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Abstract

Monostability and multistability are proven to be two important topics in synthesis biology and system biology.

In this paper, both monostability and multistability are analyzed in a unified framework by applying control theory

and mathematical tools. The genetic regulatory networks (GRNs) with multiple time-varying delays and different

types of regulation functions are considered. By putting forward a general sector-like regulation function and utilizing

up-to-date techniques, a novel Lyapunov-Krasovskii functional is introduced for achieving delay dependence to ensure

less conservatism. A new condition is then proposed for the general stability of a GRN in the form of linear matrix

inequalities (LMIs) that are dependent on the upper and lower bounds of the delays. Our general stability conditions

are applicable to several frequently used regulation functions. It is shown that the existing results for monostability of

GRNs are special cases of our main results. Five examples are employed to illustrate the applicability and usefulness of

the developed theoretical results.
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I. Introduction

In synthesis biology or system biology, the ultra goal is to engineer unnatural organic molecules that

function in living systems to investigate natural biological phenomena and for a variety of applications [1–3].

In control engineering, the overall aim is to synthesize controllers which can achieve desired performance.

Also, the notion of feedback, which is the core of control engineering, is a central recurring theme in the

design of genetic regulatory networks (GRNs) [4, 5]. In fact, feedback is so prevalent in biological systems

that it can be found at all levels of organization, from the molecular and cellular levels, to the organism and

ecological levels [6]. It is impossible to overstate the importance of feedback as a strategy for the maintenance

and evolution of life. Therefore, it is reasonable to expect that ideas from control theory will lead to new

understanding of the underlying biological processes [7].

Similar to other dynamical control systems, GRNs have the stability as their key property and stability

analysis should be conducted prior to controller synthesis. Recall the concept of traditional stability that

aims at the unique equilibrium point, we could name such a stability as monostability instead. Recently, a

lot of efforts have been made to the monostability problem of GRNs. In [8], a simple genetic network model

was studied to test the role of negative feedback in the monostability of GRNs. In [9], the monostability of

GRNs with SUM-logic nonlinear regulatory functions of Hill type was studied. In [10], the robust asymptotic

monostability of GRNs with time-varying delays and polytopic parameter uncertainties was studied. In [11],
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the discrete-time analog of the continuous-time GRN has been formulated and the monostability problem of

discrete-time GRN with delays has been investigated. Other most recently published results can be found in

[37–39] and the references therein.

The discovery of mathematical logic in gene regulation [12] laid a foundation for today’s synthesis biology.

As pointed out in [12], the co-repressive switches in the well-known lac operon in the bacteria Escherichia

coli have long been proposed as a common regulatory theme, and the synthetic toggle switch [4, 13] serves

as a model system in which multistability or bistability is the defining character to study such synthetic

GRNs. The term ’multistability’ aims at the coexistence of multiple steady states, which is different from

monostability. Multistability, the capacity to achieve multiple internal states in response to a single set of

external inputs, plays an important role in gene circuit design in synthesis biological systems. Multistability

has certain unique properties which are not shared by other mechanisms of integrative control and it almost

certainly plays an essential role in the dynamics of living cells and organisms [14, 15]. The maintenance of

phenotypic differences in the absence of genetic or environmental differences, which has been demonstrated

experimentally for the regulation of the lactose operon in Escherichia coli, may be due to multistability.

Cell differentiation might also be explained as multistability [16]. Bistability, the property of having two

stable fixed points, is a basic case of multistability. It is becoming increasingly clear that bistability is an

important recurring theme in cell signaling. Bistability is of particular relevance to biological systems that

switch between discrete states, generating oscillatory responses.

Theoretical results obtained for the multistability of a GRN have been scattered in the literature. The

biological system with multistability and hysteresis has been modeled as monotone dynamic systems in [17],

where the rich and elegant theory of monotone dynamic system has provided an efficient mathematical tool

for analysis (see [18] and references therein). Especially, in the biological systems with bistability, each stable

mode of operation is associated with an appropriate invariant set in the state space and stability with respect

to each set has been studied in terms of a local notion of input-to-state stability with respect to compact sets

[19]. A general method for studying multistability in a large class of biological systems has been provided

in [20]. Meanwhile, a piecewise power-law approximation has been proposed to approach bistability in [21]

where the S-system models have been applied.

In this paper, either monostability or multistability of GRNs is referred to as general stability. It should be

pointed out that, although the general stability of GRNs has received some initial research attention, there

are still many open problems left for further investigation, three of which are listed as follows that motivate

our current study:

• First, it has been recognized that the slow processes of transcription, translation and diffusion to the place of

action of a protein inevitably cause time delays, which should be taken into account in the biological systems

or artificial genetic networks in order to have more accurate models. Also, for different metabolites in GRNs,

time delays of biochemical reactions may be various due to the different reaction pathways. However, the

incorporation of multiple time-delays gives rise to significant difficulties in quantitative analysis of dynamics

of GRNs.

• Second, the types of regulation functions employed in the literature are diverse, most of which are nonlinear

[22, 23]. In [24], a piecewise-multiaffine model is proposed to deal with the notoriously difficult analysis of

general nonlinear systems, but that regulation functions are assumed to be precisely known as one type.

In the presence of different types of regulation functions, how to develop a unified framework to analyze

monostability or multistability of GRNs brings great challenges.

• Third, monostability is a special case of multistability, so monostability and multistability of GRNs should

be investigated as a whole. This way, the existing results on monostability can be covered as special cases.

How to construct a general stability condition to test both monostability and multistability is also of great

interest.
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To sum up, it is essential and important to investigate the general stability of delayed GRNs with different

types of regulation functions. Unfortunately, to the best of the authors’ knowledge, up to now, very little

effort has been made towards the above challenging problems, which then constitute the main focus of our

present research.

In this paper, we are concerned with the general stability of GRNs with multiple time-varying delays. Several

different types of regulation functions are considered. We introduce a novel Lyapunov-Krasovskii functional

by utilizing the most updated techniques for achieving delay dependence. A new condition is then proposed for

the general stability of a GRN with multiple time-varying delays and different types of regulation functions

in the form of linear matrix inequalities (LMIs) that can be readily verified by using standard numerical

software (such as Matlab) [25]. An important feature with the results to be reported is that, all the general

stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by

utilizing the up-to-date techniques to achieve delay dependence. Second, our general stability conditions are

applicable to several different regulation functions, which covers many types of currently investigated GRNs.

