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SUMMARY

In this paper, the design of sliding mode control is addressed for uncertain stochastic systems modeled
by Itô differential equations. There exist the parameter uncertainties in both the state and input
matrices, and the unmatched external disturbance. The key feature of this work is the integration of
sliding mode control method with H∞ technique such that the robustly stochastic stability with a
prescribed disturbance attenuation level γ can be obtained. A sufficient condition for the existence of
the desired sliding mode controller is obtained via linear matrix inequalities (LMIs). The reachability
of the specified sliding surface is proven. Finally, a numerical simulation is presented to illustrate the
proposed method. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stability and stabilization of stochastic systems, governed by the Itô differential equations,
have attracted much attention over the past few decades due to the extensive applications of
stochastic modelling in mechanical systems, economics, and other areas [1]. A great number of
results on this topic have been reported in the literature, see, e.g., [2, 3, 4], and the references
therein. Very recently, the designs of sliding mode control (SMC) for uncertain stochastic
systems were also developed in, e.g., [5, 6]. Both the theoretical proof and numerical simulation
in the aforementioned works show that SMC is an effective and promising approach for the
stabilization of Itô stochastic systems.

It is well known that the key feature of SMC is the insensitiveness of sliding motion on
the specified sliding surface to matched uncertainties or external disturbances, see [7, 8, 9]
and the references therein. However, the sliding motion cannot be detached from the effect of
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unmatched parameter uncertainties, especially, unmatched external disturbances. This means
that the unmatched external disturbances will make the design of SMC become complex and
challenging.

On the other hand, the H∞ control, in the past decades, has been widely employed to
deal with the uncertain systems with external disturbance. The goal of this problem is to
design a controller to stabilize a given system while satisfying a prescribed level of disturbance
attenuation. Recently, the H∞ control for stochastic system has been considered by some
researchers. For example, the state feedback controller in [10] was designed for uncertain
stochastic system such that the closed-loop systems is robustly asymptotically stable and
satisfies a prescribed H∞ performance. Zhang, et al. [11] further presented the stochastic
H2/H∞ control design for nonlinear stochastic systems with state-dependent noise.

Motivated by the above discussion, it is convinced that the integration of the SMC method
with H∞ technique will have a promising to extend the SMC to the systems with unmatched
uncertainties and obtain a better dynamic performance. Therefore, in this paper, the design
of SMC problem for uncertain Itô stochastic systems with unmatched external disturbances
will be considered by integrating H∞ technique. There exist parameter uncertainties in
both the state and input matrices, and external disturbances. By utilizing H∞ technique
to attenuate the effect of unmatched external disturbance, this paper proposes a novel sliding
mode controller that can ensure the robustly stochastic stability with a prescribed disturbance
attenuation level γ for the resultant closed-loop system, irrespective of parameter uncertainties
and unmatched external disturbance. It is shown that the specified sliding surface is attained
with probability 1. Moreover, a computational algorithm is given to solve linear matrix
inequality (LMI) with equality constraint such that the design of both the sliding surface
and the SMC law can be easily obtained by means of convex optimization.

Notations: For a real matrix, M > 0 means that M is symmetric and positive definite. I
is used to represent an identity matrix of appropriate dimensions. L2[0,∞) denotes the space
of square-integrable vector functions over [0,∞). || · || refers the Euclidean vector norm. || · ||2
stands for the usual L2[0,∞) norm. (Ω,F ,P) is a probability space with Ω the sample space,
F the σ-algebra of subsets of the sample space, and P the probability measure. E{·} denotes
the expectation operator with respect to probability measure P. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2. Formulation of the problem

Consider the uncertain time-delay stochastic systems described by the Itô form:

(Σ) : dx(t) = [(A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t− d)
+(B + ∆B(t))u(t) + D1v(t)] dt

