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Robust H∞ Control for A Class of Nonlinear

Stochastic Systems with Mixed Time-Delay
Yurong Liu, Zidong Wang∗ and Xiaohui Liu

Abstract

This paper is concerned with the problem of robust H∞ control for a class of uncertain nonlinear Itô-type stochastic

systems with mixed time delays. The parameter uncertainties are assumed to be norm-bounded, the mixed time delays
comprise both the discrete and distributed delays, and the the sector nonlinearities appear in both the system states and

delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous

presence of parameter uncertainties, system nonlinearities and mixed time-delays, the resulting closed-loop system is
asymptotically stable in the mean square and also achieves a prescribed H∞ disturbance rejection attenuation level.

By using the Lyapunov stability theory and the Itô differential role, some new techniques are developed to derive the
sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality

(LMI) is proposed to deal with the problem under consideration and a numerical example is exploited to show the

usefulness of the results obtained.
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I. Introduction

Nonlinear systems and stochastic systems are arguably two of the most important kinds of complex systems

that have had successful applications in control and communication problems, such as attitude control of

satellites and missile control, macroeconomic system control, chemical process control, etc. In the past years,

control of nonlinear stochastic systems has been a topic of recurring interest in the past years, and a great

number of results on this subject have been reported in the literature; see, for example, [16] for a survey.

It is noticed that, recently, a variety of nonlinear stochastic systems have received renewed research interests.

For example, in [3], a minimax dynamic game approach has been developed for the controller design problem

of the nonlinear stochastic systems that employ risk-sensitive performance criteria. The stabilization problem

has been investigated in [4, 5] for nonlinear stochastic systems, and a stochastic counterpart of the input-to-

state stabilization results has been provided. In [15], under an infinite-horizon risk-sensitive cost criterion, the

problem of output feedback control design has been studied for a class of strict feedback stochastic nonlinear

systems. In [25], the decentralized global stabilization problem has been dealt with by using a Lyapunov-based

recursive design method. Most recently, in [2], an H∞-type theory has been developed for a large class of

discrete-time nonlinear stochastic systems. It is worth mentioning that, among different descriptions of the

nonlinearities, the so-called sector nonlinearity [10] has gained much attention for deterministic systems, and

both the control analysis and model reduction problems have been investigated, see [9, 13,14].

On the other hand, since time delays are encountered in various physical and engineering systems and often

result in instability and performance degradation, increasing attention has recently been focused on robust

and/or H∞ control problems for linear systems with certain types of time-delays, see [1] for a survey. Within
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the stochastic framework, the stability analysis problem for linear time-delay systems has been studied by

many authors. For example, in [23], the stability analysis problem for uncertain stochastic fuzzy systems with

time-delays has been considered. In [26], an LMI approach has been developed to cope with the robust H∞

control problem for linear uncertain stochastic systems with state delay. In [17], the robust integral sliding

mode control problem has been studied for uncertain stochastic systems with time-varying delays, and the

H∞ performance has been analyzed in [7] for continuous-time stochastic systems with polytopic uncertainties.

In [8], the robust L2 − L∞ filtering problem has been thoroughly studied for uncertain stochastic time-

delay systems, and the filter design has been elegantly cast into a convex optimization problem with little

conservatism. As for nonlinear stochastic time-delay systems, the related results have been scattered, and

most of the results have been concerned with the stability analysis issue with only discrete time-delays, see

e.g. [6,21,22]. So far, the robust H∞ control problem for nonlinear stochastic systems with mixed time-delays

has not been fully investigated and remains important.

In this paper, we will consider the robust H∞ control problem for a class of uncertain continuous-time Itô-

type stochastic systems involving sector nonlinearities and mixed time delays. The parameter uncertainties

are assumed to be norm-bounded, the mixed time delays comprise both the discrete and distributed delays,

and the sector nonlinearities appear in the system states and all delayed states. An effective linear matrix

inequality (LMI) approach is proposed to design the state feedback controllers such that, for all admissible

nonlinearities and time-delays, the overall uncertain closed-loop system is robustly asymptotically stable in the

mean square and a prescribed H∞ disturbance rejection attenuation level is guaranteed. We first investigate

the sufficient conditions for the uncertain nonlinear stochastic time-delay systems to be stable in the mean

square, and then derive the explicit expression of the desired controller gains. A numerical example is provided

to show the usefulness and effectiveness of the proposed design method.

Notations: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean

space and the set of all n × m real matrices. The superscript “T” denotes the transpose and the nota-

tion X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y is positive

semi-definite (respectively, positive definite). I is the identity matrix with compatible dimension. We let

h > 0 and C([−h, 0]; Rn) denote the family of continuous functions ϕ from [−h, 0] to R
n with the norm

‖ϕ‖ = sup−h≤θ≤0 |ϕ(θ)|, where | · | is the Euclidean norm in R
n. If A is a matrix, denote by ‖A‖ its operator

norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(AT A) where λmax(·) (respectively, λmin(·)) means the

largest (respectively, smallest) eigenvalue of A. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability

space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -null sets and is

right continuous). Denote by Lp
F0

([−h, 0]; Rn) the family of all F0-measurable C([−h, 0]; Rn)-valued random

variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ(θ)|p < ∞ where E{·} stands for the mathematical

expectation operator with respect to the given probability measure P . The asterisk ⋆ in a matrix is used to

denote term that is induced by symmetry. Matrices, if not explicitly specified, are assumed to have compatible

dimensions. Sometimes, the arguments of a function will be omitted in the analysis when no confusion can

arise.

II. Problem Formulation

Consider, on a probability space (Ω ,F ,P), the following uncertain nonlinear Itô stochastic system with

time delays of the form:

(Σ) : dx(t) = [F(x(t), x(t − τ(t)), t) + B1(t)u(t) + D1(t)v(t)]dt

+ [G(x(t), x(t − τ(t)), t) + B2(t)u(t) + D2(t)v(t)]dw(t), (1)

y(t) = Cx(t) + Bu(t), (2)

x(t) = φ(t), t ∈ [−τ̄ , 0], (3)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

m is the control input; y(t) ∈ R
q is the controlled output; C and

B are known real constant matrices; and w(t) is a zero-mean scalar Wiener process (Brownian motion) on
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(Ω ,F ,P) with

E[w(t)] = 0, E[w2(t)] = t.

Also, for the exogenous disturbance signal v(t) ∈ R
p, it is assumed that v(·) ∈ LE2([0,∞); Rp), where

LE2([0,∞); Rp) is the space of non-anticipatory square integrable stochastic process f(·) = (f(t))t≥0 with

respect to (Ft)t≥0 with the following norm:

‖f‖E2 =
{

E

∫ +∞

0
|f(t)|2dt

}1/2
=

{

∫ +∞

0
E|f(t)|2dt

}1/2
.