Third, monostability and multistability analysis are investigated in a general framework, and the previous

results on monostability of GRNs are included as special cases. Five examples are employed to illustrate the

applicability and usefulness of the developed theoretical results. Example 1 is concerned with a constructed

GRN with five equilibrium points of which three are stable. Example 2 deals with a model of transcription

factors (TFs) subjected to its own transcription regulation which is displaying bistability. Example 3 tackles a

synthetic, bistable genetic toggle switch in Escherichia coli. A GRN with five nodes is considered in Example

4 and a synthetic oscillatory network of transcriptional regulators is investigated in Example 5. It’s shown

that the existing results with respect to Example 4 and Example 5 are special cases of our results.

Notation: The notation used throughout the paper is standard. The superscript T indicates matrix trans-

position; R
n denotes the n-dimensional Euclidean space and R

n×k is the set of all n × k real matrices. An,k

denotes A ∈ R
n×k. I and 0 denote identity matrix and zero matrix respectively, the notation P > 0 means that

P is symmetric and positive definite and the symbol ∗ indicates symmetric blocks in the LMIs. In addition,

diag{. . .} stands for a block-diagonal matrix and for a matrix A, sym(A) denotes A + AT .

II. Model and Preliminaries

In this section, we introduce a GRN model described by the following differential equations for i = 1, 2, . . . , n:

żi(t) = −aizi(t) + Ri(z(t − hi(t))), (1)

where z1, . . . , zn are metabolites, such as genes, proteins, activators, repressors, enzymes, factors or products

of a biochemical network, and z(·) = [z1(·), z2(·), . . . , zn(·)]T ∈ R
n is the metabolites state vector. Their

rates of degradation are denoted by ai ∈ R+. żi, the rate of change in zi, represents concentration change

of a variable due to production or degradation. Ri(·) represents the feedback regulation function on the ith

metabolite, which is generally a nonlinear or linear function on the variables [z1(·), z2(·), . . . , zn(·)], but has

a form of monotonicity with each variable. Regulation functions are used to capture the combined effect

of several regulatory proteins on the control of gene expression or protein degradation and it describes the

connection and topology structure of metabolites. We assumed that

hi1 ≤ hi(t) ≤ hi2,

ḣi(t) ≤ µi < ∞.

The regulation function Ri(z(·)) is taken as

Ri(z(·)) =

n
∑

j=1

αijRij(zj(·)), (2)
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because each metabolite acts additively to regulate the ith metabolite [26].

In the following, we will consider three special regulation functions in three remarks in order to show the

existence of multiple equilibrium point, hence the multistability.

Remark 1: We consider a simplified GRN model:

żi(t) = −aizi(t) +
n

∑

j=1

bijRij(zj(t)). (3)

A regulation function that is often found in the literature is the Hill type [23]:

Rij (zj) =
z

Hij

j (t)

θ
Hij

j + z
Hij

j (t)
, (4)

with θj > 0 the threshold for the regulatory influence of zj on a target metabolite zi, and Hij is the Hill

coefficients. The function ranges from 0 to 1 and increases as zj → ∞, so that an increase in zj will tend to

increase the expression rate of the metabolite, then metabolite j is an activator of metabolite i. If activator

j is an repressor of activator i, then

Rij (zj) = 1 −
z

Hij

j (t)

θ
Hij

j + z
Hij

j (t)
. (5)

If θj = 1, the regulation function is in a standard form. (4) and (5) can be easily transformed to standard

form. Then the GRN (3) can be rewritten as

żi(t) = −aizi(t) +

n
∑

j=1

bijR̄ij(zj(t)) + ui, (6)

for i = 1, 2, . . . , n, with

R̄ij(zj(t)) =
z

Hij

j (t)

θ
Hij

j + z
Hij

j (t)
, ui =

∑

j∈Fi

αij ,

where Fi is the set of all the j which is a repressor of activator i, ui is defined as a basal rate. And if bij = αij ,

zj is an activator of zi; if bij = 0, zj is no link with zi; if bij = −αij , zj is an a repressor of zi.

We let żi(t) = 0, that is, aizi(t)−ui =
n
∑

j=1
bijR̄ij(zj(t)), the solution of this equation defines the equilibrium

point. For convenience, we consider the one variable case and let f(z) = zHij/(1 + zHij ), h(z) = az − u. It is

shown that there could be three cross points at most when Hij = 2 in Fig. 1(a) and two cross points when

Hij = 1 in Fig. 1(b).

Remark 2: A regulation function could also take the neural activation function type. Regulation functions

of this type have continuous sigmoid curves, which can regulate the expression of switch-like behavior of genes.

In a GRN, if metabolite j is an activator of metabolite i ,then

Rij (zj) = tanh(zj), (7)

and if metabolite j is an repressor of metabolite i ,then

Rij (zj) = − tanh(zj). (8)
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Fig. 1. (a) f(z) = z2/(1 + z2) and h(z) = 0.4z. Three equilibrium points can be achieved. (b) f(z) = z/(1 + z) and

h(z) = z. Two equilibrium points can be obtained.

It’s shown that the regulation function has a ”S” shape and there are three cross points at most in Fig.

2(a). To study multistability of GRNs, here we propose a new form of regulation function, if metabolite j is

an activator of metabolite i ,then

Rij (zj) = tanh(z3
j ), (9)

and if metabolite j is an repressor of metabolite i ,then

Rij (zj) = − tanh(z3
j ). (10)

For convenience, we consider the one-variable case and let h(z) = z, f(z) = tanh(z). It is shown that there

could be three cross points at most in Fig. 2(a). Let h(z) = 0.7z, f(z) = tanh(z3). It’s shown that the

regulation function has a double “S” shape and there are five cross points at most in Fig. 2(b). In fact, all

the variables should be positive in GRNs, but by a shift, the variables of regulation functions here could be

positive with the shape of regulation functions holding.

