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Abstract

In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of

stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain

within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the

stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization

problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and

nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria

are dependent on the length of the time delay and therefore less conservative. By using the Itô’s differential formula and

the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval

delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix

inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to

demonstrate the effectiveness of the proposed design procedure.
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I. Introduction

Interval systems have been well known for their importance in practical applications. When modeling real-

time plants, the parameter uncertainties are unavoidable, which would lead to perturbations of the elements of

a system matrix in a state-space model. These uncertainties may arise from variations of the operating point,

aging of the devices, identification errors, etc. As a result, the parameters of a system matrix are estimated

only within certain closed intervals. In recent years, the stability analysis and stabilization problems of various

deterministic interval systems have received considerable research attention, see e.g. [11,14] and the references

therein. Very recently, in [13], the stability analysis problem of a class of stochastic delay interval systems

has been considered by using the Razumikhin method.

In view of time delays being commonly residing in practical systems, the past few decades have witnessed

significant progress on filtering and control for linear/nonlinear systems with various types of delays, and a

large amount of literature has appeared on the general topic of time-delay systems, see e.g. [1, 6, 7, 15–17,20,

22, 23]. In particular, the linear matrix inequality (LMI) technique has been extensively used because of its

computational efficiency, and a great number of LMI-based results have been published, see e.g. [2, 18, 19].
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It is worth mentioning that, since delay-dependent LMI techniques take into account the information on the

length of delays, delay-dependent stability criteria tend to be less conservative than the traditionally delay-

independent ones especially when the time delays are known and small, see [2–5, 25, 27, 28]. Moreover, some

improved delay-dependent techniques has recently been developed, see e.g. [8–10, 24] for some up-to-date

results.

In real-time systems, the signal transmission is usually a noisy process brought on by random fluctuations

from probabilistic causes and, therefore, stochastic modeling has been of vital importance in many branches

of science such as biology, economics and engineering applications. Recently, many fundamental results for

deterministic systems have been extended to stochastic systems. The robust stability, stabilization, control

and filtering problems for stochastic systems have been investigated by many researchers, and a lot of results

on these topics have been reported in the literature, see e.g. [2, 18, 21, 26]. It is noticed that the delay-

dependent technique has been applied to the analysis and synthesis of stochastic systems in, for example,

[3, 27]. Unfortunately, up to now, the stability analysis and stabilization problems for stochastic time-delay

interval systems with nonlinear disturbances have not been adequately addressed by delay-dependent technique

yet, which remains as an interesting research topic.

In this paper, we deal with the robust stability and stabilization problems for a class of stochastic time-

delay interval systems with nonlinear disturbances by developing delay dependent analysis techniques. The

robust stability analysis problem is first dealt with, where the aim is to derive sufficient conditions such that

the system is asymptotically stability in the mean square, dependent on the length of the time delay, for all

admissible nonlinear disturbances as well as intervally varying uncertain parameters. Then, we tackle the

robust stabilization problem where a memoryless state feedback controller is designed to stabilize the closed-

loop system. By using Itô’s differential formula and the Lyapunov stability theory, sufficient conditions for

the solvability of these problems are derived in term of linear matrix inequalities, which can be easily checked

by resorting to available software packages. A numerical example is exploited to demonstrate the effectiveness

of the results obtained.

Notation In this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean space and the set

of all n ×m real matrices. L2[0,∞) is the space of square-integrable vector functions over [0,∞). | · | refers

to the Euclidean norm in R
n, and ‖ · ‖2 stands for the usual L2[0,∞) norm. We let τ > 0, C([−τ, 0]; Rn)

denote the family of continuous functions φ from [−τ, 0] to R
n with the norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|, and

I denote the identity matrix of compatible dimension. The notation X ≥ Y (respectively, X > Y ) where X

and Y are symmetric matrices, means that X − Y is positive semi-definite (respectively, positive definite).

For a matrix M, MT represents its transpose, λmax(M) (respectively, λmin(M)) stands for its maximum

(respectively, minimum) eigenvalue and its operator norm is denoted by ‖M‖ = sup{|Mx| : |x| = 1} =
√

λmax(MTM). (Ω,F , {Ft}t≥0,P) is a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions (i.e., the filtration contains all P -null sets and is right continuous). Denote by Lp
F0

([−h, 0]; Rn)

the family of all F0-measurable C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that

sup−τ≤θ≤0 E|ξ(θ)|p < ∞, where E{x} stands for the expectation of stochastic variable x. The shorthand

diag{M1, ...,Mn} denotes a block diagonal matrix with diagonal blocks being the matrices M1, ...,Mn. The

notation Mn[(M1)i1,j1
, (M2)i2,j2

, ..., (Mr)ir ,jr
] denotes a nth-order block square matrix whose all nonzero

blocks are the i1j1th block M1, the i2j2th block M2, ... , the irjrth block Mr, and all other blocks are zero

matrices. In symmetric block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry .

Matrices, if not explicitly stated, are assumed to have compatible dimensions.
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II. Problem Formulation

For a matrix Dn1×n2
, define the following matrix interval:

DI = [D, D̄] = {D = [dij ]n1×n2
: dij ≤ dij ≤ d̄ij , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2},

where D = [dij ]n1×n2
and D̄ = [d̄ij ]n1×n2

satisfy dij ≤ d̄ij for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Consider the following stochastic time-delay interval system with nonlinear disturbance:

dx(t) = [Ax(t) +Adx(t− τ) +Bu(t) + f(x(t), x(t− τ))] dt+ Ex(t)dω(t) (1)

x(t) = φ(t), ∀ t ∈ [−τ, 0] (2)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the control input, f(·, ·) is an unknown nonlinear exogenous

disturbance input, ω(t) is a one-dimensional Brownian motion satisfying

E{dω(t)} = 0, E{dω2(t)} = dt.

Furthermore, τ is a real constant time delay satisfying 0 ≤ τ < ∞, and φ(t) ∈ C([−τ, 0]; Rn) is the initial

function. The system matrices A ∈ AI , Ad ∈ AdI , B ∈ BI , and E ∈ EI , where AI = [A, Ā] = {A = [aij]n×n},

AdI = [Ad, Ād] = {Ad = [adij ]n×n}, BI = [B, B̄] = {B = [bij ]n×p}, and EI = [E, Ē] = {E = [eij ]n×n}.

By setting

A0 =
1

2
(A + Ā), Ã = (ãij) =

1

2
(Ā− A),

Ad0 =
1

2
(Ad + Ād), Ãd = (ãdij) =

1

2
(Ād − Ad),

B0 =
1

2
(B + B̄), B̃ = (b̃ij) =

1

2
(B̄ − B),

E0 =
1

2
(E + Ē), Ẽ = (ẽij) =

1

2
(Ē − E),

we can rewrite A, Ad, B and E as follows:







A = A0 +Aδ = A0 + Σn
i, j=1

eia
δ
ije

T
j , |a

δ
ij| ≤ ãij,

Ad = Ad0 +Aδ
d = Ad0 + Σn

i, j=1
eia

δ
dije

T
j , |a

δ
dij | ≤ ãdij ,

B = B0 +Bδ = B0 + Σn
i=1

Σp
j=1

eib
δ
ijh

T
j , |b

δ
ij | ≤ b̃ij,

E = E0 + Eδ = E0 + Σn
i, j=1

eie
δ
ije

T
j , |e

δ
ij | ≤ ẽij ,

(3)

where ek ∈ R
n or hk ∈ R

p denotes the column vector with the kth element being 1 and others being 0.

Remark 1: In practice, the interval uncertainties described in (3) are frequently encountered in many engi-

neering systems, which may result from the variation of operating points, aging of the devices, identification

errors, etc. For example, when modeling a real world plant, we often use an interval to estimate a certain

parameter so as to allow for some margin for error in the parameter identification. In the past few years,

the control problems for systems with interval uncertainty have attracted considerable research attention, see

[11,14] and references therein.

In this paper, the nonlinear disturbances are assumed to satisfy the following boundedness condition.

Assumption 1: There exist real constant matrices G1 ∈ R
n×n and G2 ∈ R

n×n such that the unknown

nonlinear vector function f(·, ·) satisfies:

|f(x(t), x(t− τ))| ≤ |G1x(t)| + |G2x(t− τ)|. (4)
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Remark 2: The exogenous nonlinear time-varying disturbance has been dealt with in many papers such as

[20]. In Assumption 1, the nonlinear disturbance f(x(t), x(t − τ)) in the system (1)-(2) involves the delayed

term, which is more general than that studied in [20]. To the best of the authors’ knowledge, there has

been little research effort reported in the literature on using delay-dependent technique to deal with the

robust stabilization problem for stochastic time-delay interval systems with such kind of nonlinear exogenous

disturbances.