Furthermore, suppose that F(·, ·, ·) and G(·, ·, ·) are nonlinear vector functions that can be decomposed as

follows:

F(x(t), x(t − τ(t)), t) = A(t)x(t) + f(x(t)) + Ad1(t)x(t − τ(t)) + fd1(x(t − τ(t)))

+ Ad2(t)

∫ t

t−τ0

fd2(x(s))ds, (4)

G(x(t), x(t − τ(t)), t) = G(t)x(t) + Gd1(t)x(t − τ(t)) + Gd2(t)

∫ t

t−τ0

fd2(x(s))ds (5)

with

A(t) = A + ∆A(t), Ad1(t) = Ad1 + ∆Ad1(t), Ad2(t) = Ad2 + ∆Ad2(t), (6)

G(t) = G + ∆G(t), Gd1(t) = Gd1 + ∆Gd1(t), Gd2(t) = Gd2 + ∆Gd2(t). (7)

Also, the matrices B1(·), B2(·),D1(·) and D2(·) satisfy

B1(t) = B1 + ∆B1(t), B2(t) = B2 + ∆B2(t), D1(t) = D1 + ∆D1(t), D2(t) = D2 + ∆D2(t). (8)

Here, the scalar τ(t) ≥ 0 represents the time-varying discrete time delays satisfying τ̇ ≤ h < 1 ( h is a

fixed constant), while τ0 describes the size of the distributed time delays. A,Ad1 , Ad2 , G,Gd1 , Gd2 , B1, B2,D1

and D2 are known real constant matrices, and ∆A(t),∆Ad1(t),∆Ad2(t),∆G(t),∆Gd1(t), ∆Gd2(t),∆B1(t),

∆B2(t),∆D1(t) and ∆D2(t) are unknown matrices representing time-varying uncertainties, which are assumed

to satisfy the following condition:

[

∆A(t) ∆B1(t) ∆Ad1(t) ∆Ad2(t) ∆D1(t)

∆G(t) ∆B2(t) ∆Gd1(t) ∆Gd2(t) ∆D2(t)

]

=

[

M1

M2

]

F (t)
[

N1 N2 N3 N4 N5

]

(9)

where Mi (i = 1, 2) and Ni (i = 1, 2, 3, 4, 5) are known real constant matrices and F (t) is the unknown

Lebesque-measurable matrix-valued function subject to the following condition:

F T (t)F (t) ≤ I, ∀t. (10)

Remark 1: The conditions (9)-(10) are referred to as the admissible conditions. These conditions have been

frequently used to describe parameter uncertainties in many papers dealing with filtering and control problems

for uncertain systems, see e.g. [1, 17–19,23,26].

The vector-valued nonlinear functions f, fd1, fd2 are assumed to satisfy the following sector-bounded condi-

tions:

[f(x) − L1x]T [f(x) − L2x] ≤ 0, ∀x ∈ R
n, (11)

[fd1(x) − U1x]T [fd1(x) − U2x] ≤ 0, ∀x ∈ R
n, (12)

[fd2(x) − W1x]T [fd2(x) − W2x] ≤ 0, ∀x ∈ R
n. (13)

where L1, L2, U1, U2,W1,W2 ∈ R
n×n are known real constant matrices, and L = L1 − L2, U = U1 − U2 and

W = W1 − W2 are symmetric positive definite matrices.
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Remark 2: It is customary that the nonlinear functions f, fd1, fd2 are said to belong to sectors [L1, L2],

[U1, U2] and [W1, W2], respectively [10]. The nonlinear descriptions in (11)-(13) are quite general that

include the usual Lipschitz conditions as a special case. Note that both the control analysis and model

reduction problems for systems with sector nonlinearities have been intensively studied, see e.g. [9, 13,14].

With the above assumptions, the system (1)-(3) can be rewritten as

(Σ′) : dx(t) = [A(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−τ0

fd2(x(s))ds

+ B1(t)u(t) + D1(t)v(t)]dt + [G(t)x(t) + Gd1(t)x(t − τ(t))

+ Gd2(t)

∫ t

t−τ0

fd2(x(s))ds + B2(t)u(t) + D2(t)v(t)]dw(t), (14)

y(t) = Cx(t) + Bu(t), (15)

x(t) = φ(t), t ∈ [−τ̄ , 0], (16)

where τ̄ is a positive constant satisfying τ(t) ≤ τ̄ (∀t ≥ 0) and τ0 ≤ τ̄ .

Substituting the state feedback law

u(t) = Kx(t)

into the system (Σ′) gives the following closed-loop system:

(Σc) : dx(t) = [AK(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−τ0

fd2(x(s))ds

+ D1(t)v(t)]dt + [GK(t)x(t) + Gd1(t)x(t − τ(t))

+ Gd2(t)

∫ t

t−τ0

fd2(x(s))ds + D2(t)v(t)]dw(t), (17)

y(t) = CKx(t), (18)

x(t) = φ(t), t ∈ [−τ̄ , 0], (19)

where

AK(t) = A(t) + B1(t)K, GK(t) = G(t) + B2(t)K, CK = C + BK.

In this paper, we aim at developing the techniques of robust stochastic stabilization and robust H∞ control

for uncertain nonlinear Itô stochastic systems (17)-(19) with mixed time delays. More specifically, a state

feedback controller of the form u(t) = Kx(t) is to be designed such that

(1) The closed-loop system (Σc) with v(t) = 0 is mean-square asymptotically stable for all admissible

uncertainties.

(2) Under zero initial condition, the closed-loop system satisfies ‖y‖E2 ≤ γ‖v‖E2 for any nonzero v(·) ∈

LE2([0,+∞); Rn×m).

Remark 3: For the precise definition of the stability, we refer the readers to [11,12].

III. Main Results

The following lemmas are essential in establishing our main results.

Lemma 1: Let D,S and F be real matrices of appropriate dimensions with F satisfying F T F ≤ I. Then,

for any scalar ε > 0,

DFS + (DFS)T ≤ ε−1DDT + εSTS.

Lemma 2: (Schur Complement) Given constant matrices Ω1,Ω2,Ω3 where Ω1 = ΩT
1 and Ω2 > 0, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0
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if only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0.

Let us now first deal with the controller analysis problem for the closed-loop system (Σc), and derive

sufficient condition in the form of LMIs under which the robust mean-square asymptotic stability can be

guaranteed for the closed-loop system (Σc) with v(t) = 0.

Theorem 1: Let the controller gain K be given and suppose that the admissible conditions hold. Then, the

closed-loop system (Σc) with v(t) = 0 is robustly asymptotically stable in the mean square if there exist three

positive definite matrices X,Q,R and four positive constants ε1, ε2, ε3 and ε4 such that the following LMI

holds:

Ψ < 0. (20)

Here

Ψ =















































Ω Ad1
X I − XL2 I −XW2 Ad2

ΞT X 0 XNT
1 Y T NT

2 0 0
⋆ −(1 − h)Q 0 −XU2 0 0 XGT

d1
0 X 0 0 XNT

3
0

⋆ ⋆ −I 0 0 0 0 0 0 0 0 0 0
⋆ ⋆ ⋆ −I 0 0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ τ2

0
R − I 0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −R GT

d2
0 0 0 0 0 NT

4

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Υ 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Λ−1 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ŭ−1

1
0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε1I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε2I 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε3I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε4I















































,

where

L̆1 = (LT
1 L2 + LT

2 L1)/2; L̆2 = −(LT
1 + LT

2 )/2; (21)

Ŭ1 = (UT
1 U2 + UT

2 U1)/2; Ŭ2 = −(UT
1 + UT

2 )/2; (22)

W̆1 = (W T
1 W2 + W T

2 W1)/2; W̆2 = −(W T
1 + W T

2 )/2; (23)

Y = KX; Λ = L̆1 + W̆1; (24)

Ω = AX + XAT + B1Y + Y T BT
1 + Q + (ε1 + ε2 + ε3 + ε4)M1M

T
1 , (25)

Ξ = GX + B2Y + (ε1 + ε2 + ε3 + ε4)M2M
T
1 , (26)

Υ = −X + (ε1 + ε2 + ε3 + ε4)M2M
T
2 . (27)

Proof: Consider the closed-loop system (Σc) with v(t) = 0. In order to analyze the stochastic stability,

we introduce the following Lyapunov-Krasovskii functional:

V0(t) = xT (t)Px(t) +

∫ t

t−τ(t)
xT (s)Q̂x(s)ds +

∫ t

t−τ0

(
∫ t

s
fT

d2
(x(θ))dθ

)

R

(
∫ t

s
fd2(x(θ))dθ

)

ds

+

∫ τ0

0

∫ t

t−s
(θ − t + s)fT

d2
(x(θ))Rfd2(x(θ))dθds,

where P = X−1 and Q̂ = X−1QX−1.