Remark 3: A regulation function could also take the straight line type [27, 28]. In a GRN, if metabolite j

is an activator of metabolite i ,then

Rij (zj) = zj , (11)

and if metabolite j is an repressor of metabolite i ,then

Rij (zj) = 1 − zj. (12)

Then we consider a GRN as follows:

żi(t) = −aizi(t) +

n
∑

j=1

bijgij(zj(t − hi(t))) + ui, (13)

where i = 1, 2, . . . , n, ui is the basal rate and the regulation function gij(·) is described as follows. Each

regulation function gij (zj) is divided into kgij max piecewise intervals along the variable zj :

Ω̄g =







[λij0, λij1]
δ
(i)
ij1 × [λij1, λij2]

δ
(i)
ij2 × · · · × [λij(kgij max−1), λijkgij max

]
δ
(i)
ijkgij max ,

(

δ
(i)
ij1, δ

(i)
ij2, ..., δ

(i)
ijkgij max

)

= (1, 0, ..., 0) or (0, 1, ..., 0) or (0, ...0, 1) , i = 1, 2, ..., n







.
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Fig. 2. (a) h(z) = z and f(z) = tanh(z). Three equilibrium points can be achieved. (b) h(z) = 0.7z and f(z) = tanh(z3).

Five equilibrium points can be obtained.

If there exist N equilibrium points of the (13), let kgij max = N. Select N intervals

Ωg =







[λij0, λij1]
δ
(i)
ij1 × [λij1, λij2]

δ
(i)
ij2 × · · · × [λij(N−1), λijN ]δ

(i)
ijN ,

(

δ
(i)
ij1, δ

(i)
ij2, ..., δ

(i)
ijN

)

= (1, 0, ..., 0) or (0, 1, ..., 0) or (0, ...0, 1) , i = 1, 2, ..., n







.

Then the kth equilibrium point lies in this region

Ωgk
=







n
∏

i=1



∩
n

∏

j=1

[λij(k−1), λijk]











.

Having demonstrated the multistability behavior of GRNs with different regulation functions, we now

propose a general sector-like regulation function in order to facilitate the generality of our stability analysis.

Assumption 1: Let kgij max = N. Each regulation function in (13), gij (·) , i, j = 1, 2, . . . , n, satisfies the

following condition when ∀xk, yk ∈ [λij(k−1), λijk], xk 6= yk, 1 ≤ k ≤ N :

l−kij ≤ gij (xk) − gij (yk)

xk − yk
≤ l+kij , (14)

where l−kij and l+kij are positive constants. Define diagonal matrices L−

ki = diag{l−ki1, . . . , l
−

kin} and L+
ki =

diag{l+ki1, . . . , l
+
kin}.

Remark 4: The inequality (14) is similar to the one proposed in [33–35] for the activation function of neural

networks. As pointed out in [33, 34], this description could be non-monotonic, and is more general than the

usual sigmoid functions and the recently commonly used Lipschitz conditions. We like to point out that such a

description is very precise/tight in quantifying the lower and upper bounds of the regulation functions, hence

very helpful for using LMI-based approach to reduce the possible conservatism.

We assume that a GRN (13) has N equilibrium points. Let z∗k = (z∗k1, z
∗
k2, . . . , z

∗
kn)T be the kth equilibrium

point, i = 1, 2, · · · , N. In the following, the equilibrium point z∗k = (z∗k1, z
∗
k2, . . . , z

∗
kn)T of system (13) is firstly

shifted to origin by the transformation x(·) = z(·) − z∗k, thus we have the following form:

ẋi(t) = −aixi(t) +

n
∑

j=1

bijfkij(xj(t − hi(t))), (15)
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where

fkij(xj(·)) = gij(xj(·) + z∗kj) − gij(z
∗
kj). (16)

By Assumption 1 and (16), it is not difficult to verify that

l−kij ≤
fkij (xj)

xj
≤ l+kij, ∀xj 6= 0, i = 1, 2, . . . , n, (17)

and it is easy to see that fkij (0) = 0.

Equivalently, (15) can be written as

ẋ(t) = −Ax(t) +

n
∑

i=1

Bifki(x(t − hi(t))), (18)

with h1i ≤ h(t) ≤ h2i, ḣi(t) ≤ µi < ∞, and

fki(x(t − hi(t))) =













fki1(x1(t − hi(t)))

fki2(x2(t − hi(t)))
...

fkin(xn(t − hi(t)))













,

and

B1 =













b1

0
...

0













, B2 =













0

b2
...

0













, . . . , Bn =













0

0
...

bn













,

with bi = [bi1, bi2, . . . , bin], i = 1, 2, . . . , n.

III. Monostability and Multistability Conditions of GRNs

In this section, we present our new delay-dependent general stability condition for the a GRN with multiple

time-varying delays described in the previous section.

Definition 1: A GRN is said to have N -stability if it has N (N ≥ 1) stable equilibrium points. In this case,

the GRN is said to be N -stable. Specially, we name monostability of a GRN if N = 1 and bistability of a

GRN if N = 2.

Theorem 1: Let O = [0n, 0n, . . . , 0n]n,nn and B = [B1, B2, . . . , Bn]n,nn. The system in (13) is asymptotically

N -stable if there exist matrices Pk > 0, Qkji > 0, Zkji > 0, and positive diagonal matrices S+
ki and S−

ki

(k = 1, · · · , N, i = 1, · · · , n, j = 1, 2) such that the following LMIs hold:

Θk = W T
kP P̄kWkP +

n
∑

i=1

(W T
kQi

Q̄kiWkQi
+ W T

kZi
Z̄kiWkZi

+ W T
kS+

i

S̄+
kiWkS+

i
+ W T

kS−

i

S̄−

kiWkS−

i
) < 0, (19)



FINAL VERSION 8

where

Q̄k = diag{Qk1i,−Qk1i,Qk2i,−(1 − µi)Qk2i}, Z̄k = diag{Zk1i,Zk2i,−Zk1i,−Zk2i},

P̄k =

[

0n Pk

Pk 0n

]

, S̄+
ki =

[

0n S+
ki

S+
ki −S+

ki

]

, S̄−

ki =

[

0n S−

ki

S−

ki −S−

ki

]

,

WkP =

[

−A 0n,2n2 B

In 0n,2n2 O

]

,WkQi
=













In 0n,3n2

0n,in In 0n,(3n−i)n

0n,in In 0n,(3n−i)n

0n,(n+i)n In 0n,(2n−i)n













,

WkZi
=













−
√

h1iA 0n,(2n+i−1)n

√
h1iBi 0n,(n−i)n

−
√

h2i − h1iA 0n,(2n+i−1)n

√
h2i − h1iBi 0n,(n−i)n

√

1/h1iIn 0n,(i−1)n −
√

1/h1iIn 0n,(3n−i)n

0n,in

√

1/ (h2i − h1i)In 0n,(n−1)n −
√

1/ (h2i − h1i)In 0n,(2n−i)n













,

W
kS+

i
=

[

0n,(n+i)n

√

1/2L+
ki 0n,(2n−i)n

0n,(2n+i)n

√
2In 0n,(n−i)n

]

,W
kS−

i
=

[

0n,(n+i)n −
√

1/2L−

ki 0n,(2n−i)n

0n,(2n+i)n −
√

2In 0n,(n−i)n

]

.

