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Abstract

In this paper, the problem of stability analysis for a class of impulsive stochastic Cohen-Grossberg neural networks

with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays.

By employing a combination of the M -matrix theory and stochastic analysis technique, a sufficient condition is obtained

to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive

stochastic Cohen-Grossberg neural network with mixed delays. The proposed method, which does not make use of the

Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural

networks with variable and/or distributed delays. We then extend our main results to the case where the parameters

contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the

system parameters. An example is given to show the effectiveness of the obtained results.
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I. Introduction

The Cohen-Grossberg neural network model, first proposed and studied by Cohen and Grossberg in 1983

[1], has attracted considerable attention due to its potential applications in classification, parallel computing,

associative memory, signal and image processing, especially in solving some difficult optimization problems.

In such applications, it is of prime importance to ensure that the designed neural networks be stable [2]. In

practice, due to the finite speeds of the switching and transmission of signals, time delays do exist in a working

network and thus should be incorporated into the model equation [3, 26, 27]. In recent years, the dynamical

behaviors of Cohen-Grossberg neural networks with constant delays or time-varying delays or distributed

delays have been studied, see for example [3–13] and the references therein.

Impulsive effect is likely to exist in a wide variety of evolutionary processes in which states are changed

abruptly at certain moments of time in the fields such as medicine and biology, economics, electronics and

telecommunications. Neural networks, which include Hopfield neural networks, cellular neural networks and

Cohen-Grossberg neural networks, are often subject to impulsive perturbations that in turn affect dynamical
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behaviors of the systems. Therefore, it is necessary to consider both the impulsive effect and delay effect when

investigating the stability of neural networks [14]. So far, several interesting results have been reported that

have focused on the impulsive effect of delayed neural networks, see [14–20] for some recent publications.

In addition to the delay and impulsive effects, stochastic effects constitute another source of disturbances

or uncertainties in real systems [21, 31, 32]. A lot of dynamical systems have variable structures subject to

stochastic abrupt changes, which may result from abrupt phenomena such as stochastic failures and repairs of

the components, changes in the interconnections of subsystems or sudden environment switching [22]. There-

fore, stochastic perturbations should be taken into account when modeling neural networks. In recent years,

the dynamic analysis of stochastic systems (including neural networks) with delays has been an attractive

topic for many researchers, and a large number of stability criteria of these systems have been reported, see

e.g. [21–25,28–30,33,34] and the references therein. In particular, in [21,22], the authors have considered the

exponential p-stability of impulsive stochastic differential equations with constant delays and obtained several

stability conditions for checking the exponential p-stability. In [24,25,28,29,33,34], the stability of stochastic

neural networks with constant or time-varying delay or bounded distributed delays have been considered and

many interesting results have been established by employing a Lyapunov functional approach. To the best

of our knowledge, so far, few authors have considered the problem of stability analysis for Cohen-Grossberg

neural networks with both time-varying and infinite distributed delays in the simultaneous presence of the

impulsive and stochastic effects.

Since both the impulsive and stochastic effects exist in the model, it becomes mathematically complicate to

investigate the stability of impulsive stochastic Cohen-Grossberg neural networks with both time-varying and

infinite distributed delays. Many existing stability criteria for impulsive Cohen-Grossberg neural networks

[20] and stochastic Cohen-Grossberg neural networks [24,29] may be difficult to be applied or even ineffective

in dealing with the addressed impulsive stochastic Cohen-Grossberg neural networks. In this case, new

techniques will have to be developed. In this paper, we present a novel approach that employs a combination

of the M -matrix theory and stochastic analysis technique. Using this approach, we give a sufficient condition

ensuring the existence, uniqueness, and exponential p-stability of equilibrium point for impulsive stochastic

Cohen-Grossberg neural networks with time-varying delays and infinite distributed delays. We then extend

our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential

convergence rate index is estimated which depends on the system parameters, and an example is given to

show the effectiveness of the obtained results.

