
Parameters identification of unknown delayed genetic regulatory
networks by a switching particle swarm optimization algorithmI

Yang Tang∗,a,b, Zidong Wanga,c, Jian-an Fanga

aCollege of Information Science and Technology, Donghua University, Shanghai 201620, P.R. China.
bInstitute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, P.R. China.

cDepartment of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH,
United Kingdom.

Abstract

This paper presents a novel particle swarm optimization (PSO) algorithm based on Markov
chains and competitive penalized method. Such an algorithm is developed to solve global
optimization problems with applications in identifying unknown parameters of a class of
genetic regulatory networks (GRNs). By using a evolutionary factor, a new switching PSO
(SPSO) algorithm is first proposed and analyzed, where the velocity updating equation
jumps from one mode to another according to a Markov chain, and acceleration coefficients
are dependent on mode switching. Furthermore, a leader competitive penalized multi-
learning approach (LCPMLA) is introduced to improve the global search ability and refine
the convergent solutions. The LCPMLA can automatically choose search strategy using
a learning and penalizing mechanism. The presented SPSO algorithm is compared with
some well-known PSO algorithms in the experiments. It is shown that the SPSO algorithm
has faster local convergence speed, higher accuracy and algorithm reliability, resulting in
better balance between the global and local searching of the algorithm, and thus generating
good performance. Finally, we utilize the presented SPSO algorithm to identify not only
the unknown parameters but also the coupling topology and time-delay of a class of GRNs.

Key words: Genetic regulatory networks, Markov chain, switching particle swarm
optimization (SPSO), parameter identification, time-delay

1. Introduction

Genetic regulatory networks (GRNs) have been extensively studied in the biological
and biomedical sciences, and a large amount of results have been published over the past
decade [1-17]. Recently, GRNs with time-delays in the form of differential equations have
received particular research attention [2, 8-17]. It has been revealed that time-delays play

IThis research was partially supported by the National Natural Science Foundation of PR China (Grant
No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007),
the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Engineering and
Physical Sciences Research Council EPSRC of the U.K. under Grant No. GR/S27658/01, an International
Joint Project sponsored by the Royal Society of the U.K., and the Alexander von Humboldt Foundation
of Germany.

∗Corresponding author.
Email addresses: tangtany@gmail.com (Yang Tang), Zidong.Wang@brunel.ac.uk (Zidong Wang),

jafang@dhu.edu.cn (Jian-an Fang)

Preprint submitted to ... July 5, 2009

a very important role in dynamical modelling of genetic networks, and mathematical mod-
els without introducing the delay effects may even provide wrong predictions of the mRNA
and protein concentrations [5, 6, 8]. On the other hand, when modeling complex networks
[15, 16] including GRNs, the stochastic disturbances in real-world gene expression data is
of great significance. The stochastic noise arises in gene expression in one of two ways,
i.e., internal noise and external noise [4, 10, 12, 14]. Moreover, it is also shown that many
biological networks are complex networks with small-world and scale-free properties [7]. It
is remarkable that the filtering and stability analysis issues have been addressed in [8-17]
for stochastic and/or delayed GRNs delayed GRNs have been addressed [8-17].

So far, GRNs have not yet been completely understood as how the genes are expressed
in the right time and right place with the right amount. For the aim of identifying genes
of interest and designing drugs, biologists are more interested in knowing the steady-state
values of the actual network states, namely, the concentrations of the mRNA and protein.
It is generally hard for biologists to obtain all the information due to various technical diffi-
culties sometimes. Thus, the study of identifying the biological systems from the available
data has comes in place. In [12], the authors dealt with filtering problem for estimating
the states of stochastic delayed GRNs. In [17], an adaptive filtering problem of identifying
unknown parameters of GRN was investigated. In [18, 19], PSO and GA are proposed to
estimate the unknown parameters. Unfortunately, the identification of unknown delay has
not been tackled yet due primarily to the mathematical difficulty, despite the fact that
the time-delay plays a very important role in modelling a GRN as mentioned above.

In search of an algorithm candidate for identifying both the parameters and time-delays
of GRNs, the particle swarm optimization (PSO) algorithm emerges as a competent one.
PSO is a population-based heuristic global optimization technique, first introduced by
Kennedy and Eberhart [20] and referred to as a swarm-intelligence technique. The PSO
algorithm is inspired by the social behavior of animals such as bird flocking and fish
schooling, etc. In this algorithm, the population is called a swarm, and the trajectory of
each particle in the search space is adjusted by dynamically altering its velocity, according
to its own flying experience and swarm experience in the search space. During the last
decade, PSO algorithm has gained much attention and wide applications in different fields
due to its effectiveness in performing difficult optimization issues, as well as simplicity of
implementation and ability to fast converge to a reasonably good solution [20-34]. Un-
fortunately, PSO suffers from the premature convergence problem, which is particularly
true in complex problems since the interacted information among particles in PSO is too
simple to encourage a global search. Many efforts have been made to avoid the premature
convergence [21-34] and, in this paper, we would like to try a novel approach to getting rid
of the premature convergence problem - the Markovian switching and leader competitive
penalized multi-learning approach.

Markov chain is a very useful and important tool in economic, decision, control sys-
tem, physics, chemicals, etc [35, 36]. At each step, the Markov process may change its
state from the current one to another, or remain in the same state, according to a certain
probability distribution. The changes of state are called transitions, and the probabilities
associated with various state-changes are called transition probabilities. As we know, the
PSO may be stuck in local optimum since the diversity of PSO has declined quickly in

2

the prophase of the search. Could we establish a Markov jumping (switching) velocity
updating equation that considers quick convergence to the global optimum and also keep
the swarm global search simultaneously by taking advantage of the current search infor-
mation? Furthermore, a LCPMLA is introduced in this paper to improve the convergence
speed and solution accuracy by learning and penalizing method designed in this paper. A
series of experiments are performed on 8 benchmarks to validate the effectiveness of SPSO,
compared with various PSOs. Finally, the proposed SPSO is used to identify the unknown
parameters of delayed GRNs including the unknown coupling structure and time-delays.

The organization of this paper is listed as follows. In Section 2, the PSO and its variants
are reviewed briefly. In Section 3, a Markovian switching approach and a LCPMLA are
proposed in detail. Section 4 experimentally compares the proposed SPSO with some well-
known existing PSOs on a set of benchmark optimizing problem. Analysis of parameters
switching and LCPMLA is conducted in Section 5. In Section 6, parameter identification
problem of GRNs including the topology and time-delays has been addressed using the
proposed SPSO. In the end, conclusion remarks are provided in Section 7.

2. PSO algorithms

2.1. Traditional PSO algorithms

PSO is a population-based optimization approach. Each particle acts as a possible
solution to the optimization task at hand. During each iteration, the accelerating direction
of one particle determined by its own experience and the social cooperation in the swarm.
This strategy means that if a particle discovers a promising new solution, all the other
particles will move closer to it, exploring the region more thoroughly in the process.

In PSO, a swarm consists of S particles moving around in a D-dimensional search space.
The position of the ith particle is denoted by a vector, xi(k) = (xi1(k), xi2(k), · · · , xiD(k)),
where xin(k) ∈ [xmin,n, xmax,n] (1 ≤ n ≤ D) with xmin,n and xmax,n being lower and
upper bounds for the nth dimension, respectively. During the search process, the particle
successively adjusts its position toward the global optimum according to the two factors:
the best position encountered by itself (pbest) denoted as pi = (pi1, pi2, · · · , piD) and the
best position in the whole swarm (gbest) denoted as pg = (pg1, pg2, · · · , pgD). The velocity
of the ith particle at the kth iteration is represented by vi(k) = (vi1(k), vi2(k), · · · , viD(k)),
and is limited to a maximum velocity vi,max = (vi max,1, vi max,2, · · · , vi max,D). In this
paper, the maximum velocity Vmax is set to the 20% of the search range [31]. r1,j and
r2,j are uniform random numbers samples from U(0, 1). The parameters c1 and c2 are
called acceleration coefficients, namely, cognitive and social parameters, respectively. The
velocity and position of the particle at next iteration are updated according to the following
equations:

vi(k + 1) = w(k)vi(k) + c1r1,j(k)(pi(k)− xi(k)) + c2r2,j(k)(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1), (1)

where w is the so-called inertia weight.

