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H
∞

and l2-l∞ Filtering for Two-Dimensional

Linear Parameter-Varying Systems
Ligang Wu, Zidong Wang∗ , Huijun Gao and Changhong Wang

Abstract

In this paper, the H∞ and l2-l∞ filtering problem is investigated for two-dimensional (2-D) discrete-time linear

parameter-varying (LPV) systems. Based on the well-known Fornasini-Marchesini local state-space (FMLSS) model,

the mathematical model of 2-D systems under consideration is established by incorporating the parameter-varying

phenomenon. The purpose of the problem addressed is to design full-order H∞ and l2-l∞ filters such that the filtering

error dynamics is asymptotic stable and the prescribed noise attenuation levels in H∞ and l2-l∞ senses can be achieved,

respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix

inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization

problem that can be efficiently solved by using standard software packages. A simulation example is exploited to

demonstrate the usefulness and effectiveness of the proposed design method.

Keywords

Linear parameter-varying (LPV) systems; Parameterized linear matrix inequalities (PLMIs); H∞ filtering; l2-l∞
filtering; Two-dimensional (2-D) systems

I. Introduction

It is well known that one of the fundamental problems in control systems and signal processing is the

estimation of the state variables of a dynamic system through available noisy measurements, which is referred

to as the filtering problem, see [1], [27], [29] and the references therein. In the past few decades, the H∞

filtering problem has drawn particular attention, since H∞ filters are insensitive to the exact knowledge of

the statistics of the noise signals. To be specific, H∞ filtering procedure ensures that the L2-induced gain

from the noise input signals to the estimation error is less than a prescribed level, where the noise input is an

arbitrary energy-bounded signal. Several methods have been proposed to solve the H∞ filtering problem, see

[3], [16], [26], [32], [33] for some recent publications. Other filtering methods for systems with partially known

noise information are l2-l∞ filtering (L2-L∞ filtering for continuous-time systems) [13], [18] and l1 filtering

(L1 filtering for continuous-time systems) [24], where the l2-l∞ and l1 performances have different physical

meanings when used as performance indices.

On the other hand, linear parameter-varying (LPV) systems are those systems dependent on unknown but

measurable time-varying parameters, where the measurement of the time-varying parameters provides real-

time information on the variations of the plant’s characteristics [28]. LPV systems are ubiquitous in chemical

processes, robotics systems, automotive systems and many manufacturing processes. The LPV systems theory

has been motivated by the gain-scheduling approach for control of linear and nonlinear systems [21]. Generally

speaking, there are two basic approaches to dealing with the analysis and design problems for LPV systems.

One approach has been developed in [2] by assuming that the trajectory of the parameters is not known a
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priori although its value is known through real-time measurements. Therefore, in such a case, the state-

space matrices are dependent continuously on the varying parameters, and the stability analysis and control

synthesis problems have been tackled based on the notion of quadratic stability using a single quadratic

Lyapunov function. An alternative approach has been proposed in [10] where the real uncertain parameters

and their rates have been assumed to vary in some prescribed ranges and the state-space matrices are therefore

allowed to depend affinely on the varying parameters. In this case, the stability analysis has been conducted

based on the notion of affine quadratic stability using parameter-dependent quadratic Lyapunov functions [17].

Up to now, many important results have been reported for LPV systems. For instance, the controllability,

stabilizability and stability analysis problems have been investigated in [22], [28], the stabilization and control

problems have been solved in [8], [23], [25], the filtering problems have been studied in [5], [17], [29] and the

model reduction problem has also been coped with in [9].

Recently, two-dimensional (2-D) systems have received considerable research attention since 2-D systems

are capable of modeling a wide range of practical systems and have been successfully applied in image data

processing and transmission, thermal processes, gas absorption, and water stream heating, etc. [14]. Great

deals of publications have been available in the literature. To mention just a few, the stability and stabilization

problems of 2-D systems have been investigated in [15], [19], the controller and filter design problems have

been studied in [12], [30], [31], and the model approximation problem has been addressed in [11]. Inevitably,

when 2-D system is applied in modeling real-time plants such as chemical process control, the system would

be naturally dependent on unknown but measurable time-varying parameters. Therefore, 2-D LPV systems

emerge as a more reasonable description to account for the parameter drifting phenomenon, and have a great

potential in engineering applications. To the best of the authors’ knowledge, there have been very few results

addressing the 2-D LPV systems due to the mathematical complexity, and both the filtering and control

problems for 2-D LPV systems still remain open and challenging.

In this paper, we make an attempt to investigate the problems of H∞ and l2-l∞ filtering for 2-D LPV

discrete-time systems, where the mathematical model of 2-D systems is established upon the well-known

Fornasini-Marchesini local state-space (FMLSS) model. Sufficient conditions are obtained for the existence

of desired H∞ and l2-l∞ filters in terms of parameterized linear matrix inequalities (PLMIs). Moreover,

the decoupling technique by the introduction of an auxiliary slack variable [7] is applied such that, in the

improved PLMI condition, the product terms no longer exist in our main results. On the other hand, such

a decoupling method enables us to obtain a more tractable condition for the filter analysis and synthesis

problems. The desired filter is then obtained by solving a convex optimization problem using the efficient

interior-point optimization algorithms [6]. A numerical example is provided to demonstrate the effectiveness

of the proposed controller design procedures.

The rest of this paper is organized as follows. The problems of H∞ and l2-l∞ filtering for 2-D LPV systems

are formulated in Section 2. Section 3 gives the main results of the H∞ filtering problem. These obtained

results are further extended to the l2-l∞ filtering in Section 4. Section 5 provides an illustrative example and

we conclude this paper in Section 6.

Notations: The superscript “T” stands for matrix transposition; R
n denotes the n-dimensional Euclidean

space; R
m×n is the set of all real matrices of dimension m × n and the notation P > 0 means that P is real

symmetric and positive definite; I and 0 represent identity matrix and zero matrix respectively; | · | refers to

the Euclidean vector norm; and λmin(·), λmax(·) denote the minimum and the maximum eigenvalues of a real

symmetric matrix respectively. In symmetric block matrices or long matrix expressions, we use an asterisk (∗)

to represent a term that is induced by symmetry and diag{. . .} stands for a block-diagonal matrix. Matrices, if

their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations. Sometimes,
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we omit the time argument for a function if no confusion arises.

II. Problem Formulation

Consider the following 2-D LPV system (S) described by the FMLSS model:

S : xi+1,j+1 = A1(ri,j+1)xi,j+1 + A2(ri+1,j)xi+1,j + B1(ri,j+1)ωi,j+1 + B2(ri+1,j)ωi+1,j

yi,j = C(ri,j)xi,j + D(ri,j)ωi,j

zi,j = L(ri,j)xi,j (1)

where xi,j ∈ R
n is the state vector; yi,j ∈ R

m is the measured output; zi,j ∈ R
q is the signal to be es-

timated and ωi,j ∈ R
l is the disturbance input which belongs to l2 {[0,∞), [0,∞)}. A1(ri,j+1), A2(ri+1,j),

B1(ri,j+1), B2(ri+1,j), C(ri,j), D(ri,j) and L(ri,j) are known matrix functions of a time-varying parame-

ter vector ri,j ∈ F

v
P
, where F

v
P

is the set of allowable parameter trajectories, which is defined as F

v
P

,
{

ri,j ∈ C(R, R
s) : r

k
i,j ∈ P,

∥

∥

∥
r
k
i,j

∥

∥

∥
≤ vk, k = 1, 2, . . . , s, ∀ i = 1, 2, . . . ; j = 1, 2, . . .

