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Abstract 

In this thesis, methods of charging for the transmission system and optimising the 

expansion of the transmission network under the competitive power market are described. 

The first part of this thesis considers transmission tariff design. In the proposed approach, 

not only is all the necessary investment in the transmission system recovered, but also an 

absolute economic signal is offered which is very useful in the competitive power market. 

A fair power market opportunity is given to every participant by the new nodal-use method. 

The second part of this thesis considers transmission system expansion. All the tests are 

based on the Three Gorges Project in China. In this thesis, to optimally expand the 

transmission system, the LMP (Locational Marginal Price) selection method and the CBEP 

(Congestion-Based transmission system Expansion Planning) method are introduced. The 

LMP selection method is used to select optional plans for transmission system expansion. 

It is especially suitable for large transmission systems. The outstanding advantages of the 

LMP selection method are simplicity and computational efficiency. The CBEP method 

produces the optimal system expansion plan. For the first time, generation congestion and 

transmission congestion are separated within the system expansion problem. For this 

reason the CBEP method can be used in a supply-side power market and is suitable for the 

Chinese power market. 

In this thesis, the issue of how to relax the congestion in the transmission system have been 

solved. The transmission system can obtain enough income to recover the total required 

cost. For this reason more and more investment will come into the transmission system 

from investors. The risk for the independent generators is also under control in the CBEP 

method. Even when the system is congested, the uncertainty of LMP is taken into 

consideration. 
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Chapterl : Introduction 
This chapter introduces the thesis in five sections. 

In Section 1.1 the nature of the current power market is described and the topic of the 

thesis is introduced. The motivation for researching this topic is also discussed. Section 1.2 

describes the related background, definition and software information. Section 1.3 and 1.4 

briefly introduce the aims and contribution of research of this thesis. Section 1.5 presents 

the outline of whole thesis. 



Chapter 1: Introduction 

1.1 New Challenges 

Since the power industry has been restructured in China, the new roles of the participants 

have spurred power investment by diversified investors and encouraged new competition. 
China's power industry is scaling new heights. 

1.1.1 The Energy Demand and Supply Situation in China 

In China, the generating capacity has increased very fast (10% per year). Comparing with 

the largest installed capacity country USA, the capacity difference between these two 

countries is getting smaller and smaller. In 1995 the installed capacity in USA was about 

600GW more than install capacity in China. But after 10 years, the difference in capacity 

installed between USA and China had declined to 400 GW. (fig l. l)[71] [92]. 

By 2004 the installed capacity reached 439 GW. 

Both the installed capacity and consumption in China has been the second largest in the 

world since 1996 [77]. However, due to the demand for electricity increasing even faster 

(10%-15% per year) still 21 out of 29 provinces are enduring power shortages. On the one 

side it is because of rapid economic growth, on the other side the power industry in China 

really needs to speed up in its development. 

geneartion capacity 1995-2006 

1200 
1000 

800 
600 
400 
200 

0 
1995 1997 1999 2001 2003 2005 

Fig. 1.1 Generation capacity from 1995 to 2006 

Transmission price should be 40% of total energy price but currently transmission price is 

only 24.6% (20%-30%) of the total energy price in China [91]. The capital value of 

transmission system is just 35% and the capital value of generation is 65% of the total 

electrical industry capital in 2005. To make sure a competitive power market works 
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Chapter 1: Introduction 

properly, the transmission capital should be 60% and the generation capital should he 40%. 

In the existing case, the Transco cannot get enough benefit for building and maintaining 

the transmission system. Few companies want to invest in the transmission system under 

the present conditions. 

China is a very large country and the resources (oil, coal, water power, gas, etc. ) are quite 

uneven geographically. Fig 1.2 shows that in EC (East China) and NC (North ('hina) the 

demand for electricity is much more than NC and NWC (North West China) [731. But 

most of the energy resources are in WC (West China) and NC (90°iä of hydropower 

resources are concentrated in WC and 80% coal reserves are scattered in the north [75]). 

This means large quantities of energy need to be transferred over long distances from 

generators to load centres. 

Unit: 1Oýttý 
Ir Irur': 1 105h1 

6375 

33? " 
22 

North East Central Northeast Northwest 
china China China China (hin, i 

Fig. 1.2 2006 peak power load of major power grids of state grid of China [731 

1.1.2 Current Structure of Chinese Power Market 

In the western world the power industry has been reorganized since the 1990s. China's 

power industry began to deregulate in 2002 [74]. The generating companies (Genco) and 

transmission companies (Transco) have been restructured into five independent generation 

companies (China Huaneng group, China Datang corporation, China Huadian corporation. 

China Guodian corporation, and China Power investment) and two gird owner companies 

( State grid and South China grid) [76] [77] (fig 1.3). The competition only exists on the 

generator side, the consumer side is still under a monopoly at present. On the other hand, 

contracts between big customers and generators are now encouraged. 
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Chapter 1: Introduction 

A mature power market should include Gencos, distribution companies (Discos), retailer, 

market operator, system operator, Transco, the regulator, small consumers and large 

consumers etc [83]. In the present Chinese system, in contrast with developed power 

markets, instead of an independent system operator (ISO), the Transco also works as the 

system operator. For the Chinese power market, the State Electricity Regulatory 

Commission (SERC) is working as the regulator to ensure the power market is healthy and 

efficient (fig 1.3). 

In China, there are two transmission companies and six independent transmission networks 

[73][79]. They are East China (EC), North China (NC), Northeast China (NEC), Northwest 

China (NWC) Central China (CC) and South China (SC) (fig 1.4) [78]. These six networks 

are mainly independent grids although some of them are already interconnected. The main 

task of Transco is interconnecting these six large networks to make the national grid 

stronger and maintain the energy balance for the whole country. 

Five Chin; " 
independent Hu neng 
generation group 
companies 

'China China China\ China 
Datang 4Huadian Guodian power 
rnnrrti rtorat nrnormtio nvc+mP 

The State ElecIricity Regulatory 
Commission (SERC) 

*Monitor electricity operations, 
fair competition 
*Goverement pricing authroity 
review tariff levels 
*Establish roles for electricity 
market operators, regulation 
*Safty and technical standards, 

Two grid companies 
State Grid, South China Grid 
*System operators 
*Electricity exchange center 

customer side still regulated by government 
competition is not involved into resale 

 ý! Electricity 
Big customers can get wholesale contract with 

generation companies 
Monitor 

Fig. 1.3 Chinese power market structure 
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/North 
East 

China 

- \\\ 
North 

North China 

West 
China 

Central China 
East China 

Three 
Gorges \. 

HVAC 
South China 

10 HVDC 

Fi`g. 1.4 State Grid of China 141 

1.1.3 Motivation for the research topic of this thesis 

By 2020, it is expected that the total installed generator capacity in China will be 1,000 

GW and the total trans-regional power of the national network will reach ? 50 GW [77]. At 

the same time the power market in China will become more mature. Before 2010, 

transmission systems will have become interconnected and full competition introduced on 

the generation side [78]. 

Depending on the actual situation in the Chinese power industry, to relieve the shortage of' 

electricity and to build a mature power market, the transmission bottleneck problem needs 

to be solved as soon as possible. The independent networks need to be interconnected and 

the electrical energy needs long-distance transport. The abundant demand needs to he 

satisfied. The transmission investment should be recovered. Some important questions to 

be considered are: How to optimally encourage more investment into the transmission side'' 

How to best expand the transmission system with these investments? Iiowt to utilize 

experience of the developed power markets, to benefit the developing power market in 

China? Research focused on these problems is very valuable and necessary. 

Before all these problems are investigated, some relevant background of the research will 

be presented. 
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Chapter 1: Introduction 

1.2 Background to the research 
With the deregulation of the power industry throughout the world, not only the security of 

the transmission system but also the economic benefit of the transmission system have 

been analyzed and applied to the transmission system expansion planning. To establish a 
further effective and efficient transmission system expansion planning method, more 

aspects should be considered. This section briefly describes the relevant concepts with 

regard to transmission system expansion planning and transmission tariff design. 

1.2.1 Transmission tariff/allocation 

Power stations and distribution companies can enter a competitive market if they are 

connected to the same transmission network. However, the transmission grid is seen as a 

natural monopoly, and for this reason the transmission tariffs have to be regulated. On the 

other hand, the transmission tariff can make it possible that the main transmission network 

can act as an independent broker to buy energy from power stations and sell energy to 

distribution companies [49]. This implies that transmission tariffs are essential elements 

for creating competitive electricity markets. 

The transmission tariffs are mainly structured according to short term operation fees and 
long term capital investment. They can be separated into four major components [50]: 

1) Return and depreciation of the capital equipment. 

2) Operation and maintenance to ensure that the network is robust. 

3) Losses incurred in transmitting power. 

4) Opportunity costs of system constraints. 

A good transmission tariff method should be [51]: 

1) Economically efficient; 

2) Non-discriminatory; 
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Chapter 1: Introduction 

3) Transparent; 

4) Cost recovery based; 

5) Congestion avoiding; 

6) Tariff stable; 

7) Simple and easily intelligible. 

There are three basic alternative methods of transmission pricing. They are the postage 

stamp method, the distance related method and the nodal method (table 1-1). 

TABLE 1-1 COMPARING THREE MAIN TRANSMISSION TARIFF METHODS 

Define Advantage Disadvantage Related 

research 
For transporting a given Simplicity of Economically [52] [53] 

Postage 
stamp amount of electrical energy rates inefficient [54] [55] 

over the grid, a fixed price Tariff stable Discrimination [56] [57] 

per energy units charged, Cost recovery Lack of congestion [58] 

independent from the Transparent avoidance 

distance or voltage. 

Looks at the distance Cost recovery Difficulty of rate [59] [60] 
Distance 
related 

between generator and Tariff stable Economic [61] [62] 

customer, the distance and Non- inefficient 

the voltage level are both discrimination Lack of congestion 

considered. Transparent avoidance 
Take the actual cost of Economic Tariff stability lack [36][68] 

Nodal 
pricing transmission into account, efficient Cost cannot be 

either based on momentary Non- fully recovered 

or on typical load flow discrimination Non-transparent 

Congestion Difficulty of rate 

avoidance 
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Chapter 1: Introduction 

The postage stamp method has many advantages. However, the main problem is this kind 

of method is not suitable for a restructured power market [56] [58]. Due to the simplicity 

of postage stamp method it is a kind of transmission cost allocation which has been used in 

practice until now. Many engineers have focused on how to improve this fixed 

transmission allocation method to make it more suitable for competitive power markets 

[52-58]. 

The distance related allocation method is a name for various methods which depend on 

distance or electrical distance. Most of them recover a fixed transmission cost based on 

actual usage of the transmission system, for example the MW-mile method [59] [60]. 

Compared with the postage stamp method, the distance-related method is fairer to every 

participant in the unbundled power market. However, people still want to find a method 

which is very flexible and suitable for the real-time power market. 

The Postage-stamp rate method does not require power flow calculation and is independent 

of the transmission distance and network configuration. It is a form of fixed transmission 

cost, with only the MW energy delivered being considered. The MW-mile method takes 

account of MW transmission flows together with transmission line length in miles. A DC 

power flow calculation is required. 

Nodal price can provide useful economic information regarding the transmission system 

and generator situation. For this reason, the transmission tariff which is based on nodal 

prices will be more suitable for the competitive power market than the postage stamp 

method and the distance-related method. The main problems are that the nodal pricing 

method cannot always recover all of the system cost and the method can become very 

complex. 

Further to these three main types of transmission price allocation methods, people still try 

to find other ways to make transmission tariff methods simple and fair. For example, game 

theory [63] [64], equivalent bilateral exchange [65][66] and direct traceable methods [67] 

were developed into transmission cost allocation methods as well. More detail is given in 

section 2.1.2 of classic transmission tariff methods 
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Chapter 1: Introduction 

1.2.2 Transmission expansion planning management background 

The main aim of transmission expansion in a restructured power market is delivering 

reliable power from generators to loads, relieving the market power of the transmission 

system and providing a fair environment to all participants to serve the growing electricity 

market in an optimal way [7] [11]. 

A workable transmission expansion plan should: [311 [93-96] 

1) Be able to meet future transmission capacity requirements; 

2) Be able to make an appropriate return on investment; 

3) Be able to ensure the level of reliability; 

4) Be able to satisfy the expectation of customers. 

Transmission system planning has two major differences before deregulation and after the 

deregulation [I I[11]. 

Firstly, the objectives of transmission expansion planning are changed. Not only the 

security of the transmission network but also social welfare and non-discrimination should 
be considered by the regulated system operator. 

Secondly, in restructured electricity markets, there are more uncertainties in the 

transmission expansion planning. For example, generation planning, in many cases, is 

separated from transmission expansion planning. 

There are many kinds of mathematical methods used for transmission planning, such as 
branch-and-bound algorithm, sensitivity analysis, Benders decomposition, simulated 

annealing, genetic algorithms, tabu search algorithms etc[16][17][18] [32]. However these 

algorithms are not strictly for the new market based situation. 
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Chapter 1: Introduction 

For this reason, currently, more and more people are focusing on market-based methods 
for transmission system expansion planning [5] [9] [10] [12]. This is the main topic 

considered in this thesis. 

1.2.3 Locational Marginal Price (LMP) 

From the 1980s, electrical engineers began to focus on how to deregulate the power system. 

The most important problem is when generation transmission and distribution are 

unbundled ensuring the electric grid's security, but at same time allowing economic benefit. 

F. C. Schweppe's book "Spot Pricing of Electricity" (1988) is regarded as a milestone for 

electric power markets [26]. Following that work, there is a clearly defined `Spot Price' or 

`Nodal Price'. Based on the definition of spot price the LMP is used in power markets and 

has become more and more important. 

The main function of LMP is to give an economic signal to the system operator for the 

competitive power market. The basic definition of LMP is "the price of supplying an 

additional MW of load at each location (bus) in the system" [39]. 

There are three main factors which will affect LMP: 

1) Generation fuel cost and capacity; 

2) Transmission and distribution network losses and capacities; 

3) Demand and supply patterns. 

Actually, both the generators and the transmission network will be involved in the LMP 

calculations. From the generator side, the fuel price, maintenance and operation costs and 

revenue reconciliation are related elements. From the transmission side, the related 

elements are transmission losses and the revenue reconciliation requirement, etc. 

After explaining what LMP is, and why we need LMP. The next questions arise 

immediately: How to calculate LMP? Where can we use LMP in theoretical terms? Which 

countries use LMP in practice? 

10 



Chapter 1: Introduction 

The simplest way to calculate LMP depends on the definition of LMP. Many kinds of 

stimulate software for power system can give LMP as an output, such as Matpower [35], 

Powerworld [81] and Dash Optimization [82]. There are many research studies on how to 

calculate LMP, depending on exact market models [40] [411. Simple equations for 

calculating LMP will be provided and used in the following chapter. 

Theoretically, LMP can be applied everywhere in a power market. For example 

generation can be paid for energy supply depending on LMP at the point of connection to 

the transmission system. Customers can be charged for energy consumed depending on 

LMP at their connection point. Also the Transco can charge a transmission fee depending 

on the difference in LMP between the `from bus' of a power flow and the `to bus'. LMP 

can be a kind of economic signal for grid security, reducing system congestion [42] [43] 

[46]. In this thesis LMP will be used for system expansion planning and for calculating 

system transmission tariffs. 

Realistically, several companies use LMP as a very important part of their power market. 

For example PJM RTO (Regional Transmission Organizing) [46] [47], Mid-West ISO 

(Independent System Operator), ISO New England [44], New York ISO. All these market 

models are running based on LMP [45]. Even in China, and Thailand, which are younger 

power markets, are trying to build their market models based on LMP [38] [48]. 

1.2.4 Cash flow 

Transmission expansion is a long-term and large-scale investment, and under competitive 

conditions, to recover all the investment, cash flow problem is used. For this reason, some 

basic simple economic concepts are involved in this thesis. 

A definition of cash flow is "a term that refers to the amount of cash being received and 

spent by a business during a defined period of time, sometimes tied to a specific project 

[80]. " 

Future value= Prevent value/discount factor 

Where: discount factor is related to the project life and discount rate [76]. 

11 
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More detail will be given when we use this principle in the following chapter. 

1.2.5 Matpower 

In this thesis the simulation package used is Matpower. The test cases were mainly solved 

by Matpower3.0b3+. It was updated in December 15,2004 based on Matpower 2.0. 

Matpower 3.0B3+ is a package that solves Power Flow (PF) and Optimal Power Flow 

(OPF) problems within the Matlab 7.0 environment. It was programmed by Ray 

Zimmerman, Deqiang Gan and Robert Thomas at Cornell University. This package is an 

open resource, it is very easy to use and can be freely downloaded from the internet 

htW: //www. 12serc. comell. edu/ma! powe/ma! power. html 

For the Power Flow formulation, there are five solvers in Matpower 3.0b3+. The default 

Power Flow solver is based on a standard Newton's method. The other four are based on 

the fast-decoupled method, Gauss-Seidel Method and variants. 

