Ĝ(E(t), x(t)), Ĥ(E(t), x(t)) and Q̂(t, E(t), x(t)).

According to (3)-(7), one can easily check that:

l−i (s1 − s2) ≤ f̂i(s1) − f̂i(s2) ≤ l+i (s1 − s2), ∀s1, s2 ∈ R, (i = 1, ..., n) (14)

σ−
i (s1 − s2) ≤ ĝi(s1) − ĝi(s2) ≤ σ+

i (s1 − s2), ∀s1, s2 ∈ R, (i = 1, ..., n) (15)

υ−
i (s1 − s2) ≤ ĥi(s1) − ĥi(s2) ≤ υ+

i (s1 − s2), ∀s1, s2 ∈ R, (i = 1, ..., n) (16)

|Q̂(t, E)| ≤ |RE|. (17)

Let E(t, φ), or shortly E(t), denote the solution of the error-state system (9) with the initial condition of

the form

E(s) = φ(s), s ∈ [−τ∗, 0], (18)

where φ(·) ∈ C([−τ∗, 0]; Rn), τ∗ = max{τ1, τ2}.

It is easy to see from Assumption 1 and the condition (7) that the solution of (2) exists for all t ≥ 0 and is

unique (see [9]). Furthermore, there exists a unique zero equilibrium point to the error-state system (9).

We need the following definitions to go ahead to design the desired estimators.

Definition 1: The system (8) is said to be a state estimator of the neural network (2) if the estimation

error-state system (9) is asymptotically stable.

Definition 2: The system (8) is said to be an exponential state estimator of the neural network (2) if the

estimation error-state system (9) is exponentially stable, i.e., there exist positive constants k > 0 and µ > 0

such that every solution E(t;φ) of (9) satisfies

|E(t)| ≤ µe−kt sup
−τ∗≤s≤0

|φ(s)|, ∀t > 0.

The main purpose of this paper is to establish LMI-based sufficient conditions under which the system (8)

becomes a state estimator and an exponential state estimator, respectively.

III. Main results and proofs

The following lemmas are essential in establishing our main results.

Lemma 1: Let X, Y be any n-dimensional real vectors, and let P be a n× n positive semi-definite matrix.

Then, the following matrix inequality holds:

2XT PY ≤ XT PX + Y T PY.

Lemma 2: (Schur Complement) Given constant matrices Ω1,Ω2,Ω3 where Ω1 = ΩT
1 and Ω1 > 0, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0
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if only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0, or

[

−Ω2 Ω3

ΩT
3 Ω1

]

< 0.

Lemma 3: [7] For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → R
n such

that the integrations concerned are well defined, the following inequality holds:

(
∫ γ

0
ω(s)ds

)T

M

(
∫ γ

0
ω(s)ds

)

≤ γ

(
∫ γ

0
ωT (s)Mω(s)ds

)

(19)

For presentation convenience, in the following, we denote

L1 = diag(l+1 l−1 , ..., l+n l−n ), L2 = diag(
l+1 + l−1

2
, ...,

l+n + l−n
2

), (20)

Σ1 = diag(σ+
1 σ−

1 , ..., σ+
n σ−

n ), Σ2 = diag(
σ+

1 + σ−
1

2
, ...,

σ+
n + σ−

n

2
), (21)

Υ1 = diag(υ+
1 υ−

1 , ..., υ+
n υ−

n ), Υ2 = diag(
υ+

1 + υ−
1

2
, ...,

υ+
n + υ−

n

2
). (22)

We are now ready to present our first main result.

Theorem 1: Under Assumption 1, the system (8) becomes a state estimator of the neural network (2) if

there exist a constant ρ > 0, a matrix M ∈ R
n×m, three n×n positive definite matrices P1, P2, P3, and three

diagonal matrices Λ = diag(λ1, ..., λn) > 0, Γ = diag(γ1, ..., γn) > 0 and ∆ = diag(δ1, ..., δn) > 0 such that the

following LMI holds:

Φ =

























Θ P1A + ΛL2 ΓΣ2 P1B ∆Υ2 P1W M

AT P1 + ΛL2 −Λ 0 0 0 0 0

ΓΣ2 0 P2 − Γ 0 0 0 0

BT P1 0 0 −P2 0 0 0

∆Υ2 0 0 0 τ2P3 − ∆ 0 0

W TP1 0 0 0 0 −P3 0

MT 0 0 0 0 0 −ρI

























< 0, (23)

where

Θ = −P1D − DT P1 − MC − CTMT + ρRTR − ΛL1 − ΓΣ1 − ∆Υ1. (24)

In this case, the estimator gain matrix K can be taken as

K = P−1
1 M.