}

, where P is a compact

subset of R
s
, {vk}

s
k=1

are nonnegative numbers and v = [v1, v2, . . . , vs]
T . In other words, we consider bounded

parameter trajectories.

The boundary conditions are defined by

X
h(0) =

[

x
T
0,1 x

T
0,2 · · ·

]T

, X
v(0) =

[

x
T
1,0 x

T
2,0 · · ·

]T

.

Then, we make the following assumption on the boundary condition.

Assumption 1: The boundary condition is assumed to satisfy

lim
N→∞

N
∑

k=0

(|x0,k|
2 + |xk,0|

2) < ∞ (2)

The purpose of the filtering problem addressed in this paper is to design a full-order H∞ or l2-l∞ filter for

the system (S) in (1) with the following form:

F : x̂i+1,j+1 = A1F (ri,j+1)x̂i,j+1 + A2F (ri+1,j)x̂i+1,j + B1F (ri,j+1)yi,j+1 + B2F (ri+1,j)yi+1,j

ẑi,j = CF (ri,j)x̂i,j

x̂i,j = 0 for i = 0 or j = 0 (3)

where x̂i,j ∈ R
n is the filter state, and the matrices A1F (ri,j+1), A2F (ri+1,j), B1F (ri,j+1), B2F (ri+1,j) and

CF (ri,j) are filter parameters to be determined.

By defining ξ
T
i,j ,

[

x
T
i,j x̂

T
i,j

]T

and augmenting the model of (S) to include the states of the filter, we

can obtain the following filtering error system (E):

E : ξi+1,j+1 = Ā1(ri,j+1)ξi,j+1 + Ā2(ri+1,j)ξi+1,j + B̄1(ri,j+1)ωi,j+1 + B̄2(ri+1,j)ωi+1,j

z̃i,j = C̄(ri,j)ξi,j (4)
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where

Ā1(ri,j+1) ,

[

A1(ri,j+1) 0

B1F (ri,j+1)C(ri,j+1) A1F (ri,j+1)

]

,

Ā2(ri+1,j) ,

[

A2(ri+1,j) 0

B2F (ri+1,j)C(ri+1,j) A2F (ri+1,j)

]

,

B̄1(ri,j+1) ,

[

B1(ri,j+1)

B1F (ri,j+1)D(ri,j+1)

]

, B̄2(ri+1,j) ,

[

B2(ri+1,j)

B2F (ri+1,j)D(ri+1,j)

]

,

C̄(ri,j) ,

[

L(ri,j) −CF (ri,j)
]

(5)

Before presenting the main objective of this paper, we first introduce the following definitions for the filtering

error system (E) in (4), which will be essential for our derivation.

Definition 1: The filtering error system (E) in (4) with ωi,j = 0 is asymptotically stable if

lim
i+j→∞

|ξi,j|
2 = 0

for every boundary condition
(

X
h(0),Xv(0)

)

satisfying Assumption 1.

Definition 2: Given a scalar γ > 0. The filtering error system (E) in (4) is said to be asymptotically stable

with an H∞ disturbance attenuation level γ if it is asymptotically stable and, under zero initial and boundary

conditions, ‖z̃‖
2

< γ ‖ω‖
2

holds for all nonzero ω , {ωi,j} ∈ l2 {[0,∞), [0,∞)} , where

‖z̃‖
2

,

√

√

√

√

∞
∑

i=0

∞
∑

j=0

|z̃i,j |
2
, ‖ω‖

2
,

√

√

√

√

∞
∑

i=0

∞
∑

j=0

|ωi,j|
2

Definition 3: Given a scalar γ > 0. The filtering error system (E) in (4) is said to be asymptotically stable

with an l2-l∞ disturbance attenuation level γ if it is asymptotically stable and, under zero initial and boundary

conditions, ‖z̃‖
∞

< γ ‖ω‖
2

holds for all nonzero ω , {ωi,j} ∈ l2 {[0,∞), [0,∞)} where

‖z̃‖
∞

,

√

sup
∀ i,j

|z̃i,j|
2

We are now in a position to state the problem to be studied in this paper as follows: Determine the filter

parameters A1F (ri,j+1), A2F (ri+1,j), B1F (ri,j+1), B2F (ri+1,j) and CF (ri,j) of the full-order H∞ or l2-l∞ filter

(F) for the 2-D LPV system (S), such that the following two requirements are satisfied:

1. The resulting filtering error dynamics (E) is asymptotically stable;

2. The filtering error system (E) ensures a noise attenuation level γ in an H∞ or l2-l∞ sense.

III. H∞ Filtering

A. Filter Analysis

In this section, we propose a sufficient condition for the solvability of the H∞ filtering problem formulated

in the previous section. First, we give the following theorem which will play a key role in the derivation of

our main results.

Theorem 1: The filtering error system (E) in (4) is asymptotically stable with an H∞ disturbance atten-

uation level γ > 0 if there exist matrix functions P (ri,j) > 0 and Q(ri,j) > 0 such that the following PLMI
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holds:
























−P (ri+1,j+1) 0 0 P (ri+1,j+1)Ā1(ri,j+1) P (ri+1,j+1)Ā2(ri+1,j)

∗ −I 0 0 C̄(ri+1,j)

∗ ∗ −I C̄(ri,j+1) 0

∗ ∗ ∗ Q(ri,j+1) − P (ri,j+1) 0

∗ ∗ ∗ ∗ −Q(ri+1,j)

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

P (ri+1,j+1)B̄1(ri,j+1) P (ri+1,j+1)B̄2(ri+1,j)

0 0

0 0

0 0

0 0

−γ
2
I 0

∗ −γ
2
I

























< 0 (6)

Proof: First, let us examine the asymptotic stability of the filtering error system (E) in (4) with ωi,j ≡ 0.

Notice that PLMI (6) implies P (ri,j+1) − Q(ri,j+1) > 0 (∀ i, j = 1, 2, . . .) and consider the following index:

Ii,j , ξ
T
i+1,j+1

P (ri+1,j+1)ξi+1,j+1 − ξ̃
T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃ (7)

where ξ̃ ,

[

ξ
T
i,j+1

ξ
T
i+1,j

]T

, and P (ri,j), Q(ri,j) (i, j = 1, 2, . . .) are symmetric positive definite matrix

functions to be determined. Then, along the solution of the filtering error system (E), we have

Ii,j =
[

Ā1(ri,j+1)ξi,j+1 + Ā2(ri+1,j)ξi+1,j

]T
P (ri+1,j+1)

[

Ā1(ri,j+1)ξi,j+1 + Ā2(ri+1,j)ξi+1,j

]

−ξ̃
Tdiag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃, (8)

and it follows that

Ii,j = ξ̃
T Ψξ̃ (9)

where

Ψ ,

[

Ā
T
1
(ri,j+1)P (ri+1,j+1)Ā1(ri,j+1) − P (ri,j+1) + Q(ri,j+1)

∗

Ā
T
1
(ri,j+1)P (ri+1,j+1)Ā2(ri+1,j)

Ā
T
2
(ri+1,j)P (ri+1,j+1)Ā2(ri+1,j) − Q(ri+1,j)

]

By Schur complement [6], PLMI (6) implies Ψ < 0. Then, for all ξ̃ 6= 0, we have

ξ
T
i+1,j+1

P (ri+1,j+1)ξi+1,j+1 − ξ̃
T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃

ξ̃T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃

=
−ξ̃

T (−Ψ)ξ̃

ξ̃T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃

≤

−λmin(−Ψ)

λmax(diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)})
= α − 1, ∀ i, j = 1, 2, . . .

