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Abstract

The correlation functions of the multi-arc complex matrix model are shown
to be universal for any finite number of arcs. The universality classes are
characterized by the support of the eigenvalue density and are conjectured to
fall into the same classes as the ones recently found for the hermitian model.
This is explicitly shown to be true for the case of two arcs, apart from the
known result for one arc. The basic tool is the iterative solution of the loop
equation for the complex matrix model with multiple arcs, which provides all
multi-loop correlators up to an arbitrary genus. Explicit results for genus one
are given for any number of arcs. The two-arc solution is investigated in detail,
including the double-scaling limit. In addition universal expressions for the
string susceptibility are given for both the complex and hermitian model.

1supported by European Community grant no. ERBFMBICT960997
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1 Introduction

The notion of universality is one of the crucial properties of random ma-
trix theory. It ensures, that physical quantities of interest such as correlation
functions or the free energy and its derivatives - the string susceptibility - do
not depend explicitly on the matrix potential and in this sense are universal.
The full dependence on the coupling constants can be encoded in few universal
parameters as the endpoints of the support of the spectral density.

Universality can be found in different ways when performing the large-N
limit. First, in the so-called microscopic limit the oscillatory behavior of the
eigenvalue density is studied and found to be universal [1] (for recent progress
see [2] and references therein). In this respect particularly the study of the
unitary ensembles, the complex and hermitian one-matrix model, has drawn
considerable attention for its application to 3- and 4-dimensional QCD [3].
There, the merging of the eigenvalue density from two into a single arc provides
an effective model for the formation of a chiral condensate in terms of random
matrix theory.

In the second way of performing the large-N limit, the macroscopic limit,
where the oscillations of the eigenvalue density are smoothed, the splitting of
the support into several pieces has been much further understood. After the
seminal works for the one-arc case by Ambjørn and his collaborators for the
hermitian and complex matrix model [4, 5, 6], it has been recently shown for
the hermitian model, that for any number of arcs all correlation functions are
universal and can be classified completely by the support of the spectral density
[7, 8].

The aim of the present paper is to extend the previous results to the com-
plex matrix model with multiple arcs, generalizing the work of [5]. The same
achievements will be made here, obtaining again a whole set of universal correla-
tors characterized by the support of the density. Moreover the new universality
classes found here are conjectured to coincide precisely with the ones previously
found for the hermitian model [7, 8]. This result was already known for one
arc [6] and is now proven explicitly for two arcs as well. The basic tool therefor
will be again the iterative solution of the loop equation. Furthermore the string
susceptibility of both, the complex and the hermitian model with two arcs will
be calculated explicitly and shown to be universal.

This opens the possibility to investigate the relationship between multi-arc
matrix models and integrable hierarchies using loop equation techniques [9, 10].
The outcome will have to be compared to earlier results for the two-arc solution
from orthogonal polynomials [11], which depend heavily on the reliability of the
ansatz for the recursion coefficients. For the case of two non-symmetric arcs
this is already very doubtful [12].

Another earlier attempt towards the universality of the two-arc phase of
the hermitian matrix model has been made in [13]. However, the completely
independent treatment of the two arcs leads to an expression for the correlator of
densities which fails to fulfill the correct analyticity properties when compared
to the two-arc eigenvalue density.

1



It should be mentioned that macroscopic universality has been proven for
orthogonal and symplectic ensembles as well, using variational methods in the
saddle-point approximation [14]. This result for the correlator of densities has
been extended to planar multi-loop correlators in the framework of loop equa-
tions [15]. However, the appearance of odd powers in 1/N in the expansion
make it very difficult to achieve explicit results for higher genera.

Furthermore renormalization group techniques for matrix models have been
recently extended to the multi-arc case as well [16]. For the hermitian matrix
model with a symmetric double-well potential the authors of [16] find a second
attractive fixed point of the renormalization group transformation, apart from
the Gaussian one. These results confirm the universality of the planar two-loop
correlator for two symmetric arcs by completely different means.

The present paper is organized as follows. After briefly introducing the
basic definitions in section 2, section 3 deals with the planar solution of the
loop equations for the multi-arc complex matrix model. Section 4 contains the
iterative solution of the loop equation, where explicit results are given for genus
one for any number of arcs. The question of the equivalence with the univer-
sality classes of the hermitian model is also addressed here. In section 5 the
two-arc solution is presented in more detail including a proof for the match-
ing with the corresponding two-arc universality class of the hermitian model.
Section 6 contains all the possibilities for performing the double-scaling limit
for two arcs, where the generic case maps to the double-scaled one-arc solution
[6]. Finally, before concluding in the last section the string susceptibility for
both the complex and the hermitian two-arc model is explicitly shown to be
universal as well. Throughout the paper the notation for the solution of the
one-arc complex model [5] will be followed closely.

2 Basic Definitions

The complex one-matrix model is defined by the partition function

Z [N, {gi}] ≡ eN
2F ≡

∫

dφ†dφ exp(−N TrV (φ†φ)) ,

V (φ†φ) ≡
∞
∑

j=1

gj

j
(φ†φ)j , (2.1)

where the integration is over complex N × N matrices. The generating func-
tional or one-loop correlator is given by

W (p) ≡
1

N

∞
∑

k=0

〈Tr(φ†φ)k〉

p2k+1
=

1

N

〈

Tr
p

p2 − φ†φ

〉

. (2.2)

Introducing the loop insertion operator

d

dV
(p) ≡ −

∞
∑

j=1

j

p2j+1

d

dgj

(2.3)
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the one-loop correlator can be obtained from the free energy,

W (p) =
d

dV
(p)F +

1

p
. (2.4)

More generally one gets the n-loop correlator by iteratively applying the loop
insertion operator to W (p) (or F ),

W (p1, . . . , pn) ≡ Nn−2
∞
∑

k1,...,kn=1

〈Tr(φ†φ)k1 · · ·Tr(φ†φ)kn〉conn

p2k1+1
1 · · · p2kn+1

n

(2.5)

=
d

dV
(pn)

d

dV
(pn−1) · · ·

d

dV
(p2)W (p1) , n ≥ 2 , (2.6)

where conn refers to the connected part. All the multi-loop correlators and the
free energy have the same 1/N expansion

W (p1, . . . , pn) =
∞
∑

g=0

1

N2g
Wg(p1, . . . , pn) , (2.7)

F =
∞
∑

g=0

1

N2g
Fg , (2.8)

so relation (2.6) holds for each genus separately. In particular eq. (2.4) may be
written as

Wg(p) =
d

dV
(p) Fg , g ≥ 1 . (2.9)

3 The Loop Equation

The loop equation for the multi-arc complex matrix model [17] looks the same
as for one arc [5] apart from the integration contour C ,

∮

C

dω

4πi

ωV ′(ω)

p2 − ω2
W (ω) = (W (p))2 +

1

N2

d

dV
(p)W (p) , p 6∈ σ . (3.1)

Here C encloses all the square root singularities (cuts) of W (p) along the arcs
of support σ of the eigenvalue density ρ(y),

σ =







⋃

s
2
i=1([−x2i−1,−x2i] ∪ [x2i, x2i−1]) s even

(

⋃

s−1
2

i=1 ([−x2i−1,−x2i] ∪ [x2i, x2i−1])
)

∪ [−xs, xs] s odd .
(3.2)

where x1 > . . . > xs > 0 . The integration contour C can thus be depicted in
the following way
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Figure 1: C = ∪s
i=1Ci

As it has been explained already in [18] the eigenvalue density can be intro-
duced either for real values y or for real positive values y2, y ∈ R, where y2 is
the eigenvalue of φ†φ. In the first convention, which is chosen throughout the
calculations, ρ(y) is a smooth, symmetric function on R, whereas in the latter
it becomes singular when having support at the origin [18]. In eq. (3.2) this is
just the case when s is odd. The corresponding density on R+ is obtained by
transforming ρ(y) → ρ(y)/2y ≡ ρ(y2).