+G [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))
×x(t− d) + D2v(t)] dw(t), (1)

z(t) = Cx(t), (2)
x(t) = ϕ(t), t ∈ [−d, 0] (3)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, z(t) ∈ Rq is the controlled output,
and v(t) ∈ Rp is the exogenous disturbance input which belongs to L2[0,∞) ∩ L∞[0,∞). In
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this work, it is assumed that the upper bound for v(t) is known. w(t) is a one-dimensional
Brownian motion. A ∈ Rn×n, Ad ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D1 ∈ Rn×p, D2 ∈ Rm×p,
E ∈ Rm×n, Ed ∈ Rm×n and G ∈ Rn×m are known real constant matrices. Without loss of
generality, it is assumed that the input matrix B has full column rank. ∆A(t), ∆Ad(t), ∆B(t),
∆E(t) and ∆Ed(t) are unknown time-varying matrices representing parameter uncertainties.
d is the known constant delay, and ϕ(t) is a continuous vector-valued initial function. In this
work, the uncertainty ∆B(t) is assumed to be matched, i.e., there exists a matrix δ(t) ∈ Rm×m

such that ∆B(t) = Bδ(t) with ||δ(t)|| ≤ ρB < 1, where ρB is a positive constant. Moreover,
the admissible parameter uncertainties ∆A(t), ∆Ad(t), ∆E(t) and ∆Ed(t) are of the following
norm-bounded form:

[
∆A(t) ∆Ad(t)

]
= M1F1(t)

[
Na Nad

]
, (4)[

∆E(t) ∆Ed(t)
]

= M2F2(t)
[

Ne Ned

]
(5)

where M1, M2, Na, Nad, Ne, Hed are known real constant matrices, and F1(t) and F2(t) are
unknown time-varying matrices with Lebesgue measurable elements satisfying

FT
1 (t)F1(t) ≤ I, FT

2 (t)F2(t) ≤ I, ∀t. (6)

It is noted that there exists unmatched external disturbance v(t) in the systems under
consideration. In addition, there may exist parameter uncertainties in both the state and
control input matrices.

The objective of this work is to design an SMC law such that the desired control performance
is obtained for the resultant closed-loop stochastic system despite parameter uncertainties and
unmatched external disturbance.

Before proceeding, some standard concepts and Lemma will be given as follows, which are
useful for the development of our result.

Definition 1. The uncertain stochastic systems in (1) and (3) are said to be robustly
stochastically stable if the system associated to (1) and (3) with u(t) = 0 and v(t) = 0 is
mean-square asymptotically stable for all admissible parameter uncertainties.

Definition 2. Given a scalar γ > 0, the unforced stochastic system in (1)–(3) with u(t) = 0
is said to be robustly stochastically stable with disturbance attenuation γ if it is robustly
stochastically stable and under zero initial condition, ||z(t)||E2 < γ||v(t)||2 for all nonzero
v(t) ∈ L2[0,∞) and all admissible uncertainties, where

||z(t)||E2 =
(
E

{∫ ∞

0

|z(t)|2dt

})1/2

.

Lemma 1. [12]Let A, E, H, and F (t) be real matrices of appropriate dimensions with F (t)
satisfying FT (t)F (t) ≤ I. Then, we have

(i) For any scalar ε > 0,

EF (t)H + HT FT (t)ET ≤ ε−1EET + εHT H.

(ii) For any real scalar ε > 0 and matrix X > 0 satisfying εI − ET XE > 0 ,

(A + EF (t)H)T X(A + EF (t)H) ≤ AT XA + AT XE
(
εI − ET XE

)−1
ET XA + εHT H.
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3. Sliding mode control with H∞ performance

In this section, an SMC law will be firstly synthesized such that the resultant closed-loop
systems is robustly stochastically stable with disturbance attenuation γ. It is further proven
that the reachability of the specified sliding surface s(t) = 0 can be ensured by the proposed
SMC law. Thus, it is obtained that the synthesized SMC law can guarantee that the state
trajectories of uncertain stochastic systems (1)–(3) are driven onto (with probability 1) the
sliding surface, and asymptotically tend to zero (in mean-square sense) along the specified
sliding surface.

To this end, we choose the sliding surface s(t) as:

s(t) = ΓBT Px(t) = 0 (7)

where P ∈ Rn×n is a positive definite matrix to be designed later. Γ ∈ Rm×m is some
nonsingular matrix, which is chosen as the identity matrix for simplicity in this work.

Furthermore, we design the sliding mode control law as follows:

u(t) = −Kx(t) + ur(t), (8)

ur(t) =

{
−BT P (Ax(t) + Adx(t− d))− ρ(x, t) s(t)

||s(t)|| , ||s(t)|| 6= 0
−BT P (Ax(t) + Adx(t− d)) , ||s(t)|| = 0

(9)

where K ∈ Rm×n is chosen such that A − BK is Hurwitz, and the positive scalar function
ρ(x, t) is given as

ρ(x, t) ≥ 2
1− ρ2

B

{[||Φ(A−BK)||+ ||ΦM1||||Na||+ ρB ||K||+ (1 + ρB) ||BT PA||] ||x(t)||

+
[||ΦAd||+ ||ΦM1||||Nad||+ (1 + ρB) ||BT PAd||

] ||x(t− d)||
+||s(t)||||ΦD1||||v(t)||+ µ} (10)

with Φ =
(
BT PB

)−1
BT P and µ > 0 a small known scalar.