where

α , 1 −

λmin(−Ψ)

λmax(diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)})
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Since
λmin(−Ψ)

λmax(diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)})
> 0

we have α < 1. Obviously,

α ≥

ξ
T
i+1,j+1

P (ri+1,j+1)ξi+1,j+1

ξ̃T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃
> 0,

which means α ∈ (0, 1) and α is independent of ξ̃. Therefore, we arrive at

ξ
T
i+1,j+1P (ri+1,j+1)ξi+1,j+1 ≤ αξ̃

T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃

or

ξ
T
i+1,j+1P (ri+1,j+1)ξi+1,j+1 ≤ α

{

ξ
T
i,j+1(P (ri,j+1) − Q(ri,j+1))ξi,j+1 + ξ

T
i+1,jQ(ri+1,j)ξi+1,j

}

(10)

Using relationship (10) and P (ri,j+1) > Q(ri,j+1), it can be established that

ξ
T
k+1,0P (rk+1,0)ξk+1,0 = ξ

T
k+1,0P (rk+1,0)ξk+1,0

ξ
T
k,1P (rk,1)ξk,1 ≤ α

{

ξ
T
k−1,1(P (rk−1,1) − Q(rk−1,1))ξk−1,1 + ξ

T
k,0Q(rk,0)ξk,0

}

≤ α
{

ξ
T
k−1,1(P (rk−1,1) − Q(rk−1,1))ξk−1,1 + ξ

T
k,0P (rk,0)ξk,0

}

ξ
T
k−1,2P (rk−1,2)ξk−1,2 ≤ α

{

ξ
T
k−2,2(P (rk−2,2) − Q(rk−2,2))ξk−2,2 + ξ

T
k−1,1Q(rk−1,1)ξk−1,1

}

...

ξ
T
1,kP (r1,k)ξ1,k ≤ α

{

ξ
T
0,k(P (r0,k) − Q(r0,k))ξ0,k + ξ

T
1,k−1

Q(r1,k−1)ξ1,k−1

}

≤ α
{

ξ
T
0,kP (r0,k)ξ0,k + ξ

T
1,k−1

Q(r1,k−1)ξ1,k−1

}

ξ
T
0,k+1

P (r0,k+1)ξ0,k+1 = ξ
T
0,k+1

P (r0,k+1)ξ0,k+1

which imply

k+1
∑

j=0

ξ
T
k+1−j,jP (rk+1−j,j)ξk+1−j,j ≤ α

k
∑

j=0

ξ
T
k−j,jP (rk−j,j)ξk−j,j

+ξ
T
k+1,0P (rk+1,0)ξk+1,0 + ξ

T
0,k+1

P (r0,k+1)ξ0,k+1

Using the above relationship iteratively, we obtain

k+1
∑

j=0

ξ
T
k+1−j,jP (rk+1−j,j)ξk+1−j,j ≤

k
∑

j=0

α
j
[

ξ
T
k+1−j,0P (rk+1−j,0)ξk+1−j,0 + ξ

T
0,k+1−jP (r0,k+1−j)ξ0,k+1−j

]

+α
k+1

ξ
T
0,0P (r0,0)ξ0,0

≤

k+1
∑

j=0

α
j
[

ξ
T
k+1−j,0P (rk+1−j,0)ξk+1−j,0 + ξ

T
0,k+1−jP (r0,k+1−j)ξ0,k+1−j

]

Therefore, we have
k+1
∑

j=0

|ξk+1−j,j|
2
≤ κ

k+1
∑

j=0

α
j
{

|ξk+1−j,0|
2 + |ξ0,k+1−j|

2

}

(11)

where

κ ,
maxi,j λmax(P (ri,j))

mini,j λmax(P (ri,j))
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Now, by denoting Xk ,
∑k

j=0
|ξk−j,j|

2, it follows from the inequality (11) that

X0 ≤ κ

{

|ξ0,0|
2 + |ξ0,0|

2

}

X1 ≤ κ

{

α

[

|ξ0,0|
2 + |ξ0,0|

2

]

+
[

|ξ1,0|
2 + |ξ0,1|

2

]}

X2 ≤ κ

{

α
2

[

|ξ0,0|
2 + |ξ0,0|

2

]

+ α

[

|ξ1,0|
2 + |ξ0,1|

2

]

+
[

|ξ2,0|
2 + |ξ0,2|

2

]}

...

XN ≤ κ

{

α
N

[

|ξ0,0|
2 + |ξ0,0|

2

]

+ α
N−1

[

|ξ1,0|
2 + |ξ0,1|

2

]

+ · · · +
[

|ξN,0|
2 + |ξ0,N |

2

]}

Summing up the both sides of the above inequality system yields

N
∑

k=0

Xk ≤ κ(1 + α + · · · + α
N )

{

|ξ0,0|
2 + |ξ0,0|

2

}

+ κ(1 + α + · · · + α
N−1)

×

{

|ξ1,0|
2 + |ξ0,1|

2

}

+ · · · + κ

{

|ξN,0|
2 + |ξ0,N |

2

}

≤ κ(1 + α + · · · + α
N )

{

|ξ0,0|
2 + |ξ0,0|

2

}

+ κ(1 + α + · · · + α
N )

×

{

|ξ1,0|
2 + |ξ0,1|

2

}

+ · · · + κ(1 + α + · · · + α
N )

{

|ξN,0|
2 + |ξ0,N |

2

}

= κ
1 − α

N

1 − α

{

N
∑

k=0

[

|ξk,0|
2 + |ξ0,k|

2

]

}

Then, under Assumption 1, the right side of the above inequality is bounded for every boundary condition,

which means limk→∞
Xk = 0, that is, |ξi,j|

2
→ 0 as i+ j → ∞, and the filtering error system (E) with ωi,j = 0

is guaranteed to be asymptotically stable.

Having dealt with the stability issue, we are now ready to establish the H∞ performance for the filtering

error system (E) by assuming zero initial and boundary conditions, that is ξi,j = 0 for i = 0 or j = 0. Consider

the following index:

J , z
T
z − γ

2
ω

T
ω + Ii,j (12)

where z ,

[

z
T
i,j+1

z
T
i+1,j

]T

, ω ,

[

ω
T
i,j+1

ω
T
i+1,j

]T

, Ii,j is defined in (7) and has been further developed

to (8). Then, along the solutions of the filtering error system (E), we have

J = ξ
T
i,j+1

C̄
T (ri,j+1)C̄(ri,j+1)ξi,j+1 + ξ

T
i+1,jC̄

T (ri+1,j)C̄(ri+1,j)ξi+1,j

−γ
2
ω

T
i,j+1ωi,j+1 − γ

2
ω

T
i+1,jωi+1,j + Ii,j

, η
T Πη

where η ,

[

ξ
T
i,j+1

ξ
T
i+1,j ω

T
i,j+1

ω
T
i+1,j

]T

and

Π ,











Π11 Π12 Π13 Π14

∗ Π22 Π23 Π24

∗ ∗ Π33 Π34

∗ ∗ ∗ Π44










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in which

Π11 , Ā
T
1
(ri,j+1)P (ri+1,j+1)Ā1(ri,j+1) + C̄

T (ri,j+1)C̄(ri,j+1) − P (ri,j+1) + Q(ri,j+1),

Π12 , Ā
T
1 (ri,j+1)P (ri+1,j+1)Ā2(ri+1,j),

Π13 , Ā
T
1 (ri,j+1)P (ri+1,j+1)B̄1(ri,j+1),

Π22 , Ā
T
2 (ri+1,j)P (ri+1,j+1)Ā2(ri+1,j) + C̄

T (ri+1,j)C̄(ri+1,j) − Q(ri+1,j),

Π23 , Ā
T
2
(ri+1,j)P (ri+1,j+1)B̄1(ri,j+1),

Π33 , B̄
T
1
(ri,j+1)P (ri+1,j+1)B̄1(ri,j+1) − γ

2
I,

Π14 , Ā
T
1 (ri,j+1)P (ri+1,j+1)B̄2(ri+1,j),

Π24 , Ā
T
2 (ri+1,j)P (ri+1,j+1)B̄2(ri+1,j),

Π34 , B̄
T
1
(ri,j+1)P (ri+1,j+1)B̄2(ri+1,j),

Π44 , B̄
T
2
(ri+1,j)P (ri+1,j+1)B̄2(ri+1,j) − γ

2
I.

By Schur complement, PLMI (6) implies Π < 0, and we have J < 0 for all η 6= 0, i.e.,