By Itô differential formula [12, 20], the stochastic differential of V0(t) along the trajectory of system (Σc)

with v(t) = 0 is given by

dV0(t) = LV0(t)dt + 2xT (t)P [GK(t)x(t) + Gd1(t)x(t − τ(t)) + Gd2(t)

∫ t

t−τ0

fd2(x(s))ds]dw(t),
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where

LV0(t) = 2xT (t)P
[

AK(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−τ0

fd2(x(s))ds
]

+ xT (t)Q̂x(t) − (1 − τ̇(t))xT (t − τ(t))Q̂x(t − τ(t))

−

[∫ t

t−τ0

fd2(x(θ))dθ

]T

R

[∫ t

t−τ0

fd2(x(θ))dθ

]

+ 2

∫ t

t−τ0

fT
d2

(x(t))R

[∫ t

s
fd2(x(θ))dθ

]

ds

+

∫ τ0

0
sfT

d2
(x(t))Rfd2(x(t))ds −

∫ τ0

0

∫ t

t−s
fT

d2
(x(θ))Rfd2(x(θ))dθds + ḠT

0 (t)PḠ0(t) (28)

where

Ḡ0(t) = GK(t)x(t) + Gd1(t)x(t − τ(t)) + Gd2(t)

∫ t

t−τ0

fd2(x(s))ds.

Some of the terms in (28) can be calculated as follows:

−(1 − τ̇(t))xT (t − τ(t))Q̂x(t − τ(t))

≤ −(1 − h)xT (t − τ(t))Q̂x(t − τ(t)); (29)

2

∫ t

t−τ0

fT
d2

(x(t))R

[∫ t

s
fd2(x(θ))dθ

]

ds

= 2

∫ t

t−τ0

dθ

∫ θ

t−τ0

fT
d2

(x(t))Rfd2(x(θ))ds

= 2

∫ t

t−τ0

(θ − t + τ0)f
T
d2

(x(t))Rfd2(x(θ))dθ (by Lemma 1)

≤

∫ t

t−τ0

(θ − t + τ0)
[

fT
d2

(x(t))Rfd2(x(t)) + fT
d2

(x(θ))Rfd2(x(θ))
]

dθ

=
τ2
0

2
fT

d2
(x(t))Rfd2(x(t)) +

∫ t

t−τ0

(θ − t + τ0)f
T
d2

(x(θ))Rfd2(x(θ))dθ; (30)

∫ τ0

0
sfT

d2
(x(t))Rfd2(x(t))ds

=
τ2
0

2
fT

d2
(x(t))Rfd2(x(t)); (31)

−

∫ τ0

0

∫ t

t−s
fT

d2
(x(θ))Rfd2(x(θ))dθds

= −

∫ t

t−τ0

∫ τ0

t−θ
fT

d2
(x(θ))Rfd2(x(θ))ds

= −

∫ t

t−τ0

(θ − t + τ0)f
T
d2

(x(θ))Rfd2(x(θ))dθ. (32)

Substituting (29)-(32) into (28) leads to

LV0(t) ≤ 2xT (t)P
[

AK(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−τ0

fd2(x(s))ds
]

+ xT (t)Q̂x(t) − (1 − h)xT (t − τ(t))Q̂x(t − τ(t))

−

[
∫ t

t−τ0

fd2(x(θ))dθ

]T

R

[
∫ t

t−τ0

fd2(x(θ))dθ

]

+ τ2
0 fT

d2
(x(t))Rfd2(x(t)) + ḠT

0 (t)PḠ0(t)

= ξT
0 (t)Ψ1(t)ξ0(t) + ξT

0 (t)ĜT
0 (t)PĜ0(t)ξ0(t), (33)
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where

Ĝ0(t) =
[

GK(t) Gd1(t) 0 0 0 Gd2(t)
]

ξ0(t) =
[

xT (t) xT (t − τ(t)) fT (x(t)) fT
d1

(x(t − τ(t))) fT
d2

(x(t))

∫ t

t−τ0

fT
d2

(x(s))ds
]T

Ψ1(t) =



















PAK(t) + AT
K(t)P + Q̂ PAd1(t) P P 0 PAd2(t)

AT
d1

(t)P −(1 − h)Q̂ 0 0 0 0

P 0 0 0 0 0

P 0 0 0 0 0

0 0 0 0 τ2
0 R 0

AT
d2

(t)P 0 0 0 0 −R



















.

Notice that (11) is equivalent to

[

x(t)

f(x(t))

]T
[

L̆1 L̆2

L̆T
2 I

]

[

x(t)

f(x(t))

]

≤ 0, (34)

where L̆1, L̆2 are defined in (21)

Similarly, it follows from (12)-(13) that

[

x(t − τ(t))

fd1(x(t − τ(t)))

]T
[

Ŭ1 Ŭ2

ŬT
2 I

]

[

x(t − τ(t))

fd1(x(t − τ(t)))

]

≤ 0, (35)

[

x(t − τ(t))

fd2(x(t))

]T
[

W̆1 W̆2

W̆ T
2 I

]

[

x(t − τ(t))

fd2(x(t))

]

≤ 0, (36)

where Ŭ1, Ŭ2, W̆1, W̆2 are defined in (22)-(23).

Now, from (34)-(36), we can have

LV0(t) ≤ LV0(t) −

{

[

x(t)

f(x(t))

]T
[

L̆1 L̆2

L̆T
2 I

]

[

x(t)

f(x(t))

]

+

[

x(t − τ(t))

fd1(x(t − τ(t)))

]T
[

Ŭ1 Ŭ2

ŬT
2 I

]

[

x(t − τ(t))

fd1(x(t − τ(t)))

]

+

[

x(t)

fd2(x(t))

]T
[

W̆1 W̆2

W̆ T
2 I

]

[

x(t)

fd2(x(t))

]

}

= ξT
0 (t)

[

Ψ2(t) + ĜT
0 (t)PĜ0(s)

]

ξ0(t), (37)

where

Ψ2(t) =



















Π1(t) PAd1(t) P − L2 P −W2 PAd2(t)

AT
d1

(t)P Θ1 0 −U2 0 0

P − LT
2 0 −I 0 0 0

P −UT
2 0 −I 0 0

−W T
2 0 0 0 τ2

0 R − I 0

AT
d2

(t)P 0 0 0 0 −R



















, (38)

and Π1(t) = PAK(t) + AT
K(t)P + Q̂ − L̆1 − W̆1,Θ1 = −(1 − h)Q̂ − Ŭ1.