II. Model description and preliminaries

In this paper, we consider the following model




dui(t) = −ai(ui(t))
[
bi(ui(t)) −

n∑
j=1

cijgj(uj(t)) −
n∑

j=1
dijfj(uj(t− τij(t)))

−
n∑

j=1
vij

∫ t
−∞

Kij(t− s)hj(uj(s))ds + Ii

]
dt

+
n∑

j=1
σij(uj(t), uj(t− τij(t)))dωj(t), t 6= tk,

∆ui(tk) = Jk(ui(t
−
k ))

(1)

for i = 1, 2, · · · , n and k = 1, 2, · · · , where n corresponds to the number of units in the neural network; ui(t)

corresponds to the state of the ith unit at time t. The first part is the continuous part of model (1), which

describes the continuous evolution processes of the neural network, where gj , fj and hj denote the activation
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functions; τij(t) corresponds to the transmission delay along the axon of the jth unit from the ith unit and

satisfies 0 ≤ τij(t) ≤ τij (τij is a constant); ai(ui(t)) represents an amplification function at time t; bi(ui(t)) is

an appropriately behaved function at time t such that the solutions of model (1) remain bounded; C = (cij)n×n,

D = (dij)n×n and V = (vij)n×n are connection matrices; Kij is the delay kernel function; Ii is the constant

input from outside of the network; σij(uj(t), uj(t− τij(t))) is the diffusion coefficient, σi = (σi1, σi2, · · · , σin);

ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T is an n-dimensional Brownian motion defined on a complete probability space

(Ω, F, {Ft}t≥0, P ) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0

contains all P -null sets). The second part is the discrete part of model (1), which describes that the evolution

processes experience abrupt change of state at the moments of time tk (called impulsive moments), where

∆ui(tk) = ui(t
+
k ) − ui(t

−
k ) is the impulses at moment tk, the fixed moments of time tk satisfy t1 < t2 < · · · ,

limk→+∞ tk = +∞ and min
2≤k<∞

{tk − tk−1} > max
1≤i,j≤n

{τij}.

Remark 1. Model (1) includes the following impulsive Cohen-Grossberg neural network model as a special

case: 



dui(t)
dt = −ai(ui(t))

[
bi(ui(t)) −

n∑
j=1

cijgj(uj(t)) −
n∑

j=1
dijfj(uj(t− τij(t)))

−
n∑

j=1
vij

∫ t
−∞

Kij(t− s)hj(uj(s))ds+ Ii

]
, t 6= tk,

∆ui(tk) = Jk(ui(t
−
k ))

(2)

for i = 1, 2, · · · , n and k = 1, 2, · · · .

When Jk(ui(tk)) = 0 (i = 1, 2, · · · , n; k = 1, 2, · · · ), model (1) turns into the following stochastic Cohen-

Grossberg neural network model without impulses:

dui(t) = −ai(ui(t))
[
bi(ui(t)) −

n∑

j=1

cijgj(uj(t)) −

n∑

j=1

dijfj(uj(t− τij(t)))

−
n∑

j=1

vij

∫ t

−∞

Kij(t− s)hj(uj(s))ds + Ii

]
dt +

n∑

j=1

σij(uj(t), uj(t− τij(t)))dωj(t) (3)

for t > 0, i = 1, 2, · · · , n. Furthermore, model (3) also comprises the following Cohen-Grossberg neural

network model with neither impulses nor stochastic effects [13]

dui(t)

dt
= −ai(ui(t))

[
bi(ui(t)) −

n∑

j=1

cijgj(uj(t)) −

n∑

j=1

dijfj(uj(t− τij(t)))

−

n∑

j=1

vij

∫ t

−∞

Kij(t− s)hj(uj(s))ds + Ii

]
(4)

for t > 0, i = 1, 2, · · · , n. Note that model (4) is also a general neural network that covers the delayed

Cohen-Grossberg neural network models studied in [3–12].

Since the solution (u1(t), u2(t), · · · , un(t))T of model (2) is discontinuous at the point tk, by theory of impul-

sive differential equations, we assume that (u1(tk), u2(tk), · · · , un(tk)) ≡ (u1(tk+0), u2(tk+0), · · · , un(tk+0))T .

It is clear that, in general, the derivatives dui(tk)
dt does not exist. On the other hand, we can see from the

first equation of model (2) that the limits dui(tk∓0)
dt exist. According to the above convention, we assume

dui(tk)
dt = dui(tk+0)

dt .

For convenience, we introduce several notations. u = (u1, u2, · · · , un)T ∈ Rn denotes a column vector; ‖u‖

denotes a vector norm defined by ‖u‖ =
( n∑

j=1
|ui|

p
)1/p

. C[X,Y ] denotes the space of continuous mappings
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from the topological space X to the topological space Y . Denote by Cb
F0

[(−∞, 0], Rn] the family of all bounded

F0-measurable, C[(−∞, 0], Rn]-valued random variables φ, satisfying ‖φ‖Lp = sup
−∞≤θ≤0

E‖φ(θ)‖ < +∞, where

E denotes the expectation of stochastic process. The initial condition φ ∈ Cb
F0

[(−∞, 0], Rn]. PC[I,Rn] = {ψ :

I → Rn | ψ(t+) = ψ(t) for t ∈ I, ψ(t−) exists for t ∈ (t0,+∞), ψ(t−) = ψ(t) for all but points tk ∈ (t0,+∞)},

where I ⊂ R is an interval, ψ(t+) and ψ(t−) denote the left-hand limit and right-hand limit of the scalar

function ψ(t), respectively.