Proof: To proceed with the stability analysis of the error-state system (9), we construct the following

Lyapunov-Krasovskii functional

V (t) = ET (t)P1E(t) +

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds +

∫ τ2

0

∫ t

t−s

ĤT (E(η))P3Ĥ(E(η))dηds. (25)

The time derivative of V (t) along the trajectory of the system (9) can be calculated as follows:

V̇ (t) = 2ET (t)P1

[

(−D − KC)E(t) + AF̂ (E(t)) + BĜ(E(t − τ1))

+ W

∫ t

t−s

Ĥ(E(s))ds − KQ̂(t, E(t))
]

+ ĜT (E(t))P2Ĝ(E(t)) − ĜT (E(t − τ1))P2Ĝ(E(t − τ1))

+ τ2Ĥ
T (E(t))P3Ĥ(E(t)) −

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds. (26)
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It follows from (17), Lemma 1 and Lemma 2 that

−2ET (t)P1KQ̂(t, E(t)) ≤ ρ−1ET (t)P1KKTP T
1 ET (t) + ρQ̂T (t, E(t))Q̂(t, E(t))

≤ ρ−1ET (t)P1KKTP T
1 ET (t) + ρET (t)RT RE(t) (27)

−

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s)) ≤ −

(
∫ T

t−τ2

Ĥ(E(s))ds

)T

P3

∫ t

t−τ2

ĤT (E(s))ds. (28)

Substituting the above into (26) leads to

V̇ (t) ≤ 2ET (t)P1

[

(−D − KC)E(t) + AF̂ (E(t)) + BĜ(E(t − τ1)) + W

∫ t

t−s

Ĥ(E(s))ds
]

+ ρ−1ET (t)P1KKTP T
1 ET (t) + ρET (t)RT RE(t)

+ ĜT (E(t))P2Ĝ(E(t)) − ĜT (E(t − τ1))P2Ĝ(E(t − τ1))

+ τ2Ĥ
T (E(t))P3Ĥ(E(t)) −

(
∫ T

t−τ2

Ĥ(E(s))ds

)T

P3

∫ t

t−τ2

ĤT (E(s))ds

≤ XT (t)Φ1X(t) + ρ−1ET (t)P1KKTP T
1 E(t), (29)

where

X(t) :=

[

ET (t), F̂ T (E(t)), ĜT (E(t)), ĜT (E(t − τ1)), ĤT (E(t)),

(
∫ t

t−τ2

Ĥ(E(s))ds

)T
]T

,

Φ1 :=





















−P1D − DT P1 − P1KC − CTKT P1 + ρRT R P1A 0 P1B 0 P1W

AT P1 0 0 0 0 0

0 0 P2 0 0 0

BTP1 0 0 −P2 0 0

0 0 0 0 τ2P3 0

W T P1 0 0 0 0 −P3





















.

Moreover, one can infer from (14)-(15) that

(f̂i(ǫi(t)) − l+i ǫi(t))(f̂i(ǫi(t)) − l−i ǫi(t)) ≤ 0, i = 1, ..., n, (30)

(ĝi(ǫi(t)) − σ+
i ǫi(t))(ĝi(ǫi(t)) − σ−

i ǫi(t)) ≤ 0, i = 1, ..., n, (31)

(ĥi(ǫi(t)) − υ+
i ǫi(t))(ĥi(ǫi(t)) − υ−

i ǫi(t)) ≤ 0, i = 1, ..., n, (32)

which are equivalent to

[

E(t)

F̂ (E(t))

]T [

l+i l−i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i

][

E(t)

F̂ (E(t))

]

≤ 0, i = 1, ..., n, (33)

[

E(t)

Ĝ(E(t))

]T [

σ+
i σ−

i eie
T
i −

σ+

i
+σ−

i

2 eie
T
i

−
σ+

i
+σ−

i

2 eie
T
i eie

T
i

][

E(t)

Ĝ(E(t))

]

≤ 0, i = 1, ..., n, (34)

[

E(t)

Ĥ(E(t))

]T [

υ+
i υ−

i eie
T
i −

υ+

i
+υ−

i

2 eie
T
i

−
υ+

i
+υ−

i

2 eie
T
i eie

T
i

] [

E(t)

