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Abstract 

The focus of this thesis is on the application of decision models to the economIC 

evaluation of health care technologies. The primary objective addresses the correct 

choice of modelling technique, as the attributes of the chosen technique could haye a 

significant impact on the process, as well as the results, of an evaluation. Separate 

decision models, a Markov process and a discrete event simulation (DES) model are 

applied to a case study evaluation comparing alternative adjuvant therapies for early 

breast cancer. The case study models are built and analysed as stochastic models: 

whereby probability distributions are specified to represent the uncertainty about the 

true values of the model input parameters. Three secondary objectives are also 

specified. Firstly, the empirical application of the alternative decision models requires 

the specification of a 'modelling process' that is not well defined in the health economics 

literature. Secondly, a comparison of alternative methods for specifying probability 

distributions to describe the uncertainty in the model's input parameters is undertaken. 

The final secondary objective covers the application of methods for valuing the 

collection of additional information to inform the resource allocation decision. 

The empirical application of the two relevant modelling techniques clarifies the 

potential advantages derived from the increased flexibility provided by DES over 

Markov models. The thesis concludes that the use of DES should be strongly 

considered if either of the following issues appear relevant: model parameters are a 

function of the time spent in particular states, or the data describing the timing of events 

are not in the form of transition probabilities. The full description of the modelling 

process provides a resource for health economists wanting to use decision models. No 

definitive process is established, however, as there exist competing methods for various 

stages of the modelling process. The main conclusion from the comparison of methods 

for specifying probability distributions around the input parameters is that the 

theoretically specified distributions are most likely to provide a common baseline for 

comparisons between evaluations. The central question that remains to be addressed is 

which method is the most theoretically correct? The application of a Vol analysis 

provides useful insights into the methods employed and leads to the identification of 

particular methodological issues requiring future research in this area. 
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Introduction 

Chapter 1 Introduction 

1.1 Introduction 

The methodological focus of this thesis is the use of decision modelling techniques in 

the economic evaluation of health care technologies. The first two sections of this 

Chapter provide the background for the thesis, setting out the purpose of decision 

models in health technology assessment (HTA), and a brief history of the use of 

decision modelling in the economic evaluation of health care interventions. The final 

two sections describe the specific objectives addressed in this thesis, and the structure of 

the thesis. 

1.2 The purpose of decision models 

Decision models are most commonly employed to infonn an immediate resource 

allocation decision, using only the data available at the time of the evaluation. 

However, decision models may also be used to advise on the collection of further data 

to make a more infonned resource allocation decision. In the context of health care, 

decision models facilitate the comparison of alternative interventions through the 

following attributes: 

• Aids to reasoning - the central role of any modelling technique is to develop a 

representation of the treatment area of interest at an appropriate level of detail to 

support the reasoning of the practitioner. The model acts as an aid. offering 

practitioners insight into the complex relationships between variables associat~d 

with patient pathways. 
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• Structures for ordering and synthesising information - decision models can act as 

frameworks in which to organise evidence from a wide range of relevant sources, 

such as the incorporation of expert opinion alongside the results of primary and 

secondary data analyses. 

• Explicit formulations of assumptions - an important dimension of decision 

modelling techniques is that the assumptions and definitions made in defining the 

structure of the model are explicit. All issues captured in the model are open to 

scrutiny by experts, both from clinical and economic perspectives. so any 

difficulties in the model are more likely to be raised and addressed. Through this 

refinement process, those assessing the model can increase the degree of confidence 

that they have in the model and the results that it produces. 

• Test for the implications of uncertainty - there is uncertainty associated with all 

economic analyses of health technologies. The development and use of decision 

models provides an opportunity to explore the sensitivity of the results to variations 

in the assumptions that underpin the model. Such sensitivity analysis helps 

highlight areas in which further research is likely to be most useful. 

1.3 The use of decision modelling in economic evaluation 

Decision modelling, alternatively labelled 'decision analysis', originated from 

operations research (OR) and game theory in the 1950's and was taken up by the 

medical research community in the early 1970's. By 1987, a progress report on the use 

of decision analysis in clinical decision making hailed "several hundred articles" that 

had used decision analysis in medicine [Kassirer et aI, 1987]. Kassirer et al [1987] cited 

improved computer accessibility that aided the design and analysis of decision models, 

as well as the development of clinically relevant measures of utility, as the main factors 

in increasing the use of such models. Since 1987 these factors have moved further 

forward so that a simple keyword search on Medline for 'decision analysis' highlighted 

1341 relevant articles up to the year 2000. 

One of the earliest applications of decision analysis to the economic analysis of health 

care interventions evaluated the costs and economic benefits of screening for spina 

bifida cystica [Hagard et aI, 1976]. A rudimentary flow diagram, as a precursor to the 

now established decision tree, illustrated the patient pathways, but the key 
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characteristics of a decision analysis were clearly eyident. The number of published 

economic decision analyses steadily increased throughout the 1980' s. The majority of 

these early examples were undertaken in the US, which was probably due to the greater 

recognition of economic evaluation per se in the US. 

In the UK, the need for a guided rationale in allocating available resources, which 

provides explicit reasons for the choices made, was a key development in the National 

Health Service (NHS) in the 1990's [Buxton, 1993]. The increased awareness of the 

economic aspects of health care led to a rapid increase in the number of published 

economic evaluations throughout the last decade. U sing the Office of Health 

Economics' economic evaluation database [OHE, 2000] an elementary analysis of the 

proportion of economic evaluations using decision analysis in 1990 and 1999 was 

undertaken. In 1990 forty-four applied studies are recorded on the database, of which 

only 1 was labelled a modelling study (2.3%»), in 1999 the number of recorded studies 

was 767 including 88 specified as modelling studies (11.50/0). Such statistics are 

indicative of the growth in economic evaluation, but especially of the disproportionate 

increase in the use of modelling techniques to the application of economic evaluation. 

Debates on the merits of basing clinical and policy decisions on the results of modelling 

studies have accompanied the expansion in the use of decision models. Opinion on the 

use of such models is divided. Views have been expressed that range from the sceptical 

to the cautious to the welcoming. Sheldon [1996] exemplified the former view stating 

that the results of model-based evaluation could be manipulated more easily and with 

more subtlety than other forms of evaluation. Drummond [1992] stated that the lack of 

well-defined methods made modelling studies easier to manipulate, and confidence was 

not enhanced by the 'black box' feel about the analysis of such models. 

The cautious approach to the uptake of modelling studies was demonstrated by a paper 

that represented a synthesis of the ideas put forward by a group of senior health services 

researchers [Buxton et aI, 1997]. The authors described the main instance in which 

decision models were employed in economic evaluation as situations where clinical 

trials had not been conducted or had not included economic data capture. They stated 

that economic analyses should be based on unbiased estimates of effect and that 

randomised controlled trials (RCTs) were likely to be the best source of such data. 
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Similar concerns to those raised by Sheldon were discussed and the use of pragmatic 

trials as an alternative to modelling was proposed. In conclusion, howeyer, Buxton et al 

recognised that modelling is an unavoidable fact of life, but recommended that the use 

of modelling should be restricted to two scenarios. Firstlv. to the earlY staaes of ..-' .. e 

development to identify the value of, and to infonn, further research. Secondly. as a last 

resort when RCTs have not been possible or the available trials have not proyided 

sufficient information. 

Halpern et al [1998] complete the spectrum of opinion with their call for the use of 

decision models to be expanded. These authors stressed the fact that clinical trials are 

often not suitable for collecting relevant data as patient groups and the implemented 

treatment patterns may differ significantly between trials and the real-world. Decision 

models were also deemed to provide more timely infonnation to aid decisions, rather 

than having to wait for the completion of clinical trials. Moreover, they claimed that the 

results from a prospective study might well be irrelevant by the time they are produced. 

Halpern et al suggested that the use of decision models is grounded in the economic 

theory of decision-making under uncertainty by providing an explicit outlet for the 

representation of the inherent uncertainty in all clinical resource allocation decisions. 

They accepted that there are problems associated with modelling studies, but argue that 

many of the cited problems could be countered through 'rigorous peer review and 

methodological development'. 

1.4 Aims and objectives of the thesis 

Methodological development in the application of decision models to the economic 

evaluation of health care technologies is necessary to overcome the expressed concerns 

about the use of such models to infonn policy decisions. The range of potential 

problems stem from such issues as the inappropriate use of clinical data, possible biases 

in the use of observational data and expert opinion, the range of discretion available to 

the analysts, the potential for financial conflict between sponsors and researchers, and 

concerns about the transparency or validity of models [Buxton et al, 1997; Luce, 1995: 

Kassirer and Angell, 1994]. There have been attempts to define guidelines for 

modelling studies in recent years [Kassirer et al, 1987; Sonnenberg et aI, 1994; Halpern 
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et aI, 1998; Sculpher et aI, 2000], though such papers only scratched the surface of the 

issues involved in the modelling process. 

An important issue in the use of decision models to evaluate health care interventions is 

the correct choice of modelling technique, as the attributes of the chosen technique 

could have a significant impact on the process, as well as the results, of an eyaluation. 

Modelling to assess the economic impact of health technologies is currently dominated 

by two techniques - the decision tree and the Markov model. Computer science experts 

have suggested that discrete event simulation (DES) offers important advantages over 

the other forms of modelling. DES is relatively untested in the field of HT A, though it 

has been used extens!~vely in the OR field, including applications to the planning of 

health care services [Bolger and Davies, 1992; Lehaney and PauL 1994]. 

The issue of choosing the correct modelling technique has been referred to in the health 

economics literature [Sonnenberg et aI, 1994; Chaussalet et aL 1999], but the 

consequences of the choice have not been fully explored. This thesis aims to investigate 

the effect of the choice of decision modelling technique on the process and output of 

modelling projects, concentrating on a comparison of Markov models and DES to 

model extended time horizons. It was hypothesised that alternative modelling 

techniques could be compared on the basis of two broad criteria, flexibility and analytic 

input: 

• Flexibility describes the representation of interrelationships between parameters, as 

well as the use of different forms of input data. This criterion reflects how closely a 

particular modelling technique allows the reality of patient pathways to be 

modelled. 

• Analytic input relates to the complexity of the technique in terms of the level of 

expertise and the amount of time required. 

The companson of the modelling techniques is also presented in the context of a 

stochastic evaluation. A number of papers have described the use of probabilistic 

sensitivity analysis in economic evaluation [Felli and Hazen, 1998; Lord and Asante. 

1999; Pasta et aI, 1999]. Alternatively labelled as stochastic cost-effectiveness analyses 

[Briggs. 1999], the value of the input parameters within such models are described as 
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probability distributions. Distributions of each of the model's outputs are informed by 

randomly sampled sets of input parameter values from the specified probability 

distributions, which enables the statistical analysis of cost-effectiveness. Three 

secondary objectives for this thesis relate to the stochastic analysis of decision models. 

Firstly, the full process for developing an economic HTA model. from the point of 

specifying the project to the final experimentation with the model, is presented. 

Methods are incorporated from various disciplines, including health economics, clinical 

research, OR and the social sciences. 

Methods for assembling the necessary probability distributions to populate stochastic 

decision models have been presented [Eddy et aI, 1990a; Eddy et aI, 1990b; Pasta et aI, 

1999], and the theoretical basis for the alternative methods have been reported [Lipton 

et aI, 1995], but they have not been compared empirically. Another secondary objective 

of this thesis is to describe alternative input data analysis methods, and to apply them 

empirically to gain a better understanding of the differences between them, and of their 

respective merits. 

Stochastic decision models also facilitate the statistical analysis of the value of 

conducting further research. Bayesian value of infonnation (Vol) analyses aim to 

estimate the optimal sample size for a prospective trial to inform parameter values 

within a decision model. In the context of economic HT A models, parametric methods 

for the analysis of the Vol are complex and require strong assumptions [Claxton, 1999]. 

Non-parametric methods are available, which are in the early stages of development. 

The final secondary objective of this thesis is to apply these non-parametric methods 

empirically in order to highlight particular areas for future methodological research. 

6 
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1.5 Structure of thesis 

The thesis consists of nine further chapters, as set out below. 

Chapter 2 introduces the alternative modelling techniques that were considered for 

comparison in this thesis, providing a commentary on the state of kno\\-ledge at the 

outset of the thesis. A general introduction to the three main techniques - decision 

trees, Markov models and DES models - is followed by a review of the decision 

modelling literature providing examples of the use of the different modelling 

techniques, which informs a preliminary assessment of the strengths and weaknesses of 

the alternatives. Chapter 2 also contains an assessment of possible criteria for the 

comparison of alternative modelling techniques. Five statements are defined in relation 

to modelling characteristics that could affect the choice of technique employed in an 

economic evaluation. These five statements form the basis for the comparison of the 

modelling techniques presented in this thesis. 

Chapter 3 describes the modelling process from the point of considering a modelling 

project to the analysis of the model's outputs. Five stages of the modelling process are 

defined and discussed in chronological order: 

1. Specifying the theoretical model; 

2. Undertaking of a literature review to obtain data to populate the model; 

3. Analysis of the identified data to populate the model; 

4. Implementation of the model; 

5. Experimentation with the model. 

Guidance is drawn from the mainstream clinical and health economics literature, as well 

as from the OR and social sciences literature. Most areas of the modelling process are 

open to differential interpretation and analyst discretion, and where applicable. 

alternative options are presented. 

Chapters 4 to 9 relate to the application of the methods described in Chapter 3 to a case 

study evaluation, which compared alternative adjuvant therapies for early breast cancer. 

Chapter 4 reports the first stages of the case study evaluation, including a reyiew of 

previous economic analyses of early breast cancer. The treatment area is described as 

part of the process for developing the preliminary model structure. which provides the 

7 



IntroductIOn 

framework for the literature review. The description of the literature review focuses on 

the adopted inclusion and exclusion criteria, and the sources searched. The final section 

addresses the issue of sub-group analyses with the aggregate patient population. 

Chapter 5 presents the reappraisal of the preliminary model structure and the process of 

harmonising the identified data. The final section describes the analysis of the data 

gathered from the literature review and the specification of probability distributions to 

describe the uncertainty around the true values of each input parameter. Three 

alternative approaches to specifying input distributions are described: 

• Specification of theoretical distributions for each type of input parameter, usmg 

formulae derived by method of moments to estimate distribution parameters; 

• Creation of weighted datasets, which are inputted to a software package that fits 

analytical distributions; 

• Creation of weighted datasets used directly as input distributions. 

Chapter 6 describes the construction of a Markov process and a DES model to evaluate 

alternative adjuvant therapies for early breast cancer. Decision trees are excluded at this 

stage, because they are not considered a realistic option to model extended time 

horizons. The differential aspects of implementing a Markov process and a DES model 

are presented in relation to the description of the health states within the model, but also 

to controlling the model inputs and outputs. Two issues relating to the analysis of the 

models are also addressed: an assessment of an adequate sample size to minimise the 

impact of first-order uncertainty on the results of the DES model, and a comparison of 

alternative methods for describing probabilistic 'length of time' input parameters. 

Chapter 7 outlines the verification and validation processes employed to check that the 

models are internally consistent, and to check that the models' outputs are realistic, 

respectively. Three categories of verification are applied, which cover different aspects 

of the model's operations. The main form of validation involves the identification of a 

range of relevant sources of data, which are compared to the outputs from the case study 

evaluation. The corresponding outputs from the case study models are compared to the 

identified data and reasons for any differences between the compared outputs are sought 
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in the context of methodological and data differences between the case study evaluation 

and the identified studies. 

Chapter 8 presents the results of the experimentation with the two decision models. 

The results of the analysis to inform an immediate allocation decision using only the 

identified data from both models and for all three data input analysis methods are 

presented. These results are presented as incremental cost-effectiveness ratios. but also 

as net benefits employing cost-effectiveness acceptability curves. The results of the Vol 

analysis are presented for both decision models. 

Chapter 9 discusses the comparison of the DES model and the Markov process in the 

context of the case study evaluation, relating to the five model characteristics statements 

defined at the end of Chapter 2. The comparison of the alternative methods for 

specifying probability distributions is also discussed, as well as the methodological 

implications concerning the use of the alternative modelling techniques and methods for 

pooling and formatting the input data in a Vol analysis. 

Chapter 10 addresses each of the objectives specified at the beginning of the thesis. 

The methodological insight gained from the development of a framework for the 

modelling process and the implicatiQns of the empirical evidence derived from the case 

study evaluation are presented, and areas for future research are recommended. 

9 
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Chapter 2 Alternative modelling techniques 

2.1 Introduction 

The aim of this thesis is to compare the main decision modelling techniques that have 

been employed in the economic evaluation of health care technologies to date. This 

chapter provides a commentary on the state of knowledge regarding alternative 

modelling techniques prior to this thesis, concluding with the specification of criteria 

that are used as the basis for the comparison of the alternative decision models 

undertaken within this thesis. 

Modelling, as a decision analytic tool, is a prominent resource in the health economists' 

toolbox [Buxton et aI, 1997]. The critical evaluation of most aspects of the modelling 

process is under developed, but this problem appears to be particularly acute with 

respect to the appropriate choice of decision modelling technique. A recent paper 

reviewed modelling economic evaluations published in 1997 [Barton et al. 

forthcoming]. Of the 119 papers reviewed it was reported that 76 (64%) employed 

decision trees, 43 (360/0) used Markov processes and only 2 (2%) reported results of 

discrete event simulation (DES) models (two studies reported results from both a 

decision tree and a Markov chain). 

The characteristics of decision trees and Markov processes are very different and the 

choice between the two techniques in alternative treatment settings is relatively 

straightforward. With the introduction of DES to the field of economic evaluation in 

health care the issue of choosing the appropriate technique could become an important 

10 



... - --.... Alternative modelling techniques 

decision in the initial stages of modelling projects. The choice of the correct modelling 

technique has been referred to in the health economics literature [Sonnenberg et al, 

1994; Chaussalet et aI, 1999], but the consequences of the choice have not been fully 

explored. 

This chapter provides an introduction to the three forms of decision modelling referred 

to above - decision trees, Markov processes and DES models. A review of the clinical 

literature relating to modelling methodology was undertaken, as well as referring to 

work outside the discipline such as operations research and social science texts. The 

purpose of the literature review was to inform the characteristics of the alternative 

modelling techniques, but also to identify research covering the whole modelling 

process, which is described in chapter 3. Full details of the review are presented in 

Appendix 1. A large number of applied modelling economic evaluations have been 

published and a systematic review collating and reviewing all such published studies 

was not deemed to be a fruitful exercise. Instead, handpicked studies are used to 

illustrate particular aspects of the alternative techniques, as well as to highlight any 

limitations identified with respect to the characteristics of different treatment areas. 

2.2 Decision trees 

Decision trees are the simplest of the commonly ~sed decision modelling techniques. 

As a tool for modelling relatively uncomplicated scenarios, decision trees provide a 

means of structuring a problem, and an effective method for combining data from 

varIOUS sources. Costs and effects are typically incorporated into a decision tree in 

different ways. The outcome measures of interest are generally attached to the 

endpoints of a tree, and the proportions of patients completing the tree at the respective 

endpoints are summed to give a measure of effect. Costs, however, may be attached to 

events within the tree, as well as to endpoints. To calculate total costs for each 

intervention, the costs associated with each unique pathway in the relevant section of 

the tree are summed. At each chance node, probabilities, conditional on the previous 

event, detennine the proportion of patients progressing along each unique pathway in 

the tree. 

11 
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Decision trees are most appropriate for modelling programmes in which the relevant 

events occur over a short time period, or evaluations that use an intermediate outcome 

measure. Decision trees are especially convenient for capturina a range of uni-o ..... 

dimensional outcomes. The following paragraphs provide examples of the use of 

decision trees in evaluations that covered short time horizons, either due to the nature of 

the interventions being evaluated or to the scope of the evaluation. Examples are also 

given of evaluations that extrapolated outcomes from the end of the decision tree to 

cover extended time horizons. 

Evaluations of screening programmes provide good examples of the strengths of the 

simple decision tree [Lieu et aI, 1994; Gessner et aI, 1996]. Fletcher et al [1995J used a 

decision tree to synthesise data for a cost-effectiveness analysis of different antenatal 

screening policies for Down's syndrome. The decision tree covered the time period 

from the first point of contact with the screening programme (after confirmation of 

pregnancy) to the birth of the child (or termination of pregnancy). Figure 2.1 illustrates 

the use of the decision tree to describe the possible pathways following the offer of a 

serum test. Chance nodes related to the uptake of screening, high or low risk result, 

acceptance of amniocentesis, procedure related miscarriage, positive or negative test 

result, and a live birth or natural miscarriage. The decision tree simplified the 

expreSSIOn of the relationships between these chance events in determining the 

outcomes. The frequencies of the following outcomes were recorded at the terminal 

nodes of the tree for each of the screening options: the number of live births with and 

without Down's syndrome, miscarriages with Down's syndrome, cases of Down's 

syndrome detected antenatally, amniocentesis performed, and the number of women 

offered screening. Costs were presented per Down's birth prevented, though the other 

important outcomes were also presented making the decision-maker aware of the 

negative outcomes. 
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Figure 2.1 Section of decision tree describing pathways associated with 
antenatal screening for Down's syndrome 

Procedme-related misc~ 

Positive - Down's detected 
AmrUocentesis 

ega.tive - Continue pregnancy 

Offer serum test 
as from contim.e pregnancy 

Low risk 
as from continue pregnancy 

Down's birth 
Miscany' 

Continue pregnancy th.er birth 

Down's birth 
Live birth 

th.er birth 

Adapted from Figure 1 [Fletcher et aI, 1995] 

A good example of an evaluation of alternative therapeutic interventions uSIng a 

decision tree is an evaluation of commonly used forms of prophylaxis for 

thromboembolism in patients undergoing hip replacement surgery in South Africa 

[Abdool-Carrim et aI, 1997]. The outcome measure was the number of cases of deep 

vein thrombosis avoided. A decision tree was suited to such an evaluation because 

there was a well-defined period beyond which the outcome of interest would not occur. 

The treatment area, rather than the analyst, defined the time horizon for the model. 

Alternatively, decision trees have been employed to model costs alone over short time 

horizons, assuming that outcomes are equivalent between the treatment options. For 

example, Jansen et at [1996] compared the cost of different non-steroidal anti­

inflammatory drugs (NSAID's) relating to gastrointestinal (GI) complications. On the 

basis of expert opinion. the tree covered a 30-day treatment period for patients with 

osteoarthritis, which was judged to be sufficient to assess the incidence of NSAID­

induced GI injury. The decision tree incorporated seven categories of mutually 

exclusive events ranging from no GI complications to hospitalisation. 
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A less commendable example of the use of a decision tree is a comparison of 

risperiodone versus haloperidol for the treatment of chronic schizophrenia [DaYies et al. 

1998]. This study covered a relatively long time horizon of two years, comparing the 

difference in costs with the number of patients responding at the end of the two years. 

A problem with this example was the arbitrary choice of time horizon at which the 

respective outcome measures were defined. Some authors have attempted to 

incorporate longer-term outcomes in decision trees by extrapolating from the short-term 

outcome at the end of the tree. 

Midgette et al [1994] used a decision tree to compare intravenous streptokinase \\'ith 

conservative treatment for (suspected) acute myocardial infarction (MI). Patients 

entered the tree between 4 and 24 hours after the onset of symptoms, and left the tree 

within 35 days having either survived or died (fatal MI or other cause). Costs were 

associated with treatment-related adverse events - systemic bleeding, which may be 

fatal, and acute cerebrovascular accident, which may be fatal, disabling or non­

disabling. The study incorporated survival by simply assuming a life expectancy of five 

years per survivor, and dividing the incremental costs by five to calculate a "cost per 

year of life saved". 

The five-year life expectancy was obviously a very crude assumption designed to give a 

rough indication of the incremental cost per life year. Other studies have extrapolated 

from the short-term outcomes of a decision tree in greater detail. Kalish et al [1995] 

employed a decision tree to compare alternative thrombolytic therapies for acute MI. . 

The tree described possible short-term events in some detail, including stroke (disabling 

and non-disabling), CABO, reinfarction, haemorrage, anaphylactic reaction and severe 

hypotension. Following any combination of these events the terminal nodes described 

five long-term health states - dead, stroke, reinfarction, stroke and reinfarction, and 

neither stroke nor reinfarction. From these endpoints constant costs and utility values 

were assigned to the surviving patients for an average life expectancy. This 

extrapolation reduced the explicit nature of the study because a long period of the 

treatment's effect. which had a large impact on the results of the study. was not 

analysed transparently. The authors had access to relevant data covering the longer­

term outcomes of the patient group. but the decision tree did not facilitate the full 

incorporation of such data. 
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2.3 Markov models 

Within Markov models, events are modelled as transitions from one health state to 

another. The time horizon covered by the model is split into cycles of equal length. At 

the end of each cycle a patient may move to a consequent health state, or remain in the 

same state (unless the current state is a tunnel state). This process of moving between 

states continues until a patient enters an absorbing state, such as the state • dead' . 

Markov models are commonly described as being either a Markov chain or a ?\Ilarkov 

process, which differ in their representation of transition probabilities between health 

states. In a Markov chain the occurrence of events is determined by probabilities that 

are conditional only upon the current health state. In a Markov process, transition 

probabilities are also conditional on the current health state, but they may also vary 

according to the overall time spent in the model. Markov processes are particularly 

effective in clinical situations which involve continuous risk over an extended time 

horizon [Sonnenberg and Beck, 1993]. 

Utility values can be attached to each health state modelled, reflecting the severity of 

the state; similarly, costs are attached to individual health states to reflect the cost of 

remaining in a particular health state for the length of one cycle. A Markov model's 

outputs are estimated by multiplying the respective costs and utility values by the time 

spent in each health state, and then summing across all possible states. 

There are three alternative methods available to evaluate Markov models. The matrix 

algebra solution is the purest (from a mathematician's perspective), but is rarely used 

due to the easy availability of computer power. A second approach analyses Markov 

models stochastically, whereby large numbers of individual patients are followed 

through the model. Monte Carlo simulation is used to randomly generate values from 

distributions that reflect the relevant transition probabilities. (This application of \10nte 

Carlo simulation is referred to as first-order simulation. It should not be confused with 

second-order simulation, which samples the actual values of the transition probabilities 

from probability distributions (see section 3.4.3)). For example, if patients can move 

from state A to either state B or C and the respective probabilities are 0.75 and 0.15. 

each patient in state A will sample a value representing either state B or C from a 
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commensurately defined binary distribution. However, the most common approach in 

the economic evaluation of health care technologies is the cohort method, which is a 

deterministic analytic approach that follows a cohort of patients through the model. At 

the end of each cycle the proportion of patients remaining in a state is multiplied by the 

relevant transition probabilities to determine how many patients move to each 

consequent state. It should be noted that the choice of evaluative method does not affect 

the characteristics of the modelling technique. 

Figure 2.2 presents a simplified version of a Markov process used to evaluate the cost­

effectiveness of various adjuvant therapies applied to a range of breast cancer patients 

[Hillner and Smith, 1991; Hillner and Smith, 1992a; Hillner and Smith, 1992b]. The 

arrows between the health states indicate the possible pathways, until patients reach the 

absorbing state 'dead'. The authors stated that their reasons for taking a Markov 

approach were 'the relatively long time-frame and the time-dependent nature of the 

events considered' [Hillner and Smith, 1991]. 

Figure 2.2 An illustrative example of a Markov model comparIng adjuvant 
therapies for early breast cancer 

Cycle 

2 

3 

Adapted from Figure 1 [Hillner and Smith, 1992a] 

The remainder of this section on Markov models describes some of their limitations 

relating to the lack of memory and the need to specify constant cycle lengths, as well as 

means of overcoming these problems. The final illustration describes the combination 

of decision trees and Markoy models. 
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Firstly, an often-cited drawback of Markov models is their lack of memory. which 

means that the probability of moving from a particular state is not influenced by the 

route taken to arrive in the state. This assumption of the irrelevance of the history of 

patients is known as the Markovian assumption [Klein et aI, 1993]. The follo\Ving 

examples illustrate the differing impacts of this assumption. Danese et al [1996] 

modelled a screening policy for mild thyroid failure against a no screening scenario. 

The model consisted of a wide range of health states encompassing initial clinical states. 

clinical states of mild thyroid failure and related states (uncomplicated angina, MI, 

intermittent claudication and cerebrovascular accident). The model focussed on the 

immediate health states following screening - the clinical states of mild thyroid failure -

with little detail given to the related cardiovascular health states. The analysis of the 

related overt hypothyroidism and cardiovascular health states could have been 

expanded, but it is likely that this would have required stronger assumptions to 

compensate for the lack of memory within the model. It is not clear whether the model 

structure was unduly influenced by the presence of the Markovian assumption. 

Jonsson et al [1993, 1995] looked at treatment intervention in patients with established 

osteoporosis in order to reduce the risk of fractures. The Markovian assumption 

hindered the incorporation of differential probabilities for patients who had, and had 

not, experienced a fracture. The model was based on yearly calculations of risk. 

Patients could move from a healthy state to either death or a fracture state. Following a 

hip fracture, they were assumed to remain in one of three hip fracture states, reflecting 

varying quality of life, until death. The risk of a second hip fracture, re-operation, etc., 

was included in the associated cost and quality of life values of the hip fracture state. 

Following a year spent in any of the alternative fracture states all patients returned to the 

healthy state with no continuing impact on their risk of mortality, and were subject to 

the fracture risks again. This study appears to employ stronger assumptions about the 

risks of fractures that could be overcome if the patients' treatment histories could be 

recorded. 

Technically, the Markovian assumption may be overcome by splitting health states so as 

to describe the path taken to reach the present state, for example, state C could become 

"state C after state A' and "state C after state Bit. An alternative approach IS 

demonstrated by Sharples et al [forthcoming], \\'ho used linked Markov chains to 
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analyse the cost of the main clinical events following lung tansplantation. F ollo\\lng 

transplantation patients could be in one of five health states - well, rejection. 

cytomegalovirus, infection (non-CMV) or dead. The first Markov chain coyered the 

first six months post-transplant. The second model covered the subsequent six months 

and included the possibility of developing BOS, a condition that alters the probability of 

experiencing the other health states within the model. At the point at which patients 

developed BOS they were transferred to a subsequent model with the same structure but 

alternative probabilities of experiencing the events described above. 

The memory less nature of the Markov model also impacts on the ability of the model to 

analyse subsections of an aggregate patient group who might haye differential 

characteristics that influence their pathway probabilities. 

Johannesson et al [1991] used a Markov model to investigate the cost-effectiveness of 

cardiovascular disease prevention using 8-year logistic risk equations for Coronary 

Heart Disease (CHD) and stroke. The values of age, sex, diastolic blood pressure, 

serum cholesterol, smoking, glucose intolerance and left ventricular hypertrophy, for 

each patient, were determined at the start of the model. Patients were subject to three 

forms of risk - CHD, stroke, and death from other causes. CHD was divided into five 

separate states - immediate death, recognised MI, unrecognised MI, angina pectoris and 

coronary insufficiency. From each of these health states, as well as from stroke, the 

only possibility was to remain in that state or to die. The values of the risk factors were 

varied according to the use of different interventions, but not to alternative patient 

characteristics. If the policy question referred to the aggregate patient group, separate 

analyses of the constituent groups would need to be combined to calculate the relevant 

cost-effectiveness results. 

Another limitation of the standard Markov model is that a single time period for a cycle 

must be chosen after which patients are allowed to move to the next health state [Klein 

et aI, 1993]. The length of a cycle is chosen to represent a clinically meaningful time 

period and to reflect the available data [Beck and Pauker. 1983]. For example. in 

choosing one month as an appropriate cycle length to evaluate the cost of glaucoma 

treatment Kobelt and Jonsson [1999] stated that longer cycles would not reflect clinical 
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management accurately, whilst shorter cycles would misrepresent clinical observation in 

glaucoma. 

If the events modelled are subject to different meaningful periods a Markov model can 

be inflexible. Anton and Revicki [1995] evaluated the cost-effectiveness of 

antidepressants for major depression. The time horizon for the model was the lifetime 

of patient's, who were assumed to be 30-year old women. A Markov cycle of one year 

was chosen to reflect the probability of patients recovering from depression or recurring 

from remission over the course of their lifetime. Within the course of a year spent 

receiving treatment for an episode of depression the effects of five separate states \\ith 

varying cost and utility values were calculated outside of the model. 

It is possible to link separate Markov processes using differing lengths of cycles, each 

describing a particular section of a patient's possible prognosis, as described above 

[Sharples et aI, forthcoming], though such an approach is dependent on suitable patient 

pathways, and does increase the complexity of the modelling task. 

Markov models are often used effectively in conjunction with decision trees. In 

evaluations that comprise numerous events within the early part of the model, Markov 

models are then attached to the terminal nodes of the decision tree to describe less 

complex patient pathways in the following years. This approach utilises the simpler 

mechanisms of the decision tree to describe events that occur only at the beginning of 

an extended time horizon. 

Eckman et al [1995] combined a decision tree and a Markov chain to examine the cost­

effectiveness of approaches to the diagnosis and treatment of patients with type 2 (non­

insulin-dependent) diabetes mellitus who have foot infections and suspected 

osteomyelitis. The pathway of patients up to a constant health state, including diagnosis 

and initial treatment of the condition, was modelled within a decision tree format. The 

initial tree differentiated between medical and surgical treatment options, following a 

variety of testing strategies that related to either a high sensitivity or a high specificity 

of the diagnostic procedure. The tree also incorporated the possibility of recurrent 

infection or initial treatment failure. Thereafter, the surviving patients entered a ~vlarkov 

chain where patients could die of diabetes, of a co-morbid disease, or according to the 
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age-specific mortality rate of the general population. The Markov chain was yery basic. 

The lack of descriptive states in the Markov chain appears to reveal more about the 

authors' concentration on the initial treatment section of the model, and their assumption 

of subsequent constant costs and utility, than the shortcomings of Marko\' chains. 

2.4 Discrete event simulation (DES) 

Both DES models and Markov processes are forms of simulation, though DES allows 

more complicated representations of the system being modelled [Hillier and Lieberman, 

1995]. Within DES, patients move through the model experiencing events at any 

discrete time period after the previous event. DES models may only be analysed 

stochastically using first-order Monte Carlo simulation as described in the previous 

section. This is because DES is event-orientated, whereby the model asks what and 

when is the next event for every patient at each event, rather than a Markov model, 

which asks what events are occurring at regular intervals. The analysis of second-order 

uncertainty is similar for both modelling techniques, consisting of testing alternative 

combinations of input parameters by undertaking multiple runs of the models. 

The following section describes and provides examples of the main advantages of DES 

over Markov models, namely increased flexibility over data requirements and an ability 

to overcome the restrictions of the Markovian assumption. Two potential disadvantages 

are also described, concerning the dangers of overspecifying models and the need for 

increased analytic input. 

The greater flexibility of DES with respect to the required data was demonstrated by 

Hart et al [1997] who used DES to estimate the direct lifetime costs of an insulin­

dependent diabetes mellitus (IDDM) patient. Only those chronic conditions assumed to 

have the greatest economic impact were modelled - nephropathy, retinopathy and 

cardiovascular complications. Unaffected patients entered the system and were 

assigned a probability of developing IDDM, as well as a corresponding time of 

diagnosis. Individual patients' experience of chronic health states associated with 

IDDM were sampled from probability distributions representing incidence rates and 

times of onset. An overall time to cardiovascular complications for a proportion of all 

IDDM patients was calculated. If the simulated time to death after diagnosis was 
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greater than the average time to cardiovascular complications an adjustment to costs and 

life expectancy was made. For retinopathy complications the proportion of patients 

requiring photocoagulation increased with duration of the disease, for which costs were 

incorporated into the model using an algorithm describing the increasing: incidence oyer 

time. 

Urban et al [1997] used a stochastic simulation model to simulate the natural 

progression of ovarian cancer. A screening programme was then superimposed, and the 

change in life years gained and costs evaluated. A public use database was used to 

estimate the proportion of women diagnosed in 5-yearly groups and in each stage of 

diagnosis (local, regional or distant). Assuming a uniform distribution within the 5-

yearly groups, an exact age (month) at diagnosis for each patient was sampled, as well 

as a stage from the calculated distribution of stages at diagnosis. The length of each 

subsequent stage was determined in relation to the length of the local stage. Women 

were then randomly assigned a percentile in the relevant age- and stage-specific 

empirical survival distribution. Age at death was calculated by adding survi\'al time to 

age at diagnosis. An average cost for each disease stage was assigned to the time spent 

in each stage. Various combinations of transvaginal sonography and/or the tumour 

antigen CA 125 were inserted into the model. The stage, timing within a stage, and the 

sensitivity of each of the screening tests were all defined in relation to specific 

distributions. When screening resulted in earlier detection, a new age at death was 

assigned by indexing the new relevant age- and stage-specific survival distributions, and 

adding survival to age at diagnosis following detection by screening. The input data' 

used to populate the model were inputted in their original formats, such as the specific 

length of time to the occurrence of another event, rather than transforming data as 

would be required using a Markov model. This increases the realism of the model. 

DES overcomes the limitations of the Markovian assumption by assigning attributes to 

patients that describe relevant characteristics or their treatment history, which may 

influence their pathway through the model [Davies and Davies, 1987]. For example, 

patients may be assigned an age or stage of cancer, prior to entering the model, they 

may also acquire attributes as certain events within the model are experienced. In 

addition, patients may have attributes that influence the costs and/or utility values 

associated with a particular state. In the absence of patient attributes. costs and utility 
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effects are incorporated in a similar manner to Markov models, whereby costs and 

utility values are attached to each health state within the model and the time spent in 

each state is multiplied by their respective values. 

The MISCAN (MIcro simulation SCreening ANalysis) model, developed by Habbema 

et al [1984, 1987] to simulate models of mass screening for disease, demonstrates the 

use of patient attributes whereby the experience of previous health states, and their 

duration, influenced the duration in subsequent health states. The simulation described 

here was based on models of the natural history of cervical cancer. and the change in the 

natural history due to screening. Disease history was represented by a sequence of 

disease states and the ages at which a person entered these states. The model was split 

into seven categories of health states - not at risk of cervical cancer due to previous 

hysterectomy, screen-eligible states (normal, pre-invasive or pre-clinical invasive), 

clinical states (clinically or screen-detected cancer) and end states (death from cancer 

and death from other causes). Transitions between states were based on probabilities. 

and each transition had a corresponding probability distribution describing when the 

transition will occur. The attribute "age" could also influence transition probabilities. 

An additional feature of the model was that the time spent in a state could depend on the 

dwelling time in the previous state, which would be useful, for example, if there was a 

relationship between the growth rates of different stages of the disease. 

Warner et al [1996] used a "stochastic, discrete event, object-oriented simulation" to 

investigate the health and economic implications of a smoking-cessation programme in 

the workplace. Model complexity was reduced due to the assignment of attributes to 

workers, both before and during their time in the system, which influenced their 

transition probabilities. The events within the model related to the actions of quitting 

smoking, leaving the firm, retiring and dying. The model was run twice, with and 

without the smoking-cessation programme in place. On activating the programme. 

smokers had a higher probability of quitting smoking, which sequentially influenced 

other variables of interest (mortality, medical costs, etc.). Each worker in the model 

was assigned an age, sex, time at firm and smoking characteristics that influenced their 

progression through the model. At the end of every year age was increased by one year. 

as well as other variables, such as years of smoking or smoking cessation. which in turn 

influenced progression through the model. If a worker neither died. retired. nor left the 
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firm, he/she continued cycling through the model. Former workers who either left the 

firm or retired were subject to only two probabilistic events - background (non­

programme-related) smoking cessation and dying. 

A possible drawback of DES is that an analyst may attempt to make a decision model 

overly complex due to the increased flexibility of DES [Balmer and PauL 1986]. 

Ideally, a model would describe reality as closely as possible. However. there are two 

constraints on data collection, and hence, on the complexity of a decision model: limited 

research resources and the need to inform policy within a limited timeframe. Though 

the most important elements of a model cannot be objectively tested until the final 

analysis of the model, it is possible to identify parameters on the periphery of the model 

that could be safely excluded. An example of underplaying the capabilities of DES 

because the identified data did not warrant a more complex representation of events is 

provided by the model used to estimate the costs associated with IDDM [Hart et aI, 

1997]. As described above, this model included the impact of cardiovascular and 

retinopathy complications as affecting a proportion of all patients if death did not occur 

before the average time to the occurrence of such complications. Such a portrayal of 

events was all that the available data supported, though the events could have been 

modelled in much more detail given the capabilities of DES, but more complexity may 

have distorted the available data. 

Finally, DES models are generally more complicated to build as they are based on the 

use of programming code. Three of the four examples quoted above used complex 

programming languages (Gauss, FORTRAN and Objective-C). Though the advent of 

'visual interactive modelling systems' assists the development of DES models, without 

the need for 'proper' computer programming [Pidd, 1998], the additional features of 

DES do increase the complexity of the modelling task. 

2.5 Criteria/or comparison 

Two broad criteria on which decision modelling techniques can be compared are the 

quality of the decision model and the corresponding analytic input. The following two 

sections describe the issues relating to these two criteria, which form the basis for the 

empirical comparison of the alternative modelling techniques undertaken in this thesis . 
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2.5.1 Model quality 

It has been argued that the true test of the quality of a decision model is in tenns of its 

value to the decision-maker(s) as the ultimate aim of the model is to help the user reach 

a better infonned and rational decision [McCabe and Dixon, 2000]. In principle the 

quality of a model could be tested by randomising decision-makers to use and not to use 

a model, with quality being proven if the outcomes associated with the model-based 

decisions are better than those associated with the control group [Sculpher et aI, 2000]. 

Unfortunately, in practice it is probably not feasible to test models in this manner and 

softer, more subjective measures of quality are necessary. Recent guidelines on 

estimating cost-effectiveness in health and medicine referred to decision models being 

as good as their ability to represent reality 'at the level needed to draw useful 

conclusions', noting that this depends upon model structure and the assumptions 

regarding relationships between model parameters [Mandelblatt et aI, 1996]. 

Indeed, most of work that has attempted to describe positive aspects of decision model 

design has been reduced to general statements that can only be interpreted subjectively. 

The following quotes provide examples: 

'models should be kept as simple as possible to aid understanding by decision makers.' 

[Buxton et aI, 1997] 

'it is important that the possible pathways described by the model are feasible and 

sensible.' [McCabe and Dixon, 2000] 

'the analyst should choose the type of model ... selecting the simplest fonnat which 

adequately reflects the disease.' [Sculpher et aI, 2000] 

The main conclusion drawn from these examples is that good modelling practice can 

only be developed in general terms because the application of the derived principles 

'requires knowledge of the clinical domain and involves subjective judgement' 

[Sonnenberg et aI, 1994]. The derivation of criteria for the comparison of alternative 

modelling techniques is also based on this principle of generalisability. The approach 

sought to link the desirable characteristics of a model with the differential 

characteristics of the modelling techniques and detennine the importance of each 
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characteristic in the representation of patient pathways. Sculpher et al [2000] grouped 

the dimensions of quality into three categories - the structure of the model. data, and 

consistency - which described the areas in which the choice of modelling technique 

could affect the quality of a modelling project. Sonnenberg et al [1994] classified 

alternative models by their design and use of time as a model function. The discussion 

around model quality, therefore, covers three broad areas; representation of time. 

structural considerations and data flexibility. 

The main characteristics of the decision tree are that any event within the tree may 

happen only once and that the timing of the events within the model can only be 

incorporated in the tenninal nodes. As the other two modelling techniques handle long 

time horizons more adequately the first statement over the choice of modelling 

technique relates to the required time horizon. 

1. If anything other than short-term outcomes are to be modelled decision trees are an 

inappropriate choice of modelling technique. 

This does not mean that decision trees are necessarily the right choice to model short 

time horizons, but the following discussion concentrates on the representation of 

extended time horizons within decision models. At present the main techniques 

available to incorporate such time horizons are Markov models and DES. 

The structure of the model refers to the actual health states included in the model, as 

well as the relationships between them. The inclusion of relevant health states would 

appear to be similar in Markov models and DES, but differences do emerge in the 

ability of the two techniques to represent certain relationships between health states. 

The crux of the difference is the Markovian assumption that infonns the relationship 

between any two health states only on the basis of the current health state and the 

overall time spent in the model. This assumption is not necessarily a hindrance as the 

natural history of many chronic diseases can be approximated by state of health and 

time since diagnosis [Beck et al, 1994]. Problems are apparent in other disease areas. 

such as cancer, where the transition probabilities between stages depend on the length of 

time spent in each state [Beck and Scardino, 1994]. Similarly, the probability of 
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patients with a history of depression experiencing further episodes of depression is 

dependent on the length of time they spend as asymptomatic [Nuijten et aI, 1995]. 

Alternatively, there are evaluative areas in which the route taken to reach a particular 

state will influence the pathways out of the state. For example, in an evaluation of a 

hospital at home scheme versus conventional inpatient care for elderly patients, the 

probability of experiencing a readmission following discharge differentiated between 

patients admitted to the scheme through the accident and emergency department and 

from inpatient wards [Campbell et aI, 2000]. Such instances do not necessarily preclude 

the use of Markov models as subsequent states can be described with reference to the 

experience of previous states. 

The following quality statements set out the basis for the structure of the model to 

correspond as far as possible to the reality of the disease. 

2. If model parameters are a function of the time spent in particular states DES will 

more accurately reflect the true relationships between health states. 

3. If the specification of similar health states that differ only with respect to the 

experience of previous states compromises the clarity of the model, the use of DES 

should be considered. 

The main issue around the use of data within decision models relates to the accurate 

depiction of the timing of events. The probability of an event occurring within a 

Markov model must always be defined as a function of cycles of fixed duration. This 

format can cause problems if an event is likely to occur within a specified time period 

and the state from which the event occurs is not an initial state. Another data-related 

issue concerns the specification of the length of a cycle in a Markov model. This 

characteristic means that when two events of widely differing duration are included in a 

model the representation of the timing of one of the events is likely to be unrealistic. 

F or example, a model describing the lifetime treatment costs of patients with sickle cell 

disorders would necessarily include a range of acute and chronic conditions [Kamon et 

al, 2001]' Acute conditions typically occur sooner and more frequently than chronic 

conditions. If a cycle length of I-month is chosen to reflect the length of acute events 
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then the time spent in the chronic states must also be represented as monthly 

probabilities. In a DES model the timing of events is completely flexible. Such data 

can be represented as the probability of an event occurring at specified times or the time 

to an event can be stated directly. 

The fourth quality statement covers the flexibility of the modelling technique with 

respect to the realistic representation of the data. 

4. If the data describing the timing of events are not in the form of transition 

probabilities then DES will provide a truer representation of reality. 

2.5.2 Analytic input 

The level of analytic input associated with the alternative decision modelling techniques 

encompasses two aspects. Firstly, the issue of available expertise may be relevant. 

Though increasingly user-friendly software for the development of DES models is 

available, there remains a steeper learning curve associated with the use of DES as 

opposed to the relative simplicity of developing and analysing Markov models. 

Secondly, Markov models and DES may differ significantly in the time required to 

build, and experiment with, the model. Obviously, the time spent building the model 

will be a function of the expertise of the analyst, but the greater flexibility of DES is 

only achieved through added complexity, which increases the likelihood of modelling 

error. The cohort method of analysing Markov models is adequate for the majority of 

economic evaluations in health care (this issue is developed further in Chapter 3). 

Experimentation with a DES model can only be undertaken using first-order Monte 

Carlo simulation, which requires much longer experimentation times than cohort 

analyses. It should be borne in mind that the time to build and analyse a decision model 

covers the testing, verification, validation, baseline analysis and sensitivity analyses 

undertaken. The following statement, regarding analytic input, relates to the availability 

of such input. 

5. The advantages of DES need to be weighed against the additional resource 

requirements. Realistic assessments of the necessary inputs should inform the 

choice of modelling technique. 
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Conclusions 

The preceding sections described the varying characteristics of three alternative 

modelling techniques that have been used to model the cost-effectiveness of health care 

technologies and possible criteria for the comparison of these alternatives. Preliminary 

inferences can be drawn from the discussion with respect to the general characteristics 

of treatment areas that are best suited to the alternative modelling techniques. 

Simple scenarios occurring over a short time horizon may best be modelled using a 

decision tree. Markov models allow longer time periods to be analysed, in \vhich the 

risks of events are continuous, and the timing of an event is uncertain [Sonnenberg et aL 

1994]. Such models do not impose unduly restrictive assumptions unless the treatment 

area of interest conflicts with the Markovian assumption of pathway independence. In 

such cases, DES may be viewed as a superior technique. The biggest advantage of DES 

appears to be that it allows the analyst to model more complex and dynamic systems 

than other types of modelling, as well as permitting experimentation that might not be 

feasible otherwise. The greater flexibility inherent in the use of discrete event 

simulation may also enable the model to capture more detail about the uncertainty in the 

system being modelled [Bolger and Davies, 1992]. 

The choice of modelling technique should be based on an in-depth assessment of the 

particular disease area. The process of matching the characteristics of the alternative 

modelling techniques to the disease area, as described above, should provide an 

indication of the specific differences in the quality of prospective models. Such 

differences should then be traded against the more objectively defined variation in the 

required analytic inputs. 

Five statements linking issues of model quality and analytic input to the main modelling 

techniques employed in the economic evaluation of health care have been defined in 

this chapter. The statements, presented below, will form the basis for the comparison of 

the alternative modelling techniques that will be developed in the remainder of this 

thesis: following the empirical application of the competing techniques the associated 

modelling process and cost-effectiveness results will be assessed on the basis of these 

five statements. The application of this approach to the retrospective identification of a 
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'good' model in the case study presented in this thesis will test this process for the 

prospective determination of the appropriate modelling technique for indiyidual disease 

areas. 

1. If anything other than short-term outcomes are to be modelled decision trees are an 

inappropriate choice of modelling technique. 

2. If model parameters are a function of the time spent in particular states DES will 

more accurately reflect the true relationships between health states. 

3. If the specification of similar health states that differ only with respect to the 

experience of previous states compromises the clarity of the model, the use of DES 

should be considered. 

4. If the data describing the timing of events are not in the form of transition 

probabilities then DES will provide a truer representation of reality. 

5. The advantages of DES need to be weighed against the additional resource 

requirements. Realistic assessments of the necessary inputs should inform the 

choice of modelling technique. 
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Chapter 3 The modelling process 

3.1 Introduction 

This Chapter aims to provide the framework for the empirical application of alternative 

modelling techniques that will be described in the following Chapters. The full process 

for developing and analysing an economic health technology assessment (HT A) 

decision model is described from the point of setting up a project to the final 

experimentation with a computer-based model. The formulated process will be adopted 

explicitly in the case study evaluations, which will enable the process itself to be 

evaluated in the final Chapters of this thesis. At this stage the choice of modelling 

technique is left open because the underlying process of a modelling project is similar 

regardless of the type of model employed. 

To inform the modelling process a wide-ranging literature search was undertaken, 

incorporating texts from the disciplines of medicine, social science and operations 

research. The details of the search are provided in Appendix 1. 

A well known source of guidance for clinical decision analyses is the seminal 

publication by Weinstein and Fineberg [1980], though earlier papers had applied the 

techniques of decision analysis to clinical research. In particular, Kassirer published an 

introduction to decision analysis in a clinical context in 1976. The main limitation of 

both these sources was that they concentrated on the principles of decision trees. only 

providing a brief summary of other aspects of the process such as the assignment of 

probabilities. Indeed, the majority of the identified texts covering the use of decision 
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models within the evaluation of health care technologies focussed on the principles of 

the use of specific modelling techniques rather than other aspects of the modelling 

process [McNeil and Pauker, 1984; Detsky et aI, 1997; Beck and Pauker, 1983: Briggs 

and Sculpher, 1998]. 

The most useful publications relating to the process of modelling projects in health care 

were those that did not focus solely on the principles of the modelling techniques, but 

rather on a framework for modelling studies. Three sources were identified that aimed 

to improve the general process of undertaking medical decision analytic models [Eddy, 

1985; Sonnenberg et aI, 1994; Sculpher et aI, 2000], whilst another paper aimed to 

increase standardisation with regard to modelling practices [Halpern et aI, 1998]. Each 

study produced good practice recommendations. In addition, general texts from the 

operations research and social science literature were sought to inform various aspects 

of the modelling process. 

The remainder of this Chapter is split into five sections covering the modelling process 

in chronological order: 

1. Specifying the theoretical model; 

2. Undertaking of a literature review to obtain data to populate the model; 

3. Analysis of the identified data to populate the model; 

4. Implementation of the model; 

5. Experimentation with the model. 

3.2 Specifying the theoretical model 

Sonnenberg et al [1994] constructed a framework of progression from the decision 

problem to the resulting model. Using current knowledge, their first step required the 

development of a theoretical model that represents the initial understanding of the 

possible pathways experienced by patients. The problem should be structured in an 

attempt to understand the issues that need to be addressed within the model [Pidd, 

1998], by specifying a set of assumptions that take the form of logical or mathematical 

relationships comprising possible patient pathways [McHaney, 1991]. The 

development of the theoretical model may be clarified using simple diagrams to 

represent the relationships, such as influence diagrams [Marshall and Oliver, 1995], or 
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activity cycle diagrams [paul and Balmer, 1993]. Gottfried lists several early questions 

to guide the construction of the conceptual model [Gottfried, 1984]: 

• 

• 

What are the relevant problem parameters? What are the state variables, the decision 

variables and the system parameters? 

What are the pertinent cause and effect relationships? How can they be expressed in 

mathematical terms? 

• What data are required? Are the data readily available? If not, how much effort is 

required to obtain meaningful data? 

The main parameters of interest to the health economist are the state variables, which 

are chosen to represent patient pathways. In the vast majority of economic evaluations, 

the only decision variable relates to the objective of the evaluation. Two types of 

system parameters are apparent in economic HT A models. One system parameter is the 

patient group of interest. The definition of the relevant patient group for an evaluation 

is obviously an important topic and is discussed below under 'study inclusion criteria'. 

The second system parameter describes the scope of model, which determines the range 

of events included in the model. For example, limited scope models concentrate only 

on those events that have cost implications for the health service, which can be 

broadened to include events that impact on the costs incurred by the patient and society 

in general. 

Interrelationships within an economic HT A model are possible in the sense that the 

occurrence of an event along a patient pathway can influence the likelihood of the 

patient experiencing another particular event(s). Such knowledge is useful as an 

indicator of the data that will be required to populate the model and may be 

incorporated into the strategy adopted for the identification of data. It may also affect 

the choice of decision modelling technique. Goodwin and Wright [1998] highlight the 

problem of biased assessment of correlation as a source of modelling error. People 

often see non-existent associations between events because they can easily imagine the 

events occurring together. It is, therefore, particularly important that any assumed 

relationships between variables within the model are confirmed by available data. 
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Most modelling textbooks encourage the development of models with the least amount 

of detail that maintains the veracity of the model [McHaney, 1991]. A cyclical process 

may be enacted whereby increasing detail is added until the structure of model satisfies 

all parties involved in the evaluation. 

3.3 The literature review 

Most economic HT A decision models collect and integrate data from the existing 

literature. Ideally, such data would be identified using similar methods to those used in 

systematic reviews, being comprehensive, rigorous and explicit. The aim of a literature 

review has been interpreted as the avoidance of missing useful studies placed in sources 

'outside one's habitual purview', not identifying every paper that is somehow related to 

the area of interest [Sutton et aI, 1998]. 

There is a substantial methodological literature on systematic reviews, covering each of 

the main stages: study questions, study inclusion criteria, search strategies, study 

validity (quality), data extraction, and data analysis. The proposed methods for dealing 

with each of these issues should be described explicitly in the review protocol, which 

should be specified before the main study commences. The following sub-sections 

describe the development of the study questions, study inclusion criteria, search 

strategies, and data extraction, whilst methods for pooling the data (including a 

discussion around data quality) are covered in the next main section (Analysing the 

literature review data). However, prior to the development of the review protocol some 

background work is required to inform its structure [NHS Centre for Reviews and 

Dissemination, 1996]. This initial task consists of a brief literature search for two 

purposes. Firstly, it is necessary to estimate the volume of literature in the field so that 

an estimate of the size of the review can be made. Secondly, it is useful to have an idea 

of the most frequently employed study designs in the area of interest in order to inform 

the study designs included in the review. 