Proof: Let us show the kth equilibrium point is asymptotically stable. The Lyapunov-Krasovskii

functional is defined as follows:

Vk(x(t)) = Vk1(x(t)) + Vk2(x(t)) + Vk3(x(t)), (20)

Vk1(x(t)) = xT (t)Pkx(t), (21)

Vk2(x(t)) =

n
∑

i=1

[

∫ t

t−h1i

xT (α)Qk1ix(α)dα +

∫ t−h1i

t−hi(t)
xT (α)Qk2ix(α)dα

]

, (22)

Vk3(x(t)) =
n

∑

i=1

[
∫ 0

−h1i

∫ t

t+β

ẋT (α)Zk1iẋ(α)dαdβ +

∫

−h1i

−h2i

∫ t

t+β

ẋT (α)Zk2iẋ(α)dαdβ

]

. (23)

The derivatives of Vkj(x(t)), j = 1, 2, 3, are given by

V̇k1(x(t)) = 2xT (t)Pkẋ(t), (24)

V̇k2(x(t)) =
n

∑

i=1

[xT (t)Qk1ix(t) − xT (t − h1i)Qk1ix(t − h1i) + xT (t − h1i)Qk2ix(t − h1i)

−(1 − ḣi(t))x
T (t − hi(t))Qk2ix(t − hi(t))]

≤
n

∑

i=1

[xT (t)Qk1ix(t) − xT (t − h1i)Qk1ix(t − h1i) + xT (t − h1i)Qk2ix(t − h1i) (25)

−(1 − µi)x
T (t − hi(t))Qk2ix(t − hi(t))]

V̇k3(x(t)) =

n
∑

i=1

[ẋT (t)(h1iZk1i + (h2i − h1i)Zk2i)ẋ(t) (26)

−
∫ t

t−h1i

ẋT (α)Zk1iẋ(α)dα −
∫ t−h1i

t−h2i

ẋT (α)Zk2iẋ(α)dα].
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From Jensen’s inequality, we can easily get

−
∫ t

t−h1i

ẋT (α)Zk1iẋ(α)dα

≤ − 1

h1i

[
∫ t

t−h1i

ẋ(α)dαT

]T

Zk1i

[
∫ t

t−h1i

ẋ(α)dα

]

= − 1

h1i
[x(t) − x(t − h1i)]

T Zk1i
[x(t) − x(t − h1i)] , (27)

−
∫ t−h1i

t−h2i

ẋT (α)Zk2iẋ(α)dα

≤ −
∫ t−h1i

t−hi(t)
ẋT (α)Zk2iẋ(α)dα

≤ − 1

h2i − h1i

[

∫ t−h1i

t−hi(t)
ẋ(α)dα

]T

Zk2i

[

∫ t−h1i

t−hi(t)
ẋ(α)dα

]

≤ − 1

h2i − h1i
[x(t − h1i) − x(t − hi(t))]

T Zk2i

× [x(t − h1i) − x(t − hi(t))] . (28)

By (17), for any scalar s+
kij ≥ 0, it is clear that for i, j = 1, · · · , n.

2

n
∑

j=1

s+
kijfkij(xj(t − hi(t)))

[

l+kijxj(t − hi(t)) − fkij(xj(t − hi(t)))
]

≥ 0,

then

n
∑

i=1

n
∑

j=1

[

2s+
kijfkij(xj(t − hi(t)))l

+
kijxj(t − hi(t)) − 2s+

kijfkij(xj(t − hi(t)))fkij(xj(t − hi(t)))
]

≥ 0,

or equivalently

n
∑

i=1

[

2fki(x(t − hi(t)))S
+
kiL

+
kix(t − hi(t)) − 2fki(x(t − hi(t)))S

+
kifki(x(t − hi(t)))

]

≥ 0. (29)

For any scalar s−kij ≥ 0, it is clear that for i, j = 1, · · · , n.

2

n
∑

j=1

s−kijfkij(xj(t − hi(t)))
[

fkijhij(xj(t − hi(t))) − l−kijxj(t − hi(t))
]

≥ 0,

then

n
∑

i=1

n
∑

j=1

[

2s−kijfkij(xj(t − hi(t)))fkij(xj(t − hi(t))) − 2s−kijfkij(xj(t − hi(t)))l
−

kijxj(t − hi(t))
]

≥ 0,

or equivalently

n
∑

i=1

[

2fki(x(t − hi(t)))S
−

kifki(x(t − hi(t))) − 2fki(x(t − hi(t)))S
−

kiL
−

kix(t − hi(t))
]

≥ 0. (30)
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By using (18), (27), (28), (29) and (30), we have

V̇k(x(t))

≤ 2xT (t)Pk[−Ax(t) +

n
∑

i=1

Bifki(x(t − hi(t))]

+

n
∑

i=1

[xT (t)Qk1ix(t) − xT (t − h1i)Qk1ix(t − h1i) + xT (t − h1i)Qk2ix(t − h1i)

−(1 − µi)x
T (t − hi(t))Qk2ix(t − hi(t))] +

n
∑

i=1

{[−Ax(t) +
n

∑

i=1

Bifki(x(t − hi(t))]
T

× [h1iZk1i + (h2i − h1i)Zk2i] [−Ax(t) +

n
∑

i=1

Bifki(x(t − hi(t))]

− 1

h1i
[x(t) − x(t − h1i)]

T Zk1i [x(t) − x(t − h1i)]

− 1

h2i − h1i
[x(t − h1i) − x(t − hi(t))]

T Zk2i [x(t − h1i) − x(t − hi(t))]}

+
n

∑

i=1

[2fki(x(t − hi(t)))S
+
kiL

+
kix(t − hi(t)) − 2fki(x(t − hi(t)))S

+
kifki(x(t − hi(t)))]

+

n
∑

i=1

[2fki(x(t − hi(t)))S
−

kifki(x(t − hi(t))) − 2fki(x(t − hi(t)))S
−

kiL
−

kix(t − hi(t))]

= ζT
k (t)Θkζk (t)

where

ζk (t) =











x(t)

χ(t − h1)

χ(t − h(t))

fk(x(t − h(t)))











.

with

χ(t − h1) =













x(t − h11)

x(t − h12)
...

x(t − h1n)













, χ(t − h(t)) =













x(t − h1(t))

x(t − h2(t))
...

x(t − hn(t))













, fk(x(t − h(t))) =













fk1(x(t − h1(t)))

fk2(x(t − h2(t)))
...

fkn(x(t − hn(t)))













.

