
REVISED 1On Multistability of Delayed Geneti RegulatoryNetworks with Multivariable Regulation FuntionsWei Pana;b, Zidong Wang;d;�, Huijun Gaoa, Yurong Lie and Min DueAbstratMany geneti regulatory networks (GRNs) have the apaity to reah di�erent stable states. This apaity isde�ned as multistability whih is an important regulation mehanism. Multiple time-delays and multivariable regulationfuntions are usually inevitable in suh GRNs. In this paper, multistability of GRNs is analyzed by applying the ontroltheory and mathematial tools. This study is to provide a theoretial tool to failitate the design of syntheti geneiruit with multistability in the perspetive of ontrol theory. By transforming suh GRNs into a new and uniformmathematial formulation, we put forward a general setor-like regulation funtion that is apable of quantifying theregulation e�ets in a more preise way. By resorting to up-to-date tehniques, a novel Lyapunov-Krasovskii funtional(LKF) is introdued for ahieving delay dependene to ensure less onservatism. New onditions are then proposed toensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays.Our multistability onditions are appliable to several frequently used regulation funtions espeially the multivariableones. Two examples are employed to illustrate the appliability and usefulness of the developed theoretial results.KeywordsMultistability, multivariable regulation funtion, geneti regulatory networks, Lyapunov-Krasovskii funtional, linearmatrix inequality, multiple time-delays. I. IntrodutionSystems biology is the study of an organism, viewed as an integrated and interating network of genes,proteins and biohemial reations whih give rise to life, instead of analyzing individual omponents oraspets of the organism [1{3℄. The fous on systems as opposed to individual genes or pathways is sharedby the ontemporaneous disipline of systems biology, whih analyzes biologial organisms in their entirety[4{6℄. The spirit of geneti engineering in whih genes and gene produts are onsidered as a whole systemould be extended to syntheti biology. In syntheti biology, the ultimate goal is to engineer unnaturalbiologial systems that funtion in living organism to investigate natural biologial phenomena for a varietyof appliations. It is reasonable to expet that ideas and method from systems and ontrol theory whihis powerful in analyzing dynamial properties and designing ontroller to ahieve desired performane willlead to new understanding of the underlying biologial proesses therefore having potential appliations indesigning syntheti gene iruit.This work was supported in part by the Biotehnology and Biologial Sienes Researh Counil (BBSRC) of the U.K. underGrants BB/C506264/1 and 100/EGM17735, the Royal Soiety of the U.K., the National Natural Siene Foundation of Chinaunder Grant 61028008, and the International Siene and Tehnology Cooperation Projet of China under Grant 2009DFA32050.aSpae Control and Inertial Tehnology Researh Center, Harbin Institute of Tehnology, Harbin 150001, China.bDepartment of Eletroni Siene and Tehnology, University of Siene and Tehnology of China, Hefei 230027, China.Shool of Information Siene and Tehnology, Donghua University, Shanghai 200051, China.dDepartment of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom.eDepartment of Eletrial Engineering, Fuzhou University, Fuzhou 350002, China.�Corresponding author. E-mail: Zidong.Wang�brunel.a.uk



REVISED 2The syntheti geneti regulatory networks (GRNs) prove to be a powerful tool in studying gene regulationproesses in living organisms [7{12℄. By using ordinary di�erential equations to desribe the rates of on-entration hange in biohemial substane, suh as genes, proteins, ativators, repressors, enzymes, fatorsor produts of a biohemial network, more detailed understanding and insights of the dynami behaviorexhibited by biologial systems an be explored [13, 14℄. In partiular, sine GRNs are high-dimensional andnonlinear, it is also indispensable to onsider the network dynamis from the viewpoint of systems and ontroltheory [15{17℄.Obviously, the preise struture of a mathematial model should be onsistent with the dynamial behaviorsof the system. It has been reognized that the slow proesses of transription, translation and di�usion tothe plae of ation of a protein inevitably ause time delays. Also, for di�erent substane in GRNs, timedelays of biohemial reations may vary due to the di�erent reation pathways. Time delays are frequentlyenountered in many other pratial engineering systems besides GRNs, suh as ommuniation, eletronis,and hemial systems. Therefore, in order to have more aurate models, it is neessary to take time-delaysinto aount in GRNs. In the past deade, stability analysis and synthesis problems for various time-delayontrol systems have gained onsiderable researh interests and a large amount of results have appeared inthe literature, see, e.g. [18{21℄.On the other hand, the regulation funtions, whih are either linear or nonlinear, play a ruial role indetermining qualitative properties of GRNs, suh as the number and the stability of steady states. Theregulatory mehanism are atually desriptions of biohemial reation kinetis law suh as mass ation law,Hill law, Henri-Mihaelis-Menten law, et. The linear or nonlinear regulation funtion are often single-variableand has a form of monotoniity with the single variable. Then the regulation funtions for di�erent substanein GRNs add together to regulate a ertain kind. In syntheti GRNs, one of the simplest ways to implementsuh an additive input funtion is to provide a gene with multiple promoters, eah responding to one of theinputs. However, to desribe the ompliated relationship between di�erent biohemial substane in GRNs,it is natural to introdue multivariable regulation funtions, in whih di�erent variables are multiplying oroupling together. GRNs with regulation funtions of suh forms have been reported in [22{24℄. It shouldbe mentioned that, even though there are no multivariable terms, the types of regulation funtions ould bediverse, most of whih are nonlinear [13, 14℄.Due to the nonlinearity of regulation funtions, the oexistene of multiple steady states whih refers tomultistability is possible. The traditional notion of stability named as monostability in GRNs [25{27℄ isonerned with unique equilibrium point, and this di�ers signi�antly from the multistability mentioned here.It is notied that multistability has ertain properties whih are not shared by other mehanisms of integrativeontrol, therefore plays an important role in the dynamis of living ells and organisms [28{30℄. For example,the maintenane of phenotypi di�erenes in the absene of geneti or environmental di�erenes, whih hasbeen demonstrated experimentally for the regulation of the latose operon in Esherihia oli, may attributeto multistability. Cell di�erentiation might also be explained as multistability [31℄. Bistability, a basi aseof multistability, has a property that there are two stable �xed points. It has beome inreasingly lear thatbistability is an important reurring theme in ell signaling and of partiular relevane to biologial systemsthat swith between disrete states, generate osillatory responses. As stated in [32℄, bistability is a new wayof looking at ell yle ontrol.Reently, a lot of e�orts have been made to the mathematial modeling of GRNs with multistability. In [8℄,a syntheti geneti o-repressive swithes in the well known la operon in the bateria Esherihia oli were