3.3.1 Study questions 

A series of study questions should be raised for separate elements of patients' pathways 

within the preliminary model, which can be treated as separate reviews. For example, a 
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typical economic HT A decision model might require separate questions to describe 

treatment side effects, response to treatment, and progression from response, as \vell as 

for the collection of resource use, cost, and utility-based data. 

Real associations between parameters can be missed because there was no prior 

expectation of such a relationship [Goodwin and Wright, 1998]. It may be advisable to 

facilitate the collection of qualitative data within the review process so that potential 

relationships may be uncovered even if they were not hypothesised a priori. 

3.3.2 Study inclusion criteria 

Sutton et al [1998] identified four areas in which study inclusion criteria should be 

specified: 

• Relevant patient groups 

• Health intervention/technology of interest 

• Outcome measures used 

• Types of study design 

Sonnenberg et al [1994] promoted the use of generic models that are applicable to a 

representative population or a broad category of patients, which would appear sensible 

to maximise the potential outputs of a model. It is important to recognise that the 

relevant patient group for reviews informing parameters within the model will probably 

be a subset of the aggregate patient group. For example, the original patient group may 

be split between responders and non-responders further down the patient pathways. 

The explicit limiting of a literature search by defining inclusion criteria relating to the 

sources of data is not recommended in guidelines for systematic reviews or meta­

analyses [Sutton et al, 1998; NHS Centre for Reviews and Dissemination, 1996]. 

However, the specification of multiple study questions relating to different events 

within a decision model means that the research burden can escalate very quickly, 

especially in treatment areas for which data are plentiful. In such cases, the need to 

populate the model with the 'best available data' [Buxton et aI, 1997], must be balanced 

against the time and resources available to complete the study; 'best' may be redefined 

as 'sufficiently robust to engender confidence in the model inputs'. Additional 
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inclusion criteria may be specified that relate to the intensity of the search. such as 

restricting the search by setting a cut-off year, or excluding sources on the basis of 

methodology, for example, the review could be restricted to trial-based data. 

Alternatively, non-English language studies could be excluded. Research into the 

hypothesised Tower of Babel bias has been undertaken [Gregoire et al. 1995], but no 

evidence of the expected bias against negative studies was identified. An obvious 

inclusion criteria is to seek only published work, though such a criterion could be 

subject to publication biases, whereby negative results are less likely to be published. 

However, focusing solely on published research is legitimate in two circumstances. 

Firstly, if the quantity of published research is large it is unlikely that the direction of 

the aggregated results will be wrong, although the magnitude may be overestimated. 

The magnitude of any differences between intervention should then be interpreted 

cautiously. Secondly, the parameter of interest to the study question may not be the 

primary focus of the research identified. The bias towards significant results in 

publications is unlikely to apply to secondary results [Cooper, 1998]. 

These extra criteria can be relaxed with respect to some threshold of data quantity or 

quality for the individual study questions. F or example, if few data, or data from poor 

quality studies are available during the initial review, then the inclusion criteria can be 

progressively widened until sufficient quality data are identified. The collection of 

additional data may also form part of an iterative procedure, whereby the model can be 

improved by obtaining additional data on key parameters that are identified by a 

sensitivity analysis of a populated model. 

3.3.3 The literature search 

The literature search defines the sources that are inspected for relevant data based on the 

specified inclusion criteria for each study question. It is quite feasible that different 

ranges of sources will be employed for study questions aimed at populating alternative 

sections of the decision model. The following paragraphs describe various data sources, 

though comparisons are difficult because there has been little empirical research on their 

respective merits [Cooper, 1998]. The easy access available to electronic databases, 

such as Medline, via the Internet, makes them an obvious starting point, though the 

EMBASE and SCISEARCH databases are recommended for inclusion in any 
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systematic reVIew [NHS Centre for Reviews and Dissemination, 1996]. Other 

databases include the database of abstracts of reviews of effectiveness and the NHS 

economic evaluation database, both provided by the Centre for Reviews and 

Dissemination, and HEED, the economic evaluation database provided by the Office of 

Health Economics. Variable success has been reported for searches of electronic 

databases, which may be due to narrow searches or inadequate indexing on the part of 

database compilers or the relevant authors [Sutton et al, 1998]. 

Other sources include research registers, such as the NHS Research Register and the 

Cochrane library. Registers can contain information on research studies, based in the 

past, present and/or future. The precision of such databases is improving continuously 

and hopefully they will soon become the most reliable source of data, both published 

and forthcoming [NHS Centre for Reviews and Dissemination, 1996]. Additional 

studies are often unearthed through handsearching journals and scanning the reference 

lists of retrieved studies. Similarly, scanning the contents of relevant conference 

proceedings can provide details of the current state of knowledge and what research has 

recently been completed, usually before it has been published [Rosenthal, 1994]. Data 

may also be identified through informal channels that include the personal solicitation 

of research, by contacting individual researchers about any relevant research in which 

they have been involved. 

If no usable data for a particular model parameter is identifiable it will be necessary to 

seek the opinions of experts in the field of interest. Two formal techniques have been 

identified that elicit the opinions of experts. The Delphi method involves sending an 

initial questionnaire to the chosen experts, the results of which inform the development 

of a second questionnaire. The second questionnaire is sent, along with the results of 

the first questionnaire, to the same experts. The attachment of the results from the first 

rounding of questioning empowers each expert with the same information for 

completing the second questionnaire [Hillier and Lieberman, 1995]. 

The expert group technique involves bringing together a group of experts who interact 

with each other to produce a consensus. The experts can be asked to specify a 

probability distribution. However, the Delphi method is generally preferred because it 
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does not attempt to forge a group consensus, the conclusions reached by an expert group 

may reflect the personalities in the group [Sculpher et aI, 2000]. 

Whichever sources are employed in a literature search an important criterion is that the 

results obtained should be reproducible. Thus, full details of the search methodologies 

should be provided enabling the interested reader to obtain similar results. 

3.3.4 Data extraction 

The process for extracting data from the identified studies should use a specified data 

extraction form. In the context of a series of literature reviews to populate an economic 

HT A decision model the development of an evidential database to collect and manage 

the relevant data is a useful tool. The development of such a database is described in 

Appendix 2. 

Recommended methods for the extraction of data state that it should be undertaken by at 

least two people [NHS Centre for Reviews and Dissemination, 1996], though the 

combination of limited resources and quantity of data may militate against such ideals. 

3.4 Analysing the literature review data 

The process of analysing the literature review data encompasses three broad activities, 

which are described in this section. Firstly, in the light of the identified data, both 

quantitative and qualitative, a reappraisal of the theoretical model should be undertaken. 

Secondly, the identified data should be appraised to ensure that the relevant variable 

definitions are the same. If not, it may be possible to harmonise the definitions by 

making adjustments to the reported data. Finally, the identified data for each input 

parameter should be pooled and arranged into a form that can be used to populate the 

model. 

3.4.1 Reappraising the model structure 

The theoretical model is developed primarily to inform the literature review. There are 

two reasons that the structure of the initial model may be altered. Firstly, additional 
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qualitative data may be identified that tends towards an alternative set of pathways to 

describe the progression of patients through the model. Alterations driven by an 

increased understanding of the treatment area are uncontroversial as they can only add 

to the validity of the model. 

The alternative source of change to a model's structure is the existence of insufficient or 

inadequate quantitative data to populate the model in its initial form. The extent to 

which the model structure should be based on the available data is a moot point. 

Sonnenberg et al [1994] define the practical model as 'the most detailed model that can 

be constructed given the limitations of available data', reflecting that such changes are 

'necessary and useful compromises' pgJS54. Sculpher et al [2000] warn that structuring 

models on the basis of the quality of data available could cause the loss of important 

clinical events. In their view the use of expert opinion to inform parameter values is 

always preferable to changing the original structure of the model because the sensitivity 

of the results to changes in the parameter values can be assessed. 

A general rule might state that extensions to the initial model informed by the identified 

data, which increase the detail of the model, should be accepted at this stage of the 

modelling process. Conversely, in cases where few data to populate certain sections of 

the model are identified, subtle modifications to the structure of the model may be 

enacted that rearrange the relationships relating to the 'difficult' parameters to reconcile 

the format of any available data. If such modifications fail to accommodate the 

available data then expert opinion may be sought to fill the void. It should be borne in 

mind that the process of obtaining the opinions of experts may result in such widely 

conflicting estimates that their inclusion detracts from the overall predictions of the 

model. 

The extent to which the model structure will need altering will be influenced by the 

scope of knowledge used to inform the initial structure and the complexity of the 

treatment area. The reassessment of the model structure at this stage of the modelling 

process should be regarded as a pre-emptive effort to improve the validity of the model, 

which will be affected by both the model structure and the input data. 
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3.4.2 Harmonising the identified data 

Combining the data involves the specification of the patient groups and interventions of 

interest, but also the tight definition of events included in the model. If large amounts 

of data are available it may be possible to use only the data that correspond to an exact 

definition of a particular event. If relevant data are not plentiful the analyst may be 

reluctant to discard data on the basis of subtle differences in the defmition of certain 

events and sometimes steps can be taken to improve the comparability of data from 

alternative sources. The process of harmonising the data makes explicit assumptions 

about the differences in the data presented by different studies and attempts to revise the 

results of outlying studies to a baseline definition of an event. Taking a hypothetical 

example, the common definition of an objective response to treatment may include a 

stabilisation of disease, but one identified study restricted the definition of objective 

response to an improvement in the disease condition. If the number of stable responses 

within this study is reported they can combined with the positive responses. If 

stabilisation is not reported, then to avoid losing the data from this study an estimate of 

the number of stable responses could be made by fitting the proportion of stable cases 

reported by the remaining studies to the odd study on the basis of study characteristics. 

The decision to harmonise data should be made carefully. For example, the analyst 

should be clear that the harmonised studies reflect the same underlying endpoint, 

otherwise the data may describe unwarranted variability in the observed value of an 

input parameter. If there appears to be underlying variation between the studies it may 

be necessary to control for heterogeneity using the methods presented in section 3.4.3.1. 

The process of harmonising the data cannot be subject to hard and fast rules as the 

adjustments made to the data will depend on the event described and the format of the 

available data. Some general principles can be identified, such as the estimation of 

missing values, but harmonisation is mainly determined by the individual circumstances 

of the modelling project. More details of the process of harmonisation are described in 

Chapter 5, where such methods are applied to the case study. 

3.4.3 Pooling and formatting the data 

The final stage of the input data analysis requires quantitative techniques to arrange the 

data into a suitable format for populating the decision model that allows for the 
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representation of uncertainty in the values of the input parameters. Unless the observed 

estimates for each parameter are identical it will be necessary to analyse the effect of the 

uncertainty in the values of the input parameters on the decision model's outputs. 

Methods for pooling and formatting data to populate deterministic and stochastic 

models are described in separate sections, following a brief discussion of altematiYe 

types of uncertainty. 

Exogenous sources of uncertainty relate to the structure of the model. The US Panel on 

cost-effectiveness advised that such uncertainty should be tested using alternative 

specifications of the model employing alternative assumptions with respect to the 

functional form of the relationships described in the model [Manning et al, 1996]. 

Briggs [2000] argues that assessing the multitude of assumptions that create a decision 

model is beyond the scope of a single analytic team and that structural forms of 

uncertainty should be assessed by different researchers. However, given limited 

research funds it may not be feasible to employ multiple research teams to 

simultaneously investigate the same research topic and some form of 'internal' 

sensitivity analysis of the model's structure may add to the comprehensiveness of an 

evaluation. Examination of this source of uncertainty is beyond the scope of this thesis, 

suffice to say that such sensitivity analysis would add significantly to the research 

burden of any modelling evaluation. 

Endogenous uncertainty must be handled within the experimentation of each defined 

model. There are two orders of such uncertainty - first and second. For any given set of 

input parameter values, first-order uncertainty describes the variation in the results of a 

decision model at the level of the individual patient. Each patient is subject to the same 

probabilities of experiencing an event from a particular state at any given time, so the 

variation observed between patients is due entirely to the 'inherent uncertainty of the 

probabilistic structure of the model', which can be interpreted in a similar manner to the 

variation observed in a clinical trial [Briggs, 2000]. First-order uncertainty can only be 

measured using decision models that follow individual patients through the model and 

record the individual estimates of costs and effects. 

Running larger numbers of patients through the model will provide a more accurate 

representation of the mean outcomes for the population of patients, but the estimates of 
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variation (the standard deviations) will be a function of the number of patients run 

through the model. Some analysts have used the number of patients expected in a 

particular location in a given time period to estimate the standard deviations in order to 

represent uncertainty more realistically, reflecting the context of the analysis [Sharples 

et aI, 1996; Szeto and Devlin, 1996]. However, the description of fust-order uncertainty 

is irrelevant to the representation of uncertainty for resource allocation using cost­

effectiveness data [Briggs, 2000]. Such decisions are based on the mean differences in 

costs and effects for the populations of patients receiving alternative treatments. It is, 

therefore, the uncertainty around the mean costs and effects for a particular intervention 

that is of interest to the decision-maker. This is termed second-order uncertainty. 

Second-order uncertainty is represented by the estimation of the mean value of the 

model outputs for alternative values of the input parameters. 

3.4.3.1 Input values for deterministic models 

Historically, deterministic analysis has been mostly employed in the economIC 

evaluation of health care interventions, whereby non-random inputs lead to non-random 

outputs. The stochastic nature of the problem is not captured in the output of the model. 

Weinstein and Fineberg [1980] state that it is 'only the averaged-out, or expected, 

probability that matters at any given chance node. This means that the "spread" around 

a probability does not matter' (pg174). However, it is now commonly accepted that 

sensitivity analysis should be undertaken to measure how important individual input 

parameters are to the model's outcome. Common forms of deterministic sensitivity 

analysis include one-way, multivariate, threshold and extreme analyses [Briggs et aI, 

1994]. Other than threshold analysis, each of the methods involves specifying feasible 

ranges for the values of the input parameters that are being tested. The relevant point 

estimate for each input parameter should be specified as the weighted mean value 

derived from all the identified studies, whilst the values to be employed in sensitivity 

analyses of deterministic models should be informed by the spread of the weighted 

parameter values. 

The methods available for weighting data depend on the format of the identified data. If 

good primary data that incorporates measures of the within sample variance are 

available then methods for weighting data based on meta-anal:1ic methods may be 
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employed. The combination of survival curves from the literature adapts the meta­

analytic methods slightly and is presented in Appendix 4. Alternatively, for parameter 

values derived from sources that do not report sample variance more subjective means 

for combining the data need to be pursued. The following two sections describe 

methods that can be employed to weight data in these two scenarios. Firstly, howeyer, a 

unique scenario is addressed, which concerns parameter values for which there are no 

direct empirical estimates, but which may have been estimated previously using 

decision modelling techniques. Various options, differing with respect to the required 

analytic input, are available. If a number of separate studies (of adequate 

validity/quality) are available, employing alternative modelling techniques and 

structures, then each study's parameter estimate could be incorporated using equal 

weights. However, the analyst should check the similarity of the data inputted into each 

model with respect to the timing and comprehensiveness of the data collection process. 

If some data appear to be out of date it may be necessary to re-model some or all of the 

observed data using more up-to-date data obtained from the other studies, or from a 

fresh review. The same approach could feasibly apply to the synthesis of all modelling 

studies, including full cost-effectiveness studies. 

Weighting parameters with known sample variance 

The techniques used in meta-analysis to weight data from separate studies follow a 

general approach that can be adapted to most data types [Sutton et aI, 1998]. The 

formulae for weighting data using the fixed effects and random effects models are . 

presented in Appendix 3, as well as a test for the extent of heterogeneity in the available 

data. Methods for weighting data according to their assumed precision can be linked to 

the level of heterogeneity between the studies. If the selected studies are thought to 

display only limited heterogeneity then the fixed effects model provides an adequate 

representation of variation, representing sampling error alone. If unwarranted 

heterogeneity remains in the dataset, more complex methods to weight the data might be 

considered, such as those used in random effects models. The basic aim in using 

random effects models is to account for the increased variation between studies 'when 

assuming the studies are estimating different (underlying) effect sizes' [Sutton et ai, 

1998]pg69. 
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U sing the random effects weighting procedure will always produce a greater variance in 

the parameter estimates, but its use is not universally accepted. Raudenbush et al 

[1994] suggested that the fixed effects model is the sensible choice if onlv a few studies 
~ 

exist as between study variation will be very poorly estimated by the random effects 

model. Others claim that the random effects model replaces the 'implausible 

assumptions of fixed effects analysis [with] untenable assumptions of its own'. such as 

between study heterogeneity can be represented by a single variance, and that the 

between trial distribution is normal [Thompson and Pocock, 1991]. Peto [1987] 

claimed that such models move the objective (of the weighting process) to answering an 

unimportant question concerning randomly chosen treatments and patient populations. 

However, Spector and Thompson [1991] specified perhaps the most pragmatic 

approach, treating the random effects method as a type of sensitivity analysis looking at 

how the results change as the distribution of weights between the incorporated studies 

are altered. 

Attempts may also be made to adjust the weight of a study's input according to the 

perceived quality of the study. Quality may be defined with respect to the study design 

and to the conduct of the study. For example, experimental studies are generally ranked 

higher than observational designs, but a poorly conducted ReT may be less reliable than 

a sturdy observational study [Sutton et aI, 1998]. However, much disagreement exists 

over the use of quality weights and the only practical recommendation on this issue is 

that a subjective assessment of the quality of the identified studies should be made. A 

quality threshold of inclusion may then be employed rather than a system of differential 

weighting. 

Weighting parameters with unknown sample variance 

If within-study variance is unknown then the choice of weighting technique will depend 

on the sources available for the individual estimates. If data are available from primary 

studies that report the associated sample size informing the estimated parameter values 

then the respective sample sizes can be used to weight the individual estimates. 

Other parameter values may be derived from secondary sources that do not report any 

information that can be used to objectively weight the individual estimates. Most 



The modelling process 

commonly resource use and cost data are derived from such sources, such as Trust 

returns or charges data. Two options are available to weight such data: 

• each estimate can be assumed to be of equal validity; 

• a sUbjective judgement of validity can be made. 

Subjective judgements are analogous to the quality weights discussed in the previous 

section, but their use may be justified in this context because no statistical basis is 

available for the application of weights. The relevance to particular evaluations of 

alternative parameter estimates may differ according to their source. F or example. 

estimates derived from the country in which the model is to be used to inform policy 

will probably be of more relevance to the evaluation and receive a larger weight. 

A two-stage process for weighting data obtained from secondary sources is proposed 

here. The first step is to rank the available estimates in increasing order of subjective 

validity. The second step involves weighting the data on the basis of the ranks. The 

simplest approach would be to weight the data linearly with respect to the ranks. For 

example, from a series of 10 estimates the top ranked estimate would receive a weight 

of 10, whilst the least confident estimate receives a weight of 1. Alternatively, the 

assigned weights could be specified with respect to a baseline value that is taken to be 

most (least) relevant point estimate. For example, if estimate x is given a weight of 1 

and estimate y is thought to be half as relevant as x then it receives a weight of 0.5. 

Using data derived from expert opinion, the mean value specified by either process 

(Delphi panels or expert groups) will represent parameter point estimates. To represent 

uncertainty the individual estimates produced by the Delphi method automatically 

provide a range of values, whil~t the expert group can be asked to specify a feasible 

range. 

3.4.3.2 Input values for stochastic models 

A number of papers have described the use of probabilistic sensitivity analysis in 

economic evaluation [Felli and Hazen, 1998; Lord and Asante, 1999; Pasta et ai, 1999]. 

Alternatively labelled as stochastic cost-effectiveness analyses [Briggs. 1999]. the 

values of the input parameters within such models are described as probability 
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distributions. The objective of a stochastic analysis is to obtain a distribution for each 

of the model's outputs that is informed by randomly sampled sets of input parameter 

values from the specified probability distributions. Stochastic cost-effectiveness 

analyses incorporate the Bayesian paradigm where the parameter is seen as a "ariable. 

with its own probability distribution, since the true value of the parameter is unknown. 

In the Bayesian context the input parameter distributions are posterior distributions 

informed by the available data [parmigiani et al, 1996], which represent second-order 

uncertainty as defined above. As long as there is uncertainty about the particular value 

of a parameter, the parameter is treated as a variable and probabilities are used to 

express the uncertainties [Iverson, 1984]. 

Stochastic analyses may be viewed as the ultimate application of multivariate 

deterministic sensitivity analyses, where the aim is to test the impact of every 

combination of parameter values for every parameter within the model. If the definition 

of uncertainty for each of the input parameters is valid, then stochastic analyses present 

the most comprehensive and appropriate form of sensitivity analysis. 

F our methods for defining probability distributions to represent the sampling 

distributions of the mean values of the input parameters are described in the following 

sections. There is no consensus on the appropriateness of the four methods. The first 

three methods (theoretically defined distributions, empirical distributions, and fitted 

distributions using statistical fitting software) were applied to the case study. The 

applied methods are described in Chapter 5, the alternative results in Chapter 8, whilst 

the implications derived from the use of the alternative methods are discussed in 

Chapter 9. The fourth method (bootstrapped primary data) applies to parameters 

informed by patient-level data and is not relevant to the employed case study. 

Theoretical distributions based on parameter type 

The first option applies purely theoretical considerations to the choice of probability 

distribution for different categories of input parameters. The characteristics of the 

different types of parameters included in a decision model are examined and a 

probability distribution with properties that match those of the input parameter is 

assigned. The same type of probability distribution is applied to groups of input 
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parameters. The full process for choosing appropriate probability distributions and 

fitting the distribution parameters is described in Appendix 5, though an abbreviated 

narrative is provided below. 

The choice of probability distributions to describe alternative parameter types is an 

individual choice, as is the categorisation of the input parameters. The following 

exposition was formed through discussion with colleagues and with reference to 

Bayesian statistics texts [Iverson, 1984; Berry and Stangl, 1996; Gelman et aL 1995]. 

F our categories of parameters were identified - proportions, survival times (length of 

time to the next event), costs and utility values, for which appropriate probability 

distributions were chosen: 

1. Proportions describe the probability that a patient will experience an event, which is 

bounded by 0 and 1. The beta distribution, which is bounded by 0 and 1, provides 

the most realistic representation of proportions. as it can lie in a wide variety of 

shapes when the two distribution parameters (alpha and beta) are varied [Iverson, 

1984]; 

2. Survival times describe the length of survival (or time to next event), they are 

bounded by O. The gamma distribution is bounded by zero and approximates the 

normal distribution at large samples. It is also extremely flexible, using a shape 

parameter to describe the available data accurately [Rice, 1995]; 

3. Cost parameters have been described by the . lognormal distribution [Pasta et al, 

1999; Fenwick et ai, 2000], though the gamma distribution may provide a more 

flexible description of the sampling distribution of costs [Parmigiani et al, 1996]; 

4. Utility values portray similar properties to a proportion though 0 and 1 do not 

strictly bind them. The beta distribution is still advocated as a scale parameter can 

be fitted to the beta distribution to incorporate a larger range than 0 to 1. 

The method of moments specifies formulae for estimating parameters for alternative 

probability distributions by finding expressions for them in their lowest order moments, 

then substituting sample moments into the expression [Rice, 1995]. The available data 

can be combined directly with these formulae to estimate relevant parameters for the 

chosen probability distributions. 

46 



The modelling process 

Empirical distributions 

The easiest approach to specifying a probability distribution is to use the collected data 

'as is', this is known as a trace simulation [McHaney, 1991]. However, the individual 

parameter estimates should be incorporated on the basis of their relative weights as 

estimated using the methods described above. A weighted dataset comprising 

replications of each parameter estimate according to their respective weights can be 

created that may be inputted directly in to the decision model. The inverse of the 

variances may be large, so a consistent method for creating weighted datasets is to limit 

its size to 100 observations. The following steps will create such a dataset: 

1 . Calculate the weight for each of the identified parameter estimates Wi, where i = 1 

... n; 

2. Divide each Wi by the sum of the Wi and multiply by 100 (value = Xi); 

3. Create Xi copies of each parameter estimate. 

U sing the available data directly means that the model is based on exactly what has 

been observed in the past, which may increase the credibility of the model's 

conclusions. However, the fact that no values other than those observed could be 

sampled may misrepresent the full set of possible values. This is particularly likely if a 

limited dataset is available [Kelton et aI, 1998]. Empirical distributions have been used 

in previous stochastic models when the available data were extensive [Parmigiani et aI, 

1996]. 

Fitted distributions 

Rather than using the observed data directly, probability distributions can be specified 

as a projection of the sampling distribution of the parameters. Lipton et aZ [1995] 

describe the manual process for specifying distributions and estimating the respective 

parameters. However, there are an increasing number of computer-based packages that 

will analyse the available data and choose the best fitting distributions, as well as the 

appropriate distribution parameters [Crystal Ball, 2000; Stat: :Fit, 1996]. The aim of this 

procedure is to select a probability distribution with random samples that is 

indistinguishable from the collected data [McHaney, 1991]. The choice of distribution 

can be tested on the basis of goodness-of-fit tests, such as the chi-square and 

Kolmogorov-Smimov tests, though these tests are known to have very low power so the 
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probability of rejecting a fit is small, even when the distribution postulated is wrong 

[Bratley et aI, 1987]. 

It may be appropriate to consider the properties of computer-based distributions, as the 

software does not have knowledge of the intended use of the specified distribution. 

These problems can be minimised by careful consideration of the characteristics of 

different probability distributions. Most statistical fitting packages allow the user to 

select a range of theoretically sound distributions, so improper distributions can be 

excluded at the start of the process. Alternatively, restrictions imposed within the 

decision model can be used to block the use of infeasible parameter values within the 

model. Fitted distributions allow a more rounded description of the data, though it is 

possible to sample values that are not feasible or to lose important characteristics of the 

data such as sequential patterns [Kelton et aI, 1998]. 

Bootstrapped distributions 

The definition of bootstrapped distributions involves taking a large number of repeated 

samples of size n, with replacement, from a dataset with n observations. The set of 

mean values provides an empirical approximation to the sampling distribution of the 

'true population' value [Lord and Asante, 1999]. Pasta et al [1999] recommended using 

the bootstrap sampling distribution directly. This approach was deemed to have a 

number of advantages including the fact that the estimated value would never lie outside 

the range of values identified in the available studies. It was also noted that the 

divergence of the bootstrap sample reflects the divergence in the original sample. 

Alternatively, the bootstrap dataset could be used as the basis for the choice of a fitted 

distribution. If the bootstrap sample is normally distributed then confidence intervals 

calculated parametrically can be applied to a normal distribution [Lord and Asante. 

1999], otherwise a fitted distribution can be specified using the bootstrap sample as 

discussed in the previous section. 

Unfortunately, when the number of different observations from the literature is small 

the bootstrap means do not differ greatly from the mean of the weighted dataset. 

Bootstrapped distributions are only applicable in cases where a large number of 

observations are available [Lipton et al, 1995]. Lipton et al give no indication of what 
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constitutes a small sample, which would appear to be an empirical question that relates 

to the variation within individual datasets. The main circumstance in which 

bootstrapping should be used to inform input probability distributions is when patient­

level data from a primary study is available. Variation between patients represents fust­

order uncertainty, but model parameters should represent uncertainty about the \'alue of 

the population mean (second-order uncertainty). Bootstrapped distributions based on 

patient-level data represent second-order uncertainty. 

3.5 Implementing the model 

The implementation of a decision model refers to the act of preparing an analysable 

form of the model through the transfer of the theoretical model to a computer-based 

software package. This stage of the process does not question the states included in the 

model or the relationships assumed between them, rather it is concerned with the 

optimal strategy for describing the structure of the model. Consideration of the 

appropriate modelling technique should only be addressed at this stage of the modelling 

process. The current state of knowledge regarding the choice of modelling technique 

was discussed in Chapter 2. The decision should be based on a number of factors, 

relating to both the characteristics of the treatment area and to the research resources 

available. If the final choice of modelling technique does not accommodate all of the 

prior assumptions made with respect to the description of patient pathways, then 

modifications to the model structure can be implemented. 

The topics covered in following sections include the process of building a computer­

based model, the verification of the model to check the internal operation (section 

3.5.2), and the validation of the model where it's realism is tested (section 3.5.3). The 

methods described are applied to the case study in Chapters 6 (building the model) and 

7 (verifying and validating). 

3.5.1 Building the model 

Sonnenberg et al [1994] and Detsky et al [1997] provided a series of good practice 

guidelines towards the construction of a decision model. F or example, it was 

recommended that embedded decisions within the model should be avoided. Though 
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decisions made within the model can be automated, separate analyses of the model \\-ill 

be required for each estimate of the decision-makers criterion for adopting the more 

effective technology. For stochastic models especially, the required time for 

experimentation may be infeasibly extended. Linkage between probabilities \\ithin 

models was also suggested as good practice. For example, where the probability of an 

event influences separate events within the model that probability should be 

incorporated into the formula for the probabilities associated with each of the respectiYe 

events. The common probability can then be varied simultaneously, during stochastic 

or deterministic sensitivity analyses, for each of the associated probabilities. 

Three additional issues must be considered in models covering extended time horizons. 

Firstly, allowance must be made for the outputs of the model to be adjusted with respect 

to differential timing. The discounting of costs is an uncontroversial issue, though the 

theory underpinning the discounting of health benefits is less secure it is advised that 

such model outputs also require discounting [Lipscomb et aI, 1996]. The discount rate 

will not necessarily be the same for costs and effects so separate discount rate 

parameters should be specified [Briggs and Sculpher, 1998]. 

Secondly, using a time-oriented model, i.e. a Markov model, a cycle length will need to 

be specified. The length of the cycle should be chosen to represent a clinically 

meaningful time interval [Sonnenberg and Beck, 1993]. If the available data describes 

the probabilities of events over longer time periods than that chosen for the cycle length 

they will need converting to probabilities that describe the chance of an event in a 

shorter period. This conversion requires that the original probabilities be transformed to 

rates of incidence, which inform the instantaneous probability of an event rather than 

the probability of an event occurring over a specified period. The rate is then used to 

calculate the probability of an event over the shorter period of time [Sonnenberg and 

Wong, 1993]. If it is assumed that transition rates remain constant over the longer 

period, the formula 3.1 can be used to convert the probabilities directly [Miller and 

Homan, 1994]. 
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where PCtoti+l) is the probability of an event between time period i and i+ 1, and i 

represents the number of shorter time intervals within the originally specified time 

period. The assumption of constant rates of occurrence is often acceptable~ but if there 

are good reasons to assume that rates are not constant then the longer period should be 

split into shorter periods that best reflect the expected variability in rates. F or example~ 

converting annual mortality data to monthly probabilities it may be expected that 

patients are more likely to die in the latter half of any particular year. If so, the 

proportion of patients dying in the full year can be split unevenly between the first and 

second six months, applying the above formula to each period. 

Markov models are run so that movement between states within the model occurs 

between cycles so according to the model all patients leaving state x in year 1 leave at 

the end of year 1. This will naturally overestimate the time spent in state x so a half­

cycle correction should be applied to each transition on the basis that, on average, each 

patient leaves state x after 6 months [Sonnenberg and Beck, 1993]. Also, median or 

mean survival estimates must be converted to probabilities based on the choice of cycle 

length. This involves calculating the rate of events over the whole period and then 

converting the rate to the correct probability, an example, assuming a monthly cycle 

length and an average survival of 30 months, is provided within formula 3.2. 

Rate = }j'0=O.03* ~Probability=l-e-o.03" =0.0328 (3.2) 

DES models are more flexible in their handling of time, but such models still require the 

specification of a minimum time period of advancement, which should also be chosen 

on the basis of a clinically meaningful time interval. The chosen period defines the 

shortest time that patients can remain in any given state within the model. A half-cycle 

correction is only required in a DES model if the length of time spent in a state is not 

sampled from a continuous distribution. 

Operations research textbooks provide advice on the computer implementation stage for 

DES models [Pidd, 1989]. To manage the additional complexity of DES, models 

should be built in stages, or modules. Each module should represent a definable section 

that can be run separately from the remainder of the model. This approach allows the 
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location of any bugs in the programming to be narrowed down and identified more 

efficiently. If there are difficulties in the translation of the modelling assumptions into 

the computer-based software they should be represented openly, not buried. In all 

models, it is recommended that a log should be kept during the process of building a 

model to record the assumptions made within the model, as well as potential sources of 

bias (and their likely direction) [Halpern et aI, 1998]. 

3.5.2 Verification 

The processes of verification, followed by validation, are the final steps prior to the 

actual use of a model to generate useful results. Verification involves checking that the 

model is working in an internally consistent manner, i.e. that the model is free of 

programming bugs. Three sequential phases of verification are presented below 

covering the verification of logic, sensitivity testing and stress testing [Bratley et aI, 

1987]. 

Verification of logic involves running models with values for which there is a logical 

expected result that could easily be estimated without the model. The results produced 

are then compared to those expected. In a stochastic model, for example, all patients 

can be set to move from a state in a single specified time period, and within that state 

the cost and utility weights can be set at a constant value. The process of verifying 

model logic can be split into two categories covering the clinical parameters, and cost 

and utility parameters. The latter parameters are grouped together because they both 

involve the assignment of weights to the time spent in different health states. Finally, 

the logic relating to discounting both the costs and the effects must also be verified. 

The second type of verification is labelled sensitivity testing, which involves varying 

one parameter, whilst keeping all others fixed in order to check that the behaviour of the 

model is sensible. The definition of sensible model behaviour is subjective and must be 

redefined for each parameter within the model. It may be difficult to judge the absolute 

magnitude of the effect of different parameters within the model, so sensitivity testing 

may limit the definition of sensible behaviour to a prediction of the relative magnitudes 

of the individual parameter effects. For example, the observed and expected relative 

effect of individual parameters on the variance of the model's outputs can be compared. 
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Such predictions may simply encompass an ordinal ranking of the expected outputs, or 

an attempt to incorporate cardinality between alternative parameters. 

A secondary objective of this fonn of verification is a deeper understanding of the 

model and it's workings. If the results of the sensitivity testing are unexpected then the 

working of the model should be explored. The inspection may lead to the discovery of 

a programming error or to an admission that the original prediction was based on a false 

premIse. The debasing of a false assumption can only improve the analyst's 

understanding of how the parameters within the model behave, which may inform the 

process of experimentation. 

Stress testing is the final form of verification. Such testing searches for extreme errors, 

such as the acceptance by the model of infeasible parameter values, such as probability 

parameters set to values over 1. The process of stress testing involves setting 

parameters within the model to strange values and checking that the models 'implodes'. 

The likely sign of any implosion is not dramatic, an error message usually suffices. 

3.5.3 Validation 

Validation is 'the process by which the modeller and the client satisfy themselves that 

the model ... is suitable for use within its defin~d experimental framework' [Pidd, 

1998]pg33. 

In the OR field, it is often the case that the input data for a model are derived from the 

'real' system that is also used to validate the model. The usual objective of an OR 

project is to represent the system of interest, and then undertake a series of 'what if?' 

experiments in order to understand their impact on the future behaviour of the system. 

Though problems remain around the collection of data from the real system [Kelton et 

ai, 1998], the process is less complicated than for economic decision models used in 

HT A. Economic HT A decision models commonly wish to represent a system in order 

to make decisions on the present behaviour of the system. 'What if analyses may be 

undertaken to represent the uncertainty in the main output, but they are not the primary 

output. OR studies generally concentrate on structural validity, whereas in economic 
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HT A modelling projects, the data used to populate the model are also subject to the 

process of validation ( content validity) [Halpern et al, 1998]. 

In HT A possible sources of comparative observations that have been suggested include 

previously developed models [Halpern et aI, 1998], and intermediate outputs that are 

more readily available [Sculpher et aI, 2000]. Close comparisons with alternatiYe 

models improve confidence in the validity of both models because it is less likely that 

two (or more) modelling teams will produce inaccurate results than just one group. 

Conversely, where differences are apparent comparisons of the separate models may 

highlight disparate assumptions that require resolution [paul and Balmer, 1993]. 

One subjective approach to validation is the use of 'Turing's test'. The output from the 

model and from the 'real' world is shown to experts who then try to distinguish between 

them. If they are able to differentiate between the two sources then the explanation 

behind the correct definition of the outputs may inform the revision of the model [Paul 

and Balmer, 1993]. Such an exercise is intuitively appealing and could be conducted 

using the views of clinicians, though such a process could be time-consuming and not 

guaranteed to produce a concordant result. 

There are obvious problems with all of the above validation methods, for example, an 

accurate prediction of 5-year survival does not necessarily validate the required output 

of the model, which may be the gain in QAL Y s over a patient's lifetime. However, the 

process of validating decision models of alternative health care interventions will 

always be an imprecise exercise. Indeed, the hypothetico-deductive approach states that 

a model can not be proved valid in any true sense, a valid model being defined as 

unrefuted for certain scientific purposes [popper, 1965]. If the model is refuted during 

the process of validation then the current approximations to reality contained within the 

model need to be changed. Sometimes additional parameters, which were previously 

believed to be unimportant, will need to be included. Relationships between variables 

may have been ignored, either several possibly separate parameters could have been 

aggregated and treated as one, or independence between variables may have been 

assumed. Otherwise, functional relationships within the model may have been 

simplified, nonlinear functions may have been assumed to be linear. Finally, it may 
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have been assumed that the values of parameters within the model were stationary over 

time, whereas they are actually dynamic [Bratley et aI, 1987]. 

Sculpher et al [2000] and McCabe and Dixon [2000] considered the issue of validating 

economic HT A decision models in detail and both sets of authors came to similar 

conclusions that the creation of objective tests of validity are unlikely. Instead, both 

papers proposed that a framework for model development is required that would enable 

an explicit method of assessing the quality of decision models. However. it should also 

be expected that the possible avenues of validation are undertaken and that the outputs 

of the model are judged fairly against the available data. 

3.6 Experimentation 

This final phase of the modelling process involves the evaluation of the model, and the 

analysis of the model's outputs. Experimentation with deterministic decision models is 

relatively straightforward, though a more subjective interpretation of the outputs is 

required. Most effort in the following sections, therefore, is given to describing 

experimentation with stochastic decision models. 

The process of evaluating the model comprises the basic actions for collecting the 

model's outputs for a particular set of inputs. The first section below describes the 

methods for collecting the relevant output data from the two main types of stochastic 

models - Markov models and DES models. The following sections describe methods 

for analysing the model and the output data that relate to the objective of the evaluation. 

Two main objectives are possible. 

1. to inform an immediate resource allocation decision, where the only economic data 

available are those included in the decision model. 

2. to advise on the collection of further data with which a more informed resource 

allocation decision can be made. 

3.6. 1 Evaluating stochastic decision models 

The usual objective of a stochastic evaluation is the estimation of the relevant outputs 

describing a population mean and representing population uncertainty. otherwise 
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referred to as second-order uncertainty (see section 3.4.3). The following steps describe 

the associated process for evaluating both a cohort-based Markov model and a DES 

model: 

1. Randomly sample a set of parameter values from the input probability distributions; 

2. Undertake a 'run' of the model and collect the mean value for each of the model's 

outputs; 

• 

• 

a 'run' of a cohort-based Markov model produces an exact solution for each 

model output for the sampled set of input parameter values; 

a 'run' of a DES model involves sending a large number of individual patients 

through the model (see section 3.6.1.1), where each patient is subject to the same 

set of sampled parameter values. The variation between patients is the first­

order uncertainty associated with the sampled set of parameter values, which 

will vary according to the number of patients specified. Only the mean values of 

each of the model's outputs are required from a run. 

3. Redo steps 1 and 2 until sufficient runs have been completed to inform a 'trial', 

which is defined as a set of 'runs' (see section 3.6.1.2); 

4. Analyse the data within the 'trial' to describe the second-order uncertainty around 

the model outputs. 

3.6.1.1 Estimating the required patients within a model 'run' 

A great advantage of the cohort-based Markov model is that first-order uncertainty is 

controlled because an exact solution is produced for each set of parameter values. The· 

stochastic evaluation of second-order uncertainty using a DES model should only be 

undertaken when the analyst is certain that the first-order estimates are sufficiently 

precise, because the aim is to remove first-order uncertainty from the model's outputs. 

To reduce the impact of first-order uncertainty within a DES model the corresponding 

model outputs should be based on the mean values of a large number of patients for 

each set of parameter values [Stinnett and Paltiel, 1997]. However, the running time for 

the second-order analysis of a DES model is influenced by the number of patients 

included in each run, so the required number of patients should be the minimum number 

that provide an adequate level of precision in the first-order estimates. 
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Decision models, such as DES models, that represent uncertainty around individual 

patient's outputs are termed first-order Monte Carlo models [Halpern et aL 2000]. To 

get a better idea of the necessary number of patients previously published studies that 

employed such models were sought. Unfortunately, the identified first-order Monte 

Carlo economic HT A decision models did not analyse second-order uncertainty 

stochastically by sampling sets of input parameter values, but rather estimated the mean 

values of the model's output for a specified set of parameter values [Habbema et aI, 

1987; Hart et aI, 1997; Paltiel et aI, 1998; Urban et aI, 1997; Warner et al, 1996]. 

Sample sizes of up to 100,000 were employed in these evaluations, but such large 

numbers were not constrained by computing time because the models were evaluated 

only a few times (alternative sets of parameter values were only specified as part of 

deterministic sensitivity analyses). 

Unlike the economic HTA literature, a number of applications of first-order Monte 

Carlo models employing probability distributions to represent second-order uncertainty 

were identified in the general clinical literature. Bagust et al [1999] simulated bed use 

in accommodating emergency admissions. Each run of the model comprised a 1000-

day period with a mean daily admission rate of almost 25, so each run included 25,000 

patients. Davies and Roderick [1998] used DES to aid the planning of resources for 

renal services. Their main analysis ran a population group one-tenth the size of the UK 

population over a period of 50 years. Michel et al [1996] modelled the planned health 

care facilities for neonatal extracorporeal membrane oxygenation. Their methodology 

is slightly unclear, but it appears that they ran the model for the period of 1 year 

incorporating all births in each year, replicated 1000 times. Cronin et al [1998], 

modelling cancer screening, simply chose 10,000 patients as an adequate number. 

Most of the -identified studies based run size on some measure of actual activity in the 

country of origin. Intuitively, this appears unnecessary. The purpose of sending a large 

number of patients within each run is to establish an accurate mean value for the outputs 

associated with each sampled set of input parameter values. On closer inspection, 

however, it is apparent that the representation of actual activity appears to be chosen on 

the basis of the number of patients it generates. The superficial representation of actual 

activity is disingenuous because it hides the real reasons for choosing the appropriate 

number of patients to be run through the model, which should be to reduce first-order 
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uncertainty to an acceptable level (however defined). However, the artificial 

representation of reality may be a means of selling the results of the simulation to the 

intended audience. 

The necessary number of patients to reduce first-order uncertainty to an acceptable level 

is related to the complexity of the decision model. The more complex the model the 

more possible pathways there are for the patients to experience and the greater the 

extent of first-order uncertainty, which means a greater number of patients will be 

required to achieve an adequate level of precision. An adequate number of patients may 

be informed by undertaking a number of preliminary runs for a range of different 

sample sizes that are all subject to the same input parameter values. For example, 1000, 

5000 and 10000 patients could be run through the model 50 times. If there were no 

first-order uncertainty the same mean values for the model's outputs would be expected 

for each run, in the presence of first-order uncertainty the mean values will vary. 

Plotting the mean values of the model's output according to the number of patients 

included in the individual runs provides an indication of the level of precision offered 

by the different sample sizes, which can be used to inform the final choice of run size. 

An empirical investigation of the required number of patients within a run is presented 

in section 6.5. 

3.6.1.2 Estimating the required model 'runs' within 'trial' 

As described above a 'trial' comprises a series of 'runs', each of which represents the 

mean values of the model's outputs for a randomly selected set of input parameter 

values. The adequate representation of population uncertainty (second-order 

uncertainty) should only be addressed after the analyst is certain that first-order 

uncertainty has been controlled. 

Papers advising on the use of stochastic analyses in the economic HT A literature have 

not discussed the requisite number of runs [Parmigiani et al, 1997; Felli and Hazen, 

1998]. Applied studies using probabilistic sensitivity analyses have tended not to 

discuss the issue, but common practice appears to have settled on the use of 1,000 runs 

to represent second-order uncertainty [Kuntz et ai, 1999; Sisk et al, 1997; Kattan et al, 

1995], though others have employed 10,000 runs [Fenwick et al, 2000]. More complex 
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decision models will have wider dispersions of outputs, which will require larger 

numbers of observations (runs) to accurately represent uncertainty. On that basis, the 

distributions of the model's outputs should be visually inspected during the evaluatiye 

process and additional runs should be undertaken until the definitions of the 

distributions are judged adequate to describe population uncertainty. 

3.6.2 Analysis to inform immediate allocation decision 

If resource allocation is to be based on the results of an economic evaluation it is 

important that the economic data is presented in a format that aids the decision making 

process. The methods available for presenting the results of economic evaluations have 

developed greatly during the last few years. The following section describes the 

progression of methods for representing uncertainty in economic evaluations, moving 

from deterministic sensitivity analyses to the estimation of confidence intervals around 

incremental cost-effectiveness ratios (leERs) to the use of the net benefit statistic and 

cost-effectiveness acceptability (CEAc) curves. 

Until recently, the results of most cost-effectiveness analyses, as opposed to cost-benefit 

analyses, were simply presented as the incremental cost per additional unit of 

effectiveness, using formula 3.3. 

(,uCl - ,uco ) 
(,uEl - fl EO) 

(3.3) 

Where flCi and ,u Ei are the mean values of the costs and effects of intervention i, i = 0 

and 1. In the absence of uncertainty such a ratio would be adequate - the decision­

maker could judge whether the additional health benefits outweighed the additional 

costs and the decision would be made. Unfortunately, uncertainty is a major factor in 

the evaluation of any clinical intervention, and especially in economic evaluation. 

Briggs et al [1994] identified four separate sources of uncertainty, though Briggs and 

Gray [1999] later categorised uncertainty as relating either to the underlying 

methodological framework or to the data used in the evaluation. The former issue is not 

relevant to this discussion (the definition of a framework has been the topic of this 
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Chapter), but the handling and expression of uncertainty surrounding the data is central 

to the presentation of the output from a economic HT A decision model. 

Previous evaluations that attempted to describe uncertainty around the point estimates 

oflCERs concentrated on specifying ranges within which the true ratio was likely to be 

found. Most studies were deterministic and the commonest approaches to sensitivity 

analysis specified alternative values (from the base case) for input parameters, either 

individually or jointly, and then recalculated the model outputs. Such methods - one­

way, multi-way and extreme scenario analyses - result in a high and low estimate of the 

ICER that is presented as the plausible range. A variant on this theme is threshold 

analysis, which requires a value to be placed on an additional unit of effect. The value 

of an input parameter is varied until the allocation decision switches from one 

alternative to another, ie. a threshold is reached [Briggs et aI, 1994]. 

The earliest identified method for the stochastic analysis of sensitivity was labelled 

probabilistic sensitivity analysis [Doubilet et aI, 1985]. Probability distributions were 

specified around each parameter within the model and following multiple simulations of 

the model the mean and standard deviation of the expected utility of each strategy were 

recorded (costs were not included in this model). A later review of sensitivity analysis 

in economic evaluation found that very few had 'dealt adequately with the problem of 

uncertainty' [Briggs and Sculpher, 1995]pg363. Probabilistic sensitivity analysis was 

only identified in 1 of the 75 studies that had undertaken any form of sensitivity 

analysis, though even in this study the authors of the review stated that the 

representation of uncertainty around the leER was unclear. 

A number of approaches have been developed to represent interval estimates of the 

ICER using stochastic data, the alternative methods can be grouped into three categories 

_ Taylor-series intervals, FieBer's method confidence limits, and bootstrap confidence 

intervals [Heitjan et ai, 1999]. Several studies have compared the various approaches, 

and, though the Fieller theorem and bootstrap methods are preferred to the Taylor­

series, general shortcomings in the estimation of interval estimates around the ICER 

have been noted [Heitjan et al, 1999; Briggs et ai, 1999; Polsky et aL 1997]. The 

underlying and unresolved problem is that ratio statistics, in which the denominator can 

take verY small values, cause problems for the estimation of confidence intervals ., 
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[Briggs, 1999]. Using bootstrapped samples the representation of negative values of 

differences in effects, combined with positive differences in costs reduces both upper 

and lower confidence intervals because such results are represented as a negative leER 

and misplaced at the left of the ICER distribution [Heitjan et al, 1999]. 

Due to the problems surrounding interval estimation around the leER alternative 

approaches have been sought, which led to the definition of the net benefits statistic in 

1998 [Stinnett and Mullahy, 1998 ; Tambour et aI, 1998]. The calculation of net benefits 

requires the assumed knowledge of the decision-makers maximum willingness to pay 

for an additional unit of effect, A. The incremental net benefits (!NBs) of a one 

intervention, t], over another, to, can be calculated using formula 3.4. 

where J.lCi and J.l Ei are the mean costs and effects of intervention i, i = 0 and 1. The 

formula also illustrates that the INBs are the difference between the mean net benefits of 

the interventions, so the decision rule is to allocate resources to the intervention with the 

highest mean net benefits. Parametric and nonparametric methods for the estimation of 

confidence intervals for net benefits have been described. The use of the net-benefits 

statistic to format the output is much more convenient than the ICER statistic [Briggs, 

1999], mainly because the net benefits statistic is linear in costs and effects [Stinnett and 

Mullahy, 1998]. The calculation of confidence intervals around a single value of A is 

of limited applicability because the value of A is likely to vary for different decision­

makers. One approach to the presentation of uncertainty around the net benefits statistic 

that overcomes the need to specify a single value representing A is the specification of 

a CEAc curve. 

The initial implementation of the CEAc curve was based on the estimation of 

confidence intervals for ICERs, the CEAc curve presented the probability that an ICER 

was under A for non-negative values of A [van Hout et al, 1994], though the concept 

has since been linked to the presentation of net benefits [Stinnett and Mullahy, 1998; 

Briggs, 1999]. To define a CEAc curve for net benefits using the output of a stochastic 
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decision model, assuming multiple interventions, the following steps should be taken 

[F enwick et aI, 2000]: 

1. Undertake a large number of model runs and calculate the mean net benefits 

associated with each intervention for a wide range of non-negative values of A ; 

2. For each value of A calculate the probability that each intervention has the highest 

mean net benefits; 

3. Plot the probabilities as a function of the value of A. to obtain a family of CEAc 

curves. 

CEAc curves represent the probability that the INBs for one intervention over another 

are positive as a function of the value of A.. A hypothetical CEAc curve is presented in 

Figure 3.1, a horizontal line has been added to the figure to highlight the point at which 

intervention f} becomes the intervention more likely to be cost-effective. From the 

curve, the probability of intervention f} being the cost-effective option reaches the 0.5 

threshold at a value of A. of just under £2,000. The intuitive interpretation of this 

hypothetical CEAc curve, regarding the allocation of resources to intervention t1, would 

state 'allocate resources to intervention tl if the value an additional unit of effect is at 

least £2,000'. Unfortunately, such a decision rule maximises the probability of 

choosing the optimal intervention, but it does not necessarily maximise the expected 

benefits of the available resources. If the distributions of net benefits are skewed then 

the intervention with the highest probability of net benefits will not necessarily offer the 

highest expected net benefits [Fenwick et aI, 2000]. 

A slight adaptation to the conventional CEAc curve is to plot, on the pr(0.5) line, the 

value of A. at which the sum of the INBs becomes positive for intervention fl. The 

presentation of the absolute level of the INBs alongside the probability of positive INBs 

draws attention to any discrepancy between the objectives of choosing the strategy with 

the highest probability of positive INBs and maximising the expected benefits. In 

Figure 3.1, X marks the value of A at which the sum of the INBs becomes positive for 

intervention tl - £3,000. The objective of economic evaluation is to maximise health 

benefit, given the available resources; so the decision to allocate resources should be 

made on the basis of expected net benefits [Fenwick et al, 2000]. In the hypothetical 
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Figure 3.1 A hypothetical cost-effectiveness acceptability curve 
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example, therefore, the decision rule becomes 'allocate resources to intervention t} if 

the value an additional unit of effect is at least £3,000'. 

An alternative method for representing uncertainty around nets benefits involves the 

estimation of confidence intervals for the INBs between two interventions, t] and to. 

The minimum value of A at which the INBs are statistically significant from zero can 

then be found [Tambour et aI, 1998]. Similarly, Stinnett and Mullahy suggest plotting 

point estimates and confidence intervals for the net benefits over a continuous range 

of A [Stinnett and Mullahy, 1998]. 

Undertaking the analysis described above provides a good representation of the 

uncertainty surrounding the relative cost-effectiveness of the alternative interventions 

for the chosen model structure, the set of probability distributions describing the 

uncertainty in the values of the input parameters, and the discount rates for the costs 

and effects. Additional analyses may be necessary if any of these factors are also 

subj ect to uncertainty. 

3.6.3 Analysis to inform further data collection 

It is well documented that there is an excess of technically feasible and potentially 

beneficial health care interventions over the economically possible [Buxton, 1993]. 

The surplus of desirable health care has inevitably led to an increase in the demand 

for evidence to inform the enforced process of choosing between interventions. 

Funds for the evaluation of health care technologies are also limited and programmes 

of research should be developed on the basis of cost-effectiveness [Harper et al, 

1998]. To date, it appears that explicit criteria for the allocation of research funds 

have been applied only qualitatively in the UK [Medical Research Council, 1994; 

NHS Executive, 1997], though a review of the literature on the preliminary economic 

evaluation of health care technologies identified five separate quantitative approaches 

to the prioritisation of research funds [Harper et al, 1998]. The primary issue in all 

the approaches concerned the estimation of the effect of future research on health 

policy or treatment practice, and hence, the potential health benefits within the 

relevant population. Most approaches recommended that previous research should 
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inform predictions of the results of future research though the analytic level of 

inclusion varied. 

Eddy [1989] and Townsend and Buxton [1997] proposed the detailed description of 

possible policy scenarios, incorporating the associated costs and health benefits , 

resulting from a prospective trial, but provided the least detail on the estimation of the 

likelihood of the different scenarios occurring. Drummond et al [1992] demonstrated 

their approach by undertaking a retrospective analysis whereby the results of the 

'prospective' trial were known, though they stated that the increased benefits derived 

from the new intervention should be accessed from the data employed in sample size 

calculations. Given the power to detect a stated improvement in outcomes, it was 

suggested that the effect on clinical practice should be derived from the views of 

practitioners applying the alternative therapies. Detsky [1989] proposed a more 

formal application of the available data, which, for a given sample size, linked the 

power of the prospective trial to the prior probability distribution of the different 

effect sizes. 

The fifth study adopted a decision analytic approach to the prioritisation of research 

that accounted for the existing uncertainty in the values of all parameters affecting the 

cost-effectiveness of the alternative interventions [Claxton and Posnett, 1996], which 

has since been labelled Bayesian value of information (Vol) analysis [Fenwick et aI, 

2000]. Harper et al [1998] questioned the practicality of this last approach, which 

was based on parametric methods. More recent expositions of Bayesian Vol analyses 

have developed equivalent non-parametric techniques [Fenwick et aI, 2000; Felli and 

Hazen, 1998; Felli and Hazen, 1999], which ease the analytic burden. However, the 

application of the full Vol methodology is rare, the only identified publication 

described a hypothetical parametrically derived Vol analysis [Claxton, 1999]. Work 

is ongoing on the conduct of the non-parametric analysis of the Vol, and the process 

of analysis described here is a product of the author's work through collaboration with 

experts in the field (Fenwick, Briggs and Claxton). 

The following sections describe the methodology for a full Bayesian Vol analysis, 

which comprises three main stages. Firstly, the expected value of perfect information 

(EVPI) is generated for the evaluation as a whole, or for individual parameters. 
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Knowledge of the EVPI for individual parameters within the model pro\'ides a 

measure for assessing the value of eliminating the uncertainty associated with each 

parameter. Secondly, integrating the process of estimating the EVPI with 

assumptions about how additional sample information will affect the probability 

distributions for the input parameters provides an estimate of the expected value of 

sample information (EVSI). Finally, combining the EVSI with the expected cost of 

collecting additional sample information allows the estimation of the expected net 

benefits of sampling (ENBS) [Claxton and Posnett, 1996; Claxton, 1999]. The 

process for estimating the EVPI and the EVSI, which leads to the estimation of the 

ENBS is described below, whilst the full methodology is applied to the case study and 

the results reported in Chapter 8. 