3

2.2. Some Variants of PSO

PSO has attracted much attention since its simple concept and effectiveness. Many
researchers have focused on improving its search performance using various methods.

One of the variants is that the inertia weight w was introduced [22, 23]. It is shown
that a larger inertia weight tends to facilitate the global exploration and a smaller inertia
weight achieves the local exploration to fine-tune the current search area [22]. In [22, 23],
a linearly decreased inertia weight w over time (PSO-LDIW) is proposed, where w is given
by the following equation:

w = (w1 − w2)× maxiter− iter
maxiter

+ w2, (2)

where w1 and w2 are starting and final values of inertia weight, respectively; iter is the
current iteration number and maxiter is the maximum number of the iteration. It is
generally taken that starting value w1 = 0.9 and final value w2 = 0.4.

The constriction factor has been introduced into PSO for analyzing the convergence
in [21]. It has been suggested that a constriction factor may help to ensure convergence.
w = 0.729 and c1 = c2 = 1.49 are recommended in their work.

On the other hand, Ratnaweera et al. [24] have introduced PSO with time-varying
acceleration coefficients (PSO-TVAC). The improvement has the same motivation and the
similar techniques as the PSO-LDIW, in which, the cognitive coefficient c1 is decreased
linearly and the social coefficient c2 is increased linearly over time as the follows:

c1 = (c1f − c1i)× maxiter− iter
maxiter

+ c1i,

c2 = (c2f − c2i)× maxiter− iter
maxiter

+ c2i, (3)

where c1i and c2i are the initial values of the acceleration coefficients c1 and c2; c1f and
c2f are the final values of the acceleration coefficient c1 and c2, respectively. Usually,
c1i = 2.5, c2i = 0.5, c1f = 0.5 and c2f = 2.5.

In addition, designing different types of topologies for improving the search perfor-
mance of PSO is also an active research. In [27], a fully informed particle swarm (FIPS)
algorithm was proposed, in which the information of the entire neighborhood is em-
ployed to guide the particles. Recently, some evolutionary operators such as selection
[32], crossover [33] and mutation [34] have been introduced to the PSO. On the other
hand, a comprehensive-learning PSO (CLPSO) [28] was presented. The CLPSO guide
the particle using different neighbor’s history best position to update its flying on dif-
ferent dimensions for improved performance in multimodal applications. More recently,
an adaptive PSO was proposed in [25]. An evolutionary factor was introduced to iden-
tify four defined evolutionary states, including exploration, exploitation, convergence, and
jumping out in each generation, which enables the automatic control of inertia weight and
acceleration coefficients.

3. A novel switching PSO

In this section, a novel switching PSO is introduced for balancing the local search and
global search, which can improve the search performance efficiently. A velocity updated

4

equation with Markovian jumping parameters is proposed. Then, a leader competitive
penalized multi-learning approach (LCPMLA) is presented to enhance the global and
local search ability using an automatical control method.

3.1. A Switching Velocity Updated Equation

The population distribution properties described by evolutionary factor was introduced
in [25]. This method can well depict the distance between the global best particle and
other particles in the swarm. It was shown that the evolutionary factor can take the
population distribution information into account. Here, we use the evolutionary factor to
define four states.

The mean distance between the particles in the swarm can be written as follows

di =
1
S

S∑

j=1

√√√√
D∑

k=1

(xk
i − xk

j)2, (4)

where S and D are the the populations size and the dimensions, respectively.
dg stands for the globally best particle among di. dmax and dmin represent the maximum

and minimum distances in di, respectively. Thus, evolution factor Ef is defined by [25]

Ef =
dg − dmin

dmax − dmin
. (5)

It has been revealed that the evolution factor Ef can describe the mean distance from
the globally best particle to other particles, which would be minimal in the convergence
state. In contrast, the mean distance would be maximal in the jumping-out state since
the globally best particle tends to be away from the swarm. In [25], four sets S1, S2, S3

and S4 have been defined using Ef , which represent the states of convergence, exploration,
exploitation and jumping out, respectively. Since the state transition would be nondeter-
ministic, a fuzzy classification method is used to implement the classification. However,
the classification method has three shortcomings:

(1) At each generation, the acceleration coefficients should be calculated.
(2) If the current global best particle is a local optimum away from swarm, the other

particles will fly to the particle with a high speed. This will lead to the case that the
swarm is stagnated in local optimum, which will reduce the convergence speed.

(3) The classification method is a little complicated to implement.

In the following, we introduce a mode-dependent velocity updating equation with
Markovian switching parameters with the hope to overcome the above shortcomings and
further improve the search abilities. For this purpose, let us introduce the Markov chain
briefly.

Let ξ(k)(k ≥ 0) be a Markov chain taking values in a finite state space S = {1, 2, · · · , N}
with probability transition matrix Π = (πij)N×N given by

P = {ξ(k + 1) = j|ξ(k) = i} = πij , i, j = 1, 2, · · · , N, (6)

where πij ≥ 0(i, j ∈ S) is the transition rate from i to j and
∑N

j=1 πij = 1. Here, ξ(k) = 1,
ξ(k) = 2, ξ(k) = 3 and ξ(k) = 4 stand for the convergence, exploitation, explore and

5

jumping out state, respectively.
Consider the following velocity and position updating equations with Markovian jump-

ing parameters:

vi(k + 1) = w(k)vi(k) + c1(ξ(k))r1,j(k)(pi(k)− xi(k)) + c2(ξ(k))r2,j(k)(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1), (7)

where c1(ξ(k)) and c2(ξ(k)) are the acceleration coefficients. All of them are mode-
dependent on a Markov chain.

The formulation of classification and probability transition matrix are defined as fol-
lows

ξ(k) =

1, 0 ≤ Ef < 0.25,

2, 0.25 ≤ Ef < 0.5,

3, 0.5 ≤ Ef < 0.75,

4, 0.75 ≤ Ef ≤ 1,

(8)

Π =

ϕ 1− ϕ 0 0
1−ϕ

2 ϕ 1−ϕ
2 0

0 1−ϕ
2 ϕ 1−ϕ

2

0 0 1− ϕ ϕ

 , (9)

respectively. It is easy to see that the probability ϕ and 1 − ϕ are used to control the
state transition. At each generation, the Markov process may change its state from the
current state to another, or remain in the same state, according to a certain probability
distribution. This mechanism can predict the next state easily. Meanwhile, it can also
describe the fuzzy transition between two near states, which can enhance the search di-
versity. It is also worth mentioning that the probability ϕ plays an important role in the
evolution process. In this paper, ϕ is fixed as 0.9 in the evolutionary process for keeping
the classification accuracy as well as the search diversity.

3.2. Control of the Inertia Weight

The inertia weight w is employed to balance the global and local search abilities. The
evolutionary factor Ef shares some properties with the inertia weight since Ef is relatively
large in jumping out state and is relatively small in the convergence state. Thus, the
following mapping w(Ef) is defined:

w(Ef) = 0.5Ef + 0.4 ∈ [0.4, 0.9], ∀Ef [0, 1]. (10)

Note that inertia weight w is monotonic with Ef which makes w adapt to the search
environment. In jumping-out state and exploration state, large w will lead to a global
search. In contrast, small w will give rise to local search. In this paper, the initial value
of w is set to 0.9.