REVISED 3onstruted and a model with two omponents was proposed. A more detailed mathematial model in whihthe parameters were all estimated from reported experimental data was developed in [22℄, and it was shownthat there was bistability in the latose operon dynamis for realisti extraellular latose onentration values.A simpli�ation of the above model that onsidered only the role of �-galatosidasein the operon regulationand ignores that of latose permease, whih also displayed bistability, was introdued in [23℄. In [12℄, thedynamis of the bistable latose utilization network of Esherihia oli has been quantitatively investigatedin single ell experiments. In [24℄, Cd2-Cylin B/Wee1 system was transformed to a two-variable problemunder neessary assumptions and displaying bistability.Theoretial results obtained for the multistability of a GRN have been sattered in the literature. Thebiologial system with multistability and hysteresis has been modeled as monotone dynami systems in [33℄,where the rih and elegant theory of monotone dynami system provides an eÆient mathematial tool foranalysis (see [34℄ and referenes therein). Espeially, in the biologial systems with bistability, eah stablemode of operation is assoiated with an appropriate invariant set in the state spae and stability with respetto eah set has been studied in terms of a loal notion of input-to-state stability with respet to ompatsets [35℄. In the ontrol ommunities, stability analysis should always be performed prior to the ontrollerdesign. On one hand, the results on multistability should failitate the design of syntheti gene iruits withmultistability while these results are diÆult to extend to engineering. On the other hand, time-delays andmultivariable regulation funtions have not been onsidered in these results. How to analyze multistability oftime-delay GRNs with multivariable regulation funtions in order to be potential in syntheti biology remainsas an open problem. Therefore, it is essential and important to investigate the multistability of delayed GRNswithmultivariable regulation funtions. In the survey paper [36℄, the trigger and signi�ane of this study havebeen summarized for onsidering the possible ontrol sheme for the swith of di�erent phenotypes in termsof epigenetis. In [36℄, the essential roles of time delays, negative loop and positive loop have been thoroughlydisussed. Time delays have a lose relationship with osillations, even with one element negative loops. Inany ase, a negative loop plays to generate homeostasis around a steady state loated near the thresholds,while a positive loop is a neessary ondition to generate multistationarity or a multipliity of regimes in amore general way. Despite the importane of gaining straightforward insight on the ause of multistability,to the best of the authors' knowledge, there has been little e�ort towards the theoretial researh on thishallenging problem. Suh a situation motivates our present study.Lyapunov{Krasovskii funtional (LKF) theory and linear matrix inequality (LMI) tehnique are powerfultools in stability analysis and ontroller design and have been extensively studied in the ontrol ommunities(see [37{41℄ and referenes therein). Although there are also reports on the multistability analysis for neuralnetworks [42, 43℄, these results are fousing on the analysis rather than aiming at design. Even in thisommunity, there are seldom reports on multistability analysis by LKF and LMI. To failitate the readers inbiology area, let us briey disuss the LKF theory and LMI tehnique. Lyapunov's diret method (also alledthe seond method of Lyapunov) allows us to determine the stability of a system without expliitly solvingdi�erential equations. The method is a generalization of the idea that if there is some \measure of energy"in a system, then we an study the rate of hange of the energy of the system to asertain stability [44℄. Inase of systems with time-delay, suh measure of energy is often adopted as the LKF, whih is typially of thequadrati form. By alulating the derivative of the LKF, it is usually onluded that the overall time-delaysystem is stable if ertain LMIs are feasible [37{41℄. Note that the solvability of LMIs an be easily hekedby using the Matlab toolbox, and a growing number of dynamis analysis problems an be onverted into the



