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Abstract: The problem of mixed H2/H1 control is considered for a class of uncertain discrete-time
nonlinear stochastic systems. The nonlinearities are described by statistical means of the stochastic
variables and the uncertainties are represented by deterministic norm-bounded parameter pertur-
bations. The mixed H2/H1 control problem is formulated in terms of the notion of exponentially
mean-square quadratic stability and the characterisations of both the H2 control performance and
the H1 robustness performance. A new technique is developed to deal with the matrix trace terms
arising from the stochastic nonlinearities and the well-known S-procedure is adopted to handle the
deterministic uncertainities. A unified framework is established to solve the addressed mixed H2/
H1 control problem using a linear matrix inequality approach. Within such a framework, two
additional optimisation problems are discussed, one is to optimise the H1 robustness performance,
and the other is to optimise the H2 control performance. An illustrative example is provided to
demonstrate the effectiveness of the proposed method.

1 Introduction

In engineering practice, it is always welcome to design a
controller that achieves multiple objectives. A typical
example is the mixed H2/H1 control scheme, which
attempts to capture the benefits of both the H2 control
performance and the H1 robustness performance simul-
taneously. In general, a pure H2 controller is designed for
a good measure of transient performance [1], whereas a
pure H1 control framework is developed for robustness
with respect to disturbances and system uncertainities.
Therefore the mixed H2/H1 multiobjective design frame-
work has a better and clearer physical interpretation and
has received much attention from the control research com-
munity in the past few decades.
For linear deterministic systems, the mixed H2/H1

control problems have been extensively studied. For
example, algebraic approaches to mixed H2/H1 control
problems have been proposed in [2] and a time domain
Nash game approach has been provided to solve the
mixed H2/H1 in [1, 3]. Moreover, some efficient
numerical methods for mixed H2/H1 control problems
have been developed based on a convex optimisation
approach in [4–6]. In particular, since the linear matrix
inequality (LMI) approach has proven to be a very effective
numerical optimisation algorithm [7], it has been employed
to design both linear state feedback and output feedback
controllers subject to H2/H1 criterion, see, for example,
[8]. It is noted that the mixed H2/H1 control theories
have already been applied to various engineering fields

[9–11]. Parallel to the mixed H2/H1 control problem, the
mixed H2/H1 filtering problem has also been well
studied, see [12–14] and the references therein.

For nonlinear deterministic systems, the mixed H2/H1

control problem has gained some research interests, see,
for example, [15], where the solutions have been character-
ised in terms of the cross-coupled Hamilton–Jacobi–Issacs
(HJI) partial differential equations. Since it is difficult to
solve the cross-coupled HJI partial differential equations
either analytically or numerically, Chen et al. [16] have
used the Takagi and Sugeno (T–S) fuzzy linear model to
approximate the nonlinear system, and solutions to the
mixed H2/H1 fuzzy output feedback control problem
have been obtained via an LMI approach.

On the other hand, since stochastic modelling has been
playing a more and more important role in engineering
designs [17, 18], the stochastic H1 control problem has
attracted growing research attention recently. Many
research results have been available which, unfortunately,
are mainly for linear stochastic systems. In [17], a stochas-
tic-bounded real lemma has been developed to solve the H1

control problem for stochastic linear systems with state- and
control-dependent noises. The results have been extended to
the H1 control problem for discrete-time stochastic linear
systems with the state- and control-dependent noises [19].
A robust stochastic H1 control problem has been addressed
in [20] to deal with the systems in the presence of stochastic
uncertainty. Very recently, a stochastic mixed H2/H1

control problem has been considered for the system with
the state-dependent noises in [21], where sufficient con-
ditions have been provided in terms of the existence of
the solutions of cross-coupled Riccati equations.
However, there are very few results on the mixed H2/H1

control problem for nonlinear stochastic systems. In
[22], an elegant LMI approach has been developed to
deal with the analysis problem for a class of systems
with stochastic nonlinearities, where the nonlinearities
characterised by statistical means were first introduced in
[23]. Unfortunately, the robustness issue in the presence
of parameter uncertainties has not been addressed.

In this paper, we aim to substantially extend part of the
analysis results in [22] to the uncertain systems, derive
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the explicit expressions of the upper bounds for the robust
H2 and H1 performances and deal with the corresponding
robust mixed H2/H1 control problem using the LMI
approach. Specifically, we are interested in designing
a state feedback controller such that, for all admissible
stochastic nonlinearities and deterministic uncertainities,
the closed-loop system is exponentially mean-square quad-
ratically stable, the H2 control performance is achieved and
the prescribed disturbance attenuation level is guaranteed in
an H1 sense. The nonlinearities considered in this paper,
which are characterised by statistical means of the
stochastic variables, are shown to be more general than
many well-studied nonlinearities in the literature
concerning nonlinear stochastic systems. The parameter
uncertainties are assumed to be norm-bounded and enter
the system matrices. A new technique is developed to
deal with the matrix trace terms arising from the stochastic
nonlinearities, and the well-known S-procedure is adopted
to handle the deterministic uncertainties. The solution to
the mixed H2/H1 control problem is enforced within a
unified LMI framework. In order to demonstrate the flexi-
bility of the proposed framework, we will examine two
types of the optimisation problems that optimise either the
H2 control performance or the H1 robustness performance,
and a numerical example is provided to illustrate the
effectiveness of the proposed design method.
The remainder of this paper is organised as follows. In