6

3.3. The Selection of the Acceleration Coefficients

In this paper, the initial value of the acceleration coefficients c1(ξ(0)) and c2(ξ(0))
are both set to 2 and automatically controlled according to the evolutionary state. The
techniques are developed as follows.

(1)In a jumping-out state, the globally best particle is jumping out of local optimum
and flying to a better optimum. The other particle should fly to the globally best one
as quick as possible. A large c2 and a small c1 helps to achieve the goal. In this sate,
c1(4) = 1.8 and c2(4) = 2.2 are set to fly to the globally best particle rapidly.

(2) In an exploration state, it is of great importance to explore the optima. There-
fore, a large c1 and a relatively small c2 will let the particle tend to explore individually.
c1(3) = 2.2 and c2(3) = 1.8 are set to obtain this goal in this state.

(3) The exploitation state is likely to occur after an exploration state and before a
convergence state. Hence, a relatively large c1 and a relatively small c2 will let the parti-
cles use local information while search the potential region. In this state, c1(2) = 2.1 and
c2(2) = 1.9 are set to maintain the balance between the global search and local search
capabilities.

(4) In the convergence state, the swarm clusters compactly and seems to find the glob-
ally optimal field. The particles should follow the current globally best particle with a
large c2 and a small c1. However, as pointed in [25], this mechanism will cause the pre-
mature convergence. In order to avoid this case, we set c1(1) = c2(1) = 2 to maintain the
search diversity of the swarm and get to the current global area simultaneously.

Different from the techniques proposed in [25], our method is simpler to implement in
that we do not calculate the acceleration coefficients at each generation and the classifica-
tion method is simple, and also can work well in the following experiments. On the other
hand, the state jumping is according to the current state and the probability matrix. Note
that the current state has a large probability to maintain its current state and has a small
probability to switch to another state for avoiding the case that flying to local optima too
fast, which ensures that keep the search diversity and fast convergence speed at the same
time. The entire process of the Markovian jumping updated equation is illustrated in Fig.
1.

3.4. Leader competitive penalized multi-learning approach

In this subsection, a leader multi-learning penalized approach (LCPMLA) is developed
to help the globally best particle to jump out of the local optimal areas and accelerate
the convergence speed. This approach is embedded and controlled automatically in the
evolutionary process, which is governed by activation probability variables. In [25], an elite
learning method is designed to help the particle jump out of the local optima when the
state is detected to be in a convergence state. This technique has three major limitations:

(1) The method is only embedded in the convergence state. However, if the globally
best particle is stuck in local optimal area in other states, this will lead to the case that
the particles fly to local optima, which is likely to cause premature problems. Thus, in
other three states, the globally best particle still needs momentum to improve itself.

(2) Note that the elite learning method is designed for global search in [25], where the
convergence speed is not ideal. We can also use local search learning technique to promote

7

Calculate the mean distance of each particle according to (4)Calculate the evolutionary factor and current state according to (5) and (8)Use the current state and probability transition matrix (9) to predict the state in the next generationGet the acceleration coefficients Compute the inertia weight according to (10) Update the velocity according to the (7) with Markovian jumping parameters
Figure 1: Flowchart of the parameter switching pro-

cess.

the globally best particle to fly to the optimum more quickly.
(3) If the PSO is used to test the convergence speed, for example, the sphere function,

the swarm is usually identified in convergence state in most generations. The elite learning
approach may consume much computation time and fitness evaluations, which fails to find
global optimum and reduce the convergence speed.

In the following, a LCPMLA using a non-homogeneous Markov chain is developed to
improve the global search and local search capabilities at the same time.

Let γ(k)(k ≥ 0) be a non-homogeneous Markov chain taking values in a finite state
space S = {1, 2, · · · , N} with probability transition matrix Γ(k) = (α(k)

ij)N×N given by

P = {γ(k + 1) = j|γ(k) = i} = α
(k)
ij , i, j = 1, 2, · · · , N, (11)

where α
(k)
ij ≥ 0(i, j ∈ S) is the transition rate from i to j and

∑N
j=1 α

(k)
ij = 1. Here, it is

worth mentioning that the probability transition matrix Γ(k) is time-varying in the search
process.

The LCPMLA randomly select one dimension of globally best particle, which is repre-
sented by Pj for the jth dimension. Only one dimension is chosen in that the local optima
are likely to have better solution in one dimension. Note that every dimension of the
globally best particle has the same probability to be chosen. The leader multi-learning is
performed by three search strategies as follows

Pj = Pj + ((δ1,j − δ2,j) ∗ r1 − δ1,j) ∗R1, (12)

Pj = Pj + ((λ1,j − λ2,j) ∗ r2 − λ1,j) ∗R2, (13)

8

Pj = Pj + ((η1 − η2) ∗ r3 − η1) ∗R3, (14)

where r1, r2 and r3 are uniform random numbers sample from U(0, 1). δ1,j and δ2,j is the
same as upper and lower bounds of the problem, i.e., xmax,j and xmin,j . λ1,j and λ2,j are
the upper and lower bounds of the each particle in the swarm in jth dimension at each
generation. η1 and η2 are the maximal and minimal value of all dimensions of the globally
best particle at each generation at each generation. R1, R2 and R3 are the search radii
of the learning method which are governed by a probability matrix Γ(k). It is easy to see
that, (12) is used to increase global search ability. At the same time, (13) and (14) are
exploited to improve local search ability of the swarm.

It is worth pointing out that (14) together with (13) are both necessary to promote
the local search ability. The reason is listed as follows. The (13) is aim at updating jth
dimension of the optimization problem. On the other hand, when we test the benchmarks,
it has been found that the particles with bad fitness in the swarm are much further away
from the global optimum than the globally best particle. Every dimension of the globally
best particle is close to the corresponding dimension of optimum. If we only use (13), the
search radius may be large leading to the global search instead of local search. It performs
inefficiently to fly to the optimum since (13) will provide a much larger search scope than
(14). The globally best particle tends to approach the optimum more accurately using
both (13) and (14).

For choosing the R1, R2 and R3, consider the following probability transition matrix

Γ(k) =

(
α(k) 1− α(k)

α(k) 1− α(k)

)
, (15)

where α(k) is a time-varying probability variable to select the radius. Since the three radii
are chosen by the same probability transition matrix, thus we only take the selection of R1

as the example. γ(k) = 1 denotes that the R1 is taken as ρ1 = 1. And γ(k) = 2 indicates
that the R1 is chosen as ρ2 = 0.1. The pseudo code of this technique can be summarized
as follows:

If (γ(k)=1)
R1 = 1;
else

R1 = 0.1.
It is suggested that α(k) be linearly decreased along the generation number, which is

given by

α(k) = (α1 − α2)× maxiter− iter
maxiter

+ α2, (16)

where α1 and α2 are the upper and lower bounds of α(k). We set α1 = 1 and α2 = 0 in this
paper, which indicates that the ρ1 occurs frequently and ρ2 seldom happens in the early
stage. Conversely, in the latter stage, the ρ1 seldom occurs and ρ2 happens frequently,
which refine the solution efficiently. This mechanism can make the swarm benefit the
global search as well as local search. In LCPMLA, the new position will be accepted if
the fitness is better than the current globally best position. Otherwise, the new position

9

is abandoned.
On the other hand, in the early phase, the LCPMLA is activated with a relatively

low probability since the search by velocity updating equation is efficient at the begin-
ning. However, in the latter stage, the swarm always faces up to the situation that either
converges to the global optimum or jump out of the local optima. Hence, the LCPMLA
should be activated with a high probability. One problem should also be taken into ac-
count is that three search methods (12)-(14) are not always useful in the search process.
For example, when using PSO optimizing the sphere function, the global search learn-
ing (12) should be seldom activated since the sphere function is usually used to test the
convergence speed of the algorithms. However, the local search learning (13) and (14)
should be activated more frequently. Hence, based on the above discussion, a competitive
penalized learning method is proposed here.