REVISED 4feasibility of LMIs [45℄.In this paper, we are onerned with the multistability of GRNs with multiple time-delays. Multivariableand several di�erent types of regulation funtions are onsidered. We then generalize the mathematialformulation of suh GRNs by proposing a setor-like regulation funtion. A novel LKF is introdued and themost updated tehniques are employed to ahieve delay-dependene. A suÆient ondition is then derivedfor the multistability of a GRN with multiple time delays and multivariable regulation funtions in the formof LMIs. An important feature with the results to be reported is that, all the multistability onditions aredependent on the delays, made possible by utilizing the up-to-date tehniques to ahieve delay dependene.Seond, our multistability onditions are appliable to several di�erent regulation funtions, whih over manytypes of urrently investigated GRNs, espeially inluding the ompliated multivariable regulation funtions.Two examples whih have been tested by reported experiments are employed to illustrate the appliabilityand usefulness of the developed theoretial results. Example 1 is a Cd2-Cylin B/Wee1 system model andexample 2 is a latose system model. The GRNs in both of these examples display bistability.Notation: The notation used throughout the paper is standard. The supersript T indiates matrix trans-position; Rn denotes the n-dimensional Eulidean spae and Rn�k is the set of all n� k real matries. An;kdenotes A 2 Rn�k : I and 0 denote identity matrix and zero matrix respetively, the notation P > 0 means thatP is symmetri and positive de�nite and the symbol � indiates symmetri bloks in the LMIs. In addition,diagf: : :g stands for a blok-diagonal matrix and for a matrix A, sym(A) denotes A+AT .II. Model and PreliminariesIn this setion, we introdue a GRN model whih an be desribed by the following di�erential equationsfor i = 1; 2; : : : ; n:_zi(t) = �aizi(t) + nXj=1bijfij(zj(t)) + nXj=1ijgij(zj(t� �i)) + nXj=1dijyij(t)hij(zj(t)) + ui; (1)where z1; : : : ; zn are biohemial substane, suh as genes, proteins, ativators, repressors, enzymes, fatorsor produts of a biohemial network, and z(�) = [z1(�); z2(�); : : : ; zn(�)℄T 2 Rn is the substane state vetor.Their rates of degradation are denoted by ai 2 R+. _zi; the rate of hange in zi, represents onentrationhange of a variable due to prodution or degradation. ui is de�ned as a basal rate. fij(�) and gij(�) representthe feedbak regulation funtion of the jth substane on the ith substane, whih are generally nonlinear orlinear single-variable funtions.Due to the fat that time delays our in transription, translation and di�usion to the plae of ation of aprotein, and for di�erent biohemial substane in GRNs, the time-delays at di�erent stages may be di�erent,and therefore the regulation funtion with multiple time delays gij(�) is introdued. In many syntheti GRNs,the monotone regulation funtions are not just simply added together in pratie, but may be oupled withanother variable whih indiates the relationship between two biohemial substane in GRNs [22,24℄. Then,yij(�)hij(zj(�)) is introdued in the model to desribe suh a ompliated property. To ease notation, hij(�) isalso alled regulation funtion, whih has the same property with fij(�) and gij(�) and we all yij(�)hij(zj(�))multivariable regulation funtion. yij(�) is an element that belongs to [z1(�); z2(�); : : : ; zn(�)℄T but yij(�) 6= zj(�).Obviously, if yij(�) = zj(�); yij(�)hij(zj(�)) would have a similar form with fij(zj(�)) and the multivariable terman be eliminated. Regulation funtion is used to apture the ombined e�et of several regulatory proteins onthe ontrol of gene expression or protein degradation and it desribes the onnetion and topology strutureof biohemial substane.



REVISED 5Remark 1: Linear ontrol theory has reeived great researh interest and the orresponding results havebeen fruitful. However, almost all pratial systems are inherently nonlinear. Sometimes, linearization is apowerful tool, but it may prevent us from gaining the insight of nonlinear phenomenon. In neural networks, thestruture of the model desribed by nonlinear di�erential equations is similar to the GRNs' struture disussedhere [46,47℄. In neural networks, the ativation funtion is like the regulation funtion in GRNs, but it is justa monotone nonlinear funtion of only one variable whih is totally di�erent from the multivariable regulationfuntions. The regulation mehanism in GRNs not only follows the \adding" logi like neural networks butalso the \oupling" logi. In neural networks, the approah to dealing with nonlinearity is usually based on a\linearization" idea that sets a linear boundary to be an approximation of the nonlinear ativation funtions.Suh an idea works well when there is one variable, but may fae unmanageable diÆulties when it omes tothe multivariable regulation funtions. In other words, we are not able to inherit the method for dealing withnonlinear terms in neural networks. Therefore, there is a need to transform the model into a new form so asto failitate the handling of suh nonlinear terms.In the following, let us onsider the regulation funtions in order to show the existene of multiple equilibriumpoints, hene the multistability.Remark 2: We onsider a simpli�ed GRN model:_zi(t) = �aizi(t) + nXj=1bijRij(zj(t)): (2)A regulation funtion often found in the literature is the Hill type [14℄:Rij (zj) = zHijj (t)�Hijj + zHijj (t) ; (3)with �j > 0 is the threshold for the regulatory inuene of zj on a target biohemial substane zi, and Hij isthe Hill oeÆients. The funtion ranges from 0 to 1 and inreases as zj !1, so that an inrease in zj willtend to inrease the expression rate of the biohemial substane, then biohemial substane j is an ativatorof gene i. If biohemial substane j is an repressor of gene i, thenRij (zj) = 1� zHijj (t)�Hijj + zHijj (t) : (4)Then, the GRN (2) an be rewritten as_zi(t) = �aizi(t) + nXj=1bij �Rij(zj(t)) + ui (5)for i = 1; 2; : : : ; n; with �Rij(zj(t)) = zHijj (t)�Hijj + zHijj (t) ; ui = Xj2Fi �ij ;where Fi is the set of all the j whih is a repressor of gene i; and ui is de�ned as a basal rate: If bij = �ij ;zj is an ativator of zi; if bij = 0; zj is no link with zi; if bij = ��ij ; zj is a repressor of zi. If �j = 1; theregulation funtion is in a standard form. (3) and (4) an be easily transformed to standard form.Let _zi(t) = 0; that is, aizi(t) � ui = nPj=1bij �Rij(zj(t)); whose solution de�nes the equilibrium point. Foronveniene, we onsider one variable ase, i.e., we de�ne right hand of the equality above f(z) = zHij=(1 +