Section 2, a class of uncertain discrete-time nonlinear sto-
chastic systems is described and the mixed H2/H1 control
problem for the systems is formulated. In Section 3, the
system analysis problem is considered, where the existence
conditions for the solution to the mixed H2/H1 control
problem are derived, by introducing the notion of exponen-
tially mean-square quadratic stability and by characterising
the H2 control performance and the H1 robustness perform-
ance. An LMI algorithm is developed in Section 4 to design
the mixed H2/H1 controller for the systems with stochastic
nonlinearities and deterministic norm-bounded parameter
uncertainties. An illustrative example is presented in
Section 5 to demonstrate the applicability of the method
and some concluding remarks are provided in Section 6.

Notation: The notation used here is fairly standard. Rn and
Rn�m denote, respectively, the n-dimensional Euclidean
space and the set of all n � m real matrices, and Iþ stands
for the set of non-negative integers. The notation X � Y
(respectively, X . Y ), where X and Y are symmetric
matrices, means that X2 Y is positive semi-
definite (respectively, positive definite). tr(A) represents
the trace of matrix A. Efxg stands for the expectation of
stochastic variable x and Efxjyg for the expectation of x
conditional on y. The superscript ‘T’ denotes the transpose.
lmax(M) stands for the maximum eigenvalue of matrix
M. diagfM1, M2, . . . , Mng denotes a block diagonal
matrix whose diagonal blocks are given by M1, M2, . . . ,
Mn, and in symmetric block matrices, � is used as an ellipsis
for terms induced by symmetry.

2 Problem formulation

Consider the following class of discrete-time systems with
stochastic nonlinearities and deterministic norm-bounded
parameter uncertainties

xkþ1 ¼ ðAþH1FEÞxk þ f ðxk; ukÞ þ B1wk þ B2uk ð1Þ

z1k ¼ L1xk ð2Þ

z2k ¼ L2xk ð3Þ

where xk [ Rn is the state, uk [ Rr is the control input,
z1k [ Rp1 is a combination of the states to be controlled
(with respect to H1-norm constraints), z2k [ Rp2 is
another combination of the states to be controlled (with
respect to H2-norm constraints), wk [ Rm is the process
noise, which is a zero mean Gaussian white noise sequences
with covariance R and A, B1, B2, L1, L2, H1 and E are
known real matrices with appropriate dimensions.

The matrix F [ Ri�j, which may be time-varying,
represents the deterministic parameter uncertainties, that is

FFT � I ð4Þ

The deterministic uncertain matrix F is said to be admissi-
ble if it satisfies the condition (4).

The function f (xk, uk): Rn
� Rr

! Rn is a stochastic
nonlinear function of the states and control inputs, which
is assumed to have the following first moment for all xk
and uk

Ef fk jxk; ukg ¼ 0 ð5Þ

with its covariance given by

Ef fk f
T
k jxk; ukg ¼

Xq
i¼1

uiu
T
i xTkGixk þ uTkPiuk
� �

ð6Þ

where ui (i ¼ 1, . . . , q) is known column vector, Gi and Pi

(i ¼ 1, . . . , q) are known positive-definite matrices with
appropriate dimensions.

Remark 1: Note that the output matrices L1 and L2 can be
chosen to be identical in practical design. Furthermore, the
structure of the deterministic uncertainties in (4) has been
used in many works concerning robust control and filtering
problems, see, for example, [24, 25].

We are now in a position to discuss the generality of the
nonlinear description in (5) and (6). As pointed out in [23],
such a description encompasses many well-studied
nonlinearities in stochastic systems, which enables the
designer to deal with:

† Linear systems with state- and control-dependent multi-
plicative noises D1xkjk1þD2ukjk2, where jk1 and jk2 are
zero mean, uncorrelated noise sequences.
† Nonlinear systems with random vectors dependent on the
norms of states and control inputs, that is
kxkkD1jk1þ kukkD2jk2, where jk1 and jk2 are zero mean,
uncorrelated noise sequences.
† Nonlinear systems with a random sequence dependent on
the sign of a nonlinear function of states and control inputs,
that is, sign[f(xk, uk)](D1xkjk1þD2ukjk2), where jk1 and jk2
are zero mean, uncorrelated noise sequences.
† Other models that have been discussed in [23].

One can see that some of the most important uncertain
nonlinear stochastic models can be special cases of the
system given in (1)–(6).

We now consider the following state feedback controller
for the system (1)

uk ¼ Kxk ð7Þ

where K is the state feedback gain to be determined.
The closed-loop system is governed as follows by substi-

tuting (7) into (1)

xkþ1 ¼ AKxk þ f ðxk;KxkÞ þ B1wk ð8Þ

where

AK ¼ Aþ B2K þH1FE ð9Þ
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Before giving our design goal, we introduce the following
notion of exponentially quadratic stability in the mean-
square sense for the closed-loop system (8).