REVISED 8

Recall that our goal is to show

Ψ2(t) + ĜT
0 (t)PĜ0(t) < 0. (39)

Notice that, by Lemma 2 (Schur Complement), (39) is equivalent to

Ψ3(t) < 0, (40)

where

Ψ3(t) =























Π1(t) PAd1(t) P − L2 P −W2 PAd2(t) GT
K(t)

AT
d1

(t)P Θ1 0 −U2 0 0 GT
d1

(t)

P − LT
2 0 −I 0 0 0 0

P −UT
2 0 −I 0 0 0

−W T
2 0 0 0 τ2

0 R − I 0 0

AT
d2

(t)P 0 0 0 0 −R GT
d2

(t)

GK(t) Gd1(t) 0 0 0 Gd2(t) −P−1























, (41)

and therefore it remains to show Ψ3(t) < 0, ∀t > 0.

Denote X̂0 = diag(X,X, I, I, I, I, I) and let

Ψ4(t) = X̂0Ψ3(t)X̂0

=























Π2(t) Ad1(t)X I − XL2 I −XW2 Ad2(t) XGT (t) + Y T BT
2 (t)

AT
d1

(t) Θ2 0 −XU2 0 0 XGT
d (t)

I − LT
2 X 0 −I 0 0 0 0

I −UT
2 X 0 −I 0 0 0

−W T
2 X 0 0 0 τ2

0 R − I 0 0

AT
d2

(t) 0 0 0 0 −R GT
d2

(t)

G(t)X + B2(t)Y Gd1(t)X 0 0 0 Gd2(t) −X























,(42)

where

Θ2 = −(1 − h)Q − XŬ1X, (43)

Π2(t) = AK(t)X + XAT
K(t) + Q + X[−L̆1 − W̆1]X

= A(t)X + B1(t)Y + XAT (t) + Y T BT
1 (t) + Q − XΛX, (44)

and Λ is defined in (24).

It then follows that

Ψ4(t) = Ψ5(t) + X̂T

[

−Λ 0

0 −Ŭ1

]

X̂, (45)

where

X̂ =

[

X 0 0 0 0 0 0

0 X 0 0 0 0 0

]

,

Ψ5(t) =























Π3(t) Ad1(t)X I − XL2 I −XW2 Ad2(t) XGT (t) + Y T BT
2 (t)

XAT
d1

(t) −(1 − h)Q 0 −XU2 0 0 XGT
d (t)

I − LT
2 X 0 −I 0 0 0 0

I −UT
2 X 0 −I 0 0 0

−W T
2 X 0 0 0 τ2

0 R − I 0 0

AT
d2

(t) 0 0 0 0 −R GT
d2

(t)

G(t)X + B2(t)Y Gd1(t)X 0 0 0 Gd2(t) −X























,

Π3(t) = A(t)X + B1(t)Y + XAT (t) + Y T BT
1 (t) + Q.
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It is obvious that Ψ3(t) < 0 is equivalent to Ψ4(t) < 0. Again, by Lemma 2 (Schur Complement), Ψ4(t) < 0

is equivalent to

Ψ5(t) < 0, (46)

where

Ψ5(t) =































Π3(t) Ad1
(t)X I − XL2 I −XW2 Ad2

(t) XGT (t) + Y T BT
2 (t) X 0

XAT

d1
(t) −(1 − h)Q 0 −XU2 0 0 XGT

d1
(t) 0 X

I − LT
2 X 0 −I 0 0 0 0 0 0

I −UT
2

X 0 −I 0 0 0 0 0

−WT
2

X 0 0 0 τ2

0
R − I 0 0 0 0

AT

d2
(t) 0 0 0 0 −R GT

d2
(t) 0 0

G(t)X + B2(t)Y Gd1
(t)X 0 0 0 Gd2

(t) −X 0 0
X 0 0 0 0 0 0 Λ−1 0

0 X 0 0 0 0 0 0 Ŭ−1

1































. (47)

It can be rewritten that

Ψ5(t) = Ψ5 + ∆Ψ5(t), (48)

with

Ψ5 =































Π3 Ad1X I − XL2 I −XW2 Ad2 XGT + Y T BT
2 X 0

XAT
d1

−(1 − h)Q 0 −XU2 0 0 XGT
d1

0 X

I − LT
2 X 0 −I 0 0 0 0 0 0

I −UT
2 X 0 −I 0 0 0 0 0

−W T
2 X 0 0 0 τ2

0 R − I 0 0 0 0

AT
d2

0 0 0 0 −R GT
d2

0 0

GX + B2Y Gd1X 0 0 0 Gd2 −X 0 0

X 0 0 0 0 0 0 Λ−1 0

0 X 0 0 0 0 0 0 Ŭ−1
1































, (49)

and

∆Ψ5(t)=































∆Π3(t) ∆Ad1(t)X 0 0 0 ∆Ad2(t) X∆GT (t) + Y T ∆BT
2 (t) 0 0

X∆AT
d1

(t) 0 0 0 0 0 X∆GT
d1

(t) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

∆AT
d2

(t) 0 0 0 0 0 ∆GT
d2

(t) 0 0

∆G(t)X + ∆B2(t)Y ∆Gd1(t)X 0 0 0 ∆Gd2(t) 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0































, (50)

where

Π3 = AX + XAT + B1Y + Y T BT
1 + Q, (51)

∆Π3(t) = ∆A(t)X + ∆B1(t)Y + X∆AT (t) + Y T ∆BT
1 (t). (52)
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It is now clear that

∆Ψ5(t) =
[

∆AT (t) 0 0 0 0 0 ∆GT (t) 0 0
]T

X̂1

+ X̂T
1

[

∆AT (t) 0 0 0 0 0 ∆GT (t) 0 0
]

+
[

∆BT
1 (t) 0 0 0 0 0 ∆B2

T (t) 0 0
]T

Ŷ1

+ Ŷ T
1

[

∆BT
1 (t) 0 0 0 0 0 ∆BT

2 (t) 0 0
]

+
[

∆AT
d1

(t) 0 0 0 0 0 ∆GT
d1

(t) 0 0
]T

X̂2

+ X̂T
2

[

∆AT
d1

(t) 0 0 0 0 0 ∆GT
d1

(t) 0 0
]

+
[

∆AT
d2

(t) 0 0 0 0 0 ∆GT
d2

(t) 0 0
]T

Î1

+ ÎT
1

[

∆AT
d2

(t) 0 0 0 0 0 ∆GT
d2

(t) 0 0
]

, (53)

where

X̂1 =
[

X 0 0 0 0 0 0 0 0
]

,

X̂2 =
[

0 X 0 0 0 0 0 0 0
]

,

Ŷ1 =
[

Y 0 0 0 0 0 0 0 0
]

,

Î1 =
[

0 0 0 0 0 I 0 0 0
]

.