Therefore,

V̇k (t) ≤ ζT
k (t) Θkζk (t) ,

and then we have

Θk < 0. (31)

Since (31) holds, we have V̇k(x(t)) < −ǫk ‖x(t)‖2 for a sufficiently small ǫk > 0, k = 1, · · · , N and x(t) 6= 0,

then the asymptotic N -stability is established and the GRN (13) is N -stable.

Remark 5: Time delays are frequently encountered in not only the biological networks but also many other

practical engineering systems, such as communication, electronics, and chemical systems. In the past decade,

monostability analysis and synthesis problems for various time-delay systems have gained considerable research

interests and a large amount of results have appeared in the literature, see, e.g., [29–31]. Recently, the problem

of delay-dependent stability analysis for time-delay systems has received much attention and fruitful results
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have been reported. For the case when time-varying delays are considered, corresponding results can be found

in [32]. It is noticed that, up to now, most existing results are restrictive to some extent since they have

assumed that either the derivatives of the delays are less than 1 (e.g., [9]). Therefore, one of the objectives

in this theorem is to remove the restriction and reduce the possible conservatism by introducing an advanced

parameter-dependent Lyapunov functional.

If time delay is assumed to be constant, then the GRN (13) becomes:

żi(t) = −aizi(t) +

n
∑

j=1

bijgij(zj(t − τi)) + ui, (32)

For the kth equilibrium point, by transformation we have

ẋ(t) = −Ax(t) +

n
∑

i=1

Bifki(x(t − τi)), (33)

Based on Theorem 1, we can get the following corollary.

Corollary 1: Let O = [0n, 0n, . . . , 0n]n,nn and B = [B1, B2, . . . , Bn]n,nn. The system in (32) is asymptotically

N -stable, if there exist matrices Pk > 0, Qki > 0, Zki > 0, and diagonal matrices S+
ki and S−

ki, k = 1, · · · , N,

i = 1, · · · , n, such that the following LMIs hold:

Θk = W T
P P̄kWP +

n
∑

i=1

(W T
Q Q̄kWQ + W T

R R̄kWR + W T
kS+S̄+

kiWkS+ + W T
kS−S̄−

kiWkS−) < 0, (34)

where

Q̄k = diag{Qki,−Qki}, Z̄k = diag{Zki,−Zki, },

P̄k =

[

0n Pk

Pk 0n

]

, S̄+
ki =

[

0n S+
ki

S+
ki −S+

ki

]

, S̄−

ki =

[

0n S−

ki

S−

ki −S−

ki

]

,

WkP =

[

−A O B

In O O

]

,WkQi
=

[

In 0n,2n2

0n,in In 0n,(2n−i)n

]

,

WkZi
=

[

−√
τiA O

√
τiB

√

1/τiIn 0n,(i−1)n −
√

1/τiIn 0n,(2n−i)n

]

,

W
kS+

i
=

[

0n,in

√

1/2L+
ki 0n,(2n−i)n

0n,(n+i)n

√
2In 0n,(n−i)n

]

,W
kS−

i
=

[

0n,in −
√

1/2L−

ki 0n,(2n−i)n

0n,(n+i)n −
√

2In 0n,(n−i)n

]

.

Furthermore, if the time delay is zero, then the GRN (13) becomes:

żi(t) = −aizi(t) +
n

∑

j=1

bijgij(zj(t)) + ui, (35)

For the kth equilibrium point, by transformation we have

ẋ(t) = −Ax(t) +

n
∑

i=1

Bifki(x(t)), (36)

Based on Theorem 1, we can get the following corollary.

Corollary 2: Let O = [0n, 0n, . . . , 0n]n,nn and B = [B1, B2, . . . , Bn]n,nn. The system in (35) is asymptotically

N -stable, if there exist matrices Pk > 0, and diagonal matrices S+
ki and S−

ki, k = 1, · · · , N, i = 1, · · · , n, such

that the following LMIs hold:

Θk = W T
P P̄kWP +

n
∑

i=1

(W T
kS+S̄+

kiWkS+ + W T
kS−S̄−

kiWkS−) < 0, (37)
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where

P̄k =

[

0n Pk

Pk 0n

]

, S̄+
ki =

[

0n S+
ki

S+
ki −S+

ki

]

, S̄−

ki =

[

0n S−

ki

S−

ki −S−

ki

]

,WkP =

[

−A O B

In O O

]

,

W
kS+

i
=

[

0n,in

√

1/2L+
ki 0n,(2n−i)n

0n,(n+i)n

√
2In 0n,(n−i)n

]

,W
kS−

i
=

[

0n,in −
√

1/2L−

ki 0n,(2n−i)n

0n,(n+i)n −
√

2In 0n,(n−i)n

]

.

Remark 6: In our main results, we propose a general sector-like regulation function and utilize up-to-date

techniques to derive stability conditions for GRNs for achieving delay dependence to ensure less conservatism.

New conditions are derived for the general stability of a GRN in the form of linear matrix inequalities (LMIs)

that are dependent on the upper and lower bounds of the delays. In the next section, the obtained general

stability conditions are applied to several frequently used regulation functions. It is shown that the existing

results for monostability of GRNs are special cases of our main results. Five examples are employed to

illustrate the applicability and usefulness of the developed theoretical results.

IV. Illustrative Examples

In this section, five examples are employed to show 1) the generality of out proposed regulation function; 2)

the applicability of our main results for both the monostability and multistability; and 3) the more generality

and less conservatism of our main results than existing ones.

Example 1 is concerned with a constructed GRN with five equilibrium points of which three are stable.

Example 2 is concerned with a model of transcription factors (TFs) subjected to its own transcription regu-

lation which is displaying bistability. Example 3 is concerned with a synthetic, bistable genetic toggle switch

in Escherichia coli. Example 4 is concerned with a GRN with five nodes, and Example 5 is concerned with

a synthetic oscillatory network of transcriptional regulators. It’s shown that the existing results in Example

4 and Example 5 are special cases of our results.