Ĥ(E(t))

]

≤ 0, i = 1, ..., n, (35)

where ei denotes the unit column vector having “1” element on its ith row and zeros elsewhere.
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Now, let K = P−1
1 M and we have

XT (t)Φ1X(t) + ρ−1ET (t)P1KKTP T
1 E(t)

−

n
∑

i=1

λi

[

E(t)

F̂ (E(t))

]T [

l+i l−i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i

] [

E(t)

F̂ (E(t))

]

−
n

∑

i=1

γi

[

E(t)

Ĝ(E(t))

]T [

σ+
i σ−

i eie
T
i −

σ+

i
+σ−

i

2 eie
T
i

−
σ+

i
+σ−

i

2 eie
T
i eie

T
i

][

E(t)

Ĝ(E(t))

]

−

n
∑

i=1

δi

[

x(t)

Ĥ(E(t))

]T [

υ+
i υ−

i eie
T
i −

υ+

i
+υ−

i

2 eie
T
i

−
υ+

i
+υ−

i

2 eie
T
i eie

T
i

][

E(t)

Ĥ(E(t))

]

= XT (t)Φ1X(t) + ρ−1ET (t)MMTE(t) +

[

E(t)

F̂ (E(t))

]T [

−ΛL1 ΛL2

ΛL2 −Λ

] [

E(t)

F̂ (E(t))

]

+

[

E(t)

Ĝ(E(t))

]T [

−ΓΣ1 ΓΣ2

ΓΣ2 −Γ

][

E(t)

Ĝ(E(t))

]

+

[

E(t)

Ĥ(E(t))

]T [

−∆Υ1 ∆Υ2

∆Υ2 −∆

][

E(t)

Ĥ(E(t))

]

= XT (t)(Φ2 + ρ−1M̄M̄T )X(t),

where

Φ2 :=





















Θ P1A + ΛL2 ΓΣ2 P1B ∆Υ2 P1W

AT P1 + ΛL2 −Λ 0 0 0 0

ΓΣ2 0 P2 − Γ 0 0 0

BT P1 0 0 −P2 0 0

∆Υ2 0 0 0 τ2P3 − ∆ 0

W TP1 0 0 0 0 −P3





















, M̄ :=















M

0

0

0

0















. (36)

From the condition (23) and Lemma 2 (Schur Complement), it can be concluded that

Φ2 + ρM̄M̄T < 0. (37)

Thus, from (29), (33)-(36) and (37), we obtain

V̇ (t) ≤ XT (t)Φ1X(t) + ρ−1ET (t)MMT E(t)

≤ XT (t)(Φ2 + ρ−1M̄M̄T )X(t)

≤ λmax(Φ2 + ρ−1M̄M̄T )|X(t)|2

≤ λmax(Φ2 + ρ−1M̄M̄T )|E(t)|2. (38)

Noticing λmax(Φ2 + ρ−1M̄M̄T ) < 0, it follows from the Lyapunov stability theory that estimation error-state

system (9) is asymptotically stable. Therefore, from Definition 1, the system (8) is a state estimator of the

neural network (2).

Next, let us consider the conditions for the estimation error-state system (9) to be an exponential estimator

of the neural network (2).

Theorem 2: Let ε0 be a given positive constant and Assumption 1 hold. Then the system (8) is an ex-

ponential state estimator of the neural network (2) if there exist a constant ρ > 0, a matrix M ∈ R
n×m,

three n × n positive definite matrices P1, P2, P3, and three diagonal matrices Λ = diag(λ1, ..., λn) > 0,



SUBMITTED 8

Γ = diag(γ1, ..., γn) > 0 and ∆ = diag(δ1, ..., δn) > 0 such that the following LMI holds:

Ψ =

























Ξ P1A + ΛL2 ΓΣ2 P1B ∆Υ2 P1W M

AT P1 + ΛL2 −Λ 0 0 0 0 0

ΓΣ2 0 (1 + ǫ0τ1)P2 − Γ 0 0 0 0

BT P1 0 0 −P2 0 0 0

∆Υ2 0 0 0 τ2P3 − ∆ 0 0

W TP1 0 0 0 0 −1−ǫ0
τ2

P3 0

MT 0 0 0 0 0 −ρI

























< 0, (39)

where

Ξ = −P1D − DT P1 − MC − CTMT + ρRTR − ΛL1 − ΓΣ1 − ∆Υ1. (40)

In this case, the estimator gain matrix K can be determined as:

K = P−1
1 M.