3.6.3.1 Estimating the expected value of perfect information (EVPI) 

The EVPI IS defined as the difference in the expected payoff of decisions USIng 

perfect information and the payoff using the currently available information, which is 

a function of the value of an additional unit of effect. To estimate the EVPI a large 

number of iterations of the decision model are required (as discussed in section 

3.6.1.2). Each iteration provides a separate observation of the mean net benefits of 

treatment 1 (tl) and treatment 0 (to), informed by randomly sampled sets of input 

parameter values. If there is uncertainty about which treatment option really is cost­

effective (at the chosen value of It) some observations will demonstrate that tl has 

larger mean net benefits, whilst others report larger mean net benefits for to. 

Resources should be allocated to the therapy option that has the highest expected net 

benefits over all observations at the relevant value of It. Using the available 

information a single resource allocation decision is made across all observations of 

net benefits. Assuming perfect information individual allocation decisions can be 

made for each observation of relative cost-effectiveness within the distributions of net 

benefits (derived from the decision model). 

The individual observations of incremental net benefits are categorised as being 

positive for either tl or to. If (1 is the more likely cost-effective intervention, in the 

proportion of observations for which (1 is found to be cost-effective the resource 

allocation decision informed by the available data and by perfect information are the 
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same. In the proportion of observations in which to is the cost-effective option, 

without perfect information an aggregate resource decision would allocate all 

resources to tl, but assuming perfect information there is no uncertainty and to would 

be funded. The expected cost of uncertainty (the EVPI) is the sum of the positive 

incremental net benefits in the proportion of observations in which to displays positive 

incremental net benefits (see formula 3.5). 

n 

E VP I episode = 
LNBto - NBII ( J 
-1~--n--- ; (3.5) 

Where EVPleP/~mde is the expected EVPI per patient treated [Fenwick et aI, 2000], n is 

the number of observations in which to displays positive incremental net benefits. NBti 

are the mean net benefits of intervention i (i = 0 and 1), and N is the total number of 

observations. The EVP I population is estimated by multiplying the EVP I epi.mde by the 

relevant patient popUlation over the time for which the additional research is assumed 

to influence the allocation decision, discounted at an appropriate rate (see formula 

3.6). 

EVPI population = EVPlepisode. L~=l [1 p /(1 + r)P] (3.6) 

Where p is a period, P is the number of periods for which the research is assumed to 

inform decision-making, I is the incidence in a period and r is the discount rate. 

The estimation of the full EVPI for the decision model provides a maximum estimate 

of the value of removing all uncertainty within the model. Similar techniques can 

also be applied to estimate the cost of uncertainty in the value of individual input 

parameters within the model, or sets of input parameters. These estimates can be used 

to focus further research on the input parameters with the most impact on the overall 

uncertainty in the model [Fenwick et al, 2000]. To estimate the EVPI for a set of 

parameters, the full EVPI is estimated and then the EVPI is re-analysed, but holding 

the input values of the parameters of interest constant at their mean values. The 
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difference between the full EVPI and the re-estimated EVPI is the partial EVPI for the 

parameters of interest. 

3.6.3.2 Estimating the expected value of sample infonnation (EVSI) 

The basic concept driving the estimation of the EVSI is that the original probability 

distributions for the input parameters can be updated, reducing the variation described 

by the prior distribution to reflect improved precision due to the collection of more 

data. The key assumptions in updating the probability distributions in particular, and 

the Vol analysis in general, relate to the choice of data used to update the prior 

distributions. This aspect of Vol analysis - the hypothetical representation of 

additional data - is a key element in ongoing research. The methods adopted in this 

paper assume that the additional data will yield the same mean values as derived from 

the original data, because the mean represents the best estimate of the true value of the 

individual parameters. Bayesian methods of statistical inference were employed to 

estimate updated distribution parameters, whereby the properties of conjugate families 

of prior distributions incorporated an increased sample size on posterior distributions 

[Berry and Stangl, 1996; Berger, 1980]. The estimation of the updated probability 

distributions is straightforward for all categories of input parameters, details of the 

methods for updating the input distributions are provided in Appendix 5. 

The EVSI must be estimated a number of times to reflect the impact of successive 

increments in the sample size of prospective studies. If the assumption is made that a 

single trial would be undertaken that will collect data on all the parameters included in 

the decision model, it is important to note that this does not mean that the increased 

sample infonning the updated distributions will be the same for all parameters. Fewer 

data will be available for parameters within the model. For example, a study with a 

sample of 100 patients will not provide 100 observations regarding, say, the cost of 

relapse if only half the patients experience a relapse within the trial. Likewise, if the 

100 patients are randomised between two treatments, only 50 observations of the cost 

of providing the two treatments will be available. The proportion of patients likely to 

provide data on the different parameters within the model should be estimated using 

the mean results from the baseline analysis of the original decision model. 
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Next, the optimal sample allocation between the treatment arms should be addressed. 

Claxton proposed that the optimal sample allocation between the treatment arms in a 

proposed trial should maximise the ENBS on the basis of the loss function, which 

describes the value of information associated with sample allocations between the 

treatment options, as well as differences in the cost of sampling between the t\VO 

interventions. This would appear to require a very large amount of time to 'estimate 

ENBS ... for every feasible allocation of each sample considered' [Claxton, 1999]. A 

simpler, and quicker, method of allocating a proposed sample between the treatment 

options being evaluated is derived from Neyman's allocation to strata, which accounts 

for both differential variances and costs of sampling between different strata 

[Cochrane, 1977]. A ratio of the sample allocation between two treatment options is 

estimated by supplanting treatment options for alternative strata. Formula 3.7 

estimates the allocation ratio of the sample between treatments to and t1 : 

(3.7) 

Where ni is the sample allocated to treatment option i, i = 0 and 1, c; is the marginal 

cost of investigating a sampling unit of treatment option i, and (Y; is the standard 

deviation of the net benefits of treatment option i. Because the hypothetical data 

assumed to update the prior probability distributions are drawn from the patient 

population, the relevant measure of variation is described by first-order uncertainty, 

ie. variation between patients, rather than between populations. The standard 

deviation for each of the treatment options is estimated by running a first-order 

simulation using the mean estimates of each of the input probability distributions and 

calculating the standard deviation among the data observed for each patient within the 

run. This method estimates a constant ratio that can be applied to all prospective 

samples that are evaluated within the decision model. The optimal allocation of the 

prospective samples would account for the loss function within the decision model. 

which may produce alternative ratios for different sample sizes. The adaptation of 

Neyman's allocation provides a proxy for the optimal allocation, which reduces the 

required period of experimentation considerably. 
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Applying the updated input distributions the EVPI is re-estimated and the difference 

between the original EVPI and the revised EVPI is the EVSI for the each prospective 

sample. The EVSI can be estimated for the model as a whole or for sets of input 

parameters within the model. Estimating the EVSI for alternative sets of input 

parameters allows a comparison of the incremental net benefits associated with 

alternative primary studies set up to collect data on different sets of input parameters. 

3.6.3.3 Estimating the expected net benefits of sampling (ENBS) 

The ENBS is simply the EVSI minus the cost of obtaining the additional sampling 

infonnation. The cost of sampling includes the cost of setting up the study, and 

monitoring, analysing and reporting the data collected. The cost also includes any 

additional treatment cost compared to current practice, which could feasibly be 

negative if current practice is the more costly option. Formula 3.8 is used to estimate 

the ENBS population for an additional sample of size n. 

nn 
ENBS population = EVSI population - C Fixed - nCVariahle - -(Cn - CTO ) (3.8) 

n 

Where C Fixed are the fixed costs of a trial, C Variahfe is the marginal cost per patient 

included in a trial, and CTl - CTO is the difference in costs between the interventions 

where T 1 is the intervention that would not be provided in the absence of a trial. 

The ENBS should be estimated for a range of sample sizes, which allows the ENBS to 

be plotted as a function of increased sample size. If any ENBS is positive then it will 

be efficient to gather more information and the optimal total sample size is where the 

ENBS reaches a maximum. 

3. 7 Conclusions 

This aim of this Chapter was to describe the full process of an economic evaluation 

comparing health care interventions that amalgamates data from disparate sources 

within a decision model. The modelling process was covered in chronological order 

moving through five main stages: specifying the theoretical model. undertaking a 
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literature review to obtain input data from the model, analysis of the identified data to 

populate the model, implementing the model, and experimentation with the model. 

Previous work undertaken in the field of health economics was sought, though much 

of the process drew on issues common to the general area of clinical research. 

Insights into individual stages of the modelling process were also obtained from other 

disciplines including the social sciences and operations research. In addition, new 

approaches to handling some of the issues raised in the description of the modelling 

process were proposed. 

As well as providing a general resource infonning the full methodology for the 

application of decision models to economic HT A evaluations, this Chapter also 

provides a framework for the remainder of this thesis, wherein the methods described 

above are applied to a case study evaluation from Chapter 4 onwards. The issues to 

which this Chapter has contributed, and the location in this thesis of their application, 

are described in chronological order below. 

The initial stage of the modelling process involves the specification of a theoretical 

model. This Chapter established the importance that such a model is developed prior 

to the literature review as it provides an explicit framework to guide the review. 

Advice from operations research texts was adapted to fonnalise the process of 

specifying a theoretical model, whereby the problem is structured in an attempt to 

understand the issues that need to be addressed within the model. The specification of 

a theoretical model representing possible pathways for patients with early breast 

cancer is described in first sections of Chapter 4. 

The methods employed in the literature reVIew were mainly derived from the 

systematic review literature. This Chapter stated that the process of identifying data 

to popUlate an economic HT A decision model comprises a series of individual 

literature reviews each informing a particular input parameter, or group of parameters. 

If the evaluative area is blessed with plentiful data, it may be necessary to limit the 

length of the literature review, mainly by the specification of search related criteria 

that limit the search with respect to the type, year, and language of available studies. 

The objective of the literature review was defined as 'the collection of data 

sufficiently robust to engender confidence in the model inputs', which respects the 
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need for an unbiased selection of data whilst recognising that is may not be possible 

to incorporate every piece of evidence into the model. The methods employed for a 

literature review to inform an economic HT A decision model of alternative therapies 

for early breast cancer are set out in the latter sections of Chapter 4. 

The next stage of the modelling process involves the analysis of the data derived from 

the literature review, which was the greyest in terms of established methods. In the 

first phase of analysing the literature review data a reappraisal of the structure of the 

theoretical model was proposed. The reappraisal could incorporate adjustments to the 

model structure derived from an improved understanding of the important events, or 

subtle alterations to the relationships between existing parameters could be made that 

better facilitate the format of the identified data. The reappraisal of the early breast 

cancer model is described in Chapter 5. The next phase of the input data analysis 

introduced the explicit adjustment of data according to observed differences in their 

definitions of events to improve their homogeneity, which was labelled 

harmonisation. No reference to such methods was identified in the existing literature, 

though it is unlikely that such modifications have not been made implicitly. Whilst it 

is not feasible to expect a full account of the steps taken to harmonise data in papers 

presenting the results of economic HT A decision models, details should be made 

available from other sources to persuade the interested reader of the quality of the 

model. Various sections of the case study model required elements of harmonisation, 

the methods for which are described in Chapter 5. 

The final issue in the analysis of the gathered data covers the methodology employed 

to organise the data into a suitable format to populate the decision model. Four 

alternatives were identified. Two methods required the creation of weighted datasets, 

which are either inputted directly or used to fit probability distributions using 

statistical fitting software. A full description of the available methods for weighting 

the identified data was provided, including the introduction of methods for the 

subjective weighting of data, when no objective measures of precision are available. 

The third approach specified particular distribution types to different groups of input 

parameters and used method of moment's formulae to estimate the distribution 

parameters using the identified data. The comparison of these three methods is a 

secondary objective of this thesis. The application of these methods is described in 
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Chapter 5, whilst the derived results are presented in Chapter 8 and discussed in 

Chapter 9. The fourth approach - bootstrapping distributions from the assembled data 

- is not applied to the case study because it is most appropriately used to specify 

distributions for parameters that are informed by patient-level data. 

The implementation stage of the modelling process includes the act of choosing the 

appropriate modelling technique, because the modelling technique should be chosen 

with full knowledge of the available data. To guide the building of the decision 

model a collection of good practice guidelines drawn from the health economic , 

clinical and operations research literature were presented. The applied process of 

building both a Markov process and a DES model is described in Chapter 6. 

As more complex decision models are employed in economIC evaluation so the 

process of verification will become more important. This Chapter adapted the process 

of verification from operations research texts, which provided a thorough and 

structured process for checking that a model is internally consistent. The process of 

validating decision models also drew from the operations research field, but 

underlying differences in the modelling objectives and data availability between the 

OR field and economic HT A decision models limited the relevance of such work. 

The validation of economic HT A decision models is extremely difficult, though 

intermediate forms of validation are available, the main conclusion appears to be that 

the analyst should aim to convince her audience that the model was developed and 

analysed using an explicit framework of good practice. Nevertheless, Chapter 7 

presents the attempts made to objectively validate the early breast cancer model using 

various sources of external data. Chapter 7 also presents full details of the application 

of the three-stage verification process. 

In the final stage - experimentation - this Chapter addressed issues relating to the 

stochastic analysis of economic HT A decision models, describing the conduct of such 

analyses in terms of 'runs' and 'trials'. Relating to first- and second-order uncertainty. 

respectively, the questions of 'how many patients to include in a run?', and 'how many 

runs to include in a trial?' were discussed with reference to applied studies undertaken 

in all areas of clinical research. No specific solutions to these questions were 

identified, though some practical suggestions were put forward that are tested within 
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the case study and presented at the end of Chapter 6. A review of the chronological 

development of methods used to present cost-effectiveness data was presented, which 

informed the presentation of the case study results in Chapter 8. Finally, this Chapter 

adapted methods for the non-parametric analysis of the value of information, a 

process that estimates the monetary value of future research aimed at reducing the 

uncertainty of the resource allocation decision. The results of a full Vol analysis of 

the early breast cancer evaluation are presented in Chapter 8 and discussed in Chapter 

9. 
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Chapter 4 

data 

Case study: Specifying the theoretical model and gathering 

4.1 Introduction 

The methods for the modelling process described in Chapter 3 are applied to a case study 

evaluation in Chapters 4 to 8. The application aims to test the appropriateness of the 

methods, as well as to compare alternative methods where options within the modelling 

process exist. This Chapter preserits the preliminary stages of the modelling process. 

These include the definition of the clinical area to be evaluated, which leads to the 

development of an initial model structure. The use of the theoretical model to guide the 

main literature review is then presented. The final section illustrates the selection of 

stratified patient groups for separate analysis within a model. This latter aspect is not 

necessary if the study question relates to a narrowly defined, homogeneous patient group, 

but when the patient group is heterogeneous such selection of sub-groups of the popUlation 

may improve the analysis and enhance the interpretation of the results. 

4.2 Defining relevant evaluation characteristics 

Cancer is a major disease area that accounts for about one in every five deaths in England 

and Wales [Office of National Statistics, 2000]. Breast cancer is the commonest female 

cancer in the United Kingdom with around 33,000 newly diagnosed cases and 15,000 

deaths from the disease each year [Cancer Research Campaign, 1998]. Diagnosis of cancer 
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In the breast and/or axilla is defined as early breast cancer, which may be further 

disaggregated to stage 0, I, or II breast cancer [Fowble, 1991]. A proportion of patients 

with early breast cancer will be 'cured' by local treatment. However, there is a risk of 

micrometastatic disease, which causes systemic relapse. The aim of adjuvant therapy is to 

destroy this subclinical disease. The main objective of adjuvant therapy for breast cancer is 

to prolong survival while maintaining a high quality of life [Glick, 1991]. As a treatment 

area, breast cancer fulfils several criteria that make it a suitable area for modelling: there 

are clear definitions of the disease and its natural history, definable benefits and risks with 

different modes of therapy, competing alternative approaches and controversy [Gelber et al, 

1991]. In addition, new types and combinations of adjuvant therapies continue to be 

devised meaning that conclusive clinical trial data for all possible adjuvant therapy 

schedules and for all patient groups are unlikely ever to be available. Two types of 

adjuvant therapy are used for breast cancer, either alone or in combination: 

1. Chemotherapy, which are usually administered as a combination of anticancer drugs, 

such as CMF (cyclophosphamide, methotrexate, and fluorouracil), 

2. Hormonal therapy, which deprives cancer cells of oestrogen and may influence the 

growth of cancer cells. The two main hormonal treatments are tamoxifen and ovarian 

ablation (for premenopausal patients) [National Cancer Institute, 1996]. 

The evaluation presented in this thesis was initiated alongside the UKCCR ABC Trial. The 

ABC trial is a national collaborative randomised clinical trial, the principal aim of which is 

to determine the value of adding chemotherapy to tamoxifen for postmenopausal patients, 

and chemotherapy and/or ovarian ablation to tamoxifen for pre/perimenopausal women 

with early breast cancer [UKCCR, 199~]. Prior to the trial, chemotherapy and ovarian 

ablation had both been clearly shown to prolong both relapse-free and overall survival in 

pre/peri menopausal women, with the benefit lasting for at least 10 years. Tamoxifen had 

also produced a significant improvement in disease free survival in pre/perimenopausal 

women [Tormey et al, 1992]. However, it was uncertain whether the benefits of these 

treatments were additive [EBCTCG, 1992]. In postmenopausal women, trials had 

demonstrated a reduction in recurrence, and suggested an improvement in survival from 
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tamoxifen plus chemotherapy, compared to tamoxifen alone. However, it was not clear 

whether any additional survival benefit was large enough to outweigh the side effects of 

chemotherapy. 

The ABC trial is currently in progress and the data from the trial will not be available for a 

number of years. The case study evaluation for this thesis was undertaken usina secondary 
o . 

data with the primary aim of estimating the relative cost-effectiveness of the alternative 

adjuvant therapies to inform decision-makers prior to the availability of the trial results. 

The following section provides a brief summary of the previous economic studies 

comparing adjuvant therapies for early breast cancer, which were identified during the main 

literature review (see section 4.4.3 for details). 

4.2.1 Review of economic studies of adjuvant therapies for early breast cancer 

Only one identified economic study collected prospective cost data [Legorreta et aI, 1996]. 

Based in the US, this 4-year longitudinal study followed 16 patients with stage 0-, 99 

women with stage I, and 73 patients with stage II breast cancer in a health maintenance 

organisation. The results were split by stage at presentation. All cost data were obtained 

from medical records and claims data, though only inpatient and specialist outpatient costs 

were captured. The estimated 4-year mean costs for stages 0, I, and II were $18,900, 

$23,200, and $28,800, respectively (1993 US$). A UK-based study estimated 4-year 

treatment costs of 102 patients diagnosed with stage I breast cancer, and 13 patients with 

stage II breast cancer [Wolstenholme and Whynes, 1998]. Resource use was obtained from 

a detailed examination of the case notes and unit costs were attached using resource use 

algorithms. The mean costs were estimated as £3,576 and £3,996 for stages I and II. 

respectively (1991 UK sterling). A Canadian group modelled the treatment costs of breast 

cancer therapy for the lifetime of patients using clinical data from various databases and 

cancer registries, as well as surveys of Canadian clinicians [Will et al, 1998]. Detailed 

costing methods were employed including a 10-province comparison of the cost of the most 

commonly used breast cancer tests and surgical procedures. The treatment costs only 

included direct health costs and were split by stage at presentation. Average lifetime costs 
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for stage I and II breast cancer were estimated as $23,098 and $25,671. respectiYely (1995 

Cdn$) 

A number of full economic evaluations were identified, though none were undertaken in the 

UK. The principal economic investigators in the area of adjuvant therapies for early breast 

cancer appear to be a group of American clinicians - Hinner, Smith and Desch. These 

authors have published a range of economic evaluations covering most combinations of 

adjuvant therapies and most patient groups [Hinner and Smith, 1991; HiBner and Smith, 

1992a; Hinner and Smith, 1992b; Hillner et aI, 1993; Desch et al, 1993; Smith and Hillner. 

1993]. All the evaluations were based on the same methodology, which employed a 

Markov process that was populated using clinical data derived from published clinical 

trials. Only direct costs were included and these were obtained from charges and from 

Medicare data, utility values were derived from surveys of oncology staff. The estimated 

cost per quality adjusted lifeyear (QAL Y) gained ranged from $5,700 comparing tamoxifen 

versus no treatment in a 45-year old premenopausal woman with node-positive. ER­

positive breast cancer to $280,000 comparing tamoxifen versus no treatment 'in a 45-year 

old premenopausal woman with node-negative, ER-negative breast cancer (1998 US$) 

[Earle et aI, 2000]. 

An Australian evaluation compared tamoxifen alone with no therapy using clinical data 

from the early breast cancer trialists' meta-analysis [EBCTCG, 1992], though they did not 

appear to differentiate between node negative and node positive patients [Glasziou and 

Haas, 1994]. The methodology was very basic using a spreadsheet and defining patients as 

either 'well' or in 'recurrence', though the calculations undertaken were not dear. The 

only costs included were the costs of tamoxifen and a general cost of recurrence taken from 

the literature. The model stopped at 10 years and utility values were assumed. The 

estimated cost per QALY gained was $1365 (1990/1 Aus$). Messori et al [1996] 

compared 12 cycles of CMF with no adjuvant therapy in patients with node positive breast 

cancer based on an Italian clinical trial with more than 20 years follow-up. The outcome 

measure was life years gained and a lot of effort was spent extrapolating the area under the 

curve to estimate long term survival. Unfortunately, less effort was put into estimating 
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costs as only the cost of adjuvant chemotherapy was included in the eYaluation. The 

estimated cost per lifeyear gained was $447 (1995 US$). The final identified evaluation, 

which was only available as a conference abstract [Selke et aL 1998], employed a stochastic 

Markov process to evaluate a range of adjuvant therapies, though the definition of patient 

groups was not reported. The estimated cost per additional lifeyear saved from using 

chemotherapy and hormonal therapy over hormonal therapy alone was presented as $4.071 

(US$). 

The above review suggests that the evidence base for allocating resources to alternative 

adjuvant therapies in the UK is thin with only one UK-based study providing limited 

information that could be used to inform such decision-making. The development of a UK­

based decision model describing the costs and health effects associated with alternative 

adjuvant therapies for different patient groups would provide useful information for 

decision-makers. 

4.3 Specifying the theoretical model 

The preliminary structure of the model represents the main events experienced by patients 

diagnosed with early breast cancer. The objective of the preliminary model structure was 

to provide guidance for the main literature review in the form of a series of study questions. 

Each study question invoked a separate literature review relating to different aspects of the 

decision model. 

The events included within a decision model should describe significant occurrences in 

relation to the outcomes of the model. Here, the outcomes are costs and QAL Ys so the 

structure of model was based on events that have a significant influence on either the 

resources allocated to breast cancer patients, their survival, or their quality of life. 

Information on the relevant events to be included in the decision model was sought from 

health professionals involved with the ABC trial as well as a preparatory review of the 

breast cancer literature. In addition, the Internet was searched for basic information on the 

impact and progression of breast cancer, sites such as www.oncolink.org provided a wide 
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range of infonnation, aimed at both health professionals and patients. The use of three 

sources reduced the danger of incorporating biases from anyone source into the theoretical 

structure of the model, which was infonned by general agreement between the alternative 

sources. The preliminary structure of the model is discussed in the following sections. 

which split the possible events into two main categories - treatment side effects and 

relapses or death. The two sections describe how the relevant events to be included in the 

model were chosen, following which the full structure is presented. 

4.3.1 Side effects of adjuvant therapies 

Following the administration of the adjuvant therapies the most immediate event that 

patients are likely to experience is some form of treatment side effect, especially following 

the administration of chemotherapy. The trial clinicians advised that the therapy side 

effects would be more easily classified in relation to their associated resource use, and that 

the severity of the side effects would be correlated with the resources used to treat them. A 

large number of different direct toxic effects were identified and each type of effect may be 

subject to a range of severities, it was also reported that a small proportion of patients die as 

a result of chemotherapy toxicity. The preliminary model described four classes of direct 

toxic effects: 

1. mild complications that required additional clinician time and anti-emetics, 

2. moderate complications needing additional clinician time and anti-emetics, as well as 

referral to a specialist, for example, a dietician, 

3. non-fatal major events necessitating inpatient care, and 

4. fatal events. 

4.3.2 Relapses and death 

The only other events included in the model were relapses and death. Following the 

removal of the primary cancer, a relapse is the appearance of a new lesion(s) in patients, as 

confirmed by any relevant diagnostic procedure [Thorpe et aL 1993]. There were various 

possibilities for modelling the pathway of breast cancer patients from the point of relapse. 

Hurley et al [1992] investigated the cost of breast cancer relapses and identified five 
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categories of sites. Two other studies also used a similar categorisation of relapses to 

describe the differences in prognosis relating to the site of metastases [Richards MA et aI, 

1993; Goldhirsch et aI, 1988]: visceral, central nervous system (eNS), bone. local, and 

regional. 

Presenting the information from the few studies identified to the trial clinicians, it was 

suggested that the three metastatic sites of relapse - visceral, eNS and bone - could be 

reduced to two - bone and non-bone - as relapses in visceral or eNS sites typically have 

the worst prognosis. Such relapses are not curable and the only event following a 

metastatic relapse is death. It was also suggested that local and regional relapses be treated 

as a single site within the model, but that the combined locoregional event could be either 

operable or inoperable. The distinction between operable and inoperable locoregional 

relapse was confirmed in the preparatory review. In the preliminary model a patient with 

an inoperable locoregional relapse entered an 'uncontrolled' state, in which the main 

objective of treatment is palliation. Following an operable relapse a patient entered a 

'remission' state from which she could experience a further relapse or die without evidence 

of disease. 

4.3.3 Model structure 

An activity cycle diagram (ACD) was used to portray the preliminary model structure [Paul 

and Balmer, 1993]. The model structure is presented in Figure 4.1. The structure only 

includes events that are assumed to influence the progression of the disease, treatment side 

effects were described within the state 'disease-free'. 
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Figure 4.1 

LocoreglOnal 
relapse 

Preliminary model structure 

metastases 

Arrows indicate possible pathways between events. 

4.4 The literature review 

metastases 

The aim of the review was to gather data to populate a decision model that described the 

pathways of patients with early breast cancer. Defining the structure of the model prepared 

the ground for targeting the literature review, five distinct data categories were defined: 

• adjuvant therapies; 

• treatment side effects; 

• timing of relapse or death with no evidence of cancer; 

• types of relapse; 

• progression from relapse. 

Adjuvant therapies comprised only the estimation of resource use and the unit costs 

associated with the various therapies, the four other categories included clinical parameters. 

resource use, unit costs, and utility values. The review protocol outlines the plan of the 

literature review, covering the study questions to be answered and the methods used to 

identify relevant data [NHS Centre for Reviews and Dissemination. 1996]. The following 

sections describe the formulated study questions, the search inclusion criteria and the 
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sources included in the literature search. The final sub-section presents the results of the 

literature review. 

4.4.1 Study questions 

The literature review for a modelling project comprises a series of mainly independent 

reviews that aim to identify data for the separate elements of the model. In the case study, 

separate questions were defined for each of the five data categories: 

• What are the resource, and cost, requirements for the provision of the alternative 

adjuvant therapies? 

• What proportion of patients, receiving the respective adjuvant therapies. experience the 

defined categories of side effects? 

• What are the resource, cost and utility implications of the defined categories of side 

effects? 

• What disease-free interval (DFI) profiles are associated with alternative adjuvant 

therapies? 

• What are the resource, cost and utility implications of remaining disease-free? 

• What proportions of patients experience locoregional relapse or metastases following 

DFI? 

• What proportions of patients die without relapsing following DFI? 

• How do patients progress from the point of relapse, either locoregional or metastatic? 

• What are the resource, cost and utility implications of the defmed categories of relapse? 

4.4.2 Search-related inclusion criteria 

The study questions did not contain any description of patient characteristics because it was 

intended to collect data on all patients with breast cancer. However, detailed data on the 

characteristics of patients included in each relevant study were collected, which facilitated 

the definition of more homogeneous sub-groups within the aggregate patient population 

(see section 4.5). 
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With respect to other inclusion criteria, the preliminary search used to inform the structure 

of the preliminary model had revealed a wealth of clinical research on most aspects of 

breast cancer. It was also noted that the majority of comparative studies were randomised 

clinical trials (RCTs). Due to resource constraints on the amount of time that could be 

spent appraising possible data sources, the initial literature review was limited to papers 

published from 1992 onwards. Another justification for limiting the review was that most 

clinical trials do not simply report once, rather they report at regular intervals as the length 

of follow-up increases and more definite judgements about the results of the trial can be 

made. Also, chemotherapeutic agents have evolved over time, so that some of the drugs 

administered in trials that reported in the 1980's (meaning their protocols may have been 

specified in the 1970's) may not be considered relevant today. The reduced relevance of 

chemotherapy regimens used in past trials may relate to the actual drugs applied, the doses, 

or the frequency of administration. 

The identified RCTs provided a large amount of data covering the clinical parameters, so 

there was no reason to collect data from other primary studies of lower methodological 

quality. Therefore, searches relating to the clinical parameters were restricted to RCTs and 

reviews. Reviews were included for two reasons. Firstly, reviews present an overview of 

the general results within a clinical area so providing a source of primary studies. 

Secondly, reviews typically discuss the meaning of observed results in more detail than 

papers presenting primary results. It was hoped that such qualitative data would improve 

the understanding of the mechanisms of the disease, which could be useful during the 

analysis of the data or any revision of the model. Non-English written studies were 

excluded from the review on the basis that sufficient data to inform the required parameters 

could be accessed in the English language literature so the costs of translating foreign 

language articles could not be justified in terms of the additional data collected. Also, bias 

against negative studies by the main English language journals is less likely in a prominent 

research area such as breast cancer. 

It was recognised that limiting the literature review to mainly RCTs published from 1992 

onwards might identify insufficient data for some parameters. If necessary further searches 
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for non-RCT based studies would be made, and the search parameters could be v.idened to 

include the pre-1992 literature. 

4.4.3 The literature search 

The aim of the literature search was to identify a comprehensive selection of RCTs and 

reviews to address the study questions stated above. The search comprised both 

computerised and manual searches. A number of electronic databases were searched , 

including Medline, the Science Citation Index, the NHS database of abstracts of reviews of 

effectiveness, the Cochrane library, the NHS economic evaluation database and the Office 

of Health Economics economic evaluation database. Indexed terms were used wherever 

possible to search the different databases, though the use of the different databases was 

tailored according to the different types of parameters. For example, it was unlikely that 

new clinical data would be included in the economic evaluation databases so broad 

searches for any economic studies relating to breast cancer were undertaken. The broader 

medical databases contained studies reporting resource use, costs, utilities, as well as 

clinical parameter estimates, so more well-defined searches were used that informed 

specific elements of the model. Mariual searches of the reference lists reported in studies 

identified from the databases and of selected journals were also undertaken. Full details of 

the literature search are provided in Appendix 1. The sources included in the literature 

search have been justified previously in the collection of data for decision analysis models 

[Murphy et al, 1994]. 

The titles of all the studies identified using the specified search terms were read and the 

abstracts downloaded if they appeared to have any connection to the parameters required 

for the decision model. Relevance was defined both quantitatively and qualitatively. 

Papers were accepted if they appeared to provide quantitative data that could be combined 

with data from other papers to inform parameter values within the model. Alternatively, 

qualitative data were sought to increase understanding of the treatment area, which might 

provide insights into the progress of disease and other input parameters. 
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Following the literature search, the data extraction process involved the collection of all the 

necessary data from the identified studies. It was important that the method of extraction 

created a database that could be searched, allowing papers holding data on similar 

parameters to be identified. The papers within the database were labelled with respect to 

the type of data reported. Furthermore, it was anticipated that the analysis of the collected 

data would require extensive use of spreadsheets so the easy transfer of required data into a 

spreadsheet package was essential. The creation of an evidential database, using an 

established reference database software package [Procite 5, 1999], is described in Appendix 

2. 

4.4.4 Literature search results 

The initial Medline search resulted in the collection of 636 abstracts that were assessed for 

inclusion in the review. From the 636 abstracts, 230 full papers were defined as potentially 

relevant to the analysis. These papers were collected and read in full. Including studies 

from all sources, by the time of the final analysis a total of 343 full papers or documents 

had been reviewed. The basic results of the data extraction process are presented alongside 

the parameter categories in Figure 4.2 - the number of papers presenting data on the 

respective parameters. These results were gathered in March 2000, meaning that papers 

published after this date were not incorporated into the analysis. The most populous 

category contained clinical data on 'progression from relapse', which reflects the large 

number of clinical trials that have compared alternative therapies for patients with 

metastatic breast cancer. The next most frequently observed parameters covered data 

relating to treatment toxicities, DFI and overall survival, as clinical trials of adjuvant 

therapies tended to present data on all three issues. 
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Figure 4.2 Pro forma used to extract data from the literature review 

Autltor (01): 

Title (04): 

Journal (09): 

Date ofp1lhlication (12): 

Aims (13): 

Location of study (14): 

Time period (15): 

Study design (17): 

Study population (18): 

Vari3h1e definition (19): 

OmissioJlS in context (22): 

Com.menis (23): 

Assessors (24): 

idToxicities (25): 58 

idMeJUJpausal symptoms (26): 15 

idDisease free inienral (27): 63 

idRates of relapse (28): 24 

idTypes ofrecun-ence (29): 73 

idProgression from recun-ence (31): 99 

idOverall survival (33): 70 

co Chemotherapy (34): 21 

co 0variaJt ablation (35): 2 

co Toxicities (36): 9 

coMeJUJpausal symptoms (37): 6 

coTreatm.ent ofrecun-ence (38): 57 

quToxicities (39): 10 

quMeJUJpausal symptoms (40): 3 

quDisease free in1enral (41 ): 6 

quRecun-ence (42): 37 

quGeneral (43): 11 

co Overall Cost (44): 2 

Parameter Keywords (45): 

In the cost and resource use categories information on the 'treatment of recurrence' was 

most commonly identified. The data extracted for this set of parameters mostly described 

the range of resources associated with the different areas of treatment for metastases, i.e. 

therapies, surveillance and hospital visits. Fewer papers reported such data relating to 

chemotherapy as an adjuvant therapy for breast cancer, though more actual cost data were 

identified. Most quality of life data was again captured for the recurrence parameters, 

though this data mainly described toxicity associated with the chemotherapy regImens 

administered to patients with metastases. 

4.5 Definition ojpatient sub-groups 

An objective of the ABC decision model was to analyse sub-groups of the aggregate 

population of patients with early breast cancer, which allows the investigator to ask whether 

the response difference between two treatments depends on the type of patient [Pocock, 
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1983]. In addition, the choice of comparators within an evaluation should reflect the most 

relevant treatment options to the policy question [Drummond et aI, 1997], which do Yaf\­

according to the age and prognosis of breast cancer patients [Silva and Zurrida, 1999: 

Glick, 1991]. The following two sections describe the methods used to define relevant sub­

groups and the resulting definition of sub-groups. 

4.5.1 Methods 

Subgroups can be defined with respect to either prognostic indicators or predictor markers, 

or both. Biological prognostic indicators are used to inform a patient's survival and 

disease-free survival, whilst predictor markers forecast tumour sensitivity or resistance to 

various therapies. The most important prognostic indicator for breast cancer is the nodal 

status of a patient, which is either positive or negative. In addition, widely investigated 

breast cancer biological markers include estrogen and progesterone receptors, p53, Bcl-2, c­

erbB-2, cyclin expression, proliferative activity, DNA ploidy and the urokinase 

plasminogen activation system [Ravaioli et aI, 1998]. Estrogen receptors have been found 

to be weak prognostic indicators, but good predictors of response to endocrine therapy. 

There are consistent data suggesting that proliferation indices are good indicators of 

prognosis, and that they are directly related to response to chemotherapy and closely related 

to response to hormonotherapy. Otherwise, there is.no evidence, or conflicting data for all 

of the other biological markers [Ravaioli et aI, 1998]. In relation to menopausal status, 

postmenopausal women have been found to derive less overall benefit from chemotherapy, 

which may be related to the biology of breast cancer in older patients [Fox, 1991]. 

Another factor in the definition of patient sub-groups was the need to identify sufficient 

data to inform the parameter values within the model for each of the relevant adjuvant 

therapies for the specified sub-groups. All studies reporting relevant data were carefully 

read to identify any prognostic information reported on the patient groups included in the 

study. 
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4.5.2 Results 

The full details of the infonnation collected on patient characteristics are presented in 

Appendix 6. Eligibility criteria for the identified studies varied widely, ranging from open 

studies that might only specify that patients must be node positive [Schumacher et aL 1994; 

Fisher et aI, 1997], to strictly defined patient groups that controlled for nodaL receptor and 

menopausal status [Pritchard et aI, 1997; Cummings et aI, 1993]. Some of the open studies, 

however, presented relevant data for sub-groups of the study population [Chacon et aI, 

1997; Wood et aI, 1994]. 

Data on the following indicators were recorded - nodal status, age, menopausal status, 

number of positive nodes and estrogen and progesterone receptor (ER) status. 

Unfortunately, very few studies reported proliferative activity, so this indicator could not be 

used to differentiate patient groups. Due to the aggregated level of reporting only relatively 

broad patient groups could be defined. Nodal status (primarily node positive) was the 

most commonly defined prognostic indicator, though menopausal status was often 

distinguished. Fortunately, a number of studies combined these two indicators meaning 

that sufficient data were available to estimate parameters for two main patient groups -

node positive and postmenopausal, and node positive and premenopausal. 

Fewer studies evaluated alternative adjuvant therapies for node negative patients. 

Therefore, less strict inclusion criteria were drawn up, whereby study results were included 

in sub-groups on the basis of the proportion of patients with the relevant characteristics. 

F or example, patient groups were defined on the basis that over 800/0 of the patients were 

node negative. Some studies reported infonnation on age but not menopausal status, and 

vice versa [Gelber et aI, 1993; Fisher et al, 1996]. These characteristics are highly 

correlated, so to make the best use of the available data patient age and menopausal status 

were used in combination to define patient groups. 

In total, 29 separate patient categorisations were identified. Tables 4.1 and 4.2 present the 

number of studies satisfying the chosen patient characteristics for each defined sub-group. 

The final column - 'minimum number of studies' - describes the least number of studies 
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included in any of the three treatment categories for DFI and events ending DFI. The 

minimum number of studies is highest for groups including older node positiye patients. 

Younger node positive patients were adequately represented in trials of chemotherapy 

and/or tamoxifen+chemotherapy, but few such patients received tamoxifen alone. Even 

less choice was available for the analysis of node negative patients. A minimum of two 

trial treatment arms reported DFI for the patient categorisation '80% node negative, and 

median age over 50 years or 50% postmenopausal'. The final configuration of analyses is 

presented in Table 4.3. 

4.6 Conclusions 

This Chapter has applied methods informing the first stages of the modelling process to an 

economic HT A evaluation comparing alternative adjuvant therapies for early breast cancer. 

The stages covered included the specification of a theoretical model structure, the literature 

review to identify data to further inform the model structure and to populate the model, and 

the process of identifying relevant patient sub-groups. 

To create an initial model structure information was sought from three distinct sources; 

consultations with oncology clinicians, a preparatory review of the literature, and the 

Internet. The use of these three sources was deemed necessary to ensure that a balanced 

view of the relevant events was obtained. The theoretical model highlighted five distinct 

categories within the model, which were used to inform the subsequent literature review. 

Separate literature reviews were undertaken for a range of study questions that were 

derived from the five parameter categories: adjuvant therapies; treatment side effects; 

timing of relapse or death; types of relapse; and progression from relapse. Strict inclusion 

criteria were defined due to the anticipated volume of data, though it was recognised that 

the review might be expanded if insufficient data were identified. The subsequent data 

analysis revealed areas where the review needed to be expanded, this is reported in Chapter 

5. The explicit formulation of search-related inclusion criteria is important to avoid 

accusations of bias in the data collection process. 
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The definition of relevant patient sub-groups was necessary because data were collected on 

the whole population of patients with early breast cancer, which incorporates a \vide range 

of prognoses. Possible foundations for the grouping of patients were discussed, and 

reasons provided for the final sub-classifications. The precision in the definition of sub­

groups should be balanced against the availability of data, as demonstrated by the sub­

group definitions for node-positive and node-negative patients. 

The reVIew of the modelling process presented in Chapter 3 could not provide a 

prescriptive methodology for all such evaluations as elements of the process are influenced 

by the characteristics of the treatment area being evaluated. This Chapter has illustrated the 

application of the first stages of the methodology and how choices specific to the treatment 

area can be made. 
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I able 4. J ~ umber 01 stuales satlstylng nineteen alternative categorisations lor noae positive patients, oy aOJuvant ~ 
therapies 

Patient categories Disease free interval Clinical events ending OFI Minimum 

Tamoxifen Chemotherapy T +C Tamoxifen Chemotherapy T +C number of 
studies 

100% node positive 7 64 11 6 38 10 6 
80% node positive 7 66 11 7 41 10 7 
100% node positive, and 100% postmenopausal 6 16 5 5 3 I 

100% node positive, and 100% premenopausal 0 30 4 0 10 4 0 
100% node positive, and median age over 50 years or 50% 7 32 6 6 17 5 5 
postmenopausal 
100% node positive, and median age over 55 years or 55% 7 25 6 6 10 5 5 
postmenopausal 
80% node positive, 60% postmenopausal 6 17 5 6 6 3 3 
100% node positive, and median age under 50 years or 50% 0 40 5 0 25 5 0 
premenopausal 
80% node positive, and median age under 50 years or 50% 0 40 5 0 25 5 0 
premenopausal 
80% node positive, and median age over 50 years or 50% 7 32 6 7 20 5 5 
postmenopausal 
100% node positive, 70% postmenopausal, and 50% 1-3+nodes 4 10 3 4 3 
100% node positive, 50% 1-3 positive nodes, and median age 0 30 5 0 20 5 0 
under 50 years or 50% premenopausal 
100% node positive, 50% 1-3 positive nodes, and median age 5 14 4 5 5 5 4 
over 55 
100% node positive, 60% ER positive, and 60% postmenopausal 3 9 3 3 3 1 
80% node positive, 60% ER positive, and median age under 50 0 19 5 0 12 4 0 
years or 50% premenopausal 
80% node positive, 90% ER positive, and 70% postmenopausal 3 2 3 2 

80% node positive, 60% ER positive, and 50% 1-3 positive nodes 3 22 8 3 I I 8 3 
80% node positive, 60% ER positive, 50% 1-3 positive nodes, 0 14 5 0 10 4 0 

and median age under 50 years or 50% premenopausal 
80% node positive, 60% ER positive, 50% \-3 positive nodes, 3 9 3 3 2 4 2 
and median age over 50 years or 50% postmenopausal 
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Table 4.2 Number of studies satisfying nine alternative categorisations for node negative patients, by adjuvant therapies ~ 
Patient categories Disease free interval Clinical events ending DFI Minimum 

Tamoxifen Chemotherapy T +C Tamoxifen Chemotherapy T +C number of 
studies 

100% node negative 7 5 2 5 3 2 2 
80% node negative 7 5 2 5 3 3 2 
100% node negative, and 100% postmenopausal 2 0 0 2 0 0 0 
100% node negative, and 100% premenopausal I 0 0 I 0 0 0 
100% node negative, and median age under 50 years or 50% 2 3 0 3 0 0 
premenopausal 
80% node negative, and median age over 50 years or 50% 5 2 2 4 0 3 0 
postmenopausal 
80% node negative, and median age under 50 years or 50% 2 3 0 3 0 0 
premenopausal 
80% node negative, and 70% postmenopausal 3 0 0 3 0 0 0 
80% node negative, and 60% tumour grade 1 2 0 2 2 0 2 0 
80% node negative, and 45% age under 50 1 2 2 0 2 2 0 
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Table 4.3 Patient categorisations used for the analysis of the four generally 
defined patient groups 

General patient group 
Younger (premenopausal) 
node positive 
Older (postmenopausal) 
node positive 

Younger (premenopausal) 
node negative 

Older (postmenopausal) 
node negative 

Patient categorisation 
100% node positive, and 100% 
premenopausal 
'100% node positive, and 100% 
postmenopausal' and '100% node 
positive, median age over 55 years' 
100% node negative, and median age 
under 50 years or 50% 
premenopausal (80% node negative, 
and 45% age under 50, for 
tamoxifen+chemotherapy) 
'80% node negative, and median age 
over 50 years or 50% 
postmenopausal' 

Adjuvant therapies analysed 
Chemotherapy and 
tamoxifen+chemotherapy 
Tamoxifen, chemotherapy, 
and 
tamoxifen+chemotherapy 
Tamoxifen, chemotherapy, 
and 
tamoxifen+chemotherapy 

Tamoxifen, chemotherapy, 
and 
tamoxifen+chemotherapy 
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Chapter 5 Case study: analysing the literature review data 

5.1 Introduction 

At this stage in the modelling process, data to populate the decision model have been 

extracted from the literature, which must now be assembled into probability distributions to 

represent the uncertainty about the true values of the model's input parameters. The first 

task addressed, however, is the reappraisal of the preliminary model structure, which may 

be altered due to an improved understanding of the treatment area, or to better facilitate the 

format of the identified data. The following sections present the hannonisation of the 

identified data, and the quantitative analysis of the data to specify representative probability 

distributions. 

The hannonisation of the data makes explicit assumptions about data presented by different 

studies with respect to the definition of relevant events, and attempts to revise the results of 

outlying studies to a common definition. As discussed in Chapter 3, there are various 

approaches to the definition of input distributions. The applied options involved the 

creation of weighted datasets (that were inputted directly into the model, or used to fit 

probability distributions using statistical fitting software) and the specification of 

theoretical distribution types for different categories of parameters. The bootstrapping 

option was not applied to the case study evaluation because it is more suited to decision 

modelling studies based on patient-level data. 
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The application of the modelling process to the full range of sub-groups defined within the 

aggregate early breast cancer popUlation is not feasible due to space restrictions. From this 

point onwards, therefore, the presentation of the case study evaluation is limited to a 

comparison of chemotherapy and tamoxifen versus tamoxifen alone in node-positive, 

postmenopausal women with early breast cancer. In addition, this Chapter concentrates on 

the methodological aspects of analysing the literature review data, presenting the 

reappraisal of the theoretical model, the harmonisation, and the definition of the probability 

distributions in three separate sections. To avoid overburdening the reader. details of the 

data and the presentation of the resulting distributions have not been included in this 

Chapter. Full details are provided in Appendix 7. 

5.2 Reappraisal of the theoretical model 

The process of reappraising the preliminary model structure is presented in two sections, 

describing the representation of treatment side effects and the depiction of events associated 

with the experience of relapsing and dying. The amended model structure is presented in 

Figure 5.1. 

5.2.1 Reappraisal oj the treatment side effects categories 

The range of side effects associated with chemotherapy is huge, and the categorisation of 

the toxicities into a limited number of groups was a particularly difficult task. The 

theoretical model had specified four categories based on increasing orders of severity, with 

the most severe category representing fatalities. At the point of reappraisal, it became clear 

that the inclusion of a separate fatality category would cause problems for the estimation of 

the length of disease free interval (DFI) because the fatalities due to treatment side effects 

were included in the aggregate DFI survival curves. The number of toxicity categories was 

reduced to three. In addition, the basis for the category definitions was altered to reflect the 

presentation of toxicity data in the published literature. The theoretical model had specified 

alternative categories on the basis of differential resource use, whilst the literature tended to 

define side effects as major toxic events (primarily cerebrovascular events) and graded 
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toxicities, differentiating between grades 1 or 2, and grades 3 or 4. The identified data also 

specified that patients could experience multiple categories of side effects simultaneously. 

5.2.2 Reappraisal o/the relapse categories 

The most radical change to the model structure concerned the representation of 

locoregional relapses. The theoretical model had defined a locoregional relapse as operable 

or inoperable. Unfortunately, few data were identified describing the respective pathways 

of these two patient groups. An alternative structure was informed by the format of the 

data presented in the literature. Most studies reporting on the prognosis of patients 

experiencing a locoregional relapse presented survival curves illustrating the proportion of 

patients remaining in remission from the point of diagnosis with locoregional relapse. The 

revised model structure assumed, therefore, that all locoregional relapses were controlled, 

and all patients entered the health state 'remission', even if the period of control was 

instantaneous. The events following a locoregional relapse could then be described in the 

same way as the events following DFI, though no allowance was made for the experience 

of a second locoregional relapse. From the point of dissemination, the progression scenario 

switched to the relevant site of distant relapse. For the proportion of patients who do not 

progress to metastases, it was reported that survival did not differ from that of the general 

population [Willner et aI, 1997]. 

It has been shown that progress from distant relapse is related to the site of metastases 

[Clark et aI, 1987]. The most common distinction made in the literature separated visceral, 

bone and soft tissue sites. The model was again restructured to represent three sites of 

metastases, rather than the original distinction between bone and non-bone sites. It was 

also noted from the literature review that patients could experience metastases at two or 

more sites simultaneously, though additional states describing double sites of relapse were 

not included as few data described progression from multiple sites of relapse. In addition to 

survival data, events such as remission, stability and progression of the disease were 

investigated as well as the use of second- and third-line therapies, though few data other 

than survival data were identified. Due to the lack of data and the relatively short survival 
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time from metastases, the original representation of patients progressing only to death from 

diagnosis with metastases was maintained. 

Figure 5.1 Reappraised structure of the ABC model 

metastases 

5.3 Harmonising the data 

The process of harmonising the data was only required for some of the clinical parameters 

included in the model. The following sections illustrate some of the available methods that 

can be used to increase the comparability of identified data describing treatment side 

effects, DFI and events ending DFI, and progression from the point of relapse. 

5.3.1 Treatment side effects 

The decision model only describes the effect of toxicity in the DFI state because side 

effects associated with the treatment of a relapse were incorporated within a general 

description of those states. The analysis of treatment side effects did not distinguish 

between different patient groups, rather data were sought on the toxicity caused by 

alternative combinations of chemotherapeutic agents, with tamoxifen, as well as by 

tamoxifen alone. The amalgamation of all patient groups for the analysis of toxicity 

increased the available data substantially. 
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The analysis of the treatment side effects involved three main issues. Firstly, the aggregate 

proportions of patients experiencing each class of toxicity were required. Secondly, for the 

purpose of costing information was needed on the types of conditions, and the frequency of 

their occurrence, within each of the toxicity categories. Finally, compliance with the 

adjuvant therapies is connected to the experience of toxicity. The areas in which action was 

required to hannonise these data are described below. 

In the estimation of aggregate incidence of the graded toxicity categories the majority of 

studies used the WHO classification index, although a couple of studies referred to less 

well-known indices, for example, the South West Oncology Group grading [Budd et al, 

1995; Rivkin et aI, 1996], or the ECOG index [Tormey et al, 1992]. No major differences 

between the grading systems were identified and they were analysed simultaneously with 

no adjustments. Aggregate data were reported for grade 3 or 4 toxicity, in particular, 

enabling an accurate estimate of the proportion of patients experiencing these grades of 

toxicity. Unfortunately, the grade 1 or 2 toxicity category mostly reported the proportions 

of patients experiencing the constituent conditions within the aggregate category. Although 

tending towards an underestimate, the proportions of patients experiencing the most 

common condition within the relevant category were taken as minimum estimates of the 

aggregate proportion. 

Due to the number of conditions that were reported in the published literature the analysis 

of the type and frequency of events was difficult. In studies where specific conditions were 

not reported, that condition was assumed not to have occurred, i.e. to have a zero 

proportion. To prevent distortion due to limited reporting of toxicity conditions, studies 

reporting less than four toxicity conditions were excluded from the composition analysis. 

Ten studies were identified that provided quantitative data on patient compliance with 

chemotherapy. However, four broad methods for presenting such data were established. 

Four studies presented the proportion of patients completing the specified cycles of 

chemotherapy [Scottish cancer trials breast group, 1993; Velez-Garcia et aI, 1992; Zambetti 

et aI, 1992; International breast cancer study group, 1996], and two studies each used the 
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following methods: the proportion completing cumulative cycles [Schumacher et al, 1994: 

Coombes et aI, 1996], the proportion of individual components of the chemotherapy 

regimen completed [Misset et aI, 1996; Marini et aI, 1996], and the cumulative percentages 

of protocol dose completed [Fisher et aI, 1996; Marini et aI, 1996]. The clearest data 

covered the proportion of patients completing cumulative cycles of chemotherapy and this 

data was included in the analysis. 

5.3.2 Disease free interval (DFI) and clinical events ending disease free interval 

DFI describes the period following primary treatment of early breast cancer until the 

experience of a relapse or death with no evidence of disease (DNED). The length of DFI 

and the events ending DFI are possibly the most important in terms of the relative 

effectiveness of alternative therapies, but they are assessed jointly because of their natural 

connection. Indeed, the majority of studies used to inform DFI also provided data on the 

clinical events, and the issues around the harmonisation of both categories are similar. 

Two discrepancies were found in the inclusion criteria for DFI. Firstly, most studies 

included DNED as ending DFI, though a few studies analysed such deaths as censored 

events [Eckman et al, 1998; Ve1ez-Garcia et aI, 1992; Gundersen et aI, 1995]. If DNED 

data were not reported for a particular study the proportion of cases of DNED from a study 

with similar patient characteristics and adjuvant therapies was used as a proxy, which was 

added to the annual proportions of patients ending DFI. 

Disparity was also noted in the reporting of second primary tumours. All studies providing 

data on the length of DFI were reviewed to ascertain whether second primaries had been 

included. Forty-seven studies provided useful data on the annual proportions ending DFI, 

of which 25 definitely did not include second primary tumours as an endpoint for DFL and 

12 definitely did include second primaries. Of the remaining 10 studies, six appeared likely 

to exclude second primaries, two appeared likely to include such events, and two gave no 

indication. The early breast cancer trialists excluded second primaries from the analysis of 

DFI. Taking this approach as a lead, second primaries were excluded from the annual 
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proportions of patients ending DFI in all the inclusive studies. Thus, second primaries, as a 

proportion of events ending DFI, were subtracted from the annual proportions ending DFI 

in studies that included such events. 

Ipsilateral breast tumour relapses were also excluded because they can only occur after 

breast conserving surgery, and their prognosis is considerably better than other local 

relapses following mastectomy [Harrold et aI, 1998]. Thus, in studies where breast 

conservation was an eligible option, the proportion of relapses that were in the ipsilateral 

breast was subtracted from the annual proportions of patients ending DFI. In studies not 

reporting the proportion of such relapses, the proportion reported in similar studies, with 

respect to treatment and the proportion of patients receiving breast conserving surgery, was 

substituted. Some studies included patients receiving breast conserving surgery, but did not 

state the proportion. In such studies it was assumed that five per cent of relapses were in 

the ipsilateral breast - an intermediate figure derived from all studies reporting ipsilateral 

relapses. 

As the model did not describe the experience of multiple sites of metastases, harmonisation 

was also required for studies that reported the proportion of patients with different sites of 

metastases, but which included patients experiencing multiple sites of relapse. Visceral 

metastases was documented as being the most severe form of metastases, so the reported 

proportions of visceral metastases were not amended. However, the proportion of bone and 

soft tissue relapses were re-estimated using formulae 5.1 and 5.2, respectively: 

pr(bone) = [bone /(bone + softtissue )]x [1- visceral] (5.1) 

pr(softtissue) = [softtissue /(bone + softtissue )]x [1- visceral] (5.2) 

5.3.3 Progress from relapse 

Patient pathways following the diagnosis of a relapse were analysed separately for 

locoregional relapses and metastases. Within the locoregional category, the only 

divergence between the identified studies related to the assumption made in the models that 
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patients could not experience a second locoregional relapse. Such events are rare, but it 

was still necessary to ensure that the data reported by the identified studies described the 

time to the experience of metastases or death. The only data required from the point of 

diagnosis with metastases were survival times and no areas of harmonisation were 

identified for these data. 