Definition 1: The system (8) is said to be exponentially
mean-square quadratically stable if, with wk ¼ 0, there
exist constants a � 1 and t [ (0, 1) such that

Efkxkk
2g � at kEfkx0k

2g; 8x0 [ Rn; k [ Iþ ð10Þ

for all admissible uncertainties satisfying (4).
The purpose of this paper is to seek a state feedback

controller of the form (7), for the system (1), such that for
all stochastic nonlinearities and all admissible deterministic
uncertainties, the closed-loop system is exponentially
mean-square quadratically stable, and additional H2

control performance constraint and H1 robustness perform-
ance constraint are also satisfied. In other words, we aim to
design a controller such that the closed-loop system satisfies
the following requirements (Q1) and (Q2), simultaneously:

(Q1) For a given constant b . 0, the system (8) is expo-
nentially mean-square quadratically stable and the follow-
ing constraint is satisfied

J2 ¼ lim
k!1

Efkz2kk
2g , b ð11Þ

(Q2) For a given g . g0 . 0, the system (8) is exponen-
tially mean-square quadratically stable and the following
constraint is achieved

X1
k¼0

Efkz1kk
2g , g 2

X1
k¼0

Efkwkk
2g ð12Þ

for all non-zero wk under zero initial condition, where g0 is
the minimum attenuation level.

The design problem stated above will be referred to as the
robust-mixed H2/H1 control problem for the nonlinear sto-
chastic system (1)–(6).

3 Robust mixed H2/H1 analysis problem

To facilitate our discussion on the H2 control problem (Q1)
and the H1 control problem (Q2), we need the following
technical results.

Lemma 1 [22, 26]: Given the feedback gain matrix K. The
system (8) is exponentially mean-square quadratically
stable if, for all admissible uncertainties, there exists a
positive definite matrix P satisfying

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ , 0 ð13Þ

Lemma 2 [22]: If the system (8) is exponentially mean-
square quadratically stable, then

r AK � AK þ
Xq
i¼1

stðuiu
T
i Þ st

TðGi þ KTPiKÞ

( )
, 1 ð14Þ

or equivalently

r AT
K � AT

K þ
Xq
i¼1

stðGi þ KTPiKÞ st
Tðuiu

T
i Þ

( )
, 1 ð15Þ

where � is the Kronecker product of matrices, r is the
spectral radius of a matrix and st stands for the stack of a
matrix that forms a vector out of the columns of the matrix.

Lemma 3: Consider the system

jkþ1 ¼ Mjk þ f ðjkÞ ð16Þ

where Ef fkjjkg ¼ 0, and Ef fk fk
T
jjkg ¼

P
i¼1
q uiui

T(jk
TJijk), ui

(i ¼ 1, . . . , q) are known column vectors, Ji (i ¼ 1, . . . , q)
are known positive-definite matrices with appropriate
dimensions. If the system (16) is exponentially mean-
square stable, and there exists a symmetric matrix Y
satisfying

MTYM � Y þ
Xq
i¼1

Ji trðuiu
T
i Y Þ , 0 ð17Þ

then Y � 0.
Lemma 3 can be easily proved by using the Lyapunov

method, hence the proof is omitted.

3.1 H2 control problem

Define the state covariance by

Qk :¼ E xkx
T
k

� �
¼ E ½x1;k x2;k � � � xn;k �½x1;k x2;k � � � xn;k �

T
� �

ð18Þ

and then the Lyapunov-type equation that governs the
evolution of the state covariance matrix Qk can be derived
from the system (8) and the relation (7) as follows

Qkþ1 ¼ AKQkA
T
K þ

Xq
i¼1

uiu
T
i tr½QkðGi þ KTPiKÞ� þ B1RB

T
1

ð19Þ

We rewrite (19) in the form of the stack matrix by

stðQkþ1Þ ¼ C � stðQkÞ þ st ðB1RB
T
1 Þ ð20Þ

where

C :¼ AK � AK þ
Xq
i¼1

stðuiu
T
i Þ st

TðGi þ KTPiKÞ

If the system (8) is exponentially mean-square quadratically
stable, it follows from Lemma 2 that r(C) , 1 and Qk in
(20) converges to a constant matrix Q when k ! 1, that is

Q ¼ lim
k!1

Qk ð21Þ

Therefore H2 performance can be written by

J2 ¼ lim
k!1

Efkz2kk
2g ¼ lim

k!1
tr½L2QkL

T
2 � ¼ tr½L2QL

T
2 � ð22Þ

In order to make sure that the H2 performance and H1

performance can be tackled within the same framework
by using a unified LMI approach, we will need to derive
an alternative expression of the H2 performance (22).
Suppose now that there exists a matrix P̂k . 0 such that
the following backward recursion is satisfied

P̂k ¼ AT
K P̂kþ1AK þ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i P̂kþ1Þ