REVISED 6zHij ); left hand h(z) = az � u: It is shown that there ould be three ross points at most when Hij = 2 inFig. 1(a) and two ross points when Hij = 1 in Fig. 1(b).
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Fig. 1. (a) f(z) = z2=(1 + z2) and h(z) = 0:4z: Three equilibrium points an be ahieved. (b) f(z) = z=(1 + z) andh(z) = 0:4z: Two equilibrium points an be obtained.Assume that a GRN (1) has N equilibrium points and let z�k = (z�k1; z�k2; : : : ; z�kn)T be the kth equilibriumpoint, i = 1; 2; � � � ; N: So we have0 = �aiz�ki + nXj=1bijfij(z�kj) + nXj=1ijgij(z�kj) + nXj=1dijy�kijhij(z�kj) + ui: (6)Subtrating (6) from (1) gives_zi(t)� _z�ki = �ai [zi(t)� z�ki℄ + nXj=1bij �fij(zj(t))� fij(z�kj)� (7)+ nXj=1ij �gij(zj(t� �i))� gij(z�kj)�+ nXj=1dij �yij(t)hij(zj(t))� y�kijhij(z�kj)� :Let zkij(�) = zij(�); (8)xki(�) = zi(�)� z�ki; (9)ykij(�) = yij(�)� y�kij; (10)fkij(xkj) = fij(xkj + z�kj)� fij(z�kj); (11)gkij(xkj) = gij(xkj + z�kj)� gij(z�kj); (12)hkij(xkj) = hij(xkj + z�kj)� hij(z�kj); (13)�hkij(xkj(t)) = zkij(t)hkij(xkj(t)); (14)nXj=1dijhij(z�kj)xkij(t) = � nXj=1ekijxkj(t): (15)We have_xki(t) = �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1ijgkij(xkj(t� �i)) + nXj=1dij�hkij(xkj(t))� nXj=1ekijxkj(t): (16)



REVISED 7For onveniene, see Appendix for the derivation.Equivalently, (16) an be written as_x(t) = � (A+Ek)x(t) + nXi=1Bifki(x(t)) + nXi=1Cigki(x(t� �i)) + nXi=1Di�hki(x(t)); (17)where x(t) = 266664 xk1(t)xk2(t)...xkn(t)
377775 ; fki(x(t)) = 266664 fki1(xk1(t))fki2(xk2(t))...fkin(xkn(t))

377775 ;
gki(x(t� �i)) = 266664 gki1(xk1(t� �i))gki2(xk2(t� �i))...gkin(xkn(t� �i))

377775 ; �hki(x(t)) = 266664 yki1(t)hki1(xk1(t))yki2(t)hki2(xk2(t))...ykin(t)hkin(xkn(t))
377775 :Consider the regulation funtion fij (zj) ; whih is divided into kfijmax pieewise intervals along the variablezj : If there exist N equilibrium points of (1), we let kfijmax = N and selet N intervals
f = 8<: [�0ij ; �1ij ℄Æ(i)1ij � [�1ij ; �2ij ℄Æ(i)2ij � � � � � [�(N�1)ij ; �Nij℄Æ(i)Nij ;�Æ(i)1ij ; Æ(i)2ij ; :::; Æ(i)Nij� = (1; 0; :::; 0) or (0; 1; :::; 0) ; :::; or (0; :::; 0; 1) ; i = 1; 2; :::; n 9=; :Then, the kth equilibrium point lies in the following region
fk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=; :Similarly, onsider the regulation funtion gij (zj) ; linear funtion rij (zij(t)) = zij(t) and regulation funtionhij (zj) ; the kth equilibrium point lies in the following regions
gk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij ℄359=; ; 
rk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=; ;
hk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=;respetively.Assumption 1: Let kfijmax = N . Eah regulation funtion in (1), fij (�) ; i; j = 1; 2; : : : ; n; satis�es thefollowing ondition when 8xk; yk 2 [�ij(k�1); �ijk℄; xk 6= yk; 1 � k � N :��kij � fij (xk)� fij (yk)xk � yk � �+kij ;where ��kij and �+kij are nonnegative onstants.Beause the kth equilibrium point is shifted to origin, the new equilibrium point 0 lies in the region�
fk = 8<: nYi=124\ nYj=1[��(k�1)ij ; ��kij℄359=; :where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0:



REVISED 8By (9), (11) and Assumption 1, it is not diÆult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄; i = 1; 2; : : : ; n;��kij � fkij (xj)xj � �+kij; (18)and it is easy to see that fkij (0) = 0:Similarly, by (9), (12) and Assumption 1, it is not diÆult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄;i = 1; 2; : : : ; n; ��kij � gkij (xj)xj � �+kij ; (19)where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0, ��kij and �+kij are nonnegative onstants. It is easyto see that gkij (0) = 0:Letting x�kij = �(k�1)ij and x+kij = �kij; we getx�kij � ykij(t) � x+kij: (20)Obviously, x�kij and x+kij are positive onstants beause the onentration of biohemial substane an't benegative.Similarly, by (9), (13) and Assumption 1, it is not diÆult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄;i = 1; 2; : : : ; n; ��kij � hkij (xj)xj � �+kij; (21)where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0, ��kij and �+kij are nonnegative onstants. It is easyto see that hkij (0) = 0:Let krijmax = khijmax = N; i; j = 1; 2; : : : ; n; 1 � k � N and �kij = x�kij��kij, +kij = x+kij�+kij. By (20), (21)and Assumption 1, we an have the following orollary.Corollary 1: Eah multivariable regulation funtion in (17), ykijhkij(xj); i; j = 1; 2; : : : ; n; satis�es thefollowing ondition when 8xj 2 [��ij(k�1); 0) [ (0; ��ijk℄; 8ykij 2 [x�kij ; x+kij℄:�kij � ykijhkij (xj)xj � +kij:Remark 3: The inequalities (18), (19) and (21) are similar to the one proposed in [49, 50℄ for the ativa-tion funtion of neural networks. As pointed out in [49, 50℄, this desription ould be non-monotoni, andis more general than the usual sigmoid funtions and the reently ommonly used Lipshitz onditions. Welike to point out that suh a desription is very preise/tight in quantifying the lower and upper boundsof the regulation funtions, hene very helpful for using LMI-based approah to redue the possible onser-vatism. III. Multistability Conditions of GRNsIn this setion, we present our multistability ondition for the GRN with multiple time delays and multi-variable regulation funtions desribed in the previous setion.De�nition 1: A GRN is said to have N -stability if it has N (N � 1) stable equilibrium points. In this ase,the GRN is said to be N -stable. Speially, a GRN has bistability if N = 2:



REVISED 9Theorem 1: The system in (1) is asymptotially N -stable, if there exist matries Pk > 0; Qkj > 0; Zkj > 0;and diagonal matries U+ki; U�ki; V +ki ; V �ki ; W+ki and W�ki ; k = 1; � � � ; N; i = 1; � � � ; n; j = 1; 2; suh that thefollowing LMIs hold: �k +�k +�Tk < 0; (22)where �k = �kP + nXi=1(�kQi +�kZi +�kUi +�kV i +�kWi);�kP = MTkP �PkMkP ;�kUi =MTkU+i �U+kiMkU+i +MTkU�i �U�kiMkU�i ;�kQi = MTkQi �QkiMkQi ;�kV i =MTkV +i �V +kiMkV +i +MTkV �i �V �kiMkV �i ;�kZi = MTkZi �ZkiMkZi ;�kWi =MTkW+i W+kiMkW+i +MTkW�i �W�kiMkW�i ;�k = X[� (A+Ek) � I 0 nXi=1Bi nXi=1Ci nXi=1Di℄;�Pk = " 0n PkPk 0n # ;MkP = " 0n In 0n;4n2In 0n;(4n+1)n # ;�Qki = " Qki 0n0n �Qki # ;MkQi = " In 0n;(4n+1)n0n;(i+1)n In 0n;(4n�i)n # ;�Zki = " �iZki 0n0n �1=�iZki # ; MkZi = " 0n In 0n;4n2In 0n;in �In 0n;(4n�i)n # ;�U+ki = " 0n U+kiU+ki �U+ki �# ;MkU+i = " p1=2F+ki 0n;(4n+1)n0n;(n+i+1)n p2In 0n;(3n�i)n # ;�U�ki = " 0n U�kiU�ki �U�ki # ;MkU�i = " �p1=2F�ki 0n;(4n+1)n0n;(n+i+1)n �p2In 0n;(3n�i)n # ;�V +ki = " 0n V +kiV +ki �V +ki �# ;MkV +i = " 0n;(i+1)n p1=2G+ki 0n;(4n�i)n0n;(2n+i+1)n p2In 0n;(2n�i)n # ;�V �ki = " 0n V �kiV �ki �V �ki # ;MkV �i = " 0n;(i+1)n �p1=2G�ki 0n;(4n�i)n0n;(2n+i+1)n �p2In 0n;(2n�i)n # ;�W+ki = " 0n W+kiW+ki �W+ki # ;MkW+i = " p1=2H+ki 0n;(4n+1)n0n;(3n+i+1)n p2In 0n;(n�i)n # ;�W�ki = " 0n W�kiW�ki �W�ki # ;MkW�i = " �p1=2H�ki 0n;(4n+1)n0n;(3n+i+1)n �p2In 0n;(n�i)n # :Proof: See Appendix.If time delay is assumed to be zero, then the GRN beomes:_zi(t) = �aizi(t) + nXj=1bijfij(zj(t)) + nXj=1bijzij(t)hij(zj(t)): (23)



REVISED 10For the kth equilibrium point, by transformation we have_x(t) = � (A+Ek) x(t) + nXi=1Bifki(x(t)) + nXi=1Di�hki(x(t)): (24)Based on Theorem 1, we an get the following orollary.Corollary 2: The system in (23) is asymptotially N -stable, if there exist matries Pk > 0; and diagonalmatries U+ki; U�ki; W+ki and W�ki ; k = 1; � � � ; N; i = 1; � � � ; n; j = 1; 2; suh that the following LMIs hold:�k +�k +�Tk < 0; (25)where �k = MTkP �PkMkP + nXi=1(�kUi +�kWi);�kUi = MTkU+i �U+kiMkU+i +MTkU�i �U�kiMkU�i ;�kWi = MTkW+i �W+kiMkW+i +MTkW�i �W�kiMkW�i ;�k = X[� (A+Ek) � I nXi=1Bi nXi=1Di℄;�Pk = " 0n PkPk 0n # ;MkP = " 0n In 0n;2n2In 0n;(2n+1)n # ;�U+ki = " 0n U+kiU+ki �U+ki �# ;MkU+i = " p1=2F+ki 0n;(2n+1)n0n;(i+1)n p2In 0n;(2n�i)n # ;�U�ki = " 0n U�kiU�ki �U�ki # ;MkU�i = " �p1=2F�ki 0n;(2n+1)n0n;(i+1)n �p2In 0n;(2n�i)n # ;�W+ki = " 0n W+kiW+ki �W+ki �# ;MkW+i = " p1=2H+ki 0n;(2n+1)n0n;(n+i+1)n p2In 0n;(n�i)n # ;�W�ki = " 0n W�kiW�ki �W�ki # ;MkW�i = " �p1=2H�ki 0n;(2n+1)n0n;(n+i+1)n �p2In 0n;(n�i)n # :Remark 4: Though not in ordinary form of LMIs, Theorem 1 and Collary 2 are indeed in the standard LMIsform, whih an be easily solved by the standard software. Moreover, this form simpli�ed as W TXXWX +W TY YWY is more laoni. It expresses the LMIs in several parts, eah of whih has a symmetri struturewith the matrix variable to be determined in enter. Here, WX is the parameter matrix of linear ombinationof vetor elements. For example, ax1 + bx2 = 0 ould be written as WXxT = 0; where WX = [ a b ℄ andx = [ x1 x2 ℄:Remark 5: In our main results, we propose a general setor-like regulation funtion to derive stability ondi-tions for GRNs with both multiple time-delays and multivariable regulation funtions. Up-to-date tehniquesare utilized for ahieving delay dependene to ensure less onservatism. In the next setion, the obtainedgeneral multistability onditions are demonstrated via two pratial examples.IV. Illustrative ExamplesIn this setion, two examples are employed to show 1) the generality of our proposed regulation funtion;and 2) the appliability of our main results for multistability. There are multivariable regulation funtions in