Define Q, Q1, Q2 and Q3 as LCPMLA activation probability variable, global search
learning (12) activation probability variable, local search learning (13) activation proba-
bility variable, local search learning (14) activation probability variable, respectively. Q,
Q1, Q2 and Q3 belong to the range [0, 1]. We make use of Q to control the LCPMLA
activating or not. Meanwhile, Q1, Q2 and Q3 are used to control the activations of (12),
(13) and (14), respectively. Q is updated as follows:

Q =

Q + ε, if one of the search strategy i

improve the globally best particle successfully,

Q, if the search strategy i

fails to improve the globally best particle,

(17)

where ε is the learning rate, which is fixed as ε = 0.05 in this paper.
The activation probability variables Q1, Q2 and Q3 are updated as follows:

Qi =

Qi + β, if the search strategy i

improve the globally best particle successfully,

Qi − σ, if the search strategy i

fails to improve the globally best particle,

(18)

where i = 1, 2, 3 denotes the search strategy (12), (13) and (14), respectively. β is the
learning rate and σ is a penalizing rate. In practice, β À σ at each iteration step. In this
paper, we fix the β = 0.5 and σ = 0.0005.

Note that we do not add the penalizing rate in (17) since too variables are not easy
to implement and control. Hence, we only use σ to penalize three search strategies. By
using leader competitive penalized approach, the probability variables Q1, Q2 and Q3

are automatically to adapt to appropriate values by gradually increase the probability
variables or reduce them. In this paper, the controlling activation probability variables Q,
Q1, Q2 and Q3 are initialized to 0.5 and adaptively controlled according to the learning
rate and penalizing rate.

Another important point is that the Q1, Q2 and Q3 should be set the upper and lower
bounds. If the magnitude of the updated Qi(i = 1, 2, 3) exceeds 1, then Qi is assigned the
value 1. Similarly, if Qi decreases under 0.01, then Qi is set to the value 0.01. This value
can reduce inefficient search strategy as well as keep the search strategy i reoccurring with
a small probability. The LCPMLA process is depicted in Fig.2.

10

Finish

1 2 3

(), (), (1),

(1), (1), (1)

gP p k d random D r random

r random r random r random

= = =

= = =

i iif r Q<

Choose and Updatei jR P

()ie fitness evaluation P=

()iif e fitness P<

Update and according

to (17), (18) and ()
i

g

Q Q

p k P=

1i i= +

if r Q<

1i =

3i ≤

no

no

no

Figure 2: Flowchart of LCPMLA.

4. Experiments

In the experiments, some well-known benchmarks [37, 38] have been used to test the
performances of SPSO with Markovian switching parameters. The experiments are carried
out to validate the effectiveness of SPSO and compare the SPSO with other well-known
PSOs to show its superiority.

4.1. Experiments setup
Eight benchmark functions are listed in Table I and (19)-(26) are used to test the

performance of PSOs. All the functions are tested on 30 dimensions. The population size
of all the PSOs are set to 20. f1(x), f2(x) and f3(x) are unimodal optimization problem.
f1(x) and f2(x) are usually used to test the convergence rates of PSOs. f3(x) can be
treated as a multimodal problem since it has a narrow valley from the perceived local
optima to the global optimum. f4(x) to f8(x) are multimodal problems which are difficult
to optimize.

Sphere : f1(x) =
D∑

i=1

x2
i , (19)

11

Finish

Initialize , , 0.9,

0, 0.9, (0) 1
i iX V

k w

π
ξ

=
= = =

Update the velocity and

position

Estimate state and obtain parameters as shown in Fig.1.

Perform LCPMLA as depicted in Fig.2.

1i =

i S≤no

Evaluate particle

Update () and ()i g

i

p k p k

1i i= +

1k k= +

no

yes
maxk K<

Figure 3: Flowchart of the SPSO algorithm.

Schwefel’s P2.22 : f2(x) =
D∑

i=1

|xi|+
D∏

i=1

|xi|, (20)

Rosenbrock : f3(x) =
D−1∑

i=1

(100(xi+1 − xi)2 + (xi − 1)2), (21)

Rastrigin : f4(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10), (22)

Noncontinuous Rastrigin : f5(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10),

where yi =

{
xi, |xi| < 0.5,
round(2xi)

2 , |xi| ≥ 0.5,
(23)

Ackley : f6(x) = −20e
−0.2

√
1
D

∑D
i=1 x2

i − e
1
D

∑D
i=1 cos 2πxi + 20 + e, (24)

Griewank : f7(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos(
xi√

i
) + 1, (25)

12

Generalized Penalized :

f8(x) =
π

D
{10 sin2(πy1) +

D−1∑

i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
D∑

i=1

u(xi, 10, 100, 4),

where yi = (1 +
1
4
(xi + 1)), u(xi, a, k, m) =

k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a.

(26)

Table 1: Benchmark configurations

Functions Name Dimension Search Space Minimum Threshold
f1(x) Sphere 30 [−100, 100]D 0 0.01
f2(x) Schwelfel’s P2.22 30 [−10, 10]D 0 0.01
f3(x) Rosenbrock 30 [−10, 10]D 0 100
f4(x) Rastrigin 30 [−5.12, 5.12]D 0 50
f5(x) Noncontinuous Rastrigin 30 [−5.12, 5.12]D 0 50
f6(x) Ackley 30 [−32, 32] 0 0.01
f7(x) Griewank 30 [−600, 600]D 0 0.01
f8(x) Generalized Penalized 30 [−50, 50]D 0 0.01

Experiments are conducted to compare six PSO algorithms including the proposed
SPSO on the 8 test problems with 30 dimensions. Five existing PSO algorithms are listed
in detail in Table 2. The first PSO is PSO-LDIW [22, 23] with linearly decreasing inertia
weight. PSO-TVAC [24] is a PSO with acceleration parameters and incorporating a self-
organizing method, which is considered to be the second PSO. PSO-CK with constriction
factor is proposed in [21]. CLPSO offers a comprehensive-learning strategy, which is used
to yield better performance for multimodal functions [28]. APSO is a adaptive PSO
that can adjust the acceleration coefficients and inertia weight automatically [25]. The
parameters for these PSOs are provided in Table 2.

Table 2: PSO algorithms for comparison

Algorithm Parameters Reference
PSO-LDIW w : 0.9− 0.4, c1 = c2 = 2 [23]
PSO-TVAC w : 0.9− 0.4, c1 : 2.5− 0.5, c2 : 0.5− 2.5 [24]
PSO-CK w : 0.729, c1 = c2 = 2.05 [21]
CLPSO w : 0.729, c = 1.49,m = 7 [28]
APSO Automatically chosen [25]

13

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−2 5 0

10
−2 0 0

10
−1 5 0

10
−1 0 0

10
−5 0

10
0

10
5 0

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 4: Performance of the algorithms for 30-

dimensional f1(x) function when S = 20.

0 0.5 1 1.5 2

x 10
5

10
−150

10
−100

10
−50

10
0

10
50

FEs

M
ea

n
fit

ne
ss

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 5: Performance of the algorithms for 30-

dimensional f2(x) function when S = 20.