For the sake of simplicity, we denote:







F0 = [ET
0
ET

0
], H1 = [GT

1
GT

1
], H2 = [GT

2
GT

2
]

J1 = τ̄−1Z − ǫ2I − Σ4 − Σ5, J2 = diag{X − Σ6, τ̄
−1I − Σ7}, J3 = diag{2ǫ1I 2ǫ2I}

X = [X, ...,X
︸ ︷︷ ︸

n

], Y = [Y T , ..., Y T

︸ ︷︷ ︸

n

]T , I = [I, ..., I
︸ ︷︷ ︸

n

], Z = [Z, ..., Z
︸ ︷︷ ︸

n

]

Υ = [X X I X X X ], U = diag{U1, U2, U3, U4, U6, U7}

Ul = diag{ηl11, ..., ηl1n, ..., ηln1, ..., ηlnn}, (l = 1, 2, 4, 5, 6, 7),

Ul = diag{ηl11, ..., ηln1, ..., ηl1n, ..., ηlnn}, (l = 3, 8),

Ul = diag{ηl11, ..., ηl1p, ..., ηln1, ..., ηlnp}, (l = 9, 10),

Σ1 = Σn
i,j=1

η1ij ã
2

ijeie
T
i , Σ2 = Σn

i,j=1
η2ij ã

2

dijeie
T
i , Σ3 = Σn

i,j=1
η3ij ã

2

dijeje
T
j , Σ4 = Σn

i,j=1
η4ij ã

2

ijeie
T
i

Σ5 = Σn
i,j=1

η5ij ã
2

dijeie
T
i , Σ6 = Σn

i,j=1
η6ij ẽ

2

ijeie
T
i , Σ7 = Σn

i,j=1
η7ij ẽ

2

ijeie
T
i , Σ8 = Σn

i,j=1
η8ij ã

2

dijeje
T
j

Σ9 = Σn
i=1

Σp
j=1

η9ij b̃
2

ijhih
T
i , Σ10 = Σn

i=1
Σp

j=1
η10ij b̃

2

ijhih
T
i

Φ = (A0 +Ad0)X +X(A0 +Ad0)
T + S + ǫ1I + τ̄T + Σ1 + Σ2,

Ψ = (A0 +Ad0)X +X(A0 +Ad0)
T +B0Y + Y TBT

0
+ S + ǫ1I + τ̄T + Σ1 + Σ2 + Σ9.

(5)

Observe the system (1)-(2) and let x(t; ξ) denote the state trajectory from the initial data x(θ) = ξ(θ) on

−τ ≤ θ ≤ 0 in L2

F0
([−τ, 0]; Rn). Obviously, x(t, 0) ≡ 0 is the trivial solution of system (1)-(2) corresponding

to the initial data ξ = 0.

Before formulating the problem to be coped with, we first introduce the following stability concepts for

(1)-(2).

Definition 1: For the stochastic time-delay interval system (1)-(2) with u(t) = 0 and every ξ ∈ L2

F0
([−τ, 0]; Rn),

the trivial solution is said to be mean-square asymptotically stable if

lim
t→∞

E|x(t)|2 = 0.

Definition 2: The stochastic time-delay interval system (1)-(2) with the state feedback controller u(t) =

Kx(t) is said to be robustly stochastically stabilizable if there exists a gain matrix K ∈ Rp×n such that the

closed-loop system is mean-square asymptotically stable.

The purpose of this paper is to design a state feedback controller such that the stochastic time-delay

interval system (1)-(2) with nonlinear disturbance is stochastically stabilized by developing delay-dependent

techniques.

III. Robust Stability Analysis

First, let us give the following lemmas which will be used in the proof of our main results.

Lemma 1: (Schur Complement) Given the constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1

and 0 < Σ2 = ΣT
2
.

Then Σ1 + ΣT
3
Σ−1

2
Σ3 < 0 if and only if

[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0,
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or equivalently, [

−Σ2 Σ3

ΣT
3

Σ1

]

< 0.

Lemma 2: Let X, Y , F be real matrices of appropriate dimensions with F TF ≤ I. Then for any scalar

δ > 0, we have

XFY + Y TF TXT ≤ δXXT + δ−1Y TY.