ξ
T
i+1,j+1P (ri+1,j+1)ξi+1,j+1 < ξ̃

T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃ − z
T
z + γ

2
ω

T
ω

that is,

ξ
T
i+1,j+1

P (ri+1,j+1)ξi+1,j+1 < ξ
T
i,j+1

(P (ri,j+1) − Q(ri,j+1))ξi,j+1 + ξ
T
i+1,jQ(ri+1,j)ξi+1,j (13)

−z
T
i,j+1zi,j+1 − z

T
i+1,jzi+1,j + γ

2
ω

T
i,j+1ωi,j+1 + γ

2
ω

T
i+1,jωi+1,j

Using relationship (13), it can be established that

ξ
T
k+1,0P (rk+1,0)ξk+1,0 = ξ

T
k+1,0P (rk+1,0)ξk+1,0

ξ
T
k,1P (rk,1)ξk,1 < ξ

T
k−1,1(P (rk−1,1) − Q(rk−1,1))ξk−1,1 + ξ

T
k,0Q(rk,0)ξk,0

−z
T
k−1,1zk−1,1 − z

T
k,0zk,0 + γ

2
ω

T
k−1,1ωk−1,1 + γ

2
ω

T
k,0ωk,0

ξ
T
k−1,2P (rk−1,2)ξk−1,2 < ξ

T
k−2,2(P (rk−2,2) − Q(rk−2,2))ξk−2,2 + ξ

T
k−1,1Q(rk−1,1)ξk−1,1

−z
T
k−2,2zk−2,2 − z

T
k−1,1zk−1,1 + γ

2
ω

T
k−2,2ωk−2,2 + γ

2
ω

T
k−1,1ωk−1,1

...

ξ
T
1,kP (r1,k)ξ1,k < ξ

T
0,k(P (r0,k) − Q(r0,k))ξ0,k + ξ

T
1,k−1

Q(r1,k−1)ξ1,k−1

−z
T
0,kz0,k − z

T
1,k−1

z1,k−1 + γ
2
ω

T
0,kω0,k + γ

2
ω

T
1,k−1

ω1,k−1

ξ
T
0,k+1

P (r0,k+1)ξ0,k+1 = ξ
T
0,k+1

P (r0,k+1)ξ0,k+1

which imply

k+1
∑

j=0

ξ
T
k+1−j,jP (rk+1−j,j)ξk+1−j,j <

k
∑

j=0

ξ
T
k−j,jP (rk−j,j)ξk−j,j − 2

k
∑

j=0

z
T
k−j,jzk−j,j + 2γ2

k
∑

j=0

ω
T
k−j,jωk−j,j

Summing up both sides of the above inequality from k = 0 to k = N , we have

N
∑

k=0

k
∑

j=0

z
T
k−j,jzk−j,j < γ

2

N
∑

k=0

k
∑

j=0

ω
T
k−j,jωk−j,j −

1

2

N+1
∑

j=0

ξ
T
N+1−j,jP (rN+1−j,j)ξN+1−j,j
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and
∞
∑

k=0

k
∑

j=0

z
T
k−j,jzk−j,j < γ

2

∞
∑

k=0

k
∑

j=0

ω
T
k−j,jωk−j,j

which indicates that ‖z‖
2

< γ ‖ω‖
2

for all nonzero ω , {ωi,j} ∈ l2 {[0,∞), [0,∞)}. The proof is now complete.

2

Remark 1: Note that there exist product terms between the matrix function P (ri,j) and the system dynamic

matrices in the PLMI condition proposed in Theorem 1, which will bring some difficulties in solving the filter

synthesis problem. Applying the approach proposed in [4], in the following, we will make a decoupling between

the matrix function P (ri,j) and the system dynamic matrices by introducing a slack matrix variable. This

decoupling technique enables us to obtain a more easily tractable condition for the filter synthesis, which leads

to the result in the next theorem.

Theorem 2: The filtering error system (E) in (4) is asymptotically stable with an H∞ disturbance attenua-

tion level γ > 0 if there exist matrix functions P (ri,j) > 0, Q(ri,j) > 0 and matrix X such that the following

PLMI holds:

























Φ11 0 0 X
T
Ā1(ri,j+1) X

T
Ā2(ri+1,j) X

T
B̄1(ri,j+1) X

T
B̄2(ri+1,j)

∗ −I 0 0 C̄(ri+1,j) 0 0

∗ ∗ −I C̄(ri,j+1) 0 0 0

∗ ∗ ∗ Φ44 0 0 0

∗ ∗ ∗ ∗ −Q(ri+1,j) 0 0

∗ ∗ ∗ ∗ ∗ −γ
2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −γ
2
I

























< 0 (14)

where

Φ11 , P (ri+1,j+1) − X − X
T
, Φ44 , Q(ri,j+1) − P (ri,j+1).

Proof. All we need to do is to prove the equivalence between (6) and (14). First, if (6) holds, then

(14) can be readily established by choosing X = X
T = P (ri+1,j+1). On the other hand, if (14) holds, then

P (ri+1,j+1) − X − X
T

< 0, which implies that X is nonsingular since P (ri+1,j+1) > 0. In addition, we have

(X − P (ri+1,j+1))
T
P

−1(ri+1,j+1) (X − P (ri+1,j+1)) > 0, which means −X
T
P

−1(ri+1,j+1)X < P (ri+1,j+1) −

X − X
T
. Therefore, the following PLMI holds:

























−X
T
P

−1(ri+1,j+1)X 0 0 X
T
Ā1(ri,j+1) X

T
Ā2(ri+1,j) X

T
B̄1(ri,j+1) X

T
B̄2(ri+1,j)

∗ −I 0 0 C̄(ri+1,j) 0 0

∗ ∗ −I C̄(ri,j+1) 0 0 0

∗ ∗ ∗ Φ44 0 0 0

∗ ∗ ∗ ∗ −Q(ri+1,j) 0 0

∗ ∗ ∗ ∗ ∗ −γ
2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −γ
2
I

























< 0 (15)

Performing a congruence transformation to (15) by diag
{

X
−1

P (ri+1,j+1), I, I, I, I, I, I
}

yields (6), and

the proof is then completed. 2

B. H∞ Filter Synthesis

Now, we are in a position to give the result on the filter synthesis problem based on the improved PLMI

condition proposed in Theorem 2. The following theorem gives a sufficient condition for the existence of such

an H∞ filter with the form of (F) for the 2-D LPV system (S).
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Theorem 3: Consider the 2-D LPV system (S) in (1). Given a scalar γ > 0, then there exists a full-order

H∞ filter in the form of (F) such that the resulting filtering error system (E) is asymptotically stable with an