5.4 Pooling and formatting the data 

Quantitative analysis was required to pool and format the identified data for all the 

parameters included in the model. The following sections describe the issues arising in the 

analysis undertaken for the different types of clinical parameters, resource use and cost 

parameters, and utility values. 

5.4.1 Treatment side effects 

Probability distributions were described for the proportion of patients experiencing each of 

the three categories of toxicity. Distributions were not assembled for the data on the type 

and frequency of events because such detail would increase the complexity of the model 

programming, but also because specifying distributions around the cost estimates could 

represent such uncertainty. The methods applied to create the alternative forms of 

probability distributions are described below. 

The first two methods - empirical distributions and fitted distributions - are based on the 

creation of weighted datasets. As all the identified data on toxicity were collected from 

clinical trials meta-analytic methods for weighting the data could be employed. The 

analysis was based on the fixed effects model as strict definitions of toxicity had been 

specified, so only limited heterogeneity between the identified studies was assumed. The 

data from each identified study was weighted using formula 5.3. 

(5.3) 
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Where Pi is the proportion experiencing a particular category of toxicity and ni is the 

sample included in the study (see Appendix 3). After weighting the individual 

observations, a weighted dataset of 100 observations was created by dividing each weight 

by the sum of the weights and multiplying by 100 (value = Xi). The dataset comprised Xi 

copies of each parameter observation i (see section 3.4.3.2). The reSUlting datasets were 

inputted directly into the models as one form of representing the uncertainty in the values 

of the toxicity parameters, and they were also used to fit probability distributions. The 

fitted distributions were defined by inputting the datasets into statistical fitting software 

[Stat::Fit, 1996]. The software calculated goodness-of-fit statistics for each defined 

probability distribution so the best-fitting distribution could be selected. 

The theoretically defined probability distribution assigned for proportion parameters is the 

beta distribution. Estimating the beta distribution parameters (a and P) did not require the 

creation of a weighted dataset as a and p are related to the number of events experienced (x) 

and the total number of patients (n) [Iverson, 1984]: a = X and f3 = n - x (see Appendix 5). 

5.4.2 Disease free interval and clinical events ending disease free interval 

The DFI data were collected from survival curves presented as the results of clinical trials. 

Though a couple of authors were contacted for assistance in deciphering the data presented 

in unclear figures, or figures presented on a log scale, the majority of data were read 

directly off the printed page. The data initially assembled were the annual proportions of 

patients in the original cohort (in year 0) leaving DFI, which required transforming to the 

proportion of patients remaining event free at the beginning of a particular year 

experiencing an event during that year. Formula 5.4 was used to transform the data (see 

Appendix 4). Separate datasets describing the proportions of patients leaving the state DFI 

were created for each year following primary treatment. The weighted datasets and the 

theoretical distributions were specified using the same methods as for the treatment side 

effects data described in the previous section. 
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prevent / .. h] P[ event / originalcohort]. remaznzngco ort . = I 

I P[remaining /originalcohortl 
(5.4) 

Some of the data describing the types of events ending DFI were collected from 

retrospective observational studies [Goldhirsch et aI, 1994; Kamby et ai, 1987]. No attempt 

was made to weight the evidence according to the type of study and such data were 

analysed on the same level as the clinical trial data. Both sources provided the respectiYe 

sample sizes so the weighted datasets and the beta distributions were estimated as described 

above. 

5.4.3 Progression from relapse 

The quantitative analyses of the data describing progression from the two main forms of 

relapse - locoregional and metastases - are presented in this section. The majority of the 

identified data describing the time in remission following a locoregional relapse were in the 

form of survival curves. The DES model recorded the time at which individual patients 

entered the locoregional state and the separate probabilities of leaving the state in 

subsequent time periods could be applied individually to each patient. Thus, the data were 

analysed in a similar manner to the data for the length of DFI, as described above. The 

Markovian assumption precluded the use of differential annual probabilities of remaining in 

the remission state. Time in remission was described as a constant probability of 

experiencing a further relapse. 

The definition of the input distributions describing the length of remission in a DES model 

was identical to the definition of the input distributions for the length of DFI. Weighted 

datasets were created for each year following the treatment of a 10coregionaI relapse, which 

were used directly within the model, as well fitted to probability distributions using 

statistical fitting software. Alternatively, using theoretically defined beta distributions the 

numbers of patients experiencing, and not experiencing, a relapse in each year informed the 

relevant distribution parameters. Only a single input distribution was required to describe 

the remission data in the Markov model. In the initial quantitative analysis the reported 
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median times In remISSIOn were weighted according to the sample included in the 

respective studies and a weighted dataset created. This data was inputted directly into the 

model, as well as to fit probability distributions. The dataset was also used to estimate a 

mean and a standard deviation for a theoretically defined gamma distribution of the median 

time spent in remission. During the process of validation, however, it became apparent that 

the patient-level distribution of time in remission was heavily skewed and median estimates 

were underestimating the mean length of remission (see section 7.3). Using the presented 

survival curves representing time in remission, the mean remission periods were estimated 

on the basis of a common cut-off length of remission for those patients remaining III 

remission at the end of each studies follow-up (see section 9.2 for a full discussion). 

Very few studies presented survival from metastases in the form of survival curves. As the 

survival period is relatively short most studies simply reported the median survival (usually 

in months). The use of median times, rather than annual proportions or rates, simplified the 

analysis. Three options for the analysis of the data on the progression from each of the 

three separate sites of metastases were possible, which would use differing amounts of the 

available data: 

• create weighted datasets using studies presenting separate data for individual metastases 

categories; 

• create weighted datasets using studies in which a single metastatic site is dominant in 

over 50% of patients; 

• regress survival on three explanatory variables, defined as the proportions of patients 

with soft tissue, bone, and visceral metastases in each identified study (observation). 

The available data were mostly taken from clinical trials of alternative therapies for 

metastatic cancer, of which there was a reasonable amount. 113 separate treatment arms 

were identified, 68 of which presented an aggregate survival estimate and details of the 

component proportions of the different metastatic sites. The remaining treatment arms 

reported survival estimates for individual sites - 11 soft tissue, 15 bone and 19 visceral. 

All three quantitative options were explored. Only poorly fitting regression models could 

be specified and as a reasonable amount of data describing survival from the separate 
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metastatic sites were identified, their use was preferred to the data including combinations 

of all sites of metastases. A number of studies also presented data on metastatic survival 

differentiating with respect to nodal status [Koenders et aI, 1992; Venturini et aI, 1996]ER 

status receptor [Koenders et aI, 1992; Vogel et aI, 1992; Alonso et aI, 1995; Venturini et at 

1996], PgR receptor status [Koenders et aI, 1992], menopausal status [Venturini et aI, 

1996], and the administration of prior adjuvant therapies [de Takats et aI, 1993: Venturini et 

aI, 1996]. These data were used to estimate a survival multiplier for alternative patients 

groups. 

Each estimate of survival was weighted by the corresponding sample size and three 

weighted datasets were created. The datasets were used directly, to fit distributions using 

statistical fitting software, and to define the mean and standard deviation for the 

theoretically specified gamma distributions. 

Though the model structure did not record events following the development of metastases 

explicitly, the time to progression (TTP) for the alternative sites and therapies were 

recorded in order to estimate monthly costs for the metastases states (see section 5.4.4.4). 

Fewer trials presented data on the TTP; such data were available for only 2 of the 19 

treatment arms presenting specific data on survival from visceral metastases. The 

regression models were again poorly specified and so weighted datasets were created using 

data from studies in which a single metastatic site was dominant in over 50% of patients. 

The input distributions were defined in a similar manner to the survival data. 

5.4.4 Cost parameters 

The following sections describe the sources for the estimates of the cost parameters, as well 

as the methods for specifying input distributions around the baseline point estimates. The 

collection of data to inform the cost parameters would ideally identify UK-based estimates 

of the resources used to treat patients experiencing each of the events described in the 

model and then attach current unit costs to the recorded resource use. Unfortunately, such 

ideal data is rarely available and a pragmatic approach is required. For the case study 
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evaluation, alternative approaches were adopted for the different parameter categories 

depending on the data available. Priority was given to data describing disaggregated 

resource use rather than aggregate cost estimates because current unit costs could be 

attached to the former. If only aggregate cost estimates were available they were uprated to 

year 2000 prices using the health services pay and prices index. UK -based studies were 

preferred to foreign studies, though when there was no alternative the estimates proyided by 

foreign studies were converted to UK prices using the health services purchasing power 

parity index for the year in which the data were recorded (and then uprated to year 2000 

prices using the health services pay and prices index). The data are presented in four 

categories covering adjuvant therapies, surveillance, treatment side effects, and relapses. 

Details of the costing are provided in Appendix 7. 

5.4.4.1 Costs of adjuvant therapies 

The cost of chemotherapy is an integral parameter in the model and a wide search for 

alternative estimates of the cost of a cycle was undertaken. Six cost estimates were 

calculated by combining costs for the three resource elements of a cycle of chemotherapy -

drugs, health professional's time, and outpatient visits. The latter two elements were varied 

according to alternative estimates in the literature [Lober et ai, 1988; Lokich et aI, 1996], 

and on the basis of discussion with clinicians involved in the ABC trial. Published 

estimates of the aggregate cost of the two most commonly administered chemotherapy 

regimens, CMF and CAF [Silva and Zurrida, 1999], as well as the aggregate cost of a cycle 

of chemotherapy from the NHS reference costs were obtained [The new NHS - 1998 

Reference Costs, 1998]. An estimate of the aggregate cost of chemotherapy was also 

obtained from an individual NHS Trust hospital to represent the lowest end of the scale. 

The associated costs are presented in Table 5.1. 

The data sources for the cost of a cycle of chemotherapy provided no objective measure of 

variability that could be used to weight the separate estimates. Subjective weights were 

defined with respect to the perceived relevance of each estimate to the intended audience 

for the evaluation. To specify a probability distribution of chemotherapy costs the ten 
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individual estimates were ranked according to their relevance. as judged by their source. 

The costs were then inversely weighted according to their rank, so that the highest-ranking 

cost had a weight ten times that of the lowest ranked cost. This process is presented in 

Table 5.1. 

Table 5.1 Separate cost estimates for a cycle of chemotherapy, and associated 
rankings and weights 

Method Source 
Separate CMF, baseline (see Appendix 7) 

CAF, baseline (see Appendix 7) 
CMF, baseline (I clinic visit) 
CMF, health professionals time costs l 

CMF, health professionals time costs2 

CAF, health professionals time costs2 

Aggregate NHS reference cost (HRG v.3) 
E Anglia Trust cost 
CMF3 

CAF3 

Rank 
1 
2 
3 
6 
7 
8 
4 
5 
9 
10 

Weight 
10 
9 
8 
5 
4 
3 
7 
6 
2 
1 

Cost 
284.94 
226.65 
198.59 
141.86 
700.46 
467.60 
269 
67 
596 
648 

All costs uprated to year 2000 prices, foreign costs exchanged using health services purchasing power parity index 

1 [Lober et ai, 1988], 2 [Lokich et ai, 1996], 3 [Silva and Zurrida, 1999] 

Each cost estimate was replicated according to its weight and the resulting collection of 

estimates was then assembled as a dataset. The weighted dataset was used directly in the 

models, but also to fit probability distributions. Because cost distributions cannot include 

values less than zero, only four distributions were tested as feasible distribution types for all 

the cost distributions: lognormal, gamma, weibull and beta distributions. A gamma 

distribution had been specified as the theoretical distribution for cost parameters and the 

mean and standard deviation from the weighted dataset were used to solve for the 

distribution parameters (see Appendix 5). 

5.4.4.2 Costs of surveillance 

Surveillance is an ongoing component of the health care that breast cancer patients receive, 

but it is not constant. Separate estimates of the cost of monitoring patients were established 

for the first year following primary surgery, subsequent years in the state DFI, and from the 

point of diagnosis with metastases. 
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Estimates of the cost of surveillance following pnmary surgery were derived from a 

representative selection of published follow-up procedures in clinical trials. During DFI. 

the intensity of surveillance following primary surgery is known to be higher than in 

subsequent years. The period of increased surveillance seems to range between 9 months 

and 3 years [Arriagada et aI, 1992; Bonadonna et aI, 1995]. As the surveillance procedures 

reported by clinical trials are generally more intensive than normal practice, the intensity of 

surveillance was assumed to decrease after the first year. In order to estimate a range of 

costs three alternative surveillance procedures, each incorporating two levels of the 

intensity of follow-up, reported by separate clinical trials were itemised and costed. The 

main cost driver appeared to be the number of breast clinic visits so five alternative unit 

costs for outpatientlbreast clinic visits were also included. In total, 15 estimates of the cost 

of surveillance for both the first year and subsequent years were established. 

No data reporting surveillance of patients following locoregional relaspe were identified so 

patients in remission were assumed to have similar levels of health service contacts to 

patients in their first year of DFI. To inform follow-up after metastases a UK-based 

observational study comparing two options for the surveillance of patients with metastatic 

breast cancer was identified. The options comprised UICC assessment and Serum marker 

assessment, each method was costed twice, reflecting an intensive and a less intensive form 

of surveillance [Robertson et aI, 1995]. Given the' relevance of the identified study no 

further exploration of this cost parameter was undertaken. 

To create a weighted dataset for the costs of surveillance during DFI the ranking method of 

weighting the estimates described in the previous section for the costs of chemotherapy was 

employed. The lowest level of intensity was chosen as the highest ranked pattern of 

follow-up, though no rank difference was employed between the respective costs. This 

weighting structure was chosen because surveillance reported in clinical trials is likely be 

higher than in normal practice, also Liberati has investigated the impact on survival of 

different intensities of follow-up schedules and detected no difference [Liberati, 1995]. 

The four estimates for the cost of surveillance for patients with metastases were assigned 
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equal weights as there were no grounds for increased confidence III one estimate oyer 

another. 

The three methods for assigning input distributions were derived from the \yeighted 

datasets using the data directly, inputting into statistical fitting software and estimating the 

mean and standard deviation to calculate the parameters for a gamma distribution. 

5.4.4.3 Costs of toxicity 

To inform the associated cost values, it was necessary to describe the events experienced in 

each of the toxicity categories. A list of possible events experienced within each category 

of toxicity was established, and the proportion of patients experiencing each event was 

estimated from the literature (see section 5.3.1). The baseline cost of treatment for the three 

main categories - major, grade 3 or 4, and grade 1 or 2 - comprised a weighted cost of the 

different conditions experienced. 

The events described in the major toxicity category were all well defined conditions that 

have been the subject of economic evaluations in their own right, such as thromboembolic 

and cerebrovascular events. The costs associated with treatment for such conditions were 

derived from published economic evaluations [Lloyd et al, 1997; Holloway et aI, 1996]. 

Within the grade 1 or 2, and 3 or 4, categories of toxicity, up to twelve separate conditions 

were identified. To reduce the complexity, only conditions experienced by more than ten 

per cent of patients were costed. Very little information was available from the literature 

review on the cost of treating these less serious forms of toxicity so the treatment of each 

condition, at the relevant level of toxicity was discussed with a team of health professionals 

(clinicians and nurses) involved with the ABC trial. Costs were then attached to the 

resources specified by the team to calculate a baseline cost for each condition. 

Due to the lack of data describing the costs of toxicity minimum and maximum costs w"ere 

estimated as 50% and 150% of the baseline costs for each category of toxicity. Given a 

baseline estimate and a minimum and a maximum value, the statistical fitting software 
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estimated a triangular distribution for each level of toxicity. The triangular distributions 

also represented the empirical estimates of the costs of toxicity as only one real cost 

estimate was available for each form of toxicity. To inform the theoretically defined 

gamma distribution, the baseline estimate was defined as the mean and the standard 

deviation estimated to be one quarter of the range. 

5.4.4.4 Costs of relapse 

Few quantitative data were identified to cost the time spent in relapse states. It was evident 

that the quantitative data alone were insufficient, so the cost estimates were derived from a 

combination of quantitative and qualitative data. Differential costs were estimated for each 

of the four sites of relapse included in the structure of the model - locoregional, soft tissue, 

bone, and visceral. 

The treatment for locoregional relapse was included as a one-off cost because patients were 

assumed to move from the state 'locoregional relapse' to 'remission' after one month, 

though parts of the treatment, such as the administration of chemotherapy and radiotherapy, 

may continue for a number of months. Using the available qualitative data the treatment of 

locoregional relapse was costed as a single event requiring surgery to remove the returning 

tumour, followed by radiotherapy and chemotherapy. The cost of surgery was obtained 

from the National Schedule of Reference Costs [The new NHS - 1998 Reference Costs, 

1998]. In addition to the mean value, the minimum and maximum costs of 'Intermediate 

Breast Surgery' from all NHS Trusts were used to define a range of values for the costs of 

surgery. Little variation was found around the cost of a fraction of radiotherapy [Read, 

1994], but the number of fractions undertaken appeared to be more uncertain. Different 

estimates of the number of fractions were taken from the literature to inform a range 

[Aberzik et al, 1986; Toonkel et aI, 1983]. The cost of chemotherapy following 

locoregional relapse was described using the same estimates and distributions derived for 

the cost of adjuvant chemotherapy. 
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U sing the defined ranges and the mean values for the cost of surgery and the number of 

fractions of radiotherapy, triangular distributions were specified by the statistical fitting 

software. The three elements of locoregional treatment were each assigned distributions 

that were incorporated in the models and the aggregate cost of treating locoregional relapse 

was estimated within the model. 

For the model analysed using theoretical distributions a distribution of aggregate costs was 

established. To establish a dataset of costs a Monte Carlo simulation was undertaken. The 

distribution describing the number of fractions of radiotherapy was linked to the cost of 

radiotherapy, which was linked to the distributions describing the costs of surgery and 

chemotherapy. F or each simulation a value from each distribution was sampled and an 

aggregate cost of the treatment of loco regional relapse estimated. From a total of 1,000 

simulations a mean and standard deviation were estimated to inform the parameters of the 

theoretically defined gamma distribution. 

The cost of treating patients with metastases varies considerably over time. Several studies 

have remarked on the moving profile of resource use over the period of relapse [Hurley et 

aI, 1992; Will et aI, 1998; Baker et aI, 1991; Koopmanschap et aI, 1992], with the final 

three to six months of life being the duration of expensive terminal care, whilst the initial 

three months are also relatively resource intensive. However, the model did not 

differentiate between the different stages of metastases because more data were available 

that informed aggregate costs of treatment for metastases. Protocols were again developed 

from the literature to estimate separate monthly costs for the treatment of the metastases 

with respect to systemic therapies, local treatment, and inpatient episodes. 

The appropriate systemic therapeutic strategy for individual patients is influenced by a 

number of characteristics, including the extent of disease, DFI, ER status and age 

[Hortobagyi, 1998]. Treatment for both soft tissue and bone metastases was differentiated 

with respect to good and bad prognoses using the only available prognostic indicator - the 

length ofDFI (good DFI>2years, bad DFI<=2 years). There was a general consensus in the 

literature on the ordering of different types of therapy for metastases, with respect to the use 
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of honnonal therapy and chemotherapy. The two schemas' presented in Figure 5.2 

illustrate a similar choice of therapies for alternative patient characteristics [Coleman and 

Rubens, 1987; Leonard et aI, 1994]. 

Figure 5.2a Schema for the treatment of metastases[Coleman and Rubens, 1987] 

non-aggressive disease agressive visceral disease 
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~ 
endocrine therapy 
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1 
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Figure 5.2b Schema for the treatment of metastases[Leonard et ai, 1994] 
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The second element of resource use in treating metastases included all local treatment. The 

treatment for the local conditions associated with the alternative metastatic sites were 

mostly drug therapies and the costs were taken from the British National Fonnulary, the 

cost of radiotherapy had been estimated previously. The types of treatment administered to 
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patients experiencing the different forms of metastases, and their frequency, were informed 

by various studies identified during the literature review. The final resource category 

included all contacts with hospital services, from outpatient visits for monitoring to 

inpatient admissions, which were informed by one quantitative study that differentiated 

between the types of relapse with respect to hospital contacts [Hurley et al, 1992]. Data 

from English Trust returns including 55 Trusts were used to estimate the mean cost per 

patient day in medical oncology specialities and per outpatient visit. 

The estimation of the monthly costs associated with each of the three metastatic sites 

comprised the aggregation of the various components - systemic therapies, local 

treatments, hospital contacts and surveillance. The monthly cost of systemic therapies was 

calculated on the basis of mean TTP and survival. Using the presented schema's for the 

progression of systemic therapy patients received their appropriate therapy until disease 

progression, at which point they would receive the next appropriate form of therapy. The 

addition of therapies continued until death, or until patients received two full courses of 

chemotherapy. The total cost was divided by the months of survival to estimate a monthly 

cost. Table 5.2 provides an example of the calculation of the cost of systemic therapies. 

Table 5.2 An example of the calculation of the costs of systemic therapies for 
patients experiencing bone metastases, with a DFI of 22 months 

Month Therapy Cost per month Total cost 
0-7.4 Anastrozole 83.16 615.38 
Response to anastrozole: 
7.5 - 14.9 Megace 29.30 216.82 
15 -22 Chemotherapy* 285.00 1710.00 
Cost per month 115.55 
Non-response to anastrozole 
7.5 - 15.7 Chemotherapy * 285.00 1710.00 
15.8 - 22 Chemotherapy* 285.00 1710.00 
Cost per month 183.43 
* chemotherapy is assumed to be administered for six cycles in each case. 

To represent the uncertainty in the cost of treating metastases probability distributions 

representing the aggregate monthly costs for each metastatic site were established. Firstly, 

probability distributions were defined for each significant factor affecting the aggregate 

cost. Bootstrapping the observed estimates created distributions around the relevant 

categories ofTTP and survival. The cost of chemotherapy was assumed to be similar to the 
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cost of adjuvant chemotherapy. In the local treatment of soft tissue and visceral metastases 

no probability distributions were assigned as the drugs administered have a negligible cost. 

Probability distributions were originally assigned to the number of fractions of radiotherapy 

received as treatment for bone metastases, but following the validation process the 

frequency of radiotherapy was revised downwards to a level that did not warrant inclusion 

as a probability distribution. There was a wide variation in the estimates of the cost of 

hospital visits over the country, which informed mean, minimum and maximum estimates 

for the three types of contact - inpatient, day case and outpatient. Using these data gamma 

distributions describing the cost of each element of treatment for metastases were defined. 

The distribution describing the cost of surveillance discussed in the previous section on 

surveillance was employed. 

Using the defined costs and associated probability distributions a similar process to 

estimating probability distributions for the aggregate costs of treating locoregional relapse 

was employed. The individual treatment components were linked so the respective 

components of each form of metastases were aggregated and Monte Carlo simulations were 

run sampling a value from each of the specified probability distributions. 1000 

observations of the monthly costs for each cost element were generated. The resulting 

dataset was used directly within the model, as well as inputted into statistical fitting 

software to estimate aggregate distributions for each site of metastases. Finally, the mean 

and standard deviation from the datasets were used to solve for the parameters of the 

theoretically defined gamma distributions. 

5.4.5 Utility values 

Quality of life in breast cancer patients has been investigated, but the majority of identified 

studies used condition- or symptom specific measures. The conversion of non-generic 

measures to utilities was not attempted, though the identified data could be used to inform 

descriptions of health states if the primary collection of health state utilities were to be 

considered. Few utility data associated with health states that a breast cancer patient may 

experience were identified. A number of previous modelling studies had assigned utility 
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values using either focus groups of oncology professionals [Hillner et aI, 1992; Hillner and 

Smith, 1991; Smith and Hillner, 1993; Desch et aI, 1993], or direct measurement 

techniques from oncology nurses [Hutton et aI, 1996]. In addition, three studies were 

identified that reported utility values from primary studies aimed at defining quality of life 

in patients experiencing health states similar to those described in the ABC models [de 

Haes et aI, 1991; Daly et aI, 1993; Ashby et aI, 1994]. 

Empirical utility weights for the separate toxicity categories were not identified in the 

literature review, only an aggregate weight for all patients receiving chemotherapy [de 

Haes et aI, 1991]. U sing these data the individual toxicity states were assigned utility 

values so that the weighted aggregate utility value (using the proportions experiencing the 

different toxicity categories) would equal the value quoted in the literature (0.72). The 

process is demonstrated in Table 5.3. 

Table 5.3 
states 

Example of interpolation to estimate separate utility values for toxicity 

Proportion of Utility Proportionate 
patients value utility value 
experiencing 
event 

Aggregate utility weight 0.72 
Grade 1/2 toxicity 0.57 0.78 0.44 
Grade 3/4 toxicity 0.38 0.65 0.25 
Major toxicity 0.05 0.51 0.03 
Sum 0.72 

No utility values were found that described the period of remission following locoregional 

relapse, so the value for the period 2 months to one year following mastectomy was used as 

a proxy [Ashby et aI, 1994]. Likewise, no direct weights were identified for patients 

experiencing visceral, bone or soft tissue metastases. Thus, the utility value reported for 

patients with metastases receiving chemotherapy was used as the proxy value for visceral 

disease. The utility value for bone or soft tissue metastases was calculated as a weighted 

proportion of the values for patients receiving hormonal therapy and chemotherapy for 

metastases, reflecting the proportion of time spent receiving the alternative therapies [de 

Haes et aI, 1991]. 
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From the available data, point estimates were specified for each of the health states 

included in the ABC models. F or some health states there were sufficient data to estimate a 

mean and a range for the associated utility value, ie. three separate values. However. for 

other health states only one point estimate could be identified. In the latter cases relaxed 

(wide) estimates of the possible ranges of utility values for the respective health states were 

made after consultation with economic and clinical colleagues. 

Inputting three values into statistical fitting software estimated a similar probability 

distribution for each utility value - the triangular distribution. Too few data were available 

to justify inputting the empirical data directly so the triangular distributions were used to 

represent the empirical data. U sing the specified ranges, the parameters for the beta 

distribution were estimated assuming that the standard deviation of the required distribution 

was a quarter of the range. With the mean and variance the beta parameters were estimated 

by simultaneously solving the equations presented in Appendix 5. 

5.5 Conclusions 

This Chapter has described the process of reappraising the theoretical model structure given 

the identified data, as well as the analysis of the data into a suitable format to populate a 

decision model. The process of harmonising data for selected input parameters was 

introduced as a means of improving the homogeneity of the available information. 

The reappraisal of the preliminary model structure was primarily based on the format of the 

identified data. The alterations made to the model structure were subtle changes that did 

not remove (add) any important events from (to) the model. The most significant 

difference combined operable and inoperable locoregional relapses within a single 

remission state because the identified data described pathways from locoregional relapse in 

that manner. Such an alteration simply moved the model from an explicit consideration of 

operable and inoperable relapses to an implicit account of these events. The reappraisal 

described in this Chapter demonstrated that a careful reconsideration of the preliminary 
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model structure can make better use of the identified data without compromising the 

theoretical basis of the model. 

Much of the process of harmonisation involved the identification of differences in the 

definition of similar events presented by different studies. To facilitate the combination of 

such data, explicit adjustments were made to the values reported by one or more of the 

relevant studies so that the comparability of underlying parameter definitions were 

improved. The application of harmonising the data reported in this Chapter showed that the 

process cannot be governed by hard and fast rules as the adjustments made to the data will 

depend on the event described and the format of the available data. However. the 

harmonisation of the case study data illustrated a range of issues potentially relevant to 

other disease areas. For example, during the harmonisation of the DFI data, the studies that 

treated death as a censored event reported the number of deaths observed, which were then 

used to adjust the original disease-free survival data. If the relevant data to harmonise a 

parameter were not presented by a study, data from studies with the most similar patient 

and treatment characteristics were used to adjust the initial estimate. 

The explicit presentation of the harmonisation of the data is necessary to enable the reader 

to judge the appropriateness of the parameter definitions and the alterations made to the 

data. The data adjustments are possible solutions to the noted divergence in the definition 

of events. 

This Chapter also demonstrated alternative methods for the specification of probability 

distributions to represent the uncertainty around the values of the input parameters. When 

creating the weighted datasets, the preferred approach to weighting the data used the 

variance associated with each identified value. If the variance was unknown then the 

sample size informing each value was employed as the weight. Some cost parameters were 

informed by various primary estimates with no objective measure of variance, whereby 

subjective methods of weighting the data according to their perceived relevance to the 

objective of the study was introduced. Least satisfactorily, some cost and utility parameters 

were informed by only one identified value in the literature. In such cases wide ranges of 
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values were specified to reflect the uncertainty. The specification of theoretically derived 

probability distributions for alternative groups of parameters and the use of defined 

formulae to estimate the distribution parameters provided a simpler method of specifying 

probability distributions. However, this latter method did not provide an alternative to the 

subjective weighting of the cost and utility parameters as the distribution parameters for 

these variables were necessarily based on the subjectively defined weighted datasets, or the 

specified ranges. 

The comparison of the alternative methods for defining probability distributions around the 

input parameters is a secondary objective of this thesis. The results of the comparison are 

presented in Chapter 8, the implications of which are discussed in Chapter 9. 
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Chapter 6 Case study: implementing the model 

6.1 Introduction 

The two previous Chapters described the identification and analysis of data to populate 

a decision model, which incorporated the specification of a preferred model structure. 

The next step in the modelling process is the development of an analysable model. This 

Chapter describes the implementation of two separate decision models, a Markov 

process and a discrete event simulation (DES) model, to represent the pathways of 

patients diagnosed with early breast cancer. The aim of this Chapter is to describe the 

analytic input required to develop the different modelling techniques. as well as to 

explicitly define the differing representations of the data used to evaluate alternative 

therapies for the early breast cancer. 

The first two sections justify the implementation of two alternative decision models, and 

the application of stochastic analyses. The implementation of each model is then 

described, starting with the Markov model. F or each modelling technique the 

implementation process is presented in two parts. Firstly, the process of establishing the 

relationships between the health states included in the structure of the model is 

presented (Modelling the health states). The second section describes the population of 

the models using the previously presented probability distributions, and the collection of 

the models' outputs for further analysis (Controlling inputs and outputs). A short 

section highlighting the differences in the modelling assumptions between the two 

techniques is then presented. 
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During the process of implementing the models two methodological issues were raised 

that affected the analysis of the models. These are explored in the final sections of this 

Chapter. The first issue related to the use of the DES model, where the question of an 

adequate sample size to minimise the impact of first-order uncertainty is addressed (see 

section 3.6.1.1). The second issue involved an assessment of alternative methods for 

describing probabilistic 'length of time' input parameters. 

6.1.1 The choice of modelling technique 

To build a decision model an appropriate modelling technique must be chosen. The 

economic evaluation employed as the case study for this thesis - a cost-utility analysis 

of alternative adjuvant therapies for early breast cancer - incorporates a relatively long 

time horizon. As discussed in Chapter 2 the decision tree technique can be adapted to 

cover patient pathways with long time horizons, but such models soon become 

cumbersome. The effective choice of modelling technique for the case study, therefore, 

was between a Markov model and a DES model. Only a partially informed choice 

could be made between the two alternatives as their relative merits have only been 

explored superficially [Chaussalet et al, 1999; Kamon and Brown, 1998]. From these 

earlier considerations of Markov modelling and DES it was clear that neither alternative 

dominated the other in every aspect of the modelling process. For example, it appears 

that DES allows greater flexibility in the representation of patient pathways, but a 

Markov model is generally easier and quicker to build. No empirical comparison of the 

two techniques was identified. To inform the appropriate choice of modelling technique 

both a Markov process and a DES model were developed to evaluate the economic 

impact of the relevant alternative adjuvant therapies. 

A Markov process, rather than a Markov chain, was chosen because time dependent 

transition probabilities (dependent on the time spent in the model) were considered to be 

important in the modelling of early breast cancer (see section 2.3 for full definition of 

Markov processes and Markov chains). The Markov process was built as a cohort­

based model, whereby a cohort of patients is sent through the model, rather than 

foHowing single patients through the model (first-order Monte Carlo simulation). A 

cohort-based Markov process is simpler to build and provides a starker contrast with a 

DES modeL which can only be analysed using first-order Monte Carlo simulation. 
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Moreover, first-order Monte Carlo simulation-based Markov processes (as opposed to a 

cohort-based Markov process) only provide additional information about first-order 

uncertainty, which is irrelevant to the required outputs of the model (see section 3.4.3). 

The cohort-based Markov process is also the most common fonn in the economic 

evaluation literature. 

6.1.2 Stochastic or deterministic? 

Both modelling techniques can be analysed deterministically, whereby single estimates 

of cost-effectiveness are generated for individually specified sets of input parameter 

values, or stochastically, whereby the output consists of distributions of the relevant 

costs and effects based on sets of input parameter values randomly sampled from 

specified probability distributions. F or the economic evaluation of health care 

technologies it has been proposed that stochastic analyses provide a more realistic 

method of describing uncertainty in the overall results of decision models [Fenwick et 

aI, 2000]. Stochastic models were chosen because such models facilitate the statistical 

analysis of model outputs for resource allocation decisions in the present, as well as 

enabling the statistical evaluation of the value of obtaining further primary information 

about the input parameters. Both of these objectives are explored in thesis. 

6.2 Building the decision models 

Wherever possible, the general points of good practice described in Chapter 3 were 

incorporated into both models. For example, no decision nodes other than at the root of 

the model were included and all common parameters were linked. 

The specification of a minimum time period of advancement was required for the DES 

model, as well as a cycle length for the Markov process. Though a case could be made 

for differential timing on the basis of model running time, it was decided that the patient 

pathways could be most accurately represented in both models using a time period of 

one month. The choice of one month as the models' cycle length meant that the annual 

probabilities collected in the literature review, describing the length of DFI and 

remission, needed converting to monthly probabilities. Transition rates were assumed 

to remain constant over the year, because no data were identified that contradicted this 
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assumption. Formula 6.1 was used to convert the annual probabilities to monthly 

probabilities [Miller and Homan, 1994]: 

P = I - [1 - P ]){2 monlhly annual (6.1) 

Where P is the probability of an event. A similar time horizon for both models was 

also adopted with patients living to a maximum of 100 years. Separate descriptions of 

the process of building the two models are presented in the following sections. In each 

section the description of the actual modelling of the health states is followed by the 

necessary structures for controlling the model inputs and outputs. 

6.3 The Markov process 

The Markov process was built in Excel using the Crystal Ball 2000 add-in, which is a 

risk analysis programme that is "easy to learn and easy to use" [Crystal Ball, 2000]. A 

deterministic Markov process can be built using the spreadsheet package alone, but 

Crystal Ball uses second-order Monte Carlo simulation to analyse the model 

stochastically. Sets of parameter values are randomly sampled from the input 

distributions, each of which is analysed using the cohort-based method. The process of 

building the model is described in chronological order. 

6.3.1 Modelling the health states 

Firstly, the model structure was transferred to the spreadsheet, which is presented in 

Figure 6.1, which shows the possible transitions that could be made within the model 

moving from period 't' to 't+ l' at different phases of the model. All patients began the 

model in the health state 'disease free interval' (DFI). During the first six months 

patients in the DFI state could experience toxic effects caused by the adjuvant therapies, 

a relapse in one of the four specified sites of relapse - locoregional, soft tissue, bone or 

visceral, or they could die from a cause other than breast cancer. Patients could also 

experience a relapse or die from other causes from the toxicity states. In the absence of 

relapsing or dying patients in the toxicity states returned to the original DFI state at the 

end of the first six months. 
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Patients could experience one of three fonns of toxicity, though the different fonns of 

toxicity could not be experienced simultaneously. There were two reasons for this 

assumption. Firstly, four extra health states would be required to represent the 

occurrence of the joint toxicities. Secondly, further assumptions would be required to 

describe the probabilities of experiencing the different combinations of toxicity 

because no data describing the proportion of patients experiencing joint toxicities 

were identified. Other than the probability of experiencing toxicity, patients in the 

DFl state were subject to monthly probabilities of moving to a relapse state or straight 

to the dead state (with no evidence of disease). After the first six months, the 

proportion of patients remaining in the DFl state in month t was estimated using 

formula 6.2. 

pr(DFI)/ = pr(DFI)/_1 - pr(endDFI)/ (6.2) 

The probability of moving to a particular site of relapse incorporated the probability 

of leaving DFl and the probability of experiencing the different fonns of relapse. For 

example, the proportion of patients experiencing a locoregional relapse (LR) in any 

given month was described using fonnula 6.3 

pr(LR} = pr(endDFI)/ x pr(LRI endDFI)/ (6.3) 

Patients experiencing locoregional relapses were assumed to remain in that state for a 

maximum of one month, after which they entered a period of remission, experienced a 

more severe metastatic relapse, or died from other causes. From remission, patients 

could experience metastases or die from other causes, from the metastases states 

patients could only die. F onnula 6.4 described the proportion of patients entering, 

and remaining in, a metastatic state of relapse (MR), because patients could enter 

from DFl, locoregional relapse (LR) and from remission following a locoregional 

relapse (RM), as well as the patients remaining in a state from one cycle to the next. 

pr(MR)/ = pr(MR)/_1 - pr(endMR)/ + [pr(DFI)/_1 x pr(endDFI), x pr(MRI endDFI),] 

+ [pr(LR)'_1 x pr(endLR)/ x pr(MR I endLR)t]+ [pr(RM)t_1 x pr(endRM), x pr(MR I endRM)t] 
(6.4) 

125 



Chapter 6 Case study: implementing the model 

From the metastatic states the monthly probability of dying was converted from the 

median length of survival using the formula presented in section 3.5.1. 

6.3.2 Controlling inputs and outputs 

The actual Markov process ran on one spreadsheet, wherein each health state was 

assigned a column and each successive cycle (month) was represented by a row. 

From this allocation of columns and rows the basic operation of the Markov process 

involved describing the proportion of patients placed in each health state in each time 

cycle of the model. Using the formulae described in the previous section to represent 

the movement of patients between states the building of the model was relatively 

straightforward. 

Separate spreadsheets were established to hold the relevant data on clinical 

parameters, costs and utility values. Within each of the parameter spreadsheets the 

relevant probability distributions were established using the Crystal Ball add-in 

[Crystal Ball, 2000]. Stochastic analyses consist of multiple deterministic analyses 

using alternative sets of parameter values that are randomly sampled from the defined 

probability distributions for each input parameter. Each deterministic analysis is 

defined as a 'run'. A single deterministic analysis (run) of a Markov process involves 

the following steps: 

1. The relevant monthly cost and utility values are multiplied by the proportion of 

patients in each state in each cycle (month); 

2. The respective costs and utility values are summed for each cycle; 

3. Separate discount factors are applied to the cost and utility values assembled for 

each month; 

4. Aggregate values for the model outputs are calculated by summing the costs, life 

years and utilities for all cycles. 

The stochastic analysis consisted of 10,000 separate runs. Crystal Ball ran the 

necessary number of second-order Monte Carlo simulations 'solving' the model for 

each run. The required output data from all the runs - total costs, life years and 

QAL Y s - was collected in the form of frequency charts, which was easily extracted 

for further analysis. A full model was built and submitted for verification and 
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validation in less than 2 weeks. U sing a 700MHZ PC with a pentium II processor 

10,000 trials were completed in around 1 hour. 

6.4 The discrete event simulation (DES) model 

The first task in building a DES model was to identify an appropriate software 

package that could handle the characteristics of an economic HT A decision modeL 

and which did not require a high-level of programming skills. Five software packages 

were identified for building simulation models - Simul8, Witness, Microsaint. ithink, 

and Powersim. On the basis of cost and perceived user-friendliness the Simul8 

software was chosen [SimuI8, 2000]. The process of learning to use the software was 

undertaken on a separate project that employed a simpler model comparing a hospital 

at home scheme with inpatient care for elderly patients [Campbell et aI, 2000]. The 

process was gradual and continued into the time spent building the ABC DES model. 

The building of the model is described below. 

6.4.1 Modelling the health states 

The structure of the DES model is presented in Figure 6.2. which is the visual 

interface of the simulation software. Relationships between states, activities within 

states, and the collection of data associated with each state were handled by 

programming code. Code was implemented as patients entered a state, when they 

were within a state, or as they left a state. This will become clearer as the process of 

building the DES model unfolds. 

As discussed in Chapter 3 the model was built up in modules [pidd, 1989]. The first 

module described the period of time spent in the state DFI. DFI was not the first state 

because it was easier to assign the time spent in DFI prior to the patient entering the 

state. Within the first state 'trial entry' every patient passed through a loop command 

that sampled from a binary probability distribution for consecutive months until a 

'relapse' was experienced. At that point the month was noted and transferred to the 

DFI state to inform the length of DFI. The binary distributions reflected the 

probability of experiencing a relapse in each month that the patient remained disease 

free. For example, if the monthly probability of experiencing a relapse was 0.01. 
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patients sample from a binary distribution with a 1 % chance of experiencing a relapse 

in that month. 

The most noticeable difference between the DES and Markov process was that fewer 

health states were described in the DES model. In the DES model, toxicity was 

modelled as an attribute of the health state DFI, rather than as individual states. 

Incorporating toxicity as part of DFI meant that the model could describe patients 

experiencing different types of toxicity simultaneously. During DFI patients sampled 

from a series of binary distributions to determine which, if any, fonns of toxicity were 

experienced, and the respective durations of toxicity. The collection of the cost and 

utility data associated with the DFI state was especially complicated because the 

impact of toxicity had to be incorporated. It was possible for a patient to experience 

more than one type of toxicity at the same time; the associated costs of each event 

experienced were attached to the patient. In addition, the length of major toxicity was 

sampled from pre-specified distributions (the graded toxicities were assumed to last as 

long as the number of cycles of chemotherapy). The utility value attached to 

individual months spent in DFI was a function of the length of the different types of 

toxicity. For example, for a patient experiencing two types of toxicity, the utility 

value associated with the less severe form of toxicity would only be required if the 

less severe toxicity lasted longer than the more severe form. 

Prior to leaving DFI the destination of the patient was decided. The five probabilities 

covering the likelihood of experiencing each of the possible events - locoregional, 

soft tissue, bone, or visceral relapse, or death - were combined and adjusted 

proportionately so that their sum equalled one. Each patient then sampled from the 

combined distribution to detennine which health state they moved to from DFI. 

The second module represented the passage of events from the point of locoregional 

relapse to either a metastatic relapse or death. Again, patients remained in the 

locoregional relapse state for exactly one month before moving onto the remission 

state. During the locoregional relapse state the relevant cost and utility value was 

attached to patients. Analogous to the role of the trial entry state. the length of 

remission was also determined using a similar process of looping through months 

until an event was experienced. At the end of patients' time within the remission 

128 
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state, a value was randomly sampled from a combined distribution representing the 

subsequent states that patients could enter. 

The final module described the experience of patients within the three metastatic 

relapse states. As the only possible exit state from these states was death they were 

relatively easy to model. The patients simply entered the relevant state, remained in it 

for the allotted period, and then moved into the dead state. 

6. 4. 2 Controlling inputs and outputs 

In the DES model, a single run followed a large number of individual patients through 

the model. At the start of each run a set of parameters from each distribution was 

randomly sampled from the specified probability distributions and applied to each 

patient. At the end of a run only the mean values for each of the model outputs were 

required. Unlike the Markov process, first-order uncertainty was an issue in the 

analysis of DES models because no definitive estimates of the outputs for each run 

were obtained. Applying the same input parameter values to different sets of patients 

(ie. using different random number seeds) produced varying mean values for the 

model outputs. The only way to reduce this variation was to increase the number of 

patients included in each run. 

Within the model the cost- and utility-based experiences within each state had to be 

described at the end of the state and aggregated as patients left each state. This aspect 

of the programming code was the most complicated due to the need to discount the 

outputs, which involved sectioning the time spent in each state into the corresponding 

years that the patient had spent in the model. Annual discount rates were applied 

because the monthly description of the cost and utility effects within the DFI state, 

which were dependent on the length of time spent in the state and the types of 

treatment side effects experienced, was deemed to be to complex. 

Running totals of the costs and QAL Y s were attached to each patient as she passed 

through the health states. On entering the dead state the fmal totals for each patient 

were stored in an internal spreadsheet. For each run, the mean values for the model 

outputs were calculated and stored in a separate internal spreadsheet. When data from 
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a sufficient number of runs had been collected the data was exported to a spreadsheet 

for further analysis. 

2,500 runs of 10,000 patients, running the model consecutively, took around 72 hours. 

Around two months were required to build a model to the point at which it could be 

subjected to the verification and validation process. Due to the learning curve the 

time required to build future models should be appreciably reduced. 

6.5 Comparison of modelling assumptions 

The respective assumptions incorporated in each model are presented in Table 6.1. 

Table 6.1 
DES model 

Respective assumptions employed in the Markov process and the 

Area 
General 

Disease free 
interval 

Toxicity 

Locoregional 
relapse 
Remission 

Metastases 

Markov process 
Cycle length of 1 month. 
Maximum age of patients 100 
years old. 
Annual probability of leaving DFI 
informed by survival curve. 
Annual probabilities converted to 
monthly probabilities assuming 
constant transition rates. 
Patients can experience one of 
three categories of toxicity. 

Grade 112, 3/4 and major toxicity 
end after 6 months. 

Patients remain in locoregional 
relapse for exactly 1 month. 
A mean time spent in remission 
employed. 
Patients subject to a constant 
monthly probability of leaving the 
remission state. 
A median time spent in metastatic 
states employed. 
Patients subject to a constant 
monthly probability of dying. 

DES model 
Minimum time period of 1 month. 
Maximum age of patients 100 years 
old. 
Annual probability of leaving DFI 
informed by survival curve. 
Annual probabilities converted to 
monthly probabilities assuming 
constant transition rates. 
Patients can experience any 
combination of three categories of 
toxicity. 
Grade 112,3/4 toxicity end after 6 
months, length of major toxicity 
sampled from probability distribution. 
Patients remain in locoregional relapse 
for exactly 1 month. 
Annual probability of leaving 
remission informed by survival curve. 
Annual probabilities converted to 
monthly probabilities assuming 
constant transition rates. 
A median time spent in metastatic 
states employed. 
Patients remain in metastatic states for 
set amount of time. 

6.6 Assessing an adequate sample size to minimise the impact of first-order 

uncertainty on the results of the DES model 

This section addresses a methodological issue that was first raised in section 3.6.1.1, 

which affects the analysis of the DES model. The DES model was analysed using 

first- and second-order Monte Carlo simulation. Sets of input parameter values were 
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randomly sampled from the specified probability distributions (second-order), which 

were analysed by sending a 'large' number of individual patients through the model 

(first-order). For each set of parameter values the only results of interest were the 

mean values for the model outputs, the variation around these means measured first­

order uncertainty, which should not influence resource allocation decisions [Briggs, 

2000]. The mean output values estimated for each set of parameter values were 

collated and analysed to inform the second-order uncertainty associated with the 

model, which describes the variation within the population of eligible patients. 

The question addressed in this section is what is an adequately 'large' number of 

patients to be run through the first-order Monte Carlo simulations to be sure that the 

mean values obtained for the required outputs are as close as possible to the true mean 

value for each parameter set? To test the adequacy of alternative sample sizes the 

input parameter values were held constant at their mean values. Repeated replications 

of the model were undertaken using different random number seeds for each 

replication of the same sample size. The use of alternative random numbers meant 

that patients within alternative replications sampled different values from probability 

distributions within the model, but the mean values of the model outputs should have 

remained the same. Sample sizes of 100, 1,000 and 10,000 were tested. For each 

sample size the DES model was run fifty times, each run starting from a different 

random number seed. 

The results of the analyses are presented in a cost-effectiveness plane in Figure 6.3. 

The plots show a very wide dispersion of estimates derived from runs of 100 patients, 

whilst the level of variation remained large when 1,000 patients were run through the 

model for each set of parameter values. A much tighter concentration of estimates is 

observed for the runs informed by 10,000 patients with the difference in costs varying 

between around £1,000 and £1,250 and the effects difference falling between 0.5 and 

1 QALY. Though larger samples would reduce the observed random error further, 

runs of 10,000 patients provided the best trade-off between accuracy and the running 

time of the DES model. 
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Figure 6.3 Cost-effectiveness plane illustrating the accuracy of alternative run sizes for the analysis of the DES ABC model 
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6.7 Methods of describing probabilistic 'length of time' input parameters 

The second methodological issue addressed in this Chapter relates to the correct 

method of describing and sampling time dependent data in decision models. The 

parameters affected by this issue were the length of time patients remained in the state 

'OF!' in both the Markov process and the DES model, and the time spent in remission 

following locoregional relapse in the DES model alone (this parameter was not 

modelled as being time dependent in the Markov process). The data informing these 

parameters were presented as the probability of leaving the respective states in 

successive years, in the fonn of survival curves. 

Ideally, a probability distribution of individual survival curves (from separate sources) 

would be specified for each relevant parameter, which would be sampled as part of 

the second-order Monte Carlo simulation. Each survival curve could be weighted 

using the methods described in Chapter 3 and for each replication of the model a 

single survival curve could be sampled from a weighted dataset of survival curves. 

The advantage of this approach would be that the probabilities of experiencing events 

in successive years are consistent because they are derived from the same source. 

Unfortunately, it is rarely possible to assemble survival curves in the manner 

described above because different studies report differing lengths of follow-up and 

survival curves are rarely the same lengths. 

I t is normal practice to combine data from survival curves using one of the methods 

described in Appendix 4. The preferred method is the 'meta-analysis of failure time 

data' (MFO) [Earle and Wells, 2000], which involves pooling the number of patients 

at risk and the number of events in each time interval. Using formula 6.1 (pg120), 

both models interpolated the annual data describing the probability of leaving OFI to 

monthly probabilities. However, the DES model was set up to sample a separate 

probability of leaving the state every month, whereas the Markov process sampled 

one monthly value and applied it to all 12 months within a single year. Subsequently, 

in the DES model the annual probability of leaving DFI in any given run of the model 

was much closer to the mean of the distribution describing the probability of leaving 

DFI in any year. This was because the annual mean in the DES model is the mean of 
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12 separate samples from the distribution, rather than a single sample as was the case 

in the Markov process. To investigate the effect of the alternative sampling strategies 

the programming code in the DES model was altered so that a single probability was 

sampled and applied to all 12 months in any given year. The model was then re­

analysed and the outputs compared to original set of results. Figure 6.4 plots the 

results using the alternative sampling methods on a cost-effectiveness plane. 

Visual inspection suggests that the choice of sampling the probabilities on a monthly 

or an annual basis had a substantial impact on the variation observed in the estimates 

of cost-effectiveness. Both models could have been constructed to sample annually or 

monthly, but the intuitive approach encouraged by the alternative modelling 

techniques led to this important divergence in the representation of the input 

parameter 'length of DFI'. 

In order to represent the level of variation in the available data most accurately, the 

appropriate method of sampling should follow the intervals in the original data. The 

data used in the ABC models were presented as annual probabilities, which were 

transformed to monthly probabilities because a month was considered to be the 

appropriate interval within the models, which was based on clinical relevance. To be 

consistent with the available data, therefore, the models should sample a monthly 

probability and apply it to the 12 months within each year. 

6.8 Conclusions 

The focus of this Chapter has been the development of computer-based decision 

models. The construction of two alternative decision models were described - a 

Markov process and a DES model. Within the DES model, patients move through the 

model, experiencing events at any discrete time period after the previous event. The 

analysis of the model is triggered by the occurrence of an event, at which point the 

model asks what and when is the next event for this patient? This differs from a 

Markov process, which asks, what events are occurring within regular periods. 

The procedure for building a Markov process using Excel spreadsheets, employing 

the Crystal Ball add-in [Crystal BalL 2000], was described. The development of the 
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Markov process was generally straightforward. Formulae that described the 

proportion of patients moving between states were linked to cells representing the 

clinical parameter values, whilst the cost and utility value parameters were linked to 

the proportion of patients in each state in each time period. 

The process of building the DES model required more complicated methods than the 

Markov process, though the use of specialised software provided assistance. The 

DES model was built on the basis of programming code that described what events 

occurred when. This also facilitated the collection of the required output data as 

patients left each state within the model. There was a steep learning curve associated 

with the building of the DES model. During the course of building the model many 

blind alleyways were encountered, and numerous improvements in the efficiency of 

the programming code were made over time. The time to develop future DES models 

will be significantly reduced, though the required time is unlikely ever to be reduced 

to the time to build a comparable Markov process. In addition, the analysis time for a 

DES model was substantially longer than the time taken to run a Markov process. 

Moreover, the analysis time not only included the final 'correct' experimentation with 

the models, but also the whole process of verification and validation, which is often 

more time consuming than the final process of experimentation. 

Finally, two important issues that were raised during the building of the decision 

models were addressed. Within the experimentation of the DES model, the issue of 

an adequate number of patients to include in each (first-order) run of the model was 

investigated. After testing alternative sizes it was concluded that a sample of 10,000 

patients was sufficient to provide stable estimates of the mean output values estimated 

for each set of input parameters. The second issue concerned the appropriate method 

for sampling time dependent events with decision models. Substantial differences 

were demonstrated between the alternative sampling strategies and it was concluded 

that to represent the level of variation in the available data most accurately, the 

appropriate method of sampling should follow the intervals in the original data. For 

example, if data are included in the model as monthly probabilities that have been 

interpolated from annual probabilities, as presented in the literature, a single monthly 

probability should sampled and applied to the 12 months within each year. 
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Chapter 7 Case study: verification and validation 

7.1 Introduction 

The previous three Chapters have applied the modelling process described in Chapter 3 

up to the point at which the decision model has been implemented as two types of 

computer model, both as a Markov process and as a DES model. The final steps before 

experimentation can proceed, involve the verification of the models to ensure that they 

are internally consistent, and validation to check that the models' outputs are realistic. 

Respective methodologies for verification and validation were described in Chapter 3, 

the objective of this Chapter is the application and assessment of the proposed methods 

with respect to the models built to evaluate adjuvant therapies for early breast cancer. 

7.2 Verification 

Verification is the process of ensuring that the computer model accurately represents the 

conceptual model and the available data. The verification process consisted of three 

phases - verification of logic, sensitivity testing, and stress testing - as described in 

section 3.5.2. The following sections report the application of these methods to the case 

study evaluation. 

7.2.1 Verification a/logic 

The verification of the models' logic ensures that the model is analysing the inputted 

data correctly. The tests involve entering simple combinations of input data for which 
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the expected output can be manually calculated, allowing the output of the model to be 

compared with the anticipated output. The model logic was verified in three categories. 

Firstly, the models' representations of the clinical parameters were assessed, followed 

by tests on the incorporation of the costs and utility values. Finally, the action of the 

model in discounting both the costs and the effects was verified. The following sections 

present the parameter values chosen to test model logic within these categories, and the 

resulting comparisons of the expected and actual outputs of the models. 

7.2.1.1 Clinical parameters 

The clinical parameters represent the probabilities of events occurring within the model, 

and their timing. The events described, in sequential order, were the: 

• Incidence of toxicity (including effect on the completion of chemotherapy). 

• Timing of relapse or death from the period of disease free interval (DFI), 

• Type of event experienced following DFI, 

• Timing of relapse or death from remission following locoregional relapse, 

• Type of event following remission, 

• Timing of death from metastatic relapse. 

Selections of the parameter values inputted to the models and the expected and observed 

outputs from the models are shown in Table 7.1. The verification process for the 

clinical parameters produced model outputs that were broadly consistent with the 

expected results. Moving sequentially through the model, Test la describes the timing 

of events following the initial period of DFI. The inputted probabilities were chosen so 

that 25 per cent of the original patient cohort would relapse in each of four years - 1, 3, 

5 and 7. A constant rate of occurrence was assumed. The results for both models show 

that the mean survival estimates were close to the expected output, though the results of 

both models slightly underestimated expected survival. Th~ underestimated survival is 

due to the conversion of annual probabilities to monthly probabilities assuming a 

constant rate of events over the year in which an event occurs. The expected model 

outputs were estimated on the basis that events in a particular year occurred, on average, 

halfway through the year. However, assuming a constant rate of occurrence more 

patients experience events in the earlier months of any particular year. This issue is 

developed further in verification Test 1 b below. 