REVISED 11both of the examples. Spei�ally, Example 1 is onerned with a Cd2-Cylin B/Wee1 system and Example2 is about a redued model of latose system.Example 1. Consider the well-known Cd2-Cylin B/Wee1 system in ell yle desribed in [24℄:_x1 = �1(1� x1)� �1x1(vx2)1K1 + (vx2)1 ;_x2 = �2(1� x2)� �2x2x21K2 + x21 ; (26)where x1 denotes ative Cd2, x2 denotes ative Wee1; �1 = �2 = 1; �1 = 200; �2 = 10 are rate onstants;K1 = 30; K2 = 1 are Mihaelis (saturation) onstants; 1 = 2 = 4 are Hill oeÆients; and v is a oeÆientthat reets the strength of the inuene of Wee1 on Cd2-Cylin B. We selet v = 1 whih guarantees thebistability of (26).
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Fig. 2. Transient behavior of system (26).Simulation results are depited in Fig. 2. It is shown that two stable states an be ahieved. The solid linesrepresent the stable states and the dashed lines represent the unstable states.Letting y1 = x1; y2 = x2= 4p30; we obtain the standard form:_y1 = ��1y1 � �1y1y421 + y42 + 1;_y2 = ��2y2 � �2y2y411 + y41 + 1= 4p30; (27)where the regulation funtion h(x) = x4= �1 + x4�, and d(x) = _h(x) = 4x3= �1 + x4�2 � 1:065: f(x) andh(x) are depited in Fig. 3. We an get three equilibrium points x�1 = (1; 0:17)T ; x�2 = (0:51; 0:62)T andx�3 = (0:14; 1)T of (26); or y�1 = (0:9947; 0:0719)T ; y�2 = (0:51; 0:26)T and y�3 = (0:1357; 0:4258)T of (27).We rewrite model (27) into a ompat matrix form_z(t) = � (A+Ek) z(t) +D�hk(z(t));where h(z) = z41 + z4 ; z(t) = " z1(t)z2(t) # = " y1(t)� y�k1y2(t)� y�k2 # ; �h(z(t)) = " y2(t)h(z1(t))y1(t)h(z2(t)) # ;A = " �1 00 �2 # ; Ek = " �1h(y�k2) 00 �2h(y�k1) # ;D = " 0 ��1��2 0 # :



REVISED 12When y�1 2 [0:55;+1)�[0; 0:25℄, H+1 = diagf1:065; 0:0620g�diagf0:25;+1g; H�1 = diagf0; 0g�diagf0; 0:55g;we an obtain a feasible solution by solving LMIs with the following obtained matrix variables (for spae on-sideration, we only list the matrix variables P1; W+1 and W�1 ; and for a valid simulation, we take 100 as asubstitute for +1 in y�1 and H+1 ):P1 = " 9:4 31:131:1 9138:3 # ;W+1 = " 1221:6 00 3584:8 # ;W�1 = " 67300 00 153330 # :When y�2 2 [0:45; 0:55℄�[0:25; 0:35℄, H+2 = diagf0:5586; 0:1665g�diagf0:35; 0:5g; H�2 = diagf0:3363; 0:0620g�diagf0:25; 0:45g. The solution is infeasible.When y�3 2 [0; 0:45℄�[0:35;+1); H+3 = diagf0:3363; 1:065g�diagf+1; 0:45g; H�3 = diagf0; 0g�diagf0:35; 0g;we an obtain a feasible solution by solving LMIs with the following obtained matrix variables:P2 = " 0:0647 0:08780:0878 2:8020 # ;W+2 = " 0:0784 00 17:0333 # ;W�2 = " 127:4051 00 97:9623 # :
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Fig. 3. h(x) = x4= �1 + x4�, and d(x) = 4x3= �1 + x4�2 :Example 2:. In this example, we onsider a redued model of latose system. The la operon onsists of apromoter/operator region and three larger strutural genes, laZ, laY, and laA. In the presene of externallatose (Le), latose is transported into the ell by a permease (P ). Intraellular latose (L) is then brokendown into gluose, galatose, and allolatose (A) by the enzyme �-galatosidase (B). The allolatose (A) feedsbak to bind with the latose repressor and enables the transription proess to proeed. One the mRNA hasbeen produed, the proess of translation is initiated. The laZ gene enodes for the mRNA responsible forthe prodution of �-galatosidase (B) and translation of the laY gene produes mRNA ultimately responsiblefor the prodution of a membrane permease (P ).In [23℄, it is assumed that there is a onstant permease onentration and latose is in a quasisteady stateaross the membrane. Therefore, there is a one-to-one relationship between the external and internal latose.Then latose (L) and permease (P ) dynamis are not onsidered. A redued model of three di�erentialequations is onsidered in [23℄: _A = �AB LKL + L � �AB AKA +A � ~AA;_B = �Be���BM�B � ~BB; (28)_M = �M 1 +K1(e���MA�M )nK +K1(e���MA�M )n � ~MM;