Substituting (8) into (1), we obtain the closed-loop system as follows:

(Σc) : dx(t) = [(A−BK)x(t) + (Ad + ∆Ad(t))x(t− d) + (B + ∆B(t))ur(t)
+ (∆A(t)−∆B(t)K) x(t) + D1v(t)] dt

+G [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d) + D2v(t)] dw(t), (11)
z(t) = Cx(t), (12)
x(t) = ϕ(t), t ∈ [−d, 0]. (13)

3.1. Analysis of stochastic stability

In the sequel, we shall analyze the dynamic performance of the closed-loop system (Σc), and
give the sufficient condition for stochastic stability in Theorem 1.

Theorem 1. Given a scalar γ > 0. Consider the uncertain stochastic system (11)–(13). If there

Copyright c© 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 00:1–6
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ROBUST SLIDING MODE DESIGN FOR UNCERTAIN STOCHASTIC SYSTEMS 5

exist matrices P > 0, Q > 0, and scalars εi > 0 (i = 1, 2, 3, 4) satisfying LMI:



Ω1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
AT

d P Ω2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
DT

1 P 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗
PGE PGEd PGD2 −P ∗ ∗ ∗ ∗ ∗
MT

1 P 0 0 0 −ε1I ∗ ∗ ∗ ∗
MT

1 P 0 0 0 0 −ε2I ∗ ∗ ∗
BT P 0 0 0 0 0 −ε3I ∗ ∗
Neε4 Nedε4 0 0 0 0 0 −ε4I ∗

MT
2 GT PGE MT

2 GT PGEd MT
2 GT PGD2 0 0 0 0 0 Ω3




< 0,

(14)
with

Ω1 = P (A−BK) + (A−BK)T P + Q + ε1N
T
a Na + ε3ρ

2
BKT K + CT C, (15)

Ω2 = −Q + ε2N
T
adNad, Ω3 = MT

2 GT PGM2 − ε4I, (16)

then the system (Σc) is robustly stochastically stable with disturbance attenuation γ.
Proof: Under the condition of theorem 1, we firstly establish the robust stochastic stability
of the system (Σc). To this end, we consider (11) with v(t) = 0, and choose the Lyapunov
function candidate as:

V (x(t), t) = x(t)T Px(t) +
∫ t

t−d

x(τ)T Qx(τ)dτ. (17)

By Itô ’s formula, we obtain the stochastic differential of V (x(t), t) along (11) with v(t) = 0
as:

dV (x(t), t) = LV (x(t), t)dt + 2x(t)T PG [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d)] dw(t)

where

LV (x(t), t) = 2x(t)T P (A−BK) x(t) + 2x(t)T P (Ad + ∆Ad(t))x(t− d)
+2x(t)T P (∆A(t)−∆B(t)K) x(t) + 2x(t)T P (B + ∆B(t))ur(t)

+ [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d)]T GT

×PG [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d)]
+x(t)T Qx(t)− x(t− d)T Qx(t− d). (18)

Noting the definition of sliding function s(t) in (7) and the expression (9), we have for
||s(t)|| 6= 0 :

LV (x(t), t) = x(t)T
[
P (A−BK) + (A−BK)T

P + Q
]
x(t) + 2x(t)T PAdx(t− d)

+2x(t)T P∆Ad(t)x(t− d) + 2x(t)T P (∆A(t)−∆B(t)K)x(t)
−2s(t)T (I + δ(t))BT P (Ax(t) + Adx(t− d))

−2s(t)T (I + δ(t))ρ(x, t)
s(t)
||s(t)|| − x(t− d)T Qx(t− d)

+ [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d)]T GT

×PG [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d)] . (19)

Copyright c© 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 00:1–6
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By Lemma 1(i), it follows that for ε1 > 0, ε2 > 0, and ε3 > 0 :