For the Optimal Power Flow formulation, there are two kinds of formulations, and four 

solvers in Matpower 3.0b3+. The first is a traditional OPF formulation which makes the 

total cost of real/reactive generation the objective function. The solvers for the traditional 

OPF formulation are the Optimization Toolbox based OPF solver and the Linear 

Programming (LP) based OPF solver. The second formulation is a generalized formulation 

which is used by the fimcon and MINOPF solvers. These solvers are not included in the 

Matpower package, but can still be downloaded on the internet free of charge 

(http: //www. pserc. comell. edu/minopf/). 

1.3 Aims of the research 
The main aim of this thesis is to solve the bottleneck problem for the Chinese transmission 

system. How to encourage more investment for the transmission system and how to expand 

the transmission system in a competitive power market are also explored in this thesis. 

This strategy is performed in the framework of China SERC in order to seek a multi- 

objective optimal planning for transmission system expansion. In order to ensure that all 

the investment in the transmission expansion can be recovered and the system operates 
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under a stable condition during the system expansion. An improved transmission tariff 

method is introduced and research into uncertainty of LMP is undertaken. 

1.4 Contribution of the thesis 

Two main contributions presented in this thesis are: 

To attract more investment into the transmission side and to make sure all the investment is 

being recovered; this thesis presents a new transmission tariff method. In this new nodal 

use method, the participation factors are given new definitions. Only the positive power 

flow is charged by the nodal use method from the network users. For this reason, the total 

transmission cost is recovered. A same time, the fragmentation of the transmission system 

for participates are decreased. 

To optimally expand the transmission system, the LMP (Locational Marginal Price) 

selection method and the CBEP (Congestion-Based transmission system Expansion 

Planning) method are introduced. The LMP selection method is used to select optional 

plans for transmission system expansion. It is especially suitable for large transmission 

systems. The outstanding advantages of the LMP selection method are simplicity and 

computational efficiency. The CBEP method produces the optimal system expansion plan. 

For the first time, generation congestion and transmission congestion are separated within 

the system expansion problem. The risks of the generator side are controlled. For this 

reason the CBEP method can be used in a supply-side power market and is suitable for the 

Chinese power market. 

1.5 Outline of the thesis 

The thesis is constituted as follows: 

Chapter one introduces the background of the research. The market structure and 

electricity demand-supply situation in China and the related concepts of transmission 

system expansion and transmission tariff are explained. The aim of this chapter is to 

introduce the research work and fundamental concepts, the criteria, the framework, the 

applications and the scope of the research. In addition, technical terminologies with basic 
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mathematical formulations are briefly pointed out. Finally the aims of the thesis are 

described. 

Chapter two presents a new transmission tariff method for recovering investment in the 

transmission system and encouraging more investment into the transmission network. The 

simulation is performed on an IEEE standard 9-bus system. 

Chapter three sets out a LMP selection method for selecting an optional plan from 

hundreds and thousands of expansion possibilities. Deriving from the use of the LMP 

selection method, the total social cost is minimized. A new 28- bus test system constructed 

on the basis of the China Three Gorges network, is used to test the proposed method. 

Chapter four proposed a new CBEP (Congestion-Based transmission system Expansion 

Planning) algorithm in order to achieve optimal transmission expansion planning. The 

IEEE standard 9-bus system and the 28- bus test system based on the China Three Gorges 

network are analyzed. 

Chapter five compares the new CBEP method with another kind of CDEP (Congestion- 

Driven transmission system Expansion Planning). The CDEP method will be elaborated 

and contrasting results will be demonstrated. 

Chapter six improves the technique for system expansion planning. The reasons for 

uncertain total cost when the system is congested are explained, and a simple solution is 

presented. The simulation is performed on the standard IEEE 30-bus system. 

Chapter seven concludes the thesis by summarizing the findings of each chapter in the 

thesis. Furthermore, future work related to this subject is suggested. 

14 



Chapter2 : New Transmission Tariff 

Method of Transmission Systems: an 

Analysis for Cost Recovery 
Following the analyses of Chapter 1, the first topic to be considered is transmission tariffs. 

How to recover the transmission cost and how to encourage investment to come into the 

transmission network are focused on. 

This chapter presents an in-depth analysis of complementary charge structures for 

transmission systems with a new Nodal-Use method (N-U method), and in particular it 

investigates why the transmission system owner has to invest in the transmission system 

when the system is congested. The basic theoretical results are presented and how the new 

N-U method covers the total cost of the transmission system are identified and illustrated 

with a numerical example. Simple ways of calculating LMP and controlling power flow in 

the context of a competitive electricity market are analyzed. 



Chapter 2: New Transmission Tariff Method 
for Transmission Systems 

2.1 Introduction 

Recently, the focus of power markets is on how to enable the electricity sector to continue 

to meet a nation's needs for reliable and affordable energy [21]. This is due to many 

reasons (for example: unexpected transmission demands; over large regions; difficulty in 

recovering the full cost of investment in the transmission system). It has been suggested 

that people prefer to invest in generators rather than transmission systems [10]. If the 

capacity gap between generators and transmission systems becomes bigger and bigger, 

congestion in the transmission system will become an important problem, especially under 

a competitive market. In the Chinese power market, the market regulator wants to 

encourage a full competitive generator-side supply market to reduce the total social cost. 

Until now China represents the second biggest generator capacity, for the full competitive 

power market the transmission network problems come in front of the regulator very 

urgently. There are lots of ways to solve this problem. On the one hand, congestion 

forecasting and a careful transmission plan can relax the congestion. On the other hand, 

much research focus on increasing the transmission capacity in the transmission system. 

However if the regulator needs to solve this problem, a good method for calculating the 

transmission tariff should be a necessity. A good method which can afford enough benefit 

will give a large incentive to investors. 

2.1.1 Background 

There are many standards which can measure whether a method of calculating the 

transmission tariff is good or not. In this chapter we compare the methods based on the 

following tariff objectives [23] [51]: 

Objective 1: Tariff stability. This means the benefit arising from the transmission system is 

stable and predictable. The risk is low to the investor in the business. 

Objective 2: Non-discrimination. This means the method can encourage new investors to 

put their money into the transmission market and at the same time existing participants 

would like to retain their investment in the transmission market. There should be no 

difference between the former and the later, in order to keep the most efficient participants 
in the market. 
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Objective 3: Appropriate remuneration for the Transcos. This means the Transcos can 

achieve enough benefit to recover the investment in the transmission system. 

Objective 4: Energy transmission efficiency incentive. This means a good method of 
transmission tariff definition will give the right signals and information to promote the 

most economic location of new investments in generation and large industrial loads. 

Objective 5: Simplicity of rates. This means that the method should afford an easy and 

understandable way to calculate the transmission tariff for users. 

Objective 6: Rates must be consistent with the other charges faced by the users. This 

means that the method should consider all relevant aspects for users. 

If a method of calculating transmission tariffs satisfies most of the objective it can be 

regarded as a reasonable method. 

2.1.2 Classic transmission tariff methods 

a) Postage stamp type methods 

The postage stamp method is the simplest and oldest method. In this method, a fixed price 

per energy unit is charged, independent of the distance or the voltage level [36]. The 

advantage of this method is the investment for the grid can be recovered precisely and in 

full. Also it can be used very easily. However the disadvantage of this method is obvious. 

First, the postage stamp method cannot give a correct incentive to suppliers or users of 

electrical energy for sitting future investment. Second, the postage stamp method does not 

improve the transport efficiency of the present system. Third, the method does not 

encourage future investment to improve or extend the system. For this reasons the postage 

stamp method does not satisfy the basic requirements of an adequate pricing system. 

b) Distance related tariff 

Since the postage stamp method exhibits many disadvantages, some new methods consider 

the distance (geographical distance or electrical distance) between generators and users. In 

this kind of method the distance and the voltage level are considered. Longer distance and 
higher voltage will be charged a higher transmission fee. Nevertheless, congestion is not 
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considered and there is no provision of investment. A typical distance related method is the 

MW-Mile method. 

c) Nodal pricing method 

In the nodal pricing method, the actual cost of system losses and the opportunity cost of 

transmission constraints are included in the transmission tariff. The price of electricity is 

connected with the demand for electricity. The advantage of nodal pricing methods is that 

this kind of method offers good incentives to investment in the grid. The disadvantage of 

the nodal pricing method is that sometimes it cannot recover the required total investment 

for the transmission system. The typical nodal pricing methods are `long-term marginal 

cost' methods and `short-term marginal cost' methods. 

As each kind of method is not perfect, power engineers never stop trying to improve them. 

More and more new methods are being introduced into the power market. For example: the 

nodal-use method and the nodal distance method, nodal electric distance method, etc. 

In this chapter a new Nodal-Use method is built up. It is based on an existing frame which 

was motioned by Hyde Merrill in 2003. The definitions of `power participation factor', 

`transmission surpluses, `cash flow' are involved in the new N-U method. All these 

definitions will be presented one by one in this chapter. Two obvious improvements in the 

improved N-U method have been proved in this chapter. On the one hand, a stable and 

predictable profit is offered for Transco by the improved N-U method. On the other hand, 

investment in the transmission system is encouraged by the improved N-U method. 

This chapter is organized as follows: Section 2.2 provides the frame of the N-U method. 

Based on the original method an improved N-U method is presented. Some important 

definitions in the improved N-U method (i. e. power participation factor, transmission 

surplus, and transfer capacity) are made in this section. Section 2.3 points out how to 

restructure the system when the network is congested, and how to calculate LMPs used in 

this chapter. Finally, Section 2.4 presents result based on the IEEE 9-bus power system 

test case that addresses what might happen if the system is congested, and conclusions are 

drawn in Section 2.5. 
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2.2 The improved N-U method 
The benefit to transmission companies come from the different energy price between `from 

bus' and `to bus'. This benefit is named "Network Revenue". However, because of a 

number of reasons, there is a gap between network revenue and total cost of the 

transmission companies. The transmission companies cannot get net benefit from the 

energy transport. For making the transmission companies recover total cost, in this chapter, 

N-U method is a kind of "complementary charge" for completing "Network Revenue 

(NR)" to the total cost. 

In this thesis the definition of the total income (TI) to Transco is: 

N-U method + NR before transmission system is congested T1= 
N-U method after transmission system is congested 

(2-1 

Before the improved N-U method is introduced, the NR method and the frame of nodal-use 

method will be described. 

2.2.1 The Network Revenue method 

In this method the total cost is recovered by the NR method and the improved N-U method 
[23]. 

The NR method is as follows: 

NR= 

Where: 

p1 is the LMP of bus `i'($/MW. hr). 

g,: generation at bus `i'(MW). 

di: demand at bus ̀ i' (MW). 

19 



Chapter 2: New Transmission Tariff Method 
for Transmission Systems 

Theoretically speaking, if the system had a perfect network, without losses or any kind of 

limitations, LMP at all nodal points of the system are the same. The NR is equal to zero. In 

the practical world the losses of system will be charged by the NR method, with the help of 

the improved N-U method, the Transco can recover the total costs. 

In the UK, 40% of the transmission cost is recovered from distribution suppliers, 60% of 

the transmission cost being recovered from generators. Depending on the transmission 

system regulator, the rule for splitting transmission costs varies from country to country. In 

order to change this kind of arbitrary situation into a physically based transmission cost 

split will be considered in chapter 7. 

2.2.2 The frame of the Nodal-Use method 

In this nodal use method the use of the system is defined in terms of usage of transmission 

lines refer to as a `power participation factor' (equation 2-3). Another nodal-type method 

also use real physical distance or electrical distance between the load and the generating 

stations to define the use of system. 

Equation (2-2) is the frame of the N-U method [36]: 

m 
7a (i) = 1] (Ik/fk) XF k_i 

k=I 

Where 

i(i) the "use" charge at demand node ̀ i' in $/MW 

Fk ; the (active) power participation factor (%) 

Ik the line `k' required income ($) 

(2-3) 

f the transfer capacity of line `k' (power flow in the line `k'). (MW) 

m number of lines in the system 
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k line `k' 

i load ̀ i' 

The new N-U method is based on the frame and defines all the factors for recovery total 

cost of the transmission companies. For the sake of clarity, we just include the most 

significant elements into the improved N-U method. This method only considers active 

power; and only the primary transmission services such as transportation of electric energy 

in the transmission system is accounted for in the total cost. Other network related services 

such as load-frequency control, are ignored. This means that the total cost only includes 

fixed capital charges plus some O&M (operating and maintenance) costs that are 

practically independent of the actual network operation. 

2.2.3 Power participation factorFk 
, 

The improved N-U method is motivated by the concept of nodal pricing and is based on 

the "Marginal Participation Factor" method. This method uses the "extent of use" criterion 

to allocate the "complementary charge" among the system agents. The "usage" is defined 

as incremental. For example, we can define `usage' as when demand increases I MW, the 

movement of power flows in each line in the whole transmission system. 

The original definition of power participation factor is: the contribution to the flow in line 

W of a1 MW injection in the reference bus `r' and 1MW drawn at demand bus `i' 

( power participation factor) [24] [36]. 

However in the improved N-U method, it is not necessary to choose a reference bus. In the 

real situation it is not very easy to determine which bus should be the reference. 

Another improvement in the improved N-U method is that only positive changes are 

calculated. This means, when a load is increased, the power flow of transmission system 

would be changed. Some power flows in branches are increased, others are decreased. The 

improved N-U method defines that the load should pay for the branch when the power 
flow in this branch is increased. In this case the changed power flow may cause congestion 
in this branch. Under this situation the transmission income obtained is more stable and 

rational. 
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Pk;, = Pk I The load `i' does not use the branch W. 

Pk,, < Pk I The load `i' uses the branch `k' but the power flow of branch `k' is decreased 

with load `i' increased. Load `i' need not pay for this branch in the improved N-U method. 

P, j+I >j Pk The load `i' uses the branch ̀ k' and the power flow of branch `k' is increased 

with load `i' increased. Load `i' should pay for branch W. 

Where 

Pk the power flow in the branch ̀ k' (MW). 

Pk, 
+ the new power flow in branch 'k'(MW) when load `i' has increased by 1 MW. 

Through the power participation factor (Fk ;) we can find out, for a given load, how much 

energy in each branch is used by it. 

F VPki+j-j'kj)1lMW IP, 
i+l> k1 (2-4) 

k, =0 IPla+ ýIPkI 

2.2.4 Fixed capacity charge ik 

Before the system is congested, only the fixed capital charge and some O&M costs are 

included. In the improved method discounted cash flow is modelled in the fixed capital 

charge. This is more reasonable for the Transcos. 

Investment in the power system refers to the cost of purchasing and installation of a 

branch. Projects in the electricity supply industry extend over long periods (25-30 years). 

The network asset lifetimes are even longer [76]. The Network Revenue (NR) method does 

not count on cash flow. This is one of reason why the NR method is not able to recover the 

total cost. The time value of money (discounting) is highly important for capital-intensive 

long-life projects. For this reason the cash flow element of transmission investment is 

considered in the method. 
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The characteristic of investment in a transmission system are: 

(1): To buy a new line, the transmission company must investment at a particular time 

(Capital-intensive). 

(2): 25-30 years is the normal useful life for a branch in a power system, so the Transcos 

needs a long time to recover the investment. Considering the stability of energy prices, the 
investment should be averaged over the useful life [5]. 

DF =1 (2-5) 
(1+r)° 

Where 

DF discount factor (%) [76] 

r discount rate (%) 

n the useful life of a branch (years) 

PV=DF*FV (2-6) 

Where: 

PV present value ($/Km) 

FV Future value ($/Km) 

2.2.5 Transmission Surplus 

Transmission surplus ($/MW. hr) is defined as equal to I LMPfrombus - LMP, 
obYSI 

(see [36] for 

definition). Before the system is congested the LMP of each bus is same. For this reason 
there is no transmission surplus in the transmission system. After the system is congested, 

the LMP of each bus is changed. Not only the fixed capacity charge and O&M fee but also 
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the transmission surplus is included in the total costs. This is why the congested system 

produces very high costs. 

2.2.6 Transfer capacity fk 

Transfer capacity in general is determined by contingencies and is a function of the 

condition of the network [23]. The reason why the improved N-U method defines the 

power flow in a branch as the transfer capacity of the line is that there should be reserve 

capacity in each branch. The reserve capacities should not be used except for security 

reasons. But the main idea of the N-U method is how much the loads are charged depends 

on whether the load uses the branch or not. If the method defines the capacity of branch as 

the transfer capacity, the investment could not be recovered very easily. 

2.3 Algorithms 

How to implement the improved N-U method will be discuss in this section. 

2.3.1 Flowchart 

Fig 2.1 shows a flow chart of the proposed algorithm. The program allows a comparison of 

the cost and income determined by the improved N-U method. 

24 



Chapter 2: New Transmission Tariff Method 
for Transmission Systems 

f nput bus genuralt or branch 

system information 

Solve the powr t Iow problem 

n \n__, -- an ý--. _ 

Fig. 2.1 The flowchart of the improved N-U method 
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There are two main problems which need be solved in this Ilovvclhart. One is hovv to 

control the power flow when the system becomes congested. The other is how to obtain the 

LMP of each bus under congestion conditions. We need to know LMP when the 

transmission surplus is calculated. 