In all the experiments, the algorithm configuration of the SPSO is as follows. The
inertia weight w is initialized to 0.9. The initial state ξ(0) is set to 1 and the switching
parameter ϕ is set to 0.9 in all the tests. Learning rates ε, β and penalizing rate σ are
set to 0.05, 0.5 and 0.0005, respectively. Search radii ρ1 and ρ2 are chosen as 1 and 0.1,
respectively.

In the tests, the population size is 20 for all the PSOs. Further, all the algorithms use
the same number of 2×105 fitness evaluations (FEs) for each test function, as recommended
in [38]. All the experiments are conducted on the same machine with a Core 2 2.26-
GHz CPU, 2-GB memory, and Windows XP operating system. To eliminate random
discrepancy, each algorithm will repeat 30 times independently.

14

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 6: Performance of the algorithms for 30-

dimensional f3(x) function when S = 20.

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 8

10
−1 5

10
−1 2

10
−9

10
−6

10
−3

10
−0

10
3

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 7: Performance of the algorithms for 30-

dimensional f4(x) function when S = 20.

4.2. Comparisons on the solution accuracy

The results are listed in Table 3 in terms of the mean solutions, the best solution
and standard deviation (Std. Dev.) of the solutions obtained in the 30 independent runs
by each algorithm. The best result among those PSOs is indicated by Boldface in the
table. Fig. 4-Fig. 11 depicts the comparisons in terms of convergence, mean solutions
and evolution processes in solving 8 benchmark functions.

From the Table 3, Fig.4 and Fig.5, it is clearly that, the SPSO provides the best
performance on the sphere and schwelfel functions, which are used to test the convergent
rates. Table 3 and Fig. 6-Fig. 11 show the comparisons on the functions that difficult to
optimize. SPSO achieves the global optimum on the optimization of complex functions
f4, f5, f6 and f8. Furthermore, it offers the highest accuracy on functions f3 and ranks
second on f7. Though CLPSO performs better than SPSO on f7, its mean solutions

15

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 8

10
−1 5

10
−1 2

10
−9

10
−6

10
−3

10
−0

10
3

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 8: Performance of the algorithms for 30-

dimensional f5(x) function when S = 20.

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 8

10
−1 5

10
−1 2

10
−9

10
−6

10
−3

10
−0

10
3

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 9: Performance of the algorithms for 30-

dimensional f6(x) function when S = 20.

and best solution are worse than other results of the SPSO. It is also worth pointing out
that the method proposed in this paper can help the PSO search the optimum as well as
maintain a high convergence speed. The capability of avoiding local optima and finding
global optimum of multimodal functions indicates that the superiority of SPSO.

4.3. Comparisons on convergent rate

The convergent rate for achieving the global optimum is a key point for measuring the
algorithm performance. Note that in solving real-world optimization problems, the ”FE”
overwhelms the algorithm overhead. Usually, the FE accounts for the most time as the
PSO is highly computation efficient. Hence, the computation times of these algorithms
are not compared here. Table 4 shows that SPSO needs much less FEs to achieve the
acceptable solution, which reveals that SPSO has a much higher convergent rate than
other algorithms. The SPSO uses the least number of FEs to achieve the acceptable

16

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 3

10
−1 0

10
−7

10
−4

10
−1

10
2

10
5

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 10: Performance of the algorithms for 30-

dimensional f7(x) function when S = 20.

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000

10
−1 8

10
−1 4

10
−1 0

10
−6

10
−2

10
2

10
6

10
1 0

SPSO
PSO−LDIW
PSO−CK
PSO−TVAC
APSO
CLPSO

Figure 11: Performance of the algorithms for 30-

dimensional f8(x) function when S = 20.

solutions on f1, f2, f3, f5, f6 and f8. Although PSO-CK needs less FEs on f4 and f7

than SPSO, the successful ratio of PSO-CK in 30 runs on f4 and f7 are much poorer than
SPSO.

4.4. Comparisons on successful ratio

Table 4 also shows that SPSO yields a highest ratio for achieving acceptable solutions
in 30 runs, together with APSO and CLPSO. Though APSO and CLPSO reach the
acceptable solutions with the same successful ratio with SPSO, the convergence speed and
mean solutions are worse than SPSO on all the functions except f7. According to the ”no
free lunch” theorem [39], ”any elevated performance over one class of problems is offset
by performance over another class”. Hence, one algorithm cannot perform better than all

17

Table 3: Search result comparisons among six PSOs on eight test functions

PSO-LDIW PSO-TVAC PSO-CK CLPSO APSO SPSO

f1 Mean 1.31×10−51 1.65×10−18 9.88×10−91 1.89×10−19 4.23×10−132 9.5×10−241

Best Value 2.20×10−56 3.27×10−31 2.51×10−122 2.23×10−23 3.94×10−148 2.7×10−254

Std. Dev. 6.49×10−51 6.42×10−18 5.41×10−90 1.49×10−19 5.67×10−145 0

f2 Mean 5.67×10−29 3.49×10−6 0.0123 1.01×10−13 1.89×10−37 4.9×10−148

Best Value 0.10×10−36 1.28×10−10 1.10×10−19 4.38×10−15 2.3×10−45 1.0×10−150

Std. Dev. 3.82×10−33 3.49×10−8 3.27×10−7 6.51×10−14 7.1×10−40 1.7×10−149

f3 Mean 29.51 32.85 2.82 11 2.1 0.8

Best Value 3.98 2.51 0.13 0.25 0.0006 9.3×10−5

Std. Dev. 37.10 24.97 3.95 14.5 1.1 1.5

f4 Mean 25.9 48.9 58.2 2.57×10−11 7.23× 10−1 0

Best Value 13.9 24.8 21.7 6.93×10−12 2.61× 10−14 0

Std. Dev. 26.1 10.6 15.4 6.64×10−11 0.68 0

f5 Mean 14.8 34.1 67.4 0.16 0.0031 0

Best Value 7.9 16.2 42.9 0.03 1.23× 10−15 0

Std. Dev. 14.3 15.7 18.3 0.32 0.004 0

f6 Mean 9.7× 10−15 0.09 2.7 2.0× 10−12 9.5× 10−15 8.45×10−15

Best Value 7.7× 10−15 2.8× 10−13 0.9 1.2× 10−12 7.7× 10−15 4.15×10−15

Std. Dev. 7.4× 10−14 0.3631 1.2 9.2× 10−13 2.5× 10−15 2.45×10−15

f7 Mean 0.77 0.02 0.0557 2.0× 10−12 0.0008 0.0002

Best Value 0.08 1.6× 10−8 4.3× 10−11 4.3× 10−16 0.0001 3.3×10−16

Std. Dev. 0.17 0.12 0.0615 9.2× 10−13 0.001 0.0002

f8 Mean 0.007 0.02 0.5 3.0×10−17 3.0×10−17 3.0×10−17

Best Value 3.0× 10−17 3.0× 10−17 3.0× 10−17 3.0×10−17 3.0×10−17 3.0×10−17

Std. Dev. 0.026 0.05 0.9 1.41×10−26 1.41×10−26 1.41×10−26

Table 4: Convergence speed and algorithm reliability comparisons; ’-’ representing no runs reached an

acceptable solution

PSO-LDIW PSO-TVAC PSO-CK CLPSO APSO SPSO
f1 Mean FEs 106534 45339 9190 72081 7978 4848

Ratio(%) 100 100 100 100 100 100
f2 Mean FEs 103910 45741 14437 66525 24254 4723

Ratio(%) 100 100 100 100 100 100
f3 Mean FEs 97327 46614 5518 74815 4756 4335

Ratio(%) 100 100 100 100 100 100
f4 Mean FEs 92437 35056 1393 53416 3583 2076

Ratio(%) 100 70 4 0 100 100 100
f5 Mean FEs 101656 47491 4153 47440 3160 1648

Ratio(%) 100 83.3 20 100 100 100
f6 Mean FEs 110427 54642 - 47740 40209 5608

Ratio(%) 100 96.7 0 100 100 100
f7 Mean FEs - 61266 1458 81422 72629 32405

Ratio(%) 0 67.7 16.7 100 100 100
f8 Mean FEs 77340 29626 8743 59160 27773 5208

Ratio(%) 80 86.7 50 100 100 100
Mean Reliability 85 88.17 52.15 100 100 100

18

the others on every problem.
In summery, the SPSO outperforms best on both unimodal and multimodal functions.