2x(t)T P∆A(t)x(t) ≤ ε−1
1 x(t)T PM1M

T
1 Px(t) + ε1x(t)T NT

a Nax(t), (20)
2x(t)T P∆Ad(t)x(t− d) ≤ ε−1

2 x(t)T PM1M
T
1 Px(t) + ε2x(t− d)T NT

adNadx(t− d), (21)
−2x(t)T P∆B(t)Kx(t) ≤ ε−1

3 x(t)T PBBT Px(t) + ε3ρ
2
Bx(t)T KT Kx(t). (22)

Further, observing that :

−2s(t)T (I + δ(t))ρ(x, t)
s(t)
||s(t)|| ≤ −2ρ(x, t)||s(t)||+ ρ(x, t)

||s(t)||
(
s(t)T δ(t)δ(t)T s(t) + s(t)T s(t)

)

≤ ρ(x, t)
(
ρ2

B − 1
) ||s(t)||. (23)

we can obtain from (10) and (23):

− 2s(t)T (I + δ(t))BT P (Ax(t) + Adx(t− d))− 2s(t)T (I + δ(t))ρ(x, t)
s(t)
||s(t)||

≤ 2||s(t)||(1 + ρB)
(||BT PA||||x(t)||+ ||BT PAd||||x(t− d)||)− ρ(x, t)(1− ρ2

B)||s(t)||
≤ −2 [(||Φ(A−BK)||+ ||ΦM1||||Na||+ ρB ||K||) ||x(t)||

+(||ΦAd||+ ||ΦM1||||Nad||) ||x(t− d)||+ µ] ||s(t)||
< 0. (24)

In addition, it is easily shown from (14) that ε4I −MT
2 GT PGM2 > 0. Thus, we obtain from

(5) and Lemma 1 (ii) that:
[
GĒ + GM2F2(t)N̄e

]T
P

[
GĒ + GM2F2(t)N̄e

]

≤ ĒT GT PGĒ + ĒT GT PGM2

(
ε4I −MT

2 GT PGM2

)−1
MT

2 GT PGĒ + ε4N̄
T
e N̄e (25)

where Ē =
[

E Ed

]
, N̄e =

[
Ne Ned

]
.

Hence, substituting (20)–(25) into (19) yields:

LV (x(t), t) ≤ [
x(t)T x(t− d)T

]
Θ

[
x(t)

x(t− d)

]
(26)

where

Θ =
(

Π1 PAd

AT
d P −Q + ε2N

T
adNad

)
+ ĒT GT PGĒ + ε4N̄

T
e N̄e

ĒT GT PGM2

(
ε4I −MT

2 GT PGM2

)−1
MT

2 GT PGĒ (27)

with

Π1 = P (A−BK) + (A−BK)T P + Q + ε−1
1 PM1M

T
1 P + ε1N

T
a Na

+ε−1
2 PM1M

T
1 P + ε−1

3 PBBT P + ε3ρ
2
BKT K.

On the other hand, it can be seen that LMI (14) implies:


Π2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
AT

d P Ω2 ∗ ∗ ∗ ∗ ∗ ∗
PGE PGEd −P ∗ ∗ ∗ ∗ ∗
MT

1 P 0 0 −ε1I ∗ ∗ ∗ ∗
MT

1 P 0 0 0 −ε2I ∗ ∗ ∗
BT P 0 0 0 0 −ε3I ∗ ∗
Neε4 Nedε4 0 0 0 0 −ε4I ∗

MT
2 GT PGE MT

2 GT PGEd 0 0 0 0 0 Ω3




< 0 (28)
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with Π2 = P (A−BK) + (A−BK)T P + Q + ε1N
T
a Na + ε3ρ

2
BKT K, Ω2 and Ω3 as in (16). By

Schur’s complement, the matrix inequality (28) implies that Θ < 0. This together with (26)
implies that for all

[
x(t)T x(t− d)T

]T 6= 0, we have:

LV (x(t), t) < 0. (29)

which means that the closed-loop stochastic system (11) with v(t) = 0 is robustly stochastically
asymptotically stable.

Next, we shall show that the stochastic system (Σc) satisfies:

||z(t)||E2 < γ||v(t)||2 (30)

for all nonzero v(t) ∈ L2[0,∞). To this end, we assume zero initial condition, that is, x(t) = 0
for t ∈ [−d, 0].