Throughout this paper, we make the following assumptions:

(H1) ai(u) is a continuous function and 0 < ai ≤ ai(u) < Ai (ai and Ai are constants) for all u ∈ R,

i = 1, 2, · · · , n.

(H2) There exists a positive diagonal matrix B = diag(b1, b2, · · · , bn) such that

bi(u) − bi(v)

u− v
≥ bi

for all u, v ∈ R(u 6= v), i = 1, 2, · · · , n.

(H3) There exist three positive diagonal matrices G = diag(G1, G2, · · · , Gn), F = diag(F1, F2, · · · , Fn) and

H = diag(H1,H2, · · · ,Hn) such that

Gj = sup
u1 6=u2

∣∣∣
gj(u1) − gj(u2)

u1 − u2

∣∣∣, Fj = sup
u1 6=u2

∣∣∣
fj(u1) − fj(u2)

u1 − u2

∣∣∣, Hj = sup
u1 6=u2

∣∣∣
hj(u1) − hj(u2)

u1 − u2

∣∣∣

for all u1 6= u2, j = 1, 2, · · · , n.

(H4) The delay kernel Kij : [0,+∞) → [0,+∞) is real valued nonnegative continuous function and satisfies

∫ +∞

0
eβsKij(s)ds = rij(β),

where rij(β) is continuous function in [0,δ), δ > 0, and rij(0) = 1, i, j = 1, 2, · · · , n.

(H5) There exist two nonnegative matrices S = (sij)n×n and W = (wij)n×n such that

σi(u, v)σ
T
i (u, v) ≤

n∑

j=1

siju
2
j (t) +

n∑

j=1

wijv
2
j

for all u = (u1, · · · un)T ∈ Rn, v = (v1, · · · vn)T ∈ Rn, i = 1, 2, · · · , n.

Definition 1: The equilibrium point u∗ = (u∗1, u
∗
2, · · · , u

∗
n)T of model (1) is said to be globally exponentially

p-stable (p ≥ 2) if there exist constants ε > 0 and M > 0 such that

E‖u(t) − u∗‖p ≤M‖φ− u∗‖p
Lpe

−ε(t−t0)

for all t > 0, where u(t) = (u1(t), u2(t), · · · , un(t))T is any solution of model (1) with initial value ui(t0 + s) =

φi(s) ∈ PC((−∞, 0], R), i = 1, 2, · · · , n.

Definition 2: A real matrix A = (aij)n×n is said to be an M -matrix if aij ≤ 0 (i, j = 1, 2, · · · , n; i 6= j) and

successive principle minors of A are positive.

Definition 3: (Song and Cao [13]) A map H : Rn → Rn is a homeomorphism of Rn onto itself, if H ∈ C0,

H is one-to-one, H is onto and the inverse map H−1 ∈ C0.

To prove our results, the following lemmas that can be found in [8, 13] are necessary.

Lemma 1: (Cao and Liang [8]) Let a, b ≥ 0, p ≥ i > 0, then

ap−ibi ≤
p− i

p
ap +

i

p
bp.
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Lemma 2: (Song and Cao [13]) Let Q be n × n matrix with non-positive off-diagonal elements, then Q is

an M -matrix if and only if one of the following conditions holds:

(i) There exists a vector ξ > 0 such that ξTQ > 0.

(ii) There exists a vector ξ > 0 such that Qξ > 0.

Lemma 3: (Song and Cao [13]) If H(x) ∈ C0 satisfies the following conditions

(i) H(x) is injective on Rn,

(ii) ‖H(x)‖ → +∞ as ‖x‖ → +∞,

then H(x) is homeomorphism of Rn onto itself.

III. Main results

Theorem 1: Under assumptions (H1)-(H5), if there exists a positive constant p ≥ 2 such that −(Q+ T ) is

an M−matrix, where

Q = (qij)n×n, qij = |cij |Gj +
p− 1

Ai
sij, i 6= j,

qii = −pbi
ai

Ai
+ (p − 1)

( n∑

j=1

|cij |Gj +
n∑

j=1

|dij |Fj +
n∑

j=1

|vij |Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)
+ |cii|Gi +

p− 1

Ai
sii,

T = (tij)n×n, tij = |dij |Fj +
p− 1

Ai
wij + |vij |Hj,

then model (4) has a unique equilibrium point (u∗1, u
∗
2, · · · , u

∗
n)T . Furthermore, suppose

(i) σij(u
∗
j , u

∗
j ) = 0, i, j = 1, 2, · · · , n;

(ii) Jk(ui(tk)) = −γik(ui(t
−
k ) − u∗i ), 0 < γik < 2, i = 1, 2, · · · , n; k = 1, 2, · · · .