The SPSO processes capabilities of fast convergence, highest successful ratio, least FEs
and best search accuracy among these PSOs. The performance arises from the Markovian
switching and LCPMLA embedded in the SPSOs.

5. Analysis of parameters switching and leader competitive penalized multi-
learning approach

In this section, we carry out the experiments to show the sensitivities of penalized
coefficient σ, the switching probability ϕ. Meanwhile, two techniques, i.e., parameters
switching and leader competitive penalized multi-learning approach are also used to test
the effects of them on the search performance of SPSO.

5.1. Advantages of parameters switching and leader competitive penalized multi-learning
approach

The performance of SPSO without parameters switching and leader competitive pe-
nalized multi-learning approach is tested. Results of 30 independent runs are revealed in
Table 5.

It is obvious from the results that with both parameters switching and leader learning
techniques, SPSO outperforms other variants of SPSO. SPSO can not only offers a highest
accuracy on unimodal functions, but also delivers a good global search performance on
multimodal functions. Moreover, with only leader multi-learning technique, SPSO can
still performs well on multimodal functions, which can efficiently help the globally best
particle to jump out of local optima. However, SPSO with only leader learning suffers
from low accuracy when solving unimodal functions.

On the other hand, the SPSO with only parameters switching and without leader learn-
ing can deliver a good performance on unimodal function. However, it cannot solve multi-
modal functions well. It is also worth mentioning that, SPSO with parameters switching,
combining with LCPMLA can provide a much better performance on unimodal functions
than that of SPSO with only parameters switching. It has been shown from Table 5 that
LCPMLA can enhance the local search capability, when it is embedded in PSO with pa-
rameter switching. However, PSO with LCPMLA alone and without parameter switching
only offers a good performance on multimodal functions, as discussed above.

To summarize, the full SPSO is the most powerful for any tested functions. The results
verify that parameters switching can accelerate the convergence and LCPMLA can speed
up the convergence of the algorithm as well as help the swarm to have a better global
search ability.

5.2. Sensitive analysis of penalizing rate

In this subsection, the effect of penalizing rate σ is investigated here. The learning
rate ε and β are fixed here for showing the effect of σ evidently. An appropriate σ can
enhance global and local search capabilities and reduce inefficient search strategy resulting

19

Table 5: Advantages of parameter switching and LCPMLA

Algorithms SPSO with both SPSO with SPSO with SPSO without
switching and learning switching learning either (PSO-LDIW)

f1 Average 2.7×10−241 8.1×10−149 7.5×10−96 1.3×10−51

Std. Dev. 0 2.2×10−148 3.9×10−95 6.5×10−51

f2 Average 4.9×10−148 2.2×10−61 2.4×10−34 5.7×10−29

Std. Dev. 1.7×10−149 6.7×10−65 3.5×10−35 3.8×10−33

f4 Average 0 54.0 0 25.9
Mean FEs 0 15.1 0 26.1

f5 Average 0 20.2 0 14.8
Mean FEs 0 9.8 0 14.3

f8 Average 3.0×10−17 0.49 2.4×10−5 0.007
Mean FEs 1.4×10−17 0.57 3.1×10−5 0.026

in saving the consumption of FEs and computing time. The results of mean values and
standard deviations of the solutions are shown in Table 6. σ is fixed to 0.0001, 0.0005 and
0.001 in the investigation, respectively.

From the results, it can be found that σ = 0.0005 reveals the best performance. The
reason can be listed as follows. A large σ gives rise to the case that leader multi-learning
vanishes rapidly, while a small σ leads to the case that inefficient search strategy exists
for a number of FEs. Hence, a small σ cannot solve the problem with high accuracy
either. Therefore, in this paper, σ = 0.0005 is adopted in our paper, which can balance
the efficient search and the search capability.

Table 6: Effects of the penalized rate on search accuracy

σ 0.0001 0.0005 0.001
f1 Average 4.2×10−234 9.5×10−241 3.2×10−240

Mean FEs 0 0 0
f2 Average 7.6×10−145 4.9×10−148 3.2×10−143

Mean FEs 6.2×10−146 1.7×10−149 9.1×10−145

f4 Average 0 0 0.03
Mean FEs 0 0 0.18

f5 Average 0 0 0
Mean FEs 0 0 0

f8 Average 3.0×10−17 3.0×10−17 0.02
Mean FEs 1.4×10−26 1.4×10−26 0.06

5.3. Sensitive analysis of switching probability

In order to measure the sensitivity of switching probability ϕ, five strategies for setting
the value of ϕ to 0.8, 0.85, 0.9, 0.95 and 1, respectively. The mean results and FEs are
presented in Table 7.

20

It can be seen form the results that ϕ = 0.9 yields the a little better convergence speed
and higher accuracy than other cases. The reason is that ϕ = 0.9 can balance the good
classification result of ξ(k) and diversity of search states.

Table 7: Effects of the switching parameter on search performance

ϕ 0.8 0.85 0.9 0.95 1
f1 Average 6.48×10−239 1.97×10−241 9.5×10−241 1.6×10−238 2.1×10−239

Mean FEs 4890 4944 4848 4893 5108
f3 Average 4.7 3.9 0.8 1.8 3.1

Mean FEs 5393 5639 4723 5399 5988
f6 Average 9.1×10−15 9.35×10−15 8.45×10−15 8.99×10−15 9.13×10−15

Mean FEs 5643 5793 5608 5792 5653
f7 Average 0.00024 0.00027 0.00021 0.00020 0.00033

Mean FEs 36268 33763 32405 33138 33010

6. Parameter identification of unknown delayed stochastic GRN

In this section, we will utilize the proposed novel SPSO to identify the unknown
parameters of the GRN including the unknown global coupling matrix and time-delays.

6.1. The GRN model

Consider the delayed GRN model in compact form

dm(t)
dt

= −Am(t) + Wf(p(t− τ1)) + L,

dp(t)
dt

= −Cp(t) + Dm(t− τ2). (27)

where m(t) = [m1(t),m2(t), · · · ,mn(t)]T , p(t) = [p1(t), p2(t), · · · , pn(t)]T are concentra-
tions of mRNA and protein of the ith node at time t, f(p(t−τ1)) = [f1(p1(t−τ1)), f2(p2(t−
τ1)), · · · , fn(pn(t − τ1))]T with fj(pj(t)) as a monotonic increasing function of the form
fj(pj(t)) = (pj(t)/βj)Hj/(1 + (pj(t)/βj)Hj), where Hj are called the Hill coefficients, βj

are positive constants. A = diag(a1, a2, · · · , an) > 0 and C = diag(c1, c2, · · · , cn) > 0 are
the degradation rates of the mRNA and protein, respectively; D = diag(d1, d2, · · · , dn) is
the translation rate, the constants τ1, τ2 denote respectively, the translation delay and the
feedback regulation delay. L = diag(l1, l2, · · · , ln), where li =

∑
j∈Ii

αij in which Ii is the
set of all the repressors of gene i, with W = (wij) ∈ Rn×n defined as

wij =

αij , if transcription factor j is an activator of gene i,

0, if there is no link from node j to i,

−αij , if transcription factor j is a repressor of gene i.