By Itô ’s formula, we have:

E{V (x(t), t} = E{
∫ t

0

LV (x(τ), τ)dτ}

where V (x(t), t) is the Lyapunov function candidate as in (17), and

LV (x(t), t) = x(t)T
[
P (A−BK) + (A−BK)T

P + Q
]
x(t) + 2x(t)T PAdx(t− d)

+2x(t)T P∆Ad(t)x(t− d) + 2x(t)T P (∆A(t)−∆B(t)K)x(t)
−2s(t)T (1 + δ(t))BT P (Ax(t) + Adx(t− d)) + 2x(t)T PD1v(t)

−2s(t)T (1 + δ(t))ρ(x, t)
s(t)
||s(t)|| − x(t− d)T Qx(t− d)

+ [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d) + D2v(t)]T GT

×PG [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− d) + D2v(t)] . (31)

Now, set

J(t) = E
{∫ t

0

[
z(τ)T z(τ)− γ2v(τ)T v(τ)

]
dτ

}
(32)

with t > 0. And then, it is easy to show that

J(t) = E
{∫ t

0

[
z(τ)T z(τ)− γ2v(τ)T v(τ) + LV (x(τ), τ)

]
dτ

}
− E {V (x(t), t)}

≤ E
{∫ t

0

[
z(τ)T z(τ)− γ2v(τ)T v(τ) + LV (x(τ), τ)

]
dτ

}
(33)

for all t > 0.
By similar lines as in expression (25), we have for ε4 > 0 :

[
GÊ + GM2F2(t)N̂e

]T

P
[
GÊ + GM2F2(t)N̂e

]

≤ ÊT GT PGÊ + ÊT GT PGM2

(
ε4I −MT

2 GT PGM2

)−1
MT

2 GT PGÊ + ε4N̂
T
e N̂e (34)

where Ê =
[

E Ed D2

]
, N̂e =

[
Ne Ned 0

]
.

Copyright c© 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 00:1–6
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Thus, considering (20)–(24) and (34), it follows from (33) that:

J(t) ≤ E
{∫ t

0

[
x(τ)T x(τ − d)T v(t)T

]
Ξ

[
x(τ)T x(τ − d)T v(t)T

]T
dτ

}
(35)

with

Ξ =




Ω1 PAd PD1

AT
d P Ω2 0

DT
1 P 0 −γ2I


 + ÊT GT PGÊ

+ÊT GT PGM2

(
ε4I −MT

2 GT PGM2

)−1
MT

2 GT PGÊ + ε4N̂
T
e N̂e

where Ω1 and Ω2 are given as in (15) and (16). By Schur’s complement, it can be shown that
Ξ < 0 is ensured by LMI (14). This together with (35) implies that J(t) < 0 for all t > 0.
Hence, we obtain (30) from (32). ¤
Remark 1. It is noted that the condition in Theorem 1 is delay-independent, which might be
conservative when the time delay is known and small. Hence, it would be appropriate to extend
the current study to delay-dependent issue in future research.

In the next section, we shall show that if the solution P of LMI (14) satisfies a special
equality constraint, the reachability of sliding surface in (7) can also be ensured by the SMC
law in (8)–(10) .

3.2. Reachability of sliding surface

It is known from [13] that the solution x(t) of the system (1) and (3) is given as:

x(t) = ϕ(0) +
∫ t

0

[(A + ∆A(τ))x(s) + (Ad + ∆Ad(τ))x(τ − d)

+(B + ∆B(τ))u(τ) + D1v(τ)] dτ

+
∫ t

0

G [(E + ∆E(τ))x(τ) + (Ed + ∆Ed(τ))x(τ − d) + D2v(τ)] dw(τ). (36)

Here, the last term in (36) is an Itô stochastic integral. Hence, the switching function s(t) in
(7) is well defined for the solution x(t) of the stochastic system (1)–(2), and can be expressed
as:

s(t) = BT Pϕ(0) + BT P

∫ t

0

[(A + ∆A(τ))x(τ) + (Ad + ∆Ad(τ))x(τ − d)

+(B + ∆B(τ))u(τ) + D1v(τ)] dτ

+BT P

∫ t

0

G [(E + ∆E(τ))x(τ) + (Ed + ∆Ed(τ))x(τ − d) + D2v(τ)] dw(τ).(37)

It is seen that if the solution P of LMI (14) further satisfies:

BT PG = 0 (38)

we have:

s(t) = BT Pϕ(0) + BT P

∫ t

0

[(A + ∆A(τ))x(τ) + (Ad + ∆Ad(τ))x(τ − d)

+(B + ∆B(τ))u(τ) + D1v(τ)] dτ. (39)

Copyright c© 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 00:1–6
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This means that s(t) varies finitely. That is, it is rational to take the time derivation of s(t)
under the condition that BT PG = 0. Hence, we have:

ṡ(t) = BT P [(A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t− d) + (B + ∆B(t))u(t) + D1v(t)] . (40)

And then, the reachability of the specified sliding surface s(t) = 0 can be obtained in the
following theorem.