Lemma 3: [5] Let M1, M2, M3 and Ξ > 0 be given constant matrices with appropriate dimensions. Then,

for any scalar ε > 0 satisfying εI −MT
2

ΞM2 > 0, we have

(M1 +M2M3)
T Ξ(M1 +M2M3) ≤MT

1 (Ξ−1 − ε−1M2M
T
2 )−1M1 + εMT

3 M3.

For presentation convenience, we define the following new state variable

y(t) = Ax(t) +Adx(t− τ) +Bu(t) + f(x(t), x(t− τ)), (6)

and then the systems (1) can be represented as

dx(t) = y(t)dt + Ex(t)dω(t). (7)

In the following theorem, a delay-dependent LMI approach is developed to solve the robust stability analysis

problem for the stochastic time-delay interval system (1)-(2) with u(t) = 0, and a sufficient condition is derived

ensuring the solvability of the problem.

Theorem 1: Consider the system (1)-(2) with u(t) ≡ 0. If there exist positive definite matrices X > 0,

S > 0, Z > 0, T > 0 and positive scalars ǫ1 > 0, ǫ2 > 0, ηlij > 0, (i, j = 1, ..., n, l = 1, ..., 8) such that the

following linear matrix inequalities




















Φ 0 Ad0 XAT
0

XF0 XH1 0 Υ 0

∗ −S 0 XAT
d0

0 0 XH2 0 X

∗ ∗ −I + Σ3 0 0 0 0 0 0

∗ ∗ ∗ −J1 0 0 0 0 0

∗ ∗ ∗ ∗ −J2 0 0 0 0

∗ ∗ ∗ ∗ ∗ −J3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −J3 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −U 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U5




















< 0 (8)






−T Ad0Z 0

∗ −Z + Σ8 Z

∗ ∗ −U8




 < 0, (9)

hold, where Φ, F0, H1, H2, J1, J2, J3, Υ, U, U5, U8, Σ3, Σ8, X , and Z are all defined in (5), then the system

(1)-(2) with u(t) ≡ 0 is mean-square asymptotically stable.

Proof: Recalling the Newton-Leibniz formula and (7), we can write that, for t ≥ τ ,

x(t− τ) = x(t) −

∫ t

t−τ

dx(s)

= x(t) −

[∫ t

t−τ

y(s)ds+

∫ t

t−τ

Ex(s)dω(s)

]

. (10)
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Then, it is easy to know from (10) that the following system is equivalent to (1)-(2) with u(t) = 0:

dx(t) = [(A+Ad)x(t) −Ad

∫ t

t−τ

y(s)ds −Ad

∫ t

t−τ

Ex(s)dω(s)

+f(x(t), x(t− τ))]dt + Ex(t)dω(t). (11)

x(t) = ψ(t), t ∈ [−2τ, 0], r(0) = r0, (12)

where ψ(t) is the initial function. Hence, it suffices to prove the mean-square asymptotic stability of the above

system.

Now, let P = X−1 > 0, Q = PSP > 0, R = Z−1 > 0 and define the following Lyapunov-Krasovskii function

candidate for the system (11):

V (x(t), t) = xT (t)Px(t) +

∫ t

t−τ

xT (s)Qx(s)ds +

∫ t

t−τ

∫ t

s

yT (β)Ry(β)dβds

+

∫ t

t−τ

∫ t

s

|Ex(β)|2dβds. (13)

Noticing the fact of

τxT (t)Wx(t) =

∫ t

t−τ

xT (t)Wx(t)ds,

it can be derived by Itô’s differential formula [12] that

dV (x(t), t) = LV (x(t), t)dt + 2xT (t)PEx(t)dω(t), (14)

where

LV (x(t), t) = xT (t)[(A+Ad)
TP + P (A+Ad) +Q+ ETPE]x(t)

−2xT (t)PAd

(∫ t

t−τ

y(s)ds +

∫ t

t−τ

Ex(s)dω(s)

)

+ 2xT (t)Pf(x(t), x(t − τ))

−xT (t− τ)Qx(t− τ) + τyT (t)Ry(t) −

∫ t

t−τ

yT (s)Ry(s)ds

+τxT (t)ETEx(t) −

∫ t

t−τ

|Ex(s)|2ds+ τxT (t)Wx(t) −

∫ t

t−τ

xT (t)Wx(t)ds, (15)

with W = PTP > 0.