(28)

When modeling a realistic GRNs, molecular noise has been revealed to play an im-
portant role in biological functions since noise is ubiquitous in reactions of transcription,

21

translation, and translocation processes, and also owing to external fluctuations. We con-
sider the following networks of N coupled genetic oscillators with stochastic perturbations
based on Eq. (1) and [10]:

dmi(t) = [−Ami(t) + Wf(pi(t− τ1)) + L +
N∑

j=1

GijΓmi(t)]dt + δi(t)dω(t),

dpi(t) = [−Cpi(t) + Dmi(t− τ2) +
N∑

j=1

GijΓpi(t)]dt + φi(t)dν(t),

i = 1, 2, · · · , N. (29)

where Γ ∈ Rn×n defines the coupling between two genetic oscillators. G = (Gij)N×N is the
coupling matrix of the network. If there is a link from oscillator j to oscillator i(j 6= i),
then Gij is a constant denoting the coupling strength of this link; otherwise, Gij = 0;
Gii =

∑N
j=1,j 6=i Gij . Matrix G defines the coupling topology, direction, and the coupling

strength of the network. N denotes network size. δi(t) and φi(t) are external noise inten-
sity functions, and ω(t) and ν(t) are two independent one-dimensional Brownian motions
satisfying the mathematical expectations E{dω(t)} = 0, E{dν(t)} = 0, E{dω(t)2} = 1 and
E{dν(t)2} = 1. xi(t) = ϕ(t) ∈ C([−τ̄ , 0],Rn), τ̄ = max{τ1, τ2} denotes the initial state,
which is the set of real-valued continuous functions on [−τ̄ , 0] for some τ1 > 0 and τ2 > 0.

6.2. Parameter identification problem

For estimating the unknown parameters of Eq. (29), we assume the structure of system
(29) is known. Considering the identified system described by

dm̆i(t) = [−Ăm̆i(t) + W̆f(p̆i(t− τ̆1)) + L̆ +
N∑

j=1

ĞijΓ̆m̆i(t)]dt + δi(t)dω(t),

dp̆i(t) = [−C̆p̆i(t) + Dm̆i(t− τ̆2) +
N∑

j=1

ĞijΓ̆p̆i(t)]dt + φi(t)dν(t),

i = 1, 2, · · · , N. (30)

In this paper, the time-delay τ1, τ2 and topology configuration matrix G in Eq. (29)
are all treated as unknown parameters to be identified. The problem of parameter iden-
tification can be converted into the following optimization problem:

J =
M∑

k=1

N∑

i=1

‖mik − m̆ik‖2 +
M∑

k=1

N∑

i=1

‖pik − p̆ik‖2, (31)

where k = 1, 2, · · · ,M is the sampling time point and M denotes the length of data used
for parameter identification. mik, m̆ik, pik and p̆ik denote the state vector of the original
and the identified system at time k, respectively. The parameter identification of system
(29) can be achieved by searching suitable γ∗, τ∗1 , τ∗2 and G∗ such that the objective
function (31) is minimized, i.e.

(γ∗, τ∗1 , τ∗2 , G∗) = arg min
(γ,τ1,τ2,G)∈Ω

(J), (32)

22

where γ is a set of unknown parameters, Ω is searching space admitted for parameters
and time delays. It is should be mentioned that it is difficult to identify parameters using
traditional optimization methods. One reason is that the dynamic behavior of system (29)
is unstable and the other is that there exist multiple variables and local optima in the
landscape of J .

Remark 1. Recently, filtering problem for GRNs has been investigated in some well-
studied works [12, 17]. In [17], the authors use an adaptive filtering approach to identify
the unknown parameters in GRN. Compared with this work, the time-delays τ1, τ2 and
coupling matrix of GRNs are also assumed to be unknown and needed to be identified.
A novel PSO has been developed in this paper and employed to identify the unknown
parameters efficiently in this paper. The simulation results can be seen in next subsection.

6.3. Example

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

Generation

J

Figure 12: Convergence trajectory of objective func-

tion J .

0 100 200 300 400 500
−6

−4

−2

0

2

4

6

8

Generation

P
ar

am
et

er
s

id
en

tif
ic

at
io

n

ă33

c̆33

w̆32

d̆33

l̆3

Figure 13: Convergence of ă33, c̆33, w̆32, d̆33, l̆3.

23

0 100 200 300 400 500
−6

−4

−2

0

2

4

6

Generation

P
ar

am
et

er
s

id
en

tif
ic

at
io

n

τ̆1

τ̆2

Ğ33

Figure 14: Convergence of τ̆1, τ̆2, Ğ33.

In [3], the dynamics of the repressilator has been theoretically investigated and exper-
imentally verified. Three repressor-protein concentrations pi, and their mRNA concentra-
tions mi (where i is lacl, tetR or cl) were used as dynamical variables. The repressilator is a
cyclic negative-feedback loop composing of three genes and their corresponding promoters.
The kinetics of the GRN can be described as follows [8, 9, 17]:

dmi(t)
dt

= −mi(t) +
α

1 + pn
j (t)

+ Li,

dpi(t)
dt

= −cip(t) + dimi(t). (33)

where i = lacl, tetR, cl; j = cl, lacl, tetR.
Considering the coupling, the stochastic disturbances and transcriptional time delays

with GRNs, we introduce the GRNs model as follows:

dmi(t) = [−Ami(t) + Wf(pi(t− τ1)) + L +
N∑

j=1

GijΓmi(t)]dt + δi(t)dω(t),

dpi(t) = [−Cpi(t) + Dmi(t− τ2) +
N∑

j=1

GijΓpi(t)]dt + φi(t)dν(t),

i = 1, 2, · · · , N. (34)

The parameters are chosen as follows:

A =

0.4 0 0
0 0.36 0
0 0 0.48

 , C =

0.2 0 0
0 0.5 0
0 0 0.6

 ,W =

0 0 −1.5
−1.5 0 0

0 −1.5 0

 ,

D =

2 0 0
0 2 0
0 0 2

 , G =

−2 0 2
0 −1 1
2 1 −3

 ,Γ =

1 0 0
0 1 0
0 0 1

 ,

24

Other parameters are taken as L = (1.5, 1.5, 1.5)T , δi(t) = σi(t) = 0.05e−0.05t,f(z) =
z2

z2+1
, τ1 = τ2 = 1.

We assume the a33, c33, w32, d33, l3, τ1, τ2, G33 are unknown, which are needed to iden-
tified by SPSO. The population size is set to be 10 and the generation is 500. From Fig.12,
a typical evolving process of the objective function J is illustrated and convergence pro-
cesses of parameters ă33, c̆33, w̆32, d̆33, l̆3, τ̆1, τ̆2, Ğ33 are shown in Fig. 13 and Fig. 14. Fig.
12 shows that the value of J decreases quickly to zero, which means that SPSO can con-
verge to the global optimum immediately. Furthermore, it can be seen from Fig. 13 and
Fig. 14 that the eight unknown parameters can converge to the true values rapidly, which
demonstrates the great efficiency of SPSO presented in this paper.

7. Conclusion

The parameter identification problem has been investigated for uncertain GRNs with
time-delays and stochastic disturbances by a switching particle swarm optimization al-
gorithm. Depending on a homogeneous Markov chain, the velocity updating equation
switches from one mode to another. The current state is determined by evolutionary fac-
tor, which is used to predict the next state and determine the acceleration coefficients.
Meanwhile, LCPMLA is developed to improve the global search and local search abili-
ties in the evolution process. A learning rate and a penalized rate are designed in this
technique aiming at automatically selecting efficient search strategy. The search perfor-
mance including convergence and accuracy is improved substantially when testing eight
benchmark functions. In the end, we have employed the SPSO to identify the unknown
parameters of GRNs, which include the unknown coupling matrix and time-delays.