139 



Case study: verification and validation 

Table 7.1 Comparison of verification outputs for the DES and Markov model 
Tests Parameter categories Parameter Expected Observed output* 

values Output* DES ~1P 
la Timing of event from DFI 

Pr(event following DFI in year 1) 0.25 
Pr(event following DFI in year 3) 0.33 
Pr(event following DFI in year 5) 0.50 
Pre event following DFI in year 7) 1.00 
Pr( dned following DFI) 1.00 
Output* cAO.63 40.53 40.32 

Ib Pr(event following DFI in year 3) 0.5 
Pre event following DFI in year 5) 
Pr(dned following DFI) 
Output* c.39.25 38.90 37.92 

2 Type of event from DFI 
Pr(soft tissue metastases following DFI) 0.50 
Pr(dned following DFI) 0.50 
Pr(event following DFI in year 4) 1.00 
Survival from soft tissue metastases Empirical distribution, mean 3 1 
Output* c.52 52.17 50.83 

3 Type of event from remission 
Pr(bone metastases following remission) 0.50 
Pr(dned following remission) 0.50 
Pr(event following DFI in year 2) 1.00 
Pr(locoregional relapse following DFI) 1.00 
Pre event following remission in year 8) 1.00 
Survival from bone metastases Normal distribution, mean 16.8 
Output* c.105A 105.38 104.89 

* survival in months. 

Test 1 b investigated further the effect of assuming a constant rate of events by stating 

that 50% of events following DFI occur in year 3, and the remainder in year 5. If all 

events occurred halfway through the year the expected survival would be 39.25 months, 

but both models underestimated survival by a larger amount compared with Test la. 

This discrepancy between the expected and observed output is not as important as it 

might appear. The illustrative examples assumed that all patients experienced an event 

in the same year, which maximised the impact of the constant rate assumption. In fact 

the maximum annual probability of an event using the real data is approximately 10 per 

cent. Figure 7.1 demonstrates the reduced impact of the constant rate assumption when 

an annual probability of 10 per cent is converted to monthly probabilities compared to 

the situation when 99.9 per cent of patients experience an event within a single year. 

The large diamonds represent the month in which the median patient experiences an 
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Figure 7.1 Illustration of the impact of the assumption of a constant rate of occurrence over a year 

0.9 E- · · · · · ---- =~~~~~~~~~~~~~~~~~~ • • • • -~--~"~-~ _. • 

0.8 

0.7 -.-~ 
Q) 

~ ... c 
~ 0.6 
Q) 

OJ) 

.5 

.~ 0.5 

e 
c o 'e 0.4 
8. 
~ 

0.3 

0.2 

0.1 

o 
o 

Annual probability of 10% 

Annual probability of99.9% 

r-

2 3 4 5 6 7 8 9 10 I I 12 

Months 

I,ll 

"II1II 



/ 

Chapter 7 Case study: verification and validation 

event and shows that with an annual probability of 10% the median patient leaves DFI 

in month six. 

Tests 2 and 3 specified the type of events patients' experienced following the DFI 

state and remission, respectively. The results revealed that the DES model was 

slightly more accurate than the Markov process. This was due to the DES model's 

more precise description of time on remission and survival from metastases (see 

section 9.2 for a full discussion) 

7.2.1.2 Cost and utility parameters 

The parameters describing the cost and utility effects of the various health states 

within the model could only be verified in connection with specified clinical 

parameter values. Within the decision models the cost and utility parameters were 

attached to the clinical parameters, so following the verification completed in the 

previous section the action of attaching costs and utility values to health states was 

relatively straightforward. However, the full benefit of such detailed verification 

became apparent during the testing of the utility values within the DES model. 

Informal testing of the model had been undertaken during the building process and 

prior to verification the model appeared to be producing consistent QAL Y outputs. 

However, during the verification process some subtle errors in the programming code 

were identified that led to the miscalculation of the associated QAL Y s in some of the 

later health states within the model (the remission and metastases states). Fortunately, 

the errors were rectified and both models passed this stage of the verification process. 

7.2.1.3 Discount factors 

The actions of the model with respect to discounting the estimated costs and effects 

are independent of the actions associated with moving patients through the model and 

attaching costs and utility values to the time spent in the model. To ensure that the 

discount factors were being applied properly within the models two sets of parameter 

values were used to compare expected and observed output. During the initial process 

of testing the discounting process the observed output from the DES model was 

consistently higher than the expected output. Within the DES model the process of 
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discounting costs and QAL Ys at the end of each state comprised the most 

complicated set of programming code (see section 6.3.2). Following examination of 

the programming code driving the discounting, an error in the programming code was 

discovered that discounted costs and QAL Y s at lower than appropriate discount rates. 

Once rectified the resulting estimates were extremely close to the expected outputs 

and the DES model was deemed to have passed the discounting stage of the 

verification process. The final input values, and expected and observed outputs are 

presented in Table 7.2. 

Table 7.2 Parameter values used to verify the action of the discount factors 
for costs and effects * 
Test Value Input values ' Expected Observed output 

outpu~ ~M~M~k-o-v-p-ro-c~es-s--=D=E=S-m-o-d~e~I--

pre event following DFI in year 5) 1 
cost (surveillance) £50 
utility(DFI) 0.8 

2 pr(event following DFI in yeM 5) 1 
pr(visceral metastases) 1 
survival from visceral metastases 1 yeM 
cost(visceral metastases) £500 
utility(visceral metastases) 0.5 

2092, 2092, 2111, 
2.79 2.79 2.81 

4098, 
0.34 

3894, 
0.32 

4059, 
0.34 

* A discount factor of 10% was applied to both costs and effects to aid the calculation of the expected effects. 
t All other cost and utility pMameters are assumed to be equal to zero 
t Outputs Me presented as total costs and quality adjusted life years. 

A more fundamental discovery was observed over the discounting in the Markov 

process. Test 1 in Table 7.2 shows that the observed output from the Markov process 

matched the expected output, but the observed outputs in Test 2 underestimated the 

expected values. The difference in Test 2 is due to the Markov processes' description 

of the length of time spent in states for which survival curves (in the case study 

model: time in remission) and set survival times (in the case study model: survival 

from metastases) are converted to constant probabilities. Taking the scenario 

described in Test 2, the input data states that patients survive 12 months from the 

point of being diagnosed with visceral metastases. However, the Markov process 

cannot remember when each patient enters the health state 'visceral metastases' and so 

applies a constant probability of dying to each patient remaining in the state. The 

problem with the conversion of survival curves and set survival times to constant 

probabilities is that the associated discounting will be erroneous. In Test 2, the 

correct procedure applies a discount rate of 0.792 (1/1.104
) to the cost of treating 

visceral metastases over the whole of the fifth year, which is the period over which all 
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patients experience metastases. However, in the Markov process a monthly 

probability of leaving the state was applied to all patients, so that some patients left 

the state after one month, whilst 14.7% and 5.4% of the original cohort were still in 

the state at the end of 24 and 36 months, respectively. In the absence of discounting 

the mean results would represent the data correctly, but the application of higher 

discount rates to those patients surviving beyond the set survival time results in 

underestimates of the true outputs for both costs and QAL Y s. This issue is raised in 

more detail in Chapter 9, where its' impact on the overall results of the case study is 

discussed. 

7. 2. 2 Sensitivity testing 

The second type of verification involves varying one parameter, whilst keeping all 

others fixed in order to ensure that the behaviour of the model is sensible [Bratley et 

aI, 1987]. Sensitivity testing involved running the models stochastically using the 

probability distributions specified for each parameter and noting the variance around 

the model outputs. The model was re-analysed with point estimates describing the 

values of chosen parameters, rather than probability distributions. The resulting 

variation in the model output was then compared to the baseline run of the model. 

Explicit predictions of the absolute magnitude of the ~ffect of different parameters 

within the model were difficult, though it was mainly possible to predict the relative 

magnitudes of the individual parameter effects. Each included parameter was ranked 

in order of their expected relative effect on the variance of the baseline net benefits. 

The results were then compared to these a priori predictions. Table 7.3 illustrates the 

sensitivity testing of various parameters. It was anticipated that holding DFI 

probabilities constant would reduce variance by more than holding event types 

constant, and both would reduce variance more than holding a cost or utility value 

parameter constant. The comparison of the cost of bone metastases and the utility 

values associated with DFI was less certain and these parameters were used to check 

the similarity of the two modelling techniques, ie. whether both models reported the 

same ranking between these two parameters. 
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The results of the sensitivity testing are also presented in Table 7.3. The reduction in 

the variation around the net benefits was greatest assuming absolute certainty about 

the values of the 'length of DFI' parameters. Assuming certainty about the 

proportions of patients experiencing the alternative health states following DFI 

reduced overall variation by a larger amount than holding either the cost of bone 

metastases or the utility values associated with DFI static. No prediction was made 

about the ranking of the latter two parameters, but both models reported that the 

utility values associated with DFI had a larger impact on overall variation of the net 

benefits. The a priori assumptions about the ranking of the first two parameters were 

confirmed, and the Markov process and the DES model produced a similar order of 

ranking for the unknown rankings. 

An additional result that required explanation was that the absolute values of the 

standard deviations between the Markov process and the DES model were very 

different. The reason for this difference was that only 5,000 patients were included in 

each run for the DES model in order to reduce the required running time for the 

sensitivity testing, which meant that first-order uncertainty was not adequately 

controlled (see section 6.5). However, the elimination of first-order uncertainty was 

not a necessary condition for the process of sensitivity testing, and the resulting data 

provided sufficient evidence for the sensitivity of the DES model to be verified. 

Table 7.3 Examples of sensitivity testing 

Parameters held constant 

Probability of event following DFI in all years 
in patients receiving tamoxifen+ chemotherapy 
Type of event following DFI for patients 
receiving tamoxifen+chemotherapy 
Cost of bone metastases 
Utility values for DFI 

7. 2. 3 Stress testing 

A priori 
ranking 

2 

3/4? 
3/4? 

Standard deviation of the net benefits 
(A = £ 1 0,000) 

DES MP 
3718 2020 

4333 

5420 
5028 

2660 

2800 
2759 

The scope for stress testing, which tests that the model does not run if infeasible 

values are inputted, was limited. F or example, possible areas for such testing 

included the assignment of negative values for probabilities. However, the models 

were built to transform negative values to a value of zero because input distributions 
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describing probabilities could include negative values, e.g. normal distributions. The 

only area in which stress testing was possible covered the inputting of negative cost 

values. Originally, no mechanisms had been incorporated to highlight such errors, but 

it was recognised at this stage that such a device could prevent potentially serious 

errors and that such mechanisms were relatively simple to create. Within the DES 

model a single line of code was placed after the code that sampled each cost and 

utility value at the beginning of each trial. The code stopped the model if a negative 

value was sampled from any of the input distributions. In the Markov process, using 

the facilities in the Crystal Ball add-in, forecast windows were set up that highlighted 

the occurrence of a negative value at the end of each trial. Both mechanisms captured 

deliberate negative values accurately. 

7.3 Validation 

The objective of validation is to legitimise the output of a decision model by 

demonstrating that the model provides a credible representation of reality. As 

described in Chapter 3 the precision of the validation process for most economic HT A 

models is not likely to be high as the process of validation is hampered by a lack of 

credible 'real' world data. However, a number of economic analyses involving 

adjuvant therapies for early breast cancer were identified. These studies provided 

some indication of the case study models' comparability with previous research, 

which is one method for validation that has been suggested (see section 3.5.3). 

Details of the identified studies were presented in section 4.2.1. 

From the review of previous economic analyses (see section 4.2.1), only four studies 

were felt to provide relevant sources of comparison. Indeed, data describing survival, 

rather than economic outputs, were employed from one of the economic studies 

because the cost data was so weak [Messori et ai, 1996]. The remaining studies were 

excluded for various reasons. One of the cost analyses was omitted from the 

validation process due to the large number of uncertainties around the estimated costs 

[Legorreta et al, 1996], whilst the Australian economic evaluation was excluded 

because the patient group was ill-defined [Glasziou and Haas, 1994]. The study only 

available as a conference abstract did not define their patient group and was also 

excluded from the validation process [Selke et ai, 1998]. In addition to the data 
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derived from economic studies, survival estimates from the models were also 

validated against estimates from clinical papers. In the case study models, survival 

was determined by combinations of the length of DFI, the length of remission and 

survival from the three metastatic sites. Straight survival data were not inputted into 

the model, so any available survival data could be compared to the life years predicted 

by the model to validate this aspect of the model. 

The most reliable data of this fonn was accessed from a series of meta-analyses 

prepared by the early breast cancer trialists group [EBCTCG, 1992; EBCTCG, 1998a: 

EBCTCG, 1998b]. The internal reliability of the meta-analytic data was high but 

several problems remained. Firstly, survival data were only presented for the first 10 

years from the point of diagnosis so only the first 10 years of the ABC models could 

be validated. Secondly, survival curves were not presented for combination therapies, 

such as tamoxifen and chemotherapy and the survival data presented included all 

patients receiving the therapy of interest compared to all patients not receiving the 

therapy. F or example, comparisons were stated as 'tamoxifen versus no tamoxifen', 

whereby trials reporting tamoxifen and chemotherapy versus chemotherapy were 

included alongside trials comparing tamoxifen versus no to adjuvant therapy. More 

usefully, the meta-analyses presented reduction ratios for annual rates of mortality for 

a wide range of treatment comparisons, including tamoxifen and chemotherapy versus 

no treatment, and tamoxifen versus no treatment. Survival for these two patient 

groups was estimated by applying the appropriate reduction ratios to survival 

estimates for patients receiving no adjuvant therapy, which was informed using data 

from two identified studies that reported survival up to 12 years from diagnosis 

[Castiglione-Gertsch et aI, 1994; Cummings et aI, 1993]. The mean survival times are 

presented in Table 7.4, the method of calculation was as follows: 

1. Multiply the proportion of patients dying in each year by the year of death (-0.5): 

2. Multiply the proportion of patients remaining alive at the end of the period by 12; 

3. Swn the annual totals to estimate the mean number of years alive. 
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Table 7.4 Estimation of mean 12-year sunrival for alternative adjuvant 
therapy options 

Year No adjuvant therapy Tamoxifen alone (annual Tamoxifen-7-chemotherapy 
mortality reduction 20% vs. no (annual mortality reduction 30% 

treatment) vs. no treatment) 
Prop. Prop. Annual Prop. Prop. Annual Prop. Prop. 

Surviving dying survival surviving dying survival Surviving dying 
estimate estimate 

1 0.96 0.04 0.02 0.97 0.03 0.02 0.97 0.03 

2 0.89 0.07 0.10 0.91 0.06 0.08 0.92 0.05 

3 0.79 0.10 0.26 0.83 0.09 0.21 0.84 0.08 

4 0.67 0.11 0.40 0.73 0.10 0.33 0.74 0.09 

5 0.62 0.06 0.27 0.68 0.05 0.23 0.69 0.06 

6 0.57 0.05 0.26 0.64 0.04 0.23 0.64 0.04 

7 0.49 0.08 0.51 0.57 0.07 0.47 0.58 0.07 

8 0.44 0.05 0.35 0.52 0.04 0.32 0.53 0.05 

9 0.39 0.05 0.46 0.47 0.05 0.44 0.48 0.05 

10 0.34 0.05 0.45 0.43 0.05 0.44 0.43 0.05 

11 0.29 0.05 0.51 0.38 0.05 0.50 0.38 0.05 

12 0.29 0.01 0.07 0.37 0.01 0.08 0.37 0.01 

0.29 3.42 0.37 4.45 0.37 

Mean survival 7.08 7.81 

Table 7.5 Validation data and comparison results 

Test Output 

Stage II, 4-year costs* 
2 Stage II, lifetime costs* 
3 QAL Ys in patients receiving 

tamoxifen 
QAL Y s in patients receiving 
tamoxifen+chemotherapy 
Incremental cost per life year 

4 Survival in patients receiving no 
adjuvant therapy 
Survival in patients receiving 
chemotherapy 

Validation 
estimate 

2417 
9974 
6.47 

6.59 

28537 
13.17 

16.74 

MP estimates DES estimates 

Original Revised Original Revised 

4610 4181 4576 4161 

10154 9058 9895 8942 

8.26 8.26 8.4 8.4 

8.44 8.44 8.57 8.57 

5013 5254 5748 6012 

14.90 14.90 15.15 15.15 Survival in patients receiving 
tamoxifen 
Survival in patients receiving 15.70 15.70 15.91 15.91 
tamoxifen+chemotherapy 

5 Survival in patients receiving 7.81 8.58 8.58 8.43 8.43 

tamoxifent 

Survival in patients receiving 7.88 8.71 8.71 8.57 8.57 

Annual 
survival 
estimate 

0.01 
0.08 
0.21 
0.33 
0.26 
0.23 
0.45 
0.34 
0.43 
0.45 
0.50 
0.13 
4.46 
7.88 

tamoxifen+chemotherapy t 
Test sources: I [Wolstenholme and Whynes, 1998], 2 [Will et al, 1998], 3 [Hillner and Smith, 1992], 4 [Messori et 
al. 1996], 5 [Castiglione-Gertsch et ai, 1994; Cummings et ai, 1993]. . . . 
The estimates presented in the foreign studies were converted to UK sterhng usmg the health purchasmg power 
parity, all costs were up rated to year 2000 values using the health services index . 
• revised to subtract costs associated with diagnosis and primary surgery. 
t mean survival at 12 years from diagnosis. 
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The validation data and results are presented in Table 7.5, discount rates and length of 

follow-up were altered within the ABC models to match those employed in the 

identified studies. The similar estimates produced by the Markov process and the 

DES model implied that the remaining variation was an artefact of sampling variation. 

The original estimates refer to the estimates derived from the models without any 

modifications, whilst the revised estimates resulted from the changes made as a result 

of the validation process, as described below. 

Comparing the models' original outputs with each other it was apparent that the 

Markov process estimated lower outputs than the DES model which was caused by , . 

differences in the estimated time spent in remission following a locoregional relapse. 

The identified data describing this parameter were in the fonn of disease free survival 

(DFS) curves, in which a proportion of patients remained alive at the end of the 

follow-up periods. It was not possible, therefore, to estimate mean DFS precisely. 

The DES model facilitated a more accurate representation as the survival curve data 

could be applied to each patient over the initial 11 years in the state, after which time 

age-specific mortality rates in the general population were applied to those patients 

remaining disease-free. Such methods could not be applied to patients within the 

Markov process because the model could not note when individual patients entered 

the state and a constant probability rate had to be applied to all patients within the 

state. Time dependency within a Markov process may only be applied from the 

starting point in the model and remission following a locoregional relapse was not a 

starting state. Initially, the median DFS was employed as a proxy for mean DFS but 

the distribution of DFS was highly skewed and the median greatly underestimated the 

mean. On the basis of the validation process mean DFS were estimated on the basis 

of a common cut-off length of remission for those patients remaining disease-free at 

the end of each studies follow-up. 

In the comparisons of the models' outputs with published sources Test 1 showed that 

the ABC models estimated far higher costs than the retrospective UK-based study 

[Wolstenholme and Whynes, 1998]. No obvious data-related differences were 

apparent, no data on the resource use or unit costs associated with different events 

were presented, or the proportion of patients undergoing any of the included events, 

though it was noted that the cost estimates were based on only 13 patients. The 
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immediate conclusion of exaggerated cost estimates was tempered by Test 2, in which 

a Canadian study predicted lifetime treatment costs that were roughly similar to those 

produced by both case study models [Will et aI, 1998]. However. the Canadian study 
~ ~ 

included costs associated with the administration of radiotherapy following primary 

surgery in the Canadian study. Without such costs the Canadian study would have 

produced substantially lower cost estimates. 

The conclusion drawn from this section of the validation process was that some of the 

costs assumed in the case study models were too high. It appeared that the costs 

associated with both interventions might be overestimated, so the input data 

describing the cost of relapses were critically reviewed. The initial assumptions 

regarding the treatment of relapse are described in section 5.4.4.4. These costs had 

been estimated using mainly published guidelines on the course of treatment for such 

patients. Empirical data were only used to inform the frequency of hospital contact 

[Hurley SF et aI, 1992]. A major component of the assumed cost of treating 

metastatic relapses covered the cost of chemotherapy, which had been assumed to 

continue from the point of diagnosis to death. It was felt that this area was the most 

likely to be exaggerated. To improve the understanding of the administration of 

chemotherapy in practice, data from eight sets of deceased patient notes on treatment 

following diagnosis with recurrent breast cancer were inspected. The review of the 

notes indicated that the assumptions made with respect to the treatment of 

locoregional relapse were broadly correct, but that the assumed use of chemotherapy 

in patients with metastatic relapse was certainly over-estimated. The estimation of the 

monthly costs associated with metastatic disease was revised in line with reduced use 

of chemotherapy. The details, and the resulting cost estimates were described in 

Chapter 5. The revised validation estimates are presented alongside the original 

estimates in Table 7.4. The revised analysis did not aim to match the validation 

estimates due to the inconsistencies in these data discussed above, but rather to make 

the ABC estimates appear more realistic. 

In Test 3, the ABC models estimated higher estimates of life years and QAL Ys 

gained than estimated by HiBner and Smith [1992]. This difference was possibly due 

to the assumptions made with respect to the continued occurrence of relapses in both 

patient groups. The current study used survival curves derived from the literature 
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review in both models that tailed off to a relapse rate of 0 from year 15 onwards, 

whereas the US group assumed a constant probability of recurrence for the duration of 

the model (4% in the baseline). In addition, the incremental cost per lifeyear gained 

was significantly lower in the ABC models than in the Markov process used by 

HiBner and Smith. The QAL Y differences between the treatment groups were 

similar, which indicated that the difference in costs between the treatment groups was 

larger in the US-based study. Looking at the inputted costs it was clear that the costs 

associated with the tamoxifen+chemotherapy treatment group were higher in the 

published study. For example, the average cost per cycle of chemotherapy was 

estimated at £500 (£285 in the case study evaluation), whilst the average cost of major 

toxicity was inputted as almost £5000 (c.£2000 in the case study evaluation). No 

toxicity was assumed for the tamoxifen alone arm in the US study. Allowing for the 

differences between the two studies it was difficult to refute the validity of the ABC 

models on the basis of these economic comparisons. 

Test 4 compared the ABC models' outputs with the full survival estimated by Messori 

et al [1996], in which the ABC model appears to slightly underestimate the published 

survival times. However, the comparisons undertaken in Test 5 showed the ABC 

models overestimating 12-year survival [Castiglione-Gertsch et al, 1994; Cummings 

et aI, 1993]. The mid-placing of the ABC estimates is an encouraging validation 

result. 

An additional issue raised in the validation process concerned the need to assess 

model outputs for periods less than the full running time of the model, i.e. for 4 and 

12 years in order to provide an appropriate basis for comparison with the identified 

data used to validate the model. After specifying the possible avenues of validation, it 

soon became apparent that significant modifications to the programming code within 

the DES model were necessary to facilitate the collection of output data for periods 

less than the full lifetime of patients. This process is described in more detail in the 

comparison of Markov process and DES models (Chapter 9). 
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7.4 Conclusions 

This Chapter described the final stages in the implementation of the decision models 

prior to actual experimentation. Verification and validation are necessary elements of 

the modelling process as they give the model user confidence in the results emanating 

from the experimentation phase. 

The process of verification applied to the case study evaluation was adapted from 

methods described in the general operations research literature [Bratley et al, 1987]. 

Three categories of verification covered different aspects of the model's operations. 

Firstly, the verification of logic was dependent on the specification of simple input 

data for which the expected output could be determined manually, which ensured that 

the internal mechanisms of the models were working correctly. The explicit 

presentation of three classes of logic testing - clinical parameters, costs and utility 

values, and discounting - provided ample evidence of the analyst's attention to detail. 

The verification of logic highlighted several issues of interest relating to the 

implications of formatting data to populate the models and to differences in the 

mechanisms between Markov processes and DES models. Firstly, the implications of 

assuming a constant rate of occurrence when converting data describing annual 

probabilities of experiencing an event to monthly probabilities were identified. To 

test the logic of the models large annual probabilities were inputted and the models' 

outputs were consistently lower than the expected results, which had been estimated 

assuming that the mean event within a year would occur at six months. On closer 

inspection it transpired that this effect was not significant for the annual probabilities 

inputted to the ABC models. However, such effects may be important in other 

treatment areas. Secondly, during the logic testing of discounting within the two 

models the Markov process produced lower than expected estimates for scenarios that 

included time within a metastatic site. This result was due to the necessary 

conversion of set survival times to constant probabilities that spread the occurrence of 

events over a longer period. 

The second form of verification tested the sensitivity of the models by comparing 

expected and observed effects on the variation in the models' outputs caused by the 
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uncertainty in the values of different input parameters. The sensitivity tests provided 

an alternative method of verification that complimented the verification of logic. A 

particular advantage of sensitivity testing was the improved understanding about the 

functioning of the models that it provided. In the context of building two separate 

decision models to evaluate the same interventions, it also confirmed that the two 

decision models were producing consistent outputs. The final form of verification, 

stress testing, provided assurance that the models would recognise nonsensical input 

data, alerting the analyst to data entry errors. 

The technique adopted in this thesis to validate the case study models identified a 

wide range of sources of data that could be compared to any of the outputs from the 

models. The corresponding outputs from the models were compared to the identified 

data and reasons for any differences between the compared outputs were sought in the 

context of methodological and data differences between the case study evaluation and 

the identified studies. The process proved to be beneficial as it highlighted an area of 

the model that appeared to be inconsistent with the published data. Further data were 

collected on the costs associated with breast cancer relapses and revisions were made 

to some of the cost input data, which improved the comparability of the estimated 

data with the published sources. 

The process of validating separate models that were built to evaluate the same 

interventions also produced benefits, as demonstrated by the identification of the 

inaccurate use of median estimates of disease-free survival (DFS) as proxies for mean 

DFS in the Markov process. Better estimates of mean DFS were applied to the 

model, which improved the comparability of the different models. The 

methodological issues raised in this Chapter are potentially important and are 

discussed in more detail in Chapter 9, in the context of the experimentation with the 

case study models. The full and explicit process for verifying and validating the case 

study models identified a range of errors in the construction of the models and 

inaccuracies in the representation of the identified data, it also provided great insight 

into the functioning of the models. 
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Chapter 8 Case study: results of experimentation 

8.1 Introduction 

The results of the experimentation undertaken with the two decision models are 

presented in this Chapter. There are two main sections. Firstly, cost-effectiveness 

results are presented in order to inform the allocation of resources between the two 

therapy options on the basis of the available information. F or each decision model, 

three sets of results were derived relating to the alternative methods for assembling 

input distributions for stochastic analyses (see section 3.4.3.2). To recap, the three 

methods specified theoretical distributions for alternative categories of input parameters 

(using the empirical data to inform the distribution parameters), used weighted 

empirical data directly, and specified fitted distributions based on the weighted 

empirical data. The results from the two models are presented in separate sections, 

within each section the results derived from the three methods for specifying probability 

distributions are presented. 

The second method for experimentation analyses the value of information (Vol), where 

the objective was the estimation of the value of securing more accurate data on the 

values of the input parameters. The presentation of the results includes a commentary 

on the stages of experimentation, and the respective results from the two models are 

presented together. 

The policy implications of the differential results are discussed in the final section of 

this Chapter. whilst the explanation for the differences is presented in the following 
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Chapter. Discount rates of 6% for resources and 1.5% for QAL Y s were applied to all 

the analyses undertaken, in accordance with Treasury guidelines [H}.,1 Treasury, 1997]. 

Life years were not discounted as they were not incorporated into a cost-effectiveness 

ratio. 

8.2 Results from alternative methods for assembling input distributions 

In Chapter 3, three alternative methods for specifying input distributions were 

described. Two methods involved assembling weighted datasets to describe the 

available data, the datasets were either inputted into the model directly or inputted into 

statistical fitting software that fitted the data to the best fitting distributions, which were 

then entered into the model. The third method employed distributions that were 

theoretically derived according to the characteristics of the alternative categories of 

parameters within the model. The available data were used to estimate the appropriate 

parameters for the chosen distributions. The results produced by the two models using 

the three methods for assembling the input parameter distributions are presented in the 

following sections. 

8.2.1 Results from the case study Markov process 

The analysis for each method for specifying input distributions involved a total of 

10,000 runs, each sampling an alternative set of parameter values from the relevant 

input distributions. Table 8.1 presents the mean estimates of costs, QAL Ys and life 

years for each approach to assigning input distributions. Employing the mean of the 

three data methods as the baseline point estimate for each output parameter, the Markov 

process estimated that the lifetime treatment costs between the two therapies differed by 

£2,130 and the difference in QAL Ys was 0.53. The mean life expectancy for a patient 

receiving tamoxifen and chemotherapy was 15.70 years, and for tamoxifen alone it was 

14.90 years. The mean incremental cost-effectiveness ratio (lCER) was calculated 

using the 'ratio of the means', rather than the 'mean ratios' [Stinnett and Paltiel, 1997]. 

Based on these estimates the ICER was £3,988. 
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Table 8.1 Mean costs, QAL Y s and life years associated with the two adjuvant 
therapies estimated using three alternative methods of specifying input 
distributions 

Costs QALYs Life years 
Tamoxifen and chemotherapy 
Theoretical £8,718 12.01 15.74 
Fitted £8,893 11.56 15.63 
Empirical £8,862 11.62 15.72 
Mean* £8,824 11.73 15.70 
Tamoxifen alone 
Theoretical £6,709 11.41 14.86 
Fitted £6,721 11.07 14.90 
Empirical £6,653 11.11 14.94 
Mean* £6,694 11.20 14.90 
* Mean values estimated by dividing sum of theoretical, fitted and empirical estimates by three. 

The extreme closeness of the models' outputs using the fitted distributions and the 

empirical data directly was as expected and provided further proof of the correct 

workings of the models, though the results varied little between all three input data 

analysis methods. The mean QAL Y s associated with tamoxifen and chemotherapy 

displayed the largest percentage range between the three (taking the mean as the base) 

of just under 4%, the corresponding range for tamoxifen alone was just over 3%. None 

of the life year estimates varied by more than 1 %, whilst the estimates for costs varied 

by 1 % and 2% for tamoxifen alone and tamoxifen and chemotherapy, respectively. 

Table 8.2 presents the mean estimates of the leERs for tamoxifen and chemotherapy 

versus tamoxifen alone, as well as details of the percentiles derived from the different 

methods of specifying probability distributions. The largest leER was derived from the 

fitted distributions data, which estimates an leER of £4,473, whilst the data based on 

theoretical distributions estimated the lowest leER of £3,334 - a range of almost 30% 

around the mean I CER. 

Table 8.2 Incremental cost-effectiveness ratios estimated using three 
alternative methods of specifying input distributions 

Method Mean ICER 2.5th percentile 97.5th percentile 95th percentile 

Theoretical £3,334 £452 Tamoxifen dominates Tamoxifen dominates 

Fitted £4,473 £248 Tamoxifen dominates Tamoxifen dominates 

Empirical £4,295 £314 Tamoxifen dominates Tamoxifen dominates 
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Figure 8.1a Observations of the cost and QALY differences plotted on the cost-effectiveness plane derived 
from the case study Markov process using theoretically specified input distributions 
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Figure 8.tb Observations of the cost and QALY differences plotted on the cost-effectiveness plane derived 
from the case study Markov process using distributions fitted to the weighted empirical data 
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Observations of the cost and QAL Y differences plotted on the cost-effectiveness plane derived 
from the case study Markov process using weighted empirical data directly 
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The observations of costs and QAL Y s for each data method have been plotted 

separately on cost-effectiveness planes in Figures 8.1a, 8.lb and 8.lc. These plots show 

that the majority of observations were located in the north east quadrant which 

indicates increased costs and effects associated with tamoxifen and chemotherapy. A 

sizeable minority of the plots derived from specifying fitted distributions and using the 

empirical data directly indicated increased costs and lower effects whilst very few , .-

observations revealed lower costs associated with tamoxifen and chemotherapy. The 

'credible interval' percentiles, presented in Table 8.2, show that all the 2.5 th percentiles 

were under £500. At the upper end, the 95 th percentiles showed tamoxifen alone 

dominating tamoxifen and chemotherapy according to all three data methods. The 

threshold percentiles at which tamoxifen alone no longer dominated were 9.2% for the 

theoretical distributions, and 34% for both the fitted distributions and empirical data. 

From the vertical axIS, the first, second, and third crosses presented in Figure 8.2 

represent the values of a QAL Y at which the sum of the incremental net benefits 

became positive for the theoretical, empirical, and fitted distribution data sources, 

respectively (see section 3.6.2, pg60). From Figure 8.2 it can be seen that the sum of 

the net benefits became positive at values of an additional QAL Y that were close to the 

point at which the probability of tamoxifen and chemotherapy being the cost-effective 

therapy reached 0.5. However, the slight skewness apparent in each of the distributions 

was in opposite directions for the data derived from weighted datasets compared to the 

theoretical distributions. FO.r the theoretical distributions-based data the probability of 

being cost-effective reached 0.5 (median) at a lower value of an additional QAL Y than' 

the sum of the net benefits reached zero (mean), which meant that the distribution was 

left-skewed. Basing the resource allocation decision on the probability of tamoxifen 

and chemotherapy being cost-effective may lead to the inappropriate allocation of 

resources to chemotherapy. Conversely, using the other methods of specifying input 

distributions, which produced right-skewed distributions of net benefits, resource 

allocations based on the probability of tam ox if en and chemotherapy being cost-effective 

may wrongly withhold resources from chemotherapy. 

The remaining portion of the CEAc curve shows that the probability of positive net 

benefits associated with the empirical data directly and the fitted distributions did not 

rise above 0.67. The corresponding probability for the theoretical probability 
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distributions was around 0.9. These results follow from the proportion of observations 

in which tamoxifen alone was dominant. 

8.2.2 Resultsfrom the case study DES model 

The results produced by the DES model using the three methods of specifying 

probability distributions are presented in this section. The following section compares 

the results from the Markov process and the DES model. 

2,500 runs for each method of specifying input distributions informed the analysis of the 

DES model. For each run 10,000 patients receiving tamoxifen and chemotherapy, and 

tamoxifen alone were sent through the model. Table 8.3 presents the mean results for 

each approach to assigning input distributions. Using the mean of the three data 

methods to represent the baseline point estimate of cost-effectiveness the lifetime 

treatment costs differed between the two therapies by £2,176 and the difference in 

QALYs was 0.51. Based on these estimates the 'ratio of means' leER was £4,226. The 

mean life expectancy for a patient receiving tamoxifen and chemotherapy was 15.91 

years, whilst a patient receiving tamoxifen alone could expect to live for 15.15 years. 

The aggregate costs, life years and QAL Y s, estimated by the three data methods, for the 

alternative therapies varied by less than 5% from the mean. 

Table 8.3 Mean costs, QAL Y s and life years from the DES model associated 
with the two adjuvant therapies estimated using three alternative methods of 
specifying input distributions 

Costs QALYs Life years 

Tamoxifen and chemotherapy 
Theoretical £9,146 12.14 16.01 

Fitted £9,439 11.63 15.82 

Empirical £9,473 11.71 15.91 

Mean* £9,353 11.83 15.91 

Tamoxifen alone 
Theoretical £7,115 11.56 15.16 

Fitted £7,182 11.17 15.13 

Empirical £7,233 11.22 15.18 

Mean* £7,177 11.31 15.15 

• Mean values estimated by dividing sum of theoretical, fitted and empirical estimates by three. 

The mean leERs estimated using the different data input analysis methods are presented 

in Table 8.4. The largest leER was derived using the fitted distributions data (£4,869), 
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whilst the data based on theoretical distributions estimated the lowest leER (£3,483) - a 

range of almost 33% around the mean I CER. 

Table 8.4 Incremental cost-effectiveness ratios from the DES model estimated 
using three alternative methods of specifying input distributions 

Method Mean ICER 2.5th percentile 97.5th percentile 95th percentile 
Theoretical £3,483 £584 Tarnoxifen dominates Tamoxifen dominates 

Fitted £4,869 £288 Tarnoxifen dominates Tamoxifen dominates 

Empirical £4,498 £325 Tarnoxifen dominates Tamoxifen dominates 

The differences in the observations of costs and QAL Y s for each data method are 

plotted on cost-effectiveness planes in Figures 8.3a, 8.3b, and 8.3c. The majority of 

observations were located in the north east quadrant for each data method, though a 

significant minority of observations derived from the fitted distributions and the 

empirical data direct were located in the north west quadrant, which indicated tamoxifen 

alone dominating tamoxifen and chemotherapy. Only a few observations portrayed 

tamoxifen and chemotherapy as the lower cost option. The 'credible interval' percentiles 

presented in Table 8.4, show that all the 2.5th percentiles were under £600. At the upper 

end, the 95th percentiles showed tamoxifen alone dominating tamoxifen and 

chemotherapy according to all three data methods. The threshold percentiles, at which 

tamoxifen alone no longer dominated were 10.8%, 33.6% and 34.6% for the theoretical 

distributions, fitted distributions and empirical data, respectively. 

The CEAc curves derived from the DES model are presented in Figure 8.4. The 

probability of tamoxifen and chemotherapy being cost-effectiveness passed the 0.5 

probability threshold at a value of a QAL Y of around £3,400, using the theoretically 

specified distributions, and between £4,500 and £5,000 using the alternative data 

methods. The distributions of the net benefits appeared to be slightly skewed for two of 

the data methods - left skewed for the theoretical distributions, and right skewed for the 

fitted distributions. The distribution of net benefits derived from the direct use of the 

empirical data displayed an extremely close fit to a normal distribution. The remaining 

portion of the CEAc curve shows that the probability of positive net benefits associated 

with all the data methods levelled out at around 0.88 based on the theoretical 

distributions, and 0.65 for the results derived from the fitted distributions and the direct 

use of the empirical data. 
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Cost and QAL Y differences plotted on the cost-effectiveness plane derived from the case study DES 
model using theoretically specified input distributions 
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Figure 3b Observations of the cost and QAL Y differences plotted on the cost-effectiveness plane derived from 
the DES model using distributions fitted to the weighted empirical data 
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Observations of the cost and QAL Y differences plotted on the cost-effectiveness plane derived from 
the DES model using weighted empirical data directly 
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8.3 Comparison of Markov process and DES results to inform immediate resource 

allocation 

The model outputs derived from the two modelling techniques, using all three methods 

of specifying probability distributions, are brought together in Table 8.5. 

Table 8.5 Comparison of the model outputs from the case study Markov 
process and DES model 

Costs QALYs Life years ICERs* 
DES model Markov DES model Markov DES model Markov DES model Markov 

process process process process 
Tamoxifen and chemotherapy 
Theoretical £9,146 £8,718 12.14 12.01 16.01 15.74 £3,483 £3.334 

Fitted £9,439 £8,893 11.63 11.56 15.82 15.63 £4,869 £4,473 

Empirical £9,473 £8,862 11.71 11.62 15.91 15.72 £4,498 £4,295 

Mean £9,353 £8,824 11.83 11.73 15.91 15.70 £4,226 £3,988 

Tamoxifen alone 
Theoretical £7,115 £6,709 11.56 11.41 15.16 14.86 

Fitted £7,182 £6,721 11.17 11.07 15.13 14.90 

Empirical £7,233 £6,653 11.22 11.11 15.18 14.94 

Mean £7,177 £6,694 11.31 11.20 15.15 14.90 
* The mean ICER is calculated as the ratio of the difference in mean costs and the difference in mean QAL Y s, rather 
than the mean ratio of the ICERs. 

The mean cost, QAL Y, and life year estimates varied between the two modelling 

techniques, but in the same direction - all three outputs were higher in the DES model. 

The differences in the cost estimates were between £406 and £611. The QAL Y 

estimates varied by between 0.07 and 0.15 QAL Ys, though for this output tamoxifen 

alone was subject to the greater differences. These results led to small divergences in 

the leERs reported by the two models, though the maximum difference was under. 

£400. The credible intervals derived from the two models, presented in the sections 

above, were also similar. None of the 2.5 th percentiles exceeded £600 and the 95
th 

percentiles all reported tamoxifen alone dominating tamoxifen and chemotherapy. The 

reasons for these differences are explored in section 9.2. 
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8.4 Value of information analysis 

The results presented in the previous sections infonned the decision regarding the 

provision of the alternative therapies given the available data. An additional objective 

of an economic HT A decision model may involve the valuation of securing more data 

on the values of the input parameters. The following sections present the results of both 

the Markov process and the DES model with respect to valuing the collection of further 

information to inform the resource allocation decision. Differences in the respective 

results are highlighted, though their implications are discussed in the conclusions 

section of this Chapter, and the causes of variation are explained in the following 

Chapter. 

The Vol is partly determined by the value to the decision-maker of an additional unit of 

effect - in this evaluation the value of a QAL Y. If the relevant value is unknown the 

Vol should be re-estimated for a range of non-negative values. For the purpose of the 

case study evaluation a Vol analysis was undertaken for a single baseline value of a 

QAL Y, which enabled an understanding of the approach, as well as facilitating a 

comparison of the two modelling techniques. The value of an additional QAL Y was 

assumed to be £5,000 - a value chosen to demonstrate different facets of the technique. 

rather than an attempt to accurately reflect decision-makers beliefs. Chapter 3 contains 

a full description of techniques adopted to analyse the value of infonnation (VoJ). 

Summaries of the three phases in the estimation of the Vol - estimating the expected 

value of perfect information (EVPI), the expected value of sample infonnation (EVSI) 

and the expected net benefit of sampling (ENBS) - are provided alongside the results 

presented in the following sections. 

8.4. 1 Estimating the expected value of perfect information (EVP 1) 

From the baseline analysis presented in the previous sections, at a value of an additional 

QAL Y of £5,000 tamoxifen and chemotherapy had the highest probability of positive 

incremental net benefits, but there was a probability that tamoxifen alone was the cost­

effective therapy option. The costs of uncertainty (the EVPI) are the expected benefits 

of providing tamoxifen alone in the proportion of observations in which tamoxifen 

alone displayed positive incremental net benefits. 
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The EVPI per patient, also known as the EVPlep;sode' describes the costs of uncertainty 

in applying the resource decision to a single patient. The process for calculating the 

EVPlePisode is portrayed in Table 8.6. For example, the results derived from the Markov 

process for the theoretically defined probability distributions showed that there was a 

0.346 probability that tamoxifen alone was the cost effective therapy option at a value 

of an additional QAL Y of £5,000. The mean net benefits per patient receiving 

tamoxifen alone minus the mean net benefits associated with tamoxifen and 

chemotherapy was £619.59 for the observations in which tamoxifen alone displayed 

higher net benefits. Without perfect information, tamoxifen and chemotherapy would 

be provided to all patients, but with perfect information the decision-maker could 

identify the observations in which tamoxifen alone was the cost-effective option. The 

EVPlePisode was estimated as the net benefits lost in the proportion of cases in which 

tamoxifen alone was observed to be the cost-effective therapy option (£619.59) 

multiplied by the proportion of cases in which tamoxifen alone was the cost-effective 

therapy option (0.346), which was £214.19. 

Table 8.6 Calculating the EVPlep;sode for both ABC models* 

Markov process 

A. Tamoxifen alone mean net benefits 
B. Tamoxifen and chemotherapy mean net benefits 
C. Incremental net benefits (A-B) 
D. Probability tamoxifen alone cost effective 

EVPlepisode (CxD) 

DES model 

A. Tamoxifen alone mean net benefits 
B. Tamoxifen and chemotherapy mean net benefits 
C. Incremental net benefits (A-B) 
D. Probability tamoxifen alone cost effective 

EVP I episode (CxD) 

Observations reporting positive incremental net 
benefits for Tamoxifen alone 
Theoretical Fitted 
distributions distributions 
£17,722.76 £24,774.89 
£17,103.35 £22,484.60 
£619.59 £2,290.29 
0.346 0.486 
£214.19 £1,113.77 

Theoretical 
distributions 
£18,542.87 
£17,877.73 
£665.13 
0.3594 
£239.08 

Fitted 
distributions 
£25,350.01 
£23,019.75 
£2,330.25 
0.4998 
£1,164.74 

Empirical data 
direct 
£24,876.76 
£22,607.40 
£2,269.36 
0.487 
£1,106.09 

Empirical data 
direct 
£24,957.33 
£22,589.88 
£2,367.45 
0.4891 
£ 1,157.92 

• The value of an additional QAL Y is assumed to be £5,000. 

The estimates of the EVPlepisode emanating from the DES model are very similar to the 

results from the Markov process, not only in the relationship between the different 

methods of specifying probability distributions, but also in terms of the magnitude of 
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the results. However, the EVPlep;sode estimated using the input data analysis methods 

based on the creation of weighted datasets was considerably larger than the EVP I 
episode 

estimated using the theoretical distributions. At a value of an additional QAL Y of 

£5,000, the probability oftamoxifen and chemotherapy being the cost-effective therapy 

option is around 0.51 using the weighted datasets, which maximises the costs of 

uncertainty. 

The prospective decision informed by the collection of additional data will not be 

limited to a single patient, but the whole population of eligible patients [Claxton, 1999]. 

The EVP I po pula/ion is the EVPI for the relevant patient population, which can be 

estimated by multiplying the EVPlep;sode by the eligible patient population over the 

period for which the allocation decision is expected to remain, discounted at an 

appropriate rate (see section 3.6.3.1). There are around 33,000 new cases of breast 

cancer diagnosed annually in the UK [Cancer Research Campaign, 1998]. Roughly 

20% of the new cases involve postmenopausal women with node positive (stage II) 

breast cancer, so the annual incidence for the patient group evaluated in this evaluation 

was estimated as 33,000 x 0.2 = 6,600. The specification of the number of years over 

which the research will inform the decision-making process was primarily subjective. 

In this treatment area, five years appeared to be a reasonable estimate of the time 

between the availability of new therapy options and was employed as the baseline value. 

Sensitivity analyses were undertaken to test the impact of the assumed length of 

usefulness of the results of the prospective research. 

The relationships between the value of a QAL Y and the EVP I popula/ion are presented in 

Figure 8.5 for the alternative methods of specifying probability distributions for both 

ABC models. The first result to note is that the two models produced very similar 

curves for the respective methods for specifying probability distributions. Looking at 

the alternative input data analysis methods the curves derived from the theoretical 

distributions show that the EVPI increased steeply from a value of a QAL Y of £0 to 

£4 000 which was around the value at which tamoxifen alone had the highest , , 

probability of being cost-effective. At the point at which tamoxifen and chemotherapy 

became the more likely cost-effective option the EVPI fell successively until the value 
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of a QALY was £19,000, at which point the EVPI resumed an upward path. This 

relationship demonstrates that the EVPI is not necessarily higher with larger values of 

an additional QAL Y because the probability of choosing the 'wrong' therapy option is 

likely to decline at higher values, which may be a stronger factor on the EVPI than the 

value of an additional QAL Y. At extreme values of an additional QAL Y, where the 

probability of tamoxifen and chemotherapy being cost-effective levels out, the EVPI 

rose continuously. 

The EVP I popu/alion estimated using the fitted distributions and the empirical data directly 

were substantially larger than the EVPI popuialion estimated using the theoretically 

specified probability distributions. The increased magnitudes were due to differences in 

the level of certainty that tamoxifen and chemotherapy was the cost-effective therapy 

option. Using the theoretical distributions it was more likely that tamoxifen and 

chemotherapy was cost-effective. Using the fitted distributions and the empirical data 

direct the probability of tamoxifen and chemotherapy being cost-effective never rose 

above 0.7. This meant there was always a sizeable probability that tamoxifen alone was 

the cost-effective option, whereas the probability of tamoxifen and chemotherapy being 

cost-effective using the theoretical distributions reached 0.8 by a value of a QAL Y of 

£7,000. 

Similar methods for the analysis of the EVPI for specific input parameters, or groups of 

parameters, can be applied, whereby the model is analysed with only the parameters of 

interest being described stochastically. The estimated EVPI is then attributed to the 

stochastic parameters. The segregated analysis of particular parameters can be extended 

to the full Vol methodology, but only an aggregate Vol analysis is presented in this 

Chapter because it provides a sufficient basis for understanding the methodology, as 

well as for the comparison of the two modelling techniques. 
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8.4.2 Estimating the expected value of sample information (EVSJ) 

The EVSI is the difference in the EVPI estimated using the baseline input data and the 

EVPI estimated using alternative input distributions that reflect the assumed impact of 

additional data. The additional information reduces the variation described in the input 

distributions, which in turn reduces the EVPI because the variation in the distribution of 

the net benefits is also decreased. 

Updating the input probability distributions to reflect an assumed decrease in the 

uncertainty around the values of the input parameters is a key element in the estimation 

of the EVSI. Any form of distribution may be updated using the Bayesian statistical 

software - WinBUGS - but the operation of updating data using this method is not fully 

developed, though work is ongoing (personal communication: Liz Fenwick). The 

development of methods for updating input probability distributions would shift the 

focus of this thesis away from the central aim, which is the comparison of alternative 

modelling techniques. Therefore, the estimation of the EVSI presented in this thesis 

was undertaken using only the theoretically defined input distributions. Simple 

formulae for updating these probability distributions were available that used 

established knowledge about the relationships between conjugate families of probability 

distributions [Barnett, 1999]. As discussed in Chapter 3, a reasonable assumption about 

the mean value of the additional data for any parameter is that they are most likely to 

have the same mean values as the data used to populate the baseline model. Details of 

the process for updating the probability distributions are provided in Appendix 5. 

To establish the relationship between the size of a prospective study and the reduction in 

the costs of uncertainty the EVPI was re-estimated for successively increasing 

prospective samples until the optimal size was determined, i.e. the net benefits of 

sampling started to decline. Each patient entered a prospective trial as a node positive, 

postmenopausal patient with early breast cancer. Within each therapy group the 

proportions of patients who would provide data on each of the health states within the 

model was estimated using the baseline point estimates describing the probabilities of 

experiencing events. 
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The allocation of a prospective sample of patients between the two therapies may not be 

equal. Ideally, the optimal sample allocation between therapy options in a prospectiYe 

trial would be established by estimating the ENBS 'for every feasible allocation of each 

sample considered' [Claxton, 1999]pg355. However, to reduce the analytic burden in 

this evaluation a constant ratio of patients allocated to the alternative therapy options 

was estimated using Neyman's allocation to strata formula, which accounts for 

differential standard deviations and costs within separate strata (or in this case _ 

treatment arms). In this formula the standard deviations of the net benefits describe the 

variation between patients, which required the estimation of the first-order uncertainty 

associated with the point estimates for each input parameter. The estimation of first­

order uncertainty was possible using the DES model, but the Markov process was 

cohort based, which precluded the analysis of first-order uncertainty so the deviations 

from the net benefits associated with the two therapy options were assumed to be equal. 

The marginal sampling costs were obtained from the ABC trial and included the 

average cost of recruiting each patient into the trial, which was based on a grade F nurse 

spending an hour explaining the trial to each patient and a successful recruitment rate of 

1 in 3 patients (£ 150). Additional treatment costs were attached to patients receiving 

tamoxifen and chemotherapy, which were estimated as the baseline difference between 

the two therapies (£1,225). The above data were applied to Neyman's allocation to 

strata formula (see section 3.6.3.2) to estimate a constant ratio of sample allocation 

between tamoxifen alone and tamoxifen and chemotherapy for the Markov process: 

n ·n = 1I.J15O . 1/~1,375 =0.752:0.248 
1· 2 (1/ Mo) + (l I .jl,375) . (l I AA) + (l I ~1,375) 

and for the DES model: 

n ·n = 47656/.J15O : 48586/~1,375 =0.748:0.252 
1· 2 (476561.J150) + (485861.jI,375) (476561.J150)+(48586/~1,375) 

Table 8.7 presents the re-estimated EVPI associated with alternative prospective 

samples, and the related EVSI. Each re-analysis of the Markov process was infonned 

bv 10 000 runs, whilst each analysis of the DES model comprised 1,000 runs. The . , 
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results show that 650/0 and 690/0 of the EVSI populalion derived from a prospectiYe sample 

of 2,000 patients were provided by a sample of only 500 patients using the Markov 

process and the DES model, respectively. The magnitude of the EVSI J. were popu allan 

slightly higher using the DES model. 

Table 8.7 Calculating the EVSI I I· for both case study models popu a JOn 

Prospective 
sample 

Markov process 

EVP I episode EVSI episode EVSI populalion 

DES model 

EVP I episode EVSI episode 

o (baseline) £214.2 £239.08 

EVSI popula/101l 

100 £158.2 £55.9 £1,664,626 £216.5 £22.6 £686,394 
500 £116.2 £98.0 £2,946,781 £130.4 £108.7 £3,268,146 
1000 £90.4 £123.8 £3,737,909 £110.0 £129.1 £3,913,835 
1500 £72.6 £141.6 £4,282,003 £96.6 £142.5 £4,343,201 
2000 £64.7 £149.4 £4,533,611 £84.6 £154.5 £4,722,612 
2050 £63.6 £150.6 £4,568,562 £79.8 £159.3 £4,874,716 
2100 £63.5 £150.7 £4,575,442 £76.5 £162.6 £4,982.320 
EVSlepisode = BaselineEVPlepisode - Re-estimated EVPlepisode, EVSlpopulation = EVSlepisode.Patient population (29470). 
assumed length of usefulness of research is 5 years. 

Figure 8.6 illustrates the data graphically, plotting the EVSI against prospective sample 

sizes for both modelling techniques. Three curves are displayed to illustrate the effect 

of the assumed duration of applicability of the proposed research. The EVSI populatioll 

rose steeply at lower samples before starting to plateau towards prospective samples of 

around 2,000. The assumed use of the research clearly made a significant impact on the 

EVSI I. which varies by almost £5 million for a sample of 2,000 between an 
popu allan' 

assumed period of research use of 2 and 8 years. The curves reinforce the similarity 

between the results produced by the alternative models. 
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8.4.3 Estimating the expected net benefit of sampling (ENBS) 

The ENBS for each prospective sample size is the EVSI minus the cost of obtaining the 

additional sampling information. The cost of sampling includes the cost of setting up 

the study, and monitoring, analysing and disseminating the data collected. To specify 

increasing costs for larger sample sizes it was necessary to make an assessment of the 

fixed and variable costs associated with the trial. In addition, the cost of chemotherapy 

was subtracted from the EVSI on the assumption that chemotherapy would not be 

administered to this patient group in the absence of the trial. Fortunately, estimates of 

the relevant costs were available from the ABC trial, which is currently ongoing 

[UKCCR, 1993]. The Medical Research Council has funded this trial for a total of 10 

years and the fixed costs have been estimated at around £ 1.125 million. Applying these 

fixed costs, in addition to the marginal costs presented above, to the formula presented 

in section 3.6.3.3 estimates the total costs associated with any prospective samples: 

ENBS population = EVSI population - £ 1,125,000 - £ I50n - £304n 

Table 8.8 presents the previously estimated EVSI population alongside the additional 

sampling costs for alternative prospective samples in order to estimate the 

ENBS I· The DES model reported that net benefits were actually negative for a popu allon • 

prospective sample of 100 patients. Figure 8.7 plots the ENBS population against the 

respective sample sizes, again plotting curves for three assumed lengths of application 

for the proposed research. The assumed use of research had a major impact on the 

value of collecting further information. The baseline assumption of 5 years 

applicability indicated that the ENBS population was maximised at a prospective sample of 

around 2,050 patients using the Markov process and between 2,250 and 2,500 patients 

using the DES model. A similar result was observed for a length of research use of 8 

years. However, if the research influenced policy for only 2 years, the optimal sample 

size would be between 1,500 and 2,000 using the Markov process, and between 1,000 

and 1,500 using the DES model. 
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Table 8.8 Calculating the ENBS population for both ABC models 

Markov process DES model 
Size of EVSI population 

Sampling ENBS population EVSI population 
Sampling 

trial Cost 
E~VBS /. 