Proof: Let

V̄ (t) = ET (t)P1E(t) +

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds,+ǫ0

∫ τ1

0

∫ t

t−s

ĜT (E(η))P2Ĝ(E(η))dηds

+

∫ τ2

0

∫ t

t−s

ĤT (E(η))P3Ĥ(E(η))dηds. (41)

Similar to the derivation of Theorem 1, the time derivative of V̄ along the system (9) can be calculated as

follows:

d

dt
V̄ (t) ≤ 2ET (t)P1

(

(−D − KC)E(t) + AF̂ (E(t)) + BĜ(E(t − τ1)) + W

∫ t

t−τ2

Ĥ(E(s))ds

)

+ ρ−1ET (t)P1KKTP T
1 ET (t) + ρET (t)RT RE(t)

+ (1 + ǫ0τ1)Ĝ
T (E(t))P2Ĝ(E(t)) − ĜT (E(t − τ1))P2Ĝ(E(t − τ1))

+ τ2Ĥ
T (E(t))P3Ĥ(E(t)) −

1 − ǫ0

τ2

(
∫ t

t−τ2

Ĥ(E(s))ds

)T

P3

(
∫ t

t−τ2

Ĥ(E(s))ds

)

− ǫ0

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds − ǫ0

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds

= Y T (t)Ψ1Y (t) + ρ−1ET (t)P1KKTP T
1 ET (t)

− ǫ0

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds − ǫ0

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds, (42)

where

Y (t) =

[

ET (t) F̂ T (E(t)) ĜT (E(t)) ĜT (E(t − τ1)) ĤT (E(t))

∫ t

t−τ2

Ĥ(E(s))ds

]T

, (43)

Ψ1 =

















−P1D − DT P1 − P1KC − CT KT P1 + ρRT R P1A 0 P1B 0 P1W

AT P1 0 0 0 0 0

0 0 (1 + ǫ0τ1)P2 0 0 0

BT P1 0 0 −P2 0 0

0 0 0 0 τ2P3 0

WT P1 0 0 0 0 − 1−ǫ0

τ2

P3

















. (44)
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Furthermore, by (14)–(16) and K = P−1
1 M , we have

Y T (t)Ψ1Y (t) + ρ−1ET (t)P1KKT P T
1 E(t)

−

n
∑

i=1

λi

[

E(t)

F̂ (E(t))

]T [

l+i l−i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i

][

E(t)

F̂ (E(t))

]

−

n
∑

i=1

γi

[

E(t)

Ĝ(E(t))

]T [

σ+
i σ−

i eie
T
i −

σ+

i
+σ−

i

2 eie
T
i

−
σ+

i
+σ−

i

2 eie
T
i eie

T
i

] [

E(t)

Ĝ(E(t))

]

−

n
∑

i=1

δi

[

E(t)

Ĥ(E(t))

]T [

υ+
i υ−

i eie
T
i −

υ+

i
+υ−

i

2 eie
T
i

−
υ+

i
+υ−

i

2 eie
T
i eie

T
i

][

E(t)

Ĥ(E(t))

]

= ηT (t)Ψ1η(t) + ρ−1ET (t)MMT E(t) +

[

E(t)

F̂ (E(t))

]T [

−ΛL1 ΛL2

ΛL2 −Λ

] [

E(t)

F̂ (E(t))

]

+

[

E(t)

Ĝ(E(t))

]T [

−ΓΣ1 ΓΣ2

ΓΣ2 −Γ

][

E(t)

Ĝ(E(t))

]

+

[

E(t)

Ĥ(E(t))

]T [

−∆Υ1 ∆Υ2

∆Υ2 −∆

][

E(t)

Ĥ(E(t))

]

= Y T (t)
[

Ψ2 + ρ−1M̄M̄T
]

Y (t)

where

Ψ2 =





















Π P1A + ΛL2 ΓΣ2 P1B ∆Υ2 P1W

AT P1 + ΛL2 −Λ 0 0 0 0

ΓΣ2 0 (1 + ǫ0τ1)P2 − Γ 0 0 0

BTP1 0 0 −P2 0 0

∆Υ2 0 0 0 τ2P3 − ∆ 0

W T P1 0 0 0 0 −1−ǫ0
τ2

P3





















, M̄ =















M

0

0

0

0















. (45)