Example 1: We consider a self regulatory network with one component:

ẋ(t) = −ax(t) + f(x(t)), (38)

where a denotes the decay rate of x and f(x) is the self regulation function. Let f(x) = tanh(x3), which has a

double sigmoid form, and h(x) = ḟ(x) = 3x2(1−tanh2(x3)) ≤ 1.3432. Both f(x) and h(x) are depicted in Fig.

3(b). Let a = 0.7 and g(x) = 0.7x, so the cross points between g(x) and f(x) represent the equilibrium points

of system (38). We can get five equilibrium points x∗
1 = −1.4, x∗

2 = −0.9, x∗
3 = 0, x∗

4 = 0.9 and x∗
5 = 1.4.

When x∗
1 ∈ (−∞,−1], L−

1 = 0, L+
1 = 0.7384, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P1 = 131.0213, S11 = 137.1636, S12 = 76.3891.

When x∗
2 ∈ [−1,−0.5], L−

2 = 0.7384, L+
2 = 1.518, the solution is infeasible.

When x∗
3 ∈ [−0.5, 0.5], L−

3 = 0, L+
3 = 0.7384, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P2 = 131.0213, S21 = 137.1636, S22 = 76.3891.

When x∗
4 ∈ [0.5, 1], L−

4 = 0.7384, L+
4 = 1.518, the solution is infeasible.

When x∗
5 ∈ [1,+∞), L−

5 = 0, L+
5 = 0.7384, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P3 = 131.0213, S31 = 137.1636, S32 = 76.3891.
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Fig. 3. (a) Transient behavior of system (38). (b) f(x) = tanh(x3), h(x) = 3x2(1 − tanh2(x3)) and g(x) = 0.7x. Five

equilibrium points can be obtained.

Simulation results are depicted in Fig. 3(a). The solid lines represent the stable states and the dashed lines

represent the unstable states. It is concluded that the system (38) is 3-stable.

Example 2: In [36], a relatively simple model of transcription factors (TFs) subject to positive and negative

autoregulation of their own transcription is considered. By simplifications, a model with a single ordinary

differential equation for the concentration of TF-A is given by

d[TF − A]

dt
=

k1,f [TF − A]2

[TF − A]2 + K1,d

− k1,d[TF − A] + r1,bas. (39)

Parameter k1,f is the maximal rate of TF-A synthesis, K1,d is the dissociation constant of TF-A dimer from

TF-REs, k1,d is the degradation rate constant of TF-A and r1,bas is the basal rate of synthesis of activator.

The regulation function is given by f(x) = x2/
(

K1,d + x2
)

. The parameters values are given as K1,d = 10,

k1,d = 1 min−1, r1,bas = 0.1 min−1. As shown in Fig. 2 in [36], the value of k1,f determines the type of general

stability. For 6.1 min−1 < k1,f < 25.1 min−1, two stable state solutions for [TF − A] exist. For k1,f < 6.1

min−1 or k1,f > 25.1 min−1, a unique stable state solution for [TF − A] exists. Then system (39) can be

rewritten into the following compact matrix form

ẋ = −Ax + Bfk(x),

where

A = k1,d, B1 = k1,f ,

x(t) = [TF − A] − [TF − A]∗k,

fk(x) = f(x + [TF − A]∗k) − f([TF − A]∗k),

and f(x) and ḟ(x) are shown in Fig. 4.

Case 1: By taking k1,f = 10 min−1, we can get three equilibrium points x∗
1 = 0.138, x∗

2 = 0.99 and x∗
3 = 9.1.

When x∗
1 ∈ [0, 0.5], L−

1 = 0, L+
1 = 0.0952, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P1 = 0.0278, S11 = 0.7387, S12 = 0.4189.

When x∗
2 ∈ [0.5, 4], L−

2 = 0.1183, L+
2 = 0.2054, the solution is infeasible.
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Fig. 4. f(x) = x2/
(

10 + x2
)

, and h(x) = ḟ(x) = 20x/
(

10 + x2
)2

.

When x∗
3 ∈ [4,+∞), L−

3 = 0, L+
3 = 0.1183, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P2 = 0.0264, S21 = 0.7527, S22 = 0.3685.

Case 2: By taking k1,f = 1 min−1, we can get a unique equilibrium point x∗
1 = 0.1055.

When x∗
1 ∈ [0,+∞), L−

1 = 0, L+
1 = 0.2054, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P1 = 0.0230, S11 = 0.7828, S12 = 0.2266.

Case 3: By taking k1,f = 30 min−1, we can get a unique equilibrium point x∗
1 = 29.78.

When x∗
1 ∈ [0,+∞), L−

1 = 0, L+
1 = 0.2054, we can obtain a feasible solution by solving LMIs with the

following obtained matrix variables:

P1 = 0.3910, S11 = 146.0866, S12 = 10.2986.

Example 3: We consider a genetic toggle switch with bistability [4]:

u̇(t) =
α1

1 + vθ(t − τv)
− β1u(t),

v̇(t) =
α2

1 + uγ(t − τu)
− β2v(t), (40)

where u is the concentration of repressor 1, usually lacI, v is the concentration of repressor 2, usually cI, α1

is the effective rate of synthesis of repressor 1, α2 is the effective rate of synthesis of repressor 2, θ is the

cooperativity of repression of promoter 2, γ is the cooperativity of repression of promoter 1, β1 is the ratio

of the decay rate of repressor 1 and β2 is the ratio of the decay rate of repressor 2. We take the regulation

function as f(x) = x2/
(

1 + x2
)

, then we get the standard form:

u̇(t) = −β1u(t) − α1v
θ(t − τv)

1 + vθ(t − τv)
+ r1,bas,

v̇(t) = −β2v(t) − α2u
γ(t − τu)

1 + uγ(t − τu)
+ r2,bas, (41)
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Then, system (41) can be rewritten into the following compact matrix form

ẋ(t) = −Ax(t) +

2
∑

i=1

Bifk(x(t − τi)),

where

τ1 = τv, τ2 = τu,

x(t) =

[

x1(t)

x2(t)

]

=

[

u(t) − u∗
k

v(t) − v∗k

]

, A =

[

β1 0

0 β2

]

,

B1 =

[

0 −α1

0 0

]

, B2 =

[

0 0

−α2 0

]

fk(x(t − τi)) =

[

fk(x1(t − τi))

fk(x2(t − τi))

]

=

[

f(x1(t − τi) + u∗
k) − f(u∗

k)

f(x2(t − τi) + v∗k) − f(v∗k)

]

,
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Fig. 5. f(x) = x2/
(

1 + x2
)

, and h(x) = ḟ(x) = 2x/
(

1 + x2
)2

.

