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Abstract

This paper reformulates the classical problem of cash flow valuation under stochastic
discount factors into a system of linear equations with random perturbations. Using
convergence results, a sequence of uniform approximations is developed. The new
formulation leads to a general framework for deriving approximate statistics of cash
flows for a broad class of models of stochastic interest rate process. We then show
applications of the proposed method by pricing default-free and defaultable bonds.
The methodology developed in this paper is applicable for a variety of uncertain
cash flow analysis problems.
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Introduction

The problem of calculating the present value of future cash flows is fundamental in con-
tingent claim analysis and in investment appraisal problems. Financial instruments such as
pensions, insurance, bonds, mortgages and more recently derivatives contracts need to be
valued incorporating interest rate risk. Many of these securities consist of a series of peri-
odic payments called annuities. The classic literature on pricing annuities concentrates on
deterministic discount factor as described in Kellison (1991). Bowers et al. (1997) introduced
the valuation of annuities when interest rates are random variables. However, there is no ex-
plicit reference to risk-neutral pricing and no real dynamics for the interest rate is suggested.
Random interest rate formulation is further explored in Zaks (2001) whose characterisation
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focused on the mean and variance of the accumulation factor assuming rates are indepen-
dent, identically distributed random variables. Certain results from Zak’s formulations were
later modified by Burnecki, Marciniuk and Weron (2003).

In this paper, we consider stochastic interest rates and work in a valuation formula wherein
the present value of a claim is the average of its discounted value over all possible positive
future interest rate paths in a risk-neutral framework. Here, the discount factor is given
by the cumulative one-period rates along the future path. We assume the existence of risk-
neutral specification as explained in Cheyette (1998). Hamilton (1988) also employed this
framework to test the unbiased expectation hypothesis of the term structure of interest rates.

Unlike common approaches in term structure modelling such as Monte-Carlo methods (Cheyette
(1998) for example), lattice technique (Jarrow (2002) for example) and direct calculation of
expectation under a martingale measure, we reduce the valuation problem into a problem of
inverting a matrix with random perturbations. Formulae for accurate approximation of bond
prices are derived in terms of joint conditional moments of one period, future spot rates. We
show how to obtain the joint moments of future spot rates in terms of the parameters of
standard short rate models.

The issue of positive interest rates is also addressed as we can begin with positive rates and
control the perturbation. Consequently, this offers an alternative perspective to the studies
conducted by Koch and Schepper (2004) and Schepper et al. (1997) attempting to restrict
interest rate evolution in order to meet special types of financial or actuarial constraints.

The scheme of this paper is as follows. The next section defines notation and sets up the ma-
trix inversion problem mentioned above. The succeeding three sections discuss approximate
solution and demonstrate certain applications. The final section summarises the contribu-
tions and provides directions for future research.

The Cash flow Valuation Problem and the Linear System of Equations

Throughout this paper, boldface characters indicate real vectors while matrices will be rep-
resented by capitalised letters. Let

ri = one period (short) rate during [ti−1, ti],

fi = cash flow at time ti,

pi = “running” present value of future cash flow

at time ti of the future cash flows fj, j ≥ i.

The short rate ri is assumed to be of the form

ri = g (ri−1) + vi
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where g(·) : R 7→ R is a known, deterministic function and the discrete random process
vi, i > 0 satisfies E(vi) = 0 where E denotes the expectation operator. The initial short rate
r0 is assumed to be known.When discretised, most standard, single-factor short rate models
will reduce to this form. It is also assumed that vi is defined on a finite support such that
|ri| ≤ (1−ε) for some ε > 0. From a practical point of view, this is a reasonable requirement.

The discounted present values pi’s of future cash flows may be defined by a recursive relation

pN−1 =
fN

1 + rN

,

pi =
pi+1 + fi+1

1 + ri+1

, i ∈ [0, N − 2]. (1)

This relationship may be written in a matrix-vector form as follows.

Fact 1 The future cash flow and its present value at each time ti may be shown to be related
by

f = (Q + R)p (2)

where

[Q]ij = 1 if i = j

= −1 if i = j + 1

= 0 otherwise.

[R]ij = rN−i+1 if i = j,

= 0 otherwise.

f =
[
fN fN−1 · · · f1

]T

p =
[
pN−1 pN−2 · · · p0

]T

,

where T denotes transpose of a matrix or a vector.