REVISED 13where M is the mRNA onentration, B is the � galatosidase onentration, A is the onentration ofallolatose (the e�etor in the la operon), L is the intraellular latose onentration, A�M � A(t � �M),M�B �M(t� �B). and the baterial growth rate is given by �. The parameters are given in Table 1.Table 1. Parameter valuesparameter value unit parameter value unitn 2 K 7200� 3:03 � 10�2 min�1 K1 2:52 � 10�2 (�M)�2�M 997 nm�min�1 KL 0:97 mM�B 1:66 � 10�2 min�1 KA 1:95 mM�A 1:76 � 104 min�1 �A 2:15 � 104 min�1M 0:411 min�1 �M 0:10 minB 8:33 � 10�4 min�1 �B 2:00 minA 1:35 � 10�2 min�1We rewrite model (28) into a ompat matrix form_x = � � �A+Ek�x+ �Bfk(x) + �C1gk1(x�M ) + �C2gk2(x�B ) + �D�hk(x);where g(A� ) = 1 +K1(e���A� )nK +K1(e���A� )n ; h(A) = AKA +A; �L = LKL + Lx = 264 AkBkMk 375 = 264 A�A�kB �B�kM �M�k 375 ; x�M = 264 A�MkB�MkM�Mk 375 = 264 A�M �A�kB�M �B�kM�M �M�k 375 ;x�B = 264 A�BkB�BkM�Bk 375 = 264 A�B �A�kB�B �B�kM�B �M�k 375 ; fk(x(t)) = 264 0Bk0 375 ;gk1(x�M ) = 264 g(A�Mk)0M�Mk 375 ; gk2(x�B ) = 264 g(A�Bk)0M�Bk 375 ; �hk(x(t)) = 264 Bh(Ak)00 375 ;�A = 264 ~A 0 00 ~B 00 0 ~M 375 ; Ek = 264 0 �Ah(A�k) 00 0 00 0 0 375 ; �B = 264 0 �A �L 00 0 00 0 0 375 ;�C1 = 264 0 0 00 0 0�M 0 0 375 ; �C2 = 264 0 0 00 0 �Be���B0 0 0 375 ; �D = 264 ��A 0 00 0 00 0 0 375 :There are three equilibrium points with L = 50�M:SS�1 = (A�1; B�1 ; C�1 ) = (4:27 �M; 0:23 nM; 0:46 nM);SS�2 = (A�2; B�2 ; C�2 ) = (11:73 �M; 0:7 nM; 1:39 nM);SS�3 = (A�3; B�3 ; C�3 ) = (64:68 �M; 16:42 nM; 32:71 nM);



REVISED 14SS�1 and SS�3 are stable, SS�2 is unstable. In the following, we show the e�etiveness of our theorem.When SS�1 2 [0; 8℄ � [0; 0:4℄ � [0; 1℄, F+1 = diagf0; 1; 0g; F�1 = diagf0; 1; 0g; G+11 = G+12 = diagf5:5967 �10�5; 0; 1g; G�11 = G�12 = diagf0; 0; 1g; H+1 = diagf5:1282 � 10�4; 0; 0g � diagf0:4; 0; 0g; H�1 = diagf5:0864 �10�4; 0; 0g�diagf0; 0; 0g; we an obtain a feasible solution by solving LMIs with the following obtained matrixvariables (for spae onsideration, we only list the matrix variable P1):P1 = 264 0:0040 �0:0310 �0:0006�0:0310 1:2819 �0:0492�0:0006 �0:0492 0:0261 375 :When SS�2 2 [8; 15℄ � [0:4; 10℄ � [1; 15℄; F+2 = diagf0; 1; 0g; F�2 = diagf0; 1; 0g; G+21 = G+22 = diagf1:0482 �10�4; 0; 1g; G�21 = G�22 = diagf5:5967 � 10�5; 0; 1g; H+2 = diagf5:0864 � 10�4; 0; 0g � diagf10; 0; 0g; H�2 =diagf5:0502 � 10�4; 0; 0g � diagf0:4; 0; 0g; the solution is infeasible.When SS�3 2 [15;+1) � [10;+1) � [15;+1); F+3 = diagf0; 1; 0g; F�3 = diagf0; 1; 0g; G+21 = G+32 =diagf1:215 � 10�3; 0; 1g; G�31 = G�32 = diagf0; 0; 1g; H+3 = diagf5:0502 � 10�4; 0; 0g � diagf+1; 0; 0g; H�3 =diagf4:6401� 10�4 ; 0; 0g�diagf10; 0; 0g; we an obtain a feasible solution by solving LMIs with the followingobtained matrix variables (for spae onsideration, we only list the matrix variables P2):P2 = 264 0:0029 0:0028 �0:00250:0028 0:5506 �0:0344�0:0025 �0:0344 0:0181 375 ;whih on�rms the bistability of this GRN. V. ConlusionIn this paper, we have made an e�ort to show the possibility of applying ontrol theory to investigate themultistability of a GRN, therefore having potential appliations in the design of syntheti gene iruits withmultistability. A novel and uniform mathematial formulation is proposed to desribe a GRN with multipletime delays and multivariable regulation funtions. A method has been presented for the analysis of mul-tistability of suh a GRN. By using a Lyapunov-Krasovskii funtional (LKF) approah and linear matrixinequalities (LMIs) tehniques, the multistability riteria for a GRN with multiple time delays and multivari-able regulation funtions have been established in the form of LMIs, whih an be readily veri�ed by usingstandard numerial software. An important feature of the results reported here is that all the multistabilityonditions are dependent on the delays, whih is made possible by utilizing the most updated tehniques forahieving delay dependene. Also, our multistability onditions are appliable to several di�erent regulationfuntions, whih over many types of urrently investigated GRNs, espeially inluding the ompliated multi-variable regulation funtions. Two examples have been employed to illustrate the appliability and usefulnessof the developed theoretial results, whih are onerned with, respetively, a Cd2-Cylin B/Wee1 systemmodel and a latose system model, both of whih display bistability.