Letting

M̂ =
[

MT
1 0 0 0 0 0 MT

2 0 0
]T

,

N̂4 =
[

0 0 0 0 N4 0 0 0 0
]

,

we have from (9) and Lemma 1 that

∆Ψ5(t) =
[

MT
1 0 0 0 0 0 MT

2 0 0
]T

F (t)N1X̂1

+ X̂T
1 NT

1 F T (t)
[

MT
1 0 0 0 0 0 MT

2 0 0
]

+
[

MT
1 0 0 0 0 0 MT

2 0 0
]T

F (t)N2Ŷ1

+ Ŷ T
1 NT

2 F T (t)
[

MT
1 0 0 0 0 0 MT

2 0 0
]

+
[

MT
1 0 0 0 0 0 MT

2 0 0
]T

F (t)N3X̂2

+ X̂T
2 NT

3 F T (t)
[

MT
1 0 0 0 0 0 MT

2 0 0
]

+
[

MT
1 0 0 0 0 0 MT

2 0 0
]T

F (t)N̂4

+ N̂T
4 F T (t)

[

MT
1 0 0 0 0 0 MT

2 0 0
]

≤ ε−1
1 X̂T

1 NT
1 N1X̂1 + ε−1

2 Ŷ T
1 NT

2 N2Ŷ1 + ε−1
3 X̂T

2 NT
3 N3X̂2 + ε−1

4 N̂T
4 N̂4

+ (ε1 + ε2 + ε3 + ε4)M̂M̂T . (54)

Hence, from (48), (49) and (54), it follows that:

Ψ5(t) ≤ Ψ6 + ε−1
1 X̂T

1 NT
1 N1X̂1 + ε−1

2 Ŷ T
1 NT

2 N2Ŷ1 + ε−1
3 X̂T

2 NT
3 N3X̂2 + ε−1

4 N̂T
4 N̂4, (55)
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where

Ψ6 =































Ω Ad1X I − XL2 I −XW2 Ad2 ΞT X 0

XAT
d1

−(1 − h)Q 0 −XU2 0 0 XGT
d1

0 X

I − LT
2 X 0 −I 0 0 0 0 0 0

I −UT
2 X 0 −I 0 0 0 0 0

−W T
2 X 0 0 0 τ2

0 R − I 0 0 0 0

AT
d2

0 0 0 0 −R GT
d2

0 0

Ξ Gd1X 0 0 0 Gd2 Υ 0 0

X 0 0 0 0 0 0 Λ−1 0

0 X 0 0 0 0 0 0 Ŭ−1
1































, (56)

and Ω,Ξ and Υ are defined in (25)-(27), respectively.

From Lemma 2 (Schur Complement), one can infer that Ψ < 0 is equivalent to that the right hand side of

(55) is negative definite. We now arrive at

Ψ3(t) < 0, (57)

and it then follows from [11,12] that the proof of this theorem is complete.

Next, let us further consider the H∞ performance of the closed-loop system (Σc).

Theorem 2: Let the controller gain K be given and γ > 0 be a given positive constant. Then, under the

admissible conditions, the closed-loop system (Σc) is robustly mean-square asymptotically stable for v(t) = 0

and satisfies ‖y‖E2 ≤ γ‖v‖E2 for any nonzero v(·) ∈ LE2([0,+∞); Rn×m) under the zero initial condition, if

there exist three positive definite matrices X,Q,R and five positive constants ε1, ε2, ε3, ε4 and ε5 such that

the following LMI holds:

Φ0 < 0, (58)
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where

Φ0 =



























































Ω0 Ad1
X I − XL2 I −XW2 Ad2

D1 ΞT
0

⋆ −(1 − h)Q 0 −XU2 0 0 0 XGT

d1

⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ −I 0 0 0 0
⋆ ⋆ ⋆ ⋆ τ2

0
R − I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −R 0 GT

d2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −γ2I DT
2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Υ0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

X 0 XCT + Y T BT XNT
1 Y T NT

2 0 0 0
0 X 0 0 0 XNT

3
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 NT
4 0

0 0 0 0 0 0 0 NT
5

0 0 0 0 0 0 0 0

Λ−1 0 0 0 0 0 0 0

⋆ Ŭ−1

1
0 0 0 0 0 0

⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ −ε1I 0 0 0 0
⋆ ⋆ ⋆ ⋆ −ε2I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −ε3I 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε4I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε5I



























































(59)

and L̆1, L̆2, Ŭ1, Ŭ2, W̆1, W̆2 and Y are defined as in Theorem 1, and

Ω0 = AX + XAT + B1Y + Y T BT
1 + Q + (ε1 + ε2 + ε3 + ε4 + ε5)M1M

T
1 ,

Ξ0 = GX + B2Y + (ε1 + ε2 + ε3 + ε4 + ε5)M2M
T
1 ,

Υ0 = −X + (ε1 + ε2 + ε3 + ε4 + ε5)M2M
T
2

Proof: First it is easy to see that Φ0 < 0 implies that Ψ < 0 where Ψ is defined in (20). Therefore, by

Theorem 1, the closed-loop system (Σc) with v(t) = 0 is robustly asymptotically stable in the mean square.

Next, we need to establish H∞ performance of the closed-loop system (17)-(19) under zero initial condition,

i.e., show that the closed-loop system with zero condition satisfies ‖y(t)‖E2 ≤ γ‖v‖E2 for nonzero v(t).

Define the following Lyapunov candidate for system (Σc):

V (t) = xT (t)Px(t) +

∫ t

t−τ(t)
xT (s)Q̂x(s)ds +

∫ t

t−τ0

(∫ t

s
fT

d2
(s(θ))dθ

)

R

(∫ t

s
fd2(x(θ))dθ

)

ds

+

∫ τ0

0

∫ t

t−s
(θ − t + s)fT

d2
(x(θ))Rfd2(x(θ))dθds, (60)

where P = X−1 and Q̂ = X−1QX−1.
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By Itô differential formula, the stochastic differential of V (t) along the trajectory of system (Σe) is given

by

dV (t) = LV (t)dt + 2xT (t)P [GK(t)x(t) + Gd1(t)x(t − τ(t)) + Gd2(t)

∫ t

t−τ0

fd2(x(s))ds + D2(t)v(t)]dw(t), (61)

where

LV (t) = 2xT (t)P
[

AK(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−τ0

fd2(x(s))ds

+ B1(t)u(t) + D1(t)v(t)
]

+ xT (t)Q̂x(t) − (1 − τ̇(t))xT (t − τ(t))Q̂x(t − τ(t))

−

[∫ t

t−τ0

fd2(x(θ))dθ

]T

R

[∫ t

t−τ0

fd2(x(θ))dθ

]

+ 2

∫ t

t−τ0

fT
d2

(x(t))R

[∫ t

s
fd2(x(θ))dθ

]

ds

+

∫ τ0

0
sfT

d2
(x(t))Rfd2(x(t))ds −

∫ τ0

0

∫ t

t−s
fT

d2
(x(θ))Rfd2(x(θ))dθds + ḠT (t)PḠ(t) (62)

and

Ḡ(t) = GK(t)x(t) + Gd1(t)x(t − τ(t)) + Gd2(t)

∫ t

t−τ0

fd2(x(s))ds + D2(t)v(t). (63)

Along the same line as in the proof of the Theorem 1, one can obtain

LV (t) ≤ 2xT (t)P
[

AK(t)x(t) + Ad1(t)x(t − τ(t)) + f(x(t)) + fd1(x(t − τ(t))) + Ad2(t)

∫ t

t−t0

fd2(x(s))ds

+ B1(t)u(t) + D1(t)v(t)
]

+ xT (t)Q̂x(t) − (1 − h)xT (t − τ(t))Q̂x(t − τ(t))