þ LT
2L2 ð23Þ
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which can be rearranged in terms of the stack operator as
follows

stðP̂kÞ ¼ F � stðP̂kþ1Þ þ stðLT
2L2Þ ð24Þ

where

F :¼ AT
K � AT

K þ
Xq
i¼1

stðGi þ KTPiKÞ st
Tðuiu

T
i Þ

If the system (8) is exponentially mean-square quadrati-
cally stable, then it follows from Lemma 2 that r(F) , 1
and P̂k in (24) converges to P̂ when k ! 1, that is

P̂ ¼ lim
k!1

P̂k ð25Þ

Hence, in the steady state, (23) becomes

P̂ ¼ AT
K P̂AK þ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i P̂Þ þ LT

2L2 ð26Þ

Summing up (23)–(26), we obtain the following result that
gives an alternative to the H2 performance and facilitates our
later consideration on the H1 performance constraint.

Theorem 1: If the system (8) is exponentially mean-square
quadratically stable, H2 performance can be expressed in
terms of P̂ as follows

J2 ¼ tr½RBT
1 P̂B1� ð27Þ

where P̂ . 0 is the solution to (26).

Proof: Noting that

lim
k!1

trfQkþ1P̂kþ1 �QkP̂kg

¼ lim
k!1

tr AKQkA
T
K þ

Xq
i¼1

uiu
T
i tr½QkðGi

"(
þKTPiKÞ�

þ B1RB
T
1

#
P̂kþ1 �Qk AT

K P̂kþ1AK þ
Xq
i¼1

ðGi

"
þKTPiKÞ

� trðuiu
T
i P̂kþ1Þ þ LT

2L2

#)

¼ 0 ð28Þ

Therefore we have

tr½L2QL
T
2 � ¼ tr½RBT

1 P̂B1� ð29Þ

and the proof follows from (22) immediately. A

Remark 2: We use (27) to compute the H2 performance
instead of (22). The reason is that the H2 control perform-
ance and H1 robustness performance need to be character-
ised as a similar structure so that the solution to the mixed
H2/H1 control problem can be obtained by using a unified
LMI approach. We will see in the next subsection that the
structure of (27) is similar to that for the H1 robustness
performance.
Notice that the system model in (1)–(3) involves para-

meter uncertainties, and hence the exact H2 performance
(27) cannot be obtained by simply solving (26). One way
to deal with this problem is to provide an upper bound
for the H2 performance. Suppose that there exists a
positive definite matrix P such that the following matrix

inequality is satisfied

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ þ LT

2L2 , 0

ð30Þ

Now we are ready to give the upper bound for P̂.
Comparing (26) to (30), we obtain the following main
result in this subsection.

Theorem 2: If there exists a positive definite matrix P satis-
fying (30), then the system (8) is exponentially mean-square
quadratically stable

P̂ � P ð31Þ
and

tr½RBT
1 P̂B1� � tr½RBT

1PB1� ð32Þ

where P̂ . 0 satisfies (26).

Proof: It is obvious that (30) implies (13), and then it
follows directly from Lemma 1 that the system (8) is expo-
nentially mean-square quadratically stable. Hence, the sol-
ution P̂ . 0 to (26) exists. Subtracting (30) from (26) yields

AT
K ðP� P̂ÞAK � ðP� P̂Þ

þ
Xq
i¼1

ðGi þ KTPiKÞ tr½uiu
T
i ðP� P̂Þ� , 0 ð33Þ

which indicates from Lemma 3 that P2 P̂ � 0.
Furthermore, (31) implies (32), and this completes the
proof. A

The corollary given below follows immediately from
Theorem 2 and (11).

Corollary 1: If there exists a positive definite matrix P
satisfying (30) and tr[RB1

TPB1] , b, where b . 0 is a
given scalar, then the system (8) is exponentially mean-
square quadratically stable, and (11) is satisfied for b . 0.

3.2 H1 control problem

Contrary to the standard H1 performance formulation, we
shall use the expression (12) to describe the H1 perform-
ance of the stochastic system, where the expectation oper-
ator is utilised on both the controlled output and the
disturbance input, see [18] for more details.

The following lemma can be proved along a similar line
in [21].

Lemma 4: Given a scalar g . 0 and a feedback gain matrix
K. The system (8) is exponentially mean-square quadrati-
cally stable and the H1-norm constraint (12) is achieved
for all non-zero wk, if there exists a positive-definite
matrix P satisfying

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ þ LT

1L1

BT
1PAK

2
64

AT
KPB1

BT
1PB1 � g 2I

#
, 0 ð34Þ

for all admissible uncertainties.
Up to now, the H2 control problem and the H1 con-

trol problem have been considered separately. Before
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proceeding to the next Section, we will need to discuss the
mixed H2/H1 analysis problem.

3.3 Robust mixed H2/H1 analysis problem

In order to realise our design goals (Q1) and (Q2)
simultaneously, it can be easily seen that the robust mixed
H2/H1 control problem addressed in Section 2 can be
restated as follows.