H∞ disturbance attenuation level γ if there exist matrix functions P̄1(ri,j), P̄2(ri,j), P̄3(ri,j), Q̄1(ri,j), Q̄2(ri,j),

Q̄3(ri,j), Ā1F (ri,j), Ā2F (ri,j), B̄1F (ri,j), B̄2F (ri,j), C̄F (ri,j) and matrices U, V, W such that the following

PLMIs hold:








































P̄1(ri+1,j+1) − U
T
− U P̄21(ri+1,j+1) − W

T
− V 0 0 U

T
A1(ri,j+1) + B̄1F (ri,j+1)C(ri,j+1)

∗ P̄31(ri+1,j+1) − W
T
− W 0 0 V

T
A1(ri,j+1) + B̄1F (ri,j+1)C(ri,j+1)

∗ ∗ −I 0 0

∗ ∗ ∗ −I L(ri,j+1)

∗ ∗ ∗ ∗ Q̄1(ri,j+1) − P̄1(ri,j+1)

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Ā1F (ri,j+1) U
T
A2(ri+1,j) + B̄2F (ri+1,j)C(ri+1,j) Ā2F (ri+1,j)

Ā1F (ri,j+1) V
T
A2(ri+1,j) + B̄2F (ri+1,j)C(ri+1,j) Ā2F (ri+1,j)

0 L(ri+1,j) −C̄F (ri+1,j)

−C̄F (ri,j+1) 0 0

Q̄2(ri,j+1) − P̄2(ri,j+1) 0 0

Q̄3(ri,j+1) − P̄3(ri,j+1) 0 0

∗ −Q̄1(ri+1,j) −Q̄2(ri+1,j)

∗ ∗ −Q̄3(ri+1,j)

∗ ∗ ∗

∗ ∗ ∗

U
T
B1(ri,j+1) + B̄1F (ri,j+1)D(ri,j+1) U

T
B2(ri+1,j) + B̄2F (ri+1,j)D(ri+1,j)

V
T
B1(ri,j+1) + B̄1F (ri,j+1)D(ri,j+1) V

T
B2(ri+1,j) + B̄2F (ri+1,j)D(ri+1,j)

0 0

0 0

0 0

0 0

0 0

0 0

−γ
2
I 0

∗ −γ
2
I









































< 0

(16)

P̄ (ri,j) =

[

P̄1(ri,j) P̄2(ri,j)

∗ P̄3(ri,j)

]

> 0

(17)

Q̄(ri,j) =

[

Q̄1(ri,j) Q̄2(ri,j)

∗ Q̄3(ri,j)

]

> 0

(18)
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Moreover, the parameters of a desired H∞ filter of the form (3) can be determined as follows:







A1F (ri,j+1) B1F (ri,j+1)

A2F (ri+1,j) B2F (ri+1,j)

CF (ri,j) 0






=







W
−T 0 0

∗ W
−T 0

∗ ∗ I













Ā1F (ri,j+1) B̄1F (ri,j+1)

Ā2F (ri+1,j) B̄2F (ri+1,j)

C̄F (ri,j) 0






(19)

Proof. As mentioned in the proof of Theorem 2, since P (ri,j) > 0, X is nonsingular if (14) holds. Now,

partition X as

X =

[

X1 X2

X4 X3

]

. (20)

Without loss of generality, we assume that X3 and X4 are nonsingular (if not, X3 and X4 may be perturbed

by matrices ∆X3 and ∆X4 respectively with sufficiently small norm such that X3 + ∆X3 and X4 + ∆X4 are

nonsingular and satisfying (15)). Introduce the following matrices:

Γ ,

[

I 0

0 X
−1

3
X4

]

, U , X1, V , X2X
−1

3
X4, W , X

T
4 X

−T
3

X4,

P̄ (ri,j) , ΓT
P (ri,j)Γ =

[

P̄1(ri,j) P̄2(ri,j)

∗ P̄3(ri,j)

]

> 0,

Q̄(ri,j) , ΓT
Q(ri,j)Γ =

[

Q̄1(ri,j) Q̄2(ri,j)

∗ Q̄3(ri,j)

]

> 0 (21)

and






Ā1F (ri,j+1) B̄1F (ri,j+1)

Ā2F (ri+1,j) B̄2F (ri+1,j)

C̄F (ri,j) 0






,







X
T
4

0 0

∗ X
T
4

0

∗ ∗ I













A1F (ri,j+1) B1F (ri,j+1)

A2F (ri+1,j) B2F (ri+1,j)

CF (ri,j) 0







[

X
−1

3
X4 0

0 I

]

(22)

Performing a congruence transformation to (14) by diagonal matrix diag {Γ, I, I, Γ, Γ, I, I} , we have

























P̄ (ri+1,j+1) − ΓT
XΓ − ΓT

X
T Γ 0 0 ΓT

X
T
Ā1(ri,j+1)Γ

∗ −I 0 0

∗ ∗ −I C̄(ri,j+1)Γ

∗ ∗ ∗ Q̄(ri,j+1) − P̄ (ri,j+1)

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

ΓT
X

T
Ā2(ri+1,j)Γ ΓT

X
T
B̄1(ri,j+1) ΓT

X
T
B̄2(ri+1,j)

C̄(ri+1,j)Γ 0 0

0 0 0

0 0 0

−Q̄(ri+1,j) 0 0

∗ −γ
2
I 0

∗ ∗ −γ
2
I

























< 0 (23)
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in which

ΓT
X

T
Ā1(ri,j+1)Γ =

[

X
T
1

A1(ri,j+1) + X
T
4

B1F (ri,j+1)C(ri,j+1) X
T
4

A1F (ri,j+1)X
−1

3
X4

X
T
4

X
−T
3

X
T
2

A1(ri,j+1) + X
T
4

B1F (ri,j+1)C(ri,j+1) X
T
4

A1F (ri,j+1)X
−1

3
X4

]

,

ΓT
X

T
Ā2(ri+1,j)Γ =

[

X
T
1

A2(ri+1,j) + X
T
4

B2F (ri+1,j)C(ri+1,j) X
T
4

A2F (ri+1,j)X
−1

3
X4

X
T
4

X
−T
3

X
T
2

A2(ri+1,j) + X
T
4

B2F (ri+1,j)C(ri+1,j) X
T
4

A2F (ri+1,j)X
−1

3
X4

]

,

ΓT
X

T
B̄1(ri,j+1) =

[

X
T
1

B1(ri,j+1) + X
T
4

B1F (ri,j+1)D(ri,j+1)

X
T
4

X
−T
3

X
T
2

B1(ri,j+1) + X
T
4

B1F (ri,j+1)D(ri,j+1)

]

,

ΓT
X

T
B̄2(ri+1,j) =

[

X
T
1

B2(ri+1,j) + X
T
4

B2F (ri+1,j)D(ri+1,j)

X
T
4

X
−T
3

X
T
2

B2(ri+1,j) + X
T
4

B2F (ri+1,j)D(ri+1,j)

]

,

ΓT
X

T Γ =

[

X
T
1

X
T
4

X
−1

3
X4

X
T
4

X
−T
3

X
T
2

X
T
4

X
−1

3
X4

]

, C̄(ri,j)Γ =
[

L(ri,j) −CF (ri,j)X
−1

3
X4

]

(24)

Substituting (21)–(22) and (24) into (23) yields (16). On the other hand, (22) is equivalent to







A1F (ri,j+1) B1F (ri,j+1)

A2F (ri+1,j) B2F (ri+1,j)

CF (ri,j) 0






=







X
−T
4

0 0

∗ X
−T
4

0

∗ ∗ I













Ā1F (ri,j+1) B̄1F (ri,j+1)

Ā2F (ri+1,j) B̄2F (ri+1,j)

C̄F (ri,j) 0







[

X
−1

4
X3 0

0 I

]

=







(

X
−1

4
X3

)

−1
W

−T 0 0

∗

(

X
−1

4
X3

)

−1
W

−T 0

∗ ∗ I







×







Ā1F (ri,j+1) B̄1F (ri,j+1)

Ā2F (ri+1,j) B̄2F (ri+1,j)

C̄F (ri,j) 0







[

X
−1

4
X3 0

0 I

]

(25)

Then, it is noted that the filter matrices of (3) can be written as (25). This implies that X
−1

4
X3 can be viewed

as a similarity transformation on the state-space realization of the filter and, as such, has no effect on the

filter mapping from y to ẑ. Without loss of generality, we can set X
−1

4
X3 = I, thus obtain (19). Therefore,

we can conclude that the filter in (3) can be constructed by (19). This completes the proof. �

Remark 2: Note that Theorem 3 provides a sufficient condition for the solvability of the H∞ filtering problem

for 2-D LPV system. Since the obtained condition is within the PLMIs framework, the desired filter can be

determined by solving the following convex optimization problem:

Minimize γ
2 subject to (16)–(18). (26)

Remark 3: Notice that the PLMI condition (16) corresponds to an infinite-dimensional convex problem due

to its parametric dependence. To convert it into a finite-dimensional optimization problem, by using the

gridding technique, the parameter-dependent matrix function Y(ri,j) , {P̄1(ri,j), P̄2(ri,j), P̄3(ri,j), Q̄1(ri,j),

Q̄2(ri,j), Q̄3(ri,j), Ā1F (ri,j), Ā2F (ri,j), B̄1F (ri,j), B̄2F (ri,j), C̄F (ri,j)} that appears in (16) can be approximated

using a finite set of basis functions [20]. That is, we can choose appropriate basis functions {fk(ri,j)}
nf

k=1
such

that

Y(ri,j) =
∑nf

k=1
fk(ri,j)Yk (27)

where Yk , {P̄1k, P̄2k, P̄3k, Q̄1k, Q̄2k, Q̄3k, Ā1Fk, Ā2Fk, B̄1Fk, B̄2Fk, C̄Fk} denotes the vertices of Y(ri,j).
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IV. l2-l∞ Filtering

A. Filter Analysis

In this section, the sufficient condition for the solvability of the l2-l∞ filtering problem formulated in the

previous section is derived. First, we give the following theorem which will play a key role in the derivation

of our main results.

Theorem 4: The filtering error system (E) in (4) is asymptotically stable with an l2-l∞ disturbance atten-

uation level γ > 0 if there exist matrix functions P (ri,j) > 0 and Q(ri,j) > 0 such that the following PLMIs

hold:
















−P (ri+1,j+1) P (ri+1,j+1)Ā1(ri,j+1) P (ri+1,j+1)Ā2(ri+1,j)

∗ Q(ri,j+1) − P (ri,j+1) 0

∗ ∗ −Q(ri+1,j)

∗ ∗ ∗

∗ ∗ ∗

P (ri+1,j+1)B̄1(ri,j+1) P (ri+1,j+1)B̄2(ri+1,j)

0 0

0 0

−I 0

∗ −I

















< 0 (28)











−

1

2
γ

2
I 0 C̄(ri,j+1) 0

∗ −

1

2
γ

2
I 0 C̄(ri+1,j)

∗ ∗ −P (ri,j+1) 0

∗ ∗ ∗ −P (ri+1,j)











< 0 (29)

Proof. For the establishment of the asymptotic stability of the filtering error system (E) in (4) with ωi,j ≡ 0,

we refer the readers to the proof of Theorem 1. In the following, we shall develop an l2-l∞ performance for

the filtering error system (E). Consider the following index:

L , −ω
T
ω + Ii,j (30)

where z̃ ,

[

z̃
T
i,j+1

z̃
T
i+1,j

]T

, ω ,

[

ω
T
i,j+1

ω
T
i+1,j

]T

, Ii,j is defined in (7) and has been further developed

to (8). Then, along the solution of the filtering error system (E), we calculate that

L = −ω
T
i,j+1

ωi,j+1 − ω
T
i+1,jωi+1,j + Ii,j = η

T Ση

where η ,

[

ξ
T
i,j+1

ξ
T
i+1,j ω

T
i,j+1

ω
T
i+1,j

]T

and

Σ ,











Σ11 Σ12 Σ13 Σ14

∗ Σ22 Σ23 Σ24

∗ ∗ Σ33 Σ34

∗ ∗ ∗ Σ44










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with

Σ11 , Ā
T
1
(ri,j+1)P (ri+1,j+1)Ā1(ri,j+1) + Q(ri,j+1) − P (ri,j+1),

Σ12 , Ā
T
1 (ri,j+1)P (ri+1,j+1)Ā2(ri+1,j),

Σ13 , Ā
T
1 (ri,j+1)P (ri+1,j+1)B̄1(ri,j+1),

Σ14 , Ā
T
1 ri,j+1)P (ri+1,j+1)B̄2(ri+1,j),

Σ22 , Ā
T
2
(ri+1,j)P (ri+1,j+1)Ā2(ri+1,j) − Q(ri+1,j),

Σ23 , Ā
T
2
(ri+1,j)P (ri+1,j+1)B̄1(ri,j+1),

Σ24 , Ā
T
2 (ri+1,j)P (ri+1,j+1)B̄2(ri+1,j),

Σ33 , B̄
T
1 (ri,j+1)P (ri+1,j+1)B̄1(ri,j+1) − I,

Σ34 , B̄
T
1
(ri,j+1)P (ri+1,j+1)B̄2(ri+1,j),

Σ44 , B̄
T
2
(ri+1,j)P (ri+1,j+1)B̄2(ri+1,j) − I.

By Schur complement, PLMI (28) implies Σ < 0, and then for η 6= 0, we have L < 0, i.e.,

ξ
T
i+1,j+1P (ri+1,j+1)ξi+1,j+1 < ξ̃

T diag {(P (ri,j+1) − Q(ri,j+1)), Q(ri+1,j)} ξ̃ + ω
T
ω,

that is,

ξ
T
i+1,j+1

P (ri+1,j+1)ξi+1,j+1 < ξ
T
i,j+1

(P (ri,j+1) − Q(ri,j+1))ξi,j+1 + ξ
T
i+1,jQ(ri+1,j)ξi+1,j (31)

+ω
T
i,j+1ωi,j+1 + ω

T
i+1,jωi+1,j

Using the relationship (31), it can be seen that

ξ
T
k+1,0P (rk+1,0)ξk+1,0 = ξ

T
k+1,0P (rk+1,0)ξk+1,0

ξ
T
k,1P (rk,1)ξk,1 < ξ

T
k−1,1(P (rk−1,1) − Q(rk−1,1))ξk−1,1 + ξ

T
k,0Q(rk,0)ξk,0

+ω
T
k−1,1ωk−1,1 + ω

T
k,0ωk,0

ξ
T
k−1,2P (rk−1,2)ξk−1,2 < ξ

T
k−2,2(P (rk−2,2) − Q(rk−2,2))ξk−2,2 + ξ

T
k−1,1Q(rk−1,1)ξk−1,1

+ω
T
k−2,2ωk−2,2 + ω

T
k−1,1ωk−1,1

...

ξ
T
1,kP (r1,k)ξ1,k < ξ

T
0,k(P (r0,k) − Q(r0,k))ξ0,k + ξ

T
1,k−1

Q(r1,k−1)ξ1,k−1

+ω
T
0,kω0,k + ω

T
1,k−1

ω1,k−1

ξ
T
0,k+1

P (r0,k+1)ξ0,k+1 = ξ
T
0,k+1

P (r0,k+1)ξ0,k+1

which imply

k+1
∑

j=0

ξ
T
k+1−j,jP (rk+1−j,j)ξk+1−j,j <

k
∑

j=0

ξ
T
k−j,jP (rk−j,j)ξk−j,j + 2

k
∑

j=0

ω
T
k−j,jωk−j,j

Summing up both sides of the above inequality with respect to K from 0 to N , we have

N+1
∑

j=0

ξ
T
N+1−j,jP (rN+1−j,j)ξN+1−j,j < 2

N
∑

k=0

k
∑

j=0

ω
T
k−j,jωk−j,j (32)
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Since the integer N can be taken arbitrarily, it is also true from (32) that:

ξ
T
i,j+1

P (ri,j+1)ξi,j+1 + ξ
T
i+1,jP (ri+1,j)ξi+1,j < 2

∞
∑

k=0

k
∑

l=0

ω
T
k−l,lωk−l,l = 2 ‖ω‖2

2
∀ i, j = 1, 2, . . . (33)

On the other hand, by Schur complement, (29) yields

−P (ri,j+1) + 2γ−2
C̄

T (ri,j+1)C̄(ri,j+1) < 0 (34)

−P (ri+1,j) + 2γ−2
C̄

T (ri+1,j)C̄(ri+1,j) < 0 (35)

Pre- and post- multiplying both sides of (34) with ξ
T
i,j+1

and its transpose, and pre- and post- multiplying

both sides of (35) with ξ
T
i+1,j and its transpose, we sum up both sides of two resultant inequalities and obtain

2γ−2
ξ
T
i,j+1C̄

T (ri,j+1)C̄(ri,j+1)ξi,j+1 + 2γ−2
ξ
T
i+1,jC̄

T (ri+1,j)C̄(ri+1,j)ξi+1,j

< ξ
T
i,j+1P (ri,j+1)ξi,j+1 + ξ

T
i+1,jP (ri+1,j)ξi+1,j ,

that is,

2γ−2
(

z̃
T
i,j+1

z̃i,j+1 + z̃
T
i+1,j z̃i+1,j

)

< ξ
T
i,j+1

P (ri,j+1)ξi,j+1 + ξ
T
i+1,jP (ri+1,j)ξi+1,j. (36)

Considering (33) and (36), we have

|z̃i,j |
2 = z̃

T
i,j+1

z̃i,j+1 + z̃
T
i+1,j z̃i+1,j < γ

2
‖ω‖

2

2
∀ i, j = 1, 2, . . .

Therefore, we conclude that

‖z̃‖
2

∞
= sup

∀ i,j

|z̃i,j |
2

< γ
2
‖ω‖

2

2

which implies ‖z̃‖
∞

< γ ‖ω‖
2
, that is, the l2-l∞ gain from ω to z̃ is less than γ. This completes the proof. �

Along the same line of the derivation in Theorem 2, we can obtain the following theorem for which the

proof is omitted.

Theorem 5: The filtering error system (E) in (4) is asymptotically stable with an l2-l∞ disturbance attenu-

ation level γ > 0 if there exist matrix functions P (ri,j) > 0, Q(ri,j) > 0 and matrix X such that (29) and the

following PLMI holds:

















Φ11 X
T
Ā1(ri,j+1) X

T
Ā2(ri+1,j) X

T
B̄1(ri,j+1) X

T
B̄2(ri+1,j)

∗ Φ44 0 0 0

∗ ∗ −Q(ri+1,j) 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I

















< 0 (37)

where Φ11 and Φ44 are defined in (14).

B. l2-l∞ Filter Synthesis

Now, we are in a position to give the result on the filter synthesis problem based on the improved PLMI

condition proposed in Theorem 5. The following theorem gives a sufficient condition for the existence of such

an l2-l∞ filter with the form of (F) for the 2-D LPV system (S).

Theorem 6: Consider the 2-D LPV system (S) in (1). Given a scalar γ > 0, then there exists a full-order

l2-l∞ filter in the form of (F) such that the resulting filtering error system (E) is asymptotically stable with

an l2-l∞ disturbance attenuation level γ if there exist matrix functions P̄1(ri,j), P̄2(ri,j), P̄3(ri,j), Q̄1(ri,j),
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Q̄2(ri,j), Q̄3(ri,j), Ā1F (ri,j), Ā2F (ri,j), B̄1F (ri,j), B̄2F (ri,j), C̄F (ri,j) and matrices U, V, W such that the

following PLMIs hold:






























P̄1(ri+1,j+1) − U
T
− U P̄21(ri+1,j+1) − W

T
− V U

T
A1(ri,j+1) + B̄1F (ri,j+1)C(ri,j+1)

∗ P̄31(ri+1,j+1) − W
T
− W V

T
A1(ri,j+1) + B̄1F (ri,j+1)C(ri,j+1)

∗ ∗ Q̄1(ri,j+1) − P̄1(ri,j+1)

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

Ā1F (ri,j+1) U
T
A2(ri+1,j) + B̄2F (ri+1,j)C(ri+1,j) Ā2F (ri+1,j)

Ā1F (ri,j+1) V
T
A2(ri+1,j) + B̄2F (ri+1,j)C(ri+1,j) Ā2F (ri+1,j)

Q̄2(ri,j+1) − P̄2(ri,j+1) 0 0

Q̄3(ri,j+1) − P̄3(ri,j+1) 0 0

∗ −Q̄1(ri+1,j) −Q̄2(ri+1,j)

∗ ∗ −Q̄3(ri+1,j)

∗ ∗ ∗

∗ ∗ ∗

U
T
B1(ri,j+1) + B̄1F (ri,j+1)D(ri,j+1) U

T
B2(ri+1,j) + B̄2F (ri+1,j)D(ri+1,j)

V
T
B1(ri,j+1) + B̄1F (ri,j+1)D(ri,j+1) V

T
B2(ri+1,j) + B̄2F (ri+1,j)D(ri+1,j)

0 0

0 0

0 0

0 0

−I 0

∗ −I































< 0 (38)





















−

1

2
γ

2
I 0 L(ri,j+1) −C̄F (ri,j+1) 0 0

∗ −

1

2
γ

2
I 0 0 L(ri+1,j) −C̄F (ri+1,j)

∗ ∗ −P̄1(ri,j+1) −P̄2(ri,j+1) 0 0

∗ ∗ ∗ −P̄3(ri,j+1) 0 0

∗ ∗ ∗ ∗ −P̄1(ri+1,j) −P̄2(ri+1,j)

∗ ∗ ∗ ∗ ∗ −P̄3(ri+1,j)





















< 0 (39)

P̄ (ri,j) =

[

P̄1(ri,j) P̄2(ri,j)

∗ P̄3(ri,j)

]

> 0 (40)

Q̄(ri,j) =

[

Q̄1(ri,j) Q̄2(ri,j)

∗ Q̄3(ri,j)

]

> 0 (41)

Moreover, a desired l2-l∞ filter is given in the form of (3) with parameters as follows:






A1F (ri,j) B1F (ri,j)

A2F (ri,j) B2F (ri,j)

CF (ri,j) 0






=







W
−T 0 0

∗ W
−T 0

∗ ∗ I













Ā1F (ri,j) B̄1F (ri,j)

Ā2F (ri,j) B̄2F (ri,j)

C̄F (ri,j) 0






. (42)

Proof. The proof can be carried out by employing the same techniques used as in the proof of Theorem 3,

and is thus omitted here. �
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Remark 4: It should be pointed out that, in order to obtain (39), we can perform a congruence transfor-

mation to (29) by diag {I, I, Γ, Γ} and consider (24) and (21)–(22).

Remark 5: Notice that Theorem 6 provides a sufficient condition for the solvability of the l2-l∞ filter problem

for the 2-D LPV system. Since the obtained conditions are expressed in terms of PLMIs, the desired filter

can be determined by solving the following convex optimization problem:

Minimize γ
2 subject to (38)–(41) (43)

V. An Illustrative Example

Consider 2-D LPV system (S) in (1) with the following matrices:

A1(ri,j+1) =

[

0.2 + 0.1r1

i,j+1
−0.5

0.5 0.2 + 0.1r2

i,j+1

]

, B1(ri,j+1) =

[

0.5 + 0.1r1

i,j+1

0.25

]

A2(ri+1,j) =

[

0.25 0.1r1

i+1,j

0.05 0.4 + 0.1r2

i+1,j

]

, B2(ri+1,j) =

[

0

0.5 + 0.1r1

i+1,j

]

C(ri,j) =
[

2.0 + 0.2r1

i,j 1.0 − 0.1r2

i,j

]

, D(ri,j) = 1.0 − 0.1r1

i,j

L(ri,j) =
[

1.0 + 0.1r1

i,j 2.0 − 0.2r2

i,j

]

where r
1

i,j = sin(i + j) and r
2

i,j = |cos(5i + 5j)| are two time-varying parameters. Let the disturbance input

ωi,j be

ωi,j =

{

0.5, 3 ≤ i, j ≤ 19

0, otherwise

Our purpose hereafter is to design an H∞ or l2-l∞ filter in the form of (3) such that the filtering error

system (E) is asymptotically stable with an H∞ or l2-l∞ disturbance attenuation level γ. To solve the filters

synthesis problem, we choose three basis functions in expansion (27) as follows:

f1(ri,j) = 1, f2(ri,j) = r
1

i,j, f3(ri,j) = r
2

i,j. (44)

Gridding the parameter space uniformly using a 5 × 5 grid, solving the convex optimization problem of

(26) by using the LMI-Toolbox in the Matlab and considering (19), we obtain that the minimum achievable

(according to the feasibility of the LMI conditions) noise attenuation level for the full-order H∞ filtering
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problem is γ
∗ = 1.8469 and the corresponding filter matrices as follows:

A1F1 =

[

0.0765 −0.1711

0.0079 −0.0399

]

, A1F2 =

[

−0.0298 −0.0246

−0.0128 0.0062

]

A1F3 =

[

−0.1197 −0.0623

0.0091 0.0598

]

, A2F1 =

[

0.0159 −0.0120

−0.1949 0.1517

]

A2F2 =

[

−0.0349 0.0242

−0.0621 −0.0105

]

, A2F3 =

[

−0.0057 0.0011

−0.0701 0.0207

]

B1F1 =

[

−0.0043

−0.1489

]

, B1F2 =

[

−0.0263

0.0046

]

, B1F3 =

[

−0.0746

−0.0160

]

B2F1 =

[

−0.0371

−0.1055

]

, B2F2 =

[

−0.0139

−0.0203

]

, B2F3 =

[

−0.0060

−0.0565

]

CF1 =
[

−0.9559 −2.0140
]

, CF2 =
[

−0.1029 −0.0133
]

CF3 =
[

−0.0658 0.2222
]

.

By solving the convex optimization problem of (43) and considering (42), the minimum l2-l∞ attenuation

performance obtained is γ
∗ = 1.3632, and the corresponding filter matrices are

A1F1 =

[

−0.0652 −0.1653

−0.0110 −0.0253

]

, A1F2 =

[

−0.0021 −0.0076

0.0063 0.0064

]

A1F3 =

[

−0.0378 −0.0184

0.0061 0.0261

]

, A2F1 =

[

0.0067 −0.0072

−0.1121 0.0406

]

A2F2 =

[

−0.0265 0.0131

−0.0158 0.0039

]

, A2F3 =

[

0.0012 0.0025

−0.0121 0.0128

]

B1F1 =

[

−0.0610

−0.0655

]

, B1F2 =

[

−0.0064

0.0065

]

, B1F3 =

[

−0.0276

−0.0032

]

B2F1 =

[

−0.0251

−0.0601

]

, B2F2 =

[

−0.0112

−0.0022

]

, B2F3 =

[

−0.0015

−0.0142

]

CF1 =
[

−0.9544 −1.9419
]

, CF2 =
[

−0.0950 −0.0107
]

CF3 =
[

−0.0375 0.1738
]

.

Then, from Remark 3, the corresponding H∞ or l2-l∞ filter parameter matrices X (ri,j) , {A1F (ri,j),

A2F (ri,j), B1F (ri,j , B2F (ri,j , CF (ri,j)} can be described by

X (ri,j) =
∑3

k=1
fk(ri,j)Xk

where Xk , {A1Fk, A2Fk, B1Fk, B2Fk, CFk} denotes the vertices of Xk(ri,j), and fk(ri,j) have defined in (44).

In the following, we shall show the usefulness of the designed H∞ and l2-l∞ filters by presenting simulation

results. To show the asymptotic stability of the filtering error system, let the initial and boundary conditions

be

x0,i = xi,0 =











[

1 1.5
]T

, 0 ≤ i ≤ 15
[

0 0
]T

, i > 15
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The H∞ and l2-l∞ performances are summarized in Table 1. It can be seen that the achieved H∞ and

l2-l∞ gains less than the corresponding minimum feasible H∞ performance γ
∗ = 1.8469 and l2-l∞ performance

γ
∗ = 1.3632, respectively.

Performances Minimum Feasible γ Achieved Values

H∞ performance 1.8469 1.6714

l2-l∞ performance 1.3632 1.2035

Table 1. Summary of the H∞ and l2-l∞ performances

The state responses of the designed H∞ filter are given in Figures 1 and 2, and Figure 3 shows the filtering

error z̃i,j of the H∞ filtering. Similarly, the state responses of the designed l2-l∞ filter are given in Figures 4

and 5, and Figure 6 shows the filtering error z̃i,j of the l2-l∞ case. It can be seen from Figures 3 and 6 that

both the H∞ and l2-l∞ filters guarantee that z̃i,j converges to zero under the above conditions.

VI. Conclusion

In this paper, the problems of H∞ and l2-l∞ filtering for a class of 2-D LPV systems have been investigated.

Some sufficient conditions have been proposed for the existences of H∞ and l2-l∞ filters in terms of PLMIs,

respectively. The designed H∞ or l2-l∞ filter guarantees asymptotic stability and a prescribed H∞ or l2-l∞

performance of the filtering error system, and the desired filters can be found by solving the corresponding

convex optimization problems. An illustrative example has been presented to demonstrate the effectiveness

of the proposed methods.
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Fig. 1. State response of the H∞ filter x̂1(i, j)
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Fig. 2. State response of the H∞ filter x̂2(i, j)
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Fig. 3. The filtering error z̃i,j of the H∞ case
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Fig. 4. State response of the l2-l∞ filter x̂1(i, j)
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Fig. 5. State response of the l2-l∞ filter x̂2(i, j)
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Fig. 6. The filtering error z̃i,j of the l2-l∞ case