−

[
∫ t

t−τ0

fd2(x(θ))dθ

]T

R

[
∫ t

t−τ0

fd2(x(θ))dθ

]

+ τ2
0 fT

d2
(x(t))Rfd2(x(t)) + ḠT (t)PḠ(t)

= ξT (t)Φ1(t)ξ(t) + ξT (t)ĜT (t)PĜ(t)ξ(t), (64)

where

Ĝ(t) =
[

GK(t) Gd1(t) 0 0 0 Gd2(t) D2(t)
]

ξ(t) =
[

xT (t) xT (t − τ(t)) fT (x(t)) fT
d1

(x(t − τ(t))) fT
d2

(x(t))

∫ t

t−τ0

fT
d2

(x(s))ds vT (t)
]T

Φ1(t) =























PAK(t) + AT
K(t)P + Q̂ PAd1(t) P P 0 PAd2(t) PD1(t)

AT
d1

(t)P −(1 − h)Q̂ 0 0 0 0 0

P 0 0 0 0 0 0

P 0 0 0 0 0 0

0 0 0 0 τ2
0 R 0 0

AT
d2

(t)P 0 0 0 0 −R 0

DT
1 (t)P 0 0 0 0 0 0























.

In order to establish the H∞ performance of the closed-loop system under the zero initial condition, we

introduce

J(t) = E

∫ t

0
[zT (s)z(s) − γ2vT (s)v(s)]ds (65)

where t > 0.
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Our goal is to show J(t) < 0. Based on the zero initial condition and EV (t) ≥ 0, it can be shown that for

any nonzero v(t) ∈ LE2([0,+∞); Rp) and t > 0, the following holds

J(t) = E

∫ t

0

[

zT (s)z(s) − γ2vT (s)v(s) + LV (s)
]

ds − EV (t)

≤ E

∫ t

0

[

xT (s)CT
KCKx(s) − γ2vT (s)v(s) + LV (s)

]

ds.

= E

∫ t

0
ξT (s)Φ2(t)ξ(s) + ξT (s)ĜT (s)PĜ(s)ξ(s)

]

ds, (66)

where

Φ2(t) =























PAK(t) + AT
K(t)P + Q̂ + CT

KCK PAd1(t) P P 0 PAd2(t) PD1(t)

AT
d1

(t)P −(1 − h)Q̂ 0 0 0 0 0

P 0 0 0 0 0 0

P 0 0 0 0 0 0

0 0 0 0 τ2
0 R 0 0

AT
d2

(t)P 0 0 0 0 −R 0

DT
1 (t)P 0 0 0 0 0 −γ2I























. (67)

It follows from (34)-(36) that

J(t) ≤ J(t) − E

∫ t

0

{

[

x(s)

f(x(s))

]T
[

L̆1 L̆2

L̆T
2 I

]

[

x(s)

f(x(s))

]

+

[

x(s − τ(s))

fd1(x(s − τ(s)))

]T
[

Ŭ1 Ŭ2

ŬT
2 I

]

[

x(s − τ(s))

fd1(x(s − τ(s)))

]

+

[

x(s)

fd2(x(s))

]T
[

W̆1 W̆2

W̆ T
2 I

]

[

x(s)

fd2(x(s))

]

}

ds

= E

∫ t

0
ξT (s)

[

Φ3(s) + ĜT (s)PĜ(s)

]

ξ(s)ds, (68)

where

Φ3(t) =























Ω1(t) PAd1(t) P − L2 P −W2 PAd2(t) PD1(t)

AT
d1

(t)P Γ1 0 −U2 0 0 0

P − LT
2 0 −I 0 0 0 0

P −UT
2 0 −I 0 0 0

−W T
2 0 0 0 τ2

0 R − I 0 0

AT
d2

(t)P 0 0 0 0 −R 0

DT
1 (t)P 0 0 0 0 0 −γ2I























, (69)

and Ω1(t) = PAK(t) + AT
K(t)P + Q̂ + CT

KCK − L̆1 − W̆1,Γ1 = −(1 − h)Q̂ − Ŭ1.

In order to guarantee J(t) < 0, it suffices to show

Φ3(s) + ĜT (s)PĜ(s) < 0. (70)

It is noticed from Lemma 2 (Schur Complement) that (70) is equivalent to

Φ4(t) < 0, (71)



REVISED 15

where

Φ4(t) =



























Ω1(t) PAd1(t) P − L2 P −W2 PAd2(t) PD1(t) GT
K(t)

AT
d1

(t)P Γ1 0 −U2 0 0 0 GT
d1

(t)

P − LT
2 0 −I 0 0 0 0 0

P −UT
2 0 −I 0 0 0 0

−W T
2 0 0 0 τ2

0 R − I 0 0 0

AT
d2

(t)P 0 0 0 0 −R 0 GT
d2

(t)

DT
1 (t)P 0 0 0 0 0 −γ2I DT

2 (t)

GK(t) Gd1(t) 0 0 0 Gd2(t) D2(t) −P−1



























. (72)

Therefore, we just need to show that Φ4(t) < 0, ∀t > 0.
Denote X̄ = diag(X,X, I, I, I, I, I, I), and let

Φ5(t) = X̄Φ4(t)X̄

=

























Ω2(t) Ad1
(t)X I − XL2 I −XW2 Ad2

(t) D1(t) XGT (t) + Y T BT
2

(t)

AT

d1
(t) Γ2 0 −XU2 0 0 0 XGT

d
(t)

I − LT
2 X 0 −I 0 0 0 0 0

I −UT
2 X 0 −I 0 0 0 0

−WT
2

X 0 0 0 τ2

0
R − I 0 0 0

AT

d2
(t) 0 0 0 0 −R 0 GT

d2
(t)

DT
1
(t) 0 0 0 0 0 −γ2I DT

2
(t)

G(t)X + B2(t)Y Gd1
(t)X 0 0 0 Gd2

(t) D2(t) −X

























,

where

Γ2 = −(1 − h)Q − XŬ1X,

Ω2(t) = AK(t)X + XAT
K(t) + Q + X[CT

KCK − L̆1 − W̆1]X

= A(t)X + B1(t)Y + XAT (t) + Y T BT
1 (t) + Q − XΛX + XCT

KCKX.

Obviously, Φ4 < 0 is equivalent to Φ5 < 0, and we can write

Φ5(t) = Φ6(t) + X̃T

[

−Λ 0

0 −Ŭ1

]

X̃ + X̄T
1 CT

KCKX̄1,

where

X̄0 =
[

X 0 0 0 0 0 0 0
]

,

X̃ =

[

X 0 0 0 0 0 0 0
0 X 0 0 0 0 0 0

]

,

Φ6(t)=

























Ω3(t) Ad1
(t)X I − XL2 I −XW2 Ad2

(t) D1(t) XGT (t) + Y T BT
2

(t)

XAT

d1
(t) −(1 − h)Q 0 −XU2 0 0 0 XGT

d
(t)

I − LT
2
X 0 −I 0 0 0 0 0

I −UT
2 X 0 −I 0 0 0 0

−WT
2

X 0 0 0 τ2

0
R − I 0 0 0

AT

d2
(t) 0 0 0 0 −R 0 GT

d2
(t)

DT
1
(t) 0 0 0 0 0 −γ2I ET (t)

G(t)X + B2(t)Y Gd1
(t)X 0 0 0 Gd2

(t) D2(t) −X

























,

Ω3(t)=A(t)X + B1(t)Y + XAT (t) + Y T BT

1
(t) + Q.