Proof : This may easily be proved using (1) .

Given the information concerning the distribution of ri and fi, the solution to the system of
linear equations (2) provides us with the statistics of the running present value pi at time ti.
In particular, if the cash flows consist of coupons and principal repayment of a default-free
bond, the expected value E(p0) represents the bond price at time t0.

Approximation of the discounted present value vector

The next result provides a uniform approximation of the statistics of vector p.
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Theorem 2 Suppose maxi |ri| < 1, fi satisfies the condition maxi |fi| < γ for some γ < ∞
and the inverse of (Q + R) exists with probability 1. Also assume that P (‖Q−1R‖2 < 1) = 1.
Define

p = (Q + R)−1f , pM =
M∑

i=0

(−Q−1R)iQ−1f (3)

with (−Q−1R)0 = I. Then

(i) pM → p with probability 1.

(ii) lim
M→∞

E
(
‖pM − p‖2

2

)
= 0.

Proof : See the appendix.

Remark 3 The first two assumptions of theorem 2 viz. uniformly bounded cash flows and
short rate bounded by 100% are made to conform with the pragmatic reality of the financial
market. The third assumption is justified by the fact that the inverse of (Q + R) exists (a.s.)
provided mini ri > 0 a.s. We shall return to the issue of interpretation and justification of
the last assumption on the size of Q−1R later in this section.

Remark 4 If r is a deterministic non-negative scalar bounded by unity, the expression

f

1 + r
≈

M∑

i=0

(−r)if

follows trivially from the Taylor’s expansion around r = 0. The multivariate, probabilistic
generalisation in theorem 2 (as implied by the definition of pM) does not follow easily from
the scalar deterministic version, as can be seen from the proof given in the appendix.

The expression for pM is a multivariate polynomial in ri and fi and is thus significantly
simpler than the expression for p which involves matrix inversion. In particular, the moments
of pM are defined in terms of (joint) moments of ri and fi. Thus a uniform approximation
to the moments of the present value (in the sense of theorem 1) may be found using the
moments of future cash flows and the interest rates.

The computation involved in finding the moments of pM is simpler than it appears. First,
the matrices Q−1, Q−1R and the vector Q−1f have particularly simple forms:

Fact 5

[Q−1]ij = 1 if i ≥ j,

= 0 otherwise,

[Q−1R]ij = rN−j+1 if i ≥ j,

= 0 otherwise,

[Q−1f ]j =
j∑

i=1

fN−i.
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It is instructive to examine what these matrices look like. For N = 3, we have

Q−1R =




r3 0 0

r3 r2 0

r3 r2 r1




,

Q−1f =




f3

f3 + f2

f3 + f2 + f1




.

Using fact 5, one may easily establish a closed-form expression for the approximation of
p0. In particular, the second order approximation for a zero coupon bond (with fi = 0 for
i = 1, 2, . . . , N − 1 and fN = 1) is stated below.

Fact 6

E
(
e1

Tp2
)

= 1− E
(

N∑

i=1

ri

)
+ E




N∑

i,j=1

i≤j

rirj


 (4)

where e1 =
[
0 0 · · · 1

]T

is a unit vector.

Theorem 2 together with fact 5 demonstrates how to build a uniformly convergent approxi-
mation to the present price of a general cash flow as defined by

E
(

N∑

i=1

fi

Πi
j=1(1 + rj)

)

in terms of joint moments E
(
(Πi

j=1rj)fi

)
. Unless otherwise specified, it is assumed that

all the expectations are conditional on the information at time t0. An approximation to
future prices pi of cash flow based on today’s information is also obtained. Further, note
that E

(
pM(pM)T

)
may also be expressed in terms of joint moments of ri and fi. Thus

the variance (and higher moments) of the present and future values of cash flows may be
approximated using this method.

We now return to the assumption on the size of Q−1R in theorem 2 and its implications.

Lemma 7 (i) With probability 1,

‖pM − p‖ ≤ ‖Q−1R‖M+1

1− ‖Q−1R‖‖Q
−1f‖ (5)

holds for any vector-induced norm ‖ · ‖, provided ‖Q−1R‖ < 1 with probability 1.
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(ii) If rmin, rmax are positive constants such that, with probability 1, ri ∈ (rmin, rmax)∀i,
then

‖Q−1R‖2 ∈

rmin

√
N + 1

2
, rmax

√
N(N + 1)

2


 (6)

holds with probability 1.
(1) If rmin, rmax are defined as above, then for any ε > 0, ∃ a matrix norm ‖·‖ s.t. ‖Q−1R‖ ∈

(rmin, rmax + ε).