Then, (u∗1, u
∗
2, · · · , u

∗
n)T is a unique globally exponentially p-stable equilibrium point of model (1).

Proof. We shall prove this theorem in two steps.

Step 1: We will prove the existence and uniqueness of the equilibrium point of model (4) under the given

assumptions.

Let H(x) = (H1(x),H2(x), · · · ,Hn(x))T , where

Hi(x) = −bi(xi) +
n∑

j=1

cijgj(xj) +
n∑

j=1

dijfj(xj) +
n∑

j=1

vijhj(xj) − Ii

for i = 1, 2, · · · , n. In the following, we shall prove that H(x) is a homeomorphism of Rn onto itself.

First, we prove that H(x) is an injective map on Rn. In fact, if there exist x = (x1, x2, · · · , xn)T and

y = (y1, y2, · · · , yn)T ∈ Rn and x 6= y such that H(x) = H(y), then

bi(xi) − bi(yi) =

n∑

j=1

cij(gj(xj) − gj(yj)) +

n∑

j=1

dij(fj(xj) − fj(yj)) +

n∑

j=1

vij(hj(xj) − hj(yj)) (5)

for i = 1, 2, · · · , n. Multiply both sides of (5) by |xi − yi|
p−1, it follows from assumptions (H2), (H3) and

Lemma 1 that

(pbi − (p− 1)

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj)|xi − yi|
p ≤

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj)|xj − yj|
p (6)
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for i = 1, 2, · · · , n. Let Υ = (αij)n×n, where

αii = pbi − (p− 1)

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj) − |cii|Gi − |dii|Fi − |vii|Hi, i = 1, 2, · · · , n,

αij = −|cij |Gj − |dij |Fj − |vij |Hj , i 6= j, i, j = 1, 2, · · · , n.

Then (6) becomes the following

Υ(|x1 − y1|
p, |x2 − y2|

p, · · · , |xn − yn|
p)T ≤ 0. (7)

Let −(Q+ T ) = (βij)n×n. Noting ai

Ai
≤ 1, and sij, wij ≥ 0 and p ≥ 2, we can get that

βij ≤ αij , i, j = 1, 2 · · · , n.

Since −(Q + T ) is an M−matrix and Υ is a matrix with non-positive off-diagonal elements, Υ is also an

M−matrix. It follows from (7) that

xi = yi, i = 1, 2, · · · , n,

which is a contradiction, so H(x) is an injective on Rn.

Next, we prove that ‖H(x)‖ → +∞ as ‖x‖ → +∞. Since Υ is an M -matrix, from (i) of Lemma 2, there

exists a positive vector ξ = (ξ1, ξ2, · · · , ξn)T such that

ξi

(
pbi − (p − 1)

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj)
)
−

n∑

j=1

ξj(|cji|Gi + |dji|Fi + |vji|Hi) > 0

for i = 1, 2, · · · , n. We can choose a small number δ > 0 such that

ξi

(
pbi − (p− 1)

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj)
)
−

n∑

j=1

ξj(|cji|Gi + |dji|Fi + |vji|Hi) ≥ δ > 0 (8)

for i = 1, 2, · · · , n. Let

H̃(x) = (H̃1(x), H̃2(x), · · · , H̃n(x))T ,

where

H̃i(x) = −(bi(xi) − bi(0)) +
n∑

j=1

cij(gj(xj) − gj(0)) +
n∑

j=1

dij(fj(xj) − fj(0)) +
n∑

j=1

vij(hj(xj) − hj(0))

for i = 1, 2, · · · , n. From assumptions (H2), (H3) and Lemma 1, we can get

n∑

i=1

pξi|xi|
p−1sgn(xi)H̃i(x) ≤

n∑

i=1

[
ξi

(
− pbi + (p − 1)

n∑

j=1

(|cij |Gj + |dij |Fj + |vij |Hj)
)

+

n∑

j=1

ξj(|cji|Gi + |dji|Fi + |vji|Hi)
]
|xi|

p

≤ −δ‖x‖p.