Now there is a simple way to see why the case of an even s is actually
equivalent to the hermitian model with s/2 cuts on R+

1. When identifying

1

p
W (p) → WH(p̄)

∣

∣

∣

p̄=p2
,

(±xi)
2 → x̄i > 0 , i = 1, . . . , s , (3.3)

one exactly arrives at the loop equation of the hermitian matrix model (H) with
s/2 cuts [8], plus an additional term ∼ 1/p̄. This term must vanish since WH(p̄)
has to be regular at p̄ = 0 for s even, as the origin is not included in the support
σ then2. In [18] the same observation had been made on the level of orthogonal
polynomials for the case of s = 2, identifying the respective string equations of
the complex and hermitian model. Consequently in all the following only the
case of s odd will be further considered. It will be called (s+ 1)/2-arc solution,
counting the number of arcs on R+. This way of counting is chosen to name
the same universality class in the hermitian and complex model by the same
number of arcs.

Solving the loop equation (3.1) in the planar limit the 1/N2-term can be
omitted. The result is given by [17]

W0(p) =
1

2

∮

C

dω

4πi

wV ′(ω)

p2 − ω2

√

√

√

√

s
∏

i=1

p2 − x2
i

ω2 − x2
i

, (3.4)

1 On the level of the eigenvalue model in [18] this is intuitively clear.
2 This fact had been missed in [17], giving a simple explanation why the results presented

there for s = 2 are equivalent to [6].
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which can be rewritten as

W0(p) =
1

4

(

V ′(p) −M(p)

√

∏s

i=1
(p2 − x2

i )

)

. (3.5)

Here M(p) is an analytic function given by

M(p) =

∮

C∞

dω

4πi

2ωV ′(ω)

ω2 − p2

1
√

∏s
i=1(ω

2 − x2
i )
. (3.6)

The signs of the square root in the complex plain in eq. (3.5) are chosen to be
(±p)s at ±∞. From eq. (3.5) the eigenvalue density ρ(y) can be immediately
read off:

ρ(y) ≡ lim
ǫ→0

1

2πi
(W0(y − iǫ) − W0(y + iǫ)) , y ∈ σ ,

=
1

4π
|M(y)|

√

−
∏s

i=1
(y2 − x2

i ) . (3.7)

The parameters xi, i = 1, . . . , s, given as functions of the coupling constants
gi, i ∈ N+, are determined by the boundary conditions on W0(p). From the
asymptotic behavior W (p) ∼ 1

p
eq. (2.2) it follows

δl,s =
1

2

∮

C

dω

4πi
ωlV ′(ω)

1
√

∏s
i=1(ω

2 − x2
i )

, l = 1, 3, . . . , s . (3.8)

In analogy to the hermitian case [8] the remaining s−1
2 equations for the xi are

obtained by a criterion of stability [19]3

0 =

∫ x2k

x2k+1

dyM(y)

√

∏s

j=1
(y2 − x2

j) , k = 1, . . . ,
s− 1

2
. (3.9)

For s ≥ 3 these equations lead to the explicit appearance of elliptic integrals
in the higher genus correlators as well as in the planar n-loop correlators for
n ≥ 2.

4 The iterative solution

After having solved the loop equation (3.1) in leading order, an iterative
scheme can be built up for calculating higher order contributions. It is based
on the planar solution (3.4) along the same lines as in [5], which is treating the
one-cut situation. Inserting the genus expansion of the one-loop correlator eq.
(2.7) into the loop eq. (3.1) and comparing order by order in genus, the higher
order contributions are determined by

(K̂ − 2W0(p))Wg(p) =
g−1
∑

g′=1

Wg′(p)Wg−g′(p) +
d

dV
(p)Wg−1(p) , g ≥ 1 . (4.1)

3Because of symmetry the stability criterion has to be imposed only between half of all
arcs.
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Here K̂ is a linear integral operator, given by

K̂f(p) ≡

∮

C

dω

4πi

ωV ′(ω)

p2 − ω2
f(ω) . (4.2)

Once the result forW0(p) is known one can determineWg(p) for g ≥ 1 iteratively
from contributions of lower genus on the r.h.s. of eq. (4.1), provided that the
operator (K̂ − 2W0(p)) can be uniquely inverted. However, it can be shown
from the boundary conditions (3.8), that this operator possesses the following
zero modes

Ker(K̂ − 2W0(p)) = Span{φ(0)(p), p2φ(0)(p), . . . , ps−1φ(0)(p)} ,

φ(0)(p) ≡
1

√

∏s
i=1(p

2 − x2
i )
. (4.3)

Because of the asymptotic of Wg(p) ∼ O( 1
p3 ) for g ≥ 1, which can be seen from

the definition (2.2), the last zero mode ∼ 1
p

cannot contribute to Wg(p). In the
case of s = 1 this argument uniquely fixes the inversion of eq. (4.1) [5]. Here,
the condition (2.9) will be used in addition to achieve a unique solution Wg(p)
for any s. Therefore a set of basis functions is introduced in the following way:

(K̂ − 2W0(p)) χ
(n)
i (p) =

1

(p2 − x2
i )

n
, i = 1, . . . , s , n ∈ N+ ,

(K̂ − 2W0(p)) ψ
(n)(p) =

1

p2n
, n ∈ N+ . (4.4)

In addition a change of variables from the coupling constants gi to the following
moments is performed:

I
(k)
i ≡

∮

C

dω

4πi

ωV ′(ω)

(ω2 − x2
i )

k
φ(0)(ω) , i = 1, . . . , s , k ∈ N+ ,

M (n) ≡

∮

C

dω

4πi

V ′(ω)

ω2n+1
φ(0)(ω) , n ∈ N . (4.5)

Apart from the endpoints of the cuts xi these moments will encode the univer-
sality of the higher genus correlators. Namely given that the r.h.s. of eq. (4.1)
is a fractional rational function of p having poles at the xi only, Wg(p) will have
the following structure:

Wg(p) =
3g−1
∑

n=1

s
∑

i=1

A
(n)
i,g χ

(n)
i (p) +

g
∑

n=1

D(n)
g ψ(n)(p) . (4.6)

The coefficients of the basis functions A
(n)
i,g and D

(n)
g are complicated functions

of the endpoints xi and of the moments eq. (4.5). As the order of the highest
pole in Wg(p) is not changed compared to the one-cut case [5], Wg(p) will

depend on at most s(3g − 1) moments I
(k)
i and g moments M (n). This follows

from the same arguments as in [5]. The unique set of basis functions can be
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proven to be (see appendix A):