Cost popu al10n 

100 £1,664,626 £1,170,625 £494,001 100 £686,394 £1,170,625 -£484,231 
500 £2,946,781 £1,353,125 £1,593,656 500 £3,268,146 £1,353,125 £1,915,021 
1000 £3,737,909 £1,581,250 £2,156,659 1000 £3,913,835 £1,581,250 £2,332.585 
1500 £4,282,003 £1,809,375 £2,472,628 1500 £4,343,201 £1,809,375 £2,533,826 
2000 £4,533,611 £2,037,500 £2,496,111 2000 £4,722,612 £2,037,500 £2,685,112 
2050 £4,568,562 £2,060,313 £2,508,249 2250 £4,874,716 £2,151,563 £2,723,153 
2100 £4,575,442 £2,083,125 £2,492,317 2500 £4,982,320 £2,265,625 £2,716,695 
ENBSpopulation EVSlpopulation Sampling Cost 

8.5 Conclusions 

The results derived from experimentation with the two decision models have been 

presented and compared in this Chapter. The analyses compared the administration of 

tamoxifen and chemotherapy versus tamoxifen alone in a subset of breast cancer 

patients - postmenopausal women with node positive early breast cancer. Two broad 

objectives were addressed. Firstly, the question of whether to allocate resources to the 

provision of chemotherapy, given only the identified data, was investigated. Both case 

study models were evaluated three times to inform an immediate resource allocation 

decision, using alternative. methods for pooling and formatting the identified data into 

probability distributions. The second issue covered the analysis of stochastic decision 

models with the objective of valuing the collection of further data, using a Bayesian 

value of information analysis. This section describes the policy implications that could 

be drawn from the various results presented in this Chapter, a discussion of the potential 

causes of differences in the results derived from competing methodologies is presented 

in Chapter 9. 

Comparing the alternative input data analysis techniques the results derived from both 

models showed that the theoretical specification of probability distributions provided 

lower mean estimates of the cost per additional QAL Y from adding chemotherapy to 

tamoxifen. However, the maximum difference between the mean ICERs was only 

around £ 1,400 so the likelihood of alternative decisions being made on the basis of the 

mean results is small. However, if the level of uncertainty around the mean estimates 

was incorporated into the decision making process, the choice of input data analysis 

method could have a significant impact on the resource allocation decision. Comparing 
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the CEAc curves estimated by either model (Figures 8.2 and 8.4), it is clear that the 

results derived using the fitted distributions and the empirical data direct indicate far 

less certainty about the cost-effectiveness of tamoxifen and chemotherapy. These 

analyses showed that over 30 per cent of observations indicated that tamoxifen was the 

dominant strategy, whilst the corresponding percentage using the theoretical 

distributions was less than 10 per cent. Such uncertainty about the cost-effectiveness of 

the more expensive intervention could prevent the allocation of resources to 

chemotherapy, a decision that is more likely using the fitted distributions and the 

empirical data direct. 

Comparison of the results derived from the two models showed that the DES model 

consistently estimated higher values for both costs and effects. but because the 

differences were proportionally similar there was little difference between the estimated 

incremental cost-effectiveness ratios (leERs). Indeed, the largest difference between 

the respective leERs was only £400. It is unlikely, therefore, that decision-makers 

would come to contrary decisions due to the use of alternative modelling techniques 

using the results that are presented in this thesis. 

The second main section in this Chapter covered the results of the analyses of the value 

of information (Vol) within a Bayesian framework. The estimation of the Vol was split 

into three sections. The first stage estimated the expected value of perfect information 

(EVPI), for which all three methods for specifying probability distributions were used. 

The results revealed a huge difference in the potential value of additional research 

depending on the method used to pool and format the identified data. As shown in 

Figure 8.5, at a value of an additional QAL Y of £10,000 the EVPl estimated using the 

theoretically specified distributions was around £3.5 million, whereas the corresponding 

estimates produced using the fitted distributions and the empirical data direct were 

around £43.5 million. The variation in the estimates of the EVPI due to the choice of 

methods over the analysis of the available data has serious implications for the role of 

Vol analyses in informing funding decisions over future research. 

The methodology driving the second stage of Bayesian Vol analyses is under 

development. This stage requires that the baseline probability distributions describing 

uncertainty in the input parameters be updated to reflect the hypothetical collection of 
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further data. At present, simple methods for updating only the theoretically specified 

distributions using the properties of conjugate families of prior distributions are 

available so the full Vol analysis was only undertaken using the theoretical 

distributions. Given the divergent estimates of the EVPL it is likely that the alternative 

methods would value the collection of further infonnation differently. If the difference 

in the valuation of infonnation was of a similar magnitude to the difference in the EVPI 

the choice of input data analysis method could lead to very different research agendas. 

Indeed, such differences would necessitate a finn judgement on the appropriate set of 

probability distributions, a decision that could possibly be avoided if a model were only 

informing the immediate allocation of resources. 

Using the theoretically specified distributions both models estimated a similar optimal 

size for a prospective trial of around 2,050 and between 2,250 and 2,500 for the Markov 

process and the DES model, respectively. However, the predicted Vol differed to a 

larger extent for prospective samples below 1,000. For example, using the baseline 

assumption of the 5-year length of applicability for the proposed research, the Markov 

process predicted continuously positive net benefits of sampling, whilst the DES model 

predicted negative net benefits up to a sample size of around 400. Further discussion of 

the practical and theoretical issues relating to the analysis of the Vol are presented in 

Chapter 10. 
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Chapter 9 Case study: methodological issues arising 

9.1 Introduction 

The main objective of this Chapter is the exploration of the causes of differences in the 

results presented in the previous Chapter and the associated methodological 

implications for the conduct of economic HT A decision models. Three methodological 

issues are discussed in this Chapter, though the primary discussion centres on the main 

objective of this thesis - the comparison of alternative modelling techniques. The 

comparison of the DES model and the Markov process is described in the context of an 

overall economic HT A decision modelling project, relating to the five statements of 

model characteristics defined at the end of Chapter 2. 

One of the secondary objectives concerned the identification of differences between the 

results obtained from alternative methods for pooling and fonnatting data to populate 

decision models. The following sections discuss the results derived from using the 

three identified methods - theoretically-based distributions, fitted distributions, and 

direct empirical data. 

Within the case study evaluation the value of collecting further data on input parameters 

was estimated within a Bayesian value of information (Vol) analysis. Such analyses are 

relatively new to the field of economic evaluation and the methods used were adapted 

from those advocated by the health economists who introduced Vol analysis to 

economic HT A decision modelling. The methodological implications concerning the 

use of the alternative modelling techniques and methods for pooling and formatting the 
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input data in a Vol analysis are presented in this Chapter. However, the main objective 

underlying the application of the Vol analyses was to critique the current methodology 

and to specify particular issues requiring further research, which is presented in Chapter 

10. 

9.2 Comparing the alternative modelling techniques 

At the outset of this thesis the primary objective was to gain a better understanding of 

the relative advantages and disadvantages of discrete event simulation models and 

Markov processes as tools for the economic evaluation of health care technologies. 

Chapter 8 presented the results derived from the alternative techniques and discussed 

the policy implications of the observed differences. To recap, the DES model estimated 

slightly higher costs per additional QAL Y from adding chemotherapy to tamoxifen, but 

the closeness of the results suggested that it was unlikely that the use of one model's 

results over the other would lead to an alternative decision. However, the lack of any 

significant difference in the results produced by the alternative models does not mean 

there are no significant differences between the two modelling techniques. During the 

course of this thesis several potentially important differences have been revealed. 

Chapter 2 set out the, a priori, state of knowledge about the available modelling 

techniques that concluded with five statements regarding potential factors that may 

influence the choice of decision modelling technique. The five statements are discussed 

below in the light of the work completed in this thesis. 

1. If anything other than short-term outcomes are to be modelled decision trees are an 

inappropriate choice of modelling technique. 

This first statement set the scene for the comparison of DES models and Markov 

processes. The case study employed in this thesis covered a long time horizon - 50 

years - and it is inconceivable that a decision trees would be used to model patient 

pathways for any intervention over such an extended time horizon. At present decision 

trees, Markov processes and DES models are the three main modelling techniques that 

have been applied to economic HT A decision models, though it is possible other 

decision modelling techniques may be applied in the future. 
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2. If model parameters are a function of the time spent in particular states DES "will 

more accurately reflect the true relationships between health states. 

This statement relates to the constraining factor in Markov models known as the 

Markovian assumption, whereby the pathway of a patient from their current state is 

dependent only on the current state (and possibly the total length of time spent in the 

model). The Markovian assumption prevents the application of differential probabilities 

to patients within the same health state. In effect, a patient is a patient is a patient in 

every state within the model. DES allows patient pathways to be influenced by any 

factor within the model, including the representation of alternative patient 

characteristics on entry to the model. 

Within the case study evaluation described in this thesis the Markovian assumption 

limited the description of patient pathways after the experience of a locoregional 

relapse. In the ABC models patients experiencing a locoregional relapse progressed to a 

more severe site of relapse (metastases) or straight to death. The identified data 

describing progression from locoregional relapse were mainly presented in the fonn of 

disease-free survival curves representing the probability of progressing in successive 

time periods from the point of diagnosis with a locoregional relapse. To apply data 

directly from a survival curve to patients within a decision model it is necessary to 

know when each patient entered the state of interest in order to apply the differential 

probabilities of experiencing an event over time. In the DES model, patients remaining 

disease free at the end of the available follow-up adopted the survival profile of the 

general population. This assumption was based on qualitative data reported in the 

literature. The DES model noted the time at which patients entered the locoregional 

relapse health state, as well as recording the age of each patient. This enabled the 

application of age-specific mortality rates to each patient that remained in remission to 

the last point of identified follow-up. 

The Markovian assumption requires that the data available in the survival curve must be 

transformed to a constant probability that is applied to every patient within the health 

state. The ideal output from the conversion of the survival data is a mean length of 

disease-free survival (DFS), which would produce, in the absence of discounting, the 
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same mean results as those derived from the use of the survival curye directly. 

However, if a proportion of patients do not experience the event reported by the survi\'al 

curve, the estimation of a constant probability can only be approximate because the 

mean 'survival' cannot be fully estimated. In the case study Markov process it was not 

possible to determine the age of the patient at the end of the period of follow-up because 

the state was within the model and a constant probability of experiencing an event was 

applied to all patients in all time periods. A specific time period spent in the health state 

was required for the whole patient group, which necessarily resulted in some 

inappropriate estimates of the time spent in the state. 

Two options were considered to represent the period of disease-free survival following a 

locoregional relapse in the Markov process. Firstly, in each of the studies presenting 

data on DFS following a locoregional relapse the median patient had experienced a 

relapse, so the median DFS was used as an estimate of the mean DFS. However, when 

the results of the two decision models were compared the DES model produced 

considerably larger estimates of overall survival and QAL Y s associated with both 

interventions. After a thorough inspection of the two models it was discovered that the 

use of the median DFS in the Markov process was the main cause of the observed 

differences in the model outputs. The distribution of DFS was significantly skewed to 

the right and the approximated mean used in the DES model was substantially higher 

than the median estimate. 

An alternative method for estimating the mean DFS for the Markov process was then 

adopted, which assumed a maximum length of survival of 20 years from the point of 

locoregional relapse. For each study a mean survival time within the specified 20 years 

was estimated. The specification of a maximum survival period was necessary because 

the survival curve presented by the majority of the available studies had plateauxed by 

the end of the reported follow-up period so it was difficult to extrapolate the curves. 

Table 9.1 presents the model outputs from the Markov processes analysed using the 

median length of disease-free survival and the approximate mean. The data show that 

the effect on the aggregate costs is negligible, but there is a more substantial effect on 

the total QAL Y s and life years associated with both therapies. The differences give an 

indication of the importance of the assumptions made with respect to this one input 
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parameter. The two methods employed to estimate the length of disease-free survival 

required stronger assumptions about the pathways of patients following a loco regional 

relapse than were employed in the DES model. Indeed, these were just two of a 

multitude of alternative approaches that could have been adopted to describe disease­

free survival. 

Table 9.1 Comparison of model outputs from the Markov process using the 
median length of disease-free survival and the approximate mean disease-free 
survival 

Costs QALYs Life years 
Mean (tamoxifen+chemotherapy) £8,862 11.62 15.72 
Median (tamoxifen+chemotherapy) £8,934 11.23 15.13 
Difference -£72 0.39 0.58 
Mean (tamoxifen alone) £6,721 11.07 14.90 
Median (tamoxifen alone) £6,741 10.70 14.33 
Difference -£20 0.37 0.57 
ICER (mean) £3,896 
ICER (median) £4,159 
Difference £263 

In the case study evaluation, the majority of data identified in the literature described 

survival times for the separate metastatic sites as median survival times. The survival 

times for patients diagnosed with metastases were relatively short - soft tissue 

metastases had the longest median survival of around 31 months. It is likely that a few 

outlying patients with long survival times would increase the mean values, but without 

data to support this assumption the most conservative approach was to use the non­

adjusted medians. If survival curves become available to describe time to events in 

other states, such as survival time from metastases, the assumptions imposed on the data 

employed in Markov processes could considerably undermine confidence in the model's 

outputs. 

The representation of disease-free survival as a constant probability of experiencing an 

event also had another consequence. In the DES model it was possible to make the 

assumption that if patients had not experienced a relapse after 11 years in remission they 

were 'cured' and the next event of interest to the decision model was death. In the 

Markov process it was not possible to split the destination of patients according to time 

spent in the state, so all patients leaving the state were subject to the same probabilities 

of experiencing a more severe relapse, or progressing straight to death. The impact of 

this shortcoming was limited in the case study because only a small proportion of 
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patients remained disease free at the end of the follow-up period. However. modelling 

scenarios in which this issue has a far larger impact can be envisaged and it is more 

difficult to correct for this deficiency than to revise estimates of the median survival 

period. 

There were other areas in the case study evaluation in which the development of patient 

pathways that were influenced by the time spent in a earlier states could have 

demonstrated further advantages of the DES model over the Markov process if more 

detailed data were available for the evaluation. For example, disease-free interval (DFI) 

is known to be a prognostic factor that reflects the intrinsic growth rate of the tumour 

[Bomer et aI, 1994]. It may be plausible to assume that patients with short lengths of 

DFI would be more likely to experience a relapse, rather than dying with no evidence of 

disease, than patients with a longer period of DFI. Moreover, it has been reported that 

the length of DFI affects a patient's prognosis from the time of diagnosis with a 

recurrence [Ingle et aI, 1994; Wong and Henderson, 1994]. Unfortunately the 

secondary data sources used in this thesis did not produce data that described possible 

relationships in enough detail to warrant inclusion in the models. If more detailed 

primary data becomes available it is possible that certain patient characteristics could be 

employed as attributes within the DES model, which may provide an improved 

representation of the treatment area that would enhance the advantages of DES models. 

3. If the specification of similar health states that differ only with respect to the 

experience of previous states compromises the clarity of the model, the use of DES 

should be considered. 

The third statement refers to the possible proliferation of health states in a Markov 

process in order to represent states that have similar characteristics, but where 

subsequent patient pathways are influenced by a patient's treatment history. Only one 

such example occurred in the case study evaluation, which involved the description of 

the experience of toxicity. Three fonns of toxicity were described - major, grade 3 or 4, 

and grade 1 or 2 - that could be experienced simultaneously. The available data 

described the proportion of patients experiencing each fonn of toxicity. 
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In the DES model, no separate health states were defined to represent toxicity, rather the 

experience of toxicity was assigned to each patient within the health state DF!. Each 

patient sampled from three binary distributions representing the probabilities of 

experiencing the three forms of toxicity, so each patient could expenence any 

combination of the toxicity categories. The attributes containing the information on the 

experience of toxicity were incorporated into the estimation of the costs and QAL Y s 

associated with each patient's time in DFI as they left the state. Modelling events such 

as the experience of toxicity as attributes could be viewed as increasing the black box 

nature of the modelling process, because these events are not explicitly presented in any 

structural representation of the model. However, the incorporation of such events can 

be clearly explained in the text and, in any case, the presentation of states in a diagram 

does not guarantee their proper representation in the model itself. 

In the Markov process it would have been possible to create seven states that described 

each possible combination of the different types of toxicity, though this would have 

required probability estimates for each combination of toxicity classifications, which 

were not available in the literature. To avoid further strong assumptions only three 

toxicity states were included in the Markov process representing the experience of each 

type of toxicity independently. Hence, patients could experience only one form of 

toxicity. If, in any run of the Markov process, the sum of the probabilities of 

experiencing the three forms of toxicity exceeded 1 the probability of experiencing the 

least severe form of toxicity (grade 1 or 2) was reduced. 

In the analysis of second-order uncertainty, which concerns differences across 

populations, the aggregate effects of toxicity for a patient group would only differ 

slightly, due to the adjustments to the probability of experiencing grade 1 or 2 toxicity 

when the sum of the toxicity probabilities exceeded 1. Differences may have occurred 

in analyses of first-order uncertainty (if the Markov process had been analysed using 

first-order Monte Carlo simulations) because there would be more variation between the 

individual patients reported by the DES model. However, as described in Chapter 3, for 

the analysis of cost-effectiveness to inform resource allocation first-order uncertainty is 

irrelevant (see section 3.4.3). 

189 



Case study: methodological issues arising 

4. If the data describing the timing of events are not in the form of transition 

probabilities then DES will provide a truer representation of reality. 

Issues around the format of the available data are only applicable to modelling studies 

that employ secondary clinical data. In such circumstances the analyst is normally 

bound by the presentational norms for particular types of data. The case study 

evaluation highlighted clinical data presented as set survival times, rather than as the 

probability of experiencing an event in a particular intervaL as one area in which the 

format of the identified data led to significant differences in the results of the two 

models. The DES model incorporated such data in exactly the format that the data were 

available, whilst the Markov process required the conversion of set survival times to 

constant probabilities of experiencing death at any point following the diagnosis of 

metastases. The impact of these different approaches on the outputs of the models was 

first noted during the verification of the action of discounting within the models (see 

section 7.2.3), where differences between the results of the DES model and the Markov 

process were observed. For example, for a set survival period of 8 months the DES 

model discounted the full survival period for each patient at the same rate (assuming the 

8 months fell within the same year for each patient). However, in the Markov process 

the distribution of outputs associated with the survival time for each patient were spread 

over a longer period because all the patients within the state were subject to a constant 

probability of dying. 

To illustrate the impact on costs, quality adjusted life months (QALMs) and life years, 

which were all subject to alternative discount rates, a macro was set up in an Excel 

spreadsheet to estimate the outputs associated with varying lengths of survival derived 

from the two models. Set survival times of between 1 and 40 months were employed. 

To ascertain the impact on costs, a discount rate of 6% was applied to monthly costs of 

£469 (the mean monthly cost of bone metastases). For QALMs, a utility value of 0.5 

was discounted at a rate of 1.50/0, whilst life years were not discounted. The ABC 

models covered a time horizon of 50 years, which was the maximum period over which 

the constant probabilities were applied to patients remaining in a metastatic state. The 

macro was set up to link the length of follow-up in the assumed metastatic state to the 

start year in the state. For example, if the start year in the state was sampled as year 10 

then the outputs from the state were summed for the follo\\ing 40 years in the state. 
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This set-up provided the most accurate portrayal of the effect of converting set survival 

times to constant probabilities within the ABC models. 

Figures 9.1a, 9.lb and 9.1c represent the difference in outputs as a function of the 

survival time and the start year in the assumed health state. The differential effects of 

discounting, survival, and the time horizon of the model relative to the start year in the 

assumed state can be drawn from the figures. Figure 9.la shows that the cost difference 

between the two modelling techniques, which was subject to the highest discount rate, 

was mainly affected by the length of survival. The maximum difference was almost 

£4,000 for patients with a survival time of 40 months entering the metastatic state in 

year 0 (DES model> Markov process). The cost difference decreased slightly as the 

start year increased, which reflected the increase in the discount factor. F or short 

survival times of under 4 months the Markov process actually over-estimated costs, 

though only by a maximum of £38. Figure 9.lb demonstrates that with a low discount 

rate the start year in a state does not affect the difference in QALMs greatly. For 

example, the difference in QALMs between the two models for a survival time of 40 

months is 0.113 (0.009 QAL Ys) ifpatients enter the state in their first year in the model, 

decreasing to 0.082 (0.007 QAL Ys) if patients enter the state in their 26th year in the 

model. Figure 9.lc appears to show the most significant results, but the magnitude of 

the effects on life years is small, the maximum difference is 0.015 months (roughly half 

a day). The most significant factor causing the differences in the lifeyear estimates was 

the time horizon of the model. This stylised example, following the assumptions 

employed in the case study Markov process, assumed that patients lived for a maximum 

of 100 years. This meant that patients entering the state, for example, in year 25 with a 

survival time of 40 months were not all exiting the model (and hence the state) before 

they reached the age of 100 years. 

The data illustrates that, in the absence of discounting, the conversion of set survival 

times to constant probabilities has little effect, though combinations of longer survival 

times and late entry into the assumed state started to produce some differences. Around 

50 to 60 per cent of patients experienced a metastatic relapse in the ABC models. The 

differential outputs caused by the conversion of set survival times to constant 

probabilities in the Markov process was a significant factor in the observed differences 

between the outputs of the two models. 
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Figure 9.1a Plot showing the difference in cost estimates between a DES model and a Markov 
process for survival from a state described as a set survival time, as a function of the survival 
time and the start year in the state. 
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Figure 9.tb Plot showing the difference in QALY estimates between a DES model and a Markov process 
for survival from a state described as a set survival time, as a function of the survival time and the start year 
in the state. 
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Figure 9.1c Plot showing the difference in life years estimates between a DES model and a Markov 
process for survival from a state described as a set survival time, as a function of the survival time and the 
start year in the state. 
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5. The advantages of DES need to be weighed against the additional resource 

requirements. Realistic assessments of the necessary inputs should inform the 

choice of modelling technique. 

The comparison of modelling techniques undertaken in this thesis was based on the 

premise that the health economist wishes to retain control of the economic HT A 

decision model, which meant that the techniques adopted were accessible to analysts 

with no formal training in operations research. The Markov process was built in Excel 

spreadsheets, using the Crystal Ball add-in to facilitate the stochastic analysis of the 

model. Though specific software were available to build and analyse Markov processes 

[DATA 3.5, 1999], the use of spreadsheets is a common format. The Markov process 

was analysed as a cohort analysis because this is the most common form of analysis in 

the economic evaluation literature, but also because the more complicated first-order 

Monte Carlo simulation approach adds only to one relatively small element of the Vol 

analysis (see section 8.4.2). The DES model was built using software specifically 

designed to create DES models [Simul8, 2000]. DES models are often built using 

independent programming languages that have an even steeper learning curve than DES 

software packages. To facilitate further use of DES, software that provided a 

background to the use of DES and enabled the easiest construction of such models was 

used. 

The overall time to obtain the final results from the DES model far exceeded the time 

employed using the Markov process. The causes of the excess analytic input associated 

with the DES model can be split into two categories - building and analysing. These 

two elements of time and expertise are compared below. 

A Markov process simply multiplies the proportion of patients in each health state in 

each time period by the associated cost and utility value attached to each state, applying 

the relevant discount rates to each time period. To estimate their average value, the 

outputs are then summed across all time periods. In the absence of discounting and the 

use of attributes the building of a DES model would not be significantly more complex 

than a Markov process. The model would monitor when a patient entered a state and 

when they left the state, the length of stay in each state could then be multiplied by the 

associated costs and utility values. To discount the associated costs and utilities it is 
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necessary to distinguish the time spent in a particular state with reference to the time at 

which an individual patient entered the model. The time spent in a state must then be 

separated into the individual years since entry into the model for each patient. 

DES is further complicated if attributes that affect the cost and utility values associated 

with health state are included. In the case study, toxicity was modelled as an attribute 

within the 'DFI' state. This meant that the time spent in the health state 'DFI' had to be 

separated into the different time periods within the state that individual patients spent 

with alternative forms of toxicity, or for which they were disease-free with no toxic 

effects. 

A particularly complicated element of building the DES model was uncovered during 

the validation of the models (see section 7.3). Part of the data employed to validate the 

models described economic outputs for less than the full lifetime of patients. The use of 

these data required collecting data for all patients at exactly 4 and 10 years after they 

entered the model. To collect such data using the Markov process the model was 

simply stopped at the relevant period and the associated costs and effects collected. This 

was possible because all patients start at the same time in the model and the outputs are 

collected at regular time intervals - every month. The collection of model outputs at 

such specific time points was more complicated in the DES model because it is event­

orientated. The collection of data within the model is also event orientated. As a 

patient leaves a particular state the programming code looks back at the history of the 

patient within the state she is leaving and assigns the relevant costs and utility values.' 

The DES model could not simply cut-off the data collection period for patients at a 

specified length. In order to collect data constrained by time it was necessary to run the 

full model, but collect data at the end of each state up to the specified time period. This 

was only possible by inserting programming code that effectively asked if the patient 

had been in the model for the specified period at regular intervals when aggregating the 

costs and effects at the point of exit of each state. In effect, the process of validation 

was necessarily subject to a separate process of verification; to ensure that mechanisms 

put in place for the validation were working properly. 

DES, being event-orientated. was necessarily analysed using first-order Monte Carlo 

simulations. This meant that for each set of input parameter values, data on a large 
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number of individual patients were collected to infonn a mean value for each output. 

After experimentation, 10,000 patients were found to adequately control for first-order 

uncertainty, which was a function of the complexity of the model (see section 7.4). 

Employing cohort analysis, the Markov process estimated the model's outputs for the 

whole cohort simultaneously. The time required to solve the respective models for a 

single set of input parameter values using a 700Mhz PC was a couple of seconds for the 

Markov process, and over a minute for the DES model. In the context of a stochastic 

analysis, which involved solving the models for a large number of sets of input 

parameter values such a difference translated to weeks versus one day in terms of total 

running time for the final experimentation. However, the time to analyse included not 

only the final 'correct' experimentation, but also the whole process of verification and 

validation, which required significantly more analytic time than the final process of 

experimentation. 

9.3 Comparing the alternative methods for assembling input distributions for 

stochastic decision models 

The results presented in the Chapter 8 demonstrated that the most significant differences 

between the input data analysis methods were between the methods based on the 

creation of weighted datasets, which were employed to describe the empirical data 

direct and to inform fitted distributions, and the theoretically specified distributions. 

The following section discusses the causes and methodological implications of the 

observed differences in the mean values of the model outputs, whilst the subsequent 

section covers the substantial difference in the variation observed around the mean 

values estimated using the alternative methods. 

More subtle differences were noted between the use of the empirical data direct and the 

fitted distributions, which are discussed in the third section. 
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9.3.1 Comparing the mean results using weighted datasets and theoretically specified 

probability distributions 

The primary cause of the differences in the mean values of the model outputs between 

the use of weighted datasets and theoretically specified probability distributions relates 

to their respective handling of data presented as proportions. The main causes of the 

differences were the parameters for which measures of variance were available, i.e. the 

clinical parameters represented as proportions. To create weighted datasets for such 

parameters meta-analytic methods for weighting the data were used (see section 

3.4.3.1). Using the fixed effects model (assuming no heterogeneity between the studies) 

the weight for a particular observation was the inverse of the variance. The variance for 

proportions is p(l- p) / n, which decreases as the proportion decreases, but as the 

weight is the inverse of the variance, the weight attached to individual data observations 

increases as the proportion of interest gets smaller. The chosen theoretically specified 

distribution to represent proportions was the beta distribution. The beta distribution 

parameters - a and fJ - are simply the number of events and the number of non-events, 

respectively, thereby applying equal weights to studies of equal sample size, 

irrespective of the number of events recorded. 

Ceteris paribus, the meta-analytic techniques gave greater weight to smaller 

proportions, which led to smaller mean values for proportion parameters. To illustrate, 

the data representing the probability of patients receiving tamoxifen alone experiencing 

grade 3 or 4 toxicity is presented in Table 9.2. 

Table 9.2 Data informing the proportion of patients receiving tamoxifen alone 
who experience grade 3 or 4 toxicity 

(a) study sample 
(b) number of events reported 
( c) proportion of events reported 
(d) meta-analytic weight [aI(b(I-b))] 
(e) proportional meta-analytic weight [d/surn( d)] 
(t) implicit beta distribution weight [alsurn(a)] 

Study 1 
352 
1 
0.003 
117686 
0.59 
0.28 

Study 2 
145 
7 
0.05 
3053 
0.02 
0.11 

Study 3 
771 
8 
0.01 
77879 
0.39 
0.61 

The distribution parameters for a beta distribution representing such data were a = 16 

andfJ = 1252, with a corresponding mean 0.0126 (16/1268). The process for weighting 

the data according to the fixed effects model employed the following fonnula: 
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Wi = _1 = ni 
, which led to a mean value of 

Vi Pi(1- Pi) 

[ 352 0003] [145 ] [771 ] 
0.003(1-0.003) x. + 0.05(1-0.05) xO.05 + 0.01(1-0.01) xO.01 =0.00647 

The beta distribution estimate is double that of the weighted dataset estimate. In 

addition to this general finding of divergence between the meta-analytic weighting 

techniques and the direct incorporation of data into probability distributions using 

method of moments formulae, other differences relating to the different types of input 

parameters were also noted. The following three sections outline such effects in 

parameters describing duration in a state, the type of event to be experienced, and 

parameters for which only a point estimate and a range are available. 

9.3.1.1 Differences in the weighted values of duration parameters 

In the case study evaluation, the mean duration in the DFI was lower in the analyses 

using the theoretical distributions than in the analyses based on meta-analytic 

techniques, which ran contrary to the general fmding presented above. The data 

describing the probability of experiencing an event were presented as survival curves, 

from which the data were recorded as the proportion of patients remaining disease free 

at the end of each time interval. The apparent anomaly in the applied weights was due 

to the fact that weights were attached to the proportion of patients remaining disease­

free at the end of each period. Using the meta-analytic techniques, higher weights were 

attached to data describing lower proportions of patients remaining disease-free, which 

led to higher weights for larger probabilities of experiencing an event. 

Table 9.3 Example of difference in the estimation of the input data due to 
alternative methods of defining probability distributions 

Study A. B. C. D. E. 

1 
2 

Patients Proportion Proportion Proportion Weighting 
disease-free disease-free disease-free experiencing an patients 
at start year at start year x at end year x event remaining 
x [(B-C)/B] disease-free 

148 
148 

0.49 
0.44 

0.46 
0.35 

0.03 
0.09 

[A/(C(l-C))] 
596 
651 

F. 
Weighting 
patients 
expenencmg an 
event 
[A/(D(I-D»] 
5086 
1807 
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Table 9.3 presents an example of the difference in the mean probability of experiencing 

an event derived from weighting the data according to the proportion remaining disease­

free, and to the proportion experiencing an event. At the start of year x, Study 1 reports 

the largest proportion of patients remaining disease-free, but during year x more 

patients' experience an event in Study 2. Applying the alternatively specified weights, 

the following weighted means were estimated: 

Weighting patients remaining disease-free = 

( 596) (651) 
(596+ 651) .0.03+ (596+ 651) .0.09 = 0.061 

Weighting patients experiencing an event = 

( 
5086) ( 1807 ) 

(5086+ 1807) .0.03+ (5086+ 1807) .0.09 = 0.046 

The observed difference in the weighted mean of 0.015 is a large difference in the 

context of the aggregate proportions (24.5% of 0.061 and 32.8% of 0.046). There were 

two reasons for basing the meta-analytic weighting procedures on the proportion of 

patients remaining disease-free, rather than the proportion of patients experiencing an 

event. Firstly, in time periods in which a study reported zero occurrences of an event 

the meta-analytic weighting procedure attempted to divide the sample by zero, which 

was obviously infeasible. Secondly, weighting data on the basis of the proportion of 

events occurring in each time period applied consistently higher weights to lower 

estimates of the probability of experiencing an event. This approach appeared unwise 

because higher relative weights were applied to whichever study, in a particular time 

period, presented the lowest estimate of the probability of an event in that period. 

Consistently weighting the lowest estimates most highly under-represented the true 

mean survival curve. 

Using the proportion of patients remaining disease-free as the base for the weighting 

procedure did not consistently weight observations reporting fewer events more heavily, 

rather it weighted data according to the variance in the proportion of patients remaining 

disease-free. 
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9.3.1.2 Differences in the weighted values of type of event parameters 

During experimentation with the case study evaluation it was noted that, relatiye to the 

theoretical distributions, the mean values of some events following DFI or remission 

(following locoregional relapse) were increased using the meta-analytic weights. This 

effect was due to the description of the types of event patients experienced as separate 

probability distributions for each event, which were sampled independently and the 

adjusted to equal 1 within the model. Though the meta-analytic weighting procedures 

assigned higher weights to lower probabilities for all such events, those events with the 

lowest probability of occurring - soft tissue metastases and death - were increased 

(relative to the theoretically specified distributions) in order to accommodate larger 

decreases in the mean values of the other events. 

9.3.1.3 Differences in the weighted values for parameters informed by limited 

data 

A third potential area of divergence between the alternative data input analysis 

techniques are parameters that are informed only by a point estimate and a subjectively 

defined range. In the case study evaluation, the utility values associated with each of 

th~ states included in the model were informed by point estimates obtained from the 

literature, but the ranges were subjectively defined after consultations with a range of 

health professionals. The minimum and maximum values that were specified were not 

necessarily symmetric around the derived point estimate. 

The theoretically specified distribution chosen to describe utility values was the beta 

distribution. The distribution parameters for the beta distribution were calculated using 

a formula that required estimates of the mean and standard deviation of the distribution 

of values. The mean was taken as the point estimate derived from the literature, whilst 

the standard deviation was estimated from the specified range for each utility value (see 

Appendix 5). Triangular distributions were fitted to these data, taking the established 

point estimate as the most likely data point (the tip of the triangle). The remaining 

distribution parameters for triangular distributions were the minimum and maximum 

values of the distribution, which were informed by the subjectively specified ranges for 

each utility value. Unless the minimum and maximum values are equidistant from the 

most likely data point in a triangular distribution, the most likely value will not be the 

201 



• H h 

mean value for the distribution. The non-symmetry of the ranges within some of the 

triangular distributions specified to describe utility values led to the differences in the 

mean values of some of the theoretical and fitted probability distributions. 

9.3.2 Differences in the variation around the mean results using weighted datasets 

and theoretically specified probability distributions 

The previous section described how differences in the mean values estimated for input 

parameters caused differences in the model outputs derived from the use of weighted 

datasets and theoretically specified distributions. This section illustrates how the 

alternative methods for pooling the identified data caused differences in the variation 

around the mean values for the input parameters, as reflected by the cost-effectiveness 

planes presented in Chapter 8. There was substantially more variation around the mean 

estimate of cost-effectiveness derived from the use of weighted datasets, than from the 

use of the theoretically specified distributions. Differences in the width of probability 

distributions were noted for parameters for which a measure of the variance around each 

estimate was available: the experience of different forms of toxicity, the probability of 

leaving DFI or remission, and the types of events experienced following DFI or 

remission. Figures 9.2a and 9.2b display a theoretically specified beta distribution and a 

normal distribution fitted from the weighted dataset, respectively, to represent the input 

parameter 'probability patient receiving tamoxifen and chemotherapy experiences major 

toxicity'. The fitted (normal) distribution is wider than the theoretically specified (beta) 

distribution because there is increased variation in the weighted dataset due to the larger 

weights placed on the outlier observations, in this case the smaller proportions. 
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9.3.3 Comparison of direct use of empirical data andfitted distributions based on the 

empirical data 

The mean leERs, the leERs at the chosen credible intervals, and the cost-effecti\-eness 

acceptability curves, were virtually identical using the empirical data directly and the 

fitted distributions based on the empirical data. This closeness was expected as the 

fitted distributions had the same mean value as the empirical data and the variance in 

the empirical data was used to inform the distribution parameters. A difference was 

only noticeable between the two sets of observations when the differences in costs and 

effects were plotted on the cost-effectiveness plane (see Figures 8.1 b and 8.1 c). Though 

the same range of differences were covered by the two sets of observations the spread 

was more even in the results derived from the fitted distributions. Again, this was 

expected because the fitted distributions covered all values within the range specified by 

the empirical data, whilst only the observed values for the input parameters could be 

sampled using the empirical data directly. 

In the case study evaluation the difference in the spread of observations did not cause 

any difference in the interpretation of the two sets of results. It is conceivable that more 

important differences may occur in evaluations where the empirical input data are 

mainly located at the extremes of the ranges. The mean results between the two 

approaches to specifying input distributions will remain equal, but the credible intervals 

may differ more significantly. This is especially likely if the decision-maker 

incorporates a lower credible range into her decision-making process, for example, a 

900/0 limit rather than a 95% limit. 

9.4 Value of information (Vol) analysis 

The application of Vol analyses to economic HTA decision models is a recent 

methodological development - no full Vol analysis was identified in the literature, 

though a number of studies reporting the expected value of perfect information (EVPI) 

were identified [Claxton et al, 1998; Felli and Hazen, 1998; Fenwick et al, 2000]. The 

Vol analysis implemented in this thesis adapted a non-parametric approach to estimate 

the optimal sample size for a prospective study to inform all the input parameters within 

the defined models. The non-parametric approach benefits from requiring weaker 

assumptions than its' parametric equivalent. The examination of the Vol analysis 
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interprets the observed differences in the results of the Vol analysis between the two 

models, and between the alternative methods of specifying probability distributions. A 

further commentary on the methods used to evaluate the Vol and suggestions for further 

research in this area are presented in Chapter 10. 

The first stage in the full estimation of the Vol involves the estimation of the expected 

value of perfect information (EVPI). In this thesis the EVPI was estimated using both 

decision models and for all three alternative methods for specifying probability 

distributions (see section 8.4). The Markov process and the DES model produced 

similar estimates of the EVPI, but the estimation of EVPI was massively different 

according to the choice of data analytic technique (see Figure 8.5). The fitted 

distributions and the empirical data direct resulted in much larger estimates of the EVPI 

than the theoretically specified distributions. 

The EVPI derived from the weighted datasets rose continuously upwards in relation to 

the value of an additional QAL Y, whilst the EVPI associated with the theoretical 

distributions peaked at the value of a QAL Y at which tamoxifen alone had the highest 

probability of being the cost effective therapy option. This result reflected the wider 

dispersion of the net benefit observations using the fitted distributions and the empirical 

data direct. It is likely, therefore, that the use of meta-analytic techniques to analyse the 

identified data will always lead to an increased valuation of the Vol, over the use of 

theoretically specified distributions. 

Unfortunately, the methodological tools for updating the fitted distributions and the 

empirical data, which was required for the next stage of the analysis, were not available 

at the time of undertaking the Vol analysis reported in this thesis. Therefore, the 

remainder of the analysis used only the theoretically specified distributions, which 

could be updated using established formulae (see Appendix 5). Comparing the 

alternative modelling techniques to the remainder of the Vol analysis, it appeared that 

the DES model was more precise in the estimation of the expected value of sampling 

information (EVSI) because it was possible to quantify first-order uncertainties 

(between patient variation), which were arguments in Neyman's formula. However, the 

impact of the increased accuracy was minimal as there was a similar level of variation 

within both therapy groups. 
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The estimation of the Vol necessitated the repeated stochastic analysis of the decision 

model, which required extensive running time for the DES model (weeks), whilst the 

whole process was completed in a day using the Markov process. The comparison of 

the results derived from the Markov process and the DES model showed that the 

expected net benefits of sampling (ENBS) were similar, though the DES model 

estimated a slightly higher optimal prospective sample size. The DES model placed a 

higher value on the collection of further data to inform the decision-maker. This result 

was expected as the increased flexibility of the DES model produced slightly more 

variation in the model's outputs. Indeed, the Vol estimated by DES models should 

always be at least as large as that estimated by a corresponding Markov process, 

because a DES model facilitates a more precise depiction of the true patient pathways, 

which can only lead to more variation in the model's outputs. 

9.5 Conclusions 

This Chapter has described the methodological implications derived from the results 

presented in Chapter 8. The primary objective of this thesis was addressed, using the 

five modelling characteristics statements, which were first defmed in Chapter 2, to 

compare alternative modelling techniques. The first statement set up the choice 

between a Markov model and a DES model for evaluations covering extended time 

horizons. The following four statements were each found to have some impact on the 

results derived from the case study evaluation. The most important factor in terms of 

affecting the results of the evaluation appeared to be statement 4, which noted that 

increased data flexibility enabled more accuracy in the incorporation of data into the 

DES model. The improved accuracy was shown to have a sizeable impact on the 

differential outputs estimated by the Markov process and the DES model, particularly in 

the presence of discounting. 

Another area of difference between the models was due to the enforced Markovian 

assumption, which meant that the Markov process was unable to define transition 

probabilities in terms of how long patients had remained in a particular state. In the 

case study evaluation, the probability of leaving the state 'remission' (following 

locoregional relapse) was a function of the time already spent in the state. The DES 
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model incorporated the exact slope of the disease-free survival curve, whilst the Marko," 

process necessitated the estimation of a constant transition probability. In addition, the 

DES model allowed for a more realistic extrapolation of the available C1ITye using age­

specific mortality rates, whilst the data inputted into the Markov process was based on a 

single cut-off period for all patients. The DES model also enabled a more realistic 

assumption that patients would not experience a further relapse after an extended period 

of remission. Other areas in which the conditional development of patients pathways 

could lead to more significant differences, given appropriate data, were also identified. 

The representation of the relationships between the length of DFI and other parameters 

within the model could have a far larger impact on the models' outputs. 

A less significant factor in the case study evaluation concerned the use of attributes in 

the DES model to represent the experience of treatment side effects, whilst the Markov 

process defined three separate toxicity states. The attributes did allow a more realistic 

representation of toxicity, though the impact on the results of the two models was 

minimal. The final issue related to the analytic input required to build and analyse the 

alternative modelling techniques. The DES required far greater time inputs to build and 

analyse the model. However, there is a steep learning curve in building DES models 

that, once surmounted, will reduce the gap between the analytic input required to build 

the respective models. The time to analyse the models is less open to improvement as 

the use of first-order Monte Carlo simulation to analyse DES models cannot be 

changed. The time to analyse the DES case study model was found to be the most 

restrictive element of DES because a large amount of time was required to verify and 

validate the model, and for the process of experimentation. 

Following the assessment of the two modelling techniques this Chapter reviewed the 

methodological implications of using three alternative methods for pooling and 

formatting data for inputting to a stochastic decision model. Chapter 8 had highlighted 

the main differences as pertaining to the methods based on the creation of weighted 

datasets (fitted distributions and using the empirical data direct) and the specification of 

theoretically defined probability distributions. The major cause of the observed 

differences was the fact that the meta-analytic techniques used to create weighted 

datasets for some of the identified data (those for which a measure of variance was 

available) attached larger weights to smaller proportions than the alternative method. In 
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the case study evaluation, the impact of this effect was tempered due to anomalies 

observed in some data categories, in particular, data describing the probability of 

experiencing an event were weighted on the basis of the proportion of patients 

remaining event-free. The general conclusion arising from these comparisons is that the 

application of meta-analytic weights reduces the transparency of the process of pooling 

and formatting the input data. The use of meta-analytic weighting formulae based upon 

the variance within samples also caused the substantial difference observed in the 

spread of the outputs derived using the alternative methods. 

The examination of the Vol analysis concentrated on a companson of the above 

techniques (models and input data analysis methods) within the application of a Vol 

analysis. A further commentary on the actual process is presented in Chapter 10. The 

two models produced broadly similar estimates of the Vol. The ability of the DES 

model to estimate first-order uncertainty was employed in the allocation to therapy 

formulae used in the estimation of the EVSI to little effect, though the impact could be 

larger in other evaluations. However, the main difference between the models analysis 

of the Vol was the length of time required to obtain the results. The repeated estimation 

of the ENBS for a series of prospective samples took a few weeks using the DES model, 

but only a day using the Markov process. Bearing in mind that the first analysis is 

rarely the final analysis, the time constraints imposed by the use of DES cause more 

concern within a Vol analysis than for analyses to inform immediate resource allocation 

decisions. 

208 



ChameNIQI 
Conclusions and recommendations 

Chapter 10 Conclusions and recommendations 

10.1 Introduction 

The aim of this final Chapter is to address the objectives raised at the start of this thesis 

by summarising the main fmdings reported in the previous Chapters, and defining 

recommendations regarding the application of decision models, as well as related areas 

for further research. The primary objective of this thesis has been the comparison of 

alternative decision modelling techniques, with respect to the process and outputs of an 

economic evaluation of health care interventions. The investigation was based on the 

application of the two main modelling techniques employed to model patient pathways 

over extended time horizons - Markov processes and DES models - to a case study 

evaluation comparing alternative adjuvant therapies for early breast cancer. The 

comparison of alternative modelling techniques was also presented in the context of a 

stochastic evaluation, which described probability distributions around the outputs of 

the models - the costs and effects associated with each intervention. The distributions 

of outputs were infonned by randomly sampled sets of input parameter values from 

probability distributions representing the uncertainty around the values of the model's 

input parameters. 

Three secondary objectives for this thesis were also defined relating to the application 

of stochastic decision models. The most general objective was the development of a 

complete description of the methodology informing the application of decision 

modelling to the economic evaluation of alternative health care interventions. Secondly, 

alternative methods for pooling and formatting the identified data into probability 
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distributions to populate decision models were compared. Finally, techniques available 

to estimate the value of infonnation (V 01) were adapted and empirically applied. 

The four objectives are addressed in separate sections. Each section presents the 

methodological insight gained from the development of a framework for the modelling 

process, the implications of the empirical evidence derived from the application of the 

defined methodology to the case study evaluation, and areas for future research. 

10.2 Comparison of alternative modelling techniques 

10.2.1 Methodological insight 

Chapter 2 presented a general introduction to the three main modelling techniques -

decision trees, Markov processes and DES models - supported by examples of the use 

of the different modelling techniques, which informed a preliminary assessment of the 

strengths and weaknesses of the alternatives. The characteristics of decision trees and 

Markov processes are very different and the choice between the two techniques in 

alternative treatment settings is relatively straightforward. With the introduction of 

DES to the field of economic evaluation in health care, the issue of choosing the 

appropriate technique could become an important decision in the initial stages of 

modelling projects. The issue of choosing the correct modelling technique has been 

referred to in the health economics literature [Chaussalet et aI, 1999; Sonnenberg et at 

1994], but the consequences of the choice have not been fully explored. 

On the basis of the review reported in Chapter 2 some criteria for the comparison of 

alternative modelling techniques were developed. Five statements were defined that 

related to the characteristics of the treatment area being modelled, or the type of data 

available to populate the model, which were used as the basis for the empirical 

comparison of the alternative modelling techniques (see next section). 

10.2.2 Empirical evidence 

Table 10.1 presents a summary of the differences observed between the DES model and 

the Markov process in the context of the case study evaluation. Despite the relative 
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closeness of the aggregate cost-effectiveness results derived from the two models the , 

structural differences between the models were potentially important. It would appear 

to be a matter of good fortune that the divergences between the models acted in opposite 

directions that almost cancelled each other out. However, the outputs estimated by the 

DES model were uniformly higher than those produced by the Markov process, which 

indicated that the most significant advantage of the DES model was the increased 

flexibility with respect to the handling of time to event data. Another important 

advantage of the DES model concerned the linking of parameter values to the time spent 

in states, which provided a more precise approach to the representation of other forms 

of data. 

The choice of decision model should be judged on the characteristics of alternative 

treatment areas but, on the basis of these results, it is recommended that the use of DES 

should be strongly considered if either of the two issues highlighted in the previous 

paragraph (statements 2 and 4) appear relevant. Statement 3, relating to the use of 

attributes to reduce the number of health states included in a decision model, did not 

appear to have a great impact on the results of the case study evaluation. The additional 

analytic input to the use of DES can be addressed in two stages. Firstly, the increased 

analytic expertise is not as great as may be assumed, because specialist software 

packages are available that provide a framework for the development of DES models. 

Though the initial learning curve is steep relative to the development of a Markov 

process, most health economists who have used Markov processes should be able to 

build a DES model. Secondly, the additional time to analyse a DES model should only 

influence the choice of decision model if the results from an evaluation are required 

quickly and the additional time is simply not available. 

One final recommendation is that the simultaneous application of both modelling 

techniques to a single evaluation provides an excellent basis for checking that both 

models are working correctly. Within the case study evaluation, the process of the 

verification was greatly aided by the ability to compare the respective outputs of the two 

models. 
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Table 10.1 Summary of differences between the case study Markov process and DES model with respect to the five modelling 
characteristics statements 

Statement 
1 if anything other than short-term outcomes 

are to be modelled decision trees are an 
inappropriate choice of modelling technique. 

2 If model parameters are a function of the time 
spent in particular states DES will more 
accurately reflect the true relationships 
between health states. 

3 If the specification of similar health states 
that differ only with respect to the experience 
of previous states compromises the clarity of 
the model, the use of DES should be 
considered. 

4 if the data describing the timing of events are 
not in the form of transition probabilities then 
DES will provide a truer representation of 
reality. 

5 The advantages of DES need to be weighed 
against the additional resource requirements. 
Realistic assessments of the necessary inputs 
should inform the choice of modelling 
technique. 

Model difference 
No difference, both models enabled 
the representation of extended time 
horizons. 

DES: inputted data from survival 
curves in exactly same format to 
describe disease free survival after 
experience of a locoregional relapse. 
Markov process: survival curve data 
was converted to a constant 
probability of experiencing event. 
DES: used attributes to describe 
simultaneous experience of separate 
toxicity categories. 
Markov process: patients could only 
experience toxicities independently. 

DES: survival from metastases was 
specified as set survival times, as 
described in the literature. 
Markov process: set survival times 
were converted to constant probability 
of experiencing death. 

DES: increased analytic input required 
more time and expertise. 
Markov process: low level of 
expertise required, very fast running 
time. 

Impact 

The mean length of DFS was longer in the DES model, but in the Markov process 
all patients leaving remission had a probability of experiencing a further relapse 
(metastases) because it was impossible to distinguish between patients within the 
health state 'remission'. In the DES model patients who remained disease free 
after 11 years were subject to the mortality rate in the general population and went 
straight to death from remission. It is likely that this led to lower costs in the DES 
model, though the effect on life years and QALYs is less clear. 
Small increase in costs estimated by the DES model for patients receiving 
tamoxifen and chemotherapy because combined probability of toxicity can be 
greater than 1. 

The Markov process underestimated costs and QALYs when survival times from 
the metastatic sites over 5 months were converted from set survival times to 
constant probabilities. The magnitude of the effect was influenced by discount 
rates. Assuming discounts rates of6%, 1.5% and 0% for costs, QALYs and life 
years, respectively, the largest impact was on the costs estimated by the model. 
The likely aggregate impact on the ABC models is that the DES model produced 
higher estimates of all three outputs, but the effect will be greatest for costs, then 
QAL Ys and finally life years. 
There was a learning curve associated with the use of DES, though the use of 
specialist software reduced its' steepness. The analysis of DES models was 
substantially longer than for the Markov process. The experimentation time may 
be partly due to the use of specialist software. 
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10.2.3 Future research 

The empirical comparison of the alternative modelling techniques presented in this 

thesis has highlighted three general areas in which DES provided an improved 

representation of the patient pathways associated with alternative adjuvant therapies 

for early breast cancer, given the available information. However, the model structure 

applied within the case study evaluation represented just one option. The findings 

reported in this thesis would be re-enforced if a separate evaluation of the same 

therapies using an alternative model structure arrived at the same conclusions. 

Moreover, the relative importance of each of the three issues is likely to differ 

between treatment areas. Further empirical comparisons of the use of Markov 

processes and DES models in evaluations of different treatment areas will provide 

additional evidence on the extent of the benefits offered by DES, as well as on the 

relative importance of the three identified areas of advantage. 

Another potentially important area is the comparison of the alternative modelling 

techniques using patient-level data to describe some, if not all, of the input parameters 

within a model. This issue was referred to in section 9.2 (statement 2) where it was 

indicated that more detailed data might promote the advantages of DES further 

through the representation of relationships between patients treatment history and 

future prognosis. A comparison of a DES model and a Markov process using patient­

level data to inform input parameters would provide further evidence on which to 

base the choice of appropriate modelling technique. 

10.3 Developing a complete methodology for the modelling process 

10.3.1 Methodological insight 

There is a need for explicit guidelines to inform the use of modelling, especially in the 

context of submissions to official bodies, such as the National Institute for Clinical 

Excellence (NICE) in the UK. At present NICE simply specify that it is important 

that modelling is used appropriately and carried out to the highest standards. The 

development of a complete description of the necessary methods for applying an 

economic HT A model was borne of the realisation that guidance on the different 
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components were available, but that the advice was located in disparate sources. 

Furthermore, different sources of advice relating to the same stage of the modelling 

process recommended alternative procedures. Chapter 3 described the whole 

modelling process, in chronological order moving through five main stages, which 

were applied to the case study in the following Chapters: 

1. Specifying the theoretical model (Chapter 4); 

2. Undertaking a literature review to obtain input data from the model (Chapter 4): 

3. Analysis of the available data to popUlate the model (Chapter 5); 

4. Implementation of the model (Chapters 6 and 7); 

5. Experimentation with the model (Chapter 8). 

Previous work undertaken in the field of health economics was sought. though much 

of the process drew on issues common to the general area of clinical research. 

Insights into individual stages of the modelling process were also obtained from other 

disciplines including the social sciences and operations research. 

10.3.2 Empirical evidence 

This section summarises the experience gained from the application of the modelling 

process to the case study evaluation, incorporating various examples of good practice 

that were established. The review of the modelling proc~ss did not attempt to provide 

a prescriptive methodology for all economic HT A decision modelling projects, but 

rather to bring together the available methods relating to each element of the 

modelling process. The characteristics of the treatment area being evaluated, the 

available data, and the focus of the evaluation will influence the methods adopted for 

different parts of the process. To inform the use of the stated methods the 

accompanying theoretical and pragmatic arguments have been stated explicitly so the 

reader has a clear basis on which to base their own judgement. 

In Chapter 4, the specification of a preliminary model structure was based on 

information obtained from oncology clinicians, a preparatory review of the literature, 

and the Internet, which limited the potential for bias because the structure of the 

model was informed by consensus between the alternative sources. The literature 

review was based on the preliminary model, which informed a series of separate 
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literature reviews relating to different aspects of the patient pathways. The conduct of 

the separate literature reviews was pragmatic. Explicit study inclusion criteria 

relating to year of publication, publication type and language were specified in order 

to limit the scale of the necessary review, though extensions to the criteria were 

enacted if insufficient data were identified to populate particular areas of the model. 

During the extraction of data from the literature any prognostic information reported 

about the identified patient groups were recorded in order to evaluate sub-groups of 

the population. 

Chapter 5 described the procedures for pooling and formatting the identified data to 

populate a decision model. The first task involved the explicit harmonisation of data 

that described similar events, but differed slightly in their definition of the event of 

interest. Harmonisation facilitated the combination of data by making explicit 

alterations to the values reported by one or more of the relevant studies to improve the 

comparability of the underlying parameter definitions. The process of harmonising 

the data cannot be subject to hard and fast rules as the adjustments made to the data 

will depend on the event described and the format of the available data. However, the 

harmonisation of the ABC data illustrated a range of issues with potential relevance to 

other disease areas. For example, during the harmonisation of the DFI data, the 

studies that treated death as a censored event reported the number of deaths observed, 

which were then used to adjust the original disease-free survival data. If the relevant 

data to harmonise a parameter were not presented by a study, data from studies with 

the most similar patient and treatment characteristics were used to adjust the initial 

estimate. 

Chapter 5 also described the implementation of alternative methods for the 

specification of probability distributions to represent the uncertainty around the values 

of the input parameters. The evaluation of this issue developed into a secondary 

objective of the thesis, which is discussed separately in the next section. 

Chapter 6 described the development of a Markov process and a DES model as 

computer-based decision models. The relevant issues relating to building the 

alternative models were presented in the section above comparing the two modelling 

techniques. Chapter 6 also addressed two issues relating to the actual use of the 
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models. Firstly, the DES model was necessarily analysed using flrst-order Monte 

Carlo simulations, which required an adequate number of patients in each (flrst-order) 

run of the model. Testing alternative run sizes, 10,000 patients were found to be 

sufficient to minimise the impact of flrst-order uncertainty on the mean values 

estimated for each set of input parameters. However, it was noted that the necessary 

run size is linked to the complexity of the model and speciflc testing for the minimum 

run size should be undertaken for different models. Secondly, the stochastic sampling 

of monthly versus annual probabilities of experiencing an event was discussed. The 

Chapter concluded that the appropriate method of sampling should follow the 

intervals in the original data. F or example, if the identified data are presented as 

annual probabilities they should also be sampled annually and then converted to 

monthly probabilities within the model. 