Noting (4) and Lemma 2, we can calculate that

2xT (t)Pf(x(t), x(t− τ)) ≤ ǫ1x
T (t)P 2x(t) + ǫ−1

1
fT (x(t), x(t − τ))f(x(t), x(t− τ))

≤ ǫ1x
T (t)P 2x(t) + ǫ−1

1
(|G1ix(t)| + |G2ix(t− τ)|)2

≤ ǫ1x
T (t)P 2x(t) + 2ǫ−1

1
[xT (t)GT

1 G1x(t) + xT (t− τ)GT
2G2x(t− τ)]. (16)

Again, we can obtain from Lemma 2 that

−2xT (t)PAd

∫ t

t−τ

Ex(s)dω(s) ≤ xT (t)PAdA
T
d Px(t) + |

∫ t

t−τ

Ex(s)dω(s)|2. (17)

Moreover,

E|

∫ t

t−τ

Ex(s)dω(s)|2 ≤

∫ t

t−τ

E|Ex(s)|2ds. (18)
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Using the Lemma 3 and (6), we have

τyT (t)Ry(t) = [Ax(t) +Adx(t− τ) + f(x(t), x(t− τ))]T (τR)

[Ax(t) +Adx(t− τ) + f(x(t), x(t− τ))]

≤ [Ax(t) +Adx(t− τ)]T [(τR)−1 − ǫ2I]
−1[Ax(t) +Adx(t− τ)]

+ǫ−1

2
fT (x(t), x(t− τ))f(x(t), x(t − τ))

≤ [Ax(t) +Adx(t− τ)]T [(τR)−1 − ǫ2I]
−1[Ax(t) +Adx(t− τ)]

+2ǫ−1

2
[xT (t)GT

1 G1x(t) + xT (t− τ)GT
2 G2x(t− τ)]. (19)

Substituting (16)-(19) into (15) and taking expectation lead to

ELV (x(t), t) ≤ E{x̄T (t)Ωx̄(t)} +

∫ t

t−τ

E{x̄T (t, s)Πx̄(t, s)}, (20)

where

Ω : =

[

Ω1 + ∆ 0

0 Ω2

]

+

[

AT

AT
d

]

[(τR)−1 − ǫ2I)]
−1[A Ad], (21)

Π : =

[

−W −PAd

−AT
d P −R

]

, (22)

with

x̄(t) = [xT (t) xT (t− τ)]T , x̄(t, s) = [xT (t) yT (s)]T ,

Ω1 = (A+Ad)
TP + P (A+Ad) +Q+ ǫ1P

2 + τW,

Ω2 = 2(ǫ−1

1
+ ǫ−1

2
)GT

2 G2 −Q,

∆ = PAdA
T
d P + ETPE + τETE + 2(ǫ−1

1
+ ǫ−1

2
)GT

1 G1.

It remains to show that Ω < 0 and Π < 0. By Schur complement lemma, it is easily seen that Ω < 0 if and

only if


















Ω1 0 PAd AT ET ET H1 0

∗ −Q 0 AT
d 0 0 0 H2

∗ ∗ −I 0 0 0 0 0

∗ ∗ ∗ ǫ2I − τ−1Z 0 0 0 0

∗ ∗ ∗ ∗ −P−1 0 0 0

∗ ∗ ∗ ∗ ∗ −τ−1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −J3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3


















< 0, (23)

where H1, H2 are defined in (5).
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On the other hand, we note that pre- and post-multiplying (23) by diag(X,X, I, I, I, I, I, I) yield

Ω̄ =


















Ω̄1 0 Ad XAT XET XET XH1 0

∗ −S 0 XAT
d 0 0 0 XH2

∗ ∗ −I 0 0 0 0 0

∗ ∗ ∗ ǫ2I − τ−1Z 0 0 0 0

∗ ∗ ∗ ∗ −X 0 0 0

∗ ∗ ∗ ∗ ∗ −τ−1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −J3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3


















< 0, (24)

with

Ω̄1 = X(A +Ad)
T + (A+Ad)X + S + ǫ1I + τT.

Similarly, pre- and post-multiplying Π < 0 by diag(X,Z) result in

Π̄ =

[

−T −AdZ

−ZAT
d −Z

]

< 0. (25)

Note that we use the shorthand Mn[(M1)i1,j1
, (M2)i2,j2

, ..., (Mr)ir ,jr
] to represent a nth-order block square

matrix whose all nonzero blocks are the i1j1th block M1, the i2j2th block M2, ... , the irjrth block Mr, and

all other blocks are zero matrices. Then, the matrix Ω̄ can be further rearranged as

Ω̄ =


















Ω̄10 0 Ad0 XAT
0

XET
0

XET
0

XH1 0

∗ −S 0 XAT
d0

0 0 0 XH2

∗ ∗ −I 0 0 0 0 0

∗ ∗ ∗ ǫ2I − τ−1Z 0 0 0 0

∗ ∗ ∗ ∗ −X 0 0 0

∗ ∗ ∗ ∗ ∗ −τ−1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −J3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3


