References

[1] J. M. Raser, E.K.O’Shea, Noise in gene expression: Origins, consequences, and control. Sci-
ence 2005, 309:2010-2013.

[2] T. Chen, H. He, and G. Church, Modeling gene expression with differential equations, in
Proc. Pacific Symp. Biocomput., 1999, vol. 4, pp. 29-40.

[3] M. B. Elowitz, S. Leibler: A synthetic oscillatory network of transcriptional regulators. Nature
2000, 403:335-338.

[4] J. Paulsson, Summing up the noise in gene networks, Nature, vol. 427, pp. 415-418, 2004.

[5] P. Smolen, D. Baxter, and J. Byrne, Modelling circadian oscillations with interlocking positive
and negative feedback loops, J. Neurosci., vol. 21, pp. 6644-6656, 2001.

[6] P. Smolen, D. Baxter, and J. Byrne, Mathematical modeling of gene networks, Neuron, vol.
26, pp. 567-580, 2000.

[7] AL. Barabási, ZN. Oltvai: Network biology: Understanding the cell’s functional organization.
Nature Reviews Genetics 2004, 5:101-114.

[8] L. Chen and K. Aihara, Stability of genetic regulatory networks with time delay, IEEE Trans.
Circuits Syst. I, vol. 49, no. 5, pp. 602-608, May 2002.

25

[9] C. Li, L. Chen, and K. Aihara, Stability of genetic networks with sum regulatory logic: Lur’e
system and LMI approach, IEEE Trans. Circuits Syst. I, vol. 53, no. 11, pp. 2451-2458, Nov.
2006.

[10] C. Li, L. Chen, and K. Aihara, Stochastic synchronization of genetic oscillator networks,
BMC Syst. Biol., vol. 1, no. 6, pp. 1-11, 2007, 10.1186/1752-0509-1-6.

[11] Z. Wang, H. Gao, J. Cao, and X. Liu, On delayed genetic regulatory networks with polytopic
uncertainties: robust stability analysis, IEEE Trans. NanoBioscience, vol. 7, no. 2, pp. 154-
163, Jun. 2008.

[12] Z. Wang, J. Lam, G. Wei, K. Fraser and X. Liu, Filtering for nonlinear geneti regulatory
networks with stochastic disturbances, IEEE Trans. on Automatic Control, Vol. 53, No. 10,
Nov. 2008, pp. 2448-2457.

[13] Z. Wang, F. Yang, D. W. C. Ho, S. Swift, A. Tucker and X. Liu, Stochastic dynamic modeling
of short gene expression time series data, IEEE Tran. on NanoBioscience, Vol. 7, No. 1, Mar.
2008, pp. 44-55.

[14] Z. Wang, X. Liu, Y. Liu, J. Liang and V. Vinciotti, An extended Kalman filtering approach to
modelling nonlinear dynamic gene regulatory networks via short gene expression time series,
IEEE/ACM Tran. on Computational Biology and Bioinformatics, in press (Digital Object
Identifier: 10.1109/TCBB.2009.5)

[15] F. Ren and J. Cao, Asymptotic and robust stability of genetic regulatory networks with
time-varying delays,Neurocomputing, vol. 71, no. 4-6, pp. 834-842, Jan. 2008.

[16] J. Cao and F. Ren, Exponential stability of discrete-time genetic regulatory networks with
delays, IEEE Trans. Neural Networks, vol. 19, no. 3, pp. 520-523, 2008.

[17] W. Yu, J. Lü, G. Chen, D. Zhi, Q. Zhou, Estimating Uncertain Delayed Genetic Regulatory
Networks: An Adaptive Filtering Approach, IEEE Trans. on Automatic Control, in press.

[18] P. Koduru, S. Das, S. M. Welch, Multi-objective and hybrid PSO using ε-fuzzy dominance,
Proc. of GECCO, London, UK, pp. 853-860, 2007.

[19] P. Koduru, Z. Dong; S. Das, S. M. Welch, J.L. Roe, E. Charbit, A Multiobjective
Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models
of Gene Networks, IEEE Trans. Evol. Comput., Vol. 12, No. 5, pp.572-590, 2008.

[20] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International
Conference On Neural Network, 1995, pp. 1942-1948.

[21] M. Clerc, J. Kennedy, The particle swarm: explosion, stability, and convergence in a multi-
dimensional complex space, IEEE Transactions on Evolutionary Computation 6(1). Piscat-
away, NJ, 2002, pp. 58-73.

[22] Y. Shi, RC. Eberhart. Empirical study of particle swarm optimization. In: Proceedings of
the 1999 IEEE congress on evolutionary computation. Piscataway (NJ): IEEE Press; 1999.
p. 1945-50.

[23] Y. Shi, RC Eberhart. Parameter selection in particle swarm optimization. In: Proceedings
of the 7th international conference on evolutionary programming VII. LNCS, vol. 1447. New
York: Springer-Verlag; 1998. p. 591-600.

26

[24] A. Ratnaweera, SK. Halgamure, HC. Watson. Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Trans Evol. Comput. 2004;8:240-
55.

[25] Z. Zhan, J. Zhang, Y. Li, H.S.H. Chung, Adaptive particle swarm optimization, IEEE Trans.
System, man and cybernetics-B, in press.

[26] V. Kadirkamanathan, K. Selvarajah, and P. Fleming, Stability Analysis of the Particle Dy-
namics in Particle Swarm Optimizer, IEEE Trans. on Evol. Comput. Vol. 10, No. 3, 2006,
245-255.

[27] R. Mendes, J. Kennedy, and J. Neves, The fully informed particle swarm: Simpler, maybe
better, IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 204-210, Jun. 2004.

[28] J.J. Liang, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions, IEEE Trans. Evol. Comput., vol. 10, no. 3, pp.
281-295, Jun. 2006.

[29] R.A.Krohling and L.dos Santos Coelho, Coevolutionary particle swarm optmization using
Gaussian distribution for solving constrned optimization problems, IEEE Trans. Syst., Man,
Cybern. B, vol.36, no.6, pp.1407-1416, Dec. 2006.

[30] F. van den Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimiza-
tion, IEEE Trans. Evol. Comput. , vol. 8.,no. 3 pp.225-239, June 2004.

[31] R. C. Eberhart and Y. H. SHi, Particle swarm optimization: Developments, applications and
resouces, in Proc. IEEE Congr. Evol. Comput. Seoul, Korea, 2001, pp. 81-86.

[32] P. J. Angeline, Using selection to improve particle swarm optimization, in Proc. IEEE Congr.
Evol. Comput., Anchorage, AK, 1998, pp. 84-89.

[33] Y. P. Chen, W. C. Peng, and M. C. Jian, Particle swarm optimization with recombination
and dynamic linkage discovery, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 6,
pp. 1460-1470, Dec. 2007.

[34] P. S. Andrews, An investigation into mutation operators for particle swarm optimization, in
Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada, 2006, pp. 1044C1051.

[35] Y. Tang, J. Fang, Q. Miao, On the exponential synchronization of stochastic jumping chaotic
neural networks with mixed delays and sector-bounded nonlinearties, Neurocomputing, 72
(2009) 1694-1701.

[36] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching (Imperial
College Press, 2006).

[37] X. Yao, Y. Liu and G. M. Lin, Evolutionary programming made faster, IEEE Trans. Evol.
Comput., vol.3, no.2, pp.82-102, July,. 1999.

[38] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari,
Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter
optimization, in Proc. IEEE Congr. Evol. Comput.,2005, pp.1-50.

[39] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Congr.
Evol. Comput. vol. 1, no, 1, pp. 67-82, Apr. 1997.

27