Problem A: Design a controller (7) such that there exists
a positive definite matrix P satisfying the following
inequalities

tr½RBT
1PB1� , b ð35Þ

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ þ LT

2L2 , 0

ð36Þ

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ þ LT

1L1

BT
1PAK

2
64

AT
KPB1

BT
1PB1 � g2I

#
, 0 ð37Þ

The purpose of Problem A is to find a controller (7) so as
to ensure that (35)–(37) are satisfied for all admissible
uncertainties, and subsequently the stability, the H2 and
H1 constraints are all achieved. Note that at this stage,
such a problem is still complicated since the matrix trace
terms and the uncertainty F are involved in (35)–(37).
Our goal in the next Section is therefore to develop an
LMI approach to designing the desired controller based
on (35)–(37).

4 Robust mixed H2/H1 controller design

In this Section, we will present the solution to the robust
H2/H1 state feedback controller design problem for the
discrete-time systems with stochastic nonlinearities and
deterministic norm-bounded parameter uncertainty. In
other words, we aim to design the controller that satisfies
the performance requirements (Q1) and (Q2) simul-
taneously. In order to develop a unified LMI framework,
the main task at this stage is to deal with the matrix trace
terms (nonlinear term) and handle the uncertainties in the
matrix inequalities (35)–(37), such that Problem A can be
converted into a convex optimisation problem that is easy
to be solved.
Before giving our main result, we recall the following

useful lemmas.

Lemma 5 (Schur complement) [7]: Given constant matrices
L1, L2, L3 where L1 ¼ L1

T and 0 , L2 ¼ L2
T, then

L1 þ LT
3L

�1
2 L3 , 0

if and only if

L1 LT
3

L3 �L2

� �
, 0

or equivalently

�L2 L3

LT
3 L1

� �
, 0

Lemma 6 (S-procedure) [7, 14]: Let M ¼ MT, H and E be
real matrices of appropriate dimensions, with F satisfying
(4), then

M þHFEþ ETFTHT , 0 ð38Þ

if and only if, there exists a positive scalar 1 . 0 such that

M þ 1HHT þ
1

1
ETE , 0 ð39Þ

or equivalently

M 1H ET

1HT �1I 0

E 0 �1I

2
4

3
5 , 0 ð40Þ

In order to recast Problem A into a convex optimisation
problem, we first tackle the matrix trace terms in
(35)–(37) by introducing new variables, which is actually
one of the technical contributions in this paper. The follow-
ing theorem presents sufficient conditions for solving
Problem A.

Theorem 3: Given constants g . 0, b . 0 and the feedback
gain matrix K. If there exists positive-definite matrix P . 0
and Q . 0, and positive scalars ai . 0 (i ¼ 1, . . . , q) such
that the following matrix inequalities

trðQÞ , b ð41Þ

�Q R1=2BT
1

B1R
1=2 �P�1

" #
, 0 ð42Þ

�ai aiu
T
i

aiui �P�1

" #
, 0 ði ¼ 1; . . . ; qÞ ð43Þ

�P AT
K G1=2

1 � � � G1=2
q

AK �P�1 0 � � � 0

G1=2
1 0 �a1I � � � 0

� � � � � � � � � � � � � � �

G1=2
q 0 0 � � � �aqI

K 0 0 � � � 0

� � � � � � � � � � � � � � �

K 0 0 � � � 0

L2 0 0 � � � 0

2
66666666666666666664

KT � � � KT LT
2

0 � � � 0 0

0 � � � 0 0

� � � � � � � � � � � �

0 � � � 0 0

�a1P
�1
1 � � � 0 0

� � � � � � � � � � � �

0 � � � �aqP
�1
q 0

0 � � � 0 �I

3
77777777777777777775

, 0 ð44Þ
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�P 0 AT
K G1=2

1 � � � G1=2
q

0 �g2I BT
1 0 � � � 0

AK B1 �P�1 0 � � � 0

G1=2
1 0 0 �a1I � � � 0

� � � � � � � � � � � � � � � � � �

G1=2
q 0 0 0 � � � �aqI

K 0 0 0 � � � 0

� � � � � � � � � � � � � � � � � �

K 0 0 0 � � � 0

L1 0 0 0 � � � 0

2
66666666666666666664

KT � � � KT LT
1

0 � � � 0 0

0 � � � 0 0

0 � � � 0 0

� � � � � � � � � � � �

0 � � � 0 0

�a1P
�1
1 � � � 0 0

� � � � � � � � � � � �

0 � � � �aqP
�1
q 0

0 � � � 0 �I

3
7777777777777777775

, 0 ð45Þ

hold, then (35)–(37) are satisfied.