Chapter 7 reported the application of methods to verify and validate decision models. 

Three categories of verification were employed. The main form comprised the 

verification of logic, which checked that the internal mechanisms of the models were 

working correctly. The explicit presentation of three classes of logic testing - clinical 

parameters, costs and utility values, and discounting - provided ample evidence of the 

analyst's attention to detail. Secondly, sensitivity testing compared expected and 

observed effects of alternative input parameters on the models' outputs. The 

sensitivity tests backed up the logic checks, but also confirmed that the two decision 

models were producing consistent outputs. Finally, stress testing verified that the 

models recognised nonsensical input data, alerting the analyst to data entry errors. 

The validation of the decision models compared the models' outputs to a range of 

relevant outputs presented in previously published economic studies, as well as 

comparing clinical endpoints such as survival at different cut-off points. Reasons for 

any differences between the compared outputs were sought in the context of 

methodological and data driven differences between the case study evaluation and the 

identified studies. The process of validating economic HT A models is notoriously 

difficult and the methods described in Chapter 7 are not heralded as a definitive 

approach. However. the applied methods did result in the revision of the original 

values for a set of cost parameters within the case study evaluation, which 

demonstrates some success in this approach. 
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The outputs from a stochastic evaluation comprise a series of matched observations of 

the costs and effects associated with the relevant interventions. Chapter 8 presented 

the results of the case study evaluation using the alternative presentational forms 

presented in Chapter 3. Mean incremental cost-effectiveness ratios (lCERs) were 

supplemented by plotting the cost and effects differences on cost-effectiveness planes, 

the presentation of the credible intervals for the ICERs, and the use of cost­

effectiveness acceptability (CEAc) curves. Each method of presentation added to the 

general interpretation of the model outputs, though the relative effectiveness of the 

alternative methods in aiding the comprehension of decision-makers is an empirical 

question beyond the scope of this thesis. The application of the final methodological 

area covered in the modelling process, the analysis of the value of information (Vol), 

developed into a secondary objective of this thesis and is discussed in the final section 

of this Chapter. 

10.3.3 Future research 

The collection of methodologies for the modelling process highlighted certain areas 

that would benefit from further research, either due to a lack of defined methods, or 

due to uncertainty regarding the appropriate methods to employ. The definition of 

economically relevant sub-groups is an important issue because it may be cost­

effective to provide an intervention to a sub-set of a patient population, but not to the 

whole population. Recent recommendations issued by NICE have highlighted the 

importance of sub-group analyses, but research is required on methods for identifying 

which sub-groups should be analysed separately. Indeed, 

Various methods were suggested for the validation of decision models that did 

provide some assistance in identifying parameters values that could be represented 

more realistically, though such modifications did not provide complete assurance of 

the validity of the models. Other authors have suggested that validity can only be 

proved to the point that the modelling process was undertaken to a sufficiently high 

standard [Sculpher et al, 2000; McCabe and Dixon, 2000], which appears to settle for 

a second-best solution. To increase the acceptance of economic HTA models, it is 
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necessary to explore this area further in order to convince potential users of such 

evaluations that the results really do answer the question asked. 

The final area in need of further research follows on from the need to properly 

validate models, to the need to present the outputs of models in the most appropriate 

format for the user to be able to incorporate the information to their requirements. A 

wide range of possible formats for presenting cost-effectiveness information were 

described, but there is no real understanding of the best format, which will persuade 

decision-makers to actually use the available information. Future research IS, 

therefore, required on how best to present cost-effectiveness information. 

10.4 Comparison of alternative data analysis methods 

10.4.1 Methodological insight 

F our alternative methods for pooling and formatting the identified input data into 

probability distributions to populate stochastic decision models were described in 

Chapter 3. The first method, labelled 'theoretically specified distributions', assigned 

the same type of distribution to similar groups of input parameters. The distributions 

were chosen by matching the characteristics of the input parameters to the 

characteristics of different probability distributions. The parameters for each 

distribution were estimated by applying the identified data to established formulae 

that estimated the relevant distribution parameters. 

The second and third methods employed meta-analytic techniques to weight the 

identified data, which were then described in datasets comprising weighted 

representations of the identified data for each input parameter. The weighted datasets 

were either inputted directly into the decision models ('empirical data direct'), or they 

were inputted into statistical fitting software, which fitted the data to the best 

matching probability distribution ('fitted distributions'). The final approach involved 

bootstrapping the identified set of observations to create a bootstrap distribution. 
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10.4.2 Empirical evidence 

The bootstrapping approach was more applicable to the analysis of primary data and 

was not applied to the case study evaluation, but the remaining three methods were 

applied to the case study evaluation. Substantial differences were observed between 

the probability distributions specified using meta-analytic techniques to weight the 

available data (the fitted and empirical distributions) and the theoretically specified 

distributions for parameters for which a measure of variance within each identified 

study was available, i.e. parameters described as proportions that were informed by 

clinical trials or observational studies. The general effect of the meta-analytic 

weighting procedure was to give greater weight to lower proportions. Table 10.2 

shows that the effect on the models' outputs of the different parameter categories was 

mixed, which meant that the respective outputs produced by the three methods did not 

vary greatly. However, the alternative methods did have a substantial effect on the 

variation described in the outputs of the models, which was far greater using the meta­

analytic techniques. 

Table 10.2 Summary of the differences in the mean values of input 
parameters due to the alternative methods of specifying probability distributions 

Parameter 
category 
Experience of 
toxicity 

Time to event 

Type of event 

Infonned only 
by a point 
estimate and a 
non-symmetric 
range 

Impact 

Probability of experiencing toxicity lower using meta-analytic methods, which 
led to higher costs and lower QAL Y s using the theoretical distributions. The 
magnitude of the differences in the mean values was small. 
Probability of experiencing an event was generally lower using theoretical 
distributions, which led to higher life years and QAL Ys, though impact on costs 
was more difficult to determine. 
Lower probability of progressing straight to death with no relapse in the 
theoretically defmed distributions, particularly for patients receiving tamoxifen 
and chemotherapy. Resulted in higher costs, life years and QALYs using the 
theoretical distributions. 
Higher utility values using theoretical probability distributions, because the range 
around the mean was assumed to be symmetric unlike the alternatively specified 
triangular distributions. This led to higher estimates of QAL Y s using the 
theoretical distributions. 

I t is not clear which data input analysis method provides the most reliable data, and 

hence, the results that engender the most confidence in their accuracy. The fact that 

the implications of the cost-effectiveness results arising from the alternative methods 

for specifying input distributions could differ raises the question of which method 

might be preferred. The work presented in this thesis suggests that there are two 

disadvantages to the use of meta-analytic techniques to weight the identified data over 
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the specification of theoretical distributions. Firstly, and most importantly, alternative 

approaches to the application of the meta-analytic weighting techniques were possible 

that increased the scope for differential results between analysts employing seemingly 

similar techniques. The only element that could vary between evaluations using the 

theoretically specified distributions is the choice of the theoretical distributions. which 

should converge to a common set of distributions as their application increases. There 

was no subjectivity apparent in the analysis of the distribution parameters, because 

well-defined fonnulae were employed to estimate the parameter values. Secondly, 

the analysis of the data to create weighted datasets is more complicated, and more 

prone to errors than the simpler process of estimating distribution parameters for the 

theoretically specified probability distributions. 

If only one fonn of analysing the data is to be chosen, on practical grounds the 

general application of theoretically specified distributions is more likely to provide a 

common baseline for the comparison of alternative economic HT A decision models. 

It is also the only method that enables a full analysis of the Vol at present. Ideally, 

however, all three input data analysis methods should be employed in an economic 

HT A decision model, because this provides an excellent basis for the testing the 

sensitivity of the cost-effectiveness results to the alternative methods of populating a 

stochastic decision model. 

10.4.3 Future research 

The empirical evidence suggested that there is potential for far greater discrepancies 

in the estimated mean values between the alternative data analysis methods than was 

found in the case study evaluation. In addition, the observed difference in the 

variation around the cost-effectiveness results is a cause for concern. Though the 

theoretically specified distributions are most likely to provide a common baseline for 

comparisons between evaluations, this choice was based primarily on the ease of use 

and the ability to undertake full Vol analyses. The central question that remains to be 

addressed is which method is the most theoretically correct method? 
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10.5 Analysis of the value of information (Vol) 

1 0.5.1 Methodological insight 

The final element of the research reported in this thesis was the application of 

techniques to estimate the value of conducting further research in a particular 

treatment area. The main objective was to critique the underlying methodology in 

order to highlight areas that could benefit most from further research, though a couple 

of adaptations to the current methodology were developed within the context of the 

case study. The methods for the analysis of the Vol were presented in Chapter 3, 

incorporating a three-stage process: estimating the expected value of perfect 

information (EVPl), estimating the expected value of sampling information (EVSl), 

and estimating the expected net benefits of sampling (ENBS). 

Both methodological alterations related to the estimation of the EVSI. The EVSI is 

based on the premise that hypothetical samples of data can be assumed that are 

analysed within a model to re-estimate the EVPl, which then informs the EVSI. The 

methods adopted in this thesis employed only two types of probability distributions, 

the beta and the gamma, which could incorporate hypothetical data using established 

formulae. The mean values of the new data for each parameter were assumed to be 

the same as the values derived from the identified data, because the mean represented 

the best estimate of the true value of the individual parameters. The hypothetical 

representation of additional data is a key issue in ongoing research. Secondly, 

Claxton stated that every feasible allocation of patients between the relevant therapy 

options, for each prospective sample, should be evaluated in order to estimate the 

optimal prospective trial [Claxton, 1999]. Given the time required to run the DES 

model, in particular, such a detailed level of analysis was not feasible. A simpler, and 

quicker, method of allocating a proposed sample between the treatment options being 

evaluated was adopted in this thesis, Neyman's allocation to strata formula, which 

accounted for the variance within the outputs of each intervention and the costs of 

sampling between the interventions [Cochrane, 1977]. A constant ratio of the sample 

allocation between two treatment options was estimated for all prospective samples. 
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10.5.2 Empirical evidence 

The results of the Vol analysis derived from the alternative modelling techniques 

were relatively close, but the application of the alternative input data analysis methods 

within the first section of the Vol analysis - the estimation of the EVPI - revealed 

huge differences of magnitude. These differences would have persisted if all three 

methods had been able to estimate the full Vol, which reinforces the need to define a 

consistent method for the specification of probability distributions around the input 

parameters across all evaluations. 

The revised methodology for the analysis of the Vol was applied to both decision 

models. The assumption of basing the hypothetical data on the mean values of the 

identified data estimated the minimum possible optimal sample size, as the assumed 

sample led to the maximum reduction in the variation described in the original 

probability distribution. Other options for the specification of hypothetical data to 

inform the estimation of the EVSI are currently being developed, which will 

hopefully provide a more solid base for the analysis, but also enable the use of a wider 

range of probability distributions than those employed in the case study evaluation. It 

was difficult to assess the impact of assuming a constant allocation ratio between the 

interventions, though it is likely that the optimal sample was reduced because the 

estimated net benefits for each sample were underestimated. However, the use of a 

constant allocation ratio reduced the complexity and duration of the Vol analysis 

significantly, which may encourage the application of further Vol analyses. 

A final issue derived from the empirical evidence related to one of the most 

contentious elements of the modelling process - should the final structure of a 

decision model be influenced by the amount of data available to populate the model? 

The omission of qualitatively informed events or relationships in the structure of 

decision models is based on the definition of the practical model as 'the most detailed 

model that can be constructed given the limitations of available data' [Sonnenberg et 

al, 1994]pgJSS4. The objective of most models is to inform a resource allocation 

decision based only on the data identified at the present time. However, Vol analyses 

aim to inform the collection of additional data so to restrict the structure of the model 

on the basis of the currently identified data appears to be nonsensical. It may, 
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therefore, be necessary to adopt different model structures to inform an immediate 

resource decision and to inform a Vol analysis. 

10.5.3 Future research 

The most important output from the application of the Vol analyses was the insight 

that it offered into how the technique could be improved. A number of issues arose 

during the Vol analyses that were beyond the scope of this thesis to explore, but 

which should be addressed during future research on this topic. The most prominent 

issue noted from the results of the Vol analysis concerned the impact of the 

assumptions made with respect to the size of the relevant patient popUlation to whom 

the benefits of further information would apply. Previous estimates of the useful 

lifetime of information included 5 years for interventions to control the symptoms of 

urinary tract infection [Fenwick et aI, 2000] and 3 years for treatments of Alzeimer's 

disease [Claxton et aI, 1998], though no basis for these choices were provided. A 

baseline length of research application of 5 years was employed in this thesis, which 

was chosen on the basis that five years appeared to be a reasonable estimate of the 

time between the availability of new therapy options. Sensitivity analyses undertaken 

to test the impact of the assumed length of usefulness of the prospective research 

demonstrated that the magnitude of the Vol was extremely sensitive to the length of 

applicability. However, in order to persuade decision-makers of the relevance of Vol 

analyses in setting research agendas it will be necessary to develop standardised 

methods for the estimation of the length of research use in alternative treatment areas. 

The length of time required to obtain additional information on specific parameters 

within the model will also affect the length of applicability of the research. The 

implicit assumption in the application of the relevant patient population to the Vol 

was that the prospective sample, n, consisted of the next n patients to require 

treatment for the condition evaluated. The subsequent patients were all assumed to 

benefit from the additional information provided by the n patients until the assumed 

length of research usefulness expired. Ideally, data on all the parameters within the 

decision model could be obtained within the same time horizon within individual 

patients; for example, from the point of entry to a trial the required data from a single 

patient would be available within one year. The estimation of the length of research 
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usefulness could then build in factors relating to the estimated time to recruit the 

required sample of patients, as well as the time to inform all parameters within the 

model. 

Data describing events occurring later in the case study evaluation would only be 

available after time periods of up to 20 to 30 years, such as survival from metastases 

or events experienced following a locoregional relapse. To incorporate such effects 

into the Vol analyses would require the additional estimation of the Vol for different 

lengths of follow-up for prospective trials. The updated probability distributions 

could be estimated to reflect the assumed amount of data that would be available to 

inform alternative input parameters at differing lengths of follow-up. The relevant 

patient population would be re-estimated for every length of follow-up to reflect the 

revised estimates of the length of usefulness for the research. 

The following function provides a foundation for the estimation of the length of 

usefulness of research (U): 

U=t-r-f 

Where t is the anticipated time to the availability of a new intervention, r is the time 

required to recruit prospective sample andfis the length of trial follow-up. 

Other issues raised with respect to the analysis of the Vol encompassed means of 

making the analysis more precise, but also considerably more complicated. For 

example, the above discussion over the estimation of the usefulness of research 

assumed that the choice of intervention for patients who refused to enter a prospective 

trial would not be informed by the additional data obtained to the date at which their 

treatment decision is made. The Vol for non-participating patients could be included 

on the basis that the allocation decision would be updated at regular intervals within 

the follow-up period. 

Additional data on some input parameters may be collected in trials involving other 

patient groups. For example, in the ABC models data relating to the experience of 

treatment side effects were assumed to be specific to the intervention rather than the 
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patient group. Data relating to such parameters as survival from metastases, or the 

cost of treating locoregional relapses could also be incorporated from studies set up to 

investigate treatment in other patient groups. The availability of such data should also 

be included within Vol analyses, which would require the identification of 

prospective trials and an assessment of the likely quantity and timing of the data to be 

obtained. 

At this stage in the development of the analysis of the Vol, this area of research 

appears to be an exciting prospect that will offer useful information to decision­

makers allocating resources to research, but many issues need addressing before such 

analyses are likely to be commonly employed for such tasks. 
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Appendix 1 Literature review details 

A1.l Introduction 

Two broad literature reVlews were undertaken, which are described in the following 

sections. The first review identified work that informed the methodology for the modelling 

process, whilst the second identified data that could be used to populate the decision 

models used in the case study evaluation. 

A1.2 Review of the modelling process 

A large-scale review of the health economics and clinical literature was undertaken to 

identify research describing any methodological issues involving the application of decision 

models to clinical evaluation. Relevant research was also sought from disciplines such as 

operations research and social sciences. The purpose of the literature review was to inform 

the discussion of the characteristics of the alternative modelling techniques (see Chapter 2), 

and to identify research relating to individual aspects of the modelling process (see Chapter 

3). 

The literature review included orthodox searches of the main medical databases (Medline 

and EMBASE). No relevant index terms were identified so the search of the databases 

comprised a range of free-text terms: model*, decision analysis, decision trees, Markov, 

simulation. In addition, manual searches of the most prominent journals were undertken. 
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including Medical Decision Making, Health Economics, Phannacoeconomics, Journal of 

Health Economics, the International Journal of Health Technology Assessment in Health 

Care and the Journal of Health Services Research and Policy. The references lists of the 

identified studies were then searched for further studies, and citation searches for leading 

authors were conducted using the Science Citation Index. Internal publications from 

academic departments and papers presented at relevant conferences and workshops also 

proved to be an important source of additional work. 

OR textbooks were included in the review for general insights into the comparison of the 

modelling techniques. Numerous sources of advice were identified from BruneI University 

library's catalogue and a selection of textbooks was chosen to provide an alternatiYe 

perspective on the modelling process. Social science texts were sought for further advice 

on the conduct of literature reviews. 

A1.3 Review to populate the decision models 

To identify data to populate the case study models Medline was searched initially in May 

1998 using the following search terms: 

• Index terms, Breast neoplasms/, Disease-Free Survival!, Survival/ or survival analysis/ 

or survival rate/, Mortality/, Recurrence/, Neoplasm recurrence, local!, Lymphatic 

metastasis/, Neoplasm metastasis/, Neoplasm metastasis/, Tamoxifenl, Chemotherapy, 

adjuvant!, Drug therapy/, Ovariectomy/, Menopause/, Menopause, premature/, 

Castration!, Postmenopause/, Drug toxicity/, Quality of life/, Costs and cost analysis/ 

• Free text terms, early, site, first recurrence, adjuvant, ovarian, suppression, ablation, 

ovarian suppression, ovarian ablation, estrogen replacement therapy, utility 

Some examples of the searches made using these terms, including the term combinations 

and associated number of hits, are presented below. The identified reference lists and the 

Science Citation Index were also searched to obtain further references. 
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Al.4 Literature search results 

Tamoxifen and survival 

-----------------------------------------------------------------------------

1 Breast neoplasms/ 25074 

2 limit 1 to (human and english language) 18451 

3 Survival! or survival analysis/ or survival rate/ 43428 

4 limit 3 to (human and english language) 34944 

5 Tamoxifenl 3350 

6 limit 5 to (human and english language) 2381 

7 2 and 4 and 6 165 

8 from 7 keep 114 

*************************** 

Tamoxifen and disease-free survival 

Breast neoplasms/ 25074 

2 limit 1 to (human and english language) 22019 

3 Disease-Free Survival! 3147 

4 limit 3 to (human and english language) 2901 

5 early.ti,ab,sh. 160807 

6 limit 5 to (human and english language) 93442 

7 Tamoxifenl 3383 

8 limit 7 to (human and english language) 2399 

9 2 and 4 and 8 47 

10 from 9 keep 32 

*************************** 

Chemotherapy and survival 

-----------------------------------------------------------------------------

Breast neoplasms/ 25074 

2 limit 1 to (human and english language) 22013 

3 Survival! or survival analysis/ or survival rate/ 43428 

4 limit 3 to (human and english language) 34944 

5 Chemotherapy, adjuvant! 5044 

6 limit 6 to (human and english language) 3662 

7 early. ti,ab,sh. 160807 

228 



Appendix 1 

8 limit 9 to (human and english language) 

9 2 and 4 and 7 

10 2 and 4 and 7 and 10 

11 from 12 keep 

*************************** 

Chemotherapy and disease-free survival 

Breast neoplasms/ 

2 limit 1 to (human and english language) 

3 DISEASE-FREE SURVIV ALI 

4 limit 3 to (human and english language) 

5 2 and 4 

6 early. ti,ab,sh. 

7 limit 6 to (human and english language) 

8 Chemotherapy, adjuvant! 

9 limit 8 to (human and english language) 

10 2 and 4 and 9 

11 from 10 keep 

*************************** 

Site a/relapse 

93442 

255 

51 

32 

25074 

22019 

3147 

2901 

380 

160807 

93442 

5044 

3662 

86 

65 

-----------------------------------------------------------------------------

Breast neoplasms/ 25074 

2 limit 1 to (human and english language) 21076 

3 Recurrence/ 30651 

4 limit 3 to (human and english language) 23144 

5 site.ti,ab,sh. 122394 

6 limit 5 to (human and english language) 53315 

7 first recurrence.ti,ab,sh. 213 

8 limit 7 to (human and english language) 188 

9 2 and 4 and 6 8 

10 2 and 8 25 

1 1 9 or 10 32 

12 from 11 keep 20 

••• *.* ••••••• * ••••• ******** 

Literature review details 
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Survival from relapse 

-----------------------------------------------------------------------------

Breast neoplasms/ 25074 

2 limit 1 to (human and english language) 21076 

3 Recurrence/ 30651 

4 limit 3 to (human and english language) 23144 

5 site.ti,ab,sh. 122394 

6 limit 5 to (human and english language) 53315 

7 first recurrence.ti,ab,sh. 213 

8 limit 7 to (human and english language) 188 

9 2 and 4 and 6 8 

10 2 and 8 25 

11 9 or 10 32 

12 from 11 keep 1-4,6,9,14,16-21,23-25,28-31 20 

13 Survival! or survival analysis/ or survival rate/ 43428 

14 limit 13 to (human and english language) 34944 

15 Neoplasm recurrence, local! 7212 

16 limit 15 to (human and english language) 5395 

17 Neoplasm recurrence, local!mo [Mortality] 942 

18 limit 17 to (human and english language) 649 

19 2 and 14 and 16 198 

20 2 and 17 99 

21 from 1 1 keep 3 1 

22 from 20 keep 68 

24 Lymphatic metastasis/ 10474 

25 limit 24 to (human and english language) 7225 

26 Neoplasm metastasis/ 7728 

27 limit 26 to (human and english language) 5273 

28 2 and 14 and 25 499 

29 Mortality/ 3897 

30 2 and 24 and 29 1 

31 from 20 keep 91,93-96 5 

32 from 30 keep 1 1 

33 or/31-32 6 

34 2 and 26 and 29 0 

35 2 and 14 and 27 212 

36 from 35 keep 137 
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Quality of life 

Breast neoplasms/ 

2 Quality of life 

3 1 and 2 

4 limit 3 to (human and english language) 

5 Adjuvant therapy 

6 1 and 2 and 5 

7 Chemotherapy 

8 1 and 2 and 7 

*************************** 

25074 

671 

210 

35 

67 

Literature review details 
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Appendix 2 Data extraction methods 

Using previously published examples as a framework [Dowie, 1996: Murphy et aI, 

1994], an evidential database was set up to collect and manage the relevant data 

obtained from the research identified through the literature review. Three main 

information management criteria were identified as relevant to the case study 

evaluation: 

• an ability to download references from other electronic databases, 

• a facility to search for, and retrieve references stored in the database, and 

• a facility for appending text to references. 

At the time of the current project the software developed by ProCite had been improved 

so that it met each of the three criterion listed above to a high standard. A twin software 

package - Bibliolink 2 - had been developed that enabled the automatic transfer of 

records found by most electronic databases, whilst searching within a database created 

in ProCite was straightforward [procite 5, 1999]. Most importantly workforms could be 

easily adapted for data entry and formatted output. 

Using the flexible workforms, a data extraction form was developed in ProCite that 

categorised the identified data according to the model parameters that they informed. 

Figure 4.1 (section 4.4.4) presents the extraction form. The first section of the forma 

captured the reference details of the papers, as well as the objectives of the paper and 

the characteristics of the patient group included in the study. The aim of a paper 

provided an immediate indication of the type(s) of data (relating to the model 

parameters) that might be found in the paper, as well as allowing a judgement to be 
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made on the authors success in meeting the original objective of the study. Careful 

documentation of the patient characteristics within a study was essential in order to 

ensure that the analyses of the model were as homogeneous as possible. Information on 

the location of the study and the time period were also recorded as potential sub-groups. 

Variable definitions referred to any definition given in a paper that might vary across 

studies, covering such topics as estrogen receptor status [Zambetti et al. 1992]. types of 

toxicity [Alonso et aI, 1995], and types of relapse [Kamby and Sengelov. 1997]. The 

category 'omissions in context' covered all additional information about the study that 

was not described in the previous sections, such as the protocol restrictions on adjuvant 

therapies in trials of treatment for metastases [Falkson et al, 1995], or missing 

information such as the number of cycles of chemotherapy undertaken [Senn et aI, 

1997] or types of costs excluded [Lober et aI, 1988]. The • Comments' category 

incorporated a wide range of information including the conclusions drawn by each 

study. Also captured in this category were comments relating the current results to 

previous studies [Swedish breast cancer cooperative group, 1996] or any general 

statements about breast cancer that were not relevant to any of the other categories, such 

as hypotheses about the spread of cancer cells [Boccardo et al, 1997]. The assessors' 

category simply notes the assessor (all JK) and the date on which the study was 

reviewed. 

The second section of the extraction form covered all the parameters in the model. The 

parameters were split into three types that were identified by their prefix - 'id' covered 

clinical parameters, and 'qu' related to quality of life data. The 'co' category collected 

any available data on the cost of treatments related to breast cancer, but it also contained 

any relevant information on the type and frequency of resource use associated with the 

different stages of breast cancer. The category titles are mostly self-explanatory relating 

to the parameters included in the preliminary model. 'Disease free interval' and 'rates 

of relapse' both cover the probability and timing of experiencing a relapse or death with 

no evidence of disease, reflecting the two main formats of these data. The category 

'overall survival' captured data describing survival from the point of diagnosis with 

early breast cancer. 
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Within the established categories data entry was left unstructured. This flexible fonn of 

data entry was used because of the need to capture both quantitative and qualitative 

data. As there was only one reviewer, who was involved with the mechanics of the 

model, the style of extraction remained similar and was geared towards the t).-pe of data 

required for the model. The data extraction form created in ProCite was adequately 

tractable with respect to the format of data that was entered. There was no limit to the 

size of each category. Tables of data had to be tab-created in Wordpad and pasted into 

ProCite, which sometimes led to messy tables due to the width restriction in ProCite. 

The final category listed - Parameter Keywords - collected the categories that contained 

data for each paper included in the database. For example, a paper presenting disease­

free interval curves and the proportion of patients experiencing different types of 

toxicity would be marked 'idDFII idTox'. Identifying each paper according to the data 

categories they contained made searching the database for particular parameter 

information extremely simple. 

Though the review was ongoing in the sense that new studies were reviewed and added 

to the database as they were identified, the analysis of the data extracted began in May 

1999. Firstly, qualitative data contained in the three categories 'variable definition', 

'omissions in context' and 'comments' were assessed to provide background 

information on the disease area prior to commencing the quantitative analysis of the 

individual parameters. Next the database was searched separately for each parameter by 

entering the necessary keyword in the 'Parameter Keyword' category. These searches 

picked out the papers in the database that held data on the parameters of interest. 

Quantitative data was exported to an excel spreadsheet for analysis. 
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Appendix 3 Meta-analytic formulae for weighting data 

The methods available for weighting data depend on the fonnat of the identified data. If 

good primary data that incorporates measures of the within sample variance are 

available then methods for weighting data based on meta-analytic methods may be 

employed. The fixed effects model should be used if there is limited heterogeneity 

between the data, whilst the random effects model attempts to control for assumed 

heterogeneity. If it is unclear whether heterogeneity is present between the identified 

studies, then a formal test can be applied that tests the hypothesis that the underlying 

effects are equal: 

Q = ± Wj (OJ - e y 
;=1 

Where k is the number of studies, OJ is the treatment effect of the individual study and 

o is the mean value of all the studies. The null hypothesis is rejected if the observed 

variance is higher than would be expected due to chance alone - if value of Q exceeds 

the critical value of the chi squared distribution associated with k -I degrees of 

freedom. It is recognised that this test lacks power and the chance of falsely defining 

studies as homogeneous is quite large [Sutton et al, 1 998]pg77 . 

In heterogeneity is not identified, the fixed effects model involves a simple method of 

weighting the constituent data using the inverse of the variance [Sutton et al, 

1998]pg55. The formulae for calculating weights are: 
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W 
__ 1 _ nj 

j - - , for input parameters defined as proportions, and 
Vi pj(1-pj) 

Wj = ~ = n i2 ' for input parameters measured on a continuous scale. 
Vj O"j 

The random effects model also weights the different data according to their variance, 

but as well as the variance within the studies, the random effects model incorporates 

variance between studies to control for the assumed heterogeneity. There are various 

procedures for combining data assuming random effects [Hasselblad and McCrory, 

1995], though the most commonly used method appears to be the weighted non-iterative 

approach, probably due to its relative simplicity [Sutton et aI, 1998]pg72. This 

approach consists of the following formulas: 

• 1 

Wi - [Crw,)+r2] 
Where f2 = (Q - (k -l))/U 

{- S2 J 
and U = (k-1\W- ~ 

- W kY; and w= I i k 
j=1 

1 (k -2) and s~ =-- IW;2 -kw 
k -1 j=1 
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Appendix 4 Analysing survival curves 

A4.1 Introduction 

Data on 'time to event' parameters in the literature are often presented as survival 

curves, including disease-free or event-free survival curves. The process of collecting, 

analysing and inputting such data into decision models comprises three separate stages 

- collating the data from the literature, combining the data, and transforming the data to 

an appropriate format for inputting into a decision model. The following sections 

describe the process of incorporating data described in the form of survival curves into 

decision models. 

A4.2 Coliating the data 

Firstly, the survival estimates and the respective sample sizes must be collated. In cases 

where only graphical data are available the data represented by the curves can either be 

read directly off the presented curves or digitised images of the survival curves can be 

imported into a graphics package enabling a more exact measurement of the proportions 

[Earle and Wells, 2000]. The proportions experiencing an event during each time 

interval must be revised to reflect the proportion of patients remaining event free. To 

explain: the proportion of patients leaving health state A in any given period is read 

from survival curves as the proportion of the original patient cohort (in year 0) who 

experience an event. In a decision model, however, only the patients remaining in state 

A at the start of each time period sample from the assigned probability distribution 

describing the proportion of patients experiencing an event in the ensuing period. 

Applying the probabilities that relate to the original cohort to the cohort of patients 
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remaining in state A will systematically underestimate the number of patients leaving 

the state. 

Detailed information on censored data is rarely published in journals. To obtain a proxy 

for the numbers at risk for each time interval the following formula transforms the 

estimates from describing the proportion of the original cohort that leave a state to 

reflect the probability of the remaining cohort leaving a state. This approach has been 

shown to be the most reasonable assumption in the absence of information on censored 

data [Earle and Wells, 2000]: 

P[ t / .. h t] P[ event / originalcohort]. even remaznzngco or i = I 

P[remaining /originalcohortt 

where P[ event / remainingcohortt is the probability that a patient remaining in a state 

in year i will experience an event in year i; 

P[ event /originalcohortl is the probability that a patient in the original patient 

cohort will experience an event in year i; 

P[remaining /originalcohortl is the probability that a patient in the original 

patient cohort remains event free at the beginning of year i; 

A4.3 Combining the data 

Earle and Wells [2000] presented and compared five possible methods for combining. 

published survival curves. It was noted that the five methods produced similar results 

up to the point at which the trial with the shortest length of follow-up finished. The 

combination of trials with variable lengths of duration is common and a 

recommendation to restrict the combined curve to the duration of the shortest trial is 

unrealistic, especially for their incorporation into decision models. The preferred 

method when it is important to estimate survival beyond the shortest duration was 

termed the 'meta-analysis of failure time data' method (MFD). MFD involves pooling 

the number of patients at risk and the number of events in each time inter;aL from 

which the hazard and survival functions in each interval can be calculated. The process 

of pooling the data incorporates a weighting procedure based on the sample sizes of the 

respective studies. MFD was least affected by the need to extend the period of analysis 
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because it recalculates the number of subjects at risk at every time interval [Earle and 

Wells, 2000]. 

A4.4 Formatting the data 

Undertaking a MFD of alternative survival curves weights the data appropriately but it 

produces only a single aggregate survival curve. No measure of variation is produced 

that can be used to represent the uncertainty in the survival estimates. However. the 

MFD method can be adapted to either create datasets that comprise weighted 

probabilities of experiencing an event within specified time intervals, or to estimate the 

relevant parameters to fit beta distributions that infonn the probability of experiencing 

an event in each time period. To establish weighted datasets, the number of patients at 

risk and the number of events in each time interval reported by each identified study are 

documented separately to produce a range of estimates of the proportion of patients 

experiencing an event in each time interval. The individual estimates are weighted 

using the meta-analytic formulae presented in Appendix 3. More simply, the alpha and 

beta parameters for beta distributions are estimated as the number of patients 

experiencing an event and the number not experiencing an event within a period, 

respecti vel y . 
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Appendix 5 Bayesian distribution theory 

AS.1 Introduction 

This appendix describes the process of specifying probability distributions for different 

types of parameters on the basis of theoretical considerations and presents the formulae 

employed to estimate the distribution's parameters using the available data, employing 

method of moments formulae. The process of updating the probability distributions 

derived from the available data to reflect the assumed impact of additional samples (as 

employed in the value of information (V 01) analysis) is also described. 

Both processes are grounded in Bayesian methodology, whereby the estimation of the 

input distributions combines a prior distribution with the additional information to 

produce a posterior distribution for the input parameters. To estimate the baseline 

probability distributions a non-informative prior distribution is usually assumed, which 

is updated with the data obtained from the literature review. For the Vol analysis the 

original probability distributions are treated as the prior distributions and are updated 

under the assumption that new data will not alter the mean value of the distribution, 

only the level of variation described by the distribution. 

The probability distributions that best represent different groups of input parameters are 

presented in the following sections. The first describes the specification of the beta 

distribution as a suitable representation of all input parameters that take the form of a 

proportion bounded by 0 and 1. The following sections link other clinical parameters 
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and cost parameters to the gamma distribution, whilst utility values are suitably 

described by a beta distribution. 

AS.2 Proportion parameters 

The following description is adapted from a text on Bayesian statistical inference 

[Iverson, 1984]. For the analysis of a population proportion (n) it is particularly 

convenient to look at functions that are polynomials in 1L Polynomials in 1t can be 

written as a product of three parts: a numerical constant (C), n to some exponent, and I­

n to some exponent. The general fonnula is: 

Which is the general expression for the beta distribution. The mean and standard 

deviation of the assumed distribution of n can be used to estimate the distribution 

parameters, a and b, using the fonnulae: 

which are calculated from the fact that: 

p = _a_ and b = p(l- p) 
a+b a+b+l 

These calculations may not estimate integer values for a and b but it is usual to round 

off the values to the nearest integer. If the relevant data represents a series of patients 

who have either experienced an event, or not, then a simpler method of estimating the 

parameters for the beta distribution invokes the Bayesian use of a non-infonnative prior 

distribution. If no prior infonnation is available a unifonn prior can be assumed with 

beta distribution parameters a = 1 and b = 1. The beta distribution parameters are 'x+a' 

and 'n-x+b', where x is the number of observations with the event of interest and n-x the 

number without the event. 
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A5.2.1 Updating the beta distribution 

To update the beta distribution to reflect additional data in a Vol analysis the mean 

value from the relevant sample is added to the original a and b proportionately. For 

example, the parameters for a prior beta distribution informed by a meta-analysis of a 

series of trials that reported 100 events in 300 patients would be a = 100, b = 200. If the 

mean value from a prospective sample of 100 is 0.25, the updated distribution 

parameters can be updated proportionately, i.e. a = 125, b = 275. 

AS.3 Non-proportions clinical parameters 

All clinical parameters within a Markov process are described as proportions, but in a 

DES model some clinical parameters may be described as event times. For example, in 

the case study DES model survival from metastases was described as the median length 

of survival, rather than the probability of dying in successive time periods. Discussing 

the specification of a posterior distribution for the mean value of a variable between any 

two extremes Iverson assumed that the variable has a normal distribution [Iverson, 

1984]. Assuming a non-informative prior distribution, the posterior distribution is 

informed solely by the mean and standard deviation of the observed data. However, the 

normal distribution is not bounded by zero and specifying a normal distribution for 

survival parameters may result in negative values being sampled. Alternatively, the 

gamma distribution is bounded by zero and provides a more flexible range of shapes for 

describing non-negative random variables [Rice, 1995]. The gamma distribution has 

appealing properties in that the distribution parameters a and f3 are linked to mean 

and variance [Berry and Stangl, 1996]: 

The distribution parameters can be back solved after specifying a mean and a variance 

for the specified distribution. 

A5.3.1 Updating the gamma distribution 

The easiest model for the likelihood function for event times is the Poisson distribution 

because it resembles a gamma density. The gamma distribution is a conjugate prior 
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when the observations are Poisson distributed. This means that the posterior is also a 

gamma distribution with updated parameters a + I t; and [n + 1/ pr!, where n is the 

increased sample and I t; is the sum of the survival times for the increased sample 

[Berger, 1980]. The original mean value can simply be used to fit the updated a 

parameter as It; = nt . 

Within the case study evaluation, the updated parameters of the gamma distribution 

[a + It;,[n + 1/ pr l
] were estimated assuming that the hypothetical data was Poisson 

distributed, which assumed that the mean of the data was equal to the variance. The 

hypothetical data may be over-dispersed compared to the Poisson distribution that 

explicitly acknowledged the similarity of the two means, which led to a much tighter 

posterior distribution. An alternative approach was to employ the negative binomial to 

update the Gamma distribution, which incorporated a dispersion factor specified as the 

ratio of the mean to the variance. Employing a dispersion factor would reduce the 

narrowness of the updated distribution, but the level of dispersion could only be 

subjectively specified. Despite the assumed narrowness of the resulting updated 

distributions, the Poisson distribution was employed to update Gamma distributions 

because the use of the negative binomial approach would have added further 

subjectivity to the Vol process. 

AS.4 Cost parameters 

Health care costs generally follow a skewed distribution for individual patients [Barber 

and Thompson, 1998; Delong and Simons, 1999], though Briggs and Gray [1998] found 

that a normal distribution was an adequate assumption for the sampling distribution of 

mean per patient costs. A number of authors have assumed that the logarithm of a cost 

is normally distributed, and the log-nonnal distribution has often been used to describe 

uncertainty in the mean value of cost parameters [pasta et al, 1999; Fenwick et a1. 

2000]. However, as cost parameters display similar properties to the event times 

described in the previous section the gamma distribution can also be chosen to describe 

cost parameters. 
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To estimate the distribution parameters for the baseline distribution in the case study 

evaluation, the mean and the standard deviation from the corresponding weighted 

dataset for each cost parameter were inserted into the formulae presented in the previous 

section. Updating the gamma distribution for cost parameters on the basis of additional 

(hypothetical) data also follows the procedure developed above for the non-proportions 

clinical parameters. In the case of cost parameters I ti becomes I C
i 

, where the Ci 

are the individual estimates of the cost parameter. Again, LC
i 
= nc. 

A5.5 Utility value parameters 

In the majority of cases, utility values are subject to the same constraints as proportions 

parameters - they are bounded between 0 and 1. The sample mean and standard 

deviation can be calculated and used to estimate the parameters of the beta distribution 

(a and b). If the assumption of zero as the minimum possible value of a utility value is 

not justified, it is unlikely that the upper bound of the utility value will approach 1. An 

adjustment solution may be possible, whereby the lowest possible utility value is 

specified, which is then added to each possible utility value in order to specify a beta 

distribution. The value added to fit the distribution is subtracted when applied to the 

relevant health state. For example, a range of -0.2 to +0.5 becomes a range of 0 to 0.7 

in order to fit the distribution. Alternatively, a scale parameter can be applied to the 

value sampled from the beta distribution to expand the range outside 0 to 1. To update 

the probability distributions describing utility values the same procedure is employed as 

for the proportions clinical data. 

A5.6 Estimating the standard deviation 

The discussion in the previous sections has assumed that a selection of data is available 

to estimate the standard deviation, which can be employed to estimate the chosen 

distributions' parameters. If, for example, one utility value estimate with no measure of 

variance is available, the required standard deviation can be estimated directly. 

Alternatively, it may be more intuitive to specify a range around the observed value. A 

standard deviation can be estimated as one quarter of the full range, which, together 

with assumed mean value, can be employed to estimate the parameters of the 

appropriate probability distribution. 



Appendix 6 Study characteristics tables 

Table A6.1 Details of studies reporting length of DFI following tamoxifen alone 

Percentages 

Study Ther- Regimen details DFI details* IBTR% IBTR% Lgth of f-up Age <50 50-9 60+ <66 65+ Pre Post 

apy reported assumed DFI m m 

[Fisher et ai, 1996] Tam 20mglday,5yrs DND and 2ndP 4 10 10.42 100 

[Fisher et ai, 1996] Tam 20mglday, 5yrs DND and 2ndP 4 10 10.42 50 50 

[Fisher et ai, 1997] Tam 20mglday, 5yrs DND and 2ndP 11 5 4.00 45 28 27 

[Pritchard et ai, 1997] Tam 30mglday,2yrs Neither DND or 2ndP 8 9 0 100 

[Stewart, 1992] Tam 20mglday, 5 yrs DND and likely not 2ndP 0 9 6.75 58 29 71 

[Ribeiro and Swindell, Tam 20mglday, 1 yr DNDonly 0 15 10.00 0 100 
1992] 
[Ribeiro and Swindell, Tam 20mglday, 1 yr DNDonly 0 15 10.00 100 0 
1992] 
[Cummings et ai, 1993] Tam 20mg/day, 2 yrs DND and likely 2ndP 0 12 10.00 70 0 100 

[Baum et aI, 1992] Tam+/- 20mg/day,2yrs, DND and contra' and likely ? 5 8 7.80 54.8 37 63 
peri-CT not2ndP 

[Gerard et ai, 1993] Tam 30mg/day, 3 yrs DND and likely not 2ndP ? 5 5 3.08 0 100 

[Rivkin et ai, 1994] Tam 20mg/day, 1 yr DNDonly 0 12 6.50 61 0 100 

[Castiglione-Gertsch et Tam + 20mglday, I yr, DND and 2ndP 0 14 10.00 lOa a 100 

aI, 1994] P 

[Castiglione-Gertsch et Tam + 20mg/day, I yr DND and 2ndP a 14 10.00 100 a 100 

ai, 1994] P 

[Mustacchi et ai, 1994] Tam 20mg/day die DND and 2ndP ? 5 6 3.08 76 0 100 

[Gundersen et ai, 1995] Tam 20mglday, 2 yrs Neither DND or 2ndP a 10 6.33 32 34 34 

[Martelli et aI, 1995] Tam 20mg/day, DND and 2ndP 9 6 5.58 77 0 100 
indefinitely 

IBTR% reported, % of events named as ipsilateral breast relapse ending OFI; IBTR% assumed, % of ipsilateral breast relapse assumcd to end OFI; f-up, foil 0 w-llP;PrclTl. prcmcllopausal; 

postm, postmenopausal . 
• DFI details describes whether studies included death with no evidence of disease (dnd) and 2

nd 
primary tumours (2ndP) as ending DF/' 
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Table A6.1 Details of studies reporting length of D FI following tamoxifen alone (continued) 

Percentages 
Study Node + 1 to 3 4+ Node - T size SD pTl pT2 pT3+ pT2/3 ER+ PgR+ Mast Lump Lump RT 

positive positive +RT 
[Fisher et ai, 1996] 0 0 0 100 2 1 na 100 78 62 38 38 38 

[Fisher et ai, 1996] 0 0 0 100 2 1 na 100 78 62 38 38 38 
[Fisher et ai, 1997] 0 0 0 100 70 70 27 3 30 100 82 45 55 55 55 

[Pritchard et ai, 100 59 41 0 27 70 3 73 100 100 64 36 27 27 
1997] 
[Stewart, 1992] 0 0 0 100 36 59 5 64 63 100 0 0 0 
[Ribeiro and Swindell, 0 0 0 100 na 100 0 0 0 
1992] 
[Ribeiro and Swindell, 0 0 0 100 na 100 0 0 0 
1992] 
[Cummings et aI, 100 55 45 0 67 33 98 70 100 0 0 0 
1993] 
[Baum et ai, 1992] 42 58 28 72 
[Gerard et ai, 1993] 100 0 0 0 na 

[Rivkin et aI, 1994] 100 49 51 0 6 na 100 96 4 4 4 

[Castiglione-Gertsch 100 54 46 0 39 61 6 100 0 0 0 
et ai, 1994] 
[Castiglione-Gertsch 100 54 46 0 39 61 6 100 0 0 0 

et aI, 1994] 
[Mustacchi et aI, 42 30 - la 12 - Ib 58 41 54 5 59 

1994] 
[Gundersen et ai, 100 67 33 0 27 73 0 73 100 97 3 0 0 

1995] 
[Martelli et ai, 1995] 0 0 0 100 68 24 8 32 90 71 7 93 0 0 
ER+, estrogen receptor positive; PgR+, progesterone receptor positive; Mast., mastectomy; Lump., lumpectomy; RT, radiotherapy. 
• T refers to different tumour grades. 
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Table A6.2 Details of studies reporting length of DFI following tamoxifen and chemotherapy 

Study Therapy Regimen details DFS detailst IBTR% IBTR% Lgth of f-up age 
reported assumed D FI 

[Fisher et ai, 1997] Tam+MF 100-600, 6 cycles DND and2ndP 
DNDand2ndP 
Neither DND or 2ndP 

9 5 4.00 
[Fisher et ai, 1997] Tam+CMF 100-40-600, 6 cycles 4 5 4.00 
[Pritchard et ai, Tam + CMF 600-40-600, 8 cycles 3 9 
1997] 
[Tormey et ai, 1992] Tam + CMFP 10mglday, 1-5 yrs, DND only o 

100-40-600-40 
[Tormey et ai, 1992] Tam + 4.5-45-12 DND only o 

CMFPWVAT 
[Baum et ai, 1992] Tam/Tam+ peri- 20mglday,2yrs, DND and contra' and 

likely not 2ndP 
? 

CT 
[Gerard et ai, 1993] Tam + FEC 
[Gelber et ai, 1993] Tam + CMF 
[Hupperets et ai, CAF + MP A 
1993] 
[Rivkin et ai, 1994] 
[Schumacher et ai, 
1994] 
[Castigl ione-Gertsch 

et ai, 1994] 

Tam+CMFVP 
CMF(w/wo 
Tam) 
Tam+CMFP 

5mg/kg 6 days 

6 cycles (inc. Tam) 
500-40-500,6 cycles, 
MPA 6 months 

? 
DND and likely not 2ndP ? 
DND and unclear 2ndP 
DND and likely not 2ndP ? 

DND only 
500-40-600, 3 cycles DND and 2ndP 

o 
o 

(30mglday, 1 yr) 
100-40-600, 12 cycles DND and 2ndP o 

[Fukutomi et ai, Tam + ACMF 30mglday, 2 yrs, 26- DND and unclear 2ndP 0 
1995] 130-26-600, 6 cycles 
[Fukutomi et ai, Tam + ACMF 30mglday, 2 yrs, 13- DND and unclear 2ndP 0 
1995] 65-13-300, 12 cycles 

5 

5 
5 
5 

8 

8 

8 

5 
7 
8 

12 
6 

14 

7 

7 

5.10 42 

5.10 44 

7.80 54.8 

3.08 
7.00 
3.50 

6.50 60 
4.67 

10.00 

5.40 45 

5.40 45 

Percentages 
<50 50-9 60+ 65+ pre post 

45 29 26 
46 27 27 

42 30 28 

m m 

0 100 

100 0 

100 0 

37 

o 
o 
62 

o 
42 

o 

63 

100 
100 
38 

100 
58 

100 

100 0 

100 0 

lBTR% reported, % of events named as ipsilateral breast relapse ending DFI; lBTR% assumed, % of ipsilateral breast relapse assumed to end DFI; f-up, follow~up; prern, prcrncllopausil!: 
postm, postmenopausal. 
• DFI details describes whether studies included death with no evidence of disease (dnd) and 2nd primary tumours (2ndI') as ending DFI. 
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Table A6.2 Details of studies reporting length of DFI following tamoxifen and chemotherapy (continued) 

Percentages 
Study Node + 1 to 3 4+ Node - T size SD pTl pT2 pT3+ pT2/3 ER+ PgR+ Mast Lump Lump RT 

positive positive +RT 
[Fisher et ai, 1997] 0 0 0 100 68 68 29 3 32 100 83 45 55 55 55 
[Fisher et ai, 1997] 0 0 0 100 70 70 26 4 30 100 82 44 56 56 56 
[Pritchard et ai, 100 61 39 0 29 65 7 71 100 100 66 34 25 25 
1997] 
[Tormey et ai, 1992] 100 54 46 0 52 48 63 61 100 0 0 
[Tormey et ai, 1992] 100 53 47 0 52 48 63 65 100 0 0 
[Baum et aI, 1992] 42 58 28 72 
[Gerard et ai, 1993] 100 0 0 0 na 
[Gelber et aI, 1993] 100 0 0 0 na 
[Hupperets et aI, 100 68 32 0 32 58 10 68 66 
1993] 
[Rivkin et ai, 1994] 100 51 49 0 9 na 100 95 5 5 5 
[Schumacher et aI, 100 58 42 0 12 66 22 88 40 41 100 0 0 0 
1994] 
[Castiglione-Gertsch 100 58 42 0 36 64 75 100 0 0 0 

et aI, 1994] 
[Fukutomi et aI, 100 54 46 0 25 58 17 75 62 60 100 0 0 0 
1995] 
[Fukutomi et aI, 100 56 44 0 32 56 12 68 63 61 100 0 0 0 
1995] 
ER+, estrogen receptor positive; PgR+, progesterone receptor positive; Mast., mastectomy; Lump., lumpectomy; RT, radiotherapy. 
• T refers to different tumour grades. 
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Table A6.3 Details of studies reporting type of event experienced following tamoxifen alone 

Percentages 

Study Therapy Regimen Relapse details* f-up Age SD <40 40-65 <50 50-9 60+ <66 65+ Prem Postm 
details 

[Fisher et ai, 1996] Tam 20mglday, 5yrs L, r, con, dsep, pr, dnd 10.42 55 10 29 71 
[Fisher et ai, 1997] Tam 20mglday, 5yrs Lr, dagg, con, pr, dnd 4.00 45 28 27 
[Pritchard et ai, Tam 30mglday,2yrs L, Ir, dagg, con, pr 0 100 
1997] 
[Stewart, 1992] Tam 20mglday,5 Lr,con,dagg,dnd 6.75 100 0 

yrs 
[Stewart, 1992] Tam 20mglday,5 Lr, con, dagg, dnd 6.75 0 100 

yrs 
[Cummings et ai, Tam 20mglday,2 Lr,dsep,con,pr,dnd 10.00 70 0 100 
1993) yrs 
[Rivkin et ai, 1994] Tam 20mglday, I yr L, r, con, dsep, pr, dnd 6.50 61 0 100 
[Castiglione-Gertsch Tam+ P 20mglday, 1 yr, Lr, con, dsep, pr, dnd 10.00 100 0 100 

et ai, 1994) 
[Castiglione-Gertsch Tam+ P 20mglday, 1 yr, Lr, con, dsep, pr, dnd 10.00 100 0 100 

et ai, 1994] 
[Mustacchi et ai, Tam 20mglday die L,dagg,dnd 3.08 76 0 100 
1994] 
[Gundersen et ai, Tam+ 20mglday,2 L, r, con,'dagg, dnd 6.33 32 
1995) peri-op yrs 

CT 
[Martelli et ai, 1995) Tam 20mg/day, L, r, dagg, pr, dnd 5.58 77 0 100 

indefinitely 
[Kamby et ai, 1988] Tam 30mglday L, r, con, dsep 26 25 49 37 63 

1 year 
P, prednisolone; f-up, follow-up (years); SO, standard deviation; prem, premenopausal; postm, postmenopausal. 
Relapse details describe the types of relapse reported by each study: L, local; r, regional; Lr, locoregional; con, contralateral; dsep, separate sites of metastases; dagg, aggregate metastases; 
pr, primary tumours; dnd, death with no evidence of disease. 
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Table A6.3 Details of studies reporting type of event experienced following tamoxifen alone (continued) 

Percentages 
Study Node + 1 to 3 4+ Node- Tumour pTl* pT2* pT3+* pT2/3* ER+ PgR+ Mast. Lump. lump+R RT 

nodes nodes size T 
[Fisher et aI, 1996] 0 0 0 100 2 na 100 78 62 38 38 38 
[Fisher et ai, 1997] 0 0 0 100 70 27 3 30 100 82 45 55 55 55 
[Pritchard et ai, 100 59 41 0 27 70 3 73 100 100 64 36 27 27 
1997] 
[Stewart, 1992] 0 0 0 100 36 59 5 64 63 100 0 0 0 

[Stewart, 1992] 0 0 0 100 36 59 5 64 63 100 0 0 0 
[Cummings et ai, 100 55 45 0 67 33 98 70 100 0 0 0 
1993] 
[Rivkin et aI, 100 49 51 0 6 na 100 96 4 4 4 
1994] 
[ Castiglione- 100 54 46 0 39 61 6 

Gertsch et ai, 1994] 
[Castigl ione- 100 54 46 0 39 61 6 

Gertsch et ai, 1994] 
[Mustacchi et ai, 42 30 - la 12 - 1 b 58 41 54 5 59 
1994] 
[Gundersen et ai, 100 67 33 0 27 73 0 73 100 97 3 0 0 
1995] 
[Martelli et ai, 0 0 0 100 68 24 8 32 90 71 7 93 0 0 
1995] 
[Kamby et ai, 83 56 27 17 5 71 24 95 100 0 0 100 
1988] 
ER+, estrogen receptor positive; PgR+, progesterone recep-tor positive; Mast., mastectomy; Lump., lumpectomy; RT, radiotherapy. 
• T refers to different tumour grades. 
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Table A6.4 Details of studies reporting type of event experienced following tanioxifen and chemotherapy 

Study Therapy 

[Fisher et ai, 1997] Tam + MF 
[Fisher et ai, 1997] Tam + CMF 
[Pritchard et ai, Tam + CMF 
1997] 
[Tormey et ai, 
1992] 

Tam+CMFP 

Tam + 
CMFPHNAT 

Regimen details 

100-600, 6 cycles 
100-40-600, 6 cycles 
600-40-600,8 cycles 

10mg/day, 1-5 yrs, 100-40-
600-40 
4.5-45-12 [Tormey et ai, 

1992] 
[Lindeman et ai, 
1992] 

CMF (+tam in ER+) 100-40-600,60-40-600,6 or 
12 cycles 

Relapse details* f-up 

Lr,dagg, con, pr, dnd 4.00 
Lr, dagg, con, pr,dnd 4.00 
L, Ir, dagg, con, pr 

L, r, dsep, pr, dnd 5.10 

L, r, dsep, pr, dnd 5.10 

Lr, dsep 5.17 

[Rivkin et ai, 
1994] 

Tam +CMFVP 20mg/day, 1 yr,60/day 15-
400/week, 1 yr 
500-40-600,3 or 6 cycles 
(30mglday, 1 yr) 
100-40-600, 12 cycles 

L, r, con, dsep, pr, dnd 6.50 

[Schumacher et ai, CMF (w/wo Tam) 
1994] 
[Castiglione- Tam + CMFP 

Gertsch et ai, 1994] 
[Gundersen et ai, Tam (with peri-op 
1995] CT) 
[Fukutomi et ai, Tam + ACMF 
1995] 
[Fukutomi et ai, Tam + ACMF 

L, r, dagg, pr, dnd 

Lr,con,dsep,pr,dnd 

20mg/day, 2 yrs L,r,con,dagg,dnd 

3 Omg/ day, 2 yrs, 26-130-26- L, r, dsep 
600,6 cycles 
30mg/day, 2 yrs, 13-65-13- L, r, dsep 
300, 12 cycles 1995] 

[Powles et ai, 
1995] 

3M/2M + tamoxifen Mitom 7 every 6w, mitox 7 e L,r, dagg 
3w, meth 35 e 3w, 8 cycles, 
20mglday 5 years 

4.67 

10.00 

6.33 

5.40 

5.40 

2.33 

Proportions 

Age <50 50-9 60+ 65+ 

45 29 26 
46 27 27 

42 

44 

44 76 

60 

42 30 28 

32 

45 

45 

56 

Prem Postm 

0 100 

100 0 

100 0 

0 100 

42 58 

0 100 

100 o 

100 o 

40 60 

P, prednisolone; f-up, follow-up (years); SD, standard deviation; prem, premenopausal; postm, postmenopausal. --~ ~---
Relapse details describe the types of relapse reported by each study: L, local; r, regional; Lr, locoregional; con, contralateral; dsep, separate sites of metastases; dagg, aggregate metastases; 
pr, primary tumours; dnd, death with no evidence of disease. 
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Table A6.4 Details of studies reporting type of event experienced following tamoxifen and chemotherapy (continued) 

Percentages 
Study Node + 1 to 3 4+ Node - T size pTl pT2 pT3+ pT2/3 ER+ PgR+ Mast Lump Lump RT 

positive positive +RT 
[Fisher et ai, 1997] 0 0 0 100 68 68 29 3 32 100 83 45 55 55 55 
[Fisher et ai, 1997] 0 0 0 100 70 70 26 4 30 100 82 44 56 56 56 
[Pritchard et ai, 100 61 39 0 29 65 7 71 100 100 66 34 25 25 
1997] 
[Tonney et ai, 100 54 46 0 52 48 63 61 100 
1992] 
[Tonney et ai, 100 53 47 0 52 48 63 65 100 
1992] 
[Lindeman et ai, 100 73 27 0 3 53 na 56 100 0 0 0 
1992] 
[Rivkin et ai, 100 51 49 0 9 na 100 95 5 5 5 
1994] 
[Schumacher et ai, 100 58 42 0 12 66 22 88 40 41 100 0 0 0 
1994] 
[Castigl ione- 100 58 42 0 36 64 75 

Gertsch et ai, 1994] 
[Gundersen et ai, 100 67 33 0 27 73 0 73 100 97 3 0 0 
1995] 
[Fukutomi et ai, 100 54 46 0 25 58 17 75 62 60 100 0 0 0 
1995] 
[Fukutomi et ai, 100 56 44 0 32 56 12 68 63 61 100 0 0 0 
1995] 
[Powles et ai, 14 8 - la 6 - Ib 86 10 82 8 90 28 72 72 72 
1995] 
ER+, estrogen receptor positive; PgR+, progesterone receptor positive; Mast., mastectomy; Lump., lumpectomy; RI, radiotherapy. 
• T refers to different tumour grades. 
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Appendix 7 The input data 

Appendix 7 The in put data 

A 7.1 Introduction 

From the literature reVIew, data were collected for a wide range of patient groups 

experiencing early breast cancer, reflecting many patient characteristics (as described in 

Appendix 6). The process of examining the data to defined relevant sub-groups to evaluate 

was described in Chapter 4. From that process, the patient group chosen for the case study 

evaluation was postmenopausal women with node positive early breast cancer. The 

relevant therapy comparison for this patient group was defined as tamoxifen and 

chemotherapy versus tamoxifen alone. This Appendix describes the probability 

distributions used to populate the case study models, which were derived from the data 

analysis described in Chapter 5. 