2.3.2 Restructuring the transmission system 

The first problem is that in Matpower the power flow pmg ramming sloes not CO, n; iRICF the 

question of congestion. The power flow in the line may increase continuously When it is 

above the capacity of' line. For this reason the power flow in the transmission system 

should be controlled by the program which has been developed fur the N-U method. The 

proposed method of controlling the power flow is as follows (fig 2.2): 

L1 2 L2 
1 ý1) 

X MW 
G G2 

CONGESTED 
CAPACITY X MW 

X MW 

L3 

3 
G3 

Fig. 2.2 The equivalent of a congested branch in the transmission system 

For example, in this 3-bus transmission system, when line 3 is congested the program cuts 

the line, adding a 'virtual generator' at bus 2 and a 'virtual load' at bus 3. The input of' 

generator 2 is equal to the capacity of line 3. The output of load 3 is equal to the capacity 

of line 3. The power flow in the congested line is prevented from increasing, continuously 

and is held at the capacity of' the line. However in the real system the cond. tested line still 

exists so the associated cost could be calculated. 

2.3.3 The method of calculating the LNIP 

The second problem is how to calculate the LM P of'each bus when the system is congested. 
In an unconstrained system, generators are dispatched based on their bidding prices. The 

LMP is the same at any node in the system and is equal to the MCP [25]. However when 
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the system is limited, the value of energy at each node is changed. A simplest approach is 

used in this chapter. The basic idea in the LMP calculations is to determine for a given set 

of system conditions, the minimum cost of generation that will be required to supply an 

incremental load of 1 MW at a given location in the network without the violation of any 

transmission constraints [25]. 

LMP(i)=(nGi -nGi)l1MW 

Where 

i bus i. 

j generator j. 

n the number of generators. 

Gj the cost of generator j ($/hr) 

G. the new cost of generator j, when the bus i add 1MW ($/hr). 

2.4 Case studies 

2.4.1 Data of the test case 

(2-7) 

The test case is the standard IEEE 9-bus test system. Fig 2.3 illustrates the 9-bus system. 

Line and load information is presented in fig 2.3 and Tables 2-1 and 2-2. In this system, 

total energy supply is 445MW and total energy demand is 430MW. (More detailed 

information is given in appendix A). 

The test case is used to find out whether the improved N-U method can recover the 

investment for the transmission system, and what will happen when there is congestion in 

the transmission system. 
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Fig. 2.3 Typical network and its power flow result 

TART P 'M TRANSMISSION LINE SPECIFICATIONS 

From 
bus 

To 
bus 

R 
a 

Limit 
Mw 

Investment 
$/km 

O&M 
$4: r 

Length 
km 

1 4 0.0101 250 66000 1.5 64 

4 5 0.0716 250 66000 1.5 64 

5 6 0.0725 150 66000 1.5 64 

3 6 0.0108 600 66000 1.5 64 

6 7 0.0805 300 66000 1.5 64 

7 8 0.0920 250 66000 1.5 64 

8 2 0.0119 250 66000 1.5 64 

8 9 0.0234 250 66000 1.5 64 

9 4 0.0652 250 66000 1.5 64 

TART. F 2-2 COST FUNCTION OF EACH GENERATOR 

Generator Cost function($/hr) 

G1 C=0.1225p2+p+335=2682.15 
G2 C=0.11p ý+-5p+600=3392.14 
G3 C=0.085P2+1.2p+150= 3171.4 

To test the improved N-U method the consumption of load 5 will be increased from 160 

MW to 265MW at the same time the input of generator 3 will increase from 135 MW to 

240MW. During this period line 3 should become limited (fig. 2.4). 
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2.4.2 LM P of each node 

Fig. 2.5 shows that before the 9-bus system is congested, the LMP of each bus is low and 

does not have very big differences. The average LMP of each bus is 35.5S'MW. hr. In this 

chapter, the average of LMP is regard as MCP. Depending on equation 2.1, the NR is equal 

to 532.5S/hr. After the 9-bus system is congested, the LMP of each bus is higher than 

formerly. The LMP of bus 5 is the most expensive. This is due to the fact that line 3 is 

limited. 
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2.4.3 Result of the improved nodal-use method 

From the flow chart we know Ik (the line `k' required income) is the cost. The income is 

n 
Icd (i) (where `n' is the number of loads). In this way, we can obtain the result as 

follows (fig. 2.6): 
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Fig. 2.6 The result of improved N-U method 

2.4.4 Discussion 

In general, a transmission system is operated under conditions in which the load of each 
line is less than or equal to the half of the line capacity (<50%). This is a reasonably secure 

and economic situation for a transmission system. Whether the proposed method can offer 

a stable, predictable benefit for the Transcos in this kind of situation is the most important 

issue. 

In the example, when the usage of branch 3 is less than the 71.5%, the curves are nearly 

flat. Fig. 2.6 shows the total cost and the "complementary charge" are stable when the 

loading of transmission system is light. In the improved N-U method the small change 

(1MW) at the demand bus cannot affect the power flow in the transmission system very 
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much. Equation (2-2) shows that when the transmission system is unconstrained and the 

supply and demand in the system are changed at the same time, the result of the NR 

method is unchanged. Under general conditions, the total income of Transcos which is 

obtained from the N-U method is 1410.521$/hr. For this reason it is very easy to show that 

the improved N-U method can offer a stable predictable profit for the Transco. 

With the increase of generator 3 and load 5, the loading of line 3 becomes heavier and 

heavier. At this point, aI MW change in the demand bus will have a greater influence on 

the power flow in the transmission system. Through the improved N-U method the 

"complementary charge" from each user is increased. This means the benefit to Transco is 

increased. However, the loading of the transmission system is heavy. In the test system 

when the complementary charge becomes larger than the total cost the utilization of branch 

3 is 88%. In another respect, it is a signal that the system will be congested. After the usage 

of transmission line over 100%, the total cost and transmission complementary charge get 

very dramatic change. The reasons are as follows: 

When the transmission system is limited the congestion fee will be accounted for in the 

total cost by the transmission surplus, which is an element in the improved N-U method. 

The result of the NR method is replaced by the transmission surplus. For this reason, the 

total cost suddenly increase because of congestion cost. With the increase of the total cost 

the "complementary charge" is decreased. When the load becomes heavier the 

"complementary charge" obtained from the improved N-U method will decrease 

continuously. There is then no benefit to a transmission company. This provides the main 

incentive to the transmission company to put more investment into the transmission system. 

2.5 Conclusions 

This chapter presents an improved, simple, efficient and practical N-U method for 

determining the transmission tariff, which extends the NR method to recover the 

investment for the transmission system. The method depends on the nodal pricing method 

and "marginal participation factor". 

In terms of the tariff objectives, when the transmission system operates under normal 

conditions the improved N-U method can offer a stable and predictable income to Transco. 
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At the same time the value of electrical energy is not too expensive, and society can obtain 

efficient welfare. For the Transco, if the transmission system is congested, the benefit is 

reduced and the cost increased because the transmission surplus is put into the cost. For 

this reason, investing in the transmission system is given a significant incentive by the 

improved N-U method. 
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The topic of the previous chapter was the transmission tariff. This mainly discussed how to 

encourage more investment in transmission systems; how to recover the total cost of the 

transmission system and relieve congestion by the introduction of a new transmission tariff 

method. However to avoid the transmission bottleneck issue, merely encouraging 

investment into the transmission system is not enough. In the remainder of this thesis, the 

main topic is how to encourage adequate transmission system expansion planning. 

Chapter 3 introduces a new method for discovering optional plans for transmission system 

expansion. 



Chapter 3: LMP selection method 

3.1 Introduction 

The goal of transmission system planning is to establish where to install the new 

equipment required for an economic and reliable supply of the predicted load. There are 

many kinds of mathematical methods used for transmission planning, such as branch-and- 

bound algorithm[16], sensitivity analysis, Benders decomposition, simulated annealing, 

genetic algorithms, tabu search algorithms etc[17] [18] [32] [97] [98]. However these are 

not strictly designed for the competitive power market. Hence in this chapter a new LMP 

selection method will be proposed. 

The proposed method which solves the expansion problem has the following features: 

1. The LMP selection method alone is not suitable for selecting optimal transmission 

expansion plans. It is suitable, however, for finding out which locations are appropriate to 

add new circuits to relieve the energy shortages. For selecting optimal transmission plans, 

an optimal transmission expansion planning method should be used together. Such as 

Congested-Based System Expansion Planning (CBEP) method which will be introduced in 

the next chapter. 

2. The LMP which is derived from MATPOWER is a very important signal in the LMP 

selection method. Except for the OPF formulation, the remaining part of method is linear. 

3. The main idea of the LMP selection method is that new circuits which satisfy new 

energy requirements should not adversely affect existing loads, i. e. the LMP of the original 

load should not be increased. The total operation cost should reduce due to the relaxation 

of congestion by the new circuits. 

4. Due to the simplicity of the LMP selection method, it is suitable for large-scale 

transmission systems. It is especially designed for a restructured power market because it 

focuses on minimizing discrimination and maximizing total social welfare. This LMP 

selection method is suitable for use by a non-profit transmission administrator. 

5. Load increases at existing bus are not included in LMP selection method. However, it 

will be considered in CBEP method (chapter 4). 
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A new 28- bus test system constructed on the basis of the China Three Gorges network is 

used to test the proposed method. 

3.2 Proposed concepts and algorithm 
In a small transmission system, every possibility of expansion can be calculated 
individually. However in a large system, a way to select the optional expansion plans has 

to be found. The number of optional expansion plans should be an acceptable number. The 

method to select optional expansion plans in this chapter is introduced as follows: 

In the LMP selection method, LMP can be regarded as a very important signal for system 

expansion. The main idea is that: a good expansion method must minimize disruption for 

every user and maximize social welfare. If new lines are built which make the LMP of 

certain buses increase more than others, it could be regarded as unfair for users in those 

locations. On the other hand, a good system expansion plan option should minimize total 

social cost. For this reason the average LMP in the whole system is considered as well. 

Some transmission expansion plans are equitable but the average LMP in the system is 

quite high. This kind of expansion plan will not be selected as an option. 

More details about the proposed way to select system expansion options are as follows (fig 

3.1): 
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Start 

Select to bus'f` from r` 
bus's' i= 1,2... N 

New line 'f-i' 

Matrix LMP)i 
1=1,2 .. N, N+1 

i=:, 2 N 

r-ninp, Emax)i 
area A, areaB 

_ no 
.. '` Most £minji in area ^.: ý. A) 

yes 

ý. No Smaxji in area 
no 

yes 

- __ no 
Average LMPji 

dercrease7 

yes 

Optional 
I 

expansion plan 

Fig. 3.1 Flowchart of selection of transmission planning options 

Step]: A `to bus' will be selected. ̀ To bus' means a transmission line is going to be 

connected on this bus and the electric power will usually be injected form the line into this 

bus. At beginning, the `to bus' is a new load. 

Step2: If the number of buses in this system is N and each time only one new line which 

may connect to any existing bus is put into the system, there are N expansion plans. They 

are line 'f -i' where f is the `to bus' and `i' is the `from bus'. In this step all the 

possibilities are there for included. 
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Step3: Each time a new line connects the new load into the existing system, the LMP of 

each bus will change. At this moment the number of buses in the system should be N+1. 

We suppose `j' is bus number and j=1,2.... N, N+l. We can obtain a matrix 

LMP. (N+1 xN) which is named the LMP matrix in this thesis (fig 3.2). 

i=1,2.... N 

LW (N+lxN) 

I 41 1. T 1. T i1 
J-s. C. .... L1p ti. a 

Fig. 3.2 LMP matrix for LMP selection method 

Step4: Depending on this matrix (fig 3.2), Emin ji ' Emax ji 9 area A and area B are defined. 

This will make sure that after a new line is put into the system, the LMP at every bus does 

not change too much. 

i is the bus number not including the new load. This means there are i optional expansion 

plans. In equation 3-1 sm; nj, measures in these i expansion plans which plan gives the 

minimum impact to the LMP of each bus in the new transmission network. In equation 3-2 

c., measures in these i expansion plans which plan will affect the LMP of each bus in 

the new system significantly. 

LMP j; Amin 
ji = LMPmm 

j 
(3-1) 

LMP i, £ 
max ji LMP max 

(3-2) 

Area A1< Emin ji < emin J=1,2.... N, N+1 (3-3) 

Area B Emax < emax ji <1 j=1,2.... N, N+1 (3-4) 

Where 
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LMP., the Maximum LMP of bus j when `from bus i' is changed. 

LMPminj the minimum LMP of bus j when ̀ from bus i' is changed. 

6min is upper limit of area A. 

Emax is lower limit of area B. 

em; n ands,, 19X can be defined depending on the conditions of the network and depending on 

how many optional expansion plans are desired to be selected. 

Steps: If the expansion plan satisfies all three constraints at the same time, it will be 

selected as an expansion option. 

Constraint one: most of the em; nji 
in area A (for example 80%) 

The more of Eminji of the system in area A, the less a new expansion plan will affect the 

system, which is fair to every load. 

Constraint two: no emax fi in area B 

The more e. j, of the system in area B, the more a new expansion plan will affect the 

system, which means the new transmission would be unfair to some loads at which the 

LMP is increased. 

Constraint three: compared with the existing transmission system, the average LMP is not 
increased. 

There are three possibilities: 

Possibility ONE: good options. When a new line f-i is put into the system, in the entire 

system most of the 'mind cases are in area A and there are norm. J, cases in area B; and 
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the LMP does not increase compared with the LMP of the former system. Then this new 

line will be selected as an optional transmission plan. 

Possibility TWO: bad options. When a new line f-i is put into the system, in the entire 

system most of the s.,, cases are in area B. This new line will not be considered as an 

optional transmission plan. 

Possibility THREE: improvable options. When a new line f-i is put into the system, 

most of the s,,,; n j, cases are in area A. But there are one or two e... ' ; cases in area B, these 

lines are not perfect transmission expansion plans, however they can be options which can 

be improved. 

If the third situation happens, the `from bus' `i' will be selected as a new start point. 

Another new line will be considered to link into this system. 

3.3 Case Studies 

3.3. lSimple case for LMP matrix 

To make clearer the LMP selection method, a three-bus system is introduced here to 

illustrate how the LMP matrix is constructed. 

G 
Bus 1 Bus2 Bus3 
LMP1 LMP2 LMP3 

I New load 

Fig. 3.3a Original LMP at three-bus transmission system 
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G 
Bus I Bus 2 Bus 3 
LMP11 LMP12 t. MPI 

Bus4 
New load LMP14 

Fig. 3.4b New LMP when bus 4 connects with bus 1 

Bus 1 Bus2 
LNfP2 LMP22 

77 

Bus3 
G 

Bus4 
New load LMP24 

Fig. 3.5c New LMP when bus 4 connects with bus 2 

Bus I Bust Bus3 
LMP3 LMP32 LMP 

Bus4 
1ý1P34 L New load 

G 

Fig. 3.6d New LMP when bus 4 connects with bus 3 

In this three-bus test transmission system, we can abtain (fig 3.3b, fig 3.3c, fig 3.3d): 

LMPij=LMP34= 

LMP 11 LMP 12 LMP13 LMP14 
LMP21 LMP22 LMP23 LMP24 
LMP31 LMP32 LMP33 LMP34 
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For ease of calculation in Matlab, the LMP matrix is defined according to LMP; ý'=LMPj; 

(fig 3.2). 

3.3.2 Test case based on Three-Gorge Project in China 

The Three Gorges Hydrodynamic station has two stations with four independent bus bars 

(see fig 3.3 leftl- right4), 18.2 GW capacity in 2010[4][15][31]. Three-Gorge supplies 

energy to Central China (buses: nanyang, xingyang, xiangfan, xiaogang, jingmen, hankou, 

jinsha, huangzhou, qianjang hanyang, xianning, xialu, fenghangshan) East of China (buses: 

xinyu, changxi, changdong, xinchang, loudi, yiyang, gangshi) and Sichuan-ChongQing 

(buses: wanzhou, changshou, jianbei, chenjiaqiao). More data about the test case is given 

in appendix B 

--3 DC long distance 
transmission line 

wanzhou 

changshou 

cherjiagiao 8 

Fig. 3.7 Three-Gorge AC transmission system 

changdong 27 
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TABLE: 3-1 Bus INFORMATION 

Bus 

number Name 
Population 

(10,000) 
Chinese 

name 

Bus 
type 

Pd 
(M{f) 

Qd 
(MVat) 

1 left 1 null 3 5000 2150 

2 left 2 null )TIP 2 2 0 0 

3 right 1 null 1 5000 2150 

4 right 2 null 2 1 5000 2150 

5 Wanzhou 167.95 )i l'll 2 251.93 108.33 

6 Changshou 88 lk r 1 132 56.76 

7 Jiangbei 49 71Iý 2 73.5 31.605 

8 Chenjiaqiao 30 (ý4 fff 2 45 19.35 

9 Jingmen 299 ifýll1 1 448.5 192.85 

10 Xiangfan 571 * 2 856.5 368.3 

11 Nanyang 1090 0i PH 1 1635 703.05 

12 Xiaogan 470 ; r8l 2 705 303.15 

13 Hanyang 50.7 N, PH 2 76.05 32.701 

14 Hankou 230 iX H 1 345 148.35 

15 Huangzhou 34 jKI *lI 1 51 21.93 

16 Xinyang 787.55 T, if>CH 2 1181.3 507.97 

17 Jinsha 54 ý ii 2 81 34.83 

18 Qianjiang 94 Ail 2 141 60.63 

19 Xianning 279 JA 2 418.5 179.95 

20 fenghuangshan 30 lall; =. l i11 1 45 19.35 

21 Yiyang 453 H 2 679.5 292.19 

22 Loudi 378 2 567 243.81 

23 Xialu 14.6 2 21.9 9.417 

24 Changxi 15 1 114 2 22.5 9.675 

25 Xinyu 113 f 2 169.5 72.885 

26 Xinchang 20 rl 2 30 12.9 

27 Changdong 15 1 ýr 2 22.5 9.675 

28 Gangshi 25 fýlili 2 37.5 16.125 
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*Buses 1- 4 (left1 left2 rightl right2) are the location of the generators of Three Gorges. 