Proof: Define new variables at ai . 0 (i ¼ 1, . . . , q)
satisfying

trðuiu
T
i PÞ , a�1

i ði ¼ 1; . . . ; qÞ ð46Þ

Using the property of matrix trace and Lemma 5 (Schur
complement), we have

trðuiu
T
i PÞ ¼ uTi Pui , a�1

i ()
�ai aiu

T
i

aiui �P�1

" #
, 0

ði ¼ 1; . . . ; qÞ ð47Þ

which implies (43).
Next, we prove that (44) is equivalent to

AT
KPAK � Pþ

Xq
i¼1

a�1
i ðGi þ KTPiKÞ þ LT

2L2 , 0 ð48Þ

By using Lemma 5 (Schur complement) to (48), we have

�Pþ
Xq
i¼1

a�1
i ðGi þ KTPiKÞ þ LT

2L2 AT
K

AK �P�1

2
64

3
75 , 0

ð49Þ

()

�Pþ LT
2L2 AT

K G1=2
1 � � � G1=2

q

AK �P�1 0 � � � 0

G1=2
1 0 �a1I � � � 0

� � � � � � � � � � � � � � �

G1=2
q 0 0 � � � �aqI

K 0 0 � � � 0

� � � � � � � � � � � � � � �

K 0 0 � � � 0

2
666666666666664

KT � � � KT

0 � � � 0

0 � � � 0

� � � � � � � � �

0 � � � 0

�a1P
�1
1 � � � 0

� � � � � � � � �

0 � � � �aqP
�1
q

3
777777777777775

, 0 ð50Þ

which is equivalent to (44). Moreover, it follows from (46)
and (48) that

AT
KPAK � Pþ

Xq
i¼1

ðGi þ KTPiKÞ trðuiu
T
i PÞ þ LT

2L2

, AT
KPAK � Pþ

Xq
i¼1

a�1
i ðGi þ KTPiKÞ þ LT

2L2 , 0

ð51Þ

which proves (36).
Similarly, by using Lemma 5 (Schur complement), one

can see that (45) implies (37). It remains to show that
(41) and (42) indicate (35). Since (42) is equivalent to

R1=2BT
1PB1R

1=2 , Q ð52Þ

it follows from (41) and (52) that

trðRBT
1PB1Þ ¼ trðR1=2BT

1PB1R
1=2Þ , trðQÞ , b ð53Þ

The proof is complete. A

Remark 3: In Theorem 3, we provide sufficient conditions
for satisfying (35)–(37), where the nonlinear matrix trace
terms are handled so as to form a convex optimisation
problem. The possible conservatism caused by such a trans-
formation can be reduced by making the values of tr(uiui

TP)
as close as possible to the value of ai

21 when solving the
LMIs. This will be demonstrated later in Section 5.

In the following, we will continue to ‘eliminate’ the
uncertainty F contained in (44) and (45) by using the
well-known S-procedure technique, and then the desired
robust mixed H2/H1 controller could be obtained via an
LMI approach by solving Problem A.

Theorem 4: Given constants g . 0 and b . 0. If there
exists positive-definite matrix X . 0 and Q . 0, a real
matrix G, positive scalars ai . 0 (i ¼ 1, . . . , q) and 1i. 0
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(i ¼ 1, 2) such that the following linear matrix inequalities

½1 0 � � � 0�Q½1 0 � � � 0�T þ � � �

þ ½0 � � � 0 1�Q½0 � � � 0 1�T , b ð54Þ

�Q R1=2BT
1

B1R
1=2 �X

" #
, 0 ð55Þ

�ai aiu
T
i

aiui �X

" #
, 0 ði ¼ 1; . . . ; qÞ ð56Þ

�X � � � � �

AX þ B2G �X � � � �

G1=2
1 X 0 �a1I � � �

� � � � � � � � � � � � � �

G1=2
q X 0 0 � � � �aqI �

G 0 0 � � � 0 �a1P
�1
1

� � � � � � � � � � � � � � � � � �

G 0 0 � � � 0 0

L2X 0 0 � � � 0 0

0 11H
T
1 0 � � � 0 0

EX 0 0 � � � 0 0

2
666666666666666666666666664

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � �

� � � �aqP
�1
q � � �

� � � 0 �I � �

� � � 0 0 �11I �

� � � 0 0 0 �11I

3
777777777777777777777777775

, 0 ð57Þ

�X � � � � �

0 �g2I � � � �

AX þ B2G B1 �X � � �

G1=2
1 X 0 0 �a1I � �

� � � � � � � � � � � � � � � �

G1=2
q X 0 0 0 � � � �aqI

G 0 0 0 � � � 0

� � � � � � � � � � � � � � � � � �

G 0 0 0 � � � 0

L1X 0 0 0 � � � 0

0 0 12H
T
1 0 � � � 0

EX 0 0 0 � � � 0

2
666666666666666666666666666664

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�a1P
�1
1 � � � � �

� � � � � � � � � �

0 � � � �aqP
�1
q � � �

0 � � � 0 �I � �

0 � � � 0 0 �12I �

0 � � � 0 0 0 �12I

3
777777777777777777777777777775

, 0

ð58Þ

are feasible, then there exists a state feedback controller of
the form (7) such that the requirements (Q1) and (Q2) are
satisfied for all stochastic nonlinearities and all admissible
deterministic uncertainties. Moreover, the desired controller
(7) can be determined by

K ¼ GX�1 ð59Þ

Proof: In view of Theorem 3, we just need to show that (44)
holds if and only if there exists a positive scalar 11 such
that (57) holds, and (45) holds if and only if there exists a
positive scalar 12 such that (58) holds.