χ
(n)
i (p) ≡

1

I
(1)
i

(

φ
(n)
i (p)

∣

∣

∣

d
dV

−part
−

n−1
∑

k=1

χ
(k)
i (p)I

(n−k+1)
i

)

,

ψ(n)(p) ≡
1

M (0)

(

Ω(n)(p)
∣

∣

∣

d
dV

−part
−

n−1
∑

k=1

ψ(k)(p)M (n−k)

)

,

φ
(n)
i (p) ≡

1

(p2 − x2
i )

n
φ(0)(p) , i = 1, . . . , s , n ∈ N+ ,

Ω(n)(p) ≡
1

p2n
φ(0)(p) , n ∈ N+ . (4.7)

The restriction to the part which can be written as a derivative of the loop inser-
tion operator d

dV
(p) ensures that the whole p-dependence of the basis functions

and thus of Wg(p) in eq. (4.6) can be absorbed into such derivatives in or-
der to fulfill eq. (2.9). At the same time this requirement uniquely fixes the
ambiguities coming from the zero modes in eq. (4.3).

The explicit construction of the basis functions can be found in appendix
A, the first of which reading

χ
(1)
i (p) =

1

x2
i

dx2
i

dV
(p) , i = 1, . . . , 2s ,

χ
(2)
i (p) =

−2

3x2
i I

(1)
i

dI
(1)
i

dV
(p) −

2

3x4
i

dx2
i

dV
(p) −

1

3x2
i

s
∑

j=1
j 6=i

1

x2
j − x2

i

(dx2
j

dV
(p) −

dx2
i

dV
(p)
)

ψ(1)(p) = −
2

M (0)

dM (0)

dV
(p) −

s
∑

i=1

1

x2
i

dx2
i

dV
(p) . (4.8)

The one-loop correlator of genus one W1(p) can now be calculated from eq.
(4.1) for g = 1, which reads

(K̂ − 2W0(p))W1(p) =
d

dV
(p)W0(p) . (4.9)

Therefore the planar two-loop correlator W0(p, p) on the r.h.s. has to be deter-
mined, which can be achieved from applying d

dV
(p) to eq. (3.4) in the following

form

d

dV
(p) =

∂

∂V
(p) +

s
∑

i=1

(dx2
i

dV
(p)

∂

∂x2
i

+
∞
∑

k=1

dI
(k)
i

dV
(p)

∂

∂I
(k)
i

)

+
∞
∑

k=0

dM (k)

dV
(p)

∂

∂M (k)

∂

∂V
(p) ≡ −

∞
∑

j=1

j

pj+1

∂

∂gj

. (4.10)

Using the results from the appendix A eq. (A.7) one obtains

W0(p, p) =
1

16

s
∑

i=1

x2
i

(p2 − x2
i )

2
−

1

16

s
∑

i,j=1
i6=j

x2
i

x2
i − x2

j

(

1

p2 − x2
i

−
1

p2 − x2
j

)

+
1

16p2
−

s

16

s
∑

i=1

1

p2 − x2
i

+
1

4

s
∑

i=1

s−3
2
∑

l=0

αi,l x
2l
i

p2 − x2
i

, (4.11)
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where the αi,l are given by the solution of the linear set of equations (A.8).
They depend only on the endpoints of the cuts xi and on elliptic functions of
them. The result for W1(p) now follows from inverting eq. (4.9) by inserting
the basis functions eq. (4.8) into W0(p, p):

W1(p) =
1

16

s
∑

i=1

x2
iχ

(2)
i (p) −

1

16

s
∑

i,j=1
i6=j

x2
i

x2
i − x2

j

(

χ
(1)
i (p) − χ

(1)
j (p)

)

+
1

16
ψ(1)(p) −

s

16

s
∑

i=1

χ
(1)
i (p) +

1

4

s
∑

i=1

s−3
2
∑

l=0

αi,l x
2l
i χ

(1)
i (p). (4.12)

The calculation of higher genera Wg(p) as well as the explicit integration to
get the free energy Fg becomes very technical as one has to differentiate or to
integrate the set of elliptic functions given in eq. (A.6). Still, following the
arguments from [5] it becomes clear, that the general structure for Wg(p) will
be precisely the one given in eq. (4.6) for an arbitrary number of cuts.

In the case s = 3 the elliptic integrals occurring are given in terms of the well
known complete elliptic integrals of first, second and third kind (see eq. (B.2))
making more explicit results accessible. In the generic double-scaling limit the
solution will be mapped to the double-scaled one-cut solution [6]. This relation
is probably true for all multi-cut solutions. In [6] higher genus results have been
obtained explicitly up to and including g = 4.

Apart from the general result for genus one for any s also the planar two-
loop correlator at different arguments can be calculated explicitly, using again
the results from appendix A. Performing a similar calculation as for W0(p, p) it
follows

W0(q, p) =
1

4

φ(0)(q)

φ(0)(p)

(

2q2

(q2 − p2)2
+

1

q2 − p2

(

s− 1 +
s
∑

i=1

x2
i

p2 − x2
i

)

+
s
∑

i=1

s−3
2
∑

l=0

αi,l q
2l

p2 − x2
i

)

−
1

2

pq

(q2 − p2)2
. (4.13)

Thus W0(p, q) and because of eqs. (2.6) and (4.10) also all the higher planar
multi-loop correlators are universal in the sense that they only depend on the
endpoints of the cuts xi. The same statement can be made for the density cor-
relators, as they can be obtained from the multi-loop correlators and vice versa
(see e.g. [7]). Consequently eq. (4.13) gives a classification of all universality
classes of the multi-arc complex matrix model in terms of the support of the
eigenvalue density.

A similar classification has been found in previous works for the hermitian
model [7, 8], so a natural question to ask is whether one can identify the classes
here and there, which have the same number of intervals as support. In order to
do so one has to map again the correlation functions from the hermitian model
[8] to the corresponding quantities in the complex model as in eq. (3.3),

1

p2
W0(p, p) → WH

0 (p̄, p̄)
∣

∣

∣

p̄=p2
. (4.14)
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In addition the smallest endpoint x̄2s̄ of the cuts of the hermitian model (H) has
to be set to zero, as now the complex model with odd s is treated4. While for
the one-cut case it is known already, that the universality classes for the planar
two-loop correlators match [4], in the general case W0(p, p) from eq. (4.11) has
to be compared with [8]

p̄ WH
0 (p̄, p̄) =

1

16

2s̄−1
∑

i=1

x̄i

(p̄− x̄i)2
−

1

16

2s̄−1
∑

i,j=1
i6=j

x̄i

x̄i − x̄j

(

1

p̄− x̄i

−
1

p̄− x̄j

)

+
1

16p̄
−

2s̄ − 1

16

2s̄−1
∑

i=1

1

p̄− x̄i

+
1

4

2s̄−1
∑

i=1

2s̄−4
2
∑

l=0

ᾱi,lx̄
l
i

p̄− x̄i

+
α2s̄,0

4p̄
(4.15)

for p̄ = p2, x̄i = x2
i , i = 1, . . . , 2s̄−1 and x̄2s̄ → 0. When identifying s = 2s̄−1,

which is the corresponding number of endpoints, the two correlators eq. (4.11)
and eq. (4.15) are identical apart from the last extra term in eq. (4.15) which
is non vanishing in the limit x2s̄ → 0. However, one has to bare in mind that
the ᾱi,l are solutions to a set of 2s̄(s̄−1) linear equations (see eq. (5.16) in [8]),
which are different from the s(s− 1)/2 eqs. (A.8) determining the αi,l. A proof
for the equivalence of the two sets of universality classes would thus need some
nontrivial identities for the elliptic integrals occurring and is therefore left as
a conjecture. Still, for the case of s = 3 this proof can performed explicitly as
it will be shown in the next section. Summing up the results obtained so far
the complex model with both s even and odd contains all universality classes
found for the unitary ensembles, due to the fact that the hermitian model is
contained in the complex one for the case of s even.