REVISED 15AppendixA. Derivation of (16)By (7), (8), (9), (10), (11), (12), (13), (14) and (15), we have_xki(t) = �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1ijgkij(xkj(t� �i))+ nXj=1dij �ykij(t)hij(xkj(t) + z�kj) + y�kijhkij(xkj(t))�= �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1ijgkij(xkj(t� �i))+ nXj=1dij �ykij(t)hij(xkj(t) + z�kj)� ykij(t)hij(z�kj)�+ nXj=1dijykij(t)hij(z�kj) + nXj=1dijy�kijhkij(xkj(t))= �aixki(t) + nXj=1dijykij(t)hij(z�kj) + nXj=1bijfkij(xkj(t)) + nXj=1ijgkij(xkj(t� �i))+ nXj=1[dijykij(t)hkij(xkj(t)) + dijy�kij(t)hkij(xkj(t))℄= �aixki(t) + nXj=1dijhij(z�kj)ykij(t) + nXj=1bijfkij(xj(t)) + nXj=1ijgkij(xj(t� �i))+ nXj=1dijykij(t)hkij(xkj(t)):Then (16) ould be obtained.B. Proof of Theorem 1We �rst show that the kth equilibrium point is asymptotially stable. The Lyapunov-Krasovskii funtionalis de�ned as follows: Vk(x(t)) = Vk1(x(t)) + Vk2(x(t)) + Vk3(x(t)); (A1)Vk1(x(t)) = xT (t)Pkx(t); (A2)Vk2(x(t)) = nXi=1 Z tt��i xT (�)Qkix(�)d�; (A3)Vk3(x(t)) = nXi=1 Z 0��i Z tt+� _xT (�)Zki _x(�)d�d�: (A4)



REVISED 16The derivatives of Vkj(x(t)); j = 1; 2; 3; are given by_Vk1(x(t)) = 2xT (t)Pk _x(t); (A5)_Vk2(x(t)) = nXi=1 [xT (t)Qkix(t)� xT (t� �i)Qkix(t� �i)℄; (A6)_Vk3(x(t)) = nXi=1 [�i _xT (t)Zki _x(t)� Z tt��i _xT (�)Zki _x(�)d�℄: (A7)From Jensen's inequality, we an easily get�Z tt��i _xT (�)Zki _x(�)d�� � 1�i �Z tt��i _x(�)d�T �T Zki �Z tt��i _x(�)d��= � 1�i [x(t)� x(t� �i)℄T Zki [x(t)� x(t� �i)℄ ; (A8)By (18), for any salar u+ki � 0; it is lear that for i = 1; � � � ; n;nXj=1u+kijfkij(xj(t)) h�+kijxj(t)� fkij(xj(t))i � 0;then nXi=1 nXj=1 hu+kijfkij(xj(t))�+kijxj(t)� u+kijfkij(xj(t))fkij(xj(t))i � 0;or equivalently nXi=1 [fki(x(t))U+kiF+kix(t)� fki(x(t))U+kifki(x(t))℄ � 0: (A9)Similarly, for any salars u�ki � 0; v+ki � 0 and v�ki � 0; we have, respetively,nXi=1 [fki(x(t))U�kifki(x(t)) � fki(x(t))U�kiF�kix(t)℄ � 0; (A10)nXi=1 [gki(x(t� �i))V +kiG+kix(t� �i)� gki(x(t� �i))V +ki gki(x(t� �i))℄ � 0; (A11)and nXi=1 [gki(x(t� �i))V �ki gki(x(t� �i))� gki(x(t� �i))V �kiG�kix(t� �i)℄ � 0: (A12)Also, by Corollary 1, for any salars w+ki � 0 and w�ki � 0; we have that for i = 1; � � � ; n;nXi=1 [�hki(x(t))W+kiH+kix(t)� �hki(x(t))W+ki�hki(x(t))℄ � 0: (A13)and nXi=1 [�hki(x(t))W�ki�hki(x(t)) � �hki(x(t))W�kiH�kix(t)℄ � 0: (A14)



REVISED 17In addition, based on (17), for any matries X; we have�k (t)X "� (A+Ek) x(t) + nXi=1Bifki(x(t)) + nXi=1Cigki(x(t� �i)) + nXi=1Di�hki(x(t))� _x(t)# = 0; (A15)with �k (t) = 26666666664
x(t)_x(t)�(t� �)fk(x(t))gk(x(t� �))�hk(x(t))

37777777775 ;where �(t� �) = 266664 x(t� �1)x(t� �2)...x(t� �n)
377775 ; fk(x(t)) = 266664 fk1(x(t))fk2(x(t))...fkn(x(t))

377775 ;
gk(x(t� �)) = 266664 gk1(x(t� �1))gk2(x(t� �2))...gkn(x(t� �n))

377775 ; �hk(x(t)) = 266664 �hk1(x(t))�hk2(x(t))...�hkn(x(t))
377775 :By using (17) and (A8)-(A15), we have_Vk(x(t)) � 2xT (t)Pk _x(t)+ nXi=1 �xT (t)Qkix(t)� xT (t� �i)Qkix(t� �i)�+ nXi=1f�i _xT (t)Zki _x(t)� 1�i [x(t)� x(t� �i)℄T Zki [x(t)� x(t� �i)℄g+ nXi=1 [2fki(x(t))U+kiF+kix(t)� 2fki(x(t))U+kifki(x(t))℄+ nXi=1 [2fki(x(t))U�kifki(x(t)) � 2fki(x(t))U�kiF�kix(t)℄+ nXi=1 [2gki(x(t� �i))V +kiG+kix(t� �i)� 2gki(x(t� �i))V +ki gki(x(t� �i))℄+ nXi=1 [2gki(x(t� �i))V �ki gki(x(t� �i))� 2gki(x(t� �i))V �kiG�kix(t� �i)℄+ nXi=1 [2�hki(x(t))W+kiH+kix(t)� 2�hki(x(t))W+ki�hki(x(t))℄+ nXi=1 [2�hki(x(t))W�ki�hki(x(t))� 2�hki(x(t))W�kiH�kix(t)℄
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