Again, by Lemma 2, the condition (39) is equivalent to

Ψ2 + ρ−1M̄M̄T < 0, (46)

which implies from (45) that

Y T (t)Ψ1Y (t) + ρ−1ET (t)MMTE(t)

≤ λmax(Ψ2 + ρ−1M̄M̄T )|Y (t)|2

≤ λmax(Ψ2 + ρ−1M̄M̄T )|E(t)|2 (47)

Hence, it follows from (42) and (47) that

d

dt
V̄ (t) ≤ Y T (t)Ψ1Y (t) + ρ−1ET (t)MMT ET (t)

− ǫ0

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds − ǫ0

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds

≤ λmax(Ψ2 + ρ−1M̄M̄T )|E(t)|2 − ǫ0

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds

− ǫ0

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds. (48)

Also, along the line of the proof of Theorem 1 in [13], one can infer that

V̄ (t) ≤ λmax(P1)|E(t)|2 + (1 + ǫ0τ1)

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds + τ2

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds (49)
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In order to analyze the exponential stability of the state-error system (9), we consider the following modified

Lyapunov-Krasovskii functional:

V̂ (t) = e2ktV̄ (t), (50)

where k is a positive constant to be determined.

Calculating the time derivative of V̂ (t) along trajectory of the system (9) and using (48) and (49), we

obtain:

d

dt
V̂ (t) = 2ke2ktV̄ (t) + e2kt d

dt
V̄ (t)

≤ 2ke2kt

[

λmax(P1)|E(t)|2 + (1 + ǫ0τ1)

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds

+ τ2

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds

]

+ e2kt

[

λmax(Ψ2 + ρ−1M̄M̄T )|E(t)|2

− ǫ0

∫ t

t−τ1

ĜT (E(s))P2Ĝ(E(s))ds − ǫ0

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds

]

≤ e2kt

[

(

2kλmax(P1) + λmax(Ψ2 + ρ−1M̄M̄T )
)

|E(t)|2 + (2k(1 + ǫ0τ1) − ǫ0)

∫ t

t−τ1

ĜT (x(s))P2Ĝ(E(s))ds

+ (2kτ2 − ǫ0)

∫ t

t−τ2

ĤT (E(s))P3Ĥ(E(s))ds

]

. (51)

Set

k0 = min

{

−
λmax(Ψ2 + ρ−1M̄M̄T )

2λmax(P1)
,

ǫ0

2(1 + ǫ0τ1)
,

ǫ0

2τ2

}

,

and fix k to be a positive constant satisfying

k ≤ k0. (52)

We can now obtain from (51) that
d

dt
V̂ (t) ≤ 0, (53)

which, together with (41) and (49), implies that

V̂ (t) ≤ V̂ (0) = V̄ (0)

≤ λmax(P1)|E(0)|2 + (1 + ǫ0τ1)λmax(P2)

∫ 0

−τ1

|Ĝ(E(s))|2ds

+ τ2λmax(P3)

∫ 0

−τ2

|Ĥ(E(s))|2ds. (54)

Let

σ = max
1≤i≤n

{|σ−
i |, |σ+

i |}, υ = max
1≤i≤n

{|υ−
i |, |υ+

i |}, (55)

µ0 = λmax(P1) + (1 + ǫ0τ1)τ1σ
2λmax(P2) + τ2

2 υ2λmax(P3). (56)

Then, it is indicated from (54) that

e2ktV̄ (t) ≤ λmax(P1)|E(0)|2 + (1 + ǫ0τ1)τ1σ
2λmax(P2) sup

−τ1≤s≤0
|E(s)|2 + τ2

2 υ2λmax(P3) sup
−τ2≤s≤0

|E(s)|2

≤
(

λmax(P1) + (1 + ǫ0τ1)τ1σ
2λmax(P2) + τ2

2 υ2λmax(P3)
)

sup
−τ∗≤s≤0

|E(s)|2

= µ0 sup
−τ∗≤s≤0

|E(s)|2 = µ0 sup
−τ∗≤s≤0

|φ(s)|2, (57)
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and therefore

V̄ (t) ≤ µ0e
−2kt|φ(s)|2. (58)

Noticing V̂ (t) ≥ λmax(P1)|E(t)|2, we obtain

|E(t)|2 ≤
µ0

λmax(P1)
e−2kt sup

−τ∗≤s≤0
|φ(s)|2, (59)

and hence

|x(t)| ≤ µe−kt sup
−τ∗≤s≤0

|φ(s) − u∗|, (60)

where µ =
√

µ0

λmax(P1)
. From Definition 2, the proof of this theorem is complete.