5 The two-cut solution s = 3

As it has been mentioned already for s = 3 further results become accessible
as the elliptic integrals originating from the boundary conditions can be related
to the complete elliptic integrals of the first, second and third kind. Explicit

expressions for the zero mode coefficients αi of the quantities
dx2

i

dV
(p), which are

responsible for the appearance of the elliptic integrals, are given in appendix B
eq. (B.5).

In the previous section the set of universality classes for all multi-arc so-
lutions for the complex model has been given and an equivalence to the ones
recently found in the hermitian model [7, 8] was conjectured. In the special case
considered this equivalence will be shown to hold. For s = 3 the general results
obtained for W0(p, p) eq. (4.11) and W0(p, q) eq. (4.13) take the following form,
using the results for the αi from appendix B,

4In matching the correlators of the two models the density for nonnegative eigenvalues of
the complex model is considered.
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W0(p, p) =
1

16

3
∑

i=1

x2
i

(p2 − x2
i )

2
+

1

16p2
−

1

16

3
∑

i<j

x2
i + x2

j

(p2 − x2
i )(p

2 − x2
j )

+
1

16

1

p2 − x2
1

+
3(x2

2 + x2
3) − 2p2

16(p2 − x2
2)(p

2 − x2
3)

+
1

4

x2
2(x

2
1 − x2

3)
∏3

j=1(p
2 − x2

j )

E(k)

K(k)

(5.1)

W0(p, q) =
1

4(p2 − q2)2

(

p2

√

(p2 − x2
1)(q

2 − x2
2)(q

2 − x2
3)

(p2 − x2
2)(p

2 − x2
3)(q

2 − x2
1)

+ q2

√

(p2 − x2
2)(p

2 − x2
3)(q

2 − x2
1)

(p2 − x2
1)(q

2 − x2
2)(q

2 − x2
3)

)

+
1

4

x2
2(x

2
1 − x2

3)
√

∏3
j=1(p

2 − x2
j)(q

2 − x2
j)

E(k)

K(k)
−

1

2

pq

(p2 − q2)2
. (5.2)

The consistency of the two results can be checked explicitly. Namely W0(p, q)
is symmetric, it has the same analyticity properties as W0(p), it asymptotically

reaches ∼ O( 1
p3 ), it is regular at equal arguments and coincides with W0(p, p)

and it finally has the correct discontinuity − pq
(p2−q2)2 along the cuts. The con-

jectured equivalence of the universality class of the hermitian model with two
cuts at [x̄4, x̄3] ∪ [x̄2, x̄1] is now evident when comparing with the results given
in [8] (eqs. (6.6) and (6.5)). Setting x̄4 = 0 and identifying x̄i = x2

i it holds

1

p2
W0(p, p) ≡ WH

0 (p̄, p̄)
∣

∣

∣ p̄=p2

x̄i=x2
i

, x̄4=0

,

1

pq
W0(p, q) ≡ WH

0 (p̄, q̄)
∣

∣

∣ p̄=p2, q̄=q2

x̄i=x2
i

, x̄4=0

. (5.3)

So despite the fact that in the complex model the eigenvalue density ρ(y2)
becomes singular at the origin whereas the density of the hermitian model
stays smooth, both models belong to the same universality class for one and
two cuts. Nevertheless, for higher genera the two models will give in general
different results, as it can be seen for example from comparing the free energy
obtained below with the one in [8]. It is only in the double-scaling limit, that
all the models mentioned will become completely equivalent (see sect. 6).

The correlator of densities given in [13], which can be related to the planar
two-loop correlator W0(p, q) (see e.g. [7]), does not match with the above two-
arc universality class for the following reasons. First of all the authors of [13] do
not impose any boundary condition as in eq. (3.9) and are therefore left with a
parameter dependent expression. Furthermore their independent treatment of
the two arcs, adding up two single arc correlators with different endpoints, does
not fulfill the correct analyticity properties compared to the two-arc eigenvalue
density in [8].

Turning back to the results for genus g = 1 from the previous section also
the free energy F1 can now be determined. This is due to the fact that the
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derivatives of the complete elliptic integrals with respect to their moduli are
known and close among themselves (see e.g. [20]). From eq. (4.12) the one-
loop correlator of genus one for s = 3 takes the following form,

W1(p) = −
1

24

3
∑

i=1

( 1

I
(1)
i

dI
(1)
i

dV
(p) +

1

x2
i

dx2
i

dV
(p) +

∑

j>i

1

x2
j − x2

i

(
dx2

j

dV
(p) −

dx2
i

dV
(p))

)

−
1

16

∑

i6=j

1

x2
i − x2

j

(dx2
i

dV
(p) −

x2
i

x2
j

dx2
j

dV
(p)
)

−
1

8

1

M (0)

dM (0)

dV
(p)

−
1

4

3
∑

i=1

1

x2
i

dx2
i

dV
(p) +

1

4

3
∑

i=1

αi

x2
i

dx2
i

dV
(p) . (5.4)

Using the results for the αi eq. (B.5) and standard formula for the complete
elliptic integrals [20] F1 can be integrated according to eq. (2.9)

F1 = −
1

24

3
∑

i=1

ln |I
(1)
i | −

1

8
ln |M (0)| −

1

2
ln |K(k)| −

1

6

3
∑

i=1

ln |x2
i |

−
1

6

∑

i<j

ln |x2
i − x2

j | +
1

4

(

ln |x2
1 − x2

3| + ln |x2
2|
)

. (5.5)

Apart from the factor of the M (0)-term all the other terms coincide with the free
energy of genus one of the hermitian model [8] at x̄4 = 0. The same observation
can be made when comparing the free energies of the one-cut solutions. There,
at higher genera the difference between the hermitian and complex model be-
comes more evident. The iterative procedure of solving the loop equation is
purely algebraic and in the case of s = 3 even accessible to computer algebra,
grace to the knowledge of the elliptic integrals. In the next section higher gen-
era will be obtained by other means, namely by comparing to the results for
the one-cut solution in the double-scaling limit [6].

6 The double-scaling limit for s = 3

In general two different situations may occur in the double-scaling limit
(d.s.l.). In the generic case, when the limit is performed at any of the endpoints
±xi, the contributions coming from the multi-cut structure will drop out and
the correlators will precisely match with the continuum version of the one-
cut case [6]. A different situation is given, when the d.s.l. is performed at
simultaneously shrinking or/and merging arcs. The correlators will differ from
the one-arc result, as it has been found similarly in the d.s.l. of the hermitian
two-cut model [8].