Real load 1-4 is the electrical power that is transmitted to East China or Central China. 

** Buses 5-28 are cities. Some of them include generators others are loads only. 

In China an average 150-watt load is needed per person. The demand varies between 

different cities. For simplicity, 150-watt is defined as an average demand per person, and 

investment for each line is taken to be 10000$/km. 

Real load= population xdemand/person (MW) 

Reactive load= real load x 43% (MVar) [35] 

In this test case a new load will be put into the 28-bus system. The new load is at bus 29 

with active power 117.9MW and reactive power 50.69Mvar. 

Assume the new transmission line to bus' is bus 29 'from bus' is bus ' i' ( i=1,2... 28). 

Capacity of line29-i is 1300MVA. When `i' ranges from I to 28 we can get a matrix of 

LMP (29 x 28). (See appendix C) 

In is chapter, Crain is equal tol. 03. is equal to 0.99. 

As the Three Gorges Project is used as the test case, the need to calculate power price fr 

hydro electricity cannot be avoided in this chapter. There are many papers which discuss 

how to define the energy price for hydro generation. However, the price model which is 

currently used in the Three Gorges Project in China will be used. 

In China currently the power price of Three Gorges is stable instead of flexible. Because 

on the one hand, electricity is a kind of energy in which demand is more than supply, 

bidding would make electricity prices higher and higher. On the other hand, the investment 

in the Three Gorges Project is a government regulated investment (in total 9,100,000,000 ). 

The huge investment must be recovered. The Chinese power market is not a mature power 

market, and at present 'monopoly' and `competition' is mixed together- More and more 

generators and transmission circuits are being built in China to make sure competition Will 
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become possible [28] [29] [37]. Presently, the electricity price of Three Gorges is the 

average LMP in China which is decided by the SERC. For this reason, the energy price of' 
Three Gorges used in this chapter is the average LMP in the grid [33]. 

Following the flowchart (fig 3.1) the to bus' is the new load centre (bus no. 29). Table 3-2 

shows how many buses in the existing grid are suitable for a new transmission line. In the 

third column which is named `improvable options' shows the 'from bus' of' line will 
become the new start bus. For example, in the new line `29-5-'? ' bus 5 is new to bus 

which will be connected to every existing bus except bus 29. After that, new 'good 

options', 'bad options' and 'improvable options' which depend on the new LMP map, will 

emerge. In this test case, the maximum number of transmission lines is three. Depending 

on circumstances, the number is flexible. 

TABLE 3-2 Bus 29 
. as 'TOO III ]s' 

Good 

options 

Bad 

Options 

Improvable 

options 
29--1 29--3 29-5-? 

29--2 29--4 29-8-? 

29--6 29--14 29-12-? 

29--7 29--17 29-13-? 

29--9 29--18 29-16-? 

29--28 

More detail about the transmission network of the test case: 

Depending on functions (3-1) (3-2) (3-3) (3-4), the optional plans for this test case are as 
follows (table3-3): 
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TABLE 3-3 OPTIONAL EXPANSION PI ANS AND I FN i FFI FOP I VI RY NFW Pi vN 

O i l 
Line no. 1 Line no. 2 Line no. 3 

pt ona 
plans Bus 

NO. 
Length 

(kn, ) 
Bus 
NO. 

Length 
(kin) 

Bus 
NO. 

Lengtlz 
(km) 

Total Length 
(kin) 

1 29--1 509.4 509.4 

2 29--2 509.4 509.4 

3 29--6 969.5 969.5 

4 29--7 924.1 924.1 

5 29--9 431.4 431.4 

6 29--5 875.8 5--28 618.4 1494.2 

7 29--13 245.9 13--23 93.3 339.2 

8 29--13 245.9 13--15 53.8 153 374.7 674.4 

9 29--13 245.9 13--15 53.8 1517 118.1 417.8 

10 29--8 1024.9 8--23 890.8 233 385.1 2300.8 

11 29--8 1024.9 8--23 890.8 2317 97.3 2013 

*Setting the distance of two cities as the length of transmission line [33]. 

3.4 Conclusions 

The LMP selection method is a good way for finding optional transmission plans. The first 

advantage is that this method is suitable for a competitive power market. It is quite fair to 

every generator and load. The total social welfare is also considered. A second advantage 
in this kind of method is that it is simple and fast. There is no complex mathematics 

method required. There is not too much data which needs to be dealt with either. The 

method is suitable for a real transmission system. Even in a 28-bus transmission system the 

possibilities of expansion plans are huge (the number equal to 

C28 27 ? C28 + C28 + ... + C28 + C28 ); the most important advantage of this method is that it can 

select reasonable optional expansion plans very quickly. The third advantage is that this 

method is flexible enough. Area A and area B can be defined depending on the situation of' 

the system and depending on how many options the user wishes to consider. 

The next chapter will be based on the results which are determined by the [. MP selection 

method, and will define an optimal system expansion plan. 
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Transmission System Expansion Planning 

Method 
Chapter 3 presented a new LMP selection method (i)I- Optional transmission system 

expansion planning. In Chapter 4 we will focus on how to lind the optimal transmission 

system expansion planning based on the available optional plans. 

A new objective function which is based on minimizing total social cost is introduced in 

this chapter. Results obtained from the 9-bus test system and 28-bus test system will be 

discussed in this chapter. 
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4.1 Introduction 

Transmission system expansion planning in a nmarket-based transmission system has 

become a very important issue, and extensive research on all aspects has been presented 

[1-3], [5], [6], [8-11]. Before the power market is restructured, the main task of system 

expansion is to maintain the reliability of the transmission system. After privatization, 

under a competitive power market, the Transco responsible Cor transmission planning 

considers not only the system stability but also many other issues. For example, after the 

transmission system has been expanded, can the new transmission lines encourage 

competition and decrease discrimination for every participant in the power market? Who 

will provide the funds to finance the new transmission lines? How should the investment 

recovery and return be implemented? To minimize the expansion investment or maximize 

the total social warfare, the system operator has to consider more uncertainty factors and 

risks. For example, the Transco needs to consider the generation plan and transmission 

system expansion at the same time, and long-term expansion planning should be 

coordinated with short-term transmission plans. 

Briefly, there are two main differences between regulated and deregulated transmission 

system expansion planning [11]. Most of the previous research is cantered on these two 

topics depending on different mathematical or economic methods. 

1. The objectives of transmission expansion planning are changing. 

Before the market restructuring, all the generators, transmission system and distribution 

belong to one owner, the objective function of system expansion is to minimize the total 

expansion cost. After market restructuring, the objective function needs to consider fair 

competition, minimize total social cost, control risk etc. 

2. In deregulated electricity markets, there are more uncertainties and risks in the 

transmission expansion planning problem. 

In this chapter, which focuses on the power market in China, the main problems that will 

be addressed are: 
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1. How can we define a CBEP (Congestion-based transmission system expansion planning) 

method? 

2. How can the optional expansion plans be provided for a large-scale system? 

3. How can the new methods encourage competition in the power market, and at same tinlc, 

decrease discrimination for each participant? 

4. How suitable is the CBEP method for China? 

Section 4.2 provides the model of transmission expansion planning and gives some 

improvements under the competitive power market. Section 4.3 present two test cases. A 

simple 9-bus test case under a normal situation and a 28-bus transmission system based on 

the Chinese Three Gorges power grid are presented. We will also discuss why the new 

method is suitable for China, and draw conclusions in the Section 4.4. 

4.2 Proposed concepts and algorithm 

4.2.1Traditional "Transmission System Expansion Planning Method 

Objective function: [12] 

Mißt i =ýCmý +ýarrr 

Subject to: 

Sf+g+r=d 

lý-(),; '+x, )AO=0 

. 

ý/ C 

,/ 

05g<_g 

(4-1) 

Supply demand balance 

"DC., load flow equations 

Power flow constraint 

Generator constraint 
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Where: 

v total cost of system expansion plan (S) 

i new branch number 

I line number in intact transmission system 

m number of circuits added to branch i 

C investment to new branch i (S) 

a penalty parameter associated with loss of load caused by lack of transmission capacity. 

($/MW) 

X1 total new circuit susceptance added to branch l 

'ý beiere new branches are added, initial susceptance in branch I 

r vector of artificial generation, representing load curtailment (MW) 

1 power flow (VA) 

9 generation vector (MW) 

g maximum generation capacity (MW) 

d demand vector (MW) 

6 nodal voltage angles vector 

S branch-node incidence matrix 
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4.2.2 Congestion-based transmission system expansion planning method 

(CBEP) 

It is assumed that generation is a competitive market. Generator companies will maximize 

their benefit when they sell their electrical energy. For this reason minimizing the cost of 

generators is not considered in the present function. 

Objective function of CBEP method: 

ötc 
Min v=ý(ýC in +L +ýa r) (4-2) 

Subject to 

Sf+g+r=d Supply-demand balance 

f, - (Y; " + x, ) A0=0 

. 
f; <- 7, 

Q<g<g 

Where: 

DC' load flow equations 

Power flow constraint 

Generator constraint 

v total cost of system expansion plan ($) 

11 nýyear in the life of a new branch 

I new branch number 

bus number in intact transmission system 

I line number in intact transmission system 
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1Y. \f7QRsio,, Planhin, 
. 
'Icthod 

C, 
�,, present value of line i at year n (S) 

nn number of circuits added to branch i 

tc total cost of transmission, representing transmission cost and maintenance operation 

costs. (S) 

L(,,,, 
) 

load at bus j at year n. (MW) 

d demand (MW) 

a penalty parameter associated with loss of load caused by lack of' transmission capacity. 

($/MW) 

X, total new circuit susceptance added to branch 

2' before new branches are added, initial susceptance in branch J 

F vector of artificial generation, representing load curtailment (MW) 

power flow (VA) 

K generation vector (MW) 

g maximum generation capacity (MW) 

© nodal voltage angles vector 

S branch-node incidence matrix 

For the CBEP function, a period of `n' years is introduced into the new function, not only 

to allow for investment cash flow, but also because load increases year by vear. The 

congestion in the near future should be considered when the expansion is planned. 
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Furthermore, there are three parts in this CBEP function. 

The first part is This is for the investment in new transmission lines. The 

lifetime, capacity and distance of transmission lines are included in this function 

arc 
The second part is " Lý ýý . 

In the competitive power market the generator OL�;.; 
) 

expansion planning and the transmission system expansion planning are separated. The 

capacity of generators is controlled by market demand, rather than by the system operator. 

This part will make sure that when the network is expanded the energy will come from the 

cheapest power stations and energy demand will be satisfied. For this reason, if' the 

generators want to sell energy in the new transmission plan, they will do their best to 

decrease energy prices. Hence the risks and uncertainties on the generator side are partly 

controlled. This advantage is especially suitable for a supply-side-management power 

market (such as the power market in China). 

The third part is This evaluates the loss of' load caused by lack of' 

transmission capacity. The simplest way to define this part is the dil ercnce between total 

limited-transmission-capacity system cost and total unlimited-transmission-capacity 

system cost. 

The second part and third part of the function are included to decrease the congestion in 

transmission expansion planning. This is the reason why the method is termed 'congestion- 

based'. 

4.3 Case studies 

4.3.1 Test case one 

The first example to test the search algorithm is shown in fig 4.1. The test case is a 

standard IEEE 9-bus test system (appendix A). 
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In this test case load 10 is the new load centre, G2 is the cheapest g, encritoýr. Duc to GI and 
G3 being far away from load 10, the energy of G 1, G3 is much more expensive than G2. 

In the whole transmission network bus 7 is the nearest bus to bus 10 (table 4-1, table 4-2). 

Plan 1: new transmission line: line 2-10 

Plan 2: new transmission lines: line 2-7 and line 7-10 

Plan 3: transmission line: line 7-10 (this is the shortest transmission line) 

4 

9 

Fig. 4.1. Nine-bus system 

s 

71L! 
1 

TABLE-'4-1 GF. NTRAroiz INFORyIAlION 

Gen NO. Model Start up $ Shut down .$ 0 cl c2 
1 polynomial 3000 0 11 10 150 

2 polynomial 2000 0 0.085 1.2 600 

3 polynomial 3000 0 12.25 10 150 

T. v13 [. 4-2 SOME INFOR MA! R)N ur rRA'sy1ISSION I INE. S 

Front 
bus 

To 
bus 

R 
S2/"r 

Limit 
M1: -A 

fin, 
S/k»r 

L 
kill 

2 7 0.07 500 15000 140 

7 10 0.05 200 10000 20 

2 10 0.05 200 10000 150 
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Fig. 4.2 New line investment paid by system user per year 

Fig. 4.2 shows how much needs to be paid by system users per year if the transmission 

company wants to recover investment for the 9-bus system within 30 years. In Iig 4.2, only 

the investment for transmission lines is considered. Due to plan-') needing the shortest 

transmission line, the investment for plan 3 is the lowest. However, if the load will 

increase 1.5% per year (depending on the develop rate of the local area), considering 

different energy prices at different generators and the different transmission losses, another 

better expansion plan will be produced (fig 4.3). 

1; 000 
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x  
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rý ]' 

ýr 
_af 

,r 
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r- 

Ic_.. y_.. *.. _*.. __i_. k... -- -. _y 

Fig. 4.3 Result comes from CBEP method 

Fig. 4.3 shows the total social cost per year in the 9-bus system over 30 years depending on 

the CBEP method. The final expansion plan should be plan I, i. e. a new line is to be built 

from bus 2 to bus 10. 
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At the beginning (first two years), plan 3 is the best expansion plan. However, during the 
following year, the total social cost of plan 3 becomes higher and higher. The total social 

cost of plan 1 and plan 2 are similar for the first 25 years, but after that, even though there 

are two new lines are built in plan 2, plan 2 is congested. The total social cost increases 

very fast. From the results we can point out: the cheapest investment does not mean the 

best transmission expansion plan, and the more new transmission lines (more investment) 

do not mean a much more secure transmission system. In addition, a reasonable 

transmission expansion plan needs to consider generator capacity, transmission line 

capacity, operation schedule, different load increase rate at different locations, and the life 

of transmission expansion planning. More detail about CBEP method will be introduced in 

test case two. 

4.3.2 Test case two (Three Gorges transmission system in China) 

Test case two is based on the results obtained from Chapter 3 for the 28-bus network. 
There are 11 optional plans for transmission system expansion planning. Table 4.3 

provides more details of the 11 optional plans. 

TABLE 4-3 OPTIONAL EXPANSION PLANS AND LENGTH FOR EVERY NEW PLANS 

Optional 
plans 

Line 
No. 1 

Line 
No. 2 

Line 
No. 3 

Total 
length(km) 

O&M 
(Phr) 

Investment 
($/km) 

Capacity 
(MVA) 

1 29--1 509.4 1.5 10000 1300 

2 29--2 509.4 1.5 10000 1300 

3 29--6 969.5 1.5 10000 1300 

4 29--7 924.1 1.5 10000 1300 

5 29--9 431.4 1.5 10000 1300 

6 29-5 5--28 1494.2 1.5 10000 1300 

7 29--13 13--23 339.2 1.5 10000 1300 

8 29--13 13--15 15--3 674.4 1.5 10000 1300 

9 29--13 13--15 15--17 417.8 1.5 10000 1300 

10 29--8 8--23 23--3 2300.8 1.5 10000 1300 

11 29--8 8-23 23-17 2013 1.5 10000 1300 

*O&M operation and maintain fee 
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1. Due to the energy demand in China increasing very fast, the system expansion planning 
is for 15 years. 

2. Discount rate of cash flow for investment in this test case is 1.5% per year. 

3. Active and reactive load at each bus increases 15% per year. 

4. A new load bus 29, named 'Loping', is introduced with active load 117.9MW, and 

reactive load 50.69MvAr 

The results are as follows: 

It can be noted that the investment in transmission lines is just a small part of' the total 

social cost. Table 4-4 shows how much investment is needed by each plan in fifteen years. 
Plan 7 is the cheapest investment (536.53$/hr) and plan 10 is the highest investment 

(3639.3$/hr). 