Thus

δ‖x‖p ≤

n∑

i=1

pξi|xi|
p−1|H̃i(x)| ≤ p max

1≤i≤n
{ξi}

n∑

i=1

|xi|
p−1|H̃i(x)|.
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By using Hölder inequality, we get

δ‖x‖p ≤ p max
1≤i≤n

{ξi}‖x‖
p−1‖H̃i(x)‖,

that is

δ‖x‖ ≤ p max
1≤i≤n

{ξi}‖H̃(x, y)‖.

Therefore ‖H̃(x)‖∞ → +∞ as ‖(x)‖∞ → +∞, which directly implies that ‖H(x)‖ → +∞ as ‖(x)‖ → +∞.

By Lemma 3, we know that H(x) is a homeomorphism on Rn. Thus equation

−bi(xi) +

n∑

j=1

cijgj(xj) +

n∑

j=1

dijfj(xj) +

n∑

j=1

vijhj(xj) − Ii = 0, i = 1, 2, · · · , n

has unique solution (u∗1, u
∗
2, · · · , u

∗
n)T , which is a unique equilibrium point of model (4) due to assumptions

(H1) and (H4).

From conditions (i) and (ii) of this theorem, we know that (u∗1, u
∗
2, · · · , u

∗
n)T is also a unique equilibrium

point of model (1).

Step 2: We prove that the unique equilibrium point (u∗1, u
∗
2, · · · , u

∗
n)T of model (1) is globally exponentially

p-stable.

By denoting

yi(t) = ui(t) − u∗i , ãi(yi(t)) = ai(yi(t) + u∗i ), b̃i(yi(t)) = bi(yi(t) + u∗i ) − bi(u
∗
i ),

g̃j(yj(t)) = gj(yj(t) + u∗j ) − gj(u
∗
j ), f̃j(yj(t)) = fj(yj(t) + u∗j ) − fj(u

∗
j ),

h̃j(yj(t)) = hj(yj(t) + u∗j ) − hj(u
∗
j ), σ̃ij(yj(t)) = σij(yj(t) + u∗j ) − σij(u

∗
j ),

we have

dyi(t) = −ãi(yi(t))
[
b̃i(yi(t)) −

n∑

j=1

cij g̃j(yj(t)) −

n∑

j=1

dij f̃j(yj(t− τij(t)))

−
n∑

j=1

vij

∫ t

−∞

Kij(t− s)h̃j(yj(s))ds
]
dt+

n∑

j=1

σ̃ij(uj(t), uj(t− τij(t)))dωj(t), t 6= tk, (9)

for i = 1, 2, · · · , n; k = 1, 2, · · · .

Since −(Q + T ) is an M -matrix, from (ii) of lemma 2, there exists ξ = (ξ1, ξ2, · · · , ξn)T > 0 such that

0 < −(Q+ T )ξ, that is

0 <
[
pbi

ai

Ai
− (p− 1)

( n∑

j=1

|cij |Gj +

n∑

j=1

|dij |Fj +

n∑

j=1

|vij |Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)]
ξi −

n∑

j=1

[
(|cij |Gj +

p− 1

Ai
sij)

+|dij |Fj +
p− 1

Ai
wij + |vij |Hj

]
ξj, i = 1, 2, · · · , n.
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We can choose a sufficiently small positive constant ε > 0 such that

0 <
[
pbi

ai

Ai
−

ε

Ai
− (p− 1)

( n∑

j=1

|cij |Gj +

n∑

j=1

|dij |Fj +

n∑

j=1

|vij |Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)]
ξi −

n∑

j=1

[
(|cij |Gj +

p− 1

Ai
sij)

+eετ (|dij |Fj +
p− 1

Ai
wij) + |vij |Hjrij(ε)

]
ξj, i = 1, 2, · · · , n. (10)

Let

xi(t) = eε(t−t0)|yi(t)|
p, p ≥ 2, i = 1, 2, · · · , n.

By Itô differential formula, the stochastic derivative of xi(t) along (9) can be obtained as follows:

Lxi(t) = εeε(t−t0)|yi(t)|
p + peε(t−t0)|yi(t)|

p−1sgn(yi(t))
{
− ãi(yi(t))

[
b̃i(yi(t)) −

n∑

j=1

cij g̃j(yj(t))

−
n∑

j=1

dij f̃j(yj(t− τij(t))) −
n∑

j=1

vij

∫ t

−∞

Kij(t− s)h̃j(yj(s))ds
]}

+
1

2
p(p − 1)eε(t−t0)|yi(t)|

p−2σ̃iσ̃
T
i

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .

By applying assumptions (H1)-(H3) and (H5), we get

Lxi(t) ≤ εeε(t−t0)|yi(t)|
p + peε(t−t0)|yi(t)|

p−1
[
− aibi|yi(t)| +Ai

n∑

j=1

|cij |Gj |yj(t)|

+Ai

n∑

j=1

|dij |Fj |yj(t− τij(t))| +Ai

n∑

j=1

|vij |

∫ t

−∞

Kij(t− s)|yj(s)|Hjds
]

+
1

2
p(p− 1)eε(t−t0)|yi(t)|

p−2
[ n∑

j=1

sijy
2
j (t) +

n∑

j=1

wijy
2
j (t− τij(t))

]
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for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · . It follows from Lemma 1 that

Lxi(t) ≤ εxi(t) − paibixi(t) +Ai

[
(p− 1)

n∑

j=1

|cij |Gjxi(t) +

n∑

j=1

|cij |Gjxj(t)

+(p− 1)
n∑

j=1

|dij |Fjxi(t) +
n∑

j=1

|dij |Fje
ετij(t)xj(t− τij(t))

+(p− 1)

n∑

j=1

|vij |Hjxi(t) +

n∑

j=1

|vij |Hj

∫ t

−∞

eε(t−s)Kij(t− s)xj(s)ds
]

+
1

2
(p− 1)(p − 2)

n∑

j=1

sijxi(t) + (p − 1)

n∑

j=1

sijxj(t)

+
1

2
(p− 1)(p − 2)

n∑

j=1

wijxi(t) + (p− 1)
n∑

j=1

wije
ετij(t)xj(t− τij(t))

≤ Ai

{[
− pbi

ai

Ai
+

ε

Ai
+ (p − 1)

( n∑

j=1

|cij |Gj +

n∑

j=1

|dij |Fj +

n∑

j=1

|vij |Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)]
xi(t) +

n∑

j=1

(|cij |Gj +
p− 1

Ai
sij)xj(t)

+eετ
n∑

j=1

(|dij |Fj +
p− 1

Ai
wij)xj(t− τij(t))

+

n∑

j=1

|vij |Hj

∫ t

−∞

eε(t−s)Kij(t− s)xj(s)ds
}

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · . Further, we can get

D+(Exi(t)) ≤ Ai

{[
− pbi

ai

Ai
+

ε

Ai
+ (p− 1)

( n∑

j=1

|cij |Gj +
n∑

j=1

|dij |Fj +
n∑

j=1

|vij |Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)]
Exi(t) +

n∑

j=1

(|cij |Gj +
p− 1

Ai
sij)Exj(t)

+eετ
n∑

j=1

(|dij |Fj +
p− 1

Ai
wij)Exj(t− τij(t))

+
n∑

j=1

|vij |Hj

∫ t

−∞

eε(t−s)Kij(t− s)Exj(s)ds
}

(11)

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .

Letting

l0 =
‖φ− u∗‖p

Lp

min
1≤i≤n

{ξi}
,

then when s ∈ (−∞, t0], we have

Exi(s) = eε(s−t0)E|yi(s)|
p ≤ E|yi(s)|

p = E|φi(s− t0) − u∗i |
p ≤ ‖φ− u∗‖p

Lp
≤ ξil0, i = 1, 2, · · · , n. (12)

Let us now prove

Exi(t) ≤ ξil0, t0 ≤ t < t1, i = 1, 2, · · · , n. (13)
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In fact, if (13) is not true, then there exist some i0 and t∗ ∈ [t0, t1) such that

Exi0(t
∗) = ξi0 l0, D+Exi0(t

∗) ≥ 0 and Exj(t) ≤ ξjl0, t ∈ (−∞, t∗), j = 1, 2, · · · , n. (14)

However, from (11), (14) and (H4), we get

D+(Exi0(t
∗)) ≤ Ai0

{[
− pbi0

ai0

Ai0

+
ε

Ai0

+ (p− 1)
( n∑

j=1

|ci0j |Gj +

n∑

j=1

|di0j|Fj +

n∑

j=1

|vi0j|Hj

+
p− 2

2Ai0

n∑

j=1

si0j +
p− 2

2Ai0

n∑

j=1

wi0j

)]
ξi0 +

n∑

j=1

[
(|ci0j |Gj +

p− 1

Ai0

si0j)

+eετ (|di0j |Fj +
p− 1

Ai0

wi0j) + |vi0j|Hjri0j(ε)
]
ξj

}
l0. (15)

It follows from (10) and (15) that

D+(Exi0(t
∗)) < 0

and this is a contradiction. So (13) is true.

In the following, we will use the mathematical induction to prove that

Exi(t) ≤ ξil0, tk−1 ≤ t < tk, i = 1, 2, · · · , n, (16)

holds for k = 1, 2, · · · .