6.1 The scaling limit at xj

Choosing any endpoint, say xj , the m-th multi-critical point is defined by m−1
extra zeros of the eigenvalue density eq. (3.7) accumulating at +xj and −xj.
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By tuning the coupling constants in order to reach this point the argument of
the correlators p and the ±xj will scale like

p2 = (xc
j)

2 + aπ ,

x2
j = (xc

j)
2 − aΛ

1
m , (6.1)

with a → 0, whereas the x2
i6=j do not scale. Since I

(k)
i = 1

2
1

(k−1)!
dk−1M(p)
dp2(k−1)

∣

∣

∣

p=xi

the j-th moments will scale like

I
(k)
j ∼ am−k , (6.2)

whereas the other moments I
(k)
i6=j and M (n) do not scale either. In the limit

eq. (6.1) the elliptic integrals K(k) and E(k) and consequently the zero mode
contributions αi will stay subdominant in eqs. (A.7), (A.3) and (A.4),

dx2
j

dV
(p) =

x2
j

I
(1)
j

φ
(1)
j (p) (d.s.l.) , (6.3)

dI
(k)
j

dV
(p) = (k +

1

2
)

(

I
(k+1)
j

dx2
j

dV
(p) − x2

jφ
(k+1)
j (p)

)

(d.s.l.) . (6.4)

Only the basis functions χ
(k)
j (p) ∼ a−m−n+ 1

2 will give dominant contributions
when inverting the loop equation. Moreover the loop insertion operator itself
will simplify due to eq. (6.4) as well as W0(p, p) in eq. (4.11) , the starting
point of the iteration,

W0(p, p) =
1

16

x2
j

(p2 − x2
j)

2
(d.s.l.) ,

d

dV
(p) =

dx2
j

dV
(p)

∂

∂x2
j

+
∞
∑

k=1

dI
(k)
j

dV
(p)

∂

∂I
(k)
j

(d.s.l.) . (6.5)

The eqs. (6.3) – (6.5) precisely map to the corresponding quantities of the
double-scaled one-cut solution, which are given in the appendix A of [6]. Con-
sequently both solutions are equivalent in any order of genus, as they start the
iteration from the same quantities. In fact more was proven in [6], namely that
in the d.s.l. the complex and the hermitian matrix model become completely
equivalent. From the above results this equivalence now extends to the complex
model for s = 3. The same matching has been shown for the two-cut hermi-
tian model [8]. This equivalence has to be understood in the symbolical sense
that the basic objects as moments and endpoints of support appear exactly in
the same way. However, when expanding these objects in terms of coupling
constants gi, the expansion explicitly depends on the number of cuts.

6.2 The scaling limit at merging and shrinking arcs

In the case where the d.s.l. is considered at an endpoint of an arc, which is
simultaneously shrinking to zero, merging with another arc, or both together,
the following situations are possible:
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i) x2 → x3 merging

ii) x3 → 0 shrinking

iii) x2 → x1 shrinking

iv) x2, x3 → 0 merging + shrinking

v) x1, x2 → x3 merging + shrinking

-u u u uu u
−x1 −x2 x2 x1−x3 x3

Figure 2: The support σ of the eigenvalue density ρ(y) for s = 3

In all five cases the resulting continuum limit will differ from the previous
one called generic, and thus from the d.s.l. of the one-cut solution. Only in the
last case v) the contributions containing elliptic integrals in eqs. (A.7), (A.3)
and (A.4) will stay dominant. In all five cases the iterative solution of the loop
equation with not simplify much any longer. The case i) will be treated in more
detail as an example, whereas in the remaining cases only the scaling behavior

of the zero mode coefficients αi of the quantities
dx2

i

dV
(p) will be given.

i) The transition of merging cuts can be parameterized by

x2
2 = x2

c + aν ,

x2
3 = x2

c − aµ , ν, µ > 0 ,

p2 = x2
c + aπ . (6.6)

In this limit the modulus k of the elliptic integrals vanishes,

k2 = a(ν + µ)
x2

1

x2
c(x

2
1 − x2

c)
+ O(a2) , (6.7)

and consequently K(k) and E(k) can be expanded in terms of k2,

E(k)

K(k)
= 1 −

1

2
k2 + O(a2) . (6.8)

The coefficients αi will stay finite in the limit (6.6),

α1 =
x2

1

x2
1 − x2

c

+ O(a) ,

α2 =
1

2
−

x2
c

2(x2
1 − x2

c)
+ O(a) ,

α3 = α2 + O(a) , (6.9)
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leaving the zero mode contributions αiφ
(0)(p) ∼ a−1 subdominant com-

pared to φ
(1)
j=2,3 ∼ a−2 in eq. (B.3). Due to the scaling of both sets of

moments I
(k)
j=2,3 their derivative now reads

dI
(k)
2

dV
(p) = (k +

1

2
)

(

I
(k+1)
2

dx2
2

dV
(p) − x2

2φ
(k+1)
2 (p)

)

+
1

2

k
∑

l=1

1

(x2
3 − x2

2)
k−l+1

(

x2
3φ

(l)
2 (p) − I

(l)
2

dx2
3

dV
(p)

)

(d.s.l.) ,

(6.10)

and the same for the indices 2 and 3 interchanged. The starting point for
the iteration W0(p, p) becomes

W0(p, p) =
1

16

∑

i=2,3

x2
i

(p2 − x2
i )
−

1

16

(x2
2 + x2

3)

(x2
2 − x2

3)

(

1

p2 − x2
2

−
1

p2 − x2
3

)

(d.s.l.)

(6.11)
from which W1(p) can be easily obtained. Clearly the result differs from
the generic d.s.l. in the previous subsection.

ii) The d.s.l. at the inner arc shrinking to zero can be parameterized as

x2
3 = a ,

p2 = aπ . (6.12)

As the modulus k2 reaches unity in this limit the elliptic integrals can be
expanded in terms of the complementary modulus k′2

k′2 ≡ 1 − k2 = a
x2

1 − x2
2

x2
1x

2
2

⇒
E(k)

K(k)
∼ O(

1

ln a
) . (6.13)

The αi will stay finite or vanish,

α1 = α2 = 1 + O(
1

ln a
) ,

α3 ∼ O(
1

ln a
) . (6.14)

Still, the continuum limit will be changed compared to the generic d.s.l.
as now the moments M (k) will also scale.

iii) The shrinking of the outer arcs is parameterized by

x2
1 = x2

c + aν ,

x2
2 = x2

c − aµ , µ, ν > 0 ,

p2 = x2
c + aπ . (6.15)
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Expanding again in the complementary modulus k′2 leads to

E(k)

K(k)
∼ O(

1

ln a
) (6.16)

for the elliptic integrals and hence to the following behavior for the zero
mode coefficients

α1, α2 ∼ O(
1

a ln a
) ,

α3 = −
x2

3

x2
c − x2

3

+ O(
1

ln a
) . (6.17)

Although they become singular in the limit (6.15) they still remain sub-
dominant, leading again to eq. (6.3) for j = 1, 2. The starting point
for the iteration becomes like eqs. (6.10) and (6.11), with the index 3
replaced by 1.