TABLE 4-4 TOTAL INVESTMENT FOR BIIII DING A NEW I INE 

Yearl Year3 Years Year? Year9 Year ll Year13 }'earls 
TC 

S/hr 

PIan1 38.767 42.335 46.231 50.485 55.131 60.204 65.744 71.795 805.74 

PIan2 38.767 42.335 46.231 50.485 55.131 60.204 65.744 71.795 805.74 

PIan3 73.782 80.572 87.987 96.084 104.93 114.58 125.13 136.64 1533.5 

PIan4 70.327 76.799 83.867 91.584 100.01 109.22 119.27 130.24 1461.7 

PIan5 32.831 35.852 39.152 42.755 46.689 50.986 55.678 60.801 682.36 

PIan6 113.71 124.18 135.61 148.09 161.71 176.59 192.85 210.59 2363.4 

PIan7 25.814 28.19 30.784 33.617 36.711 40.089 43.778 47.807 536.53 

PIan8 51.324 56.047 61.205 66.837 72.988 79.705 87.04 95.05 1066.7 

PIan9 31.796 34.722 37.917 41.407 45.217 49.378 53.922 58.885 660.85 

PlanlO 175.1 191.21 208.81 228.02 249.01 271.92 296.95 324.27 3639.3 

PIanl1 153.2 167.29 182.69 199.5 217.86 237.91 259.8 283.71 3184 

ý IL $/hr means l'otal Cost in fifteen years, the cash flow is considered into the cost. 

Table 4-6 shows that plan 6 (new line 29-5, line 5-28) involves the most extra cost fier the 

energy (31,315,100$/hr). This means the energy supply is not enough fier this expansion 
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plan. Plan 9 (line 29-13, line 13-15, linel5-17) involves the least payment for lack of 

generator capacity (21,391,230$/hr). This kind of expansion plan could relax the 

transmission system constraints. 

Table 4-7 shows how much loss of benefit is caused by lack of transmission capacity. If 

the system becomes congested the cost will become higher and higher. With increasing 

load, the loss of benefit will be higher and higher. From table 4-7 we can note plan 7 which 
has the cheapest investment but has a high un-serviced demand (10,331,370$/hr). And the 

plan with least demand un-serviced demand plan is plan 9 (5,261,760 $/hr) the highest un- 

serviced demand is in plan 6 (14,998,370 $/hr). The plans 1,3,4,5 get very similar 

unserviceable waste ranging from 17,786,320$/hr to 17,787,910$/hr. Because the load is 

increasing very rapidly in China, the lifetime for system expansion planning should be 

shorter than for other more developed power markets. 

TABLE 4-5 TOTAL COST FOR TRANSMISSION SYSTEM PLANNING IN DIFFERENT PLANNING 

SCHEDULE 

5 years 
planning $/li 

10 years 
planning $�l: 

15 years 
planning $/l: 

PIan1 8096600 20992000 41897700 

PIan2 7955800 20500700 40955900 

PIan3 8096100 20990700 41894600 

PIan4 8096100 20990700 41894600 

PIan5 8096500 20991800 41897600 

PIan6 8452000 22881600 46316000 

PIan7 8227000 19535400 36874000 
PIan8 5807500 13594000 27034900 

PIan9 5850700 13693500 26653600 

PIan10 6149700 15282300 31815700 

Planl1 6166400 15304400 31171500 

Table 4-5 shows the final result obtained from the CBEP method. At same time the table 

shows the planning schedule is a very important factor for the transmission planning. If the 

planning is only for 5 years or 10 years the best plan is plan 8 (plan 9 13,693,500, plan 8 

13,594,000) but if the planning for 15 years the best plan changes to plan 9 (plan 9 

26,653,600$/hr, plan8 27,034,900$/hr). 
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Fig. 4.4 Thirty years expansion planning 

In this CBEP method, the lifetime of the planning is only fifteen years. Fig 4.4 shows that 

during the first fifteen years, the objective function value of plan 1 is stable. However after 

fifteen years, the results become uncertain. In this 28-bus test case, at the 30th year, the 

total generator capacity is: active power 41250.0 MW, reactive power - 
13840.0MvAr-24220.0MvAr. Total load and losses in this system are: active power 

29335.38MW, reactive power 12976.84MvAr. But in this case the OPF program in Matlab 

cannot obtain the optimal solution. G. Gross and his colleague Ettore Bompard in their 

paper "Optimal Power Flow Application Issues in the Pool Paradigm" also mentioned this 

phenomenon [86]. In the next chapter, we will analyze the uncertainty of LMP, and will 

address question such as: How does the un-certainty happen? How will the participants be 

affected in an unbundled power market? How can the uncertainty of LMP be avoided? All 

these problems will be considered in Chapter 6. 

4.4 Conclusions 

A good system expansion planning approach is required urgently by the growing Chinese 

power market. In this chapter a new CBEP method has been introduced. In this method, 

not only the investment of transmission lines for system expansion but also the cheapest 

energy source and lowest transmission cost are considered. There are two test cases in this 

chapter. The first test case is the IEEE 9-bus test system. This test case briefly introduces 
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the kind of elements that will be involved in transmission system expansion planning. The 

second test case is a 28-bus network based on the Three Gorges Project in China. In this 

test case three parts of the CBEP method are analysis one by one. The optimal system 

expansion plan is selected from 11 optional plans which come from the LMP selection 

method. The new CBEP method can minimize total social cost and control the risk 

involved in system expansion. At the same time the economic signal for system congestion 

is given. The factor of '15 years' is especially suitable for a country in which demand is 

rising very fast. 

The following chapters will analysis the uncertainty in the transmission system expansion 

planning. 
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Chapters : Comparative Study of 
Congestion-Based Transmission System 

Expansion Planning (CBEP) Method 
The CBEP (Congestion-based transmission system expansion planning) has been 

introduced in Chapter 3 and Chapter 4. In this chapter, an existing similar transmission 

system expansion planning method which is named CDEP (Congestion-driven 

transmission system expansion planning) method will be presented. 

There are two parts in this chapter. The first part mainly introduces the objective function 

of the CDEP method. Differences and similarities of these two methods are then analyzed. 

The second part of the chapter is a comparison. Both of these methods will be applied to 

the same test case. The advantages of the CBEP method found in the test case will be 

analysis. 



Chapter 5: Compare with Congestion-driven Transmission 
System Expansion Planning Method 

5.1 Introduction 

In this chapter, an existing CDEP method is introduced. Compared with the CBEP method 

which is presented in this thesis, both methods focus on system congestion in a competitive 

power market but in a totally different way. The main structure and functions of the CDEP 

method will be introduced in Section 5.2. In Section 5.3, these two methods will be applied 

to the same test case and the results will be compared. Conclusions are drawn in Section 

5.4. 

5.2 Congestion-driven transmission system expansion 

planning method 

This method is defined by G. B. Shrestha and P. A. J. Fonseka of the power market 

research group of Nanyang Technological University, Singapore. Their paper "Congestion- 

Driven Transmission Expansion in Competitive Power Markets" was published in IEEE 

Transaction on Power system, Volume 19 in August 2004[5]. 

5.2.1 Production cost and consumer benefit 

The main idea of CDEP method is to minimize the total social cost. In this objective 
function the cost of production will be minimized and the benefit of production will be 

maximized. 

A) Cost of production (supply side) 

Price and quantity curve for supplier i (fig 5.1a) 

p, = b; +mgg; for i= 1,2,3,..... 1 (5-1) 

Apparent production cost: 

C; (g) =1 mgg; +b, gi (5-2) 

Where: 
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i supplier index ( total number of generator, I) 

p; price at which i is willing to supply in $/MWh 

b; intercept (b; >O) in $/MWh 

mg slope(m>0)in $/MW2h 

g, supply in MW 

B) Benefit of production (demand side) 

Demand curve for a consumer j is (fig 5.1 b) 

pf = bj+mdd, for j=1,2,3,.... J (5-3) 

Consumer benefit cost: 

BJ(dJ)=2mddý +bdj (5-4) 

Where 

j consumer index ( total number of load, J) 

pj price at which i is willing to pay for energy in $/MWhr 

b1 intercept (b>0) in $/MWhr 

and slope(mg<O)in $/MW2h 

dj demand in MW 
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Price 
$/M WI 

P 

b 

Price Csi(IIJ) 
$/MWh 

pi 

) ý\\\\` pd; 
g, Quantity dd Quantity 

(a) N "V (b) raw 

Fig. 5.1 (a) Supplier's surplus and supply curve (b) Consumer's surplus and demand curve 

C) The objective function is: 

Min ZC, (g; (yti))- B; (d1(Yti)) (5-5) 
s, (rº), d, (y+, ) 

Subject to 

dj (yh) -Yg, (y,, ) =0 Power balance without losses 

gi < g, (yh)< g1 Supply limit 

4j <_ dj (yh ) <_ d, Demand limit 

?m< zm; (Yh):! ý Zn Line flow limit 

Where 

i supplier index ( total number of generator, I) 

j consumer index ( total number of load, J) 

m branch index ( total number of branches, M) 
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n bus index (total number of bus node, N) 

yh time period index (in 1- hour steps) 

g1 supply in MW 

d, demand in MW 

C, (g) apparent production cost 

Bý (d1) consumer benefit cost 

5.2.2 Objective function for CDEP method 

Min ent�,, Yr 
nm, 

Yr + 
Cr (g; (Ys )) 

- 
Z Bj (d; (Yh )) 

5-6 
nmd, %, (th ), d, (th Yr-Yo Yr-Yo Yr -Yo 

ty ET nm, yr 

ýý +'r) 
th ET ! El 

(I +O 
fhET JE� 

ýý + ý) 

Objective function: 

gi < g; (yh )< -gi Supply limit 

dj 
_< 

d j(yh) <_ di Demand limit 

zm <_ zm; (yh ) 
_< z, � Line flow limit 

nm yY <_ nm yY 
<_ n, �, yy Expansion limit 

Where: 

yh hourly time domain 

yY time period index (in 1- year steps) yearly time domain 

66 



Chapter 5: Compare with Congestion-driven Transmission 
System Expansion Planning Method 

yo time period index (in first year) 

r cash flow discount rate (%) 

ent investment to system expansion ($/circuit) of branch m 

n, �, Yy number of circuits added for branch m in year yy. 

The congestion cost (saving) and the investment cost (spending) are balanced in this 

objective function. Also there is a balance between congestion cost, consumer surplus and 

suppliers' surplus. 

This objective function includes three parts. The first part is II entm. y. 
n 

-"Yy 

(l+T)yy '° ' 
yy¬Tný 

evaluating investment in system expansion. This term is exactly the same as in part one of 

the CBEP's objective function (equation 4-2). Both of them include expansion limits and 

cash flow. 

The second part is E C' (g' (yh )) 
This part is the production cost (equation 5-2). 

yhETIEI 
(1+T) 

Because the objective function of CDEP does not consider the load increasing year by year, 

the cash flow is also included in this part. 

The third part is IZ B' (d' (yh) 
. This part is the customer benefit (equation 5-4). Cost is 

vy-n, 
v, ET, %EJ 

(1 + Z) 

positive and benefit is negative in this objective function. 

5.2.3 Comparison 

The two methods will be compared on many aspects which include what are their objective 
functions, what similar parameters are in the objective function and how to realize the 

objective function (seeTable5-1). And in the next section, from the calculated result, the 

two system expansion methods will be compared based on the same test case. 
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TABLE 5-1 COMPARING THREE MAIN TRANSMISSION TARIFF METHODS 

Congestion driven method Congestion based method 

Objective function Minimize total social cost Minimize total social cost 

` ' ` ' involved in the Year y Year y involved in the 

Parameters objective function, Cash flow objective function, Cash flow 

Realize objective 
Balance supplier's surplus and Depending on the transmission 

function customer's surplus by supply and capacity and generator capacity, 
demand curve minimize the congestion cost 

Economic signal Shadow price LMP 

The way to select 
Increase capacity of transmission LMP selection method 

expansion plans lines with decrease congestion 

cost (no more details provided) 

5.3 Test case 
In this chapter, the test case is the same as in Chapter 4 which is the 28-bus transmission 

system. The optional plans are also based on the LMP selection method. Eleven optional 

plans will be considered in this test case. 

5.3.1 Result 

The data for the test case is presented in table 5-2. In table 5-2, mg, g;, b; come from the 

generator side. The parameters and dj, bj come from the distribution side. Because 

published information on the distribution side is not available, the data has been generated 

based on experience or historical information. 
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TABLE 5-2 TEST CASE DATA 

Bus 
Supply function Demand function 

No. mg gi b; and dj bj 

1 0.09 5600 30 0.054 5000 40 

2 0.09 2824.9 30 0.013 5000 40 

3 0.09 4200 30 0.031 0 40 

4 0.09 4200 30 0.052 5000 40 

5 - - - 0.034 251.93 80 

6 0.031 347.69 35 0.037 132 120 

7 - - - 0.041 73.5 40 
8 - - - 0.026 45 50 

9 0.046 348.06 30 0.073 448.5 100 

10 - - - 0.055 856.5 75 

11 0.043 609.93 37 0.059 1635 100 

12 - - - 0.04 705 90 

13 - - - 0.054 76.05 80 

14 - - - 0.013 345 40 

15 0.057 891.57 35 0.031 51 75 

16 - - - 0.052 1181.3 85 

17 - - - 0.034 81 60 

18 - - - 0.037 141 50 

19 - - - 0.041 418.5 50 

20 0.071 336.31 40 0.026 45 40 

21 - - - 0.073 679.5 70 

22 - - - 0.055 567 80 

23 0.074 1914.9 40 0.059 21.9 120 

24 - - - 0.015 22.5 80 

25 - - - 0.061 169.5 70 

26 0.044 775.25 45 0.057 30 50 

27 - - - 0.071 22.5 100 

28 0.044 1220.9 50 0.025 37.5 80 

29 - - - 0.04 117.9 70 

*Units: mg, md: $/MW`hr g,, d1: MW b;, dj $/MWhr 

*-: No generator at this bus 
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Fig 5.2 shows the cost of CDEP method over 15 years. Fig 5.3 shows the cost of CBEP 

method over 15 years. Table 5-3 shows the total cost for every plan. The dramatic result is 

that according to the congestion-driven method, plan 6 is the best one. But plan 6 is the 

worst in the CBEP method. Contrarily, plan 8 and plan 9 are the best two options in the 

CBEP method. Based on the CDEP method, plan 8 and plan 9 are the worst two options. 

However, according to fig 5.2 we can see that, even between the best option (plan6) and 

the worst option (plan 8) the values of objective function do not exhibit too much 
difference. All the curves of optional plans are close together. 
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Fig. 5.2 Cost of CDEP method 
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TABLE 5-3 CDEP AND CBEP REEDIT s coMI'ARiN(i 

CDEP ºnethod CBEP method 

Options 
Objective function value 

($/hº) Options 
Objective fimction value 

($//u ) 

plan6 81,754,800 plan 9 26,653,600 

plan3 83,461,400 plan8 27,034,900 

plan4 83,461,400 plan11 31,171,500 

plant 83,461,800 plan10 31,815,700 

plan5 83,462,400 plan7 36,874,000 

plan7 83,603,500 plan2 40,955,900 

plan2 83,639,200 plan3 41,894,600 

plan11 84,661,500 plan4 41,894,600 

plant O 84,667,000 plans 41,897,600 

plan9 85,459,400 plant 41,897,700 

plan8 85,527,900 plan6 46,316,000 

In table 5-3, we can tell that the optimal system expansion plan is different between CBEP 

and CDEP method. The reasons are as follow: 

The CDEP method is based on the suppliers' surplus and consumers' surplus. However, 

depending on the economic principle, during same period in the whole society, the social 
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productive force is the same (If any industry could make extra benefit, all the investment 

will come to this field. The demand and supply in market will balance the benefit again. ). 

Hence, every supplier and each customer obtains almost the same surplus. Because every 

optional plan has a similar objective function value, the CDEP method cannot give the 

optimal expansion plan. 

5.3.2 Discussion 

Even though these two system expansion planning methods give different result, we can 

still compare these two methods according to four aspects: data collection, data 

organization, and result analysis and power market application. 

Data collection 

In the CDEP method, the supplier's supply curve (generator side) and consumer's demand 

curve are necessary. From generator side the supplier's data are stable compared with the 

distribution side. Because the lifetime of transmission expansion planning is quite long and 

productivity rises very fast with improvements in technology. The consumer's surplus will 

become very difficult to forecast. On the other hand, since only current information is 

collected, it is almost impossible to obtain an exact demand curve for every load. In these 

cases the CDEP method cannot offer a proper system expansion planning over a long 

period. 

The CBEP method, depending on the increasing load, evaluates the LMP in the future. The 

increase in load is much more regular than consumer's surplus. In this way the CBEP 

method can find reliable transmission expansion plans. 

Data organization 

In the CDEP method, the data depends on the bidding information coming from the 

generator side and the distribution side every hour. But for a 15 year or much longer 

expansion planning problem, too much data will be involved in the calculation. It would 

make the calculate become very complex and may not be necessary. In addition, depending 

on equations (5-1) (5-2) (5-3) (5-4), from the generator side and distribution side, no 

reactive power price is included in the CDEP method. 
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In the CBEP method, every step is one year instead of one hour. For this reason the method 

is much simpler compared with the CDEP method. Both the active power and reactive 

power are considered in the CBEP method. These advantages will make the congestion- 

based method more transparent and easy to be accepted. 

Result analysis 

From the results of the CDEP method (fig 5.2), we can easily find out that all the optional 

plans have similar values of objective function. The reason is that during the same period, 

the consumer's surplus and the production cost in the whole transmission system cannot 

involve too many differences. 

The results which come from the CBEP method (fig 5.3) are based on LMP in the whole 

system. When the system is congested, it will be shown by the LMP directly. With 

increasing load, the CBEP method can point out the option which can relax the system 

congestion most clearly. 

Power market 

First, the CDEP method is suitable for a power-pool model market, which includes 

bidding from the generator side and the distribution side at one hour before market closure. 