When k = 1, we know from (13) that (16) holds. Suppose that the inequalities

Exi(t) ≤ ξil0, tk−1 ≤ t < tk, i = 1, 2, · · · , n, (17)

hold for k = 1, 2, · · · ,m.

From condition (ii) of this theorem, we have

|ui(tk) − u∗i | = |ui(t
−
k ) + Jk(ui(t

−
k )) − u∗i | = |1 − γik||(ui(t

−
k ) − u∗i )| ≤ |ui(t

−
k ) − u∗i |

for i = 1, 2, · · · , n; k = 1, 2, · · · . Hence

xi(tk) ≤ xi(t
−
k ), i = 1, 2, · · · , n; k = 1, 2, · · · .

Further, we can get

Exi(tk) ≤ Exi(t
−
k ), i = 1, 2, · · · , n; k = 1, 2, · · · . (18)

It follows from (17) and (18) that

Exi(tm) ≤ Exi(t
−
m) < ξil0. i = 1, 2, · · · , n. (19)

This, together with both (12), (17) and (19), lead to

Exi(t) ≤ ξil0, t ∈ (−∞, tm], i = 1, 2, · · · , n, (20)

It is similar to the proof of (13), we can prove that

Exi(t) ≤ ξil0, tm ≤ t < tm+1, i = 1, 2, · · · , n. (21)
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To this end, by the mathematical induction, we can conclude that (16) holds. Thus

E|ui(t) − u∗|p ≤ ξil0e
−ε(t−t0), t ≥ t0, i = 1, 2, · · · , n. (22)

So

E‖u(t) − u∗‖p ≤M‖φ− u∗‖p
Lp
e−ε(t−t0), t ≥ t0,

where M =
n∑

i=1
ξi/ min

1≤i≤n
{ξi} ≥ 1. This means that the unique equilibrium point u∗ of model (1) is globally

exponentially p-stable, and the exponential convergence rate equals ε from (10). The proof is completed.

Remark 2. In this paper, the proposed method, which does not make use of the Lyapunov functional, is

shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with

variable and/or distributed delays.

Remark 3. In [28, 33, 34], the authors have dealt with the robust stability of uncertain stochastic neural

networks with delays by employing Lyapunov functional. Using the method of this paper, we can also deal with

the robust stability of uncertain system (1) in a fairly straightforward way. For example, when cij ∈ [cij, cij],

dij ∈ [dij, dij ], vij ∈ [vij, vij], let

c
(0)
ij =

1

2
(cij + cij), c

(1)
ij =

1

2
(cij − cij),

d
(0)
ij =

1

2
(dij + dij), d

(1)
ij =

1

2
(dij − dij),

v
(0)
ij =

1

2
(vij + vij), v

(1)
ij =

1

2
(vij − vij).

Noting

|cij | ≤ |c
(0)
ij | + c

(1)
ij , |dij | ≤ |d

(0)
ij | + d

(1)
ij , |vij | ≤ |v

(0)
ij | + v

(1)
ij ,

similar to the proof theorem 1, it is easy to prove the following corollary.

Corollary 1: Under assumptions (H1)-(H5), if there exists a positive constant p ≥ 2 such that −(Q+ T ) is

an M−matrix, where

Q = (qij)n×n, qij = (|c
(0)
ij | + c

(1)
ij )Gj +

p− 1

Ai
sij, i 6= j,

qii = −pbi
ai

Ai
+ (p− 1)

( n∑

j=1

(|c
(0)
ij | + c

(1)
ij )Gj +

n∑

j=1

(|d
(0)
ij | + d

(1)
ij )Fj +

n∑

j=1

(|v
(0)
ij | + v

(1)
ij )Hj

+
p− 2

2Ai

n∑

j=1

sij +
p− 2

2Ai

n∑

j=1

wij

)
+ (|c

(0)
ii | + c

(1)
ii )Gi +

p− 1

Ai
sii,

T = (tij)n×n, tij = (|d
(0)
ij | + d

(1)
ij )Fj +

p− 1

Ai
wij + (|v

(0)
ij | + v

(1)
ij )Hj,

then model (4) has a unique equilibrium point (u∗1, u
∗
2, · · · , u

∗
n)T . Further suppose

(i) σij(u
∗
j , u

∗
j ) = 0, i, j = 1, 2, · · · , n.

(ii) Jk(ui(tk)) = −γik(ui(t
−
k ) − u∗i ), 0 < γik < 2, i = 1, 2, · · · , n; k = 1, 2, · · · .