iv) The merging of the arcs while the inner arc is shrinking to zero is para-
meterized by

x2
2 = aν ,

x2
3 = aµ , ν > µ > 0 ,

p2 = aπ . (6.18)

In this limit the modulus reaches

k2 = 1 −
µ

ν
+ O(a) , (6.19)

which is not necessarily small and may take any value in (0,1). The αi

become

α1 = 1 + O(a) ,

α2 =
ν

ν − µ

(

1 −
E(k)

K(k)

)

+ O(a) ,

α3 =
1

ν − µ

(

−µ+ ν
E(k)

K(k)

)

+ O(a) . (6.20)

Consequently they do not contribute in the d.s.l..

v) In the case of merging arcs while the outer arcs are shrinking to zero the
αi will be sufficiently enhanced. The d.s.l. reads

x2
1 = x2

c + aν ,

x2
2 = x2

c + aµ , ν > µ > 0 ,

x2
3 = x2

c ,

p2 = x2
c + aπ . (6.21)

In this limit the modulus becomes

k2 =
µ

ν
+ O(a) , (6.22)
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which can reach any value in (0,1). The zero mode coefficients now read

α1 = a−1 x2
c

(ν − µ)

E(k)

K(k)
+ O(a0) ,

α2 = a−1 x2
c

µ

(

1 −
ν

(ν − µ)

E(k)

K(k)

)

+ O(a0) ,

α3 = a−1 x2
c

µ

(

−1 +
E(k)

K(k)

)

+ O(a0) . (6.23)

In this case all αi become sufficiently singular to contribute in the
dx2

i

dV
(p)

in the d.s.l.. The iterative procedure will therefore not simplify and in
addition the elliptic integrals remain explicitly present in the continuum
limit. This interesting new continuum behavior has also been found in
the hermitian model [8].

7 The string susceptibility

In this section a closed and universal expression will be given for the string
susceptibility of both the complex and hermitian matrix model with two cuts.
It reflects once more the fact that the two-point correlators of both models are
universal as well. As the calculation for the complex model is much simpler
it is presented in some detail. For the hermitian model only the final result
will be given, which can be obtained along the same lines when starting from
[8]. Both susceptibilities are shown to belong to the same class of universality.
The knowledge of the string susceptibility may either serve to study the critical
behavior of the model, as for example in [21] for the O(n)-model or in [22] for
the Penner model. On the other hand when one tries to relate matrix models to
integrable hierarchies using loop equation techniques [9, 10] the susceptibility
enters directly the corresponding Gelfand-Dikii ansatz.

In order to introduce an overall coupling constant in front of the potential
the following replacement is performed,

V (p) →
1

T
Ṽ (p) . (7.1)

The parameter T can be thought of as a temperature or the cosmological con-
stant. The string susceptibility U(T ) is then obtained from the planar free
energy F0,

U(T ) =
d2

dT 2

(

T 2F0

)

∼ (Tc − T )−γstr . (7.2)

Here it is supposed, that U(T ) shows some critical behavior at T = Tc. In order
to exploit the knowledge of the quantities calculated so far as W0(p), the two
following identities will be used, which can be shown easily from the definitions,

T 2dF0

dT
= 2

∮

C

dω

4πi
W0(ω)Ṽ (ω) ,

T
dU

dT
=

d2

dT 2

(

T 3dF0

dT

)

=
d2

dT 2

(

2

∮

C

dω

4πi
TW0(ω)Ṽ (ω)

)

. (7.3)
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The final result obtained will thus be dU
dT

. Taking W0(p) from eq. (3.4) together
with the replacement (7.1) the first differentiation of the integrand yields

d

dT
(TW0(ω)) =

1

4

s
∑

i=1

TI
(1)
i

dx2
i

dT

1

(ω2 − x2
i )φ

(0)(ω)
. (7.4)

In order to proceed the quantities
dx2

i

dT
have to be determined, which can be done

exactly along the same lines as the calculation of the
dx2

i

dV
(p). Here s = 3 has to

be specified to obtain explicit results. Differentiating the boundary equations
(3.8) and (3.9) with respect to T leads to the following set of equations

0 =
3
∑

i=1

TI
(1)
i

dx2
i

dT
,

4 =
3
∑

i=1

x2
iTI

(1)
i

dx2
i

dT
,

0 =
3
∑

i=1

TI
(1)
i

dx2
i

dT
Ki . (7.5)

The solution is obtained with the help of appendix B eq. (B.2), where the Ki

are given,

TI
(1)
i

dx2
i

dT
=

4
∏

j 6=i(x
2
i − x2

j )

(

x2
i − x2

3

Π(α, k)

K(k)

)

, i = 1, 2, 3 . (7.6)

Inserting this into eq. (7.4) for s = 3 one arrives after some calculation at

d

dT
(TW0(ω)) = φ(0)(ω)

(

ω2 − x2
3

Π(α, k)

K(k)

)

, (7.7)

and consequently

T
dU

dT
=

d

dT

(

2

∮

C

dω

4πi
φ(0)(ω)

(

ω2 − x2
3

Π(α, k)

K(k)

)

Ṽ (ω)

)

. (7.8)

As the differentiation of the complete elliptic integrals with respect to their
moduli is known (e.g. in [20]), it is useful to rewrite d

dT
in the following way

d

dT
=

∂

∂T
+

s
∑

i=1

dx2
i

dT

∂

∂x2
i

+
dk2

dT

∂

∂k2
+
dα2

dT

∂

∂α2
. (7.9)

Using this form on the r.h.s. of eq. (7.8) one arrives again after some tedious
calculation at the following result for the integrand

d

dT

(

φ(0)(ω)(ω2 − x2
3

Π(α, k)

K(k)
)

)

=

=
1

2

3
∑

i=1

dx2
i

dT

(

1 −
x2

3

x2
i

Π(α, k)

K(k)

)

(

x2
iφ

(1)
i (ω) + αiφ

(0)(ω)
)

. (7.10)
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In order to get a universal expression for dU
dT

in eq. (7.8) one would like to
perform a partial integration to arrive at an integral containing V ′(ω). Next the
boundary conditions eqs. (3.8) and (3.9) would allow to eliminate the explicit
dependence on the potential. Indeed the wanted transformation can be done
due to the following observation. The last parenthesis in eq. (7.10) containing

the ω-dependence is precisely given by I
(1)
i

dx2
i

dV
(ω), which can be written as a

total derivative with respect to ω. This becomes evident when rewriting the
linear set of equations (B.1), which determine these quantities5,

0 =
3
∑

i=1

I
(1)
i

dx2
i

dV
(p) +

∂

∂p
(pφ(0)(p)) ,

0 =
3
∑

i=1

x2
i I

(1)
i

dx2
i

dV
(p) +

∂

∂p
(p3φ(0)(p)) ,

0 =
3
∑

i=1

I
(1)
i

dx2
i

dV
(p)Ki −

∂

∂p
(pφ(0)(p)A(p)) ,

A(p) =

∫ x2

x3

dy
1

p2 − y2

1

φ(0)(y)
(7.11)

The last equation can be shown to hold using eq. (A.6). In the same way the
boundary condition (3.9) is shown to be equivalent to

0 =

∮

C

dω

4πi
V ′(ω) 2ωφ(0)(ω)A(ω) . (7.12)

From eq. (7.11) one obtains

I
(1)
1

dx2
1

dV
(p) =

1

Σ

∂

∂p

(

(K2−K3)p
3φ(0)(p)+(x2

2−x
2
3)pφ

(0)(p)+(x2
2−x

2
3)pφ

(0)(p)A(p)
)

(7.13)
where

Σ = (x2
2 − x2

3)K1 + (x2
3 − x2

1)K2 + (x2
1 − x2

2)K3 . (7.14)

The
dx2

i

dV
(p) for i = 2, 3 are obtained by a cyclic permutation of the indices.