However it is not suitable for a power market which does not include such full competition, 

such as the Chinese power market. 

Second, bidding details for future years are quite closely involved in the CDEP method. 
This is very sensitive and difficult to forecast. This will make the results obtained from the 

CDEP method unreliable. For this reason, the transparency of this method is not good 

enough. However this feature is very important for a good system expansion method. 

Third, the results that come from the CDEP method are `flat'. The economic signal is not 

distinct enough. It is not clear whether congestion in the transmission system is serious or 

not. When does the new system expansion planning need to be organized? These questions 

cannot be answered by results based on the CDEP method. 

All the problems above can be solved by the CBEP method, which is presented in this 

thesis. However measuring transmission system expansion planning by production cost 
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and consumer's surplus is a valid idea as well. With deeper research, the CDEP method 

could be greatly improved. 

5.4 Conclusion 

In this chapter the CBEP method is compared with an existing transmission system 

expansion method named CDEP method. Two results which come from CBEP method and 

CDEP method are compared. Depending on the result coming from the CBEP method, we 

could safely point out that CBEP method has more advantages when it is applied in the 

restructured power market. 
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Chapter6 : Uncertainty of Locational 

Marginal Prices in Optimal Power Flow 

Formulations 
This chapter focuses on the impact of LMP uncertainty in a competitive power market. 

Moreover, this chapter pays attention to how the uncertainty can be reduced. Since the 

LMP is a very significant economic signal, for example from the UK pool paradigm to 

Pennsylvania-New Jersey-Maryland Interconnection (PLM), the LMP is used widely. 

There are some challenges associated with the effective LMP application in the 

competitive environment due to the uncertainty of LMP when calculated by an OPF 

formulation. In this chapter, we analysis how the parameters of the transmission system 

affect the uncertainty of the LMP; how the uncertainties in LMP affect the power market 

participants, such as independent generators and system operator. The effect on social 

welfare will also be discussed. Finally, a method to overcome the uncertainty in LMP is 

suggested. The uncertainty of the OPF formulation can also be solved. This chapter 

provides extensive numerical results on a test system based on the IEEE 30-bus network. 



Chapter 6: Uncertainty of LMP in OPF Formulation 

6.1 Introduction 

Several decades ago, the traditional organizational structures of electrical energy supply 

have been reformulated as markets. The system has changed from a formerly vertically 

integrated and highly regulated structure, separated into participants which include the 

generation entities, transmission owners, distribution wires business, system operators, 

market trading customer services, etc. In the generation, transmission and distribution of 

electric power, the attraction of market-inspired efficiency has spawned a variety of studies 

on market design. In the traditional bundled structure, the optimal power flow can perform 

the dual function of minimizing production costs and avoiding congestion in a least cost 

manner [85]. However, under the competitive environment, more attention is paid on how 

to maximize the social warfare and how to build a fair competitive environment for each 

participant in the power market. Hence, there are some changes associated with the 

effective OPF application in the unbundled competitive power market, such as the flatness 

of the optimum surface and the consequent continuum associated with the optimum. 

Gross and Bompard [86] have identified some characteristics of OPF formulation such as 

lack of sensitivity of OPF solution, uncertainty in system parameter values and non- 

economic power flow, etc. In this chapter, we focus on the uncertainty in the system 

parameter values. What kind of parameters of the transmission system will impact the 

uncertainty LMP when calculated by the OPF formulation? Why does the uncertainty in 

LMP occur? How will the participants of the power market be affected by the uncertainty 

of LMP? How will we overcome the uncertainty of LMP? All these questions will be 

considered in this chapter. 

In [85-88] the authors discuss the effect of OPF formulation on the competitive power 

market and how the sensitivity of LMP depends on the OPF formulation. In particular, 

reference [87] provides expressions to compute the sensitivities of LMP with respect to 

power demands. 

In this chapter, Sections 6.2 and 6.3 describe the OPF model, defining the LMP and LMP 

uncertainty, and introducing the parameters which will affect the uncertainty of OPF. 

Three test cases will be presented. In Section 6.4, how and why the LMP uncertainty will 

affect all kinds of power market participators will be explained. Section 6.5 introduces a 
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procedure on how to overcome the uncertainty of LMP and a test case will be presented. 
Finally, Section 6.6 will draw conclusions. 

6.2 Problem formulation 

6.2.1 Optimal Power Flow (OPF) 

Optimal power flow (OPF) is a central decision-making tool. From 1962, OPF has had a 

long history of development. Now OPF has become a successful algorithm that could be 

applied on an everyday basis, in different kinds of power markets. The OPF is used for a 

wide range of tasks from calculating minimum cost generation dispatch to setting 

generation voltage, and transformer taps [89]. Obviously, we can also calculate LMP based 

on the results of OPF. 

Using the traditional OPF formulation, in this chapter the objective function of OPF is to 

minimize the total generator cost for the transmission system. In addition, the cost for each 

generator is defined by polynomials in the generator output. 

Objective function: 

min 1 F,; (P; )+F�(Qg, ) 
(6-1) 

Equality constraint 

P, -ýPP, -Pions =0 
Qgl - Q,; -Q1 =0 (6-2) 

Active and reactive power balance equations 

Inequality constraint 

Sf 1! ý S. max 

sij I<S. max 

(6-3) 
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Apparent power flow limit 

V, min vý<v max 
ii 

Pmin ýP< pmax 8+ 8t 81 

Qgi min < -g' C Qgi max (6-4) 

Where 

F1; is clearly based on thermal efficiency and fuel cost but F2i is less physical based and 

could be used to model reactive power penalty costs. For example, from different reactive 

sources, the reactive power price may vary and most of the time reactive power is regarded 

as a form of ancillary service. 

g generator 

I load 

i, j bus number 

f, t "from" bus, "to" bus 

Obviously, there is more than one kind of objective function that could be chosen. For 

example, it would be possible to maximize the social welfare S' [86]. 

6.2.1 Locational marginal price 

LMP is a very important economic signal [90]. In a competitive electricity market, 

especially where some congestion exists in the transmission system, the independent 

generators are paid for the energy that they supply to the market, according to the LMP at 

their point of connection to transmission system. The independent generators will self- 

schedule their economic dispatch, bidding their supply to maximize the profit of generation 

according to the LMP. The loads pay for the energy that they demand based on the LMP at 

their connection point in the transmission system. The energy suppliers are paid based on 

the difference in the LMP between the delivery points to the receiving points in the 
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transmission system. At same time, energy consumers pay the Transco for the transmission 

service based on the difference in the LMP between the delivery points to receiving points 

in the transmission system. Almost all the trade activity in the competitive electricity 

market has some relationship with the LMP. 

In this chapter, we define the LMP as: 

dF 
dP,, (6-5) 

The effect of incremental demand will express the incremental cost of generators in the 

transmission system. 

Where 

F cost function of generators in the transmission system. The active and reactive power 

generator costs are included in ($) 

the real power load at bus i line 1(MW) 

A LMP ($/MW) 

It is well known that before the system becomes congested, the electricity market should 

have a MCP but if the system is congested, different locations will have different LMPs. In 

this chapter, the LMP of certain locations will be discussed. As usual, the congested LMP 

will be higher than for the system without congestion, and the LMP should be stable when 

the parameters of transmission lines are only changed by a small amount. If a small change 

of transmission parameters will make the LMP change radically, we say the LMP has 

uncertainty. The next sections will analysis how the parameters in the transmission line 

affect the LMP in the transmission system and how the electricity market participants will 

be affected. 
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6.3 Uncertainty of LMP 

In this section, some parameters of transmission lines will be analyzed to explain how the 

transmission parameters affect the LMP in the transmission system. 

6.3.1 Case study 1: Apparent power limit of line 

In this test case, the apparent power limit of a transmission line will be varied over the 

range [10%, -10%], the transmission system will be congested as a result of the changes. In 

the IEEE 30-bus test system, the apparent power limit of line 6-8 ranges from 90% to 

110%, with a step of 1%. (See appendix D) 

Corresponding to the parameter changes the LMP of bus 8 will be affected. However, the 

LMP curve should be a smooth curve. Fig 6.1 is the LMP of bus 8 when the real power 

cost and reactive power cost are both considered. The minimum generator cost is 

623.01$/hr when the apparent power limit of line 6-8 is 100% (32MVA). 
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apparent power limit of line 6-8 range from 90% to 110% 

Fig. 6.1 Apparent power limit of line 6-8 range from 90% to 110% 
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Fig. 6.2 Real power cost when apparent power limits of line 6-8 range from 90% to 110% 

Fig 6.2 is the LMP of bus 8 when only the real power cost is considered. The minimum 

generator cost is 574.52 $/hr when the apparent power limit of line 6-8 is 100% (32MVA). 

Fig 6.1 and fig 6.2 show that when the apparent power limit is less than 97% the LMP of 

bus 8 will change with great uncertainty. A small change of apparent power limit will 

change the LMP at bus 8 dramatically. 

Defining the LMP as the price of supplying an additional 1 MW of load at each bus in the 

system, fig 6.3 shows the power flow information of line 6-8 when the real power and 

reactive power are considered. 
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Fig. 6.3 Power flow of line 6-8 when apparent power limit range from 90% to 110% 

In fig 6.3 curve "S limit" shows the apparent power limit of line 6-8 range from 90% to the 

110%. Curve "S original" shows the power flow information in line 6-8 (MVA), when the 

load at bus 8 is the original output. Curve "S add I MW" shows the power flow 

information in line 6-8 (MVA), when the load at bus 8 increases by 1 MW. 

6.3.2 Case study 2: Reactance 

There are a number of parameters to describe a transmission line such as resistance, 

reactance, susceptance, etc. Case study 2 compares the uncertainty of LMP under varying 

reactance of a transmission line. In test case 2, the reactance of the transmission line will 

be changed by a small amount to test how the parameters of the transmission line affect the 

LMP uncertainty. The original transmission line data in the OPF program is x=0.04 

(reactance p. u. ). When the apparent power limit of transmission line is decreased, the result 

of LMP at bus 8 becomes uncertain. At the same time, if we increase x from 0.04 to 0.08 

the result is as follows (fig 6.4): 
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Fig. 6.4 Reactance of line 6-8 
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Fig. 6.5 The active power flow information of line 6-8 

Fig 6.5 shows the active power flow information. 

The curve "x=0.04 (0.08) original load" shows the real power flow information, when the 

reactance of line 6-8 equals 0.04 (0.08) and load 8 is the original load. 
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The curve "x=0.04 (0.08) load +1MW" shows the real power flow information, when the 

reactance of line 6-8 equals 0.04(0.08) and the load 8 increase by 1 MW. 

As the apparent power capacity ranges from 80%-105%, the uncertainty of LMP still exists 

(fig 6.6). However, the tolerance to the congestion will increase; the uncertainty situation 

will be delayed. If the line charging susceptance is changed, the result is similar. As the 

reactance of a transmission line is affected easily by temperature, for example, the 

uncertainty of LMP will be common in practice. 
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Fig. 6.6 apparent power limit of line 6-8 ranges from 80% to 105% 

6.3.3 Case study 3: OPF formulation 

In test case 3, the LMP of bus 8 will be calculated by different formulations of OPF to 

compare the uncertainty of LMP. 
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Fig. 6.7 CCV formulation 

The formulation of OPF is the Constrained Cost Variable (CCV) formulation and based on 

linear programming (fig 6.7). The pauses in the curve indicate numerical failure of the OPF 

software [5]. 
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Fig. 6.8 Standard formulation 

Fig 6.8 shows the LMP of bus 8 calculated by an OPF which is based on a standard linear 

programming formulation. 
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In addition, an OPF based on a standard sparse linear programming formulation and an 

OPF based on the generalized MINOS formulation can be used to calculate the LMP of 

bus 8. The results are similar and the uncertainty still exists. When the apparent power 

limit of line 6-8 is equal to 97% there is a high ridge in the LMP. 

6.4 Impact on participants in the power market 

6.4.1 From the viewpoint of an independent generator 

Independent generators, unlike regulated utilities, do not have a guaranteed retail customer 

base for their electrical output. The only objective of independent generators is maximizing 

their profit. The independent generators in the competitive power market will focus on the 

forecasting of locational marginal cost due to the congestion, bidding and generator 

dispatch. 

The profit of an independent generator is given by: 

F(i, t) = pg(i, t)[P(i, t) + B(i, t) - Po(i, t)] - S(i, t) - C, (i, t) (6-6) 

Where: 

F(`, c): Profit of unit i at time t ($) 

Ps0`, t>: Forecasting location marginal price for energy at bus i at time t ($/MVA) 

P(t, t): Generation of unit i at time i (MVA) 

P(i, t): Bilateral contract (sell) of unit i at time t (MVA) 

B(i, t): Power purchase of unit i at time t (MVA) 

C, c« : Cost function of unit i ($) 

S(t, t): Star up cost ($) 
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The ISO and Gencos are two main market participants, but they have different goals for 

price forecasting. Independent generators estimate energy price to build their bidding 

strategy and bilateral contract before submitting bids for benefit maximizing. In equation 

(6-6) P-(', '), the price forecasting means short-term price forecasting by Gencos. 

The factors impacting electricity price forecasting are: historical electrical price, historical 

and forecasted load, fuel price etc. 

Objective function of the independent generator is Max E F(i, t) . The marginal cost 
I 

uncertainty at certain locations due to small change in parameters will make the LMP 

change radically. If an independent generator owns a unit at such a location, it becomes 

very difficult to try to forecast the LMP. In the pool market, this kind of uncertainty makes 

the independent generator very difficult to find correct information for self-schedule 

optimization, bidding etc. 

Furthermore, if the congestion fee is being defined by the different LMP at different 

locations, the uncertainty of LMP will also make the congestion charge uncertain. 

6.4.2 From the viewpoint of the system operator 

The system operator needs to consider the economy and security of the transmission 

system at the same time. For security analysis, the system operators need factors which 

show the approximate change in line flow for changes in generation in the given network 

configuration. The generation shift factor is one such factor. 

Generally, the generation shift factor is defined as: 

(6-7) 

Where 

I the line number 
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z the bus number 

4f change in Megawatt power flow on line (MW) 

°P change in generation at bus i (MW) 

For simplicity, the test case is based on the apparent power limit of line 6-8 varying over a 

range from 90% to 110%, considering the real power flow in line 6-8 divided by the real 

power output of generator 1. 
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Fig. 6.9 Generator shift factor 
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Fig. 6.10 Real power information 
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Fig 6.9 and fig 6.10 show that when the capacity (apparent power) of line 6-8 is changed a 
little, the G1 real generator output and the Glgeneration shift factor will be severely 

altered. 

There are six generators in the 30-bus test transmission system. Some of the generation 
factors are obviously affected by the parameters of line 6-8, such as the generation shift 
factors of G1, G2, G22, which exhibit great uncertainty. 

This kind of uncertainty will prevent the system operator from analyzing the transmission 

system easily and quickly. A small change of some parameters will strongly affect the 

security analysis of the transmission system. The network will be very difficult to operate 

securely and efficiently. 

6.5 Solution: Artificial generators 
Due to constraints in the transmission network, the OPF code may not be able to find the 

optimal solution for power flow. In this case, a small change of system parameter will 

affect the important economic signals. To solve this problem of uncertainty of LMP, we 

introduce artificial generators at each bus in the transmission system. These artificial 

generators only afford active power at an artificial very high price for energy. The very 

high energy prices of artificial generators ensure that the artificial generator will not be 

used when the transmission system can operate without congestion. When the system is 

congested, to find the optimal solution, the artificial generator will have to be used and the 

energy will be very expensive. However, the LMP uncertainty will disappear (fig 6.11). 

From fig 6.11 we can see that when the system is without artificial generators and the 

power limit of line 6-8 is less than 97% of apparent power limit, the LMP at bus 8 is not 

stable. However, when the artificial generators are put into the system, the situation is 

totally changed. When the transmission line 6-8 is congested, the LMP at bus 8 increases 

but the uncertainty of LMP has disappeared. The expensive energy price at bus 8 will 
decrease the electrical demand in that area. In this way, the demand and supply of energy 

will be balanced. 
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Fig. 6.11 Results when the system includes artificial generators 

The test case considers bus 8 and line 6-8, as before. From fig 6.11, we can see that after 

reaching the 97% apparent power limit of line 6-8, the result of the two kinds of solution is 

the same. There are two further questions which need to be considered. The first question 

is when so many artificial generators are put into the OPF code, how will the computer 

time be affected? Before the transmission network becomes congested, we don't need to 

put artificial generators into the transmission system. After the network is congested, if the 

artificial generators are not present, the OPF code will exceed the maximum iteration limit 

(average run time 29.79 seconds). This will cost more computer time than with artificial 

generators (average run time 19.82 seconds). 