Proof : See the appendix.

Note that rmax is a bound on interest rate per period which is not annualised and is likely to
be a small number. Since N(N+1)

2
≤ N2, a sufficient condition for the bound ‖Q−1R‖2 < 1

to be satisfied is Nrmax < 1. However, the error bound in (6) is still conservative. As may be
seen from its proof, this conservatism stems from the use of trace of a positive semi-definite
matrix to bound from above its maximum eigenvalue. Whilst this bound is an equality in
the worst case, it is very conservative for well-conditioned matrices. It is hard to impose a
constraint on the condition number of Q−1R in terms of a relevant constraint on ri. However,
the errors in practice seem to be far less than those suggested by (5), as demonstrated in a
latter section on pricing of default-free bonds.

Approximation using short rate models for stochastic interest rate

Next, we address the problem of obtaining moments E(Πi
j=1rj). Given a parametrised model

of the short rate rk (see James and Webber (2000), chapter 7 for a comprehensive overview
of short rate models), it is easy to obtain the joint moments for i ≤ 2. The moments for i = 3
are only slightly more involved, but are omitted here for brevity. We consider two different
models:

CIR model (Cox, Ingersoll and Ross (1985)): rk+1 = ab + (1− a)rk + σ
√

rkwk+1 (7)

Hull-White Model (Hull and White (1990)): rk+1 = ab + (1− a)rk + σwk+1 (8)

In both cases, wk are zero mean, unit variance, bounded and independent random variables.
a, b and σ are either constants or are known functions of k. Furthermore, it is assumed that

P (ri ∈ [0, 1)) = 1. (9)

Euler-discretisation of classical Hull-White and Cox-Ingersoll-Ross models will yield models
which look similar to the ones above; however, it is worth remembering the crucial constraint
above implies a non-Gaussian noise on a finite support. Condition (9) is crucial for the
approximation technique to converge, i.e. for theorem 2 to hold. Of course, the one-period
interest rate being bounded by unity is a perfectly reasonable assumption from a practical
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point of view. Note that the time period for discretisation is assumed to be unity. This causes
no loss of generality; for a period ∆, one would get the same results provided one replaces a
with a∆ and σ with σ

√
∆.

For these models, one may obtain expressions for the first two conditional moments as follows.

Lemma 8 (1) If (7) holds, then

E (ri) = (1− a)ir0 + ab
i−1∑

l=0

(1− a)l and (10)

E (ri rj) = E (ri)E (rj) + σ2
j∑

l=1

(1− a)i+j−2lE (rl−1) . (11)

(2) If (8) holds, then

E (ri) = (1− a)ir0 + ab
i−1∑

l=0

(1− a)l and (12)

E (ri rj) = E (ri)E (rj) + σ2
j∑

l=1

(1− a)i+j−2l. (13)

In both cases, i ≥ j is assumed without loss of generality.

Proof : This may be proved by straightforward algebraic manipulation of (7) and (8).

The above result, along with theorem 2 and fact 5, may be used to derive a second order
approximation of the present value of any cash flow under a given short rate dynamics.

Applications

The linear algebraic approach described so far is quite generic and can be used in the ap-
proximate pricing of any conceivably uncertain cash flows under stochastic interest rates. In
essence, our proposed technique may be seen as an approach which can map the moments
of (Πjrj)fi into the moments of the present value vector, without resorting to the use of full
distribution information. If the expected value and perhaps the variance of the present value
vector (and not its full set of outcomes) are mainly of interest, using the method developed
here may be computationally more efficient than using distribution-based methods, such as
lattice-based or Monte Carlo techniques.

We demonstrate the method by pricing default-free zero coupon bonds. The illustration is
motivated by the availability of closed-formulae for the bond price under the short rate mod-
els mentioned in the previous section. This allows us to benchmark our approximation with
the “true” price of the cash flow. The pricing of defaultable bonds is also briefly elaborated.
This exemplifies the pricing methodology where the cash flows fi are also uncertain.
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Pricing Default-free bonds: Numerical Experiments

The method described above is demonstrated here by pricing zero-coupon UK government
bonds. Data for UK treasury strips for 8 maturity dates was taken from Datastream on 15th

February 2005. The parameters of a CIR model are estimated using simple least-squares
(under risk-neutral measure). The parameters obtained are

a = 0.7366, b = 0.0037, σ = 0.0049, r0 = 0.0041.