When inserting eq. (7.13) into eq. (7.10), integrating by parts in eq. (7.8) and
using the boundary conditions (3.8) and (7.12) only the terms ∼ p3φ(0)(p) will
survive in eq. (7.13). The result for the string susceptibility finally reads

dU

dT
=

3
∑

i=1

dx2
i

dT

2
∏

j 6=i(x
2
i − x2

j)

(

x2
i − x2

3

Π(α, k)

K(k)

)2

. (7.15)

It is a remarkable universal quantity, as it shows no explicit potential depen-
dence. Compared to the one-arc susceptibility

dUs=1

dT
=

2

x2

dx2

dT
,

dx2

dT
=

4

TI(1)
, (7.16)

5The same can be achieved for the general set of equations (A.5) and (A.6).
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which can be obtained as a simple exercise, eq. (7.15) contains much more
structure and thus offers more possibilities for showing critical behavior.

The string susceptibility for the hermitian matrix model with two cuts can
be calculated exactly along the same lines presented in this section, taking [8]
as a starting point. It is given by

dUH

dT
=

4
∑

i=1

dx̄i

dT

2
∏

j 6=i(x̄i − x̄j)

(

x̄i − x̄4 + (x̄4 − x̄3)
Π(ᾱ, k̄)

K(k̄)

)2

, (7.17)

where

T Ī
(1)
i

dx̄i

dT
=

4
∏

j 6=i(x̄i − x̄j)

(

x̄i − x̄4 + (x̄4 − x̄3)
Π(ᾱ, k̄)

K(k̄)

)

, i = 1, . . . , 4 .

(7.18)
To compare with the result for the complex model eq. (7.15) x̄4 is set to
zero, as being done already in section 4. It can be seen now explicitly, that
both string susceptibilities belong to the same universality class. This is not so
astonishing, since the planar two-loop correlators of the complex and hermitian
two-cut model have been identified already in section 5. For completeness the
one-arc susceptibility is also given for the hermitian model,

dUH
s=1

dT
=

∑

i=1,2

dx̄i

dT

2
∏

j 6=i(x̄i − x̄j)
,

T Ī
(1)
i

dx̄i

dT
=

4
∏

j 6=i(x̄i − x̄j)
, i = 1, 2 . (7.19)

8 Conclusions

In this paper the program of classifying and calculating correlation func-
tions of the unitary ensembles, the hermitian and complex one-matrix model,
is completed. For any number of arcs of the support of the eigenvalue density
the correlation functions are found to be universal for both models, thus pro-
viding a complete classification of all possible correlators to occur. The higher
order corrections in 1/N2 to the correlators are determined by an iterative so-
lution of the loop equation, where for genus one explicit results are obtained for
any number of arcs. In general, in the double-scaling limit the one- and two-arc
solution of the complex and hermitian model become equivalent all together.
However, when the scaling limit is performed at merging or/and shrinking arcs,
a new continuum behavior has been found here in the complex model as well
as in the hermitian model [8].

An interesting question is to find applications for the multi-arc solutions,
which were calculated here in the macroscopic large-N limit. For example in
solid states physics such situations with a Hamiltonian having a band structure
for its eigenvalues typically occur.

It seems to be straightforward to analyze the critical behavior of the two-
arc solutions now directly from the given string susceptibilities. This could
be done in a similar way as the investigation of all possible transitions in the
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double-scaling limit in section 6. Another point left for future work is the
relation between the multi-arc matrix models and integrable hierarchies. The
use of loop equation techniques [9, 10] requires the knowledge of the string
susceptibility as it enters directly the corresponding Gelfand-Dikii ansatz. In
[11] the mKdV and a subset of the nonlinear Schrödinger (NLS) hierarchy has
been proposed for the symmetric and non-symmetric two-arc solution of the
hermitian matrix model. However, in the latter case the ansatz made there for
the orthogonal polynomials is very doubtful [12], so it remains to be checked
whether the same results can be obtained from the loop equations.

Acknowledgments: This work was supported by European Community grant
no. ERBFMBICT960997. I would like to thank J. Ambjørn, C. Kristjansen
and Yu. Makeenko for helpful discussions. In addition I wish to thank Yu.
Makeenko for sharing with me his unpublished manuscript [10].

A Derivation of the basis

It can be easily shown by induction, that the functions given in eq. (4.7)
without the restriction to the d

dV
-part form a possible set of basis functions,

satisfying eq. (4.4) up to the addition of allowed zero modes of eq. (4.3):

χ̃
(n)
i (p) ≡

1

I
(1)
i

(

φ
(n)
i (p) −

n−1
∑

k=1

χ̃
(k)
i (p)I

(n−k+1)
i

)

, i = 1, . . . , 2s , n ∈ N+ ,

ψ̃(n)(p) ≡
1

M (0)

(

Ω(n)(p) −
n−1
∑

k=1

ψ̃(k)(p)M (n−k)

)

, n ∈ N+ . (A.1)

In order to absorb the p-dependence of these functions into derivatives of the

loop insertion operator, the d
dV

(p)-part of φ
(n)
i (p) and Ω(n)(p) has to be calcu-

lated. The basis functions are then fixed uniquely by subtracting the remaining
part, which will turn out to consist only of zero modes. Therefore the d

dV
-

derivative of the basic variables I
(k)
i , M (k) and x2

i has to be determined. This
can be achieved by rewriting the loop insertion operator as in eq. (4.10) and
applying it to the definitions (4.5). Using the identity

∂

∂V
(p)V ′(ω) =

−2ωp

(p2 − ω2)2
, (A.2)

the results read

dI
(k)
i

dV
(p) = (k +

1

2
)

(

I
(k+1)
i

dx2
i

dV
(p) − x2

iφ
(k+1)
i (p)

)

− (k +
s− 1

2
)φ

(k)
i (p)

+
1

2

s
∑

j=1
j 6=i

k
∑

l=1

1

(x2
j − x2

i )
k−l+1

(

x2
jφ

(l)
i (p) − I

(l)
i

dx2
j

dV
(p)
)

+
1

2

s
∑

j=1
j 6=i

1

(x2
j − x2

i )
k

(

I
(1)
j

dx2
j

dV
(p) − x2

jφ
(1)
j (p)

)

, i = 1, . . . , 2s (A.3)
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dM (k)

dV
(p) = −

2k + 1

2
Ω(k+1)(p) −

1

2

s
∑

i=1

1

x2k+2
i

(

x2
iφ

(1)
i (p) − I

(1)
i

dx2
i

dV
(p)
)