Then (u∗1, u
∗
2, · · · , u

∗
n)T is a unique globally exponentially p-stable equilibrium point of model (1).

Remark 4. Recently, the linear matrix inequality (LMI) approach has been popular in dealing with the

stability of the delayed neural networks, and the obtained criteria by using the LMI approach are in general less

conservative than the criteria by using the M -matrix approach, for example, see [9,25,28,29]. Unfortunately,
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in [9, 25, 28, 29], the active functions are assumed to be bounded in order to guarantee the existence of the

equilibrium point of the considered neural networks. When the active functions are indeed unbounded, the

stability criteria provided in [9, 25, 28, 29] may be difficult to apply due to the questionable existence of the

equilibrium point.

Remark 5. From Theorem 1 and Corollary 1, we can see that the stability of model (1) are mainly affected

by the parameters of the continuous part of model (1).

Remark 6. In [35–37], the authors have considered the discrete-time systems with time-varying state delay

and obtained several new results of stability by the LMI approach. We would like to point out that it is

possible to generalize our main results to discrete-time systems. The results will appear in the near future.

IV. Example

Example 1. Consider the following model





du1(t)
dt = −(2 + cos u1(t))

[
18u1(t) − 0.1g1(u1(t)) + 0.7g2(u2(t))

−f1(u1(t− τ11(t))) − 0.8f2(u2(t− τ12(t)))

−2
∫ t
−∞

K11(t− s)h1(s)ds+
∫ t
−∞

K12(t− s)h2(s)ds
]

+σ11(u1(t), u1(t− τ11(t)))dω1 + σ12(u2(t), u2(t− τ12(t)))dω2, t 6= tk,
du2(t)

dt = −(3 − sinu2(t))
[
15u2(t) + g1(u1(t)) + 0.5g2(u2(t))

−0.9f1(u1(t− τ21(t))) − 2f2(u2(t− τ22(t)))

−
∫ t
−∞

K11(t− s)h1(s)ds + 2
∫ t
−∞

K12(t− s)h2(s)ds
]

+σ21(u1(t), u1(t− τ21(t)))dω1 + σ22(u2(t), u2(t− τ22(t)))dω2, t 6= tk,

∆u1(tk) = −(1 + 0.5 sin(1 + k))u1(t
−),

∆u2(tk) = −(1 + 0.8 cos(2k3))u1(t
−),

(23)

where t0 = 0, tk = tk−1 + 0.5k, k = 1, 2, · · · , and

gi(x) = fi(x) = hi(x) = x, τij(t) = 0.2| cos t| + 0.1, Kij(t) = te−t, i, j = 1, 2,

σ11(x, y) = 0.1x− 0.2y, σ12(x, y) = 0.2x + 0.3y,

σ21(x, y) = 0.5x+ 0.4y, σ22(x, y) = 0.3x + 0.1y.

Obviously, model (23) satisfies assumptions (H1)-(H4) with

a1 = 1, A1 = 3, a2 = 2, A2 = 4, b1 = 18, b2 = 15, Fi = Gi = Hi = 1, i = 1, 2.

It can be easily checked that assumption (H5) is also satisfied with

s11 = 0.02, s12 = 0.08, s21 = 0.5, s22 = 0.18,

w11 = 0.08, w12 = 0.18, w21 = 0.32, w22 = 0.02.

Taking p = 4, it is easy to compute

Q =

(
−6.72 0.78

1.375 −6.4

)
, T =

(
3.08 1.26

2.14 4.015

)
,
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and

−(Q+ T ) =

(
3.64 −2.04

−3.515 2.385

)

is an M -matrix. On the anther hand, one can verify that (0, 0)T is an equilibrium point of model (23).

Clearly, all conditions of Theorem 1 are satisfied. From Theorem 1, we know that (0, 0)T is a unique globally

exponentially 4-stable equilibrium point of model (23). From (10), we can estimate that the exponential

convergence rate index is equal to 0.0145.

V. Conclusions

In this paper, the problem on stability analysis has been investigated for a class of impulsive stochastic

Cohen-Grossberg neural networks with both time-varying and infinite distributed delays. A sufficient condition

to ensure the existence, uniqueness, and exponential p-stability of equilibrium point for the addressed neural

network has been obtained by employing a combination of the M -matrix theory and stochastic analysis

technique. The proposed method, which does not make use of the Lyapunov functional, has been shown to be

simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or

distributed delays. We have then extended our main results to the case where the parameters contain interval

uncertainties. The exponential convergence rate index can be estimated that is dependent on the system

parameters. An example has been given to show the effectiveness of the obtained results.
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