The purpose of using cross-sectional data is simply comparing our method to CIR closed-
form formulae for a realistic set of parameters. Even though the parameters are the same,
the classical CIR model and the proxy model which we use are fundamentally different since
our proxy is assumed to be defined on a compact support. However, we are interested only
in good approximation of the moments of the bond value (with the first moment in the
risk-neutral measure being the bond price) and using the proxy model specified in (7) along
with lemma 8 seems to be adequate for the job.

For these parameters, the prices of 1 Euro payable after τ periods (months) are compared
against 2nd and 3rd order approximation. If the short rate process follows CIR dynamics, the
exact price Pτ of 1 Euro payable after time τ is given by

Pτ = Aτe
−Bτ r where

Aτ =

(
2γe(a+γ)τ/2

(γ + a)(eγτ − 1) + 2γ

) 2ab
σ2

,

Bτ =
2 (eγτ − 1)

(γ + a)(eγτ − 1) + 2γ
,

γ =
√

a2 + 2σ2,

and r is the current rate of interest per period. The results are shown in table 1.

Table 1 approximately here

It can be seen that the percentage error in all cases is below 0.05% (respectively, below 1.1%)
for third order (respectively, second order) approximation.

Defaultable Bonds

A simple default structure is assumed. An exogenous and non-negative random variable τ
represents the time of default. In general, τ will be correlated to ri. A deterministic recovery
function αi is assumed such that if the default occurs in [ti−1, ti), the recovery value is αi.
The nominal value of coupon payment at time ti is denoted as f 0

i . It is easy to see that the
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price of defaultable bond at time t0 is given by

E(p0) =
N∑

i=1

E
(

fi

Πi
j=1 (1 + rj)

)
. (14)

In the special case when τ and ri are uncorrelated, we have

E(fi) = P (τ ≥ ti) f 0
i + P (τ ∈ [ti−1, ti)) αi

and an approximation to bond price may be constructed as

[pM ]0 =
M∑

i=0

E
{
eT
1 (Q−1R)i

}
E

(
Q−1f

)
.

with matrices Q and R and unit vector e1 defined as in the second section. Given a dis-
tribution of τ (as in the structural approach of Black and Cox (1976) amongst others),
this enables us to approximate the bond price. As mentioned in the third section, it is also
possible to find the variance of the value of bond by finding E

(
pM(pM)T

)
.

Conclusion

The contributions of this work are three-fold. First, it introduces a new linear algebraic set-up
for valuing cash flows. Secondly, new expressions are derived for a convergent approximation
to the random vector representing the cash flow and for analysing the error in this approx-
imation. This analysis covers a large variety of cash flow pricing problems under interest
rate uncertainty. Finally, it is shown that the performance of low order approximation for
pricing zero coupon bonds is comparable with the closed-form expressions obtained by the
CIR model under the relevant short rate dynamics.

Application of this method to value a future cash flows arising in investment appraisal and
project development problems is a topic of current research. Another topic of interest is
the pricing of perpetuities. The conditions on existence of stable distributions as N goes
to infinity were handled in the past by Cairns (1995) and Dufresne (1990). It would be
theoretically interesting and practically relevant to investigate whether the approximations
similar to the ones suggested in this paper may be derived for the limiting distributions when
perpetuities are involved.
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Appendix

Proof of theorem 1
The proof rests on the following standard results in probability (see, e.g., Grimmett and
Stirzaker (2001), theorem 7.4):

Lemma 9 (1) If
∑

N P(|XN − X̃| > ε) < ∞ for all ε > 0, then XN → X̃ with probability
1.

(2) If XN → X̃ in probability and P(‖XN‖2 < k) = 1 ∀N for some k, then

lim
N→∞

E(|XN − X̃|2) = 0.

From proof of theorem 7.4 in Grimmett and Stirzaker (2001), it is easy to see that analogous
result holds for vector-valued random variables bounded elementwise from above and below,
using the bound maxi (|x|)i ≤ ‖x‖2 for the two-norm. The proof of the first part of theorem
1 is based on deriving an upper bound for P(‖pM − p‖ > ε) and then showing that the
summation of these upper bounds over M is finite.