By Lemma 2 (Schur Complement), Φ5(t) < 0 is equivalent to

Φ7(t) < 0,
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where

Φ7(t) =

266666666666666666664
Ω3(t) Ad1

(t)X I − XL2 I −XW2 Ad2
(t) D1(t) XGT (t) + Y T BT

2
(t) X 0 XCT + Y T BT

XAT

d1
(t) −(1 − h)Q 0 −XU2 0 0 0 XGT

d1
(t) 0 X 0

I − LT

2
X 0 −I 0 0 0 0 0 0 0 0

I −UT

2
X 0 −I 0 0 0 0 0 0 0

−W T

2
X 0 0 0 τ2

0
R − I 0 0 0 0 0 0

AT

d2
(t) 0 0 0 0 −R 0 GT

d2
(t) 0 0 0

DT

1
(t) 0 0 0 0 0 −γ2I DT

2
(t) 0 0 0

G(t)X + B2(t)Y Gd1
(t)X 0 0 0 Gd2

(t) D2(t) −X 0 0 0

X 0 0 0 0 0 0 0 Λ−1 0 0

0 X 0 0 0 0 0 0 0 Ŭ
−1

1
0

CX + BY 0 0 0 0 0 0 0 0 0 −I

377777777777777777775
Now, we can decompose Φ7(t) as

Φ7(t) = Φ7 + ∆Φ7(t). (73)

Here

Φ7 =

266666666666666666664
Ω3 Ad1

X I − XL2 I −XW2 Ad2
D1 XGT + Y T BT

2
X 0 XCT + Y T BT

XAT

d1
−(1 − h)Q 0 −XU2 0 0 0 XGT

d1
0 X 0

I − LT

2
X 0 −I 0 0 0 0 0 0 0 0

I −UT

2
X 0 −I 0 0 0 0 0 0 0

−W T

2
X 0 0 0 τ2

0
R − I 0 0 0 0 0 0

AT

d2
0 0 0 0 −R 0 GT

d2
0 0 0

DT

1
0 0 0 0 0 −γ2I DT

2
0 0 0

GX + B2Y Gd1
X 0 0 0 Gd2

D2 −X 0 0 0

X 0 0 0 0 0 0 0 Λ−1 0 0

0 X 0 0 0 0 0 0 0 Ŭ
−1

1
0

CX + BY 0 0 0 0 0 0 0 0 0 −I

377777777777777777775
and

∆Φ7(t)=







































∆Ω3(t) ∆Ad1
(t)X 0 0 0 ∆Ad2

(t) ∆D1(t) X∆GT (t) + Y T ∆BT
2 (t) 0 0 0

X∆AT

d1
(t) 0 0 0 0 0 0 X∆GT

d1
(t) 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

∆AT

d2
(t) 0 0 0 0 0 0 ∆GT

d2
(t) 0 0 0

∆DT
1
(t) 0 0 0 0 0 0 ∆DT

2
(t) 0 0 0

∆G(t)X + ∆B2(t)Y ∆Gd1
(t)X 0 0 0 ∆Gd2

(t) ∆D2(t) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0







































,

where

Ω3 = AX + XAT + B1Y + Y T BT
1 + Q,

∆Ω3(t) = ∆A(t)X + ∆B1(t)Y + X∆AT (t) + Y T ∆BT
1 (t).
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It is easy to see that

∆Φ7(t) =
[

∆AT (t) 0 0 0 0 0 0 ∆GT (t) 0 0 0
]T

X̄1

+ X̄T
1

[

∆AT (t) 0 0 0 0 0 0 ∆GT (t) 0 0 0
]

+
[

∆BT
1 (t) 0 0 0 0 0 0 ∆B2

T (t) 0 0 0
]T

Ȳ1

+ Ȳ T
1

[

∆BT
1 (t) 0 0 0 0 0 0 ∆BT

2 (t) 0 0 0
]

+
[

∆AT
d1

(t) 0 0 0 0 0 0 ∆GT
d1

(t) 0 0 0
]T

X̄2

+ X̄T
2

[

∆AT
d1

(t) 0 0 0 0 0 0 ∆GT
d1

(t) 0 0 0
]

+
[

∆AT
d2

(t) 0 0 0 0 0 0 ∆GT
d2

(t) 0 0 0
]T

Ī1

+ ĪT
1

[

∆AT
d2

(t) 0 0 0 0 0 0 ∆GT
d2

(t) 0 0 0
]

+
[

∆DT
1 (t) 0 0 0 0 0 0 ∆DT

2 (t) 0 0 0
]T

Ī2

+ ĪT
2

[

∆DT
1 (t) 0 0 0 0 0 0 ∆DT

2 (t) 0 0 0
]

,

where

X̄1 =
[

X 0 0 0 0 0 0 0 0 0 0
]

,

X̄2 =
[

0 X 0 0 0 0 0 0 0 0 0
]

,

Ȳ1 =
[

Y 0 0 0 0 0 0 0 0 0 0
]

,

Ī1 =
[

0 0 0 0 0 I 0 0 0 0 0
]

,

Ī2 =
[

0 0 0 0 0 0 I 0 0 0 0
]

.

Similar to the derivation in the proof of Theorem 1, it can be inferred that

∆Φ7(t) ≤ ε−1
1 X̄T

1 NT
1 N1X̄1 + ε−1

2 Ȳ T
1 NT

2 N2Ȳ1 + ε−1
3 X̄T

2 NT
3 N3X̄2 + ε−1

4 N̄T
4 N̄4

+ ε−1
5 N̄T

4 N̄5 + (ε1 + ε2 + ε3 + ε4 + ε5)M̄M̄T ,

where

M̄ =
[

MT
1 0 0 0 0 0 0 MT

2 0 0 0
]T

,

N̄4 =
[

0 0 0 0 0 N4 0 0 0 0 0
]

,

N̄5 =
[

0 0 0 0 0 0 N5 0 0 0 0
]

.

Hence, from (73)-(74), it follows that:

Φ7(t) ≤ Φ8 + ε−1
1 X̄T

1 NT
1 N1X̄1 + ε−1

2 Ȳ T
1 NT

2 N2Ȳ1 + ε−1
3 X̄T

2 NT
3 N3X̄2 + ε−1

4 N̄T
4 N̄4 + ε−1

5 N̄T
5 N̄5, (74)
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where

Φ8 =







































Ω Ad1
X I − XL2 I −XW2 Ad2

D1 ΞT X 0 XCT + Y T BT

XAT

d1
−(1 − h)Q 0 −XU2 0 0 0 XGT

d1
0 X 0

I − LT
2
X 0 −I 0 0 0 0 0 0 0 0

I −UT
2 X 0 −I 0 0 0 0 0 0 0

−WT
2

X 0 0 0 τ2

0
R − I 0 0 0 0 0 0

AT

d2
0 0 0 0 −R 0 GT

d2
0 0 0

DT
1

0 0 0 0 0 −γ2I DT
2

0 0 0

Ξ Gd1
X 0 0 0 Gd2

D2 Υ 0 0 0

X 0 0 0 0 0 0 0 Λ−1 0 0

0 X 0 0 0 0 0 0 0 Ŭ−1

1
0

CX + BY 0 0 0 0 0 0 0 0 0 −I







































.