We select a set of biologically plausible parameters as α1 = 20, α2 = 20, β1 = β1 = 1, θ = γ = 2,

τ1 = 0.1 and τ2 = 0.2. We can get three equilibrium points x∗
1 = (0.061, 19.95)T , x∗

2 = (19.91, 0.075)T and

x∗
3 = (2.59, 2.43)T . The regulation function f(x) and ḟ(x) are shown in Fig. 5.

When x∗
1 ∈ [0, 1.5]× [1.5,+∞), L−

1 = diag{0, 0}, L+
1 = diag{0.6495, 0.06}. We can obtain a feasible solution

by solving LMIs with the following obtained matrix variables (for space consideration, we only list the matrix

variables P1, Z11 and Q11):

P1 =

[

0.0599 0.0170

0.0170 0.0512

]

, Z11 =

[

0.2594 −0.0006

−0.0006 0.0568

]

, Q11 =

[

0.1897 0.0482

0.0482 0.1738

]

.

When x∗
2 ∈ [1.5,+∞)× [0, 1.5], L−

2 = diag{0, 0}, L+
2 = diag{0.06, 0.6495}. We can obtain a feasible solution

by solving LMIs with the following obtained matrix variables (for space consideration, we only list the matrix

variables P2, Z21 and Q21):

P2 =

[

0.0512 0.0170

0.0170 0.0599

]

, Z21 =

[

0.2306 0.0001

0.0001 0.2639

]

, Q21 =

[

0.1738 0.0508

0.0508 0.1895

]

.
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When x∗
3 ∈ [1.5, 3] × [1.5, 3], L−

3 = diag{0.06, 0.06}, L+
3 = diag{0.284, 0.284}. The solution is infeasible.

Simulation results are depicted in Fig. 6. The solid lines represent the stable states and the dashed line

represents the unstable states. So the genetic toggle switch (40) is bistable.
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Fig. 6. Transient behavior of system (40), where α1 = 20, α2 = 20.

Example 4: Consider a small size genetic network with five nodes. In [9], the GRNs with time-varying

delays are modeled as

ṁi(t) = −aimi(t) +
∑

j

Gijf(pj(t − h1(t))), (42)

ṗi(t) = −cipi(t) + dimi(t − h2(t)), (43)

where ai > 0, ci > 0, i = 1, 2, · · · , n, f(·) is the regulation function with the same form described in Remark

1, and G is the coupling matrix of this GRN, which is defined as follows: if there is no link from node i to

node j, Gij = 0; if transcription factor i is an activator of gene j, Gij = αij > 0; if transcription factor i is a

repressor of gene j, Gij = −αij < 0. In other words, the matrix G = [Gij ]n,n defines the coupling topology,

direction, and the transcriptional rate of the genetic network. In compact matrix form, (42) and (43) can be

rewritten as

ṁ(t) = Em(t) + Gf(p(t − h1(t))), (44)

ṗ(t) = Cp(t) + Dm(t − h2(t)), (45)

Consider Remark 3, m(·) in (45) can be treated as a regulation function. This GRN is rewritten as

ẋ(t) = Ax(t) +

2
∑

i=1

Big(x(t − hi(t))), (46)

where

x(t) =

[

m(t)

p(t)

]

, g(x(t − hi(t))) =

[

m(t − hi(t))

f(p(t − hi(t)))

]

,

A =

[

E 0

0 C

]

, B1 =

[

0 G

0 0

]

, B2 =

[

0 0

D 0

]

.

In order to test the effectiveness our theorem, all the parameters considered here are the same with [9]. Let
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the coupling matrix G of this GRN as

G = 0.5 ×















0 −1 1 0 0

−1 0 0 1 1

0 1 0 0 0

1 −1 0 0 0

0 0 0 1 0















and the system matrices be given as follows:

E = C = diag{−1,−1,−1,−1,−1},D = diag{0.8, 0.8, 0.8, 0.8, 0.8}.

In addition, the regulation function is given by

g(p) =
p2

1 + p2
.

and

g(m) = m.

It is easy to know ġ(p) ∈ [0, 0.65] and ġ(m) ≡ 1 ∈ [1, 1] . Then we take L− = diag{1, 1, 1, 1, 1, 0, 0, 0, 0, 0}
and L+ = diag{1, 1, 1, 1, 1, 0.65, 0.65, 0.65, 0.65, 0.65}. The time delays are assumed to be

h1(t) = 1 + 0.1 sin t, h2(t) = 0.5 + 0.1 sin t,

and therefore we can get the parameters as follows :

h11 = 0.9, h21 = 1.1, µ1 = 0.1,

h12 = 0.4, h22 = 0.6, µ2 = 0.1.

We can obtain a feasible solution by solving LMIs with the following obtained matrix variables (for space

consideration, we only list the matrix variables P1):

P1 =







































4.8444 0.3277 0.4077 −0.2195 −0.4540 −0.0731 0.0206 0.1570 −0.0392 −0.0370

0.3277 4.6659 0.0798 −0.0078 −0.0564 −0.1016 −0.0219 0.0358 0.3109 0.0822

0.4077 0.0798 5.7218 0.3525 0.3756 −0.2863 −0.1511 0.3815 0.2058 −0.1058

−0.2195 −0.0078 0.3525 5.9240 0.4083 0.1789 0.2098 0.1802 0.2139 0.3269

−0.4540 −0.0564 0.3756 0.4083 5.1564 −0.4010 −0.0846 0.0584 −0.3340 0.0039

−0.0731 −0.1016 −0.2863 0.1789 −0.4010 3.7020 0.0924 0.1319 0.4522 0.2133

0.0206 −0.0219 −0.1511 0.2098 −0.0846 0.0924 3.2710 0.0317 0.0415 −0.0081

0.1570 0.0358 0.3815 0.1802 0.0584 0.1319 0.0317 3.8921 0.1010 0.2110

−0.0392 0.3109 0.2058 0.2139 −0.3340 0.4522 0.0415 0.1010 3.8081 0.2326

−0.0370 0.0822 −0.1058 0.3269 0.0039 0.2133 −0.0081 0.2110 0.2326 3.1573







































,

To test less conservatism, the time delays are assumed to be

h1(t) = 0.3 + 0.2 sin 6t, h2(t) = 1 + 0.5 sin 3t,

and therefore we can get the parameters as follows:

h11 = 0.1, h21 = 0.5, µ1 = 1.2,

h12 = 0.5, h22 = 1.5, µ2 = 1.5.
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We can obtain a feasible solution by solving LMIs with the following obtained matrix variables (for space

consideration, we only list the matrix variables P1):