+M8

[

(Ω̄δ
1)1,1

]

+ M8

[

(Aδ
d)1,3, ((Aδ

d)
T )3,1

]

+M8

[

(X(Aδ)T )1,4, (AδX)4,1

]

+ M8

[

(X(Aδ
d)

T )2,4, (Aδ
dX)4,2

]

+M8

[

(X(Eδ)T )1,5, (EδX)5,1

]

+ M8

[

(X(Eδ)T )1,6, (EδX)6,1

]

:= Φ0 + Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6, (26)

where

Ω̄10 = X(A0 +Ad0)
T + (A0 +Ad0)X + S + ǫ1I + τT,

Ω̄δ
1 = X(Aδ +Aδ

d)
T + (Aδ +Aδ

d)X.



SUBMITTED 9

It follows from Lemma 2 and (3) that, for any real scalars ηlij > 0 (i, j = 1, ..., n; l = 1, 2), the following

holds:

Φ1 = [X, 0, 0, 0, 0, 0, 0, 0]T [(Aδ +Aδ
d)

T , 0, 0, 0, 0, 0, 0, 0]

+[(Aδ +Aδ
d)

T , 0, 0, 0, 0, 0, 0, 0]T [X, 0, 0, 0, 0, 0, 0, 0]

= Σn
i, j=1

(

[X, 0, 0, 0, 0, 0, 0, 0]T [(eia
δ
ije

T
j )T , 0, 0, 0, 0, 0, 0, 0]

+[(eia
δ
ije

T
j )T , 0, 0, 0, 0, 0, 0, 0]T [X, 0, 0, 0, 0, 0, 0, 0]

+[X, 0, 0, 0, 0, 0, 0, 0]T [(eia
δ
dije

T
j )T , 0, 0, 0, 0, 0, 0, 0]

+[(eia
δ
dije

T
j )T , 0, 0, 0, 0, 0, 0, 0]T [X, 0, 0, 0, 0, 0, 0, 0]

)

= Σn
i, j=1

(

[eTj X, 0, 0, 0, 0, 0, 0, 0]T [(eia
δ
ij)

T , 0, 0, 0, 0, 0, 0, 0]

+[(eia
δ
ij)

T , 0, 0, 0, 0, 0, 0, 0]T [eTj X, 0, 0, 0, 0, 0, 0, 0]

+[eTj X, 0, 0, 0, 0, 0, 0, 0]
T [(eia

δ
dij)

T , 0, 0, 0, 0, 0, 0, 0]

+[(eia
δ
dij)

T , 0, 0, 0, 0, 0, 0, 0]T [eTj X, 0, 0, 0, 0, 0, 0, 0]
)

≤ Σn
i, j=1

(

η−1

1ij [e
T
j X, 0, 0, 0, 0, 0, 0, 0]

T [eTj X, 0, 0, 0, 0, 0, 0, 0]

+η1ij ãij [e
T
i , 0, 0, 0, 0, 0, 0, 0]

T [eTi , 0, 0, 0, 0, 0, 0, 0]

+η−1

2ij [e
T
j X, 0, 0, 0, 0, 0, 0, 0]T [eTj X, 0, 0, 0, 0, 0, 0, 0]

+η2ij ãdij [e
T
i , 0, 0, 0, 0, 0, 0, 0]

T [eTi , 0, 0, 0, 0, 0, 0, 0]
)

= M8 [(Σ1 + Σ2)1,1] + [X , 0, 0, 0, 0, 0, 0, 0]T U−1

1
[X , 0, 0, 0, 0, 0, 0, 0]

+ [X , 0, 0, 0, 0, 0, 0, 0]T U−1

2
[X , 0, 0, 0, 0, 0, 0, 0] ,

= M8

[
(Σ1 + Σ2 + XU−1

1
X + XU−1

2
X )1,1

]
(27)

where X , Σ1, Σ2, U1, U2 are defined in (5).