Rewrite the condition (44) in the form of (38) as follows

M̂ þ ĤFÊþ ÊTF̂TĤT , 0 ð60Þ

where

M̂ ¼

�P ðAþ B2KÞ
T G1=2

1 � � � G1=2
q

Aþ B2K �P�1 0 � � � 0

G1=2
1 0 �a1I � � � 0

� � � � � � � � � � � � � � �

G1=2
q 0 0 � � � �aqI

K 0 0 � � � 0

� � � � � � � � � � � � � � �

K 0 0 � � � 0

L2 0 0 � � � 0

2
66666666666666664

KT � � � KT LT
2

0 � � � 0 0

0 � � � 0 0

� � � � � � � � � � � �

0 � � � 0 0

�a1P
�1
1 � � � 0 0

� � � � � � � � � � � �

0 � � � �aqP
�1
q 0

0 � � � 0 �I

3
77777777777777775

Ĥ ¼ ½0 HT
1 0 � � � 0 0 � � � 0 0�T

Ê ¼ ½E 0 0 � � � 0 0 � � � 0 0�
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Applying Lemma 6 to (60) to ‘eliminate’ the uncertainty F,
we know that (44) holds if and only if there exists a positive
scalar parameter 11 such that the following LMI holds

�P � � � � �

Aþ B2K �P�1 � � � �

G1=2
1 0 �a1I � � �

� � � � � � � � � � � � � �

G1=2
q 0 0 � � � �aqI �

K 0 0 � � � 0 �a1P
�1
1

� � � � � � � � � � � � � � � � � �

K 0 0 � � � 0 0

L2 0 0 � � � 0 0

0 11H
T
1 0 � � � 0 0

E 0 0 � � � 0 0

2
6666666666666666666664

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � �

� � � �aqP
�1
q � � �

� � � 0 �I � �

� � � 0 0 �11I �

� � � 0 0 0 �11I

3
7777777777777777777775

, 0 ð61Þ

Letting

X ¼ P�1 ð62Þ

and

G ¼ KX ð63Þ

and performing the congruence transformation diagfP21, I,
I, . . . , I, I, . . . , I, I, I, Ig to (61), we obtain (57).
Similarly, applying Lemma 6 to (45) and performing the

congruence transformation diagfP21, I, I, I, . . . , I, I, . . . , I,
I, I, Ig, we get (58) from (62) and (63). Furthermore, (55)
and (56) are obtained from (42) and (43) by using (62).
Using the property of matrix trace, (54) is derived from
(41). This completes the proof. A

Remark 4: The robust mixed H2/H1 controller can be
obtained by solving LMIs (54)–(58) in Theorem 4. The
LMIs can be solved efficiently via interior point method
[7]. Note that LMIs (54)–(58) are affine in the scalar
positive parameters 11 and 12. Hence, they can be defined
as LMI variables in order to increase the possibility of the
solutions and decrease conservatism with respect to the
uncertainty F.
So far the controller has been designed which satisfies the

requirements (Q1) and (Q2). Because of the advantages of
LMI formulations, the results in Theorem 4 also suggest
the following two optimisation problems that would be
interesting to control engineers:

(P1) The optimal H1 control problem with H2 performance
constraints for uncertain nonlinear stochastic systems

min
Q.0;G;a1;...;aq;11.0;12.0

g subject to ð54Þ–ð58Þ

for some given b ð64Þ

(P2) The optimal H2 control problem with H1 performance
constraints for uncertain nonlinear stochastic systems

min
Q.0;G;a1;...;aq;11.0;12.0

b subject to ð54Þ–ð58Þ

for some given g ð65Þ

Remark 5: In many engineering applications, the perform-
ances constraints are often specified a priori. For example,
in Theorem 4, the controller is designed after H1 perform-
ance and H2 performance are prescribed. In fact, however,
we can obtain an improved performance by optimisation
method. The problem (P1) will help exploit the design
freedom to meet the optimal H1 performance under a pre-
scribed b. The problem (P2) will find an optimal solution
among them to achieve the H2 performance under a
prescribed g2. These are certainly attractive because the
addressed multiobjective problems can be solved while a
local optimal performance can also be achieved, and the
computation is efficient by using the Matlab LMI toolbox.

5 llustrative example

Consider a discrete-time system described by (1)–(3) with
stochastic nonlinearities and deterministic norm-bounded
parameter uncertainties as follows

A ¼

�0:5 0 �0:8

0 �1:2 0

0:6 0 0:6

2
64

3
75; B1 ¼

0:3

0

0:2

2
64

3
75

B2 ¼

�1

2

1

2
64

3
75; L1 ¼ 1 0 0

� �
; L2 ¼ 1 0 0

� �

H1 ¼

0:5

0:6

0

2
64

3
75; E ¼ 0:8 0 0

� �

where wk is a zero mean Gaussian white noise sequence
with covariance R ¼ 0.1. The deterministic uncertainty F
satisfies the condition (4), and the stochastic nonlinear func-
tion f (xk, uk) satisfies

Ef fk jxk; ukg ¼ 0

Ef fk f
T
k jxk; ukg

¼

0:1

0:2

0

2
64

3
75 0:1

0:2

0

2
64

3
75

T

xTk

0:5 0 0

0 0:6 0

0 0 0:7

2
64

3
75xk

0
B@

þ 0:6uTk uk þ xTk

0:6 0 0

0 0:7 0

0 0 0:8

2
64

3
75xk þ 0:8uTk ukÞ

Now, let us examine the following three cases.