The second question is when the system is congested, the artificial generator will inject 

artificial power into the transmission network, is there any risk to the security of 

transmission system? As the artificial power is very expensive, from fig 6.11 we can see 

that when the artificial power is used, the LMP of bus 8 is more than 100$/hr. The supply 

and demand will keep in balance. However, very high but consistent LMP is better than 

uncertain and erratic LMP. 
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6.6 Conclusion 

In a competitive electric market, the non-discriminatory requirement is very important to 

every participant. The uncertainty in LMP will affect the equitability of participants in the 

power market. In this chapter, we have analyzed the uncertainty of LMP, and the impact 

of LMP uncertainty on the participants in the power market. The chapter has also proposed 

a feasible and simple solution for overcoming the LMP uncertainty. We have found that 

we need to pay more attention to the uncertainty of LPM when the transmission system 

becomes congested. 
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7.1 Summary of the aims 
With the deregulation and restructuring of the power industry, the power market is 

developing towards a more competitive market. Some countries began the power market 

revolution very early (table 7-1) [83]. 

TABLE7-1 ELECTRICITY RESTRUCTURING REFORMS IN CALIFORNIA, NORWAY, SPAIN, AND 
ARGENTINA 

California Norway 

*FERC and CPUC (federal and *NVE (regulator) 
Regulatory 

state regulators) *Statnett (grid owner and system 

*ISO (system Operator) operator) 

*Nord Pool (market operator) 

*Centralized and physical *Centralized and physical bilateral 
Wholesale 

market 
bilateral trades trades 

*Several transmission owners *Trading in the Nordic Pool 

*All customers (1998) *All customers (1991) 
Retail 

*Metering and billing 

competition 

(Continues) 
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TABLE7-2 ELECTRICITY RESTRUCTURING REFORMS IN CALIFORNIA, NORWAY, SPAIN, AND 
ARGENTINA (CONTINUED) 

Spain Argentina 

*MIE and CNSE (regulators) *Secretary of energy and ENRE 
Regulatory 

*REE (system operator and (regulators) 

transmission grid operator) *CAMMESA (system and market 

*OMEL (market operator) operator) 

*Centralized and physical *Mandatory pool with financial 
Wholesale 

market 
bilateral trades bilateral contracts 

*Gradual implementation in a 5- *Large users (1992), and small 
Retail 

year period customers in the future 

*All customers in 2003 

Because electricity is a primary input for many industries, a deep transformation in the 

electricity industry has taken place in more and more countries, aimed at helping them win 
in the global economic competition by reducing primary energy costs. 

China is one of these countries. From 1997, the Chinese government prepared a 

restructuring law for restructure the Chinese power market. In 2002 SERC began to work 

as market regulator. Until now the Chinese power market has only 5 years experience. The 

Chinese power market can build on much valuable experience from all the developed 

power markets. However due to many differences from country to country, there are a 

great deal of problems still to be solved. 

Presently the most urgent problem in the Chinese power market is the transition from 

electricity shortages to transmission capacity shortages. Not only in the Chinese power 

market but also in the whole world, the question of how to build and run a healthy 

transmission network is waiting for a good answer. 

In this thesis, we focused on how to solve the transmission bottleneck problem as 

exemplified in the Chinese power market. Chapter 2 mainly discussed how to make sure 

the total cost of transmission system will be recovered to encourage more investment come 
into the transmission network. Chapter 3 and Chapter 4 presented the congestion- based 

transmission system expansion planning method. Chapter 5 compared the CBEP method 
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with another transmission system expansion planning method. Chapter 6 discussed how the 

uncertainty of LMP will affect the transmission system expansion planning. Some analysis 

about the OPF formulation was also presented. 

7.2 Contributions 

Recently, more and more countries have been restructuring power systems to increase the 

social efficiency. The Chinese power system introduced privatisation and deregulation 

from 2002 onwards. However, the biggest problem is that the development of the 

transmission system lags far behind the electrical demand. How to build a strong and 

economic transmission system in China is an urgent issue. 

In this thesis, methods of charging for the transmission system and optimising the 

expansion of the transmission network under the competitive power market are described. 

The first contribution of this thesis is transmission tariff design. In the proposed approach, 

not only is all the necessary investment in the transmission system recovered, but also an 

absolute economic signal is offered which is very useful in the competitive power market. 

A fair power market opportunity is given to every participant by the new nodal-use method. 

The second contribution of this thesis is the introduction of a congestion-based 

transmission system expansion method. This has been validated on the Three Gorges 

Project in China. In this thesis, to optimally expand the transmission system, the LMP 

(Locational Marginal Price) selection method and the CBEP (Congestion-Based 

transmission system Expansion Planning) method are introduced. The LMP selection 

method is used to select optional plans for transmission system expansion. It is especially 

suitable for large transmission systems. The outstanding advantages of the LMP selection 

method are simplicity and computational efficiency. The CBEP method produces the 

optimal system expansion plan. For the first time, generation congestion and transmission 

congestion are separated within the system expansion problem. For this reason the CBEP 

method can be used in a supply-side power market and is suitable for the Chinese power 

market. 
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In this thesis, the issue of how to relax the congestion in the transmission system has been 

solved. The transmission system can obtain enough income to recover the total required 

cost. For this reason more and more investment will come into the transmission system 
from investors. The risk for the independent generators is also under control in the CBEP 

method. Even when the system is congested, the uncertainty of LMP is taken into 

consideration. 

The main publications arising from this thesis are: 

Fei Song, M. R. Irving; "New Transmission Tariff Method of Transmission System: An 

Analysis of cost recovery"; 2005 IEEE/PES Transmission and Distribution Conference 

&Exhibition: Asia and Pacific, Dalian, China 

Fei Song, M. R. Irving; "Congestion-Based Transmission System Expansion Planning in 

Developing Chinese Power Market"; UPEC 2007 - 42nd International University's Power 

Engineering Conference, Brighton, UK 

Fei Song, M. R. Irving; "Uncertainty of Locational Marginal Prices in Optimal Power 

Flow Formulation"; Submitted for review to Int. Jnl. of Electric Power System Research 

7.3 Future Work 

Further improvements should answer these questions 

1. Who will be responsible for transmission expansion planning? 

Is it a non-profit transmission administrator or a for-profit Transmission Company 

(Transco) or the transmission market? 

A transmission company prefers to decrease transmission system expansion investment. 

Transmission system users prefer to decrease congestion cost. The non-profit transmission 

administrator should find an acceptable level to balance ̀ congestion cost' and `investment'. 

2. Who should pay the transmission expansion? 
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In different countries, or different power systems, we may have different answers. This is a 

topic about `cost recovery'. However, very obviously, due to the large investment and long 

recovery period, increasing uncertainties in generation planning result in fewer investors 

wanting to invest in system expansion after deregulation. 

3. What are the challenges of transmission expansion planning under the competitive 

environment? 

a. Relationship and coordination of transmission and generation planning 

b. More uncertain factors and risks 

c. Reconciling the interests of `public' and `private' organizations and individuals 

d. Changes in power patterns (bid-based dispatch) 

To answer all these questions, actual power market working should be analysed in depth. 

Further research should be based on the transmission tariff method that was introduced in 

Chapter 2 of this thesis. For example a transmission tariff method should include not only 

the congestion cost of transmission system but also the transmission system extension fee. 

In Chapter 4, the congestion-based transmission system expansion planning method has 

three parts. The first part is investment for the transmission system expansion. The second 

part accounts for the cost of transmission system which caused by high energy prices. 

Depending on part two, when the load changes one unit, the total cost of transmission 

system will be changed as well. The change of total cost relates with the energy price. 

Expensive generation impacts the system user. The third part accounts for the cost of the 

transmission system from congestion which caused by heavy load. Since in CDEP method 

the transmission costs are speared into two parts (from the generator side and from the user 

side) the transmission system regulator could charge them based on physical instead of 

arbitrary basis. 

The aim of future research is: based on nodal-use method build a transmission tariff 

method which consider not only total transmission cost recovery but also transmission 
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charge split. The next step of future research would be to combine the Nodal-use method 

and the CBEP method in an extended method, and evaluate the use of the model on large 

networks. 
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A. The data of 9-bus transmission system 
APPENDIX TABLE I 9-BUS SYSTEM BUS DATA 

bus bt Pd Qd Gs BS area V. Vo baseKV z maxVm ntinVm 
1 3 0 0 0 0 1 1 0 345 1 1.1 0.9 

2 2 0 0 0 0 1 1 0 345 1 1.1 0.9 

3 2 0 0 0 0 1 1 0 345 1 1.1 0.9 

4 1 0 0 0 0 1 1 0 345 1 1.1 0.9 

5 1 160 30 0 0 1 1 0 345 1 1.1 0.9 

6 1 0 0 0 0 1 1 0 345 1 1.1 0.9 

7 1 150 35 0 0 1 1 0 345 1 1.1 0.9 

8 1 0 0 0 0 1 1 0 345 1 1.1 0.9 

9 1 120 50 0 0 1 1 0 345 1 1.1 0.9 

bus, bus number 

bt, bus type 

PQ bus =1 

PV bus =2 

Reference bus =3 

Isolated bus =4 

Pd, real power demand (MW) 
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Qd, reactive power demand (MVAR) 

Gs, shunt conductance 

B, shunt susceptance 

area, area number, 1-100 

Vm, voltage magnitude (p. u. ) 

V0, voltage angle (degrees) 

baseKV, base voltage (kV) 

z, loss zone (1-999) 

maxVm, maximum voltage magnitude (p. u. ) 

minV,,,, minimum voltage magnitude (p. u. ) 

APPENDIX TABLE II GENERATION DATA 

bus Pg Qg Qmax Qmin Vg mBase status Pma, Pmin 

1 110 0 300 -300 1 100 1 250 10.0 

2 200 0 300 -300 1 100 1 300 10.0 

3 135 0 300 -300 1 100 1 270 10.0 

bus, bus number 

Pg, real power output (MW) 

Qg, reactive power output (MVAR) 

Q, �ax, maximum reactive power output (MVAR) 
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Qmim minimum reactive power output (MVAR) 

Vg, voltage magnitude setpoint (p. u. ) 

mBase, total MVA base of this machine, defaults to baseMVA 

status, 1- machine in service, 0- machine out of service 

Pmax, maximum real power output (MW) 

Pmi�, minimum real power output (MW) 

APPENDIX TABLE III BRANCH DATE 

f t r x b rateA rateB rateC ratio angle status 

1 4 0.0001 0.0576 0 250 250 250 0 0 1 

4 5 0.0016 0.092 0.158 250 250 250 0 0 1 

5 6 0.0025 0.17 0.358 150 150 150 0 0 1 

3 6 0.0108 0.0586 0 600 300 300 0 0 1 

6 7 0.0005 0.1008 0.209 150 150 150 0 0 1 

7 8 0.0009 0.072 0.149 250 250 250 0 0 1 

8 2 0.0119 0.0625 0 250 250 250 0 0 1 

8 9 0.0034 0.161 0.306 250 250 250 0 0 1 

9 4 0.0052 0.085 0.176 250 250 250 0 0 1 

f, from bus number 

t, to bus number 

r, resistance (p. u. ) 

x, reactance (p. u. ) 

b, total line charging susceptance (p. u. ) 
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rateA, MVA rating A (long term rating) 

rateB, MVA rating B (short term rating) 

rateC, MVA rating C (emergency rating) 

ratio, transformer off nominal turns ratio (= 0 for lines ) 

angle, transformer phase shift angle (degrees) 

status, 1 initial branch status, 1- in service, 0- out of service 
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B. The data of 29-bus transmission system (Three 

Gorges Project) 

APPENDIX TABLE IV 29-BUS TRANSMISSION SYSTEM BUS DATA 

bus bt Pd Qd G5 BS area V. V. baseKV z maxJm minVm 
1 3 5000 2150 0 0 1 1 0 100 1 1.05 0.95 

2 2 0 0 0 0 1 1 0 100 1 1.1 0.95 

3 1 5000 2150 0 0 1 1 0 100 1 1.05 0.95 

4 1 5000 2150 0 0 1 1 0 100 1 1.05 0.95 

5 2 251.93 108.33 0 0 1 1 0 100 1 1.05 0.95 

6 1 132 56.76 0 0 1 1 0 100 1 1.05 0.95 

7 2 73.5 31.605 0 0 1 1 0 100 1 1.05 0.95 

8 2 45 19.35 0 0 1 1 0 100 1 1.05 0.95 

9 1 448.5 192.85 0 0 1 1 0 100 1 1.05 0.95 
- 10 2 856.5 368.3 0 0 1 1 0 100 1 1.05 0.95 

11 1 1635 703.05 0 0 1 1 0 100 1 1.05 0.95 

12 2 705 303.15 0 0 1 1 0 100 1 1.05 0.95 

13 2 76.05 32.701 0 0 1 1 0 100 1 1.1 0.95 

14 1 345 148.35 0 0 1 1 0 100 1 1.05 0.95 

15 1 51 21.93 0 0 1 1 0 100 1 1.05 0.95 

16 2 1181.3 507.97 0 0 1 1 0 100 1 1.05 0.95 

17 2 81 34.83 0 0 1 1 0 100 1 1.05 0.95 

18 2 141 60.63 0 0 1 1 0 100 1 1.05 0.95 

19 2 418.5 179.95 0 0 1 1 0 100 1 1.05 0.95 

20 1 45 19.35 0 0 1 1 0 100 1 1.05 0.95 

21 2 679.5 292.19 0 0 1 1 0 100 1 1.05 0.95 

22 2 567 243.81 0 0 1 1 0 100 1 1.1 0.95 

23 2 21.9 9.417 0 0 1 1 0 100 1 1.1 0.95 

24 2 22.5 9.675 0 0 1 1 0 100 1 1.05 0.95 

25 2 169.5 72.885 0 0 1 1 0 100 1 1.05 0.95 

26 2 30 12.9 0 0 1 1 0 100 1 1.05 0.95 
27 2 22.5 9.675 0 0 1 1 0 100 1 1.1 0.95 

28 2 37.5 16.125 0 0 1 1 0 100 1 1.05 0.95 

29 1 117.9 50.69 0 0 1 1 0 100 1 1.05 0.95 

102 



Appendix 

APPENDIX TABLE V 29-BUS TRANSMISSION SYSTEM BRANCH DATA 

f t r x b rateA rateB rateC ratio angle status 
5 1 0.0002 0.0006 0.0003 1300 1300 1300 0 0 1 

5 1 0.0005 0.0019 0.0002 1300 1300 1300 0 0 1 

1 9 0.0006 0.0017 0.0002 1300 1300 1300 0 0 1 

1 9 0.0001 0.0004 0 2600 2600 2600 0 0 1 

2 9 0.0005 0.002 0.0002 1300 1300 1300 0 0 1 

2 9 0.0006 0.0018 0.0002 1300 1300 1300 0 0 1 

2 17 0.0001 0.0004 0 1300 1300 1300 0 0 1 

3 17 0.0005 0.0012 0.0001 1300 1300 1300 0 0 1 

3 17 0.0003 0.0008 0.0001 1300 1300 1300 0 0 1 
4 17 0.0001 0.0004 0.0003 1300 1300 1300 0 0 1 

4 28 0 0.0021 0.0002 1300 1300 1300 0 0 1 

6 5 0 0.0056 0.0002 1300 1300 1300 0 0 1 

6 5 0 0.0021 0 1300 1300 1300 0 0 1 

7 6 0 0.0011 0.0002 1300 1300 1300 0 0 1 

8 7 0 0.0026 0.0002 1300 1300 1300 0 0 1 

9 10 0 0.0014 0 1300 1300 1300 0 0 1 

9 10 0.0012 0.0026 0.0001 1300 1300 1300 0 0 1 

9 12 0.0007 0.0013 0.0001 2600 2600 2600 0 0 1 

9 12 0.0009 0.002 0.0003 1300 1300 1300 0 0 1 
9 17 0.0022 0.002 0.0002 1300 1300 1300 0 0 1 

10 11 0.0008 0.0019 0.0002 1300 1300 1300 0 0 1 

12 13 0.0011 0.0022 0 2600 2600 2600 0 0 1 

12 14 0.0006 0.0013 0.0002 2600 2600 2600 0 0 1 
12 16 0.0003 0.0007 0.0002 2600 2600 2600 0 0 1 

13 20 0.0009 0.0021 0 2600 2600 2600 0 0 1 

14 15 0.0003 0.0008 0.0001 2600 2600 2600 0 0 1 

15 23 0.0003 0.0007 0.0001 2600 2600 2600 0 0 1 

17 18 0.0007 0.0015 0.0003 1300 1300 1300 0 0 1 

17 18 0.0001 0.0002 0.0002 2600 2600 2600 0 0 1 
17 21 0.001 0.002 0.0002 1300 1300 1300 0 0 1 

17 21 0.0012 0.0018 0 1300 1300 1300 0 0 1 

18 19 0.0013 0.0027 0.0002 2600 2600 2600 0 0 1 

18 19 0.0019 0.0033 0.0002 1300 1300 1300 0 0 1 
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19 20 0.0025 0.0038 0 1300 1300 1300 0 0 1 

20 19 0.0011 0.0021 0.0001 1300 1300 1300 0 0 1 

19 24 0 0.004 0.0001 1300 1300 1300 0 0 1 
19 24 0.0022 0.0042 0.0001 1300 1300 1300 0 0 1 

20 23 0.0032 0.006 0.0001 1300 1300 1300 0 0 1 
21 22 0.0024 0.0045 0.0003 1300 1300 1300 0 0 1 

28 21 0.0006 0.002 0.0002 1300 1300 1300 0 0 1 

28 22 0.0002 0.0006 0.0002 1300 1300 1300 0 0 1 
23 26 0.0012 0.0026 0 1300 1300 1300 0 0 1 