Theorem 2. Consider the uncertain stochastic time-delay systems (1)–(2) with sliding surface
as in (7) where P > 0, Q > 0, and scalars εi > 0 (i = 1, 2, 3, 4) satisfying LMI (14) and
equality constraint (38). Then, the SMC law (8)–(10) will guarantee that the sliding surface
(7) is attained (with probability 1) for all v(t) ∈ L2[0,∞) ∩ L∞[0,∞).
Proof : To analyze the reachability of sliding surface s(t) = 0, we choose the Lyapunov function
candidate as:

V (t) =
1
2
s(t)T

(
BT PB

)−1
s(t).

Utilizing (8), (9) and (40) yields:

V̇ (t) = s(t)T
(
BT PB

)−1
BT P ((A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t− d))

+s(t)T (I + δ(t))u(t) + sT (t)
(
BT PB

)−1
BT PD1v(t)

≤ sT (t)
(
BT PB

)−1
BT P (A−BK + ∆A(t))x(t)− sT (t)δ(t)Kx(t)

+sT (t)
(
BT PB

)−1
BT P (Ad + ∆Ad(t))x(t− d)

−s(t)T (I + δ(t))BT P (Ax(t) + Adx(t− d))

−sT (t)
(
BT PB

)−1
BT PD1v(t)− s(t)T (I + δ(t))ρ(x, t)

s(t)
||s(t)|| . (41)

By (23), we have:

V̇ (t) ≤ ||s(t)|| (||Φ(A−BK)||+ ||ΦM1||||Na||+ ρB ||K||) ||x(t)||
+||s(t)|| (||ΦAd||+ ||ΦM1||||Nad||) ||x(t− d)||
+||s(t)|| (1 + ρB)

(||BT PA||||x(t)||+ ||BT PAd||||x(t− d)||)

+||s(t)||||ΦD1||||v(t)|| − 1
2
ρ(x, t)(1− ρ2

B)||s(t)||. (42)

Hence, it follows from (10) and (42) that:

V̇ (t) ≤ −µ||s(t)|| < 0 for ||s(t)|| 6= 0. (43)

This means that the trajectories of the uncertain stochastic system (1) and (3) will be
globally driven onto (with probability 1) the specified switching surface s(t) = 0 for all
v(t) ∈ L2[0,∞) ∩ L∞[0,∞). ¤
Remark 2. It is shown from Theorems 1 and 2 that if there exist matrices P > 0, Q > 0,
and scalars εi > 0 (i = 1, 2, 3, 4) satisfying LMI (14) and equality constraint (38), the SMC
law (8)–(10) can guarantee that the state trajectories of uncertain stochastic systems (1)–(3)
are driven onto (with probability 1) the sliding surface s(t) = 0 in finite time, and then,
asymptotically tend to zero (in mean-square sense) with disturbance attenuation γ.
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Remark 3. According to Remark 2, the design of the desired SMC system is presented as the
feasibility problem of linear matrix inequality (14) with equality constraint (38). In recent
years, there are a number of numerical approaches proposed to solve the problem of LMIs
with a nonconvex constraint, among which the LMI-based approaches are promising, such as,
the alternating projections method [14], the min-max algorithm [15], XY-centering algorithm
[16], and cone complementarity linearization (CCL) algorithm [17] (also referred to as product
reduction (PR) algorithm in [18]. The advantage of LMI-based algorithms is that in each
iteration only a set of LMIs is needed to be solved. which can be easily implemented with
polynomial running time.

Consider the linear equality condition BT PG = 0, where P > 0 satisfies LMI (14), which
can be equivalently converted to:

tr
[(

BT PG
)T

BT PG
]

= 0.

Introduce the condition: (
BT PG

)T
BT PG ≤ βI, (44)

by Schur’s complement, the matrix inequality (44) is equivalent to:( −βI GT PB
BT PG −I

)
≤ 0. (45)

Hence, the designs of both sliding mode controller and sliding surface are now changed to a
problem of finding a global solution of the following minimization problem:

minβ subject to (14),and (45). (46)

The problem is a minimization problem involving linear objective and LMI constraints, which
can be solved by means of LMI toolbox in Matlab. It admits a global infinum. If this infinum
equals zero, the solutions will satisfy the LMI (14) and the equality BT PG = 0. Thus, the
sliding mode control problem is solvable.