The data are presented in the same order as the methods of data analysis were discussed, 

namely, the clinical parameter values are followed by the cost parameters, and then the 

utility values. 

A 7.2 Clinical parameters 

The clinical parameters consist of the different forms of toxicity, disease-free interval (DFI) 

and the clinical events ending DFI, and progress from relapse. Each are de sci bed in the 

following sections. 
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Appendix 7 
The input data 

A 7.2.1 Toxicity parameters 

The data identified describing the probability of experiencing different categories of 

toxicity (major toxicity, grade 3 or 4 toxicity, and grade 1 or 2 toxicity), and the types of 

conditions included in each of the categories are described in the following sections. A 

final section describes the representation of treatment compliance, which was linked to the 

experience of toxicity. 

A7.2.1.1 Major toxic events 

Four studies were identified that presented data on major toxic events associated with 

tamoxifen and chemotherapy, including a total of 1964 patients [Tormey et aI, 1992; Rivkin 

et aI, 1994; Pritchard et aI, 1996; Fisher et aI, 1997]. The same number of studies was 

included in the analysis of major toxicity and tamoxifen, but the total number of patients 

was almost double (3733 patients) [Fisher et al, 1996a; Rivkin et al, 1994; Fisher et aI, 

1997; Pritchard et al, 1996]. Table A 7.1 presents the point estimates for the incidence of 

major toxicity for both therapy options alongside the number of patients included in each 

study, and the resulting weight attached to each estimate. A relatively wide range of 

estimates were identified for tamoxifen and chemotherapy that might reflect differences in 

the age and the burden of disease of the patients included in the respective trials, as these 

factors are known to have an impact on the incidence of thromboembolism [Pritchard et al, 

1996]. The tamoxifen figures are very small and there is not much scope for variation 

between the estimates. 

Table A 7.1 Point estimates, and corresponding sample size and weights, for data 
describing the experience of major toxicity 

Tamoxifen+chemotherapy Tamoxifen alone 

Data Sample Weight Data Sample Weight 

0.096 353 10 0.012 1422 29 

0.070 263 10 0.006 1188 49 

0.036 300 21 0.012 771 16 

0.045 778 43 0.014 352 6 

0.040 270 17 
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Table A7.2 shows the types of major toxic events that were experienced. Deep vem 

thrombosis (DVT) is clearly the prominent major toxic event. In patients receiving 

tamoxifen and chemotherapy all major events were thromboembolic, whilst a significant 

proportion of patients receiving tamoxifen alone experienced cardiac events. 

Table A 7.2 Proportion of specific major toxic events experienced by patients 
receiving alkylating drugs-based regimens 

Condition 
Pulmonary Embolism t 
Deep Vein Thrombosis 
Arterial Thrombosis 
Mesenteric Vein Thrombosis 
Unspecified cardiac event 
Total 

Tamoxifen+chemotherapy 
0.196 
0.741 
0.047 
0.016 

1.000 
t pulmonary infarction and embolism are included in this category 

A7.2.1.2 Grade 3 or 4 toxicity 

Tamoxifen alone 
0.l44 
0.462 
0.076 

0.318 
1.000 

The same four studies reporting major toxicity also presented grade 3 or 4 toxicity in 

patients receiving tamoxifen and chemotherapy, involving 1964 patients [Tormey et aI, 

1992; Rivkin et al, 1994; Pritchard et al, 1996; Fisher et al, 1997]. The largest study 

reporting on tamoxifen alone did not report grade 3 or 4 toxicity so only 1268 patients 

informed this analysis [Rivkin et al, 1994; Fisher et aI, 1997; Pritchard et al, 1997]. Table 

A 7.3 presents the separate point estimates for the incidence of grade 3 or 4 toxicity. The 

estimates for tamoxifen and chemotherapy appear stable apart from one low estimate, 

which came from the largest trial [Fisher et al, 1997]. The highest estimate for tamoxifen 

alone is 0.05, but the trial reporting this estimate was small relative to the remaining trials 

and the associated weight reduces it's impact [Rivkin et al, 1994]. 

Table A 7.3 Point estimates, and corresponding sample size and weights, for data 
describing the experience of grade 3/4 toxicity 

Tamoxifen+chemotherapy Tamoxifen alone 

Data Sample Weight Data Sample Weight 

0.482 353 16 0.003 352 59 

0.510 263 12 0.050 145 2 

0.500 270 12 0.010 771 39 

0.610 300 14 

0.250 768 46 
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The grade 3 or 4 toxicity conditions experienced are presented in table A 7.4. The total 

indicates the average number of conditions experienced by a single patient. The 

composition analysis was complicated by the studies that did not present an aggregate 

proportion experiencing grade 3 or 4 toxicity (see section 5.3.1). Using the maximum 

proportion as a proxy for the aggregate proportion overestimated the proportion of patients 

experiencing such conditions, though few resources were associated with two of the main 

events, leukopenia and thrombocytopenia, so the impact of the overestimation was reduced. 

Apart from these two conditions, the main toxicity for patients receiving tamoxifen and 

chemotherapy was nausea and vomiting. The dominance of infection in tamoxifen alone 

was initially surprising, but understandable given the very small incidence of grade 3 or 4 

toxicity. 

Table A 7.4 Proportions of patients experiencing toxicity conditions in the grade 3 
or 4 toxicity category. 

Condition 
N ausealvomiting 
Stomatitis/mucositis 
Diarrhea 
Leukopenia* 
Thrombocytopenia t 
Neurotoxicity~ 
Infection 
Neutropenia: 
Total 

Tamoxifen+chemotherapy 
0.280 
0.037 
0.108 
0.541 
0.259 
0.131 
0.09 

1.447 
* leucocyte is included in this toxicity condition. 
t includes platelet count < 50 x 109/L 
::: includes parestbesias/neuropatby 

A7.2.1.3 Grade 1 or 2 toxicity 

Tamoxifen alone 
0.266 

0.061 

0.278 

0.521 
0.061 
1.186 

Only three studies including tamoxifen and chemotherapy reported grade 1 or 2 toxicity, 

totalling 1421 patients [Rivkin et al, 1994; Pritchard et aI, 1996; Fisher et al, 1997]. Five 

trials with tamoxifen alone presented data on grade 1 or 2 toxicity with 2775 patients 

[Fisher et al, 1996a; Rivkin et aI, 1994; Fisher et aI, 1997; Pritchard et al, 1997; Bergman et 

al,1995]. Table A7.5 presents the separate point estimates for the incidence of grade 1 or 2 

toxicity. There was a large amount of variation in the tamoxifen and chemotherapy data 

but the low estimate of 0.34 was actually a maximum estimate used as a proxy for the 
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aggregate proportion (the proportion of patients experiencing mucositis) [Rivkin et at 

1994] and was almost certainly an underestimate. 

Table A 7.5 Point estimates, and corresponding sample size and weights for data 
describing the experience of grade 112 toxicity , 

Tamoxifen+chemotherapy Tamoxifen alone 

Data Sample Weight Data Sample Weight 

0.620 353 23 0.305 85 
.., 
-' 

0.340 300 20 0.640 1422 41 
0.720 768 57 0.085 352 30 

0.300 145 5 
0.430 771 21 

The interpretation of the proportions presented for patients receiving tamoxifen alone is 

difficult. In disaggregating the data the lower proportions were reported in studies 

comparing tamoxifen with a chemotherapy-based treatment arm, which may be due to the 

choice of side effects reported. Comparing tamoxifen with a placebo the occurrence of hot 

flashes, vaginal discharge, fluid retention, and skin changes - all effects that may be 

described as hormonal - were described [Fisher et aI, 1996a]. Two other trials compared 

tamoxifen with a chemotherapy treatment arm, and of the hormonal conditions only 'hot 

flashes' was recorded [Pritchard et aI, 1997; Rivkin et al, 1994]. Fisher et al [1996] 

labelled side effects as 'undesirable sequelae' which gave no indication of their intensity 

and it is likely that only a small proportion would be classified as equivalent to a grade 1 or 

2 toxicity. 

Table A7.6 presents the conditions experienced within grade 1 or 2 toxicity. The data 

reported by one study was excluded from this analysis because the use of the maximum 

proportion led to impossibly high estimates of four conditions [Rivkin et al, 1994]. For 

patients receiving tamoxifen and chemotherapy leukopenia was common, though 

nausea/vomiting was by far the most common form of toxicity with real impact. Hot 

flushes and nausea/vomiting dominated the grade 1 or 2 conditions experienced for 

tamoxifen alone. 
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Table A 7.6 Proportions of patients experiencing toxicity conditions in the orade 1 
or 2 toxicity category. ~ '=' 

Condition 
Nausea/vomiting 
Stomatitis/mucositis 
Diarrhea 
Leukopenia* 
Anemia 
Constipation 
Thrombocytopenia t 
N eurotoxicityt 
Gran ulocytopenia 
Fatigue 
Hot flashes 
Vaginal discharge 
Superficial phlebitis 
Total 

Tamoxifen+chemotherapy 
0.619 
0.077 
0.024 
0.563 
0.210 
0.023 
0.233 

0.046 
1.794 

* leucocyte was included in this toxicity condition. 
t includes platelet count < 50 x 109/L 
t includes paresthesias/neuropathy 

A7.2.1.4 Treatment compliance 

Tamoxifen alone 
0.356 
0.003 
0.093 

0.004 

0.565 
0.246 
0.026 
1.294 

Aggregate proportions of patients completing specific cycles of chemotherapy were 

reported [Schumacher et al, 1994; Coombes et aI, 1996], but the length of treatment was not 

linked to the type of toxicity experienced. In order to model the relationship between non­

compliers and the severity of their toxicity experiences, it was assumed that those patients 

experiencing the worst toxicity would receive the fewest cycles of chemotherapy. Table 

A 7.7 describes the proportion of each class of toxicity receiving specific cycles of 

chemotherapy. 

Table A7.7 Assignment of compliance rates across types of toxicity experienced 

Chemotherapy Aggregate Grade 112 Grade 3/4 Major 
cycles proportions toxicities toxicities toxicities 

receiving specific (0.57) (0.38) (0.05) 
cycles 

1 0.0055 0.00 0.00 0.11 
2 0.0055 0.00 0.00 0.11 

3 0.045 0.00 0.07 0.39 
4 0.0375 0.00 0.05 0.39 

5 0.0375 0.00 0.10 0.00 

6 0.869 1.00 0.79 0.00 
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Only four studies referred to treatment compliance for tamoxifen alone. Three of these 

studies were review papers [Bryson and Plosker, 1993; EBCTCG, 1998; J aiy esimi et al. 

1995], whilst one reported findings from a trial containing 352 patients receiving tamoxifen 

only [Pritchard et aI, 1997]. The latter reports a discontinuation proportion of 0.04. whilst 

the figures in the reviews range from 0.03 to 0.05, with only seldom exceptions. One 

review paper cited a large trial in which about 20% of women either failed to start 

tamoxifen or discontinued it prematurely [EBCTCG, 1998], whilst another study found that 

100/0 of patients did not complete 1 year due to side effects [Jaiyesimi et al, 1995]. 

A7.2.2 Diseasefree interval and clinical events ending DFI 

Input distributions were specified for each year following primary surgery for the analysis 

of DFI, and for each type of event for the clinical events ending DF!. Table A 7.8 presents 

the separate estimates of the proportions leaving DFI in each year following diagnosis, 

whilst Figure A 7.1 shows the aggregate survival curves for each therapy option. Table 

A 7.9 presents the separate estimates for the proportions of patients experiencing the 

alternative events that follow DFI. 
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Table A7.8 Point estimates and corresponding sample sizes, for data describing the annual probability of the 
remaining cohort leaving the health state' disease free interval' 

Tamoxifen+ chemotherapy 
Year 1* 2* 3* 4* 5* 6* 7* 
[Pritchard et aI, 1997] 0.930 352 0.076 327 0.113 303 0.057 268 0.135 253 0.191 219 0.107 177 
[Gerard et aI, 1993] 0.970 182 0.074 176 0.057 163 0.036 154 0.007 148 
[Gelber et ai, 1993] 0.924 341 0.103 315 0.149 283 0.081 241 0.095 221 0.057 200 0.086 189 
[Jansen et ai, 1998] 0.960 303 0.073 291 0.135 270 0.117 233 0.118 206 0.067 182 0.071 170 
[Castiglione-Gertsch et ai, 0.887 97 0.137 86 0.123 74 0.042 65 0.087 62 0.064 57 0.034 53 
1994] 
Year 8 9 10 11 12 13 14 
[Pritchard et aI, 1997] 0.168 158 0.029 132 
[Gerard et aI, 1993] 
[Gelber et aI, 1993] 
[J an sen et aI, 1998] 0.058 158 0.061 148 0.130 139 0.025 121 0.000 118 
[Castiglione-Gertsch et aI, 0.124 52 0.081 45 0.033 41 0.011 40 0.023 40 0.023 39 0.000 38 
1994] 
Tamoxifen alone 
Year 1* 2* 3* 4* 5* 6* 7* 
[Pritchard et aI, 1997] 0.896 353 0.093 316 0.090 287 0.070 261 0.136 243 0.052 210 0.111 199 
[Gerard et aI, 1993] 0.947 192 0.088 182 0.066 166 0.057 155 0.010 146 
[Jansen et aI, 1998] 0.940 295 0.106 277 0.119 248 0.149 218 0.111 186 0.089 165 0.078 150 
[Castiglione-Gertsch et aI, 0.763 116 0.174 89 0.135 73 0.087 63 0.114 58 0.075 51 0.046 47 
1994] 
Year 8 9 10 11 12 13 14 

[Pritchard et aI, 1997] 0.062 177 0.044 166 

[Gerard et aI, 1993] 
[Jansen et ai, 1998] 0.085 139 0.186 127 0.029 103 0.118 100 0.100 89 

[Castiglione-Gertsch et aI, 0.085 45 0.053 41 0.056 39 0.030 37 0.015 36 0.016 35 0.032 35 

1994] 
• The two columns represents the reported value and the sample. The corresponding weights are not displayed, but they can be estimated using the following formula 

p;(I- p;) 

11, 
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Figure A 7.1 Disease-free survival curves for tamoxifen and chemotherapy, and for tamoxifen alone, as 
adjuvant therapies for node-positive, postmenopausal women with early breast cancer 
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Table A 7.9 Point estimates and corresponding sample sizes and weights, for data describing the destination state of 
patients leaving the health state' disease free interval' 

Tamoxifen+chemotherapy Locoregional * Soft tissue* Bone* Visceral* DNED* 

[Pritchard et aI, 1997] 0.332 160 721 0.080 160 2171 
[Rivkin et aI, 1994] 0.223 141 814 0.344 141 625 0.297 141 675 0.006 141 23140 

[Castiglione-Gertsch et ai, 0.254 91 479 0.034 91 2774 0.271 91 460 0.305 91 429 0.136 91 775 
1994] 
Tamoxifen alone Locoregional * Soft tissue* Bone* Visceral* DNED* 
[Pritchard et aI, 1997] 0.355 160 700 0.040 160 4178 
[Rivkin et aI, 1994] 0.320 150 689 0.330 150 678 0.310 150 701 0.113 150 1490 
[Castiglione-Gertsch et aI, 0.306 110 519 0.014 110 8043 0.306 110 519 0.306 Ito 519 0.056 110 2100 
1994] 
• The three columns represents the reported value, the sample, and the corresponding weight applied to the value 
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A 7.2.3 Progress from relapse 

The data describing progression from relapse is presented separately for progression from 

locoregional relapse and from metastases. 

A7.2.3.l LocoregionaI relapse 

Nine studies presented data on the time to metastatic dissemination of locoregional relapse 

[Kamby and Sengelov, 1997; Bomer et aI, 1996; Crowe et ai, 1991; Beck et al, 1983; 

Janjan et aI, 1986; Bedwinek et aI, 1981; Schwaibold et ai, 1991; Toonkel et al, 1983; Toi 

et aI, 1997]. The representation of the time spent in remission (disease-free survival (DFS)) 

following a 10coregionaI relapse was the major difference between the two modelling 

techniques - the Markov process and the DES model. In the DES modeL DFS was 

represented in an identical manner to the representation of DFI, but in the Markov process 

it was only possible to describe DFS as a constant probability of experiencing a further 

relapse (see section 5.4.3). The raw data employed to represent DFS is presented in Table 

A 7.10, whilst the mean survival curve is presented in Figure A 7.1. 
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Table A7.10 Point estimates and corresponding sample sizes, for data describing the annual probability of the 
remaining cohort leaving the health state 'remission' 

Year 1* 2* 3* 4* 5* 

[Bomer et ai, 1996) 0.740 61 317 0.470 45 181 0.390 29 121 0.320 24 109 0.290 20 95 
[Bomer et ai, 1996) 0.850 71 557 0.760 60 331 0.700 54 257 0.650 50 218 0.600 46 192 
[Crowe et ai, 1991] 0.570 81 330 0.325 46 210 0.260 26 137 0.200 21 132 0.150 16 127 
[Beck et ai, 1983) 0.670 121 547 0.400 81 338 0.315 48 224 0.250 38 203 0.200 30 189 

[Janjan et ai, 1986) 0.650 57 251 0.480 37 148 0.325 27 125 0.300 19 88 0.225 17 98 
[Janjan et ai, 1986) 0.850 50 392 0.570 43 173 0.460 29 115 0.370 23 99 0.370 19 79 
[Janjan et aI, 1986] 0.850 57 447 0.550 48 196 0.400 31 131 0.350 23 100 0.325 20 91 
[Bedwinek et aI, 1981] 0.760 32 175 0.630 24 104 0.510 20 81 0.400 16 68 0.360 13 56 
[Schwaibold et aI, 1991] 0.652 128 564 0.460 83 336 0.343 59 261 0.297 44 210 0.235 38 211 
[Toonkel et aI, 1983] 0.835 124 900 0.505 104 414 0.355 63 273 0.335 44 198 0.250 42 222 

Year 6* 7* 8* 9* 10* 
[Bomer et ai, 1996] 0.290 18 86 0.290 18 86 0.290 18 86 0.290 18 86 0.290 18 86 
[Bomer et ai, 1996] 0.540 43 171 0.540 38 154 0.480 38 154 0.400 34 142 0.400 28 118 
[Crowe et aI, 1991] 0.125 12 111 0.100 10 113 0.100 8 90 0.100 8 90 0.090 8 99 
[Beck et ai, 1983] 0.170 24 172 0.150 21 161 0.105 18 193 0.105 13 135 0.105 13 135 
[Janjan et ai, 1986] 0.190 13 83 0.190 11 70 0.190 11 70 0.190 I I 70 
[Janjan et aI, 1986] 0.325 19 84 0.325 16 74 0.325 16 74 0.325 16 74 0.325 16 74 

[Janjan et ai, 1986] 0.300 19 88 0.300 17 81 0.300 17 81 
[Bedwinek et ai, 1981] 0.230 12 65 0.200 7 46 0.200 6 40 0.150 6 50 0.150 5 38 
[Schwaibold et ai, 1991] 
[Toonkel et aI, 1983] 

• The three columns represents the reported value, the sample, and the corresponding weight applied to the value. 
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A7.2.3.2 Metastases 

Substantial amounts of data describing the median length of survival from the point of 

diagnosis with metastases were identified. From clinical trials comparing alternative 

therapies for metastatic cancer, 113 separate treatment arms containing patients diagnosed 

with metastases were identified. 68 reported the component proportions of the different 

metastatic sites, whilst the remaining treatment arms reported data on individual sites - 11 

soft tissue, 15 bone and 19 visceral. Given the reasonable number of studies reporting 

separate survival times for the three metastatic sites, survival data on specific metastatic 

sites were used to estimate median survival times. No information other than median 

survival times were presented in the vast majority of studies reporting such data, no attempt 

was made to estimate mean survival. 

A number of studies presented data on survival from metastases differentiating with respect 

to nodal status [Koenders et aI, 1992; Venturini et aI, 1996]ER status receptor [Koenders et 

aI, 1992; Vogel et aI, 1992; Alonso et ai, 1995 ; Venturini et aI, 19961 PgR receptor status 

[Koenders et aI, 1992], menopausal status [Venturini et al, 1996], and the administration of 

prior adjuvant therapies [de Takats et ai, 1993; Venturini et aI, 1996]. These data were 

used to estimate survival multipliers for different patients groups. For example, node 

negative patients with visceral metastases were estimated to live 33 per cent longer than the 

average survival length for visceral metastases, conversely node positive patients lived 33 

per cent less than the average. Table A 7.11 presents the patient categories and their 

associated multipliers for node positive patients. 

Table A 7.11 Survival from metastases multipliers for node positive patients 

Patient group 

Node positive 

Soft tissue 

0.82 

Bone 

0.82 

Visceral 

0.67 

The respective multipliers were applied to the individual estimates of survival derived from 

the identified studies. The identified data for the three metastatic sites are presented in 

Table A7.I2. 
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Table A 7.12 Point estimates and corresponding sample sizes, for data describing 
median survival from the metastatic health states 

Soft tissue Data Sample Visceral Data Sample 
[Koenders et aI, 1992] 33.62 52 [Koenders et aI, 1992] 10.72 137 
[Vogel et aI, 1992] 38.54 70 [Vogel et aI, 1992] 10.72 75 
[Alonso et aI, 1995] 16.40 32 [Goldhirsch et aI, 1988] 8.78 24 
[Alonso et aI, 1995] 16.40 30 [Goldhirsch et aI, 1988] 8.31 14 
[Goldhirsch et aI, 1988] 11.56 26 [Kamby et aI, 1988] 7.73 361 
[Leonard et aI, 1994] 12.30 42 [Clark et aI, 1987] 9.38 386 
[Kamby et aI, 1988] 34.06 277 [Paridaens et aI, 1993] 14.22 42 
[Clark et aI, 1987] 32.64 284 [paridaens et aI, 1993] 14.22 41 
[Paridaens et aI, 1993] 27.06 13 [Castiglione-Gertsch et aI, 1997] 8.04 34 
[Paridaens et aI, 1993] 27.06 15 [Alonso et aI, 1995] 8.04 71 
[Castiglione-Gertsch et aI, 1997] 26.08 52 [Alonso et aI, 1995] 8.04 55 

Bone Data Sample [Leonard et aI, 1994] 6.70 55 
[Koenders et aI, 1992] 27.88 70 [Arai et aI, 1994] 8.38 56 
[Vogel et aI, 1992] 19.68 48 [Goldhirsch et aI, 1988] 3.62 18 
[Rasmusson et aI, 1995] 9.84 100 [Goldhirsch et aI, 1988] 5.09 16 
[Rasmusson et aI, 1995] 9.02 100 [Coleman and Rubens, 1987] 1.01 75 
[Alonso et aI, 1995] 16.40 23 [Leonard et aI, 1994] 5.36 55 
[Alonso et aI, 1995] 16.40 39 [Kocher et aI, 1995] 2.14 190 
[Goldhirsch et aI, 1988] 17.88 90 [Kocher et aI, 1995] 8.04 45 
[Goldhirsch et aI, 1988] 12.87 22 
[Coleman and Rubens, 1987] 19.68 150 
[Kamby et aI, 1988] 17.03 225 
[Clark et aI, 1987] 17.55 274 
[Paridaens et aI, 1993] 25.17 27 
[Paridaens et aI, 1993] 25.17 19 
[Castiglione-Gertsch et aI, 1997] 20.66 10 

Estimates of the time to progression (TTP) were required indirectly for the model, in order 

to calculate the monthly costs of the metastases states (see section 5.4.4.4). Three 

categories of patients were specified for whom data describing TTP were required: Patients 

receiving hormonal therapy for bone and soft tissue metastases; chemotherapy for visceral 

metastases; and chemotherapy for bone and soft tissue metastases. Fewer trials presented 

data on the TTP or TTF. For example, TTP estimates were available for only 2 of the 19 

treatment arms presenting specific data on survival from visceral metastases. TTP was 

estimated, therefore, using all studies in which a single metastatic site was dominant in over 

50% of patients. Table A 7.13 presents the separate point estimates of the median TIP for 

the three identified patient groups. 
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Tab~e A 7:13 Point esti~ates and corresponding sample sizes, for data describing 
median time to progressIOn from the metastatic health states 

Bone/Soft tissue (honnonal) Visceral (chemotherapy) 

[Pyrhonen et ai, 1997] 7.30 214 [Swain et aI, 1997] 8.55 168 
[Pyrhonen et aI, 1997] 10.20 201 [Swain et aI, 1997] 8.55 181 
[Pyrhonen et aI, 1997] 6.00 91 [Swain et aI, 1997] 7.73 81 

[Muss et aI, 1994] 6.50 91 [Swain et aI, 1997] 7.73 104 

[Jonat et aI, 1995] 5.31 159 [Gabra et aI, 1996] 10.00 56 

[Jonat et aI, 1995] 6.46 159 [Stewart et aI, 1997] 5.30 128 

[Thurlimann et aI, 1996] 19.80 107 [Stewart et aI, 1997] 3.20 121 

[Thurlimann et aI, 1996] 15.00 105 [Richards et aI, 1992] 4.00 28 

[Hayes et aI, 1995] 5.75 215 [Richards et aI, 1992] 5.00 31 

[Hayes et aI, 1995] 5.52 221 [BIomqvist et aI, 1993] 9.20 86 

[Hayes et aI, 1995] 5.49 212 [BIomqvist et aI, 1993] 5.40 84 

Bone/Soft tissue (chemotherapy) [Ingle et aI, 1994] 4.10 80 

[Jones et aI, 1995] 2.77 115 [Ingle et aI, 1994] 4.30 83 

[Jones et aI, 1995] 1.85 64 [Venturini et aI, 1996] 9.80 326 

[Pavesi et aI, 1995] 8.50 71 [Paridaens et aI, 1993] 13.85 82 

[Pavesi et aI, 1995] 7.50 70 [Ibrahim et aI, 1996] 12.00 767 

[Cobau et aI, 1996] 7.00 135 [Ibrahim et aI, 1996] 10.50 244 

[Cobau et aI, 1996] 4.00 131 

[Bastholt et aI, 1996] 4.40 75 

[Bastholt et aI, 1996] 4.70 66 

[Bastholt et aI, 1996] 8.40 64 

[Bastholt et aI, 1996] 8.40 58 

[Aisner et aI, 1995] 8.24 165 

[Aisner et aI, 1995] 8.48 164 

[Aisner et aI, 1995] 8.90 162 

[Chu et aI, 1996] 2.77 21 

[Paridaens et aI, 1993] 8.28 73 

A 7.3 Cost parameters 

Four categories of cost parameters are presented In the following sections: adjuvant 

therapies, surveillance, toxicity, and relapse. 

A 7.3.1 Adjuvant therapies 

To represent the cost of chemotherapy pnmary cost estimates for the individual 

components of chemotherapy were identified, as well as aggregate estimates derived 

directly from the literature. For the former, three resource elements were identified -

drugs, anti-emetics and administration. Drug costs were based on protocols presented in 

the literature, unit costs from various sources were then applied to the protocol to estimate 
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total drug costs. Tamoxifen is self-administered so no costs other than the cost of the 

treatment itself were considered. Table A7.l4 presents the baseline estimates for the 

alternative adjuvant therapies. 

Table A 7.14 Adjuvant therapy costs 

Therapy and source Constituents * Unit cost (£'s) Cost (£'s) 

Milan regimen 

20/30mg 0.12/0.22 3.60/6.54 per month 
Cyclophosphamide 100mg/m2 days 1-14 0.11 - 50mg 4.93 per cycle 
Methotrexate 40 mg/m2 days 1&8 iv. 2.62 - 50mg 10.48 per cycle 
5-Fluorouracil 600 mg/m2 days 1&8 iv. 3.20 - 250mg 19.20 per cycle 

Tamoxifen 
CMF) - standard 

Cyclophosphamide 400 mg/m2 day 1 iv. 1.65 - 200mg 3.30 per cycle 
Adriamycin 40 mg/m2 day 1 iv. 20.60-10mg 82.40 per cycle 
5-Fluorouracil400 mg/m2 days 1&8 iv. 3.20 - 250mg 12.80 per cycle 

* All costs taken from British National Formulary, apart from cost of fraction of radiotherapy [Warde and Murphy. 1996], 
outpatient visit (see text) and surgical oophorectomy (national schedule of reference costs), which are from an NHS 
Trust. The average female body surface was assumed to be 1.6m2

. 

t Second year costs have been discounted at 6% 
1 [Fisher et aI, 1996b] 
2 [Alonso et aI, 1995] 

The use of standard anti-emetics alongside the chemotherapy regimens was not reported in 

any study, but a handbook published by the Royal Marsden NHS Trust provided details of 

appropriate schedules [Price et ai, 1995]. Estimates of the necessary inputs from health 

professionals to the administration of chemotherapy were sought from clinicians. Two 

studies were identified that presented the cost of disposable items employed in the 

administration of chemotherapy, and associated laboratory tests, such as blood tests for 

monitoring tumours [Lober et ai, 1988; Lokich et aI, 1996]. Disposable items included 

syringes, drug reservoirs, intravenous tubings, and solutions. 

The cost of an outpatient visit was a key unit cost in calculating the cost of the adjuvant 

therapies. Using data collected by the Institute of Public Finance estimates of net 

expenditure on outpatient attendances within Medical Oncology specialities were divided 

by the number of outpatient visits to estimate a mean cost per outpatient attendance 

[CIPFA, 1999]. Data were available from 100 Trusts, leading to an average cost of £86.35, 

though the standard deviation of £89.84 highlights a wide range of variation. 
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Table A7.14 presents the resource use estimated for standard anti-emetics administered 

alongside the chemotherapy, the assumed health service contact per cycle of chemotherapy. 

and the disposable items employed per cycle. 

Table A7.14 Estimates for anti-emetic schedules for CMF and eAF regimens per 
cycle, disposable items, and clinicians for health professional's time 

CMF Unit cost (£'s) Cost (£'s) CAF Unit cost (£'5) Cost (£'5) 
Dexamethasone 8mg 1.27 - 8mg 2.54 Granisetron Img iv 12.00 - Img 12.00 
iv days 1+8 
Dexamethasone 2mg 
po tds for 3 days 
following days 1 +8 
Domperidone 20mg po 
qds for 3 days 
following days 1 +8 
Folonic acid 15mg 
q.d.s. 3 days 
Disposab les! 
Tests! 
2 breast clinic visit 
Total 

0.085 -2mg 

0.17-20mg 

3.71 -15mg 

1.53 

4.08 

44.52 

14.47 
10.49 
172.70 
250.33 

Dexamethasone 
8mg iv 

Dexamethasone 
4mg po tds for 3 
days 
Domperidone 20mg 
po qds for 3 days 
Disposables2 

Tests! 
1 breast clinic visit 

1.27 - Smg 

0.17 -4mg 

0.17 -20mg 

1.27 

1.53 

2.04 

11.31 
10.49 
86.35 
124.99 

'" Drug costs taken from the British National Formulary 
1 [Lober et aI, 1988] Costs are converted using 1987 Danish crowns:£ exchange rate, and uprated to 1999 levels. 

Laboratory test costs are taken as the difference between the total lab test costs for CMF and the total lab test costs for 
the control group. 

2 [Lokich et aI, 1996], Charges are converted using 1995 $:£ exchange rate, and uprated to 1999 levels. Clinic visits 
incorporate the administration of the drugs. 

The baseline cost for a cycle of chemotherapy was calculated separately for an alkylating 

drugs-based regimen (CMF) and a cytotoxic antibiotics-based regimen (CAF), which are 

presented in Table A7.1S. 

Table A7.15 Total costs per cycle for CMF and CAF chemotherapy regimens 

Components CMF (£'s) CAF (£'s) 
Chemotherapeutic drugs 34.61 98.50 
Anti-emetic drugs 52.67 16.84 
Disposables 14.47 11.31 
Tests 10.49 10.49 
Clinic visits 172.70 86.35 
Total 284.94 223.49 

The cost of chemotherapy is an integral parameter in the model and a wide search for 

alternative estimates of the cost of a cycle was undertaken. Aggregate estimates combining 

the individual components, as well as the identified aggregated estimates are presented in 

Table A7.16. 
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Table A7.16 Cost estimates of cycle of chemotherapy 

Method Source Rank Weight Cost 
Separate CMF, baseline 1 10 28.+.9'+ 

CAF, baseline 2 9 226.65 
CMF, baseline (1 clinic visit) " 8 198.59 ,j 

CMF, health professionals time costs 1 
6 5 141.86 

CMF, health professionals time costs2 
7 4 700.46 

CAF, health professionals time costs2 
8 " 467.60 ;) 

Aggregate NHS reference cost (HRG v.3) 4 7 269 
E Anglia Trust cost 5 6 67 
cosf CMF 9 2 596 
cosf CAF 10 648 

[Lober et aI, 1988], 2 [Lokich et ai, 1996], 3 [Silva and Zurrida, 1999] 

Tamoxifen, 30mg/day, costs less than £7.00 per month, so no distribution was specified for 

such a small total cost, which is incurred by the majority of patients. 

A7.3.2 Surveillance 

Table A 7.17 describes a selection of the follow-up schedules employed to survey patients 

in the absence of symptoms following primary surgery, and their associated costs. 

Table A 7.17 Components of follow-up reported in the literature for patients with no 
symptoms of disease 

Treatment anns Physical exam Biochemical Chest & bone Mammograms Electrocar Total 
tests x-rays -diograms 

Unit costs 89.55* 7.081 122.911 11.292 16.94~ 
12 cycles CMF I 3 weekly for 9 6 monthly for 6 monthly Annually 

controe months, then 6 3 years, then 
monthly annually 

First yeart 97.28 1.17 20.49 0.94 0.00 119.88 
Subsequent years t 14.93 0.59 20.49 0.94 0.00 36.95 
Radiotherapy I 3 monthly for 2 Only in case Only in case of Annually 

Chemotherapy I years, 6 of symptoms symptoms 

Tamoxifen4 monthly to 5 
years, then 
annually 

First yeart 29.85 0.00 0.00 0.94 0.00 30.79 

Subsequent years t 14.93 0.00 0.00 0.94 0.00 15.87 

12 cycles A/CMF5 3 weekly for 1 6 monthly for 6 monthly for Annually Annually 
year, 6 monthly five years, five years, then from end of 
to 5 years, then then annually annually 1 year 
annually 

119.88 First yeart 97.28 1.17 20.49 0.94 0.00 

Subsequent years t 14.93 1.17 20.49 0.94 1.41 38.94 

• Physical exam is assumed to incorporate a visit to a breast clinic or a medical oncology outpatient visit. 
t cost per month. 
t Hospital Trust finance department. 
I [Robertson et ai, 1995], 2 [Johnston et al, 1998], 3 [Zambetti et al, 1992], 4 [Arriagada et ai, 1992], S [Bonadonna et al. 
1995] 
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An UK-based study compared two options for the surveillance of patients \\lth metastatic 

breast cancer [Robertson et aI, 1995]. The reported costs are presented in table A 7.18. The 

surveillance costs following a locoregional or a metastatic relapse were assumed to be the 

same, and the four estimates reported were entered into a discrete uniform distribution. 

Table A 7.18 Annual surveillance costs reported by Robertson et al199S1 

Year VICC assessment 
One 441.57 
Two and beyond 304.62 
UICC - the International Union against Cancer. 
1 [Robertson et aI, 1995] 

A 7. 3. 3 Toxicity parameters 

Serum marker assessment 
252.50 
123.50 

The costs of toxicity were estimated separately for the different categories of toxicity 

severity, for both adjuvant therapies. Within each category, a weighted cost was estimated 

that reflected the proportion of patients experiencing the various conditions defined within 

the group (see section A7.2). Various conditions that required inpatient episodes were 

specified within the major toxicity category. Cost estimates for each event were identified 

through a search of the NBS economic evaluation database [NHS Economic Evaluation 

Database], and the Office of Health Economics' economic evaluation database [OHE 

Health Economic Evaluations Database]. One Italian study provided adequate estimates for 

both life threatening (massive) Pulmonary Embolism (PE) and Deep Vein Thrombosis 

(DVT) [Lloyd et al, 1997]. The presented costs were converted to 1994 pounds, and 

uprated to £4036.80 and £1653.97, respectively. Holloway et al presented inpatient costs 

of four cerebrovascular events, of which 'ischemic cerebral infarction' and 'transient 

ischemic attack' were taken as the closest to the types of events experienced as a 

consequence of chemotherapy [Holloway et al, 1996]. The mean costs of the two events 

were £5981.06 and £2816.22, converted from US dollars and uprated from 1992 values. 

Finally, Quirk et al compared the cost of treating acute upper gastrointestinal bleeding by 

physician speciality [Quirk et al, 1997]. The cost of being treated by a gastroenterologist 

was £1900.42, converted from US dollars and uprated from 1995 values, which was the 

lowest estimate. Table A 7.19 presents the resulting composition for major toxic events. 
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Table A 7.19 Health events included in the major toxicity category, and related cost 
estimates 

Major toxic events Cost 

Pulmonary Embolism 
Thrombosis 

Tamoxifen 
alone 

Chemotherapy 
alone 

Chemotherapy+ 
Tamoxifen Estimate (£'s) 

Myocardial infarction 
Cerebral vascular accident 
Thromboembolic event* 

0.144 
0.538 

Cardiac event* 0.318 

0.235 
0.336 
0.030 
0.180 
0.099 

Gastrointestinal bleeding 0.120 

0.196 
0.794 

Weighted cost (£'s) 2870 3153 2105 
* unspecified, cost taken as the weighted mean of the other thromboembolic/cardiac events 

.f037 
1654 
2816 
5981 
2633 
4398 
1900 

Table A7.20 presents detailed information on the anti-emetics used to control nausea and 

vomiting, arid the anti-biotics associated with infection. Table A7.21 describes the 

assumptions made with respect to the treatment of all conditions included in the graded 

toxicity categories, and their respective costs. 

Table A 7.20 Components and costs of the treatment for nausea/vomiting and 
infection 

Cost component Unit cost Grade 1 or 2 Cost 
(£'s) (£'s) toxicity 

N ausealvom iting 
Ondansetron Smg i.v. 13.50 8mg per cycle 13.50 
Dexamethasone Smg i.v. 1.76 8mg per cycle 1.76 
Metoclopramide 10mg po 0.11 
Lorazepam 2mg 0.02 
Total per cycle 15.26 

Infection 
Gentamicin, 2mL vial (SOmg) 1.54 
Ceftazidime, 2g vial 19.80 
Total 

Grade 3 or 4 toxicity 

16mg per cycle 
16mg per cycle 
180mg per cycle 
2mg per day 

240mglday for 7 days 
4g1day for 7 days 

Cost 
(£'s) 

27.00 
3.52 
2.01 
0.54 
33.07 

32.34 
277.20 
309.54 



Table 21 Health events included in the graded toxicity categories, and related cost and utility estimates 

Graded events Grade 3 or 4 treatment Tamoxifen Tam+Che Grade 1 or 2 treatment Tamoxifen Tam+Che 
Propo- Cost Propo- Cost per Propo Cost Propo Cost 
rtion per rtion cycle -rtion per -11ion per 

cycle cycle cycle 
Nausea/vomiting Anti-emetics, 4 days 0.266 8.80 0.567 18.75 Anti-emetics, 4 days 0.356 5.43 0.850 15.26 

following each cycle following each cycle 
Stomatitis/mucositis Mouth washes, 7 days 0.166 0.19 No treatment 0.003 0.287 

following each cycle 
(Povidone-iodine) 

Diarrhea Self-treatment 0.061 0.041 Self-treatment 0.093 0.266 
Leukopenia Postpone chemotherapy 0.385 Postpone chemotherapy for - 0.920 

until recovery a week 
Thrombocytopenia No treatment 0.278 0.056 No treatment 0.004 0.150 
Neurotoxicity No treatment 0.061 No treatment 0.322 
Anemia Transfusion 0.140 28.00 No treatment 0.112 
In fection * Anti-biotics 7 days 0.521 161.27 0.144 44.57 

(Gentamicin) 
Fatigue No treatment 0.018 No treatment 0.144 
Neutropenia* Inpatient stay' 0.061 99.35 0.048 78.18 
Alopecia Scalp cooling system 0.179 Scalp cooling system 0.464 
Outpatient visits An extra visit every cycle, 1.000 129.55 1.000 129.55 An extra visit every two 1.00 43.18 1.000 43.18 

plus an appointment with a cycles 
dietician every cycle 

Total 398.97 299.24 48.61 58.44 
• It was assumed that patients experienced infection or neutropenia only once. Thus, the cost of treatment was spread over the six cycles. 
I [Leese, 1993] 
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A 7. 3. 4 Costs of relapse 

Differential costs were estimated for each of the four sites of relapse included in the 

structure of the model -locoregional, soft tissue, bone, and visceral. 

A7.3.4.1 Locoregional 

Protocols for the treatment of locoregional relapses were derived from the literature. 

Excisional biopsy is the recommended primary treatment for chest wall relapse, which 

may involve the resection of the chest wall, though in some cases incisional biopsy may 

be the only option [Jardines et aI, 1993]. Radiation therapy should follow, with a 

minimum dose of 45-50Gy to elective sites and 55Gy to unexcised relapses [Willner et 

aI, 1997]. Systemic treatments are commonly implemented in patients following a chest 

wall relapse, though their effect is unproven [Jardines et al, 1993; Willner et al, 1997]. 

Similar treatment patterns were identified for regional relapses, ipsilateral axillary 

relapses requiring repeat axillary dissection, whilst supraclavicular lymph node 

recurrences are excised when possible and radiated [Jardines et aI, 1993; Silva and 

Zurrida, 1999]. 

Surgery for locoregional relapses most closely matched the 'Intermediate Breast 

Surgery' category in the National Schedule of Reference Costs [The new NHS - 1998 

Reference Costs, 1998]. The number and cost of fractions of radiotherapy were 

obtained from the literature, which reported a mean number of 20 fractions [Aberzik et 

al, 1986; Toonkel et ai, 1983], at a cost of a single fraction of radiotherapy of £41.92 

[Read, 1994]. The cost of chemotherapy following locoregional relapse employed the 

same estimates derived for the cost of adjuvant chemotherapy. The baseline cost for the 

treatment of locoregional relapse, and the constituent parts, are presented in table A 7.22 

below. 

Table A7.22 

Treatment 
Surgery 

Baseline cost of treating a loco regional relapse 

Cost (£'s) 

Radiotherapy (20 fractions @ £41.92 each) 
Chemotherapy 

780.00 
838.40 
285.00 
1903.40 Total 
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A7.3.4.2 Metastases 

Protocols were also developed from the literature to estimate separate monthly costs for 

the treatment of the three sites of metastases. The costing of surveillance for patients 

with metastases has been reported above, and the same systemic therapies were 

assumed as described above. Table A7.23 presents details of the assumed local 

treatment of metastases. Data from the literature reported that bone metastases should 

be treated with radiation therapy to palliate pain [Jardines et aI, 1993], though another 

study differentiated between localised and widespread bone pain and offered a range of 

alternative interventions [Leonard et aI, 1994]. Pathological fractures are an infrequent 

problem and should be treated with internal [Jardines et al, 1993] or external [Leonard 

et aI, 1994] fixation and radiation. Bisphosphonates (pamidronate and clodronate) are 

added to systemic therapy and are useful in reducing pain, analgesic use, fractures and 

hypercalcemia [Silva and Zurrida, 1999; Hortobagyi, 1998]. The assumed local 

treatment schedule for bone metastases included radiation therapy and bisphosphonates 

alongside systemic therapy. Following the validation process and the ensuing 

examination of a series of patient notes, the original estimate of patients with bone 

metastases receiving five episodes of radiotherapy per month was thought to be 

excessive. Instead, patients were assigned a 0.5 probability of undergoing one fraction 

of radiotherapy per month. 

Little data was available on the specific interventions for patients with soft tissue 

metastases, only pain through soft tissue infiltration was mentioned, which was treated 

with non-steroidal anti-inflammatory drugs (prednisolone) [Leonard et aI, 1994]. 

Patients with visceral metastases have the least favourable prognosis, local treatment is 

applied only to palliate symptoms, though only around 50 per cent of such patients will 

develop signs, such as coughs and dysponoea (difficulty in breathing) [Jardines et al, 

1993]. Treatment consists of morphine and diazepam (BNF). 
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Table A 7.23 Local treatments used in patients with metastases 

Unit price (£'s) Dose Cost per day 
Bone metastases 
Sodium clodronate 400mg 1.52 1.6g per day 6.08 
Radiotherapy (fraction) 41.92 1 per month 1.40 
Soft tissue 
Prednisolone 5mg 0.016 10mg per day 0.03 
Visceral 
Diazepam 5mg 0.0035 10mg per day 0.01 
Morphine 10mg 0.116 60mgper day 0.69 

Various sources were identified that provided data on the costs associated with inpatient 

episodes for patients experiencing metastases. The three UK-based studies are 

described first. Richards et al presented retrospective data on the aggregate cost of 

treating for 50 patients with advanced breast cancer [Richards et al, 1993]. The costs 

were presented in eight categories, and a total cost of £7620 (1991 costs) from the point 

of diagnosis of advanced breast cancer to death is calculated. Wolstenholme and 

Whynes [1998] presented the mean four-yearly costs of breast cancer treatment by 

stage. Taking stage 4 as the relevant stage, a mean of zero was presented for inpatient 

stay investigations, and £72 ( 1991 costs) for inpatient stay complications, though a 

sample size of 6 restricts the use of such estimates. The other UK study compared two 

options for the surveillance of patients with metastatic breast cancer (see section 

A7.3.2). 

Hurley et al [1992] identified 128 patients and collected resource use information from 

the point of diagnosis until death or the last point of contact (records were treated as 

censored if patients were still alive) in Australia. Patients were classified into five 

groups - visceral, eNS, bone, local, and other. The final category included regional and 

soft tissue relapses. The classes were ordered hierarchically, and separate relapse 

episodes were defined by the occurrence of a more serious site of relapse. Inpatients 

days, daypatient attendance's, outpatient visits and common investigations for each 

category of relapse were presented. These resource estimates were collected and 

equivalent costs from the UK NHS applied. Data from English Trust returns including 

55 Trusts shows that the mean cost per patient day in medical oncology specialities is 

£302.40 (uprated from 1996/7 prices), and a mean cost per outpatient visit as £86.35. 

Patient day includes both inpatients and day case, so the calculated costs were used for 

both types of hospital visit. Table A 7.24 presents the details of the information used. 
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Table A7.24 Median monthly resource use data extracted from Hurley et al 
[1992], and the costs applied from the UK NHS 

Cost category Visceral Bone 
Units * Cost (£'5)* Units * Cost (£'5)* 

Inpatient days 0.63 2.67 190.51 807.41 0.05 1.09 15.12 329.62 
Daypatients 0.33 0.67 99.79 202.61 0 0.33 0.00 99.79 
attendance's 
Outpatient 1.17 1.57 101.03 135.57 l.33 86.35 114.85 
visits 
Total 391.33 1145.59 101.47 544.25 
Cost category Other Local 

Units * Cost (£'s)* Units * Cost (£'s)* 

Inpatient days 0.15 1.06 45.36 320.54 0 0.19 0.00 57.46 
Daypatients 0.07 0.15 21.17 45.36 0 0.1 0.00 30.24 
attendance's 
Outpatient 1.17 1.53 101.03 132.12 1.33 86.35 114.85 
visits 
Total 167.56 498.02 86.35 202.54 
* The left column presents the median number of units/cost, the right column presents the 75th percentile number of 
units/cost (1999£'s), inpatient day/day case = £302.40, outpatient visit = £86.35 

A 7.4 Utility values 

Quality of life in breast cancer patients has been investigated, but the majority of studies 

have used condition- or symptom- specific measures [Macquart-Moulin et al, 1999; 

Fairclough, 1997]. The non-generic QoL data identified included the Rotterdam 

Symptom Checklist [Jonat et aI, 1996; Richards et aI, 1992], the Functional Living 

Index [Chu et al, 1996; The Givio investigators, 1994], the Perceived Adjustment to 

Chronic Illness Scale (P ACIS) [Bernhard et al, 1997; Hurny et aI, 1996], the Symptom 

Checklist-90 Revised [Tross et al, 1996]. In addition, a range of individual dimensions 

such as body image, emotional wellbeing and satisfaction with care, were valued using 

a Visual Analogue Scale (V AS) [The Givio investigators, 1994; Hayes et aI, 1995]. The 

conversion of such measures to utilities was not attempted, though the data provided 

could be used to inform descriptions of health states for the primary collection of health 

state utilities. 

A number of previous modelling studies had assigned utility values using either focus 

groups of oncology professionals [Hillner et al, 1992; Hillner and Smith, 1991; Smith 

and Hillner, 1993; Desch et al, 1993], or direct measurement techniques from oncology 

nurses [Hutton et al, 1996]. Table A7.25 summarises the data available from these 

studies. 
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Table A 7.25 Utility values derived from previous modelling studies 

From start of adjuvant First-line therapy 
therapy! metastases2 

Tamoxifen 0.99 Standard CT 0.7 
Minor 0.9 Induction high dose 0.5 
toxicity(CT) CT 
Major 0.7 Uncomplicated 0.3 
toxicity(CT) ABMT 
1st recurrence 0.7 Complicated ABMT 0.1 

After 1st 0.85 CR 0.85 
recurrence 
2nd recurrence 0.5 PR 0.6 
After 2nd 0.7 Stable 0.5 
recurrence 
3rd recurrence 0.3 PD 0.4 

for Second-line therapy for metastases.) * 

Before second line therapy 0.59 
CR+PR 0.81 

Partial respose and severe 0.75 
peripheral oedema 
Partial response and severe 0.53 
peripheral neuropathy 
Stable disease 0.62 

Progressive disease 0.41 
Sepsis 0.2 

Terminal disease 0.16 

0.56 
0.84 

0.78 

0.62 

0.62 

0.33 
0.16 

0.13 
* Values in left column were derived from UK nurses only, values in the right column were derived from an 
international set of nurses. 
1 [Smith and Hillner, 1993], 2 [Hillner et aI, 1992], 3 [Hutton et aI, 1996] 

Two papers were identified that collected primary estimates of utility values relating to 

some of the health states within the case study models. De Haes et al [1991] used 15 

members of the Department of Public Health and Social Medicine and 12 health 

professionals to value 15 health states on a visual analogue scale (V AS) [de Haes et aI, 

1991]. Citing a function described by Loomes [1988], the median VAS scores were 

converted to time trade-off (TTO) scores that were taken as more accurate valuations of 

utility. Ashby et al [1994] described five health states, one year post-primary surgery 

combining alternative forms of surgery with two scenarios - coping well and coping 

poorly. TTO was used to value the states using 138 subjects, including health 

professionals, breast cancer patients and university staff. The data derived from these 

two studies are presented in table A7.26. A final study used patients with any type of 

metastatic cancer to compare three form of QoL or utility measurement - V AS, TIO 

and the Spitzer Quality of life Index (QLI). The mean scores for the former two 

measures were 0.41 and 0.63 [perez et al, 1997]. 
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Table A 7.26 Utility values derived from primary studies 

[de Haes et aI, 1991] VAS TTO [Ashby et aI, 1994] TTO 

Initial surgery 62 0.867 Lumpectomy, occasional concern 0.784 

2mths-l yr after lump 71 

2mths-lyr after mast 65 

Initial radiotherapy 60 

Initial hormonal therapy 63 

Initial 50 

Chemotherapy 
DF>lyr after 77 
mastectomy 
DF> lyr after BCT 82 
Palliative+ 46 
Surgery 
Palliative+ 36 
Chemotherapy 
Palliative+ 47 
hormonal therapy 
Palliative+ 43 
Radiotherapy 
Terminal illness 19 

0.914 

0.844 

0.803 

0.82 

0.717 

0.947 

0.96 
0.617 

0.531 

0.663 

0.591 

0.288 
V AS=visuai analogue scale, TTO=time trade-off 

over relapse, normal activities, 
well supported 
Mastectomy+plastic surgery, 0.714 
occasional concern over relapse, 
normal activities, well supported 
Mastectomy, occasional concern 0.703 
over relapse, normal activities, 
well supported 
Lumpectomy, swelling of arm, 0.284 
high anxiety and impact on normal 
life, not supported 
Mastectomy, swelling of arm, high 0.257 
anxiety and impact on normal life, 
not supported 

lump=lumpectomy, mast=mastectomy, plas=plastic surgery to make a new breast 

The input data 

The whole range of utility values used in the case study models is presented in Table 

A7.27. 

Table A 7.27 Utility values for all events included in the case study models 

Health state Minimum Likeliest Maximum 

Disease free interval: 
First year 0.7 0.84 0.9 
Subsequent years 0.8 0.95 1 

Toxicity: 
Major 0.3 0.51 0.7 

Grade Y2 0.6 0.78 0.9 
Grade 314 0.55 0.65 0.85 

Menopausal symptoms: 
Moderate 0.61 0.79 0.85 

Severe 0.3 0.64 0.85 

Locoregional relapse 0.3 0.5 0.7 

Remission 0.6 0.84 0.9 

Metastases 0.3 0.55 0.7 
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