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1 Introduction

Consider a four-dimensional gauge theory coupled to fermions in given representations of the
gauge group, and with given global (and possibly spontaneously broken) flavor symmetries. In
the chiral limit, the associated Dirac operator iD/ anticommutes with γ5,

{iD/, γ5} = 0 . (1.1)

This means that the associated eigenvalues of iD/, defined by iD/φn = λnφn appear symmetrically
around zero: ±λn. The corresponding eigenfunctions are, for λn 6= 0, φn and γ5φn. The accu-
mulation of eigenvalues near λ = 0 determines whether or not chiral symmetry is spontaneously
broken through the formation of a chiral condensate [1]. The study of the Dirac operator spec-
trum near λ = 0 is thus of fundamental importance for our understanding of chiral symmetry
breaking in gauge theories. For example, for QCD with Nf flavors it is expected to lead to the
conventional SU(Nf )L × SU(Nf )R → SU(Nf )V scenario, with all its implications in terms of
low-energy effective Lagrangians.

In a series of papers [2, 3, 4], Verbaarschot and collaborators have added substantial new insight
to this issue. Their central assertion is that the spectral density of the Dirac operator very close
to the origin λ = 0 should be universal, depending only on the symmetries in question. One
startling consequence of this conjecture is that the spectral density of the Dirac operator near the
origin need not be computed in the gauge theory at all, but can be extracted from much simpler
random matrix theories. The pertinent random matrix ensemble is determined by symmetry
arguments alone. To find universal features of the Dirac spectrum near the origin, it is essential
to first consider the problem in a finite volume V4, corresponding in matrix-model terms to finite-
size matrices, and then magnify the spectrum near the origin at a scale of order 1/V4. The usual
spectral density ρ(λ) is defined by the following average over gauge field configurations:

ρ(λ) =
∑

n

〈δ(λ − λn)〉 . (1.2)

By the Banks-Casher relation∗ [1] (taking here the limit V4 →∞),

〈ψ̄ψ〉 =
1

V4
lim
m→0

2m

∫ ∞

0
dλ

ρ(λ)

λ2 +m2
=
πρ(0)

V4
, (1.3)

this spectral density, evaluated at the origin, is directly related to the appearance of a chiral
condensate. It follows that the average spacing between eigenvalues becomes roughly constant
near λ = 0 [5],

∆λ ∼ π

V4〈ψ̄ψ〉
. (1.4)

Magnifying ρ(λ) near λ = 0 according to the prescription given above thus entails the introduction
of an associated microscopic spectral density ρS(λ), which is defined by [2]

ρS(λ) = lim
V4→∞

1

V4
ρ

(

λ

V4

)

. (1.5)

∗ Applied näıvely here, ignoring the subtlety of regularization.
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The precise statement is that this microscopic spectral density should be a universal function.
The most compelling evidence comes from the fact that the microscopic spectral density defined
as above, and evaluated in a particular random matrix theory, exactly reproduces the Leutwyler-
Smilga spectral sum rules [5] and appropriate generalizations [6].

To understand the significance of this universality conjecture, let us for convenience first focus
on one example, that of QCD with Nf massless fermions in the fundamental representation. As
explained in refs. [2], the relevant matrix model partition function is given by a chiral unitary
ensemble of the form

ZχUE =

∫

dW detNf

(

0 W †

W 0

)

e−Ntr V (W †W ) . (1.6)

Here only symmetry arguments alone have selected the integration to be over complex N × N
matrices, and the Dirac operator structure is encoded in the determinant. But such symmetry
arguments alone place no restrictions on the form of V (λ), which appears in the exponent. If
indeed symmetry arguments alone should determine the microscopic spectral density of QCD from
this matrix ensemble, then any reasonable choice of V (λ) should give the same result for ρS(λ).
This universality argument, if correct, allows us to evaluate the integral with a function V (λ)
of our own choice. Some hints supporting this universality had been found in refs. [7]. Clearly,
the most convenient choice in to make the matrix integral Gaussian except for the determinant
factor in front. This is the choice made in refs. [2].

It is important to separate the question of universality of the spectral density of the Dirac opera-
tor close to the origin into two parts. The first concerns the crucial jump from the d-dimensional
gauge field integrations to the framework of zero-dimensional matrix models with similar symme-
tries. The second step concerns the conjecture about the universality of the microscopic spectral
density within the framework of matrix models. The purpose of this paper is to prove the latter
of these universality conjectures. The question of whether the universality extends all the way
from zero-dimensional large-N matrix models to full-fledged quantum field theories such as QCD
will of course remain unproven. But we shall show, within the context of large-N matrix models,
under what conditions the microscopic spectral density and higher correlation functions are uni-
versal. This is a major step towards understanding the original issue, which concerns the possible
universality of also the Dirac operator spectrum near λ = 0.

This paper is organized as follows. In section 2 we prove a theorem for the asymptotic behavior
of generic orthogonal polynomials over a semi-infinite range. By making use of this theorem, we
compute the associated universal form of the microscopic spectral density as well as all higher
order correlation functions in the same limit. This universality class is of relevance for four-
dimensional SU(Nc ≥ 3) gauge theories with fermions in the fundamental representation. In
section 3 we repeat the analysis for a class of orthogonal polynomials over an infinite range. This
case is considered to be relevant for three-dimensional SU(Nc ≥ 3) gauge theories with an even
number of fermions in the fundamental representation. We conclude in section 4 with a discussion
about the possible relation between the chiral-flavor (or parity-flavor) symmetry breaking in gauge
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theories and the now established universality of random matrices in the microscopic limit.

2 Chiral unitary ensembles

In this section we consider the chiral unitary ensemble:

Z =

∫

dM detNfM exp

{

−N
2

trV (M2)

}

, V (M2) =
∑

k≥1

gk
k
M2k, Nf = 0, 1, · · · (2.1)

where M stands for an (N +N ′)× (N +N ′) block hermitian matrix whose non-zero components
are N ×N ′ complex matrices on the off-diagonals,

M =

(

0 W †

W 0

)

(2.2)

and dM the Haar measure of W . We take N ≤ N ′ without loss of generality. An ensemble is
called chiral unitary because of the invariance under the transformation

W 7→ V †W U , U ∈ U(N) , V ∈ U(N ′). (2.3)

This model has the same global symmetries as a Euclidean four-dimensional SU(Nc ≥ 3) gauge
theory coupled toNf massless fermions in the fundamental representation. The topological charge
ν of the vacuum is identified with |ν| = N ′−N (which is kept fixed) and the volume of space-time
is V4 = N +N ′ (which is sent to infinity afterwards). Specifically, due to the “U(1)A symmetry”

{M,γ5} = 0, γ5 =

(

1N 0
0 −1N ′

)

, (2.4)

all (2N) non-zero eigenvalues M occurs in pairs with opposite signs.

The partition function (2.1) is expressible in terms of the component matrices as well as of the
eigenvalues after integration over the angular coordinates (U, V ) ∈ U(N)×U(N ′)/U(1)N [8],

Z =

∫

dW detNf

(

W †W
)

e−NtrV (W †W )

∝
∫ ∞

−∞

N
∏

i=1

(

dz2
i z

2α
i e−NV (z2

i
)
)

∣

∣

∣

∣

det
ij
z
2(i−1)
j

∣

∣

∣

∣

2

=

∫ ∞

0

N
∏

i=1

(

dλi λ
α
i e−NV (λi)

)

∣

∣

∣

∣

det
ij
λi−1
j

∣

∣

∣

∣

2

, (2.5)

where we have set α = Nf + |ν| and suppressed an irrelevant constant of the angular integration.
The above expression can be interpreted as a positive definite N ×N hermitian matrix model in
H = W †W whose eigenvalues are λ1, · · · , λN ≥ 0. Therefore the problem is reduced to finding a
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set of orthogonal polynomials P
(α)
n (λ) over the semi-infinite interval [0,∞) with the shown weight

function,
∫ ∞

0
dλλα e−NV (λ)P (α)

n (λ)P (α)
m (λ) = h(α)

n δnm. (2.6)

The definition of the orthogonality relation (2.6) shows that the problem is well-defined for
arbitrary real α > −1. Here we shall only deal with α to be a nonnegative integer, which is
motivated physically from the above.

In the orthogonal polynomial method, the polynomials P
(α)
n (λ) are usually normalized to be

monic,
P (α)
n (λ) = λn + · · · , (2.7)

so that the Vandermonde determinant detij λ
i−1
j can be substituted by detij P

(α)
i−1(λj) in the inte-

grand. However, for the present purposes we will employ a different normalization by demanding

P
(α)
n (0) = 1:

P (α)
n (λ) = 1 + · · ·+ p(α)

n λn. (2.8)

This is because we shall seek a smooth limiting behavior near λ = 0 as n gets as large as N
(which is taken to infinity), and N2λ is kept fixed at the same time (the microscopic limit). We

thus start by the assumption that P
(α)
n (0) 6= 0, and normalize the polynomials accordingly.† As

we shall see shortly, this assumption is equivalent to having the origin included in the support of
the spectral density.

2.1 Asymptotics of orthogonal polynomials

We shall prove the following theorem on the asymptotic behavior of these orthogonal polynomials:

Theorem 1: Let {P (α)
n (λ)}n=0,1,··· be the set of polynomials orthogonal with respect

to the measure

dλλα e−N V (λ), V (λ) =
∑

k≥1

gk
k
λk, α = 0, 1, · · ·

over the range [0,∞), whose moments are all finite. If the polynomials can be nor-

malized according to P
(α)
n (0) = 1, then, for fixed x = N2λ and t = n/N , the following

limiting relation holds:

lim
N→∞

P (α)
n (

x

N2
)

∣

∣

∣

∣

n=Nt
= α!

Jα (u(t)
√
x)

(u(t)
√
x/2)

α , (2.9)

where u(t) is determined by

u(t) =

∫ t

0

dt′
√

r(t′)
, t =

∑

k

gk
2

(

2k

k

)

r(t)k.

† We avoid a proliferation of new symbols by employing the same P
(α)
n (λ) and h

(α)
n in both conventions.
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The proof of this theorem for α = 0 was recently given by one of the authors [9], and is reproduced
here for completeness. The central idea of how to prove it for arbitrary α = 1, 2, . . . is to use
induction, starting with the case α = 0. Tracing it back, this means that the Bessel-type behavior
of the polynomials is a consequence of the three-term recursion relation for the orthogonal poly-
nomials. As n,N → ∞ with t = n/N fixed, this yields a certain “continuum limit” reminiscent
of the derivation of string equations in the double-scaling limit. The recursion relations thus
become the defining second order differential equations for Bessel (and Neumann) functions. It is
the boundary conditions that finally uniquely specify the Bessel solutions. However, for simplicity
we shall here show the proof by induction.

We start with the case α = 0. The recursion relation for Pn(λ) ≡ P
(0)
n (λ) takes the form (with

hn ≡ h(0)
n and pn ≡ p(0)

n ):

λPn(λ) = −rn
{

Pn+1(λ)− Pn(λ)− hn
rn

rn−1

hn−1
(Pn(λ)− Pn−1(λ))

} (

rn ≡ −
pn
pn+1

)

≡
∑

m

λ̂nm Pm(λ). (2.10)

This is the well-known three-term recursion relation rewritten in our nonmonic normalization.
The structure of the coefficients is dictated by a comparison of O(λ0) and O(λn+1) terms on both
sides. The sets of unknowns {hn}, {rn} can be determined iteratively by

1 = −
∫ ∞

0
dλ

d

dλ

{

e−N V (λ)Pn(λ)Pn(λ)
}

= N V ′(λ̂)nn hn, (2.11)

0 = −
∫ ∞

0
dλ

d

dλ

{

e−N V (λ)λPn(λ)Pn(λ)
}

=
(

N(λ̂V ′(λ̂))nn − 2n − 1
)

hn. (2.12)

In the following we need to know the asymptotic behavior of rn and hn for

n, N →∞ while
n

N
= t is kept fixed. (2.13)

Eqs. (2.10), (2.11) and (2.12) tell us that they should behave as

rn = r

(

n

N

)

+ higher orders in
1

N
, hn =

1

N
h

(

n

N

)

+ higher orders in
1

N
. (2.14)

Then the leading behavior of the matrix λ̂ and its powers is

λ̂nm = r(
n

N
) (−δnm−1 + 2δnm − δnm+1) ,

(λ̂k)nm = r(
n

N
)k

k
∑

ℓ=−k

(−)ℓ
(

2k

k + ℓ

)

δnm+ℓ (2.15)
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so that eqs. (2.11) and (2.12) read

∑

k

gk

(

2k − 2

k − 1

)

r(t)k−1 =
1

h(t)
, (2.16)

1

2

∑

k

gk

(

2k

k

)

r(t)k = t. (2.17)

Note that eqs. (2.16) and (2.17) imply a universal relationship among total derivatives,

dt = 2r d

(

1

h

)

+
1

h
dr =

√
r d

(

2
√
r

h

)

. (2.18)

Next we expand the right hand side of the recursion relation (2.10) in terms of 1/N in the limit
(2.13) to get

N2λP (n,N, λ) = −r(t)
{

d2 P

dt2
+
h(t)

r(t)

(

d

dt

r(t)

h(t)

)

dP

dt

}

= −h(t) d

dt

r(t)

h(t)

d

dt
P (n,N, λ), (2.19)

where the argument N in P (n,N, λ) ≡ Pn(λ) is to indicate explicitly the dependency via the
coefficient in front of the potential. Only the leading terms up to O(1/N) have been kept here.
Eq. (2.19) tells us that that the arguments of the polynomial appear only in the combinations
t = n/N and x = N2λ in the large-N limit. The rescaled eigenvalue coordinate x is to be
fixed finite hereafter, and is regarded as a parameter in the ordinary differential equation in t.
Performing the change of variable

t 7→ u(t) ≡ 2
√

r(t)

h(t)
=

∫ t

0

dt′
√

r(t′)
, (2.20)

using the relationship (2.18), and neglecting higher order terms in 1/N , eq. (2.19) reduces to
Bessel equation of zeroth order:

(

1

u

d

du
u

d

du
+ x

)

P (u, x) = 0. (2.21)

The unique solution to this equation which satisfies the following boundary condition at t =
n/N = 0 (u(0) = 0),

P (0, x) = P0(λ) = 1, (2.22)

is
P (u, x) = J0

(

u
√
x
)

. (2.23)

We now proceed for a generic integer α by induction. Given a set of polynomials {P (α)
n (λ)}

which are orthogonal with respect to the measure dλλα e−NV (λ) on [0,∞), and are normalized

by P
(α)
n (0) = 1 as in eq. (2.8), we note that

P̃ (α+1)
n (λ) ≡ P

(α)
n+1(λ)− P (α)

n (λ)

λ
(2.24)
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are polynomials of order n. They are orthogonal to λk, k = 0, · · · , n − 1 with respect to the
measure dλλα+1 e−NV (λ) [10]:

∫ ∞

0
dλλα+1 e−NV (λ)P̃ (α+1)

n (λ)λk

=

∫ ∞

0
dλλα e−NV (λ)

(

P
(α)
n+1(λ)− P (α)

n (λ)
)

λk = 0. (2.25)

Under the assumption that P̃
(α+1)
n (0) 6= 0, the orthogonal polynomial normalized to P

(α+1)
n (0) = 1

is thus given by

P (α+1)
n (λ) =

P̃
(α+1)
n (λ)

P̃
(α+1)
n (0)

. (2.26)

The microscopic limit of the contiguous relation (2.24) reads

P̃
(α+1)
Nt (

x

N2
) =

N

x

∂

∂t
P

(α)
Nt (

x

N2
) + higher orders in

1

N
. (2.27)

If we substitute eq. (2.9) for a given α into the above, we confirm that

P̃
(α+1)
Nt (

x

N2
) = −N α!

√

r(t)

Jα+1 (u(t)
√
x)

(u(t)/2)α (
√
x)α+1

, (2.28)

P̃
(α+1)
Nt (0) = −N u(t)/2

(α+ 1)
√

r(t)
. (2.29)

Thus eq. (2.9) holds also for α+1 after normalizing according to (2.26). Together with the result
(2.23) for α = 0, this completes the proof.

We have worked out an alternative proof of the same theorem, which does not rely on induction.

Rather, it is possible to convert the recursion relation for P
(α)
n (λ) directly into Bessel equation of

order α,
(

1
u2α+1

d
duu

2α+1 d
du + x

)

P (α)(u, x) = 0. Since it is lengthy, we do not reproduce it here.

2.2 Universal correlations

Theorem 1 can be used to establish a remarkable universal form of spectral correlators of the
model (2.5). We shall consider the spectral density ρ(λ), and higher order correlators, in the
same microscopic limit as above.

To begin, we recall the expression for the integration kernel KN (λ, µ) associated with the eigen-
value problem for the positive-definite hermitian matrix H = W †W ,

KN (λ, µ) = (λµ)α/2 e−
N
2

(V (λ)+V (µ)) 1

N

N−1
∑

i=0

P
(α)
i (λ)P

(α)
i (µ)

h
(α)
i

= (λµ)α/2 e−
N
2

(V (λ)+V (µ)) 1

N

−r(α)
N−1

h
(α)
N−1

P
(α)
N (λ)P

(α)
N−1(µ)− P (α)

N−1(λ)P
(α)
N (µ)

λ− µ . (2.30)

7



Here use has been made of the Christoffel-Darboux identity. In the large-N limit we may drop

the superscript α in r
(α)
n = −p(α)

n /p
(α)
n+1. This is because the general recursion relation (the

counterpart of eq. (2.12) for general α)

0 = N(λ̂V ′(λ̂))nn − 2n− α− 1 (2.31)

which determines r(α)(t) leads, in the large-N limit (2.13), to the same (2.17) for any finite α.

On the other hand, the norms of the polynomials can be evaluated iteratively:

h̃(α+1)
n =

∫ ∞

0
dλλα+1 e−NV (λ)P̃ (α+1)

n (λ)P̃ (α+1)
n (λ)

=

∫ ∞

0
dλλα e−NV (λ)

(

P
(α)
n+1(λ)− P (α)

n (λ)
)

P̃ (α+1)
n (λ)

=

∫ ∞

0
dλλα e−NV (λ)

(

−P (α)
n (λ)

) p
(α)
n+1

p
(α)
n

P (α)
n (λ) =

h
(α)
n

rn
, (2.32)

h(α+1)
n =

h̃
(α+1)
n

P̃
(α+1)
n (0)2

= h(α)
n

(

α+ 1

N u(t)/2

)2

. (2.33)

We therefore obtain

h(α)
n =

1

N2α+1
(α!)2

(

2

u(t)

)2α

h(t) + higher orders in
1

N

(

h(t) ≡ h(0)(t)
)

. (2.34)

Using Theorem 1 and inserting eq. (2.34) into (2.30), we obtain a universal form of the kernel
(the Bessel kernel of order α) in the microscopic limit

lim
N→∞

1

N
KN (

x

N2
,
y

N2
) =

u(1)

2

√
xJα+1(u(1)

√
x)Jα(u(1)

√
y)− Jα(u(1)

√
x)
√
yJα+1(u(1)

√
y)

x− y .

(2.35)

The only way this asymptotic kernel depends on the potential V (λ) is through the parameter
u(1). As we shall show now, even this dependence is of a highly universal form. Let us compare
eqs. (2.16) and (2.17) at t = 1 with the explicit expression for the large-N spectral density ρ(z)
having support on a single interval [−a, a] [11].

ρ(z) =

√
a2 − z2

2π

∑

k

gk

k−1
∑

n=0

(

2n

n

)

(

a2

4

)n

z2k−2n−2, (2.36)

1

2

∑

k

gk

(

2k

k

)

(

a2

4

)k

= 1 . (2.37)

This enables us to relate the parameters r(1) and u(1) to a and ρ(0), respectively,

a = 2
√

r(1) , ρ(z=0) =
u(1)

2π
. (2.38)
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The kernel (2.35) therefore only depends on the potential V (λ) in the indirect way of setting the
scale ρ(0). It has clearly been the assumption throughout that ρ(λ) 6= 0. This was the starting
point of the physical motivation from field theory (spontaneously broken chiral symmetries, which
through the Banks-Casher relation (1.3) entails a non-vanishing spectral density at the origin).
Moreover, it is known that the critical condition ρ(0) = 0 for a transition where the intervals
of support move away from the origin is equivalent to PN (0) = 0 for the monically normalized
polynomials [8]. If we go back to our proof of Theorem 1, this was precisely the condition we had
to impose in order to be able to find a smooth continuum limit of the orthogonal polynomials
in the large-N limit. Thus, under the assumption that the normalization (2.8) is possible, the
constants u(1) and r(1) are determined to be positive from the identification (2.38).

It finally remains us to relate the s-point correlation functions of σN (ρN ) of eigenvalues of
H = W †W (or M) to the kernel KN in eq. (2.35). The former is defined as

σN (λ1, · · · , λs) =

〈

s
∏

a=1

1

N
tr δ(λa −H)

〉

= det
1≤a,b≤s

KN (λa, λb), (2.39)

ρN (z1, · · · , zs) =

〈

s
∏

a=1

1

2N
tr δ(za −M)

〉

= |z1| · · · |zs|σN (z2
1 , · · · , z2

s ), (2.40)

respectively. Therefore all the formulae for their microscopic limits (xa = N2λa, ζa = Nza fixed)

σS(x1, · · · , xs) ≡ lim
N→∞

1

N s
σN (

x1

N2
, · · · , xs

N2
), (2.41)

ρS(ζ1, · · · , ζs) ≡ lim
N→∞

ρN (
ζ1
N
, · · · , ζs

N
) = |ζ1| · · · |ζs|σS(ζ2

1 , · · · , ζ2
s ), (2.42)

that were previously calculated for the Laguerre (in the H-picture) or chiral Gaussian (in the
M -picture) unitary ensemble [2, 12], hold universally.

In particular, the spectral density of the chiral unitary ensemble

ρN (z) =

〈

1

2N
tr δ(z −M)

〉

= |z|KN (z2, z2) (2.43)

takes the universal form

ρS(ζ) = (πρ(0))2 |ζ|
(

J2
α(2πρ(0)ζ) − Jα+1(2πρ(0)ζ)Jα−1(2πρ(0)ζ)

)

(2.44)

in the microscopic limit. As expected from the Gaussian case, a matching condition between the
microscopic and macroscopic (ordinary large-N) spectral densities is satisfied:

lim
ζ→∞

ρS(ζ) = ρ(0). (2.45)
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3 Unitary ensembles

In this section we consider the unitary ensemble:

Z =

∫

dM det2αM e−NtrV (M2), V (M2) =
∑

k≥1

gk
2k
M2k, α = 0, 1, · · · (3.1)

where M stands for an N×N hermitian matrix and dM its Haar measure. This model shares the
same global symmetries with a Euclidean three-dimensional SU(Nc≥3) gauge theory coupled to
Nf = 2α massless fermions in the fundamental representation [13]. The partition function (3.1)
is expressible in terms of the eigenvalues after integration over the angular U(N) coordinates

Z =

∫ ∞

−∞

N
∏

i=1

(

dλi λ
2α
i e−NV (λ2

i
)
)

∣

∣

∣

∣

det
i,j
λj−1
i

∣

∣

∣

∣

2

. (3.2)

Therefore the problem is reduced to finding a set of orthogonal polynomials P
(α)
n (λ) over the

infinite interval (−∞,∞) with the shown weight function,
∫ ∞

−∞
dλλ2α e−NV (λ2)P (α)

n (λ)P (α)
m (λ) = h(α)

n δnm. (3.3)

3.1 Asymptotics of orthogonal polynomials

We shall prove the following theorem‡ on the asymptotic behavior of these orthogonal polynomi-
als:

Theorem 2: Let {P (α)
n (λ)}n=0,1,··· be the set of polynomials orthogonal with respect

to the measure

dλλ2α e−NV (λ2), V (λ2) =
∑

k≥1

gk
2k

λ2k, α = 0, 1, · · ·

over the range (−∞,∞), whose moments are all finite. If the polynomials can be

normalized according to P
(α)
2n (0) = P

(α)
2n+1

′(0) = 1, then, for fixed x = N λ and t =
2n/N , the following limiting relations hold:

lim
N→∞

P
(α)
2n (

x

N
)

∣

∣

∣

∣

n=Nt/2
= Γ(α+

1

2
)
Jα− 1

2
(u(t)x)

(u(t)x/2)α−
1
2

, (3.4a)

lim
N→∞

N P
(α)
2n+1(

x

N
)

∣

∣

∣

∣

n=Nt/2
= xΓ(α+

3

2
)
Jα+ 1

2
(u(t)x)

(u(t)x/2)α+ 1
2

, (3.4b)

where u(t) is determined by

u(t) =

∫ t

0

dt′

2
√

r(t′)
, t =

∑

k

gk
2

(

2k

k

)

r(t)k.

‡ Theorem 2 can be regarded as an extension of Theorem 1 for half-integer α.
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The proof of this theorem for α = 0 was sketched in ref. [14], and below we shall elaborate it in
a rigorous form. The recursion relation for monically normalized polynomial

Pn(λ) ≡ P (0)
n (λ) = λn + · · · (3.5)

takes the form
λPn(λ) = Pn+1(λ) + rn Pn−1(λ), (3.6)

with

rn =
hn
hn−1

. (3.7)

Since the monic normalization (3.5) does not distinguish the parity of n, neither does rn. Eq. (3.6)
immediately implies

0 = P2n+2(0) + r2n+1 P2n(0). (3.8)

Due to the Z2 symmetry of the weight function, the polynomials have definite parities. Therefore
we are lead to change the normalization of polynomials as follows:

P2n(λ)

P2n(0)
→ P2n(λ) = 1 + · · · , P2n+1(λ)

P2n+1
′(0)
→ P2n+1(λ) = λ+ · · · . (3.9)

Then the recursion relation (3.6) in this normalization, applied twice to P2n(λ), takes the form

λ2 P2n(λ) = −r2n+1 (P2n+2(λ)− P2n(λ)) + r2n (P2n(λ)− P2n−2(λ))

≡
∑

m

(λ̂2)2n,2m P2m(λ). (3.10)

Here use is made of eq. (3.8). A similar equation for P2n+1(λ) expresses the matrix elements
(λ̂2)2n+1,2m+1 in terms of the rn’s. The coefficients {rn} are iteratively determined by

0 = − 1

hn

∫ ∞

−∞
dλ

d

dλ

{

e−N V (λ2)λPn(λ)Pn(λ)
}

= 2N(λ̂2V ′(λ̂2))nn − 2n − 1. (3.11)

The asymptotic behavior of rn is determined in the large-N limit,

n, N →∞ while
2n

N
= t is kept fixed, (3.12)

to be

rn = r

(

n

N

)

+ higher orders in
1

N
. (3.13)

Here r(t) is given by
1

2

∑

k

gk

(

2k

k

)

r(t)k = t. (3.14)

Next we expand the right hand side of the recursion relation (3.10) in terms of 1/N to get
(P (2n,N, λ) ≡ P2n(λ))

N2λ2 P (2n,N, λ) = −
(

4r(t)
d2P

dt2
+ 2

dr(t)

dt

dP

dt

)

= −
(

2
√

r(t)
d

dt

)2

P (2n,N, λ). (3.15)
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It tells us that that the arguments of P appear only in the combinations t = 2n/N and x = Nλ
in the large-N limit. After the change of variables

t 7→ u(t) ≡
∫ t

0

dt′

2
√

r(t′)
, (3.16)

we equivalently have
(

d2

du2
+ x2

)

P (u, x) = 0. (3.17)

The unique solution to this trigonometric differential equation which satisfies the boundary and
parity conditions

P (0, x) = 1, P (u,−x) = P (u, x) (3.18)

is

P (u, x) = lim
N→∞

P2n(
x

N
)

∣

∣

∣

∣

n=Nt/2
= cos ux = Γ(

1

2
)
J− 1

2
(ux)

(ux/2)−
1
2

. (3.19)

The odd-order polynomials are constructed out of normalized even-order ones as follows.

P̃2n+1(λ) ≡ P2n+2(λ)− P2n(λ)

λ
(3.20)

are odd polynomials of order 2n+ 1, and are orthogonal to λ2k+1, k = 0, · · · , n− 1:

∫ ∞

−∞
dλ e−NV (λ)P̃2n+1(λ)λ2k+1

=

∫ ∞

−∞
dλ e−NV (λ) (P2n+2(λ)− P2n(λ))λ2k = 0. (3.21)

The microscopic limit of (3.20) reads

P̃2n+1(
x

N
)

∣

∣

∣

∣

n=Nt/2
=

2

x

∂

∂t
P2n(

x

N
)

∣

∣

∣

∣

n=Nt/2
. (3.22)

Under the assumption that P̃2n+1
′(0) 6= 0, change of normalization to P2n+1

′(0) = 1 is imple-
mented by

P2n+1(λ) =
P̃2n+1(λ)

P̃2n+1
′(0)

. (3.23)

By inserting the asymptotic form of even-order polynomials (3.19) into (3.22) and normalizing
according to (3.23), we conclude

lim
N→∞

N P2n+1(
x

N
)

∣

∣

∣

∣

n=Nt/2
=

sinux

u
= xΓ(

3

2
)
J 1

2
(ux)

(ux/2)
1
2

. (3.24)
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Now we proceed for a generic α by induction. Given a set of polynomials {P (α)
n (λ)} which are

orthogonal with respect to the measure dλλ2α e−NV (λ2) on [−∞,∞], and are normalized by

P
(α)
2n (0) = P

(α)
2n+1

′(0) = 1, we note that

P̃ (α+1)
n (λ) ≡ P

(α)
n+2(λ)− P (α)

n (λ)

λ2
(3.25)

are polynomials of order n. They are orthogonal to each other with respect to the measure

dλλ2(α+1) e−NV (λ2). Under the assumption that P̃
(α+1)
2n (0), P̃

(α+1)
2n+1

′(0) 6= 0, the correctly normal-
ized orthogonal polynomials are given by

P
(α+1)
2n (λ) =

P̃
(α+1)
2n (λ)

P̃
(α+1)
2n (0)

, P
(α+1)
2n+1 (λ) =

P̃
(α+1)
2n+1 (λ)

P̃
(α+1)
2n+1

′(0)
. (3.26)

If we substitute eqs. (3.4) for a given α into the microscopic limit of eq. (3.25), we confirm that

P̃
(α+1)
2n (

x

N
)

∣

∣

∣

∣

n=Nt/2
= −N Γ(α+ 1

2 )
√

r(t)

Jα+ 1
2
(u(t)x)

(u(t)/2)α−
1
2 xα+ 1

2

, (3.27a)

P̃
(α+1)
2n+1 (

x

N
)

∣

∣

∣

∣

n=Nt/2
= −Γ(α+ 3

2)
√

r(t)

Jα+ 3
2
(u(t)x)

(u(t)x/2)α+ 1
2

, (3.27b)

P̃
(α+1)
2n (0)

∣

∣

∣

n=Nt/2
= −N u(t)

(2α+ 1)
√

r(t)
, (3.28a)

P̃
(α+1)
2n+1

′(0)
∣

∣

∣

n=Nt/2
= −N u(t)

(2α+ 3)
√

r(t)
. (3.28b)

Thus eqs. (3.4) hold also for α+1 after normalizing according to (3.26). Together with the results
(3.19) and (3.24) for α = 0, this completes the proof of Theorem 2.

3.2 Universal correlations

The integration kernel associated with the eigenvalue problem of M is (for brevity we set N =
odd = 2N + 1)

KN (λ, µ)=(λµ)α e−
N
2

(V (λ2)+V (µ2)) 1

N

N−1
∑

n=0

P
(α)
n (λ)P

(α)
n (µ)

h
(α)
n

=(λµ)α e−
N
2

(V (λ2)+V (µ2)) 1

N

(

N
∑

n=0

1

h
(α)
2n

)

P
(α)
2N+1(λ)P

(α)
2N (µ)− P (α)

2N (λ)P
(α)
2N+1(µ)

λ− µ .(3.29)

Here use is made of the Christoffel-Darboux identity, and the proportionality constant in the
second line is determined by matching O(λ0µ0) terms. Noting that the orthogonality relation
(3.3) in the microscopic limit

2

N2α+1

∫ ∞

0
dxx2α P

(α)
2n (

x

N
)

∣

∣

∣

∣

n=Nt/2
P

(α)
2m (

x

N
)

∣

∣

∣

∣

m=Nt′/2
= h

(α)
2n

2

N
δ(t− t′) (3.30)
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is identical to the Bessel closure relation (inversion of Hankel transform)

∫ ∞

0
dxxJα− 1

2
(ux)Jα− 1

2
(u′x) =

1

u
δ(u− u′), (3.31)

we can determine the asymptotic form of the norm as

h
(α)
2n =

1

N2α
Γ(α+

1

2
)2
(

2

u(t)

)2α√

r(t) + higher orders in
1

N
. (3.32)

Accordingly we obtain

N
∑

n=0

1

h
(α)
2n

=
N2α

Γ(α+ 1
2)2 22α

· N
2

∫ 1

0
dt
u(t)2α
√

r(t)
=

N2α+1

Γ(α+ 1
2)2 22α

u(1)2α+1

2α+ 1
. (3.33)

Using Theorem 2 and inserting eq. (3.33) into (3.29), we obtain the universal form of the kernel
(the generalized sine kernel of order α) in the microscopic limit

lim
N→∞

1

N
KN (

x

N
,
y

N
) =

u(1)

2

√
xy
Jα+ 1

2
(u(1)x)Jα− 1

2
(u(1)y) − Jα− 1

2
(u(1)x)Jα+ 1

2
(u(1)y)

x− y . (3.34)

Therefore all formulae for the correlation functions

ρN (λ1, · · · , λs) =

〈

s
∏

a=1

1

N
tr δ(λa −M)

〉

= det
1≤a,b≤s

KN (λa, λb), (3.35)

previously calculated for the Gaussian unitary ensemble in the microscopic limit [15, 12]

ρS(x1, · · · , xs) = lim
N→∞

1

N s
ρN (

x1

N
, · · · , xs

N
), (3.36)

hold universally. Specifically, the spectral density ρN (λ) = 〈1/N tr δ(λ−M)〉 = KN (λ, λ) univer-
sally takes the form (now ρ(0) = u(1)/π)

ρS(x) =

(

πρ(0)

2

)2

x

(

J2
α+ 1

2
+ J2

α− 1
2
− Jα+ 1

2
Jα− 3

2
− Jα− 1

2
Jα+ 3

2

)

(πρ(0)x) . (3.37)

It enjoys the matching condition
lim
x→∞

ρS(x) = ρ(0). (3.38)

4 Conclusion and speculation

In the present work we have proven two theorems concerning the asymptotic behavior of orthog-
onal polynomials for a broad class of measures. They show a remarkable asymptotic universality
near the origin, a relation previously only known for the classical orthogonal polynomials of gen-
eralized Laguerre and Jacobi type [10]. Furthermore, we have used this highly universal behavior
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to prove universality conjectures regarding the spectral densities and their s-point correlators in
the microscopic limit.

All of these proofs refer to the zero-dimensional matrix model language alone. And, as we have
emphasized in the Introduction, the assumption that this universality can be applied to full d-
dimensional quantum gauge theories with fermionic fields is a priori very far from obvious. Of
course, our matrix model universality theorems are interesting in their own right. But from a
particle physics perspective the real focus should be on the application of these theorems to the
Dirac operator spectrum [2].

How could we imagine the link between random matrix models and gauge theories established
in this connection? Consider a Euclidean four-dimensional SU(Nc) gauge theory coupled to Nf

light fermions in, say, the fundamental representation. Assume that Nf is small enough to allow
for the conventional scenario of spontaneous chiral symmetry breaking. Let us simply call such
a theory “QCD”. Its partition function can be written formally as

ZQCD =

∫ DAµ
(Gauge)

Nf
∏

f=1

Dψ̄fDψf e−S[A]−
∫

ψ̄f (iD/+mf )ψf , (4.1)

where S[A] is the gauge field part of the action. Consider the theory in a finite volume V4. Let
us now seek a low-energy effective description of this theory. One way is the chiral Lagrangian
(χL) approach, which in this case introduces considerable simplification due to the suppression
of all derivative terms (since one is interested only in the very soft modes) [5]. Here the chiral
condensate at zero mass, 〈ψ̄ψ〉 ≡ Σ is by construction assumed to be non-vanishing. Below is a
schematic picture of how one could imagine random matrix theory to fit into this framework:

ZQCD =
∫ DAµ

(Gauge) e−S[A] ∏

f det(iD/ +mf )
(b)−→ ZχUE =

∫

dM e−NV (M) ∏

f det(M +mf )

↓ (a) (c) ↓

ZχL =
∫

SU(Nf ) dU eNΣ trmU e
i θ
Nf +c.c. (d)←− ZχGUE =

∫

dM e−NΣ2 trM2 ∏

f det(M +mf )

This link (a) is, however, based on the global symmetry breaking pattern SU(Nf )L×SU(Nf )R →
SU(Nf )V alone and thus by no means refers to the microscopic theory.

Let us now consider a different route (b)-(c)-(d): suppose we start with QCD in a finite volume,
and with a sharp ultraviolet cut-off. (One would like to think of conventional lattice regulariza-
tions, were it not for the known difficulties of defining massless fermionic degrees of freedom in
that case.) Consider the formal change of integration variables from the gauge field Aµ(x) to
the Dirac operator iD/ = A/(x) + i∂/ ≡ M itself (b). Since V4 is the size of the matrix M , we
write N = V4. Although we can hardly imagine computing the Jacobian J of this transformation
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the resulting partition function would formally look like the random matrix model above, with
V (M) = S[A(M)]− log J(M). Once phrased in a matrix model language, we can apply our Theo-
rem 1 to substitute the uncomputable V (M) by another simple measure, say that of the Gaussian
unitary ensemble (GUE) with V (M) = Σ2 trM2. This GUE can be shown to be expressible as
the zero-dimensional chiral Lagrangian in the microscopic limit (d) [2]. If the relation (b) be-
tween a properly regularized version of QCD and a particular random matrix model were not
still very formal and weakly established, the diagram would otherwise close itself full circle. The
diagram above at least serves as an intuitive picture outlining the logical routes between the dif-
ferent formulations, and the rôle played by our universality theorems proposed in this connection.
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