4. Simulation Example

Consider the uncertain stochastic state-delay system (1)–(3) with

A =



−1 0.8 −2.4
3.8 0.1 −0.8
0.1 2.5 −1


 , Ad =




0.2 0.1 0.1
−0.3 0.1 0.2

0.2 0.3 −0.3


 , B =




1 2.2
2.7 3.5

2 −0.2




E =
[

0.3 0.1 0.1
0.1 0.3 0.2

]
, Ed =

[
0.1 0.1 0.2
0.1 0.2 0.1

]
, δ(t) =

[
0.5 0.6

−0.4 0.2

]
,

G =




−0.2 −0.1
0.35 0.2

−0.15 −0.1


 , Ne =



−0.1 0.2 0.2

0.4 0.1 −0.2
0.3 −0.4 0.1


 , Ned =



−0.2 0.1 0.4

0.1 0.2 −0.1
0.3 0.1 0.2


 ,

M1 =
[

0.2 0.2 0.1
]T

, M2 =
[

0.2 0.1
]T

, Na =
[

0.2 0.1 0.1
]
,

Nad =
[

0.1 0.3 0.1
]
, D1 =

[
0.2 0.1 0.3

]T , D2 =
[

0.3 0.5
]T

, v(t) = 1/(1 + t2)

C =
[

0.2 0.1 0.1
0.3 0.1 0.2

]
, F1(t) = 0.2 sin(t), F2(t) =

[
0.3 sin(t) 0.3 cos(t) 0.2 sin(t)

]
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It is easily obtained that ρB = 0.7908 with ||δ(t)|| ≤ ρB . It is assumed that the time delay
d = 2, and the initial state x(t) =

[
0 1 −3

]T
, t ∈ [−2, 0]. The objective is to design

a sliding mode controller such that the state trajectories can be driven (with probability 1)
onto the switching surface, and the sliding motion in the specified switching surface is robustly
stochastically stable with disturbance attenuation γ .

For γ = 0.2, and the matrix K=
[

1.5 4.3 4 ; 3 3.5 −1.2
]
, solving LMIs (14) and

(38) yields:

P =




0.0594 −0.0208 0.0144
−0.0208 0.0244 −0.0020

0.0144 −0.0020 0.0204


 , Q =




0.0664 −0.0574 0.0165
−0.0574 0.0765 −0.0083

0.0165 −0.0083 0.0116


 ,

ε1 = 0.0321, ε2 = 0.0250, ε3 = 0.0153, ε4 = 0.0033,

and β ≈ 2.3264× 10−7 (hence the linear constraint BT PG = 0 is satisfied). Hence, the sliding
surface in (7) can be obtained as:

s(t) =
[

0.0323 0.0411 0.0498
0.0552 0.0403 0.0205

]
x(t) = 0

and the desired SMC law is obtained as in (8)–(10) with

ρ(x, t) = 41.4210||x(t)||+ 1.2145||x(t− d)||+ 0.108||s(t)||+ 0.5.

In the work, the simulations are undergone by using the discretization approach as in [5, 19]
with initial parameters: the simulation time t ∈ [0, T ] with T = 5, the variance of a normal
distribution is δt = T/N with N = 215, step size ∆t = R ·δt with R = 2, the number of
discretized Brownian paths M = 10.

The simulation results are given in Figs. 1–6. Among them, Figs. 1–3 show the simulation
results along an individual discretized Brownian path. Figs. 4–6 show, respectively, the
simulation results on x(t) along 10 individual paths (dotted lines) and the average over 10 paths
(solid line). It is seen from simulation results that the present method effectively attenuates
the effect of both parameter uncertainties and external disturbance.

5. Conclusions

In this work, a novel robust SMC method, i.e., integrating SMC with H∞ technique, has been
provided for uncertain stochastic systems with unmatched external disturbances, such that
the sliding motion is robustly stochastic stability with a prescribed H∞ performance level,
irrespective of parameter uncertainties and unmatched external disturbance. However, it is
also seen that the condition SG = 0 is stronger and, to some extent, will limits the application
of the present method. Hence, we also hope that a more effective method can be found to
overcome the above difficulty in future research.
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