From Lemma 2 (Schur Complement), we know that Φ0 < 0 is equivalent to that the right hand side of (74)

is negative definite. To this end, we can conclude that

Φ4(t) < 0,

which implies

J(t) ≤ 0, ∀t > 0.

Letting t → +∞, we obtain

‖y‖E2 ≤ γ‖v‖E2.

This completes the proof of this theorem.

By now, we have established the conditions under which the closed-loop system is robustly asymptotically

stable in the mean square and also the H∞ performance requirement is satisfied. We are now ready to deal

with the design problem of the H∞ controller for the system (Σ′.) The following result can be easily accessible

from Theorem 2, hence the proof is omitted.

Theorem 3: Let γ be a given positive constant. Suppose that the admissible conditions hold. Then , for

the nonlinear Itô stochastic system (Σ′), a state feedback controller can be designed such that the closed-loop

system (Σc) is robustly mean-square asymptotically stable with disturbance attenuation γ if there exist four

definite matrices X > 0, Q > 0, R > 0 and Y, and five positive constants ε1, ε2, ε3, ε4 and ε5 such that the

following LMI holds:

Φ < 0,
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where

Φ =



























































Ω0 Ad1
X I − XL2 I −XW2 Ad2

D1 ΞT
0

⋆ −(1 − h)Q 0 −XU2 0 0 0 XGT

d1

⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ −I 0 0 0 0
⋆ ⋆ ⋆ ⋆ τ2

0
R − I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −R 0 GT

d2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −γ2I DT
2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Υ0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

X 0 XCT + Y T BT XNT
1 Y T NT

2 0 0 0
0 X 0 0 0 XNT

3
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 NT
4 0

0 0 0 0 0 0 0 NT
5

0 0 0 0 0 0 0 0

Λ−1 0 0 0 0 0 0 0

⋆ Ŭ−1

1
0 0 0 0 0 0

⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ −ε1I 0 0 0 0
⋆ ⋆ ⋆ ⋆ −ε2I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −ε3I 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε4I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −ε5I



























































(75)

and L̆1, L̆2, Ŭ1, Ŭ2, W̆1, W̆2,Λ0,Ω0,Ξ0 and Υ are defined as in Theorem 2. Moreover, the state feedback gain

matrix can be designed as

K = Y X−1.

Remark 4: The robust H∞ controller design problem is solved in Theorem 3 for the addressed uncertain

nonlinear stochastic time-delay systems with time-varying norm-bounded parameter uncertainties appearing

in both the state and input matrices. Note that the time delays considered include both the discrete- and

distributed-type delays. In [11], the first order approximation methodologies have been used to deal with func-

tional differential delayed equations. Different from the method used in [11], in this paper, a computationally

efficient LMI approach is developed to derive the sufficient condition for the existence of state feedback con-

trollers that ensure the mean-square asymptotic stability of the resulting closed-loop system and reduce the

effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties.

Remark 5: It should be pointed out that the main results are dependent on the distributed delay as well as

the upper bound of the derivative of the time-varying delay. The feasibility of the controller design problem

can be readily checked by the solvability of an LMI, which can be done by resorting to the Matlab LMI toolbox.

In next section, an illustrative example will be provided to show the potential of the proposed techniques.
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IV. Numerical Example

In this section, a numerical example is presented to demonstrate the effectiveness of the developed method

on the design of robust H∞ control for the uncertain nonlinear Itô stochastic systems with mixed time delays.

Consider the system (Σ′) with the following parameters:

A =





−4.5 1.1 0.7

−0.3 −4.5 0.5

0 0.6 0



 , Ad1 =





1.2 −0.5 0.7

0.3 −1.2 0.4

−0.5 −1.2 −0.3



 , Ad2 =





0.6 0.3 0.4

−0.4 −0.5 0.4

−0.5 0.8 −0.6



 ,

G =





−0.4 0.5 0.6

−0.5 0.7 0.6

−0.5 −0.6 0.8



 , Gd1 =





−0.9 0.4 0.6

−0.5 0.6 0.4

0.7 −0.6 0.7



 , Gd2 =





0.7 0.2 −0.4

0.6 −0.5 0.4

−0.6 −0.7 −0.6



 ,

C =





−0.2 −0.3 0.2

−0.2 −0.1 0.2

−0.3 0.2 −0.1



 , B =





0.4 0.1

−0.2 0.3

−0.2 −0.1



 , B1 =





1 0.2

0.2 0.1

0.3 −6



 , B2 =





0.2 0.1

0.2 0.4

0.3 −0.2



 ,

D1 =





−0.7 0.6

−0.4 0.5

0.8 0.2



 , D2 =





−0.2 0.4

0.6 0.2

0.2 0.3



 , M1 =





−0.2

0.3

0.2



 , M2 =





0.1

0.2

0.1



 , N1 =





0.2

0.1

0.1





T

,

N2 =

[

0.1

0.2

]

, N3 =





0.2

0.2

0.1



 , N4 =





0.1

0.1

0.2



 , N5 =

[

0.1

0.1

]

, τ0 = 0.2,

f(x) = fd1(x) = fd2(x) =





0.5x1 − 0.2x2 + 0.1x3 + 0.2x1 sin x2

−0.2x1 + 0.5x2 + 0.1x3 + 0.2x3 sin x2

0.1x1 + 0.1x20.4x3 + 0.2x2 sin x3



 .

It is easy to check that the open-loop system matrix A is unstable, and it can also be verified that

L1 = U1 = W1 =





0.6 −0.2 0.1

−0.1 0.5 0.1

0.1 0.1 0.4



 , L2 = U2 = W2 =





−0.4 0.2 −0.1

0.3 −0.5 −0.1

−0.1 −0.1 −0.4



 .

Furthermore, the H∞ performance level is taken as γ = 0.9. With the above parameters and by using the

Matlab LMI Toolbox, we solve the LMI (75) and obtain

X =





2.6182 1.5805 0.2069

1.5805 4.9573 −1.2649

0.2069 −1.2649 4.9807



 , Q =





7.6300 1.5068 3.6396

1.5068 12.7325 −13.1956

3.6396 −13.1956 77.2616



 ,

R =





12.0836 −3.5690 0.0917

−3.5690 12.0813 0.0950

0.0917 0.0950 15.4713



 , Y =

[

−2.6066 0.6721 −11.9963

0.4532 1.4437 26.0484

]

,

ε1 = 6.8742, ε2 = 6.7686, ε3 = 7.3258, ε4 = 4.9824, ε5 = 9.4372.

Therefore, the state feedback gain matrix can be designed as

K = Y X−1 =

[

−0.6252 −0.2920 −2.4568

−1.7045 2.3388 5.8947

]

.

V. Conclusions

In this paper, we have studied the robust H∞ control problem for a class of uncertain continuous-time

Itô-type stochastic systems involving sector nonlinearities and mixed time delays. An effective linear matrix
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inequality (LMI) approach has been proposed to design the state feedback controllers such that, for all

admissible nonlinearities and time-delays, the overall uncertain closed-loop system is robustly asymptotically

stable in the mean square and a prescribed H∞ disturbance rejection attenuation level is guaranteed. We

have first investigated the sufficient conditions for the uncertain nonlinear stochastic time-delay systems to be

stable in the mean square, and then derived the explicit expression of the desired controller gains. A numerical

example has been provided to show the usefulness and effectiveness of the proposed design method.
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