First, a simple result is needed to derive the necessary bound:

Lemma 10 Let Q, R be as defined in fact 1 and let ρ denote the spectral radius. Then

max
i
|ri| < 1 ⇒ ρ(Q−1R) < 1

Proof : Eigenvalues of any lower triangular matrix are given by its diagonal entries, which
in the case of Q−1R are ri’s.

Since P (ρ(Q−1R) < 1) = 1, the following power series expansion converges with probability
1 (see, e.g. lemma 5.6.10 and corollary 5.6.16 in Horn and Johnson (1999)):

(Q + R)−1 = (I −Q−1R)−1Q−1

=
∞∑

i=0

(
−Q−1R)i

)
Q−1 .

Then

P
(
p =

∞∑

i=0

(−Q−1R)iQ−1f

)
= 1.
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Suppose that P (‖Q−1R‖2 ≤ α) = 1 for some α < 1. Also, let ‖Q−1f‖2 = β. For a given

ε > 0, let Mε be the smallest integer such that αMε+1β
1−α

≤ ε. Now, for any M0 > Mε,

P
(∥∥∥pM0−1 − p

∥∥∥
2

> ε
)

= P




∥∥∥∥∥∥





∞∑

i=M0

(−Q−1R)i



 Q−1f

∥∥∥∥∥∥
2

> ε




= 0, since, with probability 1,

∥∥∥∥∥∥





∞∑

i=M0

(−Q−1R)i



 Q−1f

∥∥∥∥∥∥
2

≤ αM0+1β

1− α
≤ αMε+1β

1− α
≤ ε.

Next, for any ε > 0,

∞∑

M=0

P
(∥∥∥pM − p

∥∥∥
2

> ε
)
≤

Mε∑

M=0

P
(∥∥∥pM − p

∥∥∥
2

> ε
)
.

The proof of part (1) is completed by noting that Mε is finite for any ε > 0 and using the
first part of lemma 9. Part (2) may be proven by noting that convergence with probability
1 implies convergence in probability and that

P
(
‖pM‖2 ≤ β

1− α

)
= 1

holds for all non-negative integers M .

Proof of lemma 7
For any induced norm ‖ · ‖ such that ‖Q−1R‖ < 1 with probability 1, we have

‖pM − p‖2 = ‖
∞∑

i=M+1

(
Q−1R

)i
Q−1f‖

≤
∞∑

i=M+1

‖
(
Q−1R

)i
Q−1f‖

≤
∞∑

i=M+1

‖Q−1R‖i‖Q−1f‖

from which result (5) follows. To prove the upper bound in (6), the definition of 2-norm
implies that

‖Q−1R‖2 = max
i

σi(Q
−1R) =

√
max

i
λi(Q−1RRT (Q−1)T )

≤
√

trace (Q−1RRT (Q−1)T ) ≤
√√√√

N∑

i=1

i r2
max

where λi(A) and σi(A) are the ith largest eigenvalue and ith largest singular value of matrix
A, respectively. The first inequality is immediate since the maximum eigenvalue of a matrix
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is bounded by its trace (e.g. Horn and Johnson (1999), chapter 1); and the second inequality
may easily be proved from the structure of Q−1R in fact 5. Similarly, the lower bound in (6)
follows from the inequalities

‖Q−1R‖2 ≥
√

trace (Q−1RRT (Q−1)T )

N
≥

√∑N
i=1 i r2

min

N
.

Finally, note that

ri ∈ (rmin, rmax) ∀ i ⇒ ρ(Q−1R) ∈ (rmin, rmax)

(also see proof of lemma 10). The last result in lemma 7 then follows directly by employing
lemma 5.6.10 in Horn and Johnson (1999): given any ε > 0, there is a matrix norm such that

ρ(Q−1R) ≤ ‖Q−1R‖ ≤ ρ(Q−1R) + ε.
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Table 1

τ C.I.R. price [p2]0 [p3]0

6 0.97754 0.97758 0.97758

12 0.95606 0.95616 0.95614

24 0.91450 0.91478 0.91465

48 0.83673 0.83797 0.83696

96 0.70047 0.70803 0.70027
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