Remark 2: In Theorem 1 and Theorem 2, sufficient conditions are provided for the system (2) to be globally

asymptotically and exponentially stable, respectively. Such conditions are expressed in the form of LMIs, which

could be easily checked by utilizing the recently developed interior-point methods available in Matlab toolbox,

and no turning of parameters will be needed [6]. It should be mentioned that, in the past decade, LMIs have

gained much attention for their computational tractability and usefulness in many areas because the so-called

interior point method (see [6]) has been proven to be numerically very efficient for solving the LMIs.

IV. Numerical example

In this section, we present a simulation example so as to illustrate the usefulness of our main results.

Consider a 3-neuron neural network (2) with the following parameters:

D =







4.5 0 0

0 5 0

0 0 6






, A =







1 −0.6 0.8

0.4 −1.5 0.6

−0.7 −1.1 −1.2






, B =







−1.2 0.8 0.6

−0.5 1.1 0.7

0.6 −0.8 1.2






,

W =







1.5 0.6 −0.9

0.7 1.2 1.2

−0.5 −0.6 1.3






, I(t) =







5 + 5 sin t

5 cos t

5 sin t






, τ1 = 0.1, τ2 = 0.2.

Take the activation function as follows:

f1(s) = g1(s) = h1(s) = tanh(−1.2s),

f2(s) = g2(s) = h2(s) = tanh(1.4s),

f3(s) = g3(s) = h3(s) = tanh(−2.4s), s ∈ R.

and assume that, for the network output (6), the parameters are given as:

C =

[

1 0 1

0 1 1

]

, Q(x) =

[

0.2 sin x1

0.2 cos x2

]

.

It can be readily verified that

L1 = Σ1 = Υ1 =







0 0 0

0 0 0

0 0 0






, L2 = Σ2 = Υ2 =







−0.6 0 0

0 0.7 0

0 0 −1.2






,

and

R =







0.2 0 0

0 0.2 0

0 0 0






.
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Now, let ǫ0 = 0.01. Using the Matlab LMI toolbox to solve the LMI (39), we obtain

P1 =







0.2188 −0.0379 −0.0243

−0.0379 0.3194 −0.1065

−0.0243 −0.1065 0.2980






, P2 =







0.5258 −0.0475 0.0670

−0.0475 0.6785 −0.0541

0.0670 −0.0541 0.1560






,

P3 =







0.3994 0.1139 −0.0336

0.1139 0.4032 −0.0496

−0.0336 −0.0496 0.2633






, Λ =







0.9154 0 0

0 0.6932 0

0 0 0.5755






,

Γ =







1.1356 0 0

0 1.3852 0

0 0 0.3540






, ∆ =







0.4030 0 0

0 0.4538 0

0 0 0.1502






,

M =







0.0854 0.0903

0.2633 0.0668

0.2331 0.4325






, ρ = 0.9125, K = P−1

1 M =







0.7736 0.7759

1.3602 0.9156

1.3314 1.8419






.

Therefore, it follows from Theorem 2 that the system (8) is an estimator of the neural network (2). Such a

conclusion is further supported by the simulation results given in Figs. 1-3.
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Fig. 1. The True state x1 (solid) and its Estimate (dashed)

V. Conclusions

In this paper, we have studied the state estimation problem for a class of recurrent neural networks with

mixed discrete and distributed delays, where we don’t need the activation functions to be monotonic, or

differentiable, or bounded. An exponential state estimator is designed to estimate the neuron states, through

available output measurements, such that the dynamics of the estimation error is globally exponentially stable.

By using the Laypunov-Krasovskii functional, we have established an LMI approach to derive the sufficient

conditions guaranteeing the existence of the state estimators. The explicit expression of the desired estimator

has been parameterized by means of the solution to an LMI. A simulation example has been used to illustrate

the usefulness of the derived LMI-based stability conditions. One of the future research topics would be

the extension of the present results to more general cases, for example, the case that there exist parameter

uncertainties, the case that the neural network is inherently stochastic, and the case where the network modes

are subjected to Markovian switching. The results will appear in the near future.
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Fig. 2. The True state x2 (solid) and its estimate (dashed)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

Time

A
m

p
lit

u
d

e

Fig. 3. The True state x3 (solid) and its estimate (dashed)
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