Case 1: g2 ¼ 0.5, b ¼ 0.1.
This case is exactly concerned with the addressed robust

H2/H1 control problem, hence can be tackled by using
Theorem 4 with q ¼ 2. In theory, the solution set is large,
and we just provide one solution by employing the Matlab
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LMI toolbox

X ¼

0:3628 0:1928 �0:1127

0:1928 7:1889 5:4349

�0:1127 5:4349 5:2622

2
64

3
75

G ¼ ½�0:0864 � 4:6579 � 4:0586�

11 ¼ 0:3826; 12 ¼ 0:3813

a1 ¼ 26:3259; a2 ¼ 26:3549; Q ¼ 0:0716

trðu1u
T
1X

�1Þ ¼ 0:0377 , a�1
1 ¼ 0:0380

trðu2u
T
2X

�1Þ ¼ 0:0377 , a�1
2 ¼ 0:0379

K ¼ ½�0:2732 �0:2422 �0:5270�

Case 2: b ¼ 0.1.
In this case, we wish to design the controller which

minimises the H1 performance under the H2 performance
constraints. That is, we want to solve the problem (P1).
Solving the optimisation problem (64) using LMI toolbox
yields the minimum value gmin

2 ¼ 0.3958 and

X ¼

0:5657 0:3112 �0:1701

0:3112 9:8502 7:5724

�0:1701 7:5724 7:2331

2
64

3
75

G ¼ ½�0:1399 �6:4779 �5:5926�

11 ¼ 0:9033; 12 ¼ 0:9008

a1 ¼ 37:4043; a2 ¼ 37:4862; Q ¼ 0:0661

trðu1u
T
1X

�1Þ ¼ 0:0263 , a�1
1 ¼ 0:0267

trðu2u
T
2X

�1Þ ¼ 0:0263 , a�1
2 ¼ 0:0267

K ¼ ½�0:2583 �0:2583 �0:5089�

Case 3: g2 ¼ 0.5.
We now deal with the problem (P2). Solving the optimi-

sation problem (65), we obtain the minimum H2 perform-
ance bmin ¼ 0.0.0319, and

X ¼

0:5829 0:3100 �0:1853

0:3100 10:4074 8:0742

�0:1853 8:0742 7:6853

2
64

3
75

G ¼ ½�0:1368 �6:8501 �5:9134�

11 ¼ 0:9687; 12 ¼ 0:9673

a1 ¼ 38:4558; a2 ¼ 38:4895; Q ¼ 0:0319

trðu1u
T
1X

�1Þ ¼ 0:0259 , a�1
1 ¼ 0:0260

trðu2u
T
2X

�1Þ ¼ 0:0259 , a�1
2 ¼ 0:0260

K ¼ ½�0:2516 �0:2652 �0:4969�

The results show that the designed system can satisfy
H2 control performance and H1 disturbance rejection
performance simultaneously. In Case 2, in order to
achieve a better disturbance rejection performance, the
optimisation algorithm (P1) is employed to obtain the
optimal solution. Similarly, to get a better H2 control
performance, the optimisation algorithm (P2) is applied
to obtain the optimal solution in Case 3. Furthermore,
we can see from the results that the values of tr(uiui

TX21)
(i ¼ 1, 2) is very close to ai

21 (i ¼ 1, 2) in all three cases,
hence the possible conservatism could be significantly
reduced.

Remark 6: Within the LMI framework developed in this
paper, we can show that there are some trade-off that can
be used for satisfying specific performance requirements.
For example, the H1 performance will be improved if the
H2 performance constraints become more relaxed (larger).
Also, if the value of the H1 performance constraint is
allowed to be increased, then the H2 performance can be
further reduced. Hence, the proposed approach allows
much flexibility in making compromise between the H2

performance and the H1 performance, while the essential
multiple objectives can all be met simultaneously.

6 Conclusions

A robust mixed H2/H1 controller has been designed in
this paper for a class of uncertain discrete-time nonlinear sto-
chastic systems. A key technique has been used to deal with
the matrix trace terms arising from the
stochastic nonlinearities, and the well-known S-procedure
has been adopted to handle the deterministic uncertainties.
A unified framework has been established to solve the
addressed mixed H2/H1 control problem, and sufficient
conditions for the solvability of the mixed H2/H1 control
problem have been given in terms of a set of feasible
LMIs. Two types of the optimisation problems have been
proposed by optimising either the H2 performance or the
H1 performance. Our method can also be extended to
output feedback case, and the results will appear in the
near future.
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