P1 =







































4.7239 0.0351 4.5516 −0.1302 −0.1065 −0.1805 0.0444 −0.6841 0.2573 0.0415

0.0351 1.8277 1.9968 1.7884 −1.2289 −0.0021 −0.0818 −0.2026 −0.1021 0.0728

4.5516 1.9968 16.0953 7.7194 −1.7589 0.0082 −0.1601 −1.1333 −0.3983 0.1970

−0.1302 1.7884 7.7194 7.7071 −1.0349 0.0956 −0.1035 −0.3483 −0.7574 0.1604

−0.1065 −1.2289 −1.7589 −1.0349 6.2959 0.0262 0.0669 0.0282 −0.1861 −0.0163

−0.1805 −0.0021 0.0082 0.0956 0.0262 1.6371 −0.0301 0.5879 −0.1865 0.0985

0.0444 −0.0818 −0.1601 −0.1035 0.0669 −0.0301 0.2440 −0.0678 0.0246 −0.0343

−0.6841 −0.2026 −1.1333 −0.3483 0.0282 0.5879 −0.0678 4.9678 1.5075 −0.2917

0.2573 −0.1021 −0.3983 −0.7574 −0.1861 −0.1865 0.0246 1.5075 2.4726 −0.3472

0.0415 0.0728 0.1970 0.1604 −0.0163 0.0985 −0.0343 −0.2917 −0.3472 0.0994







































,

so this GRN is monostable.

Example 5: Consider a synthetic oscillatory network of transcriptional regulators. This network has been

adopted as the mathematical model of the repressilator, which has been experimentally investigated in [28].

In this model, three repressor-protein concentrations, pi, and their corresponding mRNA concentrations, mi

(where i is lacl, tetR or cl) are treated as continuous dynamical variables. Each of these six molecular species

participates in transcription, translation, and degradation reactions. Here we consider only the symmetrical

case in which all three repressors are identical except for their DNA-binding specificities. This GRN is also

modeled by (42) and (43), we transform it into (46).

In order to test the effectiveness our theorem, all the parameters considered here are the same with [10].

Let the coupling matrix G of this GRN as

G = 0.5 ×







0 −1 1

1 0 −1

−1 1 0






,

and the system matrices be given as follows:

E = C = diag{−1,−1,−1},D = diag{1, 1, 1}.

In addition, the regulation function is given by

f(x) =
x2

1 + x2
.

It is easy to know ḟ(x) ∈ [0, 0.65] and ṁ ∈ [1, 1] . Then we take L− = diag{1, 1, 1, 0, 0, 0} and L+ =

diag{1, 1, 1, 0.65, 0.65, 0.65}. The time delays are assumed to be

h11 = 0.9999, h21 = 1, µ1 = 0,

h12 = 0.29999, h22 = 0.3, µ2 = 0.

We can obtain a feasible solution by solving LMIs with the following obtained matrix variables (for space

consideration, we only list the matrix variables P1):

P1 =



















1.6345 0.0362 0.0362 −0.0061 0.0151 0.0234

0.0362 1.6345 0.0362 0.0234 −0.0061 0.0151

0.0362 0.0362 1.6345 0.0151 0.0234 −0.0061

−0.0061 0.0234 0.0151 1.0620 0.0086 0.0086

0.0151 −0.0061 0.0234 0.0086 1.0620 0.0086

0.0234 0.0151 −0.0061 0.0086 0.0086 1.0620



















,
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To test less conservatism, the time delays are assumed to be

h1(t) = 0.7 + 0.4 sin 5t, h2(t) = 1.5 + 0.5 sin 4t,

and therefore we can get the parameters as follows:

h11 = 0.3, h21 = 1.1, µ1 = 2,

h12 = 1, h22 = 2, µ2 = 2.

We can obtain a feasible solution by solving LMIs with the following obtained matrix variables (for space

consideration, we only list the matrix variables P1):

P1 =



















14.2180 0.1725 0.1725 −0.3535 0.1508 −0.1460

0.1725 14.2180 0.1725 −0.1460 −0.3535 0.1508

0.1725 0.1725 14.2180 0.1508 −0.1460 −0.3535

−0.3535 −0.1460 0.1508 4.0239 0.0061 0.0061

0.1508 −0.3535 −0.1460 0.0061 4.0239 0.0061

−0.1460 0.1508 −0.3535 0.0061 0.0061 4.0239



















,

and it follows that this GRN is monostable. We like to mention that, comparing to the results of [10], we no

longer need the derivartives of the delays are less 1, and therefore our results are less conservative.

V. Conclusion

In this paper, we have made an effort to show the possibility of applying control theory to investigate

the general stability (monostability and multistability) of a GRN, therefore having potential applications in

synthesis biology and system biology. A method has been presented for the analysis of general stability of

a GRN with multiple time-varying delays and different types of regulation functions. By using a Lyapunov

functional approach and linear matrix inequalities (LMI) techniques, the general stability criteria for a GRN

with time-varying delays have been established in the form of LMIs, which can be readily verified by using

standard numerical software. An important feature of the results reported here is that all the general stability

conditions are dependent on the upper and lower bounds of the delays, which is made possible by utilizing

the most updated techniques for achieving delay dependence. To the best of our knowledge, the approach

presented here is the first computational approach developed specifically for general stability of a GRN.

Five examples have been employed to illustrate the applicability and usefulness of the developed theoretical

results, which are concerned with, respectively, a constructed GRN with five equilibrium points of which

three are stable, a model of transcription factors (TFs) subjected to its own transcription regulation which is

displaying bistability, a synthetic bistable genetic toggle switch in Escherichia coli, a GRN with five nodes

and a synthetic oscillatory network of transcriptional regulators. It has been shown that our results are more

general and less conservative than existing ones.
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