24 25 0.0007 0.0013 0.0002 1300 1300 1300 0 0 1 

24 26 0.0009 0.002 0.0002 2600 2600 2600 0 0 1 

24 26 0.0022 0.002 0 1300 1300 1300 0 0 1 

26 27 0.0008 0.0019 0.0001 1300 1300 1300 0 0 1 
26 27 0.0011 0.0022 0.0001 1300 1300 1300 0 0 1 

APPENDIX TABLE VI 29-BUS TRANSMISSION SYSTEM GENERATOR DATA 

bus Pg Qg Q, �ax Qm; � V. mBase status P�, ax Pnun 
1 5000 0 3500 -2000 1 100 1 5600 0 

2 3500 0 2450 -1400 1 100 1 4200 0 

3 3500 0 2450 -1400 1 100 1 4200 0 

4 3500 0 2450 -1400 1 100 1 4200 0 

6 2000 0 1400 -800 1 100 1 2750 0 

9 1800 0 1260 -720 1 100 1 2200 0 

11 2500 0 1750 -1000 1 100 1 3100 0 
15 1800 0 1260 -720 1 100 1 2200 0 

20 2500 0 1750 -1000 1 100 1 3000 0 

23 2500 0 1750 -1000 1 100 1 3000 0 

26 3000 0 2100 -1200 1 100 1 3400 0 

28 3000 0 2100 -1200 1 100 1 3400 0 
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C. 29-bus transmission system LMP matrix for LMP 

selection method 
APPENDIX TABLE VII LMP MATRIX 

j L29-1 L29-2 L29-3 L29-4 L29-5 L29-6 L29-7 
1 44.883 43.998 46.011 45.992 44.878 44.87 44.87 

2 1 1 1 0.99998 1 1 1 

3 133.92 131.59 137.81 137.67 133.9 133.9 133.9 
4 133.28 130.98 137.06 137.04 133.27 133.27 133.27 

5 44.831 43.949 45.955 45.936 44.848 44.84 44.841 

6 44.808 43.926 45.941 45.922 44.825 44.826 44.826 

7 44.813 43.931 45.943 45.925 44.83 44.83 44.836 
8 44.817 43.936 45.946 45.927 44.835 44.835 44.84 

9 44.909 44.037 46.054 46.034 44.904 44.896 44.896 

10 65.716 65.708 65.555 65.555 65.714 65.706 65.708 

11 66.417 66.411 66.26 66.26 66.415 66.406 66.407 

12 60.868 59.608 62.567 62.539 60.861 60.852 60.853 

13 71.714 70.486 73.55 73.521 71.708 71.703 71.703 

14 78.411 76.537 80.934 80.893 78.404 78.4 78.4 

15 34.099 34.561 33.844 33.851 34.1 34.099 34.099 

16 61.508 60.238 63.21 63.182 61.5 61.489 61.49 

17 133.27 130.95 137.06 137 133.26 133.25 133.25 
18 129.49 127.26 133.14 133.09 129.48 129.47 129.47 
19 97.453 95.963 99.917 99.881 97.447 97.445 97.445 

20 81.476 80.28 83.418 83.389 81.471 81.469 81.469 

21 133.6 131.3 137.36 137.32 133.58 133.58 133.58 

22 133.12 130.84 136.85 136.83 133.11 133.11 133.11 

23 43.932 44.048 44.134 44.133 43.932 43.932 43.932 

24 78.748 77.817 80.425 80.401 78.744 78.743 78.743 

25 78.985 78.053 80.668 80.645 78.981 78.98 78.98 
26 67.2 66.602 68.392 68.376 67.198 67.199 67.199 

27 67.218 66.62 68.411 68.394 67.216 67.218 67.217 

28 132.7 130.43 136.41 136.4 132.69 132.69 132.68 
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29 45.054 0.90993 138.31 137.54 45.015 44.984 44.995 

(Continues) 
APPENDIX TABLE VIII LMP MATRIX (CONTINUED) 

L29-8 L29-9 L29-10 L29-11 L29-12 L29-13 L29-14 
1 44.872 44.874 44.043 44.035 45.185 45.11 45.702 

2 0.99998 1 1 1 1 1 1 

3 133.9 133.93 131.96 131.96 134.8 134.87 136.12 

4 133.27 133.29 131.34 131.34 134.16 134.23 135.46 

5 44.842 44.821 43.994 43.986 45.132 45.058 45.647 

6 44.827 44.798 43.977 43.97 45.109 45.038 45.625 

7 44.837 44.803 43.981 43.973 45.114 45.042 45.629 

8 44.853 44.808 43.984 43.976 45.118 45.046 45.633 

9 44.897 44.914 44.081 44.073 45.227 45.151 45.743 

10 65.71 65.718 72.211 72.063 65.714 65.641 65.72 

11 66.41 66.42 72.8 72.839 66.416 66.345 66.422 

12 60.854 60.874 59.713 59.705 61.42 61.282 62.208 

13 71.703 71.719 70.638 70.633 72.215 72.362 72.894 

14 78.401 78.418 76.742 76.733 79.246 78.998 80.67 

15 34.099 34.098 34.522 34.524 33.782 34.21 33.024 

16 61.492 61.515 60.335 60.326 62.068 61.923 62.863 

17 133.25 133.28 131.32 131.32 134.15 134.22 135.46 

18 129.47 129.5 127.61 127.61 130.33 130.41 131.59 

19 97.444 97.459 96.212 96.212 98.012 98.175 98.778 

20 81.469 81.481 80.465 80.463 81.929 82.114 82.512 

21 133.58 133.6 131.66 131.66 134.46 134.53 135.77 

22 133.11 133.13 131.2 131.2 133.99 134.05 135.28 

23 43.932 43.931 44.06 44.061 43.776 44.139 43.308 

24 78.742 78.75 77.994 77.995 79.06 79.29 79.401 

25 78.979 78.989 78.23 78.231 79.299 79.53 79.642 

26 67.199 67.201 66.727 66.728 67.365 67.626 67.46 

27 67.217 67.219 66.745 66.746 67.384 67.644 67.479 

28 132.68 132.71 130.79 130.79 133.56 133.63 134.85 
29 45.013 45.089 72.471 73.093 61.651 72.618 80.962 

(Continues) 
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APPENDIX TABLE IX LMP MATRIX (CONTINUED) 

L29-15 L29-16 L29-17 L29-18 L29-19 L29-20 L29-21 
1 43.565 45.203 45.999 45.923 45.289 45.044 45.988 

2 0.99994 1 1 0.99999 1 1 1 

3 131.25 134.83 137.69 137.48 135.69 134.92 137.66 

4 130.64 134.19 137.02 136.82 135.04 134.28 137.01 

5 43.518 45.149 45.943 45.868 45.236 44.992 45.932 

6 43.504 45.126 45.929 45.854 45.222 44.976 45.918 

7 43.507 45.131 45.932 45.856 45.224 44.979 45.921 

8 43.509 45.135 45.934 45.859 45.227 44.982 45.923 

9 43.602 45.244 46.041 45.965 45.33 45.084 46.031 

10 65.544 65.723 65.555 65.555 65.562 65.587 65.555 

11 66.249 66.425 66.259 66.26 66.267 66.291 66.26 

12 58.907 61.446 62.55 62.441 61.515 61.159 62.535 

13 70.297 72.237 73.533 73.434 72.596 72.273 73.517 

14 75.176 79.281 80.91 80.741 79.314 78.769 80.887 

15 36.782 33.772 33.848 33.916 34.493 34.613 33.851 

16 59.516 62.161 63.193 63.083 62.15 61.793 63.178 

17 130.61 134.18 137.03 136.82 135.04 134.27 137 

18 126.98 130.36 133.11 132.94 131.22 130.48 133.08 

19 96.176 98.033 99.895 99.785 98.855 98.315 99.876 

20 80.54 81.947 83.401 83.312 82.56 82.276 83.385 

21 130.96 134.5 137.33 137.12 135.35 134.59 137.47 

22 130.51 134.02 136.82 136.61 134.86 134.11 136.88 

23 45.851 43.772 44.134 44.169 44.464 44.48 44.133 

24 78.591 79.072 80.411 80.351 79.84 79.498 80.398 

25 78.829 79.311 80.654 80.594 80.083 79.739 80.642 

26 67.67 67.373 68.383 68.352 68.089 67.866 68.374 

27 67.688 67.391 68.401 68.37 68.108 67.884 68.392 

28 130.09 133.59 136.38 136.18 134.43 133.68 136.43 

29 36.906 62.403 137.52 133.42 99.208 82.557 137.97 

(Continues) 
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APPENDIX TABLE X LMP MATRIX (CONTINUED) 

L29-22 L29-23 L29-24 L29-25 L29-26 L29-27 L29-28 
1 45.97 43.873 44.757 44.76 44.489 44.49 45.962 

2 0.99999 1 1 1 1 1 1 

3 137.61 132.02 134.33 134.34 133.61 133.62 137.58 

4 136.98 131.41 133.69 133.7 132.98 132.99 136.95 

5 45.914 43.825 44.706 44.709 44.44 44.44 45.907 

6 45.901 43.811 44.691 44.694 44.426 44.426 45.893 

7 45.903 43.814 44.694 44.697 44.429 44.429 45.896 

8 45.905 43.816 44.697 44.7 44.431 44.432 45.898 

9 46.012 43.91 44.796 44.799 44.528 44.528 46.005 

10 65.555 65.548 65.553 65.552 65.549 65.548 65.555 

11 66.26 66.252 66.257 66.257 66.253 66.253 66.26 

12 62.508 59.377 60.712 60.717 60.314 60.314 62.497 

13 73.49 70.698 71.888 71.894 71.521 71.522 73.478 

14 80.847 75.933 78.042 78.049 77.426 77.427 80.83 

15 33.858 36.302 35.164 35.168 35.472 35.473 33.861 

16 63.15 59.991 61.339 61.344 60.936 60.937 63.139 

17 136.94 131.39 133.68 133.69 132.97 132.97 136.92 

18 133.03 127.72 129.92 129.93 129.23 129.24 133 

19 99.841 96.623 98.03 98.039 97.577 97.579 99.826 

20 83.357 80.881 81.937 81.945 81.599 81.601 83.345 

21 137.33 131.72 134 134.01 133.3 133.3 137.3 

22 136.95 131.27 133.53 133.54 132.83 132.83 136.84 

23 44.133 45.575 44.871 44.875 45.056 45.057 44.132 

24 80.375 78.786 79.548 79.557 79.281 79.282 80.365 

25 80.618 79.025 79.79 79.97 79.521 79.523 80.609 

26 68.358 67.721 67.999 68.006 67.981 67.982 68.351 

27 68.376 67.74 68.018 68.025 67.999 68.099 68.37 

28 136.43 130.85 133.1 133.11 132.4 132.41 136.4 

29 137.45 45.729 79.812 80.239 68.212 68.332 136.89 
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D. IEEE 30-bus test transmission system 
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The IEEE 30-bus test transmission system data, include buses, branches, and generators, 

were not be changed in this test case. All of the data can be also found in the Matpower 

package. 

APPENDIX TABLE XI 30-RiuS TRANSMISSION SYSTEM BUS DATA 

f t r x b rateA rateB rateC ratio angle status 
1 2 0.02 0.06 0.03 130 130 130 0 0 1 

1 3 0.05 0.19 0.02 130 130 130 0 0 1 

2 4 0.06 0.17 0.02 65 65 65 0 0 1 

3 4 0.01 0.04 0 130 130 130 0 0 1 

2 5 0.05 0.2 0.02 130 130 130 0 0 1 

2 6 0.06 0.18 0.02 65 65 65 0 0 1 

4 6 0.01 0.04 0 90 90 90 0 0 1 

5 7 0.05 0.12 0.01 70 70 70 0 0 1 

6 7 0.03 0.08 0.01 130 130 130 0 0 1 

6 8 0.01 0.04 0 32 32 32 0 0 1 
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6 9 0 0.21 0 65 65 65 0 0 1 

6 10 0 0.56 0 32 32 32 0 0 1 

9 11 0 0.21 0 65 65 65 0 0 1 

9 10 0 0.11 0 65 65 65 0 0 1 

4 12 0 0.26 0 65 65 65 0 0 1 

12 13 0 0.14 0 65 65 65 0 0 1 

12 14 0.12 0.26 0 32 32 32 0 0 1 

12 15 0.07 0.13 0 32 32 32 0 0 1 

12 16 0.09 0.2 0 32 32 32 0 0 1 

14 15 0.22 0.2 0 16 16 16 0 0 1 

16 17 0.08 0.19 0 16 16 16 0 0 1 

15 18 0.11 0.22 0 16 16 16 0 0 1 

18 19 0.06 0.13 0 16 16 16 0 0 1 

19 20 0.03 0.07 0 32 32 32 0 0 1 

10 20 0.09 0.21 0 32 32 32 0 0 1 

10 17 0.03 0.08 0 32 32 32 0 0 1 

10 21 0.03 0.07 0 32 32 32 0 0 1 

10 22 0.07 0.15 0 32 32 32 0 0 1 

21 22 0.01 0.02 0 32 32 32 0 0 1 

15 23 0.1 0.2 0 16 16 16 0 0 1 

22 24 0.12 0.18 0 16 16 16 0 0 1 

23 24 0.13 0.27 0 16 16 16 0 0 1 

24 25 0.19 0.33 0 16 16 16 0 0 1 

25 26 0.25 0.38 0 16 16 16 0 0 1 

25 27 0.11 0.21 0 16 16 16 0 0 1 

28 27 0 0.4 0 65 65 65 0 0 1 

27 29 0.22 0.42 0 16 16 16 0 0 1 

27 30 0.32 0.6 0 16 16 16 0 0 1 

29 30 0.24 0.45 0 16 16 16 0 0 1 

8 28 0.06 0.2 0.02 32 32 32 0 0 1 

6 28 0.02 0.06 0.01 32 32 32 0 0 1 
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APPENDIX TABLE XII 30- BUS TRANSMISSION SYSTEM BRANCH DATA 

f t r x b rateA rateB rateC ratio angle status 
1 2 0.02 0.06 0.03 130 130 130 0 0 1 

1 3 0.05 0.19 0.02 130 130 130 0 0 1 

2 4 0.06 0.17 0.02 65 65 65 0 0 1 

3 4 0.01 0.04 0 130 130 130 0 0 1 

2 5 0.05 0.2 0.02 130 130 130 0 0 1 

2 6 0.06 0.18 0.02 65 65 65 0 0 1 

4 6 0.01 0.04 0 90 90 90 0 0 1 

5 7 0.05 0.12 0.01 70 70 70 0 0 1 

6 7 0.03 0.08 0.01 130 130 130 0 0 1 

6 8 0.01 0.04 0 32 32 32 0 0 1 

6 9 0 0.21 0 65 65 65 0 0 1 

6 10 0 0.56 0 32 32 32 0 0 1 

9 11 0 0.21 0 65 65 65 0 0 1 

9 10 0 0.11 0 65 65 65 0 0 1 

4 12 0 0.26 0 65 65 65 0 0 1 

12 13 0 0.14 0 65 65 65 0 0 1 

12 14 0.12 0.26 0 32 32 32 0 0 1 

12 15 0.07 0.13 0 32 32 32 0 0 1 

12 16 0.09 0.2 0 32 32 32 0 0 1 

14 15 0.22 0.2 0 16 16 16 0 0 1 

16 17 0.08 0.19 0 16 16 16 0 0 1 

15 18 0.11 0.22 0 16 16 16 0 0 1 

18 19 0.06 0.13 0 16 16 16 0 0 1 

19 20 0.03 0.07 0 32 32 32 0 0 1 

10 20 0.09 0.21 0 32 32 32 0 0 1 

10 17 0.03 0.08 0 32 32 32 0 0 1 

10 21 0.03 0.07 0 32 32 32 0 0 1 

10 22 0.07 0.15 0 32 32 32 0 0 1 

21 22 0.01 0.02 0 32 32 32 0 0 1 

15 23 0.1 0.2 0 16 16 16 0 0 1 

22 24 0.12 0.18 0 16 16 16 0 0 1 
23 24 0.13 0.27 0 16 16 16 0 0 1 

24 25 0.19 0.33 0 16 16 16 0 0 1 
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25 26 0.25 0.38 0 16 16 16 0 0 1 

25 27 0.11 0.21 0 16 16 16 0 0 1 

28 27 0 0.4 0 65 65 65 0 0 

27 29 0.22 0.42 0 16 16 16 0 0 

27 30 0.32 0.6 0 16 16 16 0 0 

29 30 0.24 0.45 0 16 16 16 0 0 1 

8 28 0.06 0.2 0.02 32 32 32 0 0 1 

6 

E 

28 0.02 0.06 0.01 32 32 32 0 0 1 

APPENDIX TARIF. XIII 30-BIJS TRANSMISSION SYSTEM GENERATOR DATA 

bus Pg Qg Qmax Qmin Vg mBase status Pm�x Pmin 

1 23.54 0 150 -20 1 100 1 80 0 

2 60.97 0 60 -20 1 100 1 80 0 

22 21.59 0 62.5 -15 1 100 1 50 0 

27 26.91 0 48.7 -15 1 100 1 55 0 

23 19.2 40 -10 1 100 1 30 0 

13 37 0 44.7 -15 1 100 1 40 0 
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