Similarly, for any scalars ηlij > 0, (i, j = 1, ..., n, l = 3, 4, 5, 6, 7, 8), we have

Φ2 ≤ M8 [(Σ3)3,3] + [I, 0, 0, 0, 0, 0, 0, 0]T U−1

3
[I, 0, 0, 0, 0, 0, 0, 0] ,

= M8

[
(U−1

3
)1,1, (Σ3)3,3

]
(28)

Φ3 ≤ M8 [(Σ4)4,4] + [X , 0, 0, 0, 0, 0, 0, 0]T U−1

4
[X , 0, 0, 0, 0, 0, 0, 0] ,

= M8

[
(XU−1

4
X )1,1, (Σ4)4,4

]
(29)

Φ4 ≤ M8 [(Σ5)4×4] + [0,X , 0, 0, 0, 0, 0, 0]T U−1

5
[0,X , 0, 0, 0, 0, 0, 0] ,

= M8

[
(XU−1

5
X )2,2, (Σ5)4,4

]
(30)

Φ5 ≤ M8 [(Σ6)5×5] + [X , 0, 0, 0, 0, 0, 0, 0]T U−1

6
[X , 0, 0, 0, 0, 0, 0, 0] ,

= M8

[
(XU−1

6
X )1,1, (Σ6)5,5

]
(31)

Φ6 ≤ M8 [(Σ7)6×6] + [X , 0, 0, 0, 0, 0, 0, 0]T U−1

7
[X , 0, 0, 0, 0, 0, 0, 0] ,

= M8

[
(XU−1

7
X )1,1, (Σ7)6,6

]
(32)

Π̄ ≤

[

−T Ad0Z

ZAT
d0

−Z + Σ8

]

+

[

0

Z

]

U−1

8

[

0

Z

]T

, (33)

where Σ3, Σ4, Σ5, Σ6, Σ7, Σ8, U3, U4, U5, U6, U7, U8, I, Z are defined in (5).
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According to Schur Complement Lemma, after tedious but straightforward calculations, it is followed from

the conditions (8), (9) and (24)-(33) that

Ω̄ < 0, Π̄ < 0.

Obviously, from the relationship between Ω and Ω̄, the relationship between Π and Π̄, and the inequality

(20), we can obtain

Ω < 0, Π < 0.

Therefore, we can conclude that

ELV (x(t), t) < 0,

which indicates that the trivial solution of (11) is asymptotically stability in the mean square. This completes

the proof.

Remark 3: In Theorem 1, it is shown that the unforced stochastic time-delay interval system with nonlinear

disturbances is mean square asymptotically stable if two LMIs (8) and (9) are feasible, and the stability criteria

are dependent on the length of time delay. Note that, by Matlab toolbox, the feasibility of the LMIs (8) and

(9) can be checked easily and the maximum allowable bound of the time delay τ with which the stochastic

delayed interval system (1)-(2) is mean square asymptotically stable can be determined.

IV. Delay-Dependent Robust Stabilization

In this section, we aim to propose a design procedure for the state feedback controller that can robustly

stochastically stabilize the addressed stochastic delayed interval systems with nonlinear disturbances. Again,

a delay-dependent LMI technique will be developed in order to obtain a less conservative condition. The main

result of this paper is given in the following theorem.

Theorem 2: Consider the system (1)-(2). If there exist positive definite matrices X > 0, S > 0, Z > 0,

T > 0, a matrix Y , and positive scalars ǫ1 > 0, ǫ2 > 0, ηlij > 0, (l = 1, 2, ..., 8), η9im > 0, η10im > 0

(i, j = 1, ..., n; m = 1, ..., p) such that (9) and the following linear matrix inequality

























Ψ 0 Ad0 XAT
0

+ Y TBT
0

XF0 XH1 0 Υ 0 YT YT

∗ −S 0 XAT
d0

0 0 XH2 0 X 0 0

∗ ∗ −I + Σ3 0 0 0 0 0 0 0 0

∗ ∗ ∗ −J1 + Σ10 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −J2 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −J3 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −J3 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −U 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U5 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U9 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U10

























< 0, (34)

hold, where F0, H1, H2, J1, J2, J3, Υ, U, U5, U8, U9, U10, Σ3, Σ8, Σ10, X , Y and Ψ are all defined in (5),

then with the state feedback controller given by

u(t) = Kx(t), K = Y X−1, (35)

the closed-loop system is robustly stochastically stable.
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Proof: Applying the controller (35) and Newton-Leibniz formula (10) to the stochastic interval system

(1), which is equivalent to replacing A with Ac = A+BK in (11), we have

dx(t) = [(Ac +Ad)x(t) −Ad

∫ t

t−τ

y(s)ds−Ad

∫ t

t−τ

Ex(s)dω(s)

+f(x(t), x(t− τ))]dt + Ex(t)dω(t), (36)

x(t) = ψ(t), t ∈ [−2τ, 0], r(0) = r0. (37)

The Lyapunov-Krasovskii function is chosen as:

V (x(t), t) = xT (t)Px(t) +

∫ t

t−τ

xT (s)Qx(s)ds +

∫ t

t−τ

∫ t

s

yT (β)Ry(β)dβds

+

∫ t

t−τ

∫ t

s

|Ex(β)|2dβds. (38)

Similar to the proof of Theorem 1, we obtain

ELV (x(t), t) ≤ E{x̄(t)T Γx̄(t)} +

∫ t

t−τ

E{x̄(t, s)T Πx̄(t, s)}, (39)

where Π are defined in (22) and

Γ :=

[

Γ1 + ∆ 0

0 Ω2

]

+

[

AT
c

AT
d

]

[(τR)−1 − ǫ2I]
−1[Ac Ad], (40)

with

Γ1 = P (Ac +Ad) + (Ac +Ad)
TP +Q+ ǫ1P

2 + τW.

Along the similar line as that in the proof of Theorem 1, we can know from (5), (34) and the expression of

K in (35) that

Γ < 0, Π < 0,

and therefore

ELV (x(t), t) < 0,

which implies that the trivial solution of the closed-loop system (1)-(2) is robustly stochastically stable. The

proof is complete.

V. An Illustrative Example

In this section, to illustrate the usefulness and flexibility of the theory developed in previous section, we

present a simple numerical example. Attention is focused on the design of a stabilizing controller for a class

of stochastic time-delay interval system with nonlinear disturbance.
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The system data of (1)-(2) are as follows:

A =

[

−3.5 0.9

−0.1 −4.3

]

, Ā =

[

−2.5 1.1

0.1 −3.7

]

,

Ad =

[

1 0

0 1

]

, Ād =

[

1.4 0

0 1.6

]

,

B =

[

−1.4 0

0 −1.3

]

, B̄ =

[

1.6 0

0 1.7

]

,

E =

[

0 −0.1

−0.1 0.8

]

, Ē =

[

2 0.1

0.1 2.2

]

,

G1 =

[

0.5 0

0 0.1

]

, G2 =

[

0.2 0

0 0.5

]

.

Using Matlab LMI control Toolbox to solve the LMIs (5) and (34), we obtain the maximum allowable bound

of the time delay as τ̄ = 2.2793. Hence, we have the conclusion that the stochastic interval delay system is

robustly stabilizable when τ ≤ 2.2793.

The solutions of the LMIs (5) and (34) in the case of τ = 1.0 are given as follows

X =

[

0.8702 0.0716

0.0716 0.4755

]

, S =

[

5.4828 −1.4175

−1.4175 2.5971

]

,

T =

[

13.5320 −0.9107

−0.9107 23.2177

]

, Z =

[

63.9368 1.3035

1.3035 61.9510

]

,

Y =

[

−27.3075 −0.9148

−0.8506 −30.7860

]

, K =

[

−31.6149 2.8373

4.4052 −65.4085

]

,

ǫ1 = 5.1812, ǫ2 = 8.8005,

U1 = diag(15.5313, 69.7055, 69.7725, 18.3928),

U2 = diag(54.8768, 76.5923, 76.6807, 18.3928),

U3 = diag(9.3559, 76.6807, 76.5923, 3.5225),

U4 = diag(41.7751, 74.7339, 74.8157, 40.2269),

U5 = diag(67.6583, 76.6452, 76.7313, 40.2405),

U6 = diag(0.3710, 20.6139, 20.6253, 0.3305),

U7 = diag(0.4147, 29.0095, 29.0219, 0.7147),

U8 = diag(211.1844, 256.0696, 481.6419, 195.6471),

U9 = diag(144.1794, 229.0462, 158.2998, 133.6967),

U10 = diag(155.0798, 229.0462, 158.2998, 187.4469).

According to Theorem 2, with the designed controller gain K, the closed-loop system is asymptotically

stable in the mean square for all admissible interval uncertainties and nonlinear disturbances.

VI. Conclusions

In this paper, we have investigated the robust stability analysis problem as well as the robust stabilization

problem for a class of stochastic time-delay interval systems with nonlinear disturbances. A delay-dependent
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LMI approach has been developed to derive sufficient conditions under which the controlled system is mean-

square asymptotically stable, where the conditions are dependent on the length of the time delays. A numerical

example has been employed to illustrate the effectiveness of the results obtained.
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