−
1

2

s
∑

i=1

(

dx2
i

dV
(p)

k
∑

l=0

M (l)

x
2(k−l+1)
i

−
k
∑

l=1

1

x
2(k−l+1)
i

Ω(l)(p)

)

. (A.4)

The
dx2

i

dV
(p) can be obtained from solving a linear set of equations derived from

the boundary conditions. Applying d
dV

(p) in the form of eq. (4.10) to the first
set of boundary equations (3.8) leads to

0 =
s
∑

i=1

(

xk−1
i I

(1)
i

dx2
i

dV
(p) − x2

i p
k−1φ

(1)
i (p)

)

+(k− s) pk−1φ(0)(p), k = 1, 3, . . . , s

(A.5)
For the second set of boundary equations (3.9) one gets6

0 =
1

2

∂

∂p

x2j
∫

x2j+1

dy
2p

p2 − y2

φ(0)(p)

φ(0)(y)
−

s
∑

i=1

I
(1)
i

dx2
i

dV
(p)Ki,j

=
s
∑

i=1

(

x2
iφ

(1)
i (p) − I

(1)
i

dx2
i

dV
(p)

)

Ki,j , j = 1, . . . ,
s− 1

2
,

Ki,j ≡

x2j
∫

x2j+1

dy

√

∏s
k=1(y

2 − x2
k)

(y2 − x2
i )

, (A.6)

Making the ansatz

I
(1)
i

dx2
i

dV
(p) = x2

iφ
(1)
i (p) +

s−3
2
∑

l=0

αi,l p
2lφ(0)(p) , i = 1, . . . , 2s , (A.7)

where the sum is over the allowed zero modes in eq. (4.3), one arrives at the
following set of equations,

0 =
s
∑

i=1

(

s−3
2
∑

l=0

αi,l x
2k
i p2l −

k−1
∑

l=0

x
2(k−l)
i p2l

)

+ (2k + 1 − s) p2k, k = 0, . . . , s−1
2

0 =
s
∑

i=1

s−3
2
∑

l=0

αi,l Ki,j p
2l , j = 1, . . . , s−1

2
. (A.8)

Comparing powers of p leads to precisely s(s−1)/2 linear equations determining
the αi,l, i = 1, . . . , s, l = 0, . . . , s−3

2 , completely as functions of xi and Ki,j ,
which are elliptic functions of the xi. The αi,l are thus uniquely determined
by the support of the eigenvalue density σ. In appendix B they are calculated
explicitly for the example s = 3.

After having determined the
dx2

i

dV
(p) the d

dV
-part of φ

(k)
i (p) and Ω(k)(p) for

the basis can now be obtained as follows. Resolving eqs. (A.3) and (A.4) for
6The argument p has to be excluded to be between the cuts during the calculation and

analytically continued in the end (compare to [8], appendix A).
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φ
(k+1)
i (p) and Ω(k+1)(p), it becomes evident together with eq. (A.7), that the

part which is not expressed in terms of
dx2

i

dV
(p),

dI
(k)
i

dV
(p) or dM (k)

dV
(p) is just a

linear combination of allowed zero modes. These terms can now be subtracted
in eq. (A.1) in order to achieve the unique basis eq. (4.7). The firsts terms
needed for the results in eq. (4.8) read

φ
(1)
i (p)

∣

∣

∣

d
dV

−part
=

I
(1)
i

x2
i

dx2
i

dV
(p) , i = 1, . . . , s ,

φ
(2)
i (p)

∣

∣

∣

d
dV

−part
=

I
(2)
i

x2
i

dx2
i

dV
(p) −

2

3x2
i

dI
(1)
i

dV
(p) −

2I
(1)
i

3x4
i

dx2
i

dV
(p)

−
I
(1)
i

3x2
i

s
∑

j=1
j 6=i

1

x2
j − x2

i

(

dx2
j

dV
(p) −

dx2
i

dV
(p)

)

,

Ω(1)(p)
∣

∣

∣

d
dV

−part
= −2

dM (0)

dV
(p) +

s
∑

i=1

1

x2
i

dx2
i

dV
(p)M (0) . (A.9)

B The
dx2

i

dV (p) for s = 3

In this appendix the equations determining the zero mode coefficients αi,l

of the quantities
dx2

i

dV
(p) are explicitly solved for s = 3. To start with the set of

equations (A.5) and (A.6) for s = 3 read

0 =
3
∑

i=1

(

I
(1)
i

dx2
i

dV
(p) − x2

iφ
(1)
i (p)

)

− 2φ(0)(p) ,

0 =
3
∑

i=1

x2
i

(

I
(1)
i

dx2
i

dV
(p) − x2

iφ
(1)
i (p)

)

− φ(0)(p)
3
∑

i=1

x2
i ,

0 =
3
∑

i=1

(

I
(1)
i

dx2
i

dV
(p) − x2

iφ
(1)
i (p)

)

Ki ,

Ki ≡

x2
∫

x3

dy

√

∏3
k=1(y

2 − x2
k)

y2 − x2
i

. (B.1)

After substituting y2 → y in the elliptic integrals Ki they can be found in [20],
where they are expressed by the complete elliptic integrals of first, second and
third kind:

K1 = X
(

x2
2x

2
3K(k) + x2

2(x
2
3 − x2

1)E(k) + x2
3(x

2
1 − x2

2 − x2
3)Π(α, k)

)

K2 = X
(

(2x2
1 − x2

2)x
2
3K(k) + x2

2(x
2
3 − x2

1)E(k) + x2
3(−x

2
1 + x2

2 − x2
3)Π(α, k)

)

K3 = X
(

(2x2
1 − x2

3)x
2
2K(k) + x2

2(x
2
3 − x2

1)E(k) + x2
3(−x

2
1 − x2

2 + x2
3)Π(α, k)

)

X =
1

2

1
√

x2
2(x

2
1 − x2

3)
, α2 =

x2
2 − x2

3

x2
2

, k2 =
x2

1(x
2
2 − x2

3)

x2
2(x

2
1 − x2

3)
. (B.2)
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The decomposition into K(k), E(k) and Π(α, k) is not unique due to possible
transformations of the moduli k and α. The ansatz (A.7) for s = 3 reads

I
(1)
i

dx2
i

dV
(p) = x2

iφ
(1)
i (p) + αiφ

(0)(p) , i = 1, 2, 3 , (B.3)

where αi ≡ αi,0. Substituting it into eq. (B.1) one obtains the following linear
set of equations for the αi

0 =
3
∑

i=1

αi − 2 ,

0 =
3
∑

i=1

(αi − 1)x2
i ,

0 =
3
∑

i=1

αiKi . (B.4)

With the help of eq. (B.2) the solution is obtained, which determines the
dx2

i

dV
(p)

completely

α1 = 1 +
x2

2

(x2
1 − x2

2)

E(k)

K(k)
,

α1 =
x2

2

x2
2 − x2

3

(

1 +
(x2

3 − x2
1)

(x2
1 − x2

2)

E(k)

K(k)

)

,

α1 =
x2

3

x2
3 − x2

2

(

1 −
x2

2

x2
3

E(k)

K(k)